Innovative hybrid MOEA/D variants for solving multi-objective combinatorial optimization problems
Resumo
Resumo: Muitos problemas do mundo real podem ser representados como um problema de otimização combinatória. Muitas vezes, estes problemas são caracterizados pelo grande número de variáveis e pela presença de múltiplos objetivos a serem otimizados ao mesmo tempo. Muitas vezes estes problemas são difíceis de serem resolvidos de forma ótima. Suas resoluções tem sido considerada um desafio nas últimas décadas. Os algoritimos metaheurísticos visam encontrar uma aproximação aceitável do ótimo em um tempo computacional razoável. Os algoritmos metaheurísticos continuam sendo um foco de pesquisa científica, recebendo uma atenção crescente pela comunidade. Uma das têndencias neste cenário é a arbordagem híbrida, na qual diferentes métodos e conceitos são combinados objetivando propor metaheurísticas mais eficientes. Nesta tese, nós propomos algoritmos metaheurísticos híbridos para a solução de problemas combinatoriais multiobjetivo. Os principais ingredientes das nossas propostas são: (i) o algoritmo evolutivo multiobjetivo baseado em decomposição (MOEA/D framework), (ii) a otimização por colônias de formigas e (iii) e os algoritmos de estimação de distribuição. Em nossos frameworks, além dos operadores genéticos tradicionais, podemos instanciar diferentes modelos como mecanismo de reprodução dos algoritmos. Além disso, nós introduzimos alguns componentes nos frameworks objetivando balancear a convergência e a diversidade durante a busca. Nossos esforços foram direcionados para a resolução de problemas considerados difíceis na literatura. São eles: a programação quadrática binária sem restrições multiobjetivo, o problema de programação flow-shop permutacional multiobjetivo, e também os problemas caracterizados como deceptivos. Por meio de estudos experimentais, mostramos que as abordagens propostas são capazes de superar os resultados do estado-da-arte em grande parte dos casos considerados. Mostramos que as diretrizes do MOEA/D hibridizadas com outras metaheurísticas é uma estratégia promissora para a solução de problemas combinatoriais multiobjetivo. Palavras-chave: metaheuristicas, otimização multiobjetivo, problemas combinatoriais, MOEA/D, otimização por colônia de formigas, algoritmos de estimação de distribuição, programação quadrática binária sem restrições multiobjetivo, problema de programação flow-shop permutacional multiobjetivo, abordagens híbridas. Abstract: Several real-world problems can be stated as a combinatorial optimization problem. Very often, they are characterized by the large number of variables and the presence of multiple conflicting objectives to be optimized at the same time. These kind of problems are, usually, hard to be solved optimally, and their solutions have been considered a challenge for a long time. Metaheuristic algorithms aim at finding an acceptable approximation to the optimal solution in a reasonable computational time. The research on metaheuristics remains an attractive area and receives growing attention. One of the trends in this scenario are the hybrid approaches, in which different methods and concepts are combined aiming to propose more efficient approaches. In this thesis, we have proposed hybrid metaheuristic algorithms for solving multi-objective combinatorial optimization problems. Our proposals are based on (i) the multi-objective evolutionary algorithm based on decomposition (MOEA/D framework), (ii) the bio-inspired metaheuristic ant colony optimization, and (iii) the probabilistic models from the estimation of distribution algorithms. Our algorithms are considered MOEA/D variants. In our MOEA/D variants, besides the traditional genetic operators, we can instantiate different models as the variation step (reproduction). Moreover, we include some design modifications into the frameworks to control the convergence and the diversity during their search (evolution). We have addressed some important problems from the literature, e.g., the multi-objective unconstrained binary quadratic programming, the multiobjective permutation flowshop scheduling problem, and the problems characterized by deception. As a result, we show that our proposed frameworks are able to solve these problems efficiently by outperforming the state-of-the-art approaches in most of the cases considered. We show that the MOEA/D guidelines hybridized to other metaheuristic components and concepts is a powerful strategy for solving multi-objective combinatorial optimization problems. Keywords: meta-heuristics, multi-objective optimization, combinatorial problems, MOEA/D, ant colony optimization, estimation of distribution algorithms, unconstrained binary quadratic programming, permutation flowshop scheduling problem, hybrid approaches.
Collections
- Teses [124]