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Resumo
Muitos problemas do mundo real podem ser representados como um problema de

otimização combinatória. Muitas vezes, estes problemas são caracterizados pelo grande número
de variáveis e pela presença de múltiplos objetivos a serem otimizados ao mesmo tempo.
Muitas vezes estes problemas são difíceis de serem resolvidos de forma ótima. Suas resoluções
tem sido considerada um desafio nas últimas décadas. Os algoritimos metaheurísticos visam
encontrar uma aproximação aceitável do ótimo em um tempo computacional razoável. Os
algoritmos metaheurísticos continuam sendo um foco de pesquisa científica, recebendo uma
atenção crescente pela comunidade. Uma das têndencias neste cenário é a arbordagem híbrida,
na qual diferentes métodos e conceitos são combinados objetivando propor metaheurísticas mais
eficientes. Nesta tese, nós propomos algoritmos metaheurísticos híbridos para a solução de
problemas combinatoriais multiobjetivo. Os principais ingredientes das nossas propostas são:
(i) o algoritmo evolutivo multiobjetivo baseado em decomposição (MOEA/D framework), (ii) a
otimização por colônias de formigas e (iii) e os algoritmos de estimação de distribuição. Em
nossos frameworks, além dos operadores genéticos tradicionais, podemos instanciar diferentes
modelos como mecanismo de reprodução dos algoritmos. Além disso, nós introduzimos alguns
componentes nos frameworks objetivando balancear a convergência e a diversidade durante a
busca. Nossos esforços foram direcionados para a resolução de problemas considerados difíceis
na literatura. São eles: a programação quadrática binária sem restrições multiobjetivo, o problema
de programação flow-shop permutacional multiobjetivo, e também os problemas caracterizados
como deceptivos. Por meio de estudos experimentais, mostramos que as abordagens propostas
são capazes de superar os resultados do estado-da-arte em grande parte dos casos considerados.
Mostramos que as diretrizes do MOEA/D hibridizadas com outras metaheurísticas é uma
estratégia promissora para a solução de problemas combinatoriais multiobjetivo.

Palavras-chave: metaheuristicas, otimização multiobjetivo, problemas combinatoriais,
MOEA/D, otimização por colônia de formigas, algoritmos de estimação de distribuição, pro-
gramação quadrática binária sem restrições multiobjetivo, problema de programação flow-shop
permutacional multiobjetivo, abordagens híbridas.



Abstract
Several real-world problems can be stated as a combinatorial optimization problem.

Very often, they are characterized by the large number of variables and the presence of multiple
conflicting objectives to be optimized at the same time. These kind of problems are, usually,
hard to be solved optimally, and their solutions have been considered a challenge for a long
time. Metaheuristic algorithms aim at finding an acceptable approximation to the optimal
solution in a reasonable computational time. The research on metaheuristics remains an
attractive area and receives growing attention. One of the trends in this scenario are the hybrid
approaches, in which different methods and concepts are combined aiming to propose more
efficient approaches. In this thesis, we have proposed hybrid metaheuristic algorithms for
solving multi-objective combinatorial optimization problems. Our proposals are based on (i) the
multi-objective evolutionary algorithm based on decomposition (MOEA/D framework), (ii) the
bio-inspired metaheuristic ant colony optimization, and (iii) the probabilistic models from the
estimation of distribution algorithms. Our algorithms are considered MOEA/D variants. In our
MOEA/D variants, besides the traditional genetic operators, we can instantiate different models
as the variation step (reproduction). Moreover, we include some design modifications into the
frameworks to control the convergence and the diversity during their search (evolution). We have
addressed some important problems from the literature, e.g., the multi-objective unconstrained
binary quadratic programming, the multiobjective permutation flowshop scheduling problem, and
the problems characterized by deception. As a result, we show that our proposed frameworks are
able to solve these problems efficiently by outperforming the state-of-the-art approaches in most
of the cases considered. We show that the MOEA/D guidelines hybridized to other metaheuristic
components and concepts is a powerful strategy for solving multi-objective combinatorial
optimization problems.

Keywords: meta-heuristics, multi-objective optimization, combinatorial problems, MOEA/D,
ant colony optimization, estimation of distribution algorithms, unconstrained binary quadratic
programming, permutation flowshop scheduling problem, hybrid approaches.
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Resumo Estendido

Motivação e Objetivo Geral

Vários problemas do mundo real, tais como, problemas da área de engenharia, ciência da
computação, finança e industria podem ser definidos como problemas de otimização combinatória.
Frequentemente, estes problemas possuem um grande número de variáveis e a presença de
múltiplos objetivos para serem otimizado ao mesmo tempo. Geralmente, esses problemas
combinatoriais são difíceis de serem resolvidos de forma ótima, e suas resoluções continuam
sendo consideradas um desafio [Miettinen, 2012, Blum e Roli, 2008]. No caso multi-objetivo,
a fronteira de Pareto (FP) real de um problema pode conter um número grande (ou infinito)
de soluções (chamadas de soluções ótimas de Pareto). Neste caso, atingir a fronteira real é
considerado um problema difícil. Neste caso, os algoritmos de otimização multi-objetivos visam
encontrar uma fronteira de Pareto aproximada em um tempo computacional considerado razoável
[Miettinen, 2012, Ehrgott e Gandibleux, 2008].

A pesquisa na área de otimização concentra-se no desenvolvimento de algoritmos
meta-heurísticos [Glover, 1986, Blum e Roli, 2003, Blum et al., 2011]. O sucesso de meta-
heurísticas como: 1) Arrefecimento Simulado (AS) [Brooks e Morgan, 1995], 2) Busca Tabu
(BT) [Glover, 1989], 3) Algoritmos Genéticos (AG) [Holland, 1975], 4) Otimização por
Colônias de Formigas [Dorigo et al., 1996], e 5) Algoritmos de Estimação de Distribuição
(AED) [Mühlenbein e Paass, 1996] para resolver problemas de otimização é, hoje, ampla-
mente reconhecido pela comunidade cientifica [Blum et al., 2011]. Estas meta-heurísticas
foram logo estendidas para resolver com problemas com dois ou mais objetivos (PMO)
[Miettinen, 2012, Coello et al., 2007, Ehrgott e Gandibleux, 2008].

Entretanto, os algoritmos meta-heurísticos propostos podem sofrem de alguma limitação.
As principais limitações dos trabalhos da literatura são:

• Os métodos propostos são orientados ao problema. Neste caso, os algorítimos são
designados para resolver apenas um problema em questão da melhor forma possível,
levando em consideração as propriedades intrínsecas do problema. Estes métodos
depreciam a generalização do algoritmo em resolver diversos problemas [Blum et al., 2011,
Ehrgott e Gandibleux, 2008].

• Uma outra área de pesquisa concentra-se em melhorar a acurácia e/ou a generalização das
meta-heurísticas, porém depreciando o custo computacional [Crainic e Toulouse, 2010].

Portanto, o desenvolvimento de meta-heurísticas para resolver problemas de otimização
multi-objectivo continua sendo uma área de pesquisa atraente, e continua recebendo atenção
[Ehrgott e Gandibleux, 2008, Yenisey e Yagmahan, 2014, Trivedi et al., 2016]. Algumas das
linhas de pesquisa atuais em meta-heurísticas podem ser distinguidas como:

1. Abordagem híbridas: Nesta abordagem, diferentes métodos e conceitos são combinados
com o intuito de propor novos algoritmos aprimorando a acurácia [Blum et al., 2011,
Ehrgott e Gandibleux, 2008].

2. Hiper-heurísticas: Nesta abordagem, o objetivo é propor meta-heurísticas mais gerais, no
qual possuem diversos ingredientes/componentes que são configurados automaticamente
durante a busca [Burke et al., 2013].
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3. Uso de computação paralela: Neste caso, o objetivo é aprimorar a eficiência dos algoritmos
meta-heurísticos diminuindo o custo computacional [Crainic e Toulouse, 2010].

Neste tese, nós trabalhamos primeiramentecom as linhas de pesquisa 1 (abordagem
híbridas) e 3 (abordagem paralela), resultando em algumas contribuições. Porém, para darmos
um foco mais específico para a tese, decidimos trabalhar apenas com a linha de pesquisa 1
(abordagem híbridas).

Assim, podemos dizer que o objetivo geral desta tese é a proposta de meta-heurísticas
híbridas para resolver problemas combinatoriais multi-objetivos de forma eficiente. Foram
estudados e combinados diversos ingredientes. A seguir, mencionamos os ingredientes chave e a
justificativa de suas utilizações.

• Algoritmos Evolucionários Multi-objetivo (AEMO) [Coello et al., 2007] e a abor-
dagem de decomposição [Miettinen, 2012]: AEMO são particularmente adequados
para resolver PMOs pois eles podem lidar simultaneamente com um conjunto de soluções
(chamado de população). Algoritmos baseados em população permitem que diversas
soluções não-dominadas sejam encontradas em uma única execução. Eles possuem a
habilidade de buscar soluções que compõem diferentes trade-offs no espaço objetivo.
Além disso, exitem diferentes estratégias para se buscar/manter um conjunto de soluções
não-dominadas. Os AEMO baseados em decomposição usam uma função agregação
escalar e um conjunto de vetores de pesos, e assim decompõem o problema em questão
em um número de subproblemas mono-objectivo. No framework MOEA/D (do inglês,
Multi-objective Evolutionary Algorithm based on Decomposition) [Zhang e Li, 2007], o
PMO em questão é decomposto em um conjunto de subproblemas mono-objetivo e eles
são otimizados simultaneamente de forma colaborativa usando o conceito de vizinhança
entre os subproblemas. Atualmente, as linhas de pesquisa sobre o MOEA/D são varias
e incluem: (i) modificações na estrutura do framework, (ii) abordagem híbridas, e (ii)
aplicação em diversos problemas [Trivedi et al., 2016]. Esses pesquisas motivaram o
trabalho desenvolvido nesta tese.

• Otimização por colônias de formigas: ACO (do inglês, Ant Colony Optimization)
é uma meta-heurística baseada em população e inspirada pelo comunicação indireta
de formigas reais por meio de trilhas de uma substância química chamada feromônio
[Dorigo et al., 1996]. Computacionalmente, as formigas artificiais são agentes estocás-
ticos que usam a informação que reflete a experiência acumulada pelas formigas
anteriores para construir novas soluções. Algorítimos baseados na meta-heurística
ACO tem sido aplicados para resolver uma vasta gama de problemas, principalmente
os combinatoriais [Dorigo et al., 2006, Dorigo et al., 2008, Mohan e Baskaran, 2012,
López-Ibánez e Stutzle, 2012].

• Algorítimos de Estimação de Distribuição [Mühlenbein e Paass, 1996,
Larrañaga e Lozano, 2002]: são algoritmos evolucionários baseados em popu-
lação que, a cada geração, aprende um modelo probabilístico a partir de um conjunto
de soluções promissoras. Os filhos (novas soluções) são então obtidos executando uma
amostragem do modelo probabilístico aprendido. AED foram originalmente propostos
para resolver problemas complexos, nos quais os operadores genéticos tradicionais não
são muito eficientes em resolver porque eles falham em identificar automaticamente a
estrutura do problemas, o qual consiste de várias variáveis correlacionadas. Esta questão é
referida na literatura como problemas de aprendizagem ligada.
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Na literatura, o framework MOEA/D, ACO e AED têm sido aplicados tanto sepa-
radamente como também combinados (híbridos) [Ehrgott e Gandibleux, 2008, Ke et al., 2013,
Trivedi et al., 2016]. Na literatura há diversos trabalhos mostrando a potencialidade destes
métodos [Yenisey e Yagmahan, 2014, Trivedi et al., 2016].

Objetivos Específicos e Contribuições

As meta-heurísticas híbridas propostas nesta tese são consideradas variações do frame-
work MOEA/D pois elas seguem as suas principais premissas. Em nosso framework diferente
modelos (meta-heurísticas) podem ser aplicadas como mecanismo de reprodução, considerando
o problema em mãos. Nós distinguimos nossa proposta em três frameworks diferentes no
qual depende do tipo de modelo combinado com o MOEA/D. A seguir, descrevemos os três
frameworks e o tipo de problema combinatorial no qual cada um é designado a resolver.

1. MOEA/D combinado com a meta-heurística ACO Binário (MOEA/D-BACO framework)
aplicado para resolver problemas combinatoriais multi-objectivo com representação binária.

2. MOEA/D hibridizado com modelos gráficos probabilísticos (MOEA/D-GM framework)
(do inglês, Graphical Models) proposto para resolver problemas combinatoriais deceptivos
multi-objectivo;

3. MOEA/D hibridizado com oAED basedo emmodelosMallows (MEDA/D-MK framework)
(do inglês, Multi-objective Estimation of Distribution Algorithm based on Decomposition
and kernel of Mallows model suscetível para resolver problemas combinatoriais multi-
objectivo baseados em permutação.

Para mostrar a viabilidade destes frameworks propostos, diversos estudos experimentais
foram conduzidos. Os frameworks foram aplicados para os seguintes problemas: (i) A progra-
mação quadrática binária sem restrições multi-objetivo, do inglês multi-objective unconstrained
quadratic programming (mUBQP) [Liefooghe et al., 2014], o qual pode representar diversos
problemas binários. (ii) Funções/instancias deceptivas [Pelikan et al., 2007], que representam
uma outra classe de problemas complexos. (iii) E também o problema da programação flow-shop
permutacional multi-objectivo (do inglês, multi-objective permutation flowshop scheduling
problem (MoPFSP) [Minella et al., 2008], no qual é um dos problemas de permutação mais
estudados devido a sua complexidade e seus campos de aplicação.

Nosso trabalho resultou em diferentes contribuições, e assim obtivemos publicações
em conferencias de grande prestigio e também em revistas cientificas relevantes. A seguir,
descrevemos as contribuições:

1. A primeira contribuição é relacionado à abordagem paralela. A investigação foi iniciada
com a meta-heurística ACO devido a sua vasta utilização para resolução de problemas
combinatoriais. Em geral, algoritmos baseados em ACO são mais custosos que outras
meta-heurísticas, tal como os algorítimos genéticos. Por outro lado, algoritmos baseados
em ACO são suscetíveis à paralelização [DeléVacq et al., 2013]. Portanto, nós propusemos
uma implementação emGPU (do inglês, Graphics Processing Uniti) do algoritmoMOEA/D
combinado com ACO (chamado de MOEA/D-ACO) [Ke et al., 2013] usando NVIDIA
CUDA1 com o objetivo de aperfeiçoar seu tempo computacional. Nós reportamos speedups
acima de 19x para o problema do caixeiro viajante multi-objetivo, e 11x para o problema
da mochila multi-objetivo. Entretanto, nós decidimos mudar o foco da nossa investigação

1Guia de programaçãoCUDAV5.5. Disponível emhttp://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
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devido as limitações encontradas nesta linha de pesquisa, como hardware disponível e
falta de experiência com paralelismo. Logo, nós voltamos nossas atenções apenas para
as abordagem híbridas com o intuito de atingir contribuições mais significativas. Nós
apresentamos o trabalho desenvolvido com a abordagem paralela no Apêndice B desta tese.

2. Nós propusemos uma nova abordagem para resolver o problema mUBQP
[Liefooghe et al., 2014] pois poucas meta-heurísticas foram testadas para resolver este prob-
lema. Além disso, o tradicional MOEA/D-ACO não é adequado para resolver instancias
do mUBQP com um grande número de variáveis porque a complexidade dos grafos n × n
aumentam exponencialmente com o tamanho do problema. Portanto, nós apresentamos
um algoritmo híbrido baseado no MOEA/D e na versão binária do ACO, chamado Binary
ACO (ACO) [Fernandes et al., 2007]. Algoritmos baseados no BACO agem construindo
trilhas de feromônios sobre um grafo 2 × n que representa pseudo-soluções. A principal
diferença entre ACO e BACO é a estratégia usada para representar e prover o espaço de
busca para explora-lo. Nós também incluímos alguns ingredientes no MOEA/D-BACO
afim de de melhorar sua acurácia. Os resultados mostram que o MOEA/D-BACO supera
significativamente o MOEA/D (que aplica operadores genéticos) na maioria das instâncias
consideradas. Além do mais, o algoritmo produz resultados competitivos comparado as
melhores fronteiras de Pareto presentes na literatura para o benchmark considerado.

3. Por conseguente, nós seguimos com a nossa pesquisa em novas abordagem para resolver
problemas combinatoriais multi-objetivo. Assim, começamos a investigar os algoritmos
de distribuição de probabilidades. Primeiro, estudamos os AED que não consideram
dependência entre as variáveis por serem mais simples e conter similaridades com
o ACO. O AED chamado PBIL (do inglês, population-based incremental algorithm)
[Mühlenbein e Paass, 1996] é um dos primeiros AED propostos, e ele tem sido aplicado
para resolver diversos problemas. Nós mostramos que as diferentes aplicações do PBIL
reportadas na literatura correspondem, de fato, emdois algoritmos distinto pois omecanismo
de aprendizado implementado é diferente. Nós analiticamente e empiricamente mostramos
que o mecanismo de aprendizagem afeta diretamente no comportamento do algoritmo em
termos de convergência e diversidade. Como conclusão, mostramos que este fator deve
ser levado em consideração ao aplicar um algorítimo baseado no PBIL para resolver um
determinado problema.

4. Indo mais afundo na questão "O que faz uma instância de um problema combinatorial
difícil?", nós investigamos as propriedades das instâncias domUBQP. O nível de dificuldade
das instâncias do mUBQP propostas por [Liefooghe et al., 2014] dependem do número
de variáveis, do arranjo de valores que compõem as matrizes, e a correlação entre os
objetivos. Nós seguimos um caminho diferente para gerar novos casos do problema. Em
nossa abordagem, o nível de dificuldade é dado pelo número de variáveis co-relacionadas,
no qual pequenos blocos de funções deceptivas são plantadas nas matrizes que definem
o problema. Nós mostramos que as instâncias introduzidas são mais difíceis de serem
resolvidas do que as que são geradas randomicamente.

5. Seguindo com a pesquisa em AED, nos concentramos na exploração de modelos mais
complexos devido a sua viabilidade para resolver problemas que possuem dependência
entre as variáveis [Pelikan et al., 2007, Mendiburu et al., 2012, Larrañaga et al., 2012].
Neste caso, a distribuição de probabilidades é representada via modelo gráfico, no qual
probabilidades condicionais são aprendidas Portanto, nós investigamos a usabilidade
dos modelos gráficos combinados com o MOEA/D. O framework proposto chamado
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MOEA/D-GM pode aprender tanto modelo uni-variados quanto multi-variados como
mecanismo de reprodução de cada subproblema. Para avaliar a abordagem proposta,
nós utilizamos a função multi-objectivo Trap5 e as instâncias do mUBQP. Os resultados
mostram que a instanciação chamada MOEA/D-Tree, no qual modelos baseados em árvore
são aprendidos a partir das matrizes de informação condicional, é capaz de capturar a
estrutura da função Trap5. MOEA/D-Tree supera de forma significativa o MOEA/D que
usa (i) operadores genéticos e (ii) modelos uni-variados. Entretanto, para as instâncias
mUBQP, o MOEA/D-Tree foi superado pelos modelos mais simples.

6. Por fim, mas não menos importante, nós investigamos o uso de AED para resolver
problemas multi-objetivo baseados em permutação. Neste caso, exploramos os modelos
exponenciais baseados em distância, tais como modelo Mallows (MM) e modelo Mallows
Generalizado (GMM) [Ceberio et al., 2014a], pois eles têm demonstrado sua relevância
no contexto de AED para resolver problemas de permutação mono-objetivo. Entretanto,
estes modelos não haviam sido testados no caso multi-objetivo. Portanto, nós introduzimos
um novo framework baseado em decomposição e no uso de kernel of Mallows models,
chamado MEDA/D-MK. Para demonstrar a validade da abordagem, executamos diversos
experimentos utilizando o problema MoPFSP minimizando diferente combinações de
objetivos. Os resultados mostram que o MEDA/D-MK supera a versão aperfeiçoada
do MOEA/D especialmente adaptada para o problema em questão. Além disso, nosso
framework atinge resultados melhores que as melhores fronteiras aproximadas de Pareto
conhecidas reportadas na literatura para o benchmark considerado.

Em geral, por meio de estudos experimentais, mostramos que as abordagem propostas
são capazes de superar os resultados do estado-da-arte em grande parte dos casos considerados.
Como conclusão geral, dizemos que o MOEA/D hibridizado com outras meta-heurísticas é uma
estratégia promissora para a solução de problemas combinatoriais multi-objetivo.
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Chapter 1

Introduction

1.1 Motivation and general goal
Several real-world problems from different fields, such as engineering, computer science,

finance, and industry, can be stated as combinatorial optimization problems (COPs). Very
often, these problems are characterized by the large number of variables and the presence of
multiple conflicting objectives. Usually, COPs are hard to solve optimally, and their solutions
have been considered a research challenge for a long time [Miettinen, 2012, Blum e Roli, 2008].
In the multi-objective case, the true Pareto front (PF) of a problem may contain a large (or
an infinite) number of Pareto-optimal solutions. Achieving the exact true PF from a complex
multi-objective optimization problem can be quite difficult. The goal of a multi-objective
optimization algorithm is to find an acceptable PF approximation in a reasonable computational
time [Miettinen, 2012, Ehrgott e Gandibleux, 2008].

In the last three decades, much of the research effort in the optimization
area have focused on developing approximation solution methods so called metaheuris-
tics [Glover, 1986, Blum e Roli, 2003, Blum et al., 2011]. The success of metaheuris-
tics, such as Simulated Annealing (SA) [Brooks e Morgan, 1995], Tabu Search (TS)
[Glover, 1989], Genetic Algorithms (GA) [Holland, 1975], Ant Colony Optimization (ACO)
[Dorigo et al., 1996, Dorigo e Gambardella, 1997], Estimation of Distribution Algorithms
(EDAs) [Mühlenbein e Paass, 1996, Larrañaga e Lozano, 2002] for solving single-objective
combinatorial optimization problems is well recognized today by the research community
[Blum et al., 2011]. These solution methods were soon extended to deal with multi-objective
COPs (MCOPs) [Miettinen, 2012, Coello et al., 2007, Ehrgott e Gandibleux, 2008].

However, in most of the cases, those proposed methods suffer from one of these following
limitations:

• The proposed methods are problem-oriented. They were intended to solve the problem at
hand in the best way possible taking into account the intrinsic properties of the MCOP
at hand but depreciating the generalization of the method to solve different problems
[Blum et al., 2011, Ehrgott e Gandibleux, 2008];

• Some works were designed to increase the accuracy and the generalization of the meta-
heuristic algorithms but depreciating the computational cost [Crainic e Toulouse, 2010].

Therefore, the development of efficient metaheuristic algorithms for solving MCOPs
remains an attractive research area and receives growing attention [Ehrgott e Gandibleux, 2008,
Yenisey e Yagmahan, 2014, Trivedi et al., 2016]. The current research lines on metaheuristics
can be distinguished as follows:



7

1. Hybrid approaches [Ehrgott e Gandibleux, 2008, Blum et al., 2011] to take advantage of
the different methods and concepts combined to improve their accuracy;

2. More general (high-level) metaheuristics (hyper-heuristics) [Burke et al., 2013] to improve
their generality to self-adapt and solve different problems;

3. Parallel methods [Crainic e Toulouse, 2010] aiming to improve their computational cost.

So, we had several research directions in which we could have given focus. We have
started working mutually with item 1 (hybrid approaches) and item 3 (parallel methods), and we
have achieved some contributions. However, to have a more specific focus, we have decided to
work deeply only on the first research line (item 1).

Therefore, the general goal of this thesis is to propose new (hybrid) metaheuristic
algorithms to solve MCOPs efficiently. We have studied and combined several ingredients. Next,
we describe these key ingredients, justifying the reason why they are useful to achieve our goal.

• Multi-objective Evolutionary Algorithms (MOEAs) [Coello et al., 2007] and the de-
composition approach [Miettinen, 2012]: MOEAs are particularly suitable to solve
MOPs because they deal simultaneously with a set of possible solutions (population). This
concept allows finding several members of the Pareto optimal set (PS) in a single "run" of
the algorithm. They have the ability to search partially ordered spaces for several trade-offs.
Moreover, there exist different strategies in which a MOEA can maintain a set of non-
dominated solutions. The decomposition-based MOEAs use a scalar aggregation function
with a set of weight vectors. Specially, in the MOEA/D framework [Zhang e Li, 2007] a
MOP is decomposed into a number of single-objective scalar optimization subproblems and
they are optimized simultaneously in a collaborative manner using the neighborhood con-
cept. Current lines of research on MOEA/D are various, such as: 1) design modifications,
2) hybridization with other metaheuristics, and 3) the application to different problems
[Trivedi et al., 2016]. These trends on MOEA/D have motivated the work developed in
this thesis.

• Ant Colony Optimization: ACO is a population-based metaheuristic inspired by the
indirect communication of real ants through trails of a chemical substance called pheromone
[Dorigo et al., 1996]. Computationally, the artificial ants are stochastic agents that use
the information that reflects the experience accumulated by the previous artificial ants
to construct new solutions. Furthermore, ACO allows the incorporation of underlying
heuristics to guide the search. ACOhave been applied to solve a broad range of combinatorial
optimization problems [Dorigo et al., 2006, Dorigo et al., 2008, Mohan e Baskaran, 2012,
López-Ibánez e Stutzle, 2012].

• Estimation of Distribution Algorithms: EDAs [Mühlenbein e Paass, 1996,
Larrañaga e Lozano, 2002] are a type of population-based evolutionary algorithm that,
at each generation, learn from a probabilistic model a set of promising solutions. The
new offspring is then obtained by sampling the probabilistic model learned. EDAs were
originally proposed to solve some complex problems, in which the traditional genetic
operators are not very successful because they fail in automatically identifying the structure
of the problem, which consists of several correlated variables. This issue is referred in the
literature as the linkage-learning problem.

Over time, MOEA/D framework, ACO and EDAs have been studied separately as well
as combined [Ehrgott e Gandibleux, 2008, Ke et al., 2013, Trivedi et al., 2016]. The literature
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have shown the potentiality of these methods for solving a wide range of multi-objective problems
[Yenisey e Yagmahan, 2014, Trivedi et al., 2016].

1.2 Specific goals and contributions
Our approaches are consideredMOEA/D variants because they follow themainMOEA/D

guidelines. They are instantiated from a unified framework, where different models (metaheuris-
tics) can be applied as the reproduction operator according to the problem representation at hand.
We distinguish our proposals in three different frameworks depending on the kind of model
combined to MOEA/D. The frameworks and their respective kind of problems addressed are as
follows:

1. MOEA/D combined to Binary ACO (MOEA/D-BACO framework) to solve any MCOP
with binary representation;

2. MOEA/D using Graphical Models EDA (MOEA/D-GM framework) attempting to solve
complex MCOPs with deception;

3. MOEA/D hybridized to Mallows Kernel EDA (MEDA/D-MK framework) to solve
permutation-based MCOPs.

We have essentially addressed some representative hard problems from the literature
which remain a research trend: (i) themulti-objective unconstrained binary quadratic programming
(mUBQP) [Liefooghe et al., 2014], which is able to represent various problems with binary
representation and large-scale, (ii) the multi-objective permutation flowshop scheduling problem
(MoPFSP) [Minella et al., 2008], which is one of the most studied problems of this kind due to its
fields of application, and (iii) the multi-objective deceptive Trap function [Pelikan et al., 2007].
These problems have their particular representations and challenges that have to be faced.

Our work has resulted in different contributions, and they have been published in
prestigious annual conferences. They have also been accepted for publication in relevant scientific
journals. The complete list of papers is presented in Chapter 8 (Final Considerations). In the
following, we summarize the contributions achieved for this thesis.

1. The first contribution is related to the parallel approach. We have initially worked with
the ACO metaheuristic. In general, ACO algorithms are more expensive than other
approaches such as GA. On the other hand, ACO algorithms are suitable to parallelization
[DeléVacq et al., 2013]. Therefore, we have proposed a Graphics Processing Unit (GPU)
implementation of the MOEA/D hybridized with ACO (MOEA/D-ACO) [Ke et al., 2013]
using NVIDIA CUDA1 in order to improve its computational cost. We have reported
speedups up to 19x for the multi-objective traveling salesman problem (MoTPS), and 11x
for multi-objective knapsack problem (MOKP). However, we have changed the focus of
our research due to some limitations regarding the possibility to achieve more valuable
contributions. We refer this subject in Appendix B since it was not the main scope of this
thesis.

2. The second contribution is related to the mUBQP problem. Few metaheuristics have
been studied to solve it [Liefooghe et al., 2014]. The conventional MOEA/D-ACO is not
suitable to solve large-size mUBQP instances because of the complexity to maintain several

1CUDA C Programing Guide v5.5. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
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pheromone matrices (n × n) that grows exponentially with the problem size. Therefore,
we have proposed a hybrid algorithm based on MOEA/D framework and the Binary ACO
metaheuristic [Fernandes et al., 2007]. BACO algorithms act by building pheromone maps
over a 2 × n graph of possible trails representing pseudo-solutions. The main difference
between ACO and BACO is the strategy used to represent and provide the search space in
order to explore/exploit it. We have also included some features to the MOEA/D-BACO.
The components (i) mutation-like effect, (ii) diversity preserving scheme, and (iii) varied
neighborhood size were incorporated into the framework to enhance its search ability. We
show that the MOEA/D-BACO significantly outperforms MOEA/D in most of the test
instances. Moreover, the algorithm has produced competitive results in comparison to the
best-known approximated PFs from the literature for the benchmark considered.

3. Next, we have focused on investigating other metaheuristics to solve MCOPs. First, we have
studied EDAs that consider no dependence between the variables because of their simplicity
and their similarity to GA and ACO. The population-based incremental algorithm (PBIL)
[Mühlenbein e Paass, 1996] is one of the first algorithms of this kind, and it has been
extensively applied to many optimization problems. We have shown that the different
applications of PBIL reported in the literature correspond, in fact, to two essentially
different algorithms, which are defined by the way the learning step is implemented. We
have analytically and empirically studied the impact of the learning method on the search
behavior. As a result, we show examples in which the choice of a PBIL variant can produce
qualitatively different outcomes regarding the search process.

4. Going deep into the question "what makes aMCOP instance difficult?", we have investigated
the properties of the mUBQP problem. The level of difficult of the mUBQP instances
proposed by [Liefooghe et al., 2014] depends on the number of variables, the range of
values of the matrix cells, and the correlation strength between the objectives. We have
followed a different path to generate cases of the problem. In our strategy, the level
of difficulty is given by the number of correlated variables. We present a parametrical
approach in which small building blocks of deceptive functions are planted into the matrices
that define the mUBQP. Further, we describe the algorithm for creating the new instances.
Our experimental results confirm that the introduced instances are indeed harder for our
MOEA/D than those that are randomly generated. This study also throw light on a number
of issues that influence the complexity of mUBQP instances and that should be taken into
account at the time of using this problem as a MOEA benchmark.

5. Following with our research on EDAs, we have directed efforts to explore more com-
plex EDAs due to their useful application for solving hard COPs [Pelikan et al., 2007,
Mendiburu et al., 2012, Larrañaga et al., 2012]. These EDAs attempt to learn the statis-
tical dependencies between the variables trying to represent a more accurate model. In
this case, the probability distribution is represented by a graphical model. Therefore, we
have investigated probabilistic graphical models (PGM) within MOEA/D. The proposed
MOEA/D-GM is able to instantiate both univariate and multivariate models for each scalar
optimization subproblem. To validate the introduced framework, we have evaluated it to
solve a multi-objective version of the deceptive function Trap5 and the mUBQP instances.
The results show that a variant of the framework (so called MOEA/D-Tree), in which tree
models are learned from the matrices of the mutual information between the variables, is
able to capture the structure of the bi-Trap5. Also, the results indicate that MOEA/D-Tree
significantly outperforms MOEA/D using (i) genetic operators and (ii) univariate models.
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However, MOEA/D-Tree is outperformed by the other algorithms regarding the mUBQP
instances.

6. Finally, and no less important, we have investigated EDAs for MCOPs represented by a
permutation. In this case, the distance-based exponential models, such as Mallows Model
(MM) and Generalized Mallows Model (GMM) [Ceberio et al., 2014a], have demonstrated
their validity in the context of EDAs to deal with single-objective permutation-based
optimization problems. However, they have not been tested for MCOPs. Therefore, we
have introduced a novel general multi-objective decomposition-based EDA using kernels of
MallowsModels (MEDA/D-MK framework) for solving multi-objective permutation-based
optimization problems. In order to demonstrate the validity of the MEDA/D-MK, we have
applied it to solve the MoPFSP minimizing different combination of objectives. The results
show that MEDA/D-MK outperforms an improved MOEA/D variant specific tailored for
minimizing makespan and total flowtime. Further, our approach achieves better results than
the best-known approximated PFs reported in the literature for the benchmark considered.

1.3 Methodology
The scientific methodology that we have used to achieve the contributions is as follows:

1. We have conducted a systematic review on each target MCOP, indicating their state-of-the-
art approaches, and their challenges;

2. We have developed new approaches to solve eachMCOP at hand, based on the hybridization
of the different components and strategies;

3. In order to validate the proposal, we have conducted several experimental studies on
benchmark test instances considering a number of algorithmic aspects, such as: 1)
parameter settings, 2)performance assessment, and 3) statistical tests.

4. Finally, we have described the results, and thus establishing the conclusions.

1.4 Organization
The remaining of the thesis is organized as follows:

• Chapter 2 serves as the background, where we present an overview of 1) metaheuristics, 2)
MOEA/D framework, and 3) the MCOPs.

• Chapter 3 presents the MOEA/D-BACO applied to solve the mUBQP.

• Chapter 4 presents the analysis of the different learning mechanisms of the PBIL variants.

• Chapter 5 involves the study on the design of hard mUBQP instances.

• Chapter 6 presents the MOEA/D-GM, a MOEA/D framework with Graphical Models.

• Chapter 7 address the MEDA/D-MK framework, and the case of study MoPFSP.

• Chapter 8 draws the final considerations, and future work.
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Chapter 2

Background

In this chapter, we first present an overview of optimization and metaheuristics. Next, the
concept of single-objective optimization is extended to the nature of multi-objective optimization
and the Pareto optimality theory. Furthermore, we describe the MOEA/D framework, the
mathematical formulation of the MCOPs addressed, and the experimental methodology used to
evaluate the proposed algorithms.

2.1 Optimization and Metaheuristics
The goal in optimization problems is to find a combination of values for a finite set of

problem variables, in which these values satisfy constraints, and specify the optimal solution(s)
with respect to some function(s) that minimize or maximize some objective(s).

Mathematically, we define a solution as a vector x = (x1, x2, ..., xn)T where n is the
number of problem variables1. The search space (also called decision space), represented as Ω,
defines all possible feasible values of x from some universe. If the search space is represented
by real numbers, the problem is called continuous, if the search space only takes a finite set of
distinct values, the problem is called combinatorial.

f (x) is a evaluation function (also called objective function or criterion) to be optimized.
The optimization can be a maximization or a minimization of f (x). In the single-objective case,
the objective space, defined as R, is composed by all the possible values of f (x) |x ∈ Ω and
satisfies all the problem constraints. Equation 2.1 formulates the single-objective optimization
problem.

maximize (or minimize) f (x) (2.1)
subject to x ∈ Ω and f : Ω→ R

Global optimization: in terms of maximization, given f : Ω→ R, Ω , ∅, for x ∈ Ω,
the f (x∗) is the global maximum optimal solution if and only if

∀ f (x) ∈ Ω : f (x∗) ≥ f (x) (2.2)

Optimization problems can be grouped according to their complexity. Some complex
optimization problems have been proved to be nondeterministic-polynomial-time (NP-hard)
[Johnson, 1985], which means that, there is no solution method (so far) able to solve them in
polynomial time [Papadimitriou e Steiglitz, 1982]. For example, the Traveling Salesmen Problem

1In the literature, problems variables are also called decision variables, or only variables.



12

(TSP) [Dorigo e Gambardella, 1997, Hoffman et al., 2013] is a a NP-hard problem, where there
exists a finite number of cities, and given the distances between each pair of cities. The objective
is to find the shortest possible route that visits each city only once and returns to the origin. Its
solutions x is represented as a permutation in the search space. For small scale problems such as
4 cities, it is possible to compute all the different permutations to determine the best one, whereas
for 100 cities, it is considered impossible to be solved on a reasonable computational time.

Exact methods (deterministic methods) are not preferable to address these problems
because exact algorithms might need exponential computational time to find the optimal
solution in the worst case. This often leads to high computational cost for practical purposes
[Papadimitriou e Steiglitz, 1982]. Even though we do not know how the optimal solution looks
like, usually, in optimization problems, we can assess the quality of a candidate solution, and use
this information to guide the search. Therefore, approximation methods have received much more
attention. Approximation methods do not guarantee the optimal solution, but they can find an
approximated optimal solution in a reasonable computational time. For some complex problems,
approximated optimal solutions have been considered acceptable by the users of the application.

Various approximation methods have, as their primary concept, the search in a given
neighborhood. This concept is called local search [Glover, 1986]. Let a neighborhood of x be
N (x). A solution x′ is a neighbor solution, i.e., x′ ∈ N (x) if x′ can be achieved by a single
move from x. A basic Local search algorithm starts from some initial solution and iteratively
tries to replace the current solution by a better solution until a local optimum is reached. It
means that, these kind of algorithms enables guide the search to a local optimal region of the
search space. A locally minimum with respect to a neighbor structure N is a solution x+, such
that ∀x′ ∈ N (x) : f (x+) ≤ f (x′). This concept of search in the neighborhood is also called
as hill-climbing [Blum e Roli, 2003, Luke, 2009] because they iteratively test new candidate
solutions in the region of the current candidate, and adopts the new candidate if it is better
regarding the quality assessment.

In addition, the approximation methods can be distinguished between constructive
and perturbative methods [Blum e Roli, 2003]. Constructive algorithms initialize the solutions
empty, and then add solution components until they reach a complete solution. Perturbative
algorithms start from a (usually, random) initial solution and iteratively test new solutions by
perturbing the current solution taking into account the structure of the search space.

Usually, for solving hard optimization problems, these simple methods do not guarantee
at finding the global optimal solution(s) because the problem may contain several local optimal
regions. Figure 2.1 describes three different trajectory landscape, where each sub-figure has
different number of local optimum and objective function landscape throughout the search.
A simple trajectory method may guide the search to a local optimum [Blum e Roli, 2003,
Luke, 2009].

Since the 80’s, more sophisticated approximation methods have been pro-
posed, and they are commonly called metaheuristics [Glover, 1986, Blum e Roli, 2003,
Glover e Kochenberger, 2006]. In the literature, researchers have defined metaheuristics in
different manners. For instance:

• "A metaheuristic is formally defined as an iterative generation process, which guides
a subordinate heuristic by combining intelligently different concepts for exploring and
exploiting the search space. Learning strategies are used to structure information in order
to find efficiently approximated optimal solutions" [Osman e Laporte, 1996].

• "Metaheuristics are typically high-level strategies which guide an underlying, more
problem specific heuristic, to increase their performance. The main goal is to avoid the
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Figure 2.1: Three examples of function landscape regarding the trajetory in the search space

disadvantages of iterative improvements and, allowing the local search to escape from
local optima. This is achieved by allowing worsening moves or generating new starting
solutions for the local search in a more intelligent fashion than just providing random
initial solutions" [Stützle, 1998].

• "Metaheuristics are high level strategies for exploring the search spaces by using different
methods, balancing the exploration and exploitation. This is important, on one side to
quickly identify regions in the search space with high quality solutions, and on the other
side not to waste too much time in regions which are either already explored or which do
not provide improved solutions" [Blum e Roli, 2003].

• "Metaheuristics are a class of stochastic optimization algorithms and techniques, which
employ some degree of randomness trying to explore the search space aiming to find the
optimal solution to the optimization problem in question" [Luke, 2009].

Therefore, one essential concept for developing efficient metaheuristics is to incorporate
mechanisms to avoid getting trapped in local optimal regions of the search space. Some
metaheuristics separate the problem and the solver (thus, they are, usually, called as black-box
methods). However, metaheuristics may take into account some problem-specific knowledge in
the form of heuristics that are controlled by the high level strategy. For example, in TSP, the
distance between two cities can be used as a heuristic (local) information, and thus be a useful
component to guide the search [Blum e Roli, 2003, Rothlauf, 2011].

In short, we say that the primary goal of a metaheuristic algorithms is to explore the
search space efficiently, guiding the algorithm for finding the global optimal solution. This goal
is directly related by the dynamic balance between diversification and intensification. In this
thesis, we call this relation as algorithm search ability, and diversification is the search ability
to explore different regions of the search space while intensification is the ability to exploit
(search in the neighborhood) of the promising solution, and thus to keep converging towards the
optimum.

Figure 2.2 shows an overview on metaheuristic classification. In this classification,
the metaheuristics can be distinguished regarding the number of solutions used at the same
time. Thus, we have the single-solution methods and population-based methods. Examples of
single-solution methods are: Simulated Annealing (SA) [Brooks e Morgan, 1995], Tabu Search
[Glover, 1989], Iterated local search (ILS) [Glover e Kochenberger, 2006], Greedy randomized
adaptive search procedure (GRASP) [Feo e Resende, 1995], and Variable neighborhood search
(VNS) [Hansen e Mladenović, 2001, Hansen e Mladenović, 2003]. These metaheuristics dy-
namically explore the neighborhood of the current solution, but also incorporate a strategy to
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Figure 2.2: Overview of some metaheuristic techiniques

avoid the local optima. It means that, sometimes, a new candidate solution may not belong to the
neighborhood of the current candidate solution intending to obtain a more effective exploration
[Blum e Roli, 2003]. Example of these strategies ares: (i) the restart mechanisms (i.g, to restart a
solution randomly if a local optimal is reached), (ii) to adopt solutions with worst quality than the
current one with a certain probability (acceptance criterion), (iii) the use of a short memory to
avoid moving to solutions already evaluated, (iv) shaking mechanism (i.e., a heavy perturbation
in the current solution to provide a good restart solution placed in other region of the search
space, and (v) to iteratively change the neighborhood structure.

Different from the single-solution methods, some metaheuristics work with a set of
candidate solutions at the same time, these metaheuristics are classified under the umbrella of
population-based methods. Most of these methods are inspired by some behavior from nature.
Examples of these metaheuristics are: the Evolutionary Algorithms (EAs), the ACO and the
EDAs. As they deal with a population of solutions, population-based algorithms provide a
natural approach to explore different regions of the search space.

As well as, population-based methods and single-solution methods can be com-
bined into a unique metaheuristic. Usually, these metaheuristics are called hybrid methods
[Knowles e Corne, 2005, Blum e Roli, 2008]. The idea is to use the concepts of both strategies
to efficiently balance the exploration vs. exploitation.

2.2 Evolutionary Algorithms
EA is a set of metaheuristics based on the Darwinian concept of survival of the fitness.

EAs computationally simulate a natural evolution process where the solutions (individuals) with
higher quality function (fitness) has more probability to survive and then to reproduce new
solutions for the next generations [Coello et al., 2007].

Holland [Holland, 1975] proposed the genetic algorithm (GA), and it was initially
applied to solve combinatorial problems with binaries domains. In a basic GA, two or more
parent individuals are selected from the current population according to a elitism preserve
criterion, and then the reproduction step2) (based on recombination and mutation) generates
the new individuals (offspring). The new individuals are used to update the current population.
Figure 2.3 represents the basic genetic operators based on one-point crossover and one-bit-flip

2The reproduction step is also called variation step.
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mutation for combinatorial problems with binary representation. In this figure, two solutions are
selected and recombined to generate an offspring.

Figure 2.3: Representation of a population of solutions with binary domain, one-point crossover
and one-bit-flip mutation

Algorithm 2.1 presents the pseudo-code of a generational EA. First, the population of
encoded solutions is initialized randomly, and evaluated by the objective function that measures
their quality according to the target problem. Next, the algorithm, according to a elitism persevere
mechanism, selects µ individuals for the reproduction step. The selected population (S) is
manipulated by a set of operators to generate new candidate solutions (P′). The new individuals
are used to update the current population. The solutions with highest fitness have more probability
to survive in the next generation. The algorithm stops when a condition is met and returns the
best solution found so far.

Algorithm 2.1: General evolutionary algorithm framework
1 Generate initial population P
2 For each x ∈ P compute its fitness assessment.
3 while a termination condition is not met do
4 S ← Select µ solutions from P according to a elitism preserve mechanism.
5 P′ ← Reproduction(S) % Apply genetic operators to generate new offspring
6 For each x′ ∈ P′ compute its fitness assessment.
7 P ← Update the current population using P′

8 end while
9 Return the solution with the best fitness assessment.

Usually, EAs with the inclusion of a LS procedure are called memetic algorithms
[Knowles e Corne, 2005, Blum e Roli, 2008]. In general, a LS procedure can be applied after
the reproduction step, trying to explore the neighborhood of the new offspring.

2.3 Ant Colony Optimization
According to [Battiti et al., 2008], the reactive search optimization, i.e., the learning

while optimizing is a principle that have been widely accepted as a basic design in metaheuristics.
This principle integrates machine learning techniques into heuristics and self-tunes algorithms
behavior based on on-line information collected during the search. Ant Colony Optimization
(ACO) proposed by [Dorigo et al., 1996] adopts this principle. It was originally proposed for
solving combinatorial problems [Dorigo e Gambardella, 1997] [Stützle e Hoos, 2000].
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ACO is a population-based metaheuristic inspired by the indirect communication of
real ants through trails of a chemical substance called pheromone [Dorigo et al., 1996]. This
behavior enables real ants to find shortest paths between food sources and their nest.

Computationally, the artificial ants are stochastic agents that use the information that
reflects the experience accumulated by the previous artificial ants. ACO represents the knowledge
learned throughout the generations as pheromone matrices, where the solutions components
of the target problem can be represented as a graph. At current time t, the pheromone value
of a solution component represents the probability "attractive" of this component be chosen
(added) by an artificial ant during the construction process. Moreover, ACO algorithms allow the
incorporation of problem-specific knowledge (heuristic) during the construction step. According
to [Dorigo et al., 2006, Dorigo et al., 2008] these principles provide a common framework for
the most applications of ACO to solve combinatorial optimization problems.

Different from the genetic operators (which are based on recombination and perturbation),
in ACO algorithms, each variable xi is defined one by one (i.e., constructive method). First, the
candidate solution is initialized empty, and then the algorithm iteratively (and stochastically)
adds a solution component until a complete and feasible solution is generated.

Algorithm 2.2 presents the general ACO framework. First, the parameters and pheromone
matrices τ are initialized according to a start value τ0. At each generation, a number of ants
construct new solutions by adding solution components xi based on (i) the current pheromone
matrix (τ) and (ii) the heuristic information (η) which are combined to define a probabilistic
rule. In a probabilistic rule, the influence of τ and η can be balanced by their respec-
tive coefficients. Different forms of defining the probabilistic rules have been considered
[Dorigo et al., 2008, Mohan e Baskaran, 2012, López-Ibánez e Stutzle, 2012]. After an artifi-
cial ant ends its construction solution and calculates their quality functions, the best solution(s)
found so far are determined. Finally, each pheromone amount of τ is updated according to the
quality assessment of the best solution(s) found so far. The algorithm stops when a termination
condition is met.

Algorithm 2.2: General ACO
1 Parameters Initialization
2 while termination condition not met do
3 ConstructAntSolutions
4 ApplyLocalSearch %optional
5 UpdatePheromone
6 end while

Another characteristic in ACO algorithms is that, in order to prevent unlimited accu-
mulation of the pheromone amount, typically during the pheromone update, all pheromones
trails are decreased by a factor that models the evaporation. In the Max-Min Ant System
[Stützle e Hoos, 2000], the pheromone trails are bounded to an interval [τmin, τmax], and all
the pheromone trails are initialized according to the maximum value τmax . These explicit
restrictions prevent the premature convergence, and thus leading to exploration. Optionally, at
each generation, local search procedures can be used to improve the solutions.

ACO algorithms have been applied to solve a broad range of combinato-
rial optimization problems [Dorigo et al., 2006, Dorigo et al., 2008, Mohan e Baskaran, 2012,
López-Ibánez e Stutzle, 2012]. Besides its successful application in the literature, ACO algo-
rithms can suffer from several parameters to be set a priori, and their high computational cost in
comparison to other metaheuristics, such as GA [Dorigo et al., 2008].
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2.4 Estimation of Distribution Algorithms
EDAs [Mühlenbein e Paass, 1996, Larrañaga e Lozano, 2002, Pelikan et al., 2007] are

a set of EAs characterized by the use of explicit probability distributions to explore the search
space. By incorporating machine learning techniques into evolutionary algorithms, EDAs were
originally proposed to solve some complex problems, in which traditional genetic operators
are not very successful. The motivation is that, usually, genetic operators fail in automatically
identifying the structure of the complex problem, which consists of several correlated variables.
This problem, is referred in the literature as the linkage-learning [Mühlenbein e Paass, 1996].

Algorithm 2.3 presents the general steps of an EDA. In this pseudo-code, P is the
population, S is the set of selected promising solutions. First, the algorithm generates the initial
population and computes their respect fitness assessment. Next, it learns a probabilistic model
(p) from the set of selected solutions (S) trying to explicitly express the interrelations between
the problem variables. The offspring are then obtained by sampling the probabilistic model
learned. The sampled solutions (P′) are used to update the current population. The algorithm
stops when a particular condition is met such as a maximum number of generations or a limited
computational cost.

Algorithm 2.3: Estimation of Distribution Algorithm (EDA)
1 Generate initial population P
2 For each x ∈ P compute its fitness assessment.
3 while termination condition not met do
4 S ← Select µ solutions from P according to a elitism preserve mechanism.
5 p← Build a probabilistic model from S.
6 P′ ← sample µ new solution(s) from p.
7 For each x′ ∈ P′ compute its fitness assessment.
8 P ← Update the current population using P′

9 end while

[Pelikan et al., 2007] provide two motivations for using EDAs instead of EAs based on
genetic operators:

• Motivation from genetic operators: EDAs enable simultaneous exploration of multiple
regions in the search space and allows the use of statistical and learning techniques to
identify problems regularities automatically, and express them in an explicit manner. The
regularities provided by them can reach the global optimal solution, where genetic operators
and local search methods can easily fail due to exponentially many local optima and strong
large-order interactions between the variables.

• Motivation from Machine Learning: The use of probabilistic models to guide the
search enables the application of different statistical modeling and sampling techniques to
automatically discover, and exploit problem regularities for effective exploration. In most
EDAs, their probabilistic models are represented by a graphical model, which combines
graph theory, modularity and statistics to provide an approach for learning and sampling
probability distributions.

Likewise, in EDAs, the form in which the learning and sampling components
are implemented are critical for their performance and computational cost. According to
[Larrañaga et al., 2012], one of the rationales in EDA development has been to find a satisfactory
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trade-off between the complexity of the probabilistic models and how accurately these models
represent particular optimization problems characteristics.

The probabilistic models can be categorized according to their strategy to provide a
probability distribution as (i) univariate models and (ii) multi-variate models. In the following,
we introduce them.

Univariate probabilistic models:
First of all, we define some terminologies. Let p represent a vector of positive

distributions, p(x I ) denote the marginal probability for XI = xI , and let p(x j | xk ) denote the
conditional probability distribution of X j = x j given Xk = xk .

In the univariate marginal distribution (or univariate probabilistic model), the variables
are considered to be independent, and the probability of a solution is the product of the univariate
probabilities for all the variables:

pu(x) =
n∏

j=1
p(x j ) (2.3)

One of the simplest EDAs that use the univariate model is the univariate marginal
distribution algorithm (UMDA) [Mühlenbein e Paass, 1996]. UMDA uses a probability vector
pu(x) as the probabilistic model, where p(x j ) denotes the univariate probability associated to
the corresponding discrete value. Let assume that this EDA is for combinatorial problems with
binary representation {0, 1}. To learn the probability vector for these problems, each p(x j ) is set
to the proportion of "1s" in the selected population S. To generate new solutions, each variable is
independently sampled.

The population-based incremental learning (PBIL) [Baluja, 1994], like UMDA, uses
the probabilistic model in the form of a probability vector pu(x). The initial probability of a "1"
in each position p(x j ) is set to 0.5. The probability vector is updated using each selected solution
x in S. For each variable, the corresponding entry in the probability vector is updated by:

p(x j ) = (1.0 − α)p(x j ) + (α ∗ x j ) (2.4)

where α is the learning rate specified by the user.
At each generation, during the sampling, each position of the vector solution has a small

probability to be perturbed based on a mutation rate parameter to prevent premature convergence
[Baluja, 1994, Pelikan, 2011].

Multi-variate probabilistic models:
Often the variables in a problem are related in some manner. Therefore, EDAs that

assume dependencies between the variables have been proposed. In this case, the probabilistic
model is capable of capturing some pair-wise interaction between the variables. The probability
distribution is represented by a probabilistic graphical model (PGM) which maintains joints
(conditional) probabilities.

Tree-basedmodels [Pelikan e Mühlenbein, 1999] are a kind of PGMs capable to capture
some pair-wise interactions between variables. In a tree model, the conditional probability of a
variable may only depend on at most one other variable, being its parent in the tree structure.

The probability distribution pT (x) that is conformal with the tree model is defined as:

pT (x) =
n∏

j=1
p(x j |pa(x j )), (2.5)
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where pa(X j ) is the parent of X j in the tree, and p(x j |pa(x j )) = p(x j ) when pa(X j ) = ∅, i.e.
X j is a root of the tree.

The bivariate marginal distribution algorithm (BMDA) proposed in
[Pelikan e Mühlenbein, 1999] uses a model based on a set of mutually independent
trees (a forest)3. In each generation of the algorithm, a tree model is created and sampled
to generate new candidate solutions based on the conditional probabilities learned from the
population.

The learning process from the Tree-EDA proposed in [Santana et al., 2001b]
combines features from algorithms introduced in [Baluja e Davies, 1997]
and [Pelikan e Mühlenbein, 1999]. In Tree-EDA, the learning procedure works as fol-
lows:

• Step 1: Compute the univariate and bivariate marginal frequencies p j (x j ) and p j k (x j |xk )
using the set of selected promising solutions S;

• Step 2: Calculate the matrix of mutual information using the univariate and bivariate
frequencies;

• Step 3: Calculate the maximum weight spanning tree from the mutual information.
Compute the parameters of the model.

The idea is that by computing the maximum weight spanning tree from the matrix of
mutual information, the algorithm will be able to capture the most relevant bivariate dependencies
between the problem variables. Details on EDAs that use the tree models can be obtained
from [Baluja e Davies, 1997, Pelikan e Mühlenbein, 1999]. More details on the use of PGMs
for probabilistic modeling in EDAs can be obtained from [Larrañaga et al., 2012].

Some researchers have been dealing with finding similarities between ACO algorithms
and EDAs such as PBIL and UMDA [Blum e Roli, 2003]. Furthermore, traditional approaches to
learn a model from a set of selected solutions in EDAs give the same importance to all solutions
in the set, and thus learn marginal frequencies without distinguishing the fitness quality. However,
it makes sense using the fitness information of the selected solutions at the time of learning.
Fitness-aware model learning refers to methods that incorporate information about the fitness
evaluation values during learning of the probabilistic model [Mühlenbein et al., 2003]. Usually,
this scheme is called Boltzmann distribution [Mühlenbein et al., 2003, Valdez et al., 2013].

2.5 Multi-objective optimization
Until now, we have presented an overview of optimization andmetaheuristics considering

the single-objective case. Besides, some real-world problemsmay contain more than one objective
to be optimized, and usually these objectives are in conflict with each other. This section is
devoted to define MOPs, and how they are solved using metaheuristics.

MOPs can be defined as the problem of finding, not a unique solution, but a set of
solutions which satisfy constraints and optimize a vector whose elements represent the objective
functions [Miettinen, 2012].

F (x) = ( f1(x), f2(x), ..., fm(x))T represents a vector of objective functions, where m is
the number of objective functions to be optimized. In MOPs, the optimization of m objective
functions may involve the maximization of all m functions, the minimization of all m functions,
or a combination of both [Miettinen, 2012].

3For the convenience of notation, this set of mutually independent trees is referred as Tree.
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Therefore, different from the single-objective optimization problems, in this case, the
objective space is multi-dimensional, defined as Rm, where each coordinates axis correspond to a
objective function. Thus, each feasible solution in the search space (x ∈ Ω) maps a F (x) in the
objective space, where F : Ω→ Rm and F (x) |x ∈ Ω.

The mathematical definition of a MOP can be stated as follows:

minimize (or maximize) F (x) = ( f1(x), ..., fm(x)) (2.6)
subject to x ∈ Ω

It is a misconception, in practice, to design this kind of problems into a single objective
problem to provide an equivalent cost or a profit value [Miettinen, 2012]. The different objectives
are typically non-commensurable, and it is hard to aggregate them into one synthetic objective.
Converting a multi-objective optimization problem into a simple single-objective problem puts
the decision maker (DM) before optimization. Besides, if no DM preference is known a priori,
all the objectives are considered equally important. So, the set of "equally" good solutions has to
be defined in some form. The science community represents this set of optimal solutions through
the use of Pareto Optimality Theory [Pareto, 1964, Ehrgott, 2006].

Pareto optimality4 [Pareto, 1964, Ehrgott, 2006]: Let x, y ∈ Ω, x is said to dominate
y if and only if f l (x) ≤ f l (y) for all l ∈ {1, ..,m} and f l (x) < f l (y) for at least one l. A
solution x∗ ∈ Ω is called Pareto optimal if there is no other x ∈ Ω which dominates x∗. So, any
improvement in one objective in F (x) must lead to a deterioration of at least another objective.
The set of all the Pareto optimal solutions is called the Pareto set (PS) and the solutions mapped
in the objective space are called Pareto front (PF), i.e., PF = {F (x) |x ∈ PS}.

In many real-life applications, the PF is of great interest to decision makers (DM) for
understanding the trade-off nature of the different objectives and selecting their preferred final
solution [Miettinen, 2012]. The true PF of a problem may contain a large set or infinite number
of Pareto solutions. Thus, achieving the exact true PF from a complex problem is, usually,
quite difficult. Nevertheless, reasonable good approximations of the true PF (within a limited
computational time) are generally acceptable by DMs. Multi-objective optimization algorithms
attempt to find these approximated PFs. In other words, an accurate multi-objective optimization
algorithm should be able, throughout the search, to converge towards the true PF, while exploring
different regions of the search space.

In the literature, single-solutions methods have been applied to solve MOPs, such as the
multi-objective tabu search [Hansen, 1997, Gandibleux e Freville, 2000], and the multi-objective
simulated annealing [Smith et al., 2004]. These methods instead of guide the search using a
unique (best) solution, the algorithms use a set of non-dominated solutions found so far. On the
other hand, population-based methods (here we also include hybrid approaches) are suitable for
MOPs because they deal simultaneously with a set of possible solutions (population), which allows
finding several non-dominated solutions in a single run [Coello et al., 2007, Miettinen, 2012].

According to [Coello et al., 2007], the primary goals of a multi-objective evolutionary
algorithm (MOEA) are:

1. Preservation of non-dominated solutions according to the Pareto dominance concept;

2. Progression towards the PFtrue in the objective space throughout the generations;

3. Diversity of the approximated PF, i.e., capability of the algorithm to explore the different
regions of the objective space for finding solutions that cover the entire PFtrue;

4This definition of domination is for minimization. For maximization, the inequalities should be reversed.
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4. Representation of a reasonable number of approximated Pareto optimal solutions for the
DM.

Several MOEAs have been proposed in the literature. Nowadays, they can be
broadly categorized under the primary method to maintain the set of non-dominated solu-
tions [Deb e Jain, 2014]. They are defined as follows:

• Dominance-based method: In this method, a MOP is optimized by simultaneously
optimizing all the objectives. The assignment of fitness to solutions is based on Pareto-
dominance principle which plays a key role in the convergence towards PF. According
to [Li e Zhang, 2009], using the Pareto dominance alone could discourage the diversity
of search. Thus, an explicit diversity preservation scheme is necessary to maintain
diversity. Some techniques such as fitness sharing and crowding distance have often been
incorporated as compensation in the Pareto-based algorithms. Some of the remarkable
Pareto-based MOEAs are the NSGAII [Deb et al., 2002], the SPEA2 [Zitzler et al., 2001].

• Indicator-basedmethod: In thismethod, an indicator assessment such as theHypervolume
(see Section 2.7.1) is used to measure the fitness of a solutions by assessing its contribution
to the combined convergence and diversity measure. The IBEA and the SMS-EMOA
[Beume et al., 2007] are examples of Indicator-based MOEAs.

• Decomposition-based method: In this method, a MOEA uses a scalarizing aggregation
function, such as the Weighted Sum, and a set of weight vectors to convert the MOP in
question into a number of single-objective optimization subproblems. The decomposition-
basedMOEAs utilize the aggregated fitness value of the solutions to select the best solutions.
Representative MOEAs of this kind are the MOGLS [Ishubuchi e Murata, 1998], and a
wide range of algorithms based on MOEA/D framework [Zhang e Li, 2007]. In MOEA/D,
the subproblems are optimized simultaneously in a collaborative manner using the concept
of neighborhood between the subproblems.

Since Zhang et al. [Zhang e Li, 2007] proposed the MOEA/D framework,
the decomposition-based method have become more and more popular [Li et al., 2015,
Trivedi et al., 2016]. Besides, some algorithms can combine two methods, for instance, the
NSGA-III [Deb e Jain, 2014], which is considered both Pareto-based and decomposition-based.
This algorithm was proposed to address the issues that emerge from problems that have great
number of objectives (e.g. more than three objectives) and different Pareto shapes [Li et al., 2015].

In this thesis, we have taken a research direction, we have decided to give focus only to
decomposition-based MOEA because MOEA/D variants have become a recent research trend in
optimization [Trivedi et al., 2016]. Therefore, in the following, we describe the general MOEA/D
framework that serves as a basis for this work.

2.6 MOEAs based on Decomposition
A Pareto optimal solution to a MOP could be an optimal solution of a single objective

optimization problem in which the objective is an aggregation function of all the objectives.
Thus, the PF of a MOP can be decomposed into a number of single objective optimization
subproblems. This concept is the core idea behind many traditional mathematical programming
methods for approximating the PF [Li e Zhang, 2009, Miettinen, 2012].

The MOEAs based on decomposition uses a specific scalarizing aggregation function
with a set of weight vectors to decompose a MOP into a number of single-objective optimization
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subproblems and optimize them in a collaborative manner. Since the last decade, algorithms
such as MOGLS [Ishubuchi e Murata, 1998] and a wide range of algorithms based on the
MOEA/D framework [Zhang e Li, 2007] have been proposed for solving different continuous
and combinatorial MOPs. This method is suitable to solve multi-modal problems, in which they
explore different regions of the search space.

Let λ = (λ1, ..., λm) be a weight vector, where
∑m

l=1 λl = 1, λl ≥ 0 for all l = 1, ...,m,
and m is the number of objectives.

The well known MOEA/D framework [Zhang e Li, 2007] decomposes a MOP into (N )
scalar single-objective optimization subproblems. Each subproblem i is associated to a weight
vector λi, and the set of all weight vectors is {λ1, ..., λN }.

The distance between any two weight vectors is defined according to the Euclidean
distance between them. The neighborhood for each subproblem i, is defined as B(i) = {i1, ..., iT }
where T is the neighborhood size. Any information about T weight vectors (solutions) close
to λi should be helpful for optimizing g(x|λi). This is the major motivation behind MOEA/D
[Zhang e Li, 2007].

B(i) is used for the selection of parent solutions and the update of the current solutions.
The size of the neighborhood T used for selection and update plays a vital role in MOEA/D to
exchange information among the subproblems. Moreover, the trade-off between diversity and
convergence can be controlled by the different mechanisms and parameters of the algorithm
[Li e Zhang, 2009, Wang et al., 2014, Li et al., 2015].

Algorithm 2.4 presents the pseudo-code of a general MOEA/D which serves as a basis
for this thesis.

Algorithm 2.4: General MOEA/D framework
1 Initialize the N weight vectors λ = (λ1, ..., λN )
2 Initialize population Pop = (x1, ..., xN ) randomly or by a problem-specific method and

compute every F (xi)
3 Initialize EP with the non-dominated solutions from Pop
4 while a termination condition is not met do
5 for each subproblem i ∈ 1, ..., N at each generation do
6 y← Variation(B(i));
7 Compute F (y);
8 Update_Neighborhood(B(i), y);
9 end for
10 UpdateEP(Pop, EP)
11 end while
12 Return Pop, EP

Initialization step: The N uniform distributed weight vectors λ1, .., λN are set. Usually,
as in [Zhang e Li, 2007] the weight vectors are generated using a control parameter H , where an
element of each weight vector (λi

l) is one of the {0/H, 1/H, ..., H/H } and N is defined according
to the combinatorial Cm−1

H+m−10 = N . Then, the Euclidean distance between any two weight
vectors λi, λ j is computed. For each subproblem i, the set of neighbors B(i) is initialized with
the T closest neighbors. The initial population Pop = (x1, ..., xN ) is generated randomly or by
a problem specific method. Then, their corresponding fitness functions F (x1), ..., F (xN ) are
computed. The external Pareto (EP) is initialized with the non-dominated solutions from the
initial population Pop.
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Variation step: For each subproblem i, the reproduction is performed using B(i) as the
selected population. The conventional MOEA/D selects two parent solutions p1, p2 ∈ B(i) and
applies the genetic operators (crossover and mutation) to generate y.

Update Neighborhood: The new solution y is used to update the parent population.
y replaces the current solutions xr (where r is an index subproblem from in B(i)) if y has a
better scalar aggregation function value (g(y|λr )) than g(xr |λr ). In addiction, different update
schemes can be used, such as (i) the global scheme, where y can update any solution in Pop
[Wang et al., 2014] instead of the solutions bounded by B(i), and (ii) maximum number of
replacements by y, which prevents one solution having many copies in the current population.

Update EP step: The external population EP is used to maintain all non-dominated
solutions found so far during the search. This step removes from EP all solutions dominated by
y and adds y if no solution dominates it.

Likewise, EP can be optional. Thus the outcome of the algorithm can be the N final
solutions. If the set of weight vectors is well distributed along the PFtrue of the problem, the
algorithm may be able to find distinct distributed solutions that cover the PFtrue.

Several scalarizing aggregation functions have been used in the decomposition approach.
The Weighted Sum, the Tchebycheff, and the Penalty-based Boundary Intersection (PBI) are
the most common aggregation functions used [Miettinen, 2012]. In the following, these
decomposition approaches are described:

Weighted Sum Approach: The optimal solution to the following scalar single-
optimization problem is defined as:

minimize (or maximize) gws(x|λ) =
m∑

l=1
λl f l (x)

subject to x ∈ Ω (2.7)

which gws (x|λ) is to be minimized if the MOP is minimization, and gws (x|λ) is to be maximized
if the MOP is maximization.

To generate a set of different Pareto optimal solutions, we can use different weight
vectors λ in the Weighted Sum. If we use a well distributed set of weight vectors, and the shape
of PF, from the MOP in question, is concave (convex), then the Weight Sum could work well.

Tchebycheff approach: The optimal solution to the following scalar single-optimization
problem is defined as:

minimize gtc(x|λ, z∗) = max
1≤l≤m

{λl | f l (x) − z∗l |}; (2.8)

subject to x ∈ Ω

where z∗ = (z∗1, ..., z∗m)T is the reference point (also called ideal vector), i.e., z∗l = max{ f l (x) |x ∈
Ω} for each l = 1, ...,m. For each Pareto optimal solution x∗ there exists a weight vector λ such
that x∗ is the optimal solution of Eq. (2.8), and each optimal solution of Eq. (2.8) is a Pareto
optimal solution of Eq. (2.6).

In Tchebycheff approach, the optimization of gtc(x|λ, z∗) is alwaysminimization, because
it is related to the approximation of F (x) to the reference point z∗ that contains the best values
found so far for each f l (x). Thus, gtc(z∗ |λ, z∗) = 0.
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The PBI approach is a variant of the normal-boundary intersection method, where
equality constraint is handled by a penalty function. The approach is defined as follows:

minimize gpbi (x|λ, z∗) = d1 + θd2 (2.9)
subjecttox ∈ Ω (2.10)

where

d1 =
| |(F (x) − z∗)Tλ | |

| |λ | |
(2.11)

d2 = | |F (x) − (z∗ + d1
λ | |

| |λ | |
) | | (2.12)

where z∗ = (z∗1, ..., z∗m)T is the reference point, and θ > 0 is a user-defined penalty parameter.
In PBI approach, d1 is used to evaluate the convergence of x and d2 measures diversity

[Li et al., 2015]. The balance between d1 and d2 is controlled by θ. Li et al. [Li et al., 2015]
present the different search behavior of PBI regarding the parameter θ. When θ is very close to
zero (e.g., θ = 0.1) its works as Weighted Sum. When θ = 1.0, PBI works similar to Tchebycheff.

Current research on MOEA/D are various and include the extension of these algorithms
to continuous MOPs with irregular Pareto shapes [Li e Zhang, 2009], many-objective opti-
mization problems [Ishibuchi et al., 2013, Tan et al., 2013, Li et al., 2015, Ishibuchi et al., 2016],
methods to parallelize the algorithm [Nebro e Durillo, 2010b], incorporation of preferences
to the search [Pilat e Neruda, 2015], automatic adaptation of weight vectors (dynamic com-
putational resource allocation) [Qi et al., 2014], automatically switching between different
scalarizing aggregation functions [Ishibuchi et al., 2013], new strategies of selection and re-
placement to balance convergence and diversity [Wang et al., 2014], hybridization with local
searches procedures [Alhindi e Zhang, 2014, Ke et al., 2014], hybridization with other meta-
heuristics such as ACO [Ke et al., 2013], and EDAs [Zangari et al., 2015b, Ma et al., 2016,
Zapotecas-Martínez et al., 2015].

Figure 2.4: An overview of the current research lines on MOEA/D
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Figure shows an overview of the current research lines on MOEA/D. Trivedi et al.
[Trivedi et al., 2016] present a recent survey on MOEA/D. The authors differ the research lines
along (i) design modifications in MOEA/D and (ii) extension of MOEA/D to solve specific
problems. One of the challenges in MOEA/D algorithms is to determine the appropriated
decomposition method for a particular problem [Trivedi et al., 2016]. Moreover, different
parameters configurations have to be tested such as: (i) the scalarizing functions, (i) the form to
distribute the weight vectors, (iii) the population size, (iv) the neighborhood size for selection
and replacement. These MOEA/D components can deal with the balance between exploration vs.
exploitation. As well, a tailored variation operator have to be used to achieve good results.

2.7 Experimental methodology for Multi-objective optimiza-
tion
As mentioned before, the outcome of the multi-objective optimization algorithms can

be an approximated Pareto-optimal set, which maps an approximated PF in the objective space.
In this case, evaluate the quality of the outcome is more complex than in the single-objective case.
The comparison of two approximated PFs gets even more complicated because some solutions in
either set may be dominated by solutions in the other set, as also, some solutions of both sets are
non-dominated [Zitzler et al., 2003].

The visual analysis of the PFs plotted in the objective space can be useful for two
objectives (i.e., two-dimensional space), but it gets complex as the number of the objectives
(coordinates) increases.

In the literature, different performance metrics5 have been used to evaluate the multi-
objective optimization algorithms [Zitzler et al., 2003, Zitzler et al., 2008, Coello et al., 2007].
These performance metrics attempt to indicate the quality of the PFs approximations. Usually,
the performance metrics represent the quality of a approximated PF as a real number (unary
indicators).

Knowles et al., 2006 state that several popular indicators are designed to asses just
one isolated aspect of an PF approximations, such as the distance to the PFtrue, the spread in
objective space, or the evenness (sparsity) with which the solutions are distributed. The drawback
of these different performance metrics is that a metric I1 can indicate that the algorithm Alg1 is
better than Alg2, whereas the metric I2 indicates the contrary.

Knowles et al., 2006 claim that, one important property that an indicator should have is
called Pareto compliance. It means that an indicator must not contradict the order induced by the
Pareto dominance relation. The Pareto dominance relation of two approximated PFs is a relation
extended from the definition of dominance of two vector solutions presented in Section 2.5, and
it is described in the following.

Let A and B represent two approximated PFs. The symbol � represent the generalized
approximation Pareto dominance relation between two Pareto sets A and B. Regarding that,
fτ (x) � fτ (y) means that fτ (x) is not worse than fτ (y) in all objectives. A � B ∧ B � A means
that every y ∈ B is dominated by at least one x ∈ A. Then the indicator value of A must not be
worse than the indicator value of B, i.e., I (A) ≥ I (B).

Several indicators that have been used in the literature are not Pareto compliant. Any
indicator that can yield for any approximation sets A, B ∈ Ω a preference for A over B, when B is
preferable to A with respect to Pareto dominance (B � B ∧ ¬A � B) is Pareto non-compliant
[Knowles et al., 2006].

5In this thesis, performance metrics and quality indicators are synonymous, and they are used intercalated.
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Additionally, if a stochastic multi-objective algorithm is applied several times to the
same problem instance, a different approximation set may be returned each time. Due to this,
the stochastic nature of the multi-objective algorithms have to be considered in an experimental
study [Zitzler et al., 2008].

Therefore, in general, the experimental methodology inmulti-objective optimization
is based on the evaluation of the outcomes using two or more quality indicators and the application
of statistical tests on the resulting distributions(s) obtaining. The comparison allows to state if
there exist a significant difference between the algorithms or not. Thus, in a comparative study,
any statement like "Alg1 outperforms Alg2" needs to be qualified by adding "according to the
quality indicator I1 and the statistical test."

Besides, the question of whether an algorithm outperforms another one involves
various aspects such as the computational time required, the parameter setting, the benchmark
test instances used, etc [Zitzler et al., 2008]. Usually, optimization algorithms have several
parameters to be set, and thus preliminary experiments can be conducted to identify the best
parameter values.

2.7.1 Performance metrics
TheHypervolume Indicator (IHV ) [Zitzler e Thiele, 1999] gives the volume of a space

that is dominated by a PF. In order to measures the quantity, the objective spacemust be bounded,
if it is not, then a bounding reference point that is dominated by all solutions must be used.
Figure 2.5) represents the hypervolume.

Figure 2.5: Illustration of the hypervolume indicator of a PF

Let P∗ be a set of uniformly distributed Pareto optimal solutions along the true PF
in the objective space, P be an approximated set to the true PF obtained by an algorithm
considered, and zr = (zr

1, . . . , zr
m)T be a reference point in the objective space that is dominated

by all Pareto-optimal objective vectors.
The IHV measures the size (volume) of the objective space dominated by the solutions

in P and bounded by zr :

IHV (P) = VOL(
⋃
x∈P

[ f1(x), zr
1] × · · · × [ fm(x), zr

m]) (2.13)
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The reference point (also called nadir point) is set to maximum values if the objective is
minimization, and it is set to minimum values if the objective is maximization. Thus, the higher
the IHV (P), the better the P in comparison to other fronts.

So far, the hypervolume indicator has been the only indicator proved to be Pareto-
compliant. The drawback of IHV is its computational cost that exponentially increases according
to the number of objectives, and it is polynomial in the number of solutions in the approximation
set. Furthermore, the reference point zr needs to be specified a priori, and the indicator values
are sensitive to the choice of this bound (scale invariant) [Zitzler et al., 2008]. The advantage of
IHV is that the PFtrue is not needed.

IHV is an unary indicator, but it can be extended to a binary indicator by defining
IHV (A, B) as the hypervolume of the subspace of the objective space that is dominated by A but
not by B [Knowles et al., 2006].

Cardinality (IC): The cardinality of PF can be considered as an unary indicator. In
this case, the indicator computes the number of solutions that compose the Pareto set. The IC is
cheap to compute, but it is not Pareto compliant.

Some indicators are only possible to compare pairs of sets, such as the Generational
Distance (GD) and the Inverted Generational Distance (IGD). The IGD calculates how far the a
approximated PF is from the PFtrue.

IGD-metric (IIGD) : The inverted generational distance from P∗ to P is defined as

IGD(P∗, P) =
∑v∈P∗ d(v, P)

|P∗ |
(2.14)

where d(v, P) is the minimum Euclidean distance between v and the solutions in P. If |P∗ | is
large enough IGD(P∗, P) could measure both convergence and diversity of P in a sense. The
lower the IGD(P∗, P), the better the approximation of P∗ to the true PF.

Even though GD and IGD take into account the convergence and diversity of the PFs,
they have some drawbacks. The PFtrue is needed. When the PFtrue it is not known, a best-known
approximated PF can be used. Also, the indicator values are sensitive to the cardinality of
the sets. The GD and IGD are not Pareto-compliant according to [Knowles et al., 2006]. The
authors presented an empirical evaluation of various quality indicators. They showed that these
indicators violate the partial order of weak Pareto dominance. However, they say that it does not
mean that they are useless, these indicators can be used to refine the preference structure of a
Pareto compliant indicator for approximation sets having identical indicator values.

The coverage or C-metric (ICo) [Zitzler e Thiele, 1999] measures the "degree" of
dominance of a Pareto front over another, i.e., the proportion of the solutions in B that are
dominated by at least one solution in A. C(A,B) = 1means that all solutions in B are dominated by
some solution in A, while C(A,B)=0 means that no solution in B is dominated by a solution in A.

C(A, B) =
|{u ∈ B |∃v ∈ A : v dominates u}|

|B |
(2.15)

where C(A, B) is not necessarily equal to 1 −C(B, A). The indicator focuses on the convergence
of the sets, and it is not Pareto compliant. Therefore, this metric has been acceptable only to
complement the results regarding other indicators, such as the IHV .
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2.7.2 Statistical tests
The empirical studies are made by running the algorithms several times on the same

problem instance, and obtaining a sample of approximated PFs. The sampling of approximated
PFs are, usually, represented by their respective quality indicator. Furthermore, a transformation
or a normalization on the outcomes is performed before to proceed with the statistical analysis.
The purpose of generating samples and defining them as qualitative values is to allow us to
describe and make inferences about the underlying stochastic approximation set distributions
of (two or more) optimization algorithms, and thus enabling us to compare their performances
[Zitzler et al., 2008].

The scientific community has been used different non-parametric statistical tests to
evaluate optimization algorithms. In a statistical analysis, hypothesis testing can be employed
to draw inferences about one or more populations from given samples. In order to do that, two
hypotheses are defined. The null hypothesis H0 which is a statement of no effect or no difference
(i.e., all the samples are assumed to be from the same population), whereas the alternative
hypothesis H1 represents the presence of a difference between the samples. In a statistical test, the
term significant difference means that a level of significance α is applied to reject the hypothesis
H0 [Derrac et al., 2011].

Friedman’s test is used to carry out multiple comparisons among all methods. The null
hypothesis for Friedman’s test can state equality of medians between the populations. If the
Friedman’s test rejects the null hypothesis, we can proceed with a post-hoc test in order to find
the concrete pairwise comparison which has produced differences, and thus rank the algorithms
(from the worst to the best) according to the results.

Kruskall-Wallis [Sheskin, 2003] test is another useful non-parametric statistical test used
to determine if two samples are from the same population, which is an alternative to the one-way
independent-samples Analysis of Variance (ANOVA). In other words, the Kruskall-Wallis tests
the null hypothesis and returns the its p-value. This test is well used when no knowledge of the
type of distribution is known. If Kruskall-Wallis reject the null hypothesis, a post-hoc test, such
as Nemeny, is used to find the concrete pairwise comparison.

2.8 Conclusions
In this chapter, we have introduced the well-known metaheuristics used for solving

MCOPs, including the single-solution methods and the population-based methods. We have also
described the general MOEA/D framework which servers as an key ingredient for this thesis.

The complex nature of each MCOP is stated regarding its particular characteristics, such
as (i) scalable evaluation function cost, (ii) number of objectives (e.g., related to the number of
Pareto optimal solutions, and the objective functions correlation), (iii) fitness landscape features
(e.g., number of local optima, deception, dependence between the variables), etc. Moreover, the
scientific community have been proposed benchmarks to represent these difficult properties in
MCOPs. The benchmarks have been valuable tools to evaluate metaheuristic algorithms before
be applied to a real-world instance.
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Chapter 3

A decomposition-based binary ACO
algorithm for the multi-objective UBQP

3.1 Introduction
In this chapter, we have intended to solve the mUBQP because it is known to be a general

model able to represent a broad range of important problems, including those from financial
analysis, social psychology, computer aided design, cellular radio channel allocation, traffic
management and so on [Zhou et al., 2013b].

Besides, only few metaheuristics have been studied to solve it in the multi-objective case.
Due to this, we have proposed a decomposition-based algorithm combined to the metaheuristic
Binary ACO to solve mUBQP efficiently. BACO [Fernandes et al., 2007] is suitable to optimize
problems with binary representation by building pheromone trails over a 2× n dimensional graph
representing the solutions in order to explore/exploit the search space [Fernandes et al., 2007].

The specific goals present in this chapter are: (i) To introduceMOEA/D-BACO as a class
ofMOEA/D algorithms that incorporate ACO defined on discrete domain; (ii) Empirically analyze
the search behavior of the algorithm in different configurations; (iii) To evaluate our proposal
against MOEA/D, which uses genetic operators, and against the best-known approximated PFs
from the literature for the set of mUBQP instances considered.

Moreover, some features are incorporated into the MOEA/D-BACO framework to
maintain a more diverse population, thus improving its search ability. We have also evaluated our
approach with the inclusion of the UBQP-specific local search.

The remainder of this chapter is organized as follows. Section 3.2 describe the mUBQP
formulation. Section 3.3 presents the related work. Section 3.4 presents the proposed MOEA/D-
BACO and its features. The experiments that empirically show the behavior of the algorithm on
a set of mUBQP instances are described in Section 3.6. The conclusions and some trends for
future work are presented in Section 3.7.

3.2 Problem Formulation: Multi-objective Unconstrained Bi-
nary Quadratic Programming
The UBQP is known to be a general model able to represent a broad range of important

problems, including those from financial analysis, social psychology, computer aided design,
cellular radio channel allocation, traffic management, and so on. Additionally, some NP-hard
problems can be conveniently defined regarding UBQP, such as graph coloring, maxcut, set
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packing, set partitioning, maximum clique [Liefooghe et al., 2014, Kochenberger et al., 2014].
The multi-objective UBQP (mUBQP) was proposed by [Liefooghe et al., 2014] as a natural
extension of the UBQP. Different MOPs can be formalized regarding mUBQP, e.g., multi-
objective knapsack problem, multi-objective maxcut problems, bi-objective coloring problem,
etc. [Zhou et al., 2013b].

In the mUBQP, there exists a collection of n items, and each pair of items is associated
to m ≥ 2 profit values that can be positive, negative or zero. Formally, for each objective l, a
symmetric n × n matrix Ql = (ql

i j ) is given, and a binary vector x = {x1, ..., xi, ..., xn}, xi ∈ {0, 1}
is searched, such that the l objective functions are maximized:

max F (x) =
n∑

i=1

n∑
j=1

ql
i j xi x j ; l ∈ {1, ...,m}; (3.1)

s.t. xi, x j ∈ {0, 1}; i, j ∈ {1, ..., n}

where F (x) = ( f1(x), ..., fm(x)) is a vector of objective functions. In this case, if xi = 1 and
x j = 1, ql

i j is computed.
Liefooghe et al. [Liefooghe et al., 2014] proposed a mUBQP test instance generator

which is available at the mUBQP repository1. In this case, the instances vary according to (i) the
problem size n; (ii) the number of objectives; (iii) a fixed proportion of non-zero values in the
matrix (d); (iv) and the objectives correlation strength (ρ) which determines the level of conflict
between the objectives. Each value ql

i j is randomly generated according to a uniform distribution
in [−100, 100] and the correspondent correlation level ρ. Thus, the values qi j for each objective l
can be more correlated or more conflicted. A positive (respectively negative) ρ value decreases
(respectively increases) the degree of conflict between the correspondents {q1

i j, ..., q
}

i j m. Thus,
the primary difficulties related to the mUBQP are their large problem scale (e.g., n > 1000), and
their different objective correlation strengths.

3.3 Related Work
Liefooghe et al. [Liefooghe et al., 2014] proposed a hybrid metaheuristic, called HM,

which combines an elitist multi-objective evolutionary algorithm and a single-objective tabu
search procedure based on a scalarizing function. In the same paper, the authors proposed a model
to generate mUBQP instances. The instances vary according to (i) the number of objectives,
(ii) number of variables, (iii) the density (the expected proportion of non-zero entries in the
matrix, and (iv) the correlation strength between the objectives. The authors evaluated their
algorithm with and without the tabu search and the scalarizing function. They also compared
against NSGA-II [Deb et al., 2002] and achieved significantly better results. As we will show
latter, we have considered this benchmark to evaluate our proposal.

The authors in [Zhou et al., 2013b] proposed a directional-biased tabu search (DTS)
algorithm to generate high-quality solutions using the information of the extreme solutions. First,
the DTS optimizes the problem for each objective function in order to obtain extreme solutions.
If the extreme solutions for one objective function can not be further improved, then the search
gradually changes the direction and optimizes the problem using a series of scalarizing functions.
The results showed that the DTS outperforms HM for the same mUBQP instances considered.
Further, the best-known results were provided on-line at the mUBQP repository.

1 http://mocobench.sourceforge.net/index.php?n=Problem.MUBQP
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Liefooghe et al. [Liefooghe et al., 2015] focused to solve the bi-objective UBQP. The
authors designed and analyzed several approaches using different local search procedures as
the main ingredient. The best local search iteratively improves a set of solutions based on a
neighborhood structure and the Pareto dominance relation. They have achieved better results
than the best-known approximated PFs from the literature.

Overall, these approaches for solving the mUBQP are UBQP-specific because their pri-
mary ingredient is a tailored local search called fast incremental local search [Glover e Hao, 2010].
The fast incremental local search takes advantage of the objective function structure of the UBQP
to perform a huge number of evaluations based on one-bit-flit move in linear time. It means
that, in the fast incremental LS, the neighbor solutions is evaluated without to proceed with the
complete evaluation function. This strategy is very useful for UBQP instances with a large scale
that have expensive objective functions. However, the main shortcoming of these approaches is
the lack of generalization, i.e., if a target problem can not be evaluated n times in linear time, the
approach involves a high computational cost.

ACO represents the information learned about the problem as a pheromone ma-
trix that measures how likely each component solution is present in a promising solution.
Also, ACO allows the incorporation of problem specific knowledge that guides the search
[López-Ibánez e Stutzle, 2012, Ke et al., 2013]. In [Ke et al., 2013], the decomposition-based
ACO (MOEA/D-ACO) was proposed for solving the multi-objective traveling salesmen problem
and the multi-objective knapsack problem. The authors reported significant results compared
to MOEA/D using genetic operators. However, they also reported that without the heuristic
information the approach performs much poorer thanMOEA/D.MOEA/D-ACO is not suitable for
the large-scale mUBQP instances, because the size of the pheromone matrix grows exponentially
along with the problem size.

Like ACO algorithms , BACO [Fernandes et al., 2007] uses a positive feedback mecha-
nism from the best solutions found so far to maintain pheromone trails represented as a 2×n graph.
The main difference between ACO and BACO is the strategy used to represent and provide the
search space in order to explore/exploit it. BACO algorithms has already been applied successfully
to discrete and continuous problems [Kong e Tian, 2006, Hu et al., 2011, Fernandes et al., 2007].

3.4 The main algorithm framework
In this section, we present the multi-objective optimization algorithm based on de-

composition and BACO metaheuristic for solving the mUBQP. The main difference between
our approach and the previous approaches (related work) for solving this problem is that the
UBQP-specific local search is not the primary ingredient. The framework is able to control the
exploration/exploitation to avoid the premature convergence of the model and maintain a more
diverse population.

Combining the ACO paradigm and the binary encoding of the problems, the Binary
ACO is represented by a matrix 2 × n, which maintains the learned information as pheromone
matrices τ. Figure3.1 represents the pheromone matrix for n variables where the arcs (τj,0)
and (τj,1) represent the pheromones amount of each binary value {0, 1}. Each path maintains a
probabilistic information from the best solutions found so far.

In our framework, a pheromone matrix is maintained for each scalar subproblem i using
the set of closest neighbors as the selected population. Let τi and pi be a pheromone matrix and
a probabilistic rule, respectively, for each subproblem i. Algorithm 3.1 presents the pseudo-code
for the proposed framework.
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Figure 3.1: The BACO search space for n variables

Algorithm 3.1:MOEA/D-BACO
1 Initialize N uniformly distributed weight vectors and generate N initial permutation

solutions Pop = {x1, ..., xN } randomly and compute every F (xi).
2 Initialize EP with the non-dominated solutions from Pop
3 while a termination condition is not met do
4 for each subproblem i ∈ 1, ..., N at each generation do
5 Update the pheromone matrices τi using solutions xi ∈ B(i) and their

corresponding g(xi |λi)
6 Construct a solution y using the probabilistic rules associated to pi

7 Compute F (y)
8 Update_Neighborhood(B(i), y);
9 end for
10 Update_EP(Pop, EP)
11 end while
12 Return Pop, EP

1) Initialization: The N uniform distributed weight vectors λ1, .., λN are set as
described in Section 2.6. The initial population Pop = x1, ..., xN is generated randomly. Next,
their corresponding fitness functions F (x1), ..., F (xN ) are computed. The EP is initialized with
the non-dominated solutions from the initial population Pop.

2) Pheromone Matrices Update:
Let b denote a binary value b = {0, 1}. Each position τi

j,b is initialized with a predefined
value τstart . The pheromone matrix τi, that corresponds to the index subproblem i, is updated
according to its solutions neighbors k ∈ B(i) and their respective fitness scalar value g(xk |λk ).

Let Πi be the set of the solutions that: (i) correspond to the solutions in B(i) and (ii)
were just added to EP in the previous generation. The idea is to use the information of the
promising solutions to update τi. Each position τi

j,b is updated as follows.
For each solution x′ ∈ Πi:

τi
j,b = (1 − α).τi

j,b + α.∆τ
i
j,b (3.2)

where
∆τi

j,b =
∑

x′
j=b
∈Πi

1
gws (z∗ |λi) − gws (x′|λi)

(3.3)

where α is the evaporation rate (or update rate) and the reference point is z∗l = max{ f l (x) |x ∈ Ω}.
The ∆τi

j,b increases according to the frequency of binary values b in x′j of the solutions in Π
i and

its Weighted Sum scalar fitness value.
The pheromone matrices store some statistical information of good solutions found

so far. Further, the user-specified parameters τmax and τmin control the upper and lower bound
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pheromone matrices respectively to avoid premature convergence. If τi
j,b < τmin, the value is

reset (τi
j,b = τstart). If τi

j,b > τmax , then τi
j,b = τmax .

3) Solution Construction: A new solution is constructed by choosing each position y j
using the following probabilistic rule and the roulette wheel selection mechanism:

pi
j,b =

τi
j,b

τi
j,0 + τ

i
j,1

(3.4)

pi
j,1 = 1 − pi

j,0 (3.5)

where pi
j,0 and pi

j,1 are the probability of selecting "0" and "1" for the variable j, respectively.
4) Update Neighborhood: The new sampled solution y is used to update the current

solutions xk ∈ B(i). For each index k ∈ B(i), if g(y |λk ) ≤ g(xk |λk ), then xk = y. A new
solution can update a maximum of nr current solutions. This strategy prevents one solution
having many copies present in the population [Li e Zhang, 2009]. Besides, different strategies of
update can be used, such as the global update, where y can update any solution in Pop.

Afterward, the EP is updated. The procedure adds y to EP if no solution dominates it
and removes the solutions dominated by y from EP.

3.5 Features of the MOEA/D-BACO
Some particular components are incorporated into the framework, and they are explained

as follows.
1) Setting the neighborhood size based on a constant Euclidean distance:
The selection mechanism has a direct impact on the MOEA/D search behavior. In the

conventional MOEA/D, all the subproblems have the same neighborhood size T . However, even
each λi has a different search direction in the objective space, when λi and λk emphasize the
same objective (i.e., an extreme region of the objective space), they may have the same set of
closest neighbors.

For example: Let 1, 2 ∈ N be the indexes for the weight vectors λ1 = (1.0, 0.0),
λ2 = (0.9, 0.1) and the neighborhood size T = 5, then, according to the Euclidean distance, the
sets B(1) and B(2) could be B(1) = (λ1, λ2, λ3, λ4, λ5) and B(2) = (λ2, λ1, λ3, λ4, λ5), i.e., the
subproblems 1 and 2 have the same closest neighbors B(1) = B(2). Thus, when most of (or all)
the neighbors solutions in B(i) are located in the same search direction of the objective space,
the subproblem i is called an extreme subproblem. This selection mechanism has an adverse
effect for finding solutions that cover the extreme regions of the objective space because it biases
the search towards the central area of the PF.

To overcome this situation, the authors in [Sato, 2015], have introduced a variated
neighborhood size to set each B(i). In this mechanism, the neighbors of subproblem i are all
the weight vectors having Euclidean distances equal to or smaller than a parameter σ. In this
case, the extreme subproblems have smaller T than the subproblem in the middle of the space,
since the middle subproblems have more neighbor solutions spread in the objective space. The
parameter is calculated by:

σ =
√

2.
h
H

(3.6)

where h is a user-specified parameter to control the distance σ, and H is the conventional
decomposition parameter from [Zhang e Li, 2007] to set the number of subproblems N .
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2) Optimal mutation rate for the MOEA/D-BACO:
Sometimes, only the evaporation mechanism is not enough to avoid premature conver-

gence. To prevent this issue, we have incorporated a stochastic mutation to promote diversity.
As in [Mahnig e Mühlenbein, 2001], we use the Bayesian priors as an effective approach to
introduce a mutation-like effect into the MOEA/D-BACO.

The conventional computation of the univariate probability of a variable x j can be
denoted as p(x j ) =

f req
S , where f req is the frequency, e.g., the proportion of "1s" in the jth

variable from the selected population S. The Bayesian approach assumes that the probability of
"1s" is computed as p(x j ) =

f req+r
S+2r , where the hyperparameter r has to be chosen in advance. To

relate the Bayesian prior to the mutation rate (µ) of each variable used by the genetic operators,
the authors used the following theorem: For binary variables, the expectation value for the
probability using a Bayesian prior with parameter r is the same as mutation with mutation rate
µ = r

S+2r and using the maximum likelihood estimate [Mahnig e Mühlenbein, 2001].
Therefore, to introduce the Bayesian priors into our approach, the pheromone amount

∆τi
j,b is assigned as the following equation:

∆τi
j,b =

∆τi
j,b . T i + r

T i + 2r
(3.7)

where T i is the size of the set Πi from equation (5).
3) Diversity preserving sampling:
One of the shortcomings of some evolutionary algorithms is the lack of diversity in the

population due to the generation of solutions already present in the current population, which can
lead to premature convergence. As a course to avoid this situation, we added a simple procedure
in which each new constructed solution is tested for presence in the neighborhood. If y ∈ B(i),
then the solution is discarded and a new solution is sampled until y < B(i) or a number of trials
is reached.

3.6 Experiments
In this section, we firstly analyze the impact of the enhancements incorporated into the

algorithm. Next, we evaluate the algorithm search behavior regarding the learning rate parameter
“α". Finally, an experimental study compares the algorithm to the MOEA/D and the best-known
approximated PF available.

Liefooghe et al. [Liefooghe et al., 2014] proposed a mUBQP test instance generator,
which is available at the mUBQP repository2. Likewise, the repository contains a number of
test instances already generated and their respective approximated PFs achieved by merging the
outcomes from different approaches and executions.

We have used the same instance configurations used by the previous work
[Liefooghe et al., 2014, Zhou et al., 2013b, Liefooghe et al., 2015]. Thus, the instances vary
according to: (i) the number of objectives m = {2, 3}, (ii) objective correlation strength
ρ = {−0.5,−0, 2, 0.0, 0.2, 0.5} (from the most conflicting degree to the less conflicting), and (iii)
number of variables n = {1000}. The density of non-zero values in the cell of the matrix of the
UBQP is d = 0.8. We have also included instances with n = {500, 750} that we have generated
using the mUBQP instance generator.

2 http://mocobench.sourceforge.net/index.php?n=Problem.MUBQP
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3.6.1 Parameters Setting
We have executed 30 independent runs for each algorithm configuration for each test

instance. The following parameters setting were used in the experimental studies:

1. Number of subproblems (N ): According to the formulation Cm−1
H+m−10 = N

[Zhang e Li, 2007], we set H = {200, 9}, and consequently N = {201, 220} for two
and three objectives respectively.

2. Neighborhood sizes: The parameter h (from equation (3.6)) is set to generate neighborhoods
whose size is no larger than T = 20. Thus, for m = 2 and m = 3, we have h = 0.04 and
h = 0.132, respectively.

3. Maximal number of replacements by a new solution (nr ): As in [Li e Zhang, 2009], a new
sampled solution can replace a maximum of nr = 2 solutions.

4. Scalarization function: We have applied both theWeighted Sum and Tchebycheff approach.
As both have achieved very similar results, we only present the results using the Tchebycheff.
The reference point z∗l = max{ f l (x) |x ∈ Ω} is always updated after the algorithm generates
a new solution.

5. Pheromone initialization and bounds: According to a preliminary study, we set τstart = 0.5,
τmin = 0.001 and τmax = 1.

6. Stopping condition: The algorithms stop after n generations, i.e., for each test instance,
the number of generations is set according to its problem-size n. Consequently, the
correspondent total number of fitness evaluations is N × n.

3.6.2 Impact of the MOEA/D-BACO components
Each feature has been analyzed separately, and all of them together. Figure 3.2 represents

the evaluation of 5 different MOEA/D-BACO configurations. Each configuration is defined in
the following:

1. “standard": represents the algorithm with no additional feature.

2. “+cd": represents the algorithm with the variated neighborhood size.

3. “+ds": is the algorithm with the diversity preserving procedure.

4. “+Priors": represents the algorithm with the Bayesian Priors mutation-like effect.

5. “+all": is the algorithm using the three features together.

In Figure 3.2, each subfigure represents the values of the normalized HV measure
obtained by 30 runs for each MOEA/D-BACO configuration. We applied the statistical test
Kruskall-Wallis [Derrac et al., 2011] (5% of significance level) on the results obtained by the HV
to check if there is a significant difference between the five configurations.

According to these results, we make the following remarks:
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Figure 3.2: Means plot for the normalized HV indicator for several configurations of MOEA/D-
BACO for 1000 variables

• The variated neighborhood size (+cd) has no significant difference in comparison to the
(+standard) for the test instances with two objectives. However, it has a negative impact
for the test instances with three objectives, except for the instance with the highest degree
of conflict between the objectives ρ = −0.5. The reason is that the (+cd) enhancement
generates more diverse neighborhood sizes as the number of the objectives increases due
to a large number of weight vectors λi with the same Euclidean distance, and it helps to
find solutions in the extreme regions of the objective space.

• The diversity preserving sampling (+ds) has not achieved significant difference against the
+standard. It means that for the mUBQP instances evaluated, the probability of sampling a
solution already in the population is very low.
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• The Bayesian Priors (+Priors) has a positive impact in the most of the test instances, which
confirms that the mutation-like effect is essential for the MOEA/D-BACO to avoid the
premature converge of the model.

Overall, the enhancements have distinct behaviors for the different instance configurations.
However, all the components together have achieved the best results in most of the cases. We
have not considered a self-adapted approach for choosing the best algorithm setting per instance
configuration. Thus, we have decide to use the configuration (+all) for the next experiments.

Moreover, Figure 3.3 presents the computational cost (in seconds) of each algorithm
configuration for a representative test instance with two and three objectives. The results show
that the different enhancements do not have a significant impact on the computational cost of
MOEA/D-BACO.
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Figure 3.3: Means plot for computational time in seconds for 1000 variables, the correlation
strength ρ = −0.5 and two and three objectives

3.6.3 Impact of the update rate α
This section presents the search behavior of the MOEA/D-BACO throughout the

generations. The update rate α has a direct impact on the pheromone matrices update. This
parameter deals with the convergence of the model. A small α value means that the algorithm
will need a greater number of generations to converge. When α = 1.0 the model uses only the
new increment ∆τi

j,b to update τ
i
j,b (equation 3.2).

Figure 3.4 shows the average of the normalized HV achieved by 30 runs throughout
the generations with α = {0.2, 1.0} for the test instances with 1000 variables, two and three
objectives and the different objectives correlation strength. According to the results, in the first
generations (e.g., 100 generations), MOEA/D-BACO with α = 1.0 converges faster than with
α = 0.2. However, for m = 2 and all objectives correlations strength, except for the weakest
conflicting ρ = 0.5, the algorithm with α = 0.2 has achieved better HV results after 1000
generations. It shows that a low α value contributes to avoid the premature convergence of the
pheromone matrices, thus achieving better HV results after a number of generations. For m = 3,
the algorithm with α = 1.0 has produced better results. It indicates that the complexity of the
problem increases with three objectives, and thus a higher number of generations is needed to
achieve better quality solutions.
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Figure 3.4: Average normalizedHV values fromMOEA/D-BACOwith α = {0.2, 1.0} throughout
the generations for the mUBQP instances n = 1000

3.6.4 Comparison to the MOEA/D
In this section we compare MOEA/BACO to MOEA/D using the uniform crossover and

the mutation rate µ = 1
n . According to the results in the previous section, we set α = 0.2.

Table 3.1 summarizes the average of the normalizedHV results of the final approximated
PF obtained by each instantiated algorithm over the 30 runs for each test instance. If the
algorithms have a significant difference according to the Kruskall-Wallis test at 5% of significance
level, the best-ranked results are highlighted in boldface. Table 3.2 presents the coverage indicator
between MOEA/D-BACO and MOEA/D over the 30 runs for each benchmark configuration.

We make the following remarks:
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Table 3.1: Average HV values of the final approximated PF obtained. When the algorithms have
statistical differences, the best results are highlighted in bold face.

Instance m = 2 m = 3
n ρ MOEA/D MOEA/D-BACO MOEA/D MOEA/D-BACO

500

-0.5 0.7499 0.7495 0.5275 0.5322
-0.2 0.7544 0.7604 0.5132 0.5225
0.0 0.8011 0.7998 0.4954 0.4850
0.2 0.8135 0.8151 0.4486 0.4339
0.5 0.7650 0.7811 0.5492 0.5396

750

-0.5 0.7373 0.7377 0.4987 0.5004
-0.2 0.7714 0.7825 0.5105 0.5216
0.0 0.7722 0.7768 0.4799 0.4721
0.2 0.7948 0.7995 0.5023 0.4930
0.5 0.8090 0.8280 0.5486 0.5035

1000

-0.5 0.7304 0.7356 0.5154 0.5177
-0.2 0.7694 0.7766 0.4686 0.4695
0.0 0.7840 0.7916 0.4521 0.4529
0.2 0.7962 0.8024 0.4734 0.4698
0.5 0.8000 0.8145 0.4912 0.4642

Table 3.2: C-metric values [0, 1] between MOEA/D-BACO (A) and MOEA/D (B)

Instance m = 2 m = 3
n ρ C(A,B) C(B,A) C(A,B) C(B,A)

500

-0.5 0.1291 0.852 0.4185 0.3455
-0.2 0.3128 0.619 0.6869 0.1632
0.0 0.06081 0.9121 0.13 0.7403
0.2 0.08736 0.8333 0.07454 0.7914
0.5 0.2691 0.6964 0.2162 0.6526

750

-0.5 0.5581 0.4471 0.4054 0.3883
-0.2 0.7511 0.2262 0.4401 0.6483
0.0 0.2978 0.694 0.1492 0.7069
0.2 0.3384 0.6828 0.06919 0.812
0.5 0.6548 0.2742 0.001951 0.9765

1000

-0.5 0.7169 0.2599 0.6821 0.3512
-0.2 0.7356 0.5263 0.5831 0.2313
0.0 0.6996 0.4586 0.3761 0.6712
0.2 0.5276 0.3829 0.192 0.6336
0.5 0.7632 0.25 0.04287 0.9095

• Table 3.1 shows that, regarding HV indicator, the MOEA/D-BACO outperforms MOEA/D,
with a significant difference, in 16 of the 30 instances, and did not achieve statistical
difference in 9 cases. For m = 2, MOEA/D-BACO has produced the best results. For
m = 3, the difference between the algorithms is higher when the objectives are strongly
conflicting (e.g., ρ = {−0.5,−0.2});

• Regarding the C-metric indicator, Tables 3.2 shows that, for m = 2, MOEA/D-BACO
achieved better results as problem-size increases. For m = 3, the proposed algorithm
dominates a larger percentage of solutions from MOEA/D when the objectives are strongly
conflicting (ρ = {−0.5,−0.2}), in accordance to the results with the HV indicator;

• In general, the results from Table 3.1 and 3.2 show that, regarding the objective correlation
strength, MOEA/D-BACO significantly outperforms MOEA/D mainly when the objectives
are strongly conflicting. Also, as reported in Figure 3.3, using the same number of
generations, MOEA/D-BACO has a higher computation cost than MOEA/D.
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3.6.5 Hybridization with the problem-specific local search
Since the fast incremental local search [Glover et al., 1998, Glover e Hao, 2010] has

been the main ingredient of the approaches for solving the UBQP and the mUBQP, we have also
hybridized our algorithm with it to evaluate its impact on the final results. In the following, we
describe how we have incorporated the fast incremental UBQP local search in our framework.

After each single-objective scalar subproblem i generates a new solution y, a simple
iterated random local search is applied. For n/10 times, a random position (variable) is chosen
and this binary value is flipped generating y′, and then the procedure calculates its move gain. If
g(y′|λi) > g(y|λi), then y = y′.

Due to the drastic computational difference between the complete evaluation function
cost (Eq. 3.1) and the fast incremental evaluation function cost, we have evaluated the algorithms
according to two stop conditions: (i) the previous fixed number of generations, and (ii) using a
limited computational cost. The computational cost used was n×m×300 milliseconds. Table 3.3
and Table 3.4 present these results respectively according to the HV indicator.

Table 3.3: Average HV values of the final approximated PF obtained by MOEA/D and MOEA/D-
BACO with and without the fast incremental local search procedure after n generations.

Instance m=2
n ρ MOEA/D MOEA/D-BACO MOEA/D+ls MOEA/D-BACO+ls

-0.5 0.7345 0.7395 0.7468 0.7473
-0.2 0.7678 0.7747 0.7831 0.7866
0.0 0.7874 0.7946 0.8064 0.8030
0.2 0.7945 0.8004 0.8231 0.8172
0.5 0.7921 0.8060 0.8256 0.8327

1000 m=3
-0.5 0.4326 0.4345 0.4508 0.4595
-0.2 0.4237 0.4243 0.3968 0.4170
0.0 0.4480 0.4503 0.4230 0.4407
0.2 0.4813 0.4786 0.4595 0.4617
0.5 0.5051 0.4823 0.5160 0.4801

Table 3.4: Average HV values of the final approximated PF obtained by MOEA/D and MOEA/D-
BACOwith and without the fast incremental local search procedure after n×m×300 milliseconds.

Instance m=2
n ρ MOEA/D MOEA/D-BACO MOEA/D+ls MOEA/D-BACO+ls

-0.5 0.6726 0.6160 0.7208 0.6948
-0.2 0.6882 0.6139 0.7609 0.7271
0.0 0.6997 0.5954 0.7862 0.7504
0.2 0.7073 0.5353 0.8140 0.7715
0.5 0.6859 0.4631 0.8531 0.8011

1000 m=3
-0.5 0.3330 0.3110 0.3989 0.3713
-0.2 0.3279 0.2111 0.3459 0.3233
0.0 0.3395 0.2199 0.3513 0.3239
0.2 0.3849 0.2047 0.4092 0.3617
0.5 0.4451 0.1269 0.5680 0.4515

Regarding the fixed number of generations, the results from Table 3.3 show that the
algorithms with the local search have achieved the best results with a significant difference for
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m = 2. However, for m = 3, the local search has not achieved a significant impact on the results.
In some cases, the algorithms without the local search achieved the best results. It means that, for
3 objectives, the exploitation performed by the local search can have a detrimental effect, i.e., it
avoids the diversity in the objective space.

Regarding the computational cost, the results from Table 3.4 show that MOEA/D has
less computational cost than MOEA/D-BACO. Furthermore, MOEA/D+ls have achieved the best
results. However, as it is shown in Table 3.3, even though our approach is slower, it is able to
"continue evolving", and thus obtain better results.

3.6.6 Comparison to the best-known referent PFs
The best-known approximated PFs, which are available at the mUBQP repository, were

generated by the authors merging the results from the different approaches, executions, and
stopping criteria [Zhou et al., 2013b]. Table 3.5 presents the absolute HV values obtained by
MOEA/D-BACO with and without the local search, and the referent approximated PFs.

Table 3.5: HV values of the final approximated PFs obtained.

Instance m=2
n ρ MOEA/D-BACO MOEA/D-BACO+ls referent PF

-0.5 0.7330 0.7380 0.7555
-0.2 0.7677 0.7733 0.8035
0.0 0.7860 0.7916 0.8131
0.2 0.7738 0.7847 0.8364
0.5 0.8112 0.8205 0.8455

1000 m=3
-0.5 0.4399 0.4571 0.4421
-0.2 0.4531 0.4409 0.4431
0.0 0.4323 0.4163 0.5171
0.2 0.4374 0.4154 0.6148
0.5 0.4983 0.4915 0.6251

The comparison to the best-known approximated PFs presented in Table 3.5 clearly
indicates the competitive results obtained by our approach mainly for three objectives and high
conflict correlation strength. These results show that the approaches (that make a more global
search) can achieve competitive results compared to the UBQP-specific algorithms. Additionally,
we made our best-known results available on-line3 for further investigations.

3.7 Conclusion and Future Work
In the presented MOEA/D-BACO framework, each scalar optimization subproblem

maintains a pheromone matrix n×2. Each subproblem updates its model according to the positive
feedback from its best neighbor solutions found so far. We have incorporated enhancements to
the MOEA/D-BACO to maintain diversity.

An experimental study was conducted to evaluate the different components of MOEA/D-
BACO framework. The results showed that each feature has a different impact depending on the

3Available at https://github.com/MuriloZangari/mubqp-best-known
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characteristics of the mUBQP instances that vary according to the number of objectives, number
of variables and the objectives correlation strength.

We have analyzed the search behavior of MOEA/D-BACOwith two update rate α values.
The results showed that a low α avoids the fast convergence of the probabilistic models, and
consequently it needs a large number of generations to converge to the true PF. It is because
algorithm leads to a more parsimonious update of the model.

MOEA/D-BACO is slower than MOEA/D. However, using the number of generation as
stopping condition, our approach achieves better results regarding HV indicator and C-metric in
most of the cases. In comparison to the best-known sets, MOEA/D-BACO achieves competitive
results. Moreover, the local search is not the major ingredient of our algorithm, which leads us to
have a more general approach which can be evaluated to solve other optimization problems with
binary representation.

It is known that ACO algorithms and EDAs, such as PBIL [Baluja, 1994] and UMDA
[Pelikan et al., 1999], have a close relation [Blum e Roli, 2003]. These algorithms maintain
a model based on distribution of probabilities, and the variables are considered independent.
Therefore, we also have investigated the incorporation of this kind of EDAs within our MOEA/D
framework. This subject is addressed in the next chapter, where we first discuss and analyze
different PBIL’s implementations from the literature. We show how these differences affects the
search ability of the algorithm. We also present a comparison to MOEA/D-BACO.
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Chapter 4

Not all PBILs are the same: Unveiling the
different learning mechanisms of PBIL
variants

4.1 Introduction
Following with our research on metaheuristics to solve MCOPs, we have started to

explore new ideas for it. We have noticed that BACO (presented in the previous chapter) and
PBIL [Baluja, 1994] have a close relation because both use machine learning techniques to
maintain a model representing the solutions from the search space.

In fact, PBIL is one of the simplest model-based evolutionary algorithms and arguably
one of the first EDAs [Mühlenbein e Paass, 1996]. The genesis of PBIL was largely influenced
by previous work on population-based recombination in GAs and the concept of competitive
learning, as applied in neural networks [Hertz, 1991]. In a string of papers, Baluja et al.
[Baluja, 1994, Baluja e Caruana, 1995, Baluja, 1997], described how the exchange of information
between solutions, implicit in the behavior of crossover operators, could be efficiently transformed
in the explicit manipulation of probabilistic vectors describing the statistics of the population.

In simple terms, at each generation, PBIL works by updating a vector describing the
univariate statistics of the best solutions. The update of this simple model is governed by a
parameter that works as a learning rate. The model is used to generate new candidate solutions
and the loop comprising selection, model learning, and model sampling continues until a stop
criterion is met.

The simplicity of PBIL and its ability to retain much of the performance of GAs with uni-
form and one-point crossover operators has contributed to its popularity. In general, some of the
most praised characteristics of PBIL are: its easy implementation [Baluja, 1997] in comparison
to more complex EDAs, and its robustness [da Silva e Schirru, 2014]. Besides, PBIL has been ap-
plied to a variety of real-world problems including energy applications [da Silva e Schirru, 2014,
Folly, 2013, Folly, 2014], automatic control [dos Santos Coelho e Grebogi, 2010], biomedi-
cal problems [McCall et al., 2008], robotics [Kang et al., 2014], multiobjective complex net-
work problems for community strcture detection [Ma et al., 2016], and other problems
[Chaves-González et al., 2008, Chen et al., 2016, Salvá et al., 2013]. Also, extensions for con-
tinuous problems have been introduced [Sebag e Ducoulombier, 1998, Yuan e Gallagher, 2003].
Usually, the authors have proposed PBIL algorithms with some enhancements for efficiently
solving the target problem (e.g., self-adaptive approach [da Silva e Schirru, 2014], multiple-
population PBIL [Folly, 2014], hybrid approaches [dos Santos Coelho e Grebogi, 2010], differ-
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ent learning and sampling procedures to guarantee a higher diversity [Ventresca e Tizhoosh, 2008,
Ma et al., 2016], parallel schemes [Folly, 2013]).

In most of those works, the authors stated that their PBIL algorithms outperformed
the conventional GA approaches [Kang et al., 2014]. However, some works presented that
PBIL can be outperformed by EDAs that use more complex models or tuned search strategies
[Yang e Yao, 2005, Chaves-González et al., 2008]. Moreover, theoretical analyses of PBIL have
been conducted. These papers have focused on the convergence proof of the algorithm and its
expected behavior regarding its ability to find local optima of the function [González et al., 2001b,
Yang e Yao, 2005, Rastegar e Hariri, 2006, Li et al., 2011].

Notably, and this is the main claim presented in this chapter, the numerous reported
applications of the discrete PBIL can be split into two main groups according to the way the
learning step of the algorithm is interpreted. The critical aspect of this split is that two essentially
different algorithms (in terms of their learning mechanisms) are considered in the current literature
as a unique algorithm. Furthermore, for one of these PBIL variants, the algorithm is not well
specified, in the sense that the commonly used description of the algorithm allows different
implementations.

In this chapter, we show that the differences between the identified PBIL variants are
critical in terms of the effect that they can produce in the search process. We conduct an analysis
from a theoretical and empirical point of view. We did not find any previous published analysis
of the fact the PBIL algorithm has different interpretations regarding its learning mechanism.

The chapter is organized as follows: Section 4.2 discusses the PBIL variants reported in
the literature. In Section 4.3, we derive formulas for computing the mean univariate probabilities
from the two PBIL variants when all possible orders are considered. Section 4.4 presents the
experimental studies using a number of well-known optimization functions. In Section 4.6, we
conclude the chapter and discuss topics for future research.

4.2 PBIL
Algorithm 4.1 shows the pseudo-code of the PBIL, adapted from [Baluja, 1994], in

which the algorithm was first introduced. Each position of the probabilistic vector is initialized
p(x j ) = 0.5. Next, the solutions in population Pop are initialized randomly. While a termination
condition is not met, the best solution is determined according to the quality function, and then
the univariate probabilistic vector p(x) is updated (line 7). After, it samples a new solution y and
add it to Pop.

One distinguished feature of this PBIL presented in Algorithm 4.1 is that the update of
the univariate vector is done using the best solution found in each generation.

It is also acknowledged in [Baluja, 1994] that, when large populations are used, adjusting
the prototype vector based upon the single best solution vector in each generation has the potential
of ignoring a large amount of the work and exploration performed by the algorithm. The
straightforward solution proposed is to move the prototype vector in the direction of the best
(S << Pop) solutions. An enumeration regarding possible manners to implement this variant is
presented in [Baluja, 1994]. One of the suggested ideas is to move the probability vector equally
in the direction of each of the selected solutions. An implementation of this idea is presented in
[Baluja, 1997].

The main differences in the learning mechanism between the PBIL presented in
[Baluja, 1997] and the original algorithm are described in the pseudocode of Algorithm 4.2.
Two characteristics of this variant are that the solutions in Pop are first sorted according to the
evaluation of the solutions (Step 1), and the probabilistic model learned is sensitive to this order.
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Algorithm 4.1: PBIL (adapted from the original formulation [Baluja, 1994])
1 p(x) ← initialize each position of the probability vector p(x j ) = 0.5 ∀ j ∈ 1, ..., n
2 Pop← Generate N solutions randomly
3 For each solution x, compute its fitness function F (x)
4 while a termination condition is not met do
5 best ← the solution corresponding to best fitness
6 for each variable, the corresponding entry probability is updated do
7 p(x j ) = (1.0 − α) ∗ p(x j ) + (α ∗ best j )
8 end for
9 y← sample a new solution using p(x)
10 For each variable, if (random(0, 1) < µ) yj = 1 − yj
11 Pop← add y to the population
12 end while

This dependence on the order is due to the fact that the values of the probabilistic vector are
iteratively modified within the loop that passes over all the selected solutions. The last solution
vector in the order will have a stronger impact on the final configuration of the probability vector.
We call this variant the order-sensitive PBIL, or in short PBIL-OS.

Algorithm 4.2: PBIL (Order-sensitive variant) learning procedure [Baluja, 1997]
1 Pop = sort(Pop)
2 #Update Probability Vector towards best solutions
3 for i = 1 to NUMBER_OF_SOLUTIONS_TO_UPDATE_FROM (S) do
4 for j = 1 to n do
5 p(x j ) = (1.0 − α) ∗ p(x j ) + (α ∗ xij )
6 end for
7 end for

Finally, another interpretation of PBIL assumes that, before updating the probability
vector, a vector r (x) with the univariate probabilities of the S selected solutions is computed.
The auxiliary vector r (x) is then used to update the vector of the univariate probabilities. The
pseudo-code of this variant is shown in Algorithm 4.3. We call this variant PBIL-iUMDA,
because the strategy used to update the probabilities is the same as that proposed for the iUMDA
in [Mühlenbein, 1997].

Algorithm 4.3: PBIL (iUMDA variant) learning procedure [Mühlenbein, 1997]
1 #Compute current probabilities
2 for j = 1 to n do do

3 r (x j ) =
∑S

i=1 x
i
j

S

4 end for
5 #(Update Probability Vector)
6 for j = 1 to n do do
7 p(x j ) = (1.0 − α) ∗ p(x j ) + α ∗ r (x j )
8 end for

Examples of the original variant include [Baluja, 1994, Baluja, 1997,
Chaves-González et al., 2008, Ma et al., 2016]. Order-sensitive examples are those de-
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scribed in [Yang e Yao, 2005]. The iUMDA variant is at the core of the following papers
[González et al., 2001a, González et al., 2001b, Khan, 2014, Mendiburu et al., 2006].

4.3 Expected values of univariate models for PBIL-OS and
the PBIL-iUMDA
In this section, we study the algorithm variants described in the previous section

PBIL-OS and PBIL-iUMDA from a theoretical point of view, looking at the equations that are
used to update the probabilistic model. Our goal is to determine how the choice of the learning
algorithm that defines each PBIL variant influences their expected univariate probabilities.

Theoretical analyses of PBIL have been previously conducted. However, they
have primarily focused on the convergence proof of the algorithm. Most of the theo-
retical analysis of PBIL has addressed the iUMDA variant [Li et al., 2011, Lozano, 2000,
Rastegar e Hariri, 2006, Rastegar, 2011] and this analysis usually assumes that the learning rate
parameterα is very close to zero [González et al., 2001b, Li et al., 2011, Rastegar e Hariri, 2006].
In [González et al., 2001b], the authors analyze the expected behavior of PBIL for the One-Max
function. They presented a mathematical proof for the algorithm’s convergence behavior, which
depends on the initial value of the probabilistic vector p(x) and the value of the learning
rate parameter (α). Other papers have proposed proofs of PBIL convergence to local optima
[Rastegar e Hariri, 2006].

In order to build some intuition about how the PBIL learning variants use the selected
solutions to generate the model, we start by presenting some illustrative examples of the effect
that the order of the selected solutions has on the univariate model. Then, for each PBIL variant,
we derive the formula of the expected univariate probabilities if all the possible orderings of the
selected solutions were considered.

To illustrate the influence that the order of the solutions has, let us consider two
populations of four solutions, where all the solutions have five variables, (x1, x2, x3, x4, x5).

PopA = (00000, 00111, 11000, 11111) (4.1)
PopB = (11111, 00000, 00111, 11000) (4.2)

PopA and PopB comprise identical solutions but they are ordered in a different fashion. We will
assume that PBILwill learn its probability model from each population. The univariate probability
model computes the univariate probability for each variable, but to ease the presentation, we will
focus on a single variable. Let us concentrate on the last variable, x5. For this variable, we can
extract its corresponding column vectors vA and vB from the two populations. vA and vB have the
form (x1

5, x2
5, x3

5, x4
5). vA = (0101), vB = (1010).

To learn the univariate probability of this variable the way PBIL-OS does, we apply the
updating equation p(x j ) = (1 − α)p(x j ) + αx j to compute pA(x5) and pB (x5) using vA and vB,
respectively. Assuming that the initial marginal probability for the two cases is p(x5) = b, the
final values of pA(x5) and pB (x5) after iterating over the four solutions in the population are:

pA(x5) = b(1 − α)4 + α(1 − α)2 + α (4.3)
pB (x5) = b(1 − α)4 + α(1 − α)3 + α(1 − α) (4.4)

It is clear that the expression of the univariate probabilities learned from the two
populations is different and depends on the order of the solutions. For example, for b = 0.5 and
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α = 0.2, we have pA(x5) = 0.5648 and pB (x5) = 0.672, which is a significant difference from
the univariate probabilities obtained from the two populations. This is not the usual behavior of
methods applied to learn probabilistic models in EDAs. The rule in EDAs is that the probabilistic
model does not depend on the order of the solutions in the selected population.

The analysis presented for the variable x5 can be generalized to any variable i and any
order of the solutions in the population. Equation 4.5 shows the parameterized expression of
p(x j ) for any order of a population of 4 individuals.

p(x j ) = b(1 − α)4 + x1
i α(1 − α)3 + x2

i α(1 − α)2 + x3
i α(1 − α) + x4

i α (4.5)

For PBIL-iUMDA, the result of the updating rule for any order will be the same. For
example, assuming a selected population of size |S | with exactly k solutions with value 1 for
variable x j

i , and |S | − k solutions with value 0, then ri =
|S |
N and the result of the application of

the update rule would be p(x j ) = b(1 − α) + αk
|S | .

The computation of the univariate probability for PBIL-iUMDA is straightforward
because the model does not depend on how the solutions are ordered. However, under the same
assumptions, for PBIL-OS there would be a different value of p(x j ) for each of the

(
|S |
k

)
manners

of ordering a vector with k ones. This fact determines that, if the order of the selected solutions
is randomly set, in each generation there will be a very high variability in the models learned by
PBIL-OS, and in the solutions sampled from these models. Therefore, it is an important question
to determine what the expected value of p(xi) is when all possible orderings of solutions in
the selected population are considered. Producing an expression for the univariate probabilities
allows us to study the effect of the parameters of PBIL-OS. Furthermore, we can compare
PBIL-OS and PBIL-iUMDA in terms of the expected values of the univariate probabilities.

In the following lines, we derive an expression of the univariate probability (p̄(xi)) of
variable xi when all possible orderings of the selected population are considered:

p̄(x j ) =

(
|S |
k

)
b(1 − α) |S | + α

∑(Nk )
j=1

∑|S |
l=1 xi

j (1 − α) |S |−l(
|S |
k

) (4.6)

=

(
|S |
k

)
b(1 − α) |S | +

k( |S |k )
|S | α

(∑|S |−1
l=0 (1 − α) |S |−l−1

)(
|S |
k

) (4.7)

=b(1 − α) |S | +
k
|S |
α

(
1 − (1 − α) |S |

1 − (1 − α)

)
(4.8)

=b(1 − α) |S | +
k
|S |
−

k
|S |

(1 − α) |S | (4.9)

=
k
|S |
+ (1 − α) |S | (b −

k
|S |

) (4.10)

For the derivation, we have used the fact that the number of non-zero values in each of
the |S | positions in the population is k( |S |k )

|S | , and the exponential sum formula is
∑|S |−1

l=0 ci = 1−c |S |
1−c .

We can see in Equation (4.10) that the expected value of the univariate probability when
all possible orderings are considered can be very close to k

|S | , particularly for large values of |S |.
If the initial probability b is k

|S | , then the expected value p̄(x j ) is exactly k
|S | .
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4.3.1 Simulations
In this section we use the expressions derived for the expected univariate probabilities

of the models learned by PBIL-iUMDA and PBIL-OS to investigate the influence of different
parameters in the probabilities learned by the two variants of PBIL.

Figure 4.1 shows the results of the simulation of the update mechanism of PBIL-OS
using b = 0.5 and α = 0.7. It shows the output p(x j ) values for all possible

(
|S |
k

)
orders and

different values of k. The population has |S | = 10 individuals and, in the column vector, there
are exactly k variables with value 1, i. e.,

∑|S |
i=1 xi

j = k. It can be seen in Figure 4.1 (left) that,
although the 120 orderings produce probabilities very different to k

|S | = 0.3, there are some
common patterns between them. As expected, a larger range of values is obtained for k = 5
(Figure 4.1, right).
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Figure 4.1: p(x j ) values of the update mechanism of PBIL-OS for all possible orders using k = 3
(left) and k = 5 (right).
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Figure 4.2: p(x j ) values of the update mechanism of PBIL-OS when initial parameters b and α,
are changed for two possible orders (k = 3). The first k solutions in the order have value x j = 1
(left). The last k solutions in the order have value x j = 1 (right)

The derived equations can be also used to investigate the effect that different parameters
of PBIL-OS have in particular orderings of the solutions. For example, in Figure 4.2 we explore
the effect of b ∈ [0, 0.49) and α ∈ [0, 0.49) in two different orderings of 10 solutions with k = 3.
The first ordering, for which results are shown in Figure 4.2 (Left) corresponds to the situation in
which the first k solutions in the population are those that have x j = i. In Figure 4.2 (Right) the
ordering is the reverse. The last k solutions are those that have x j = 1.
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It can be seen in Figure 4.2 how the effect of the same combination of parameters
is completely different depending on the ordering of the same solutions. For a large number
of combinations of b and α the probabilities of the first ordering will converge to 0. For the
second ordering the effect is the opposite. These results indicate that the effect of the PBIL-OS
parameters can not be considered independently of the criterion chosen to sort the selected
solutions. In the next section, we analyze this question from an empirical point of view.

4.4 Experiments: single-objective case
We can assume that solutions in the selected populations of PBIL-OS follow a given

order, for example, solutions can be sorted according to the fitness values. Then, the question
arises of whether a particular order of the solutions is more beneficial in terms of the optimization
results. In the following, the three different PBIL learning mechanism are described:

1. The PBIL-OS-d, in which the solutions in selected population (S) are sorted according to
the fitness value from the best solution to the worst (i.e., descending order)

2. The PBIL-OS-a is the reverse order of the selected solutions in S.

3. PBIL-iUMDA, which is the third variant.

We have selected four representative functions which serve to investigate the different
facets of difficulty for EAs [Mühlenbein e Paass, 1996]: One-Max, Trap3, Checkerboard, and
FourPeaks. These functions were also used in the original paper of PBIL [Baluja, 1994] and
have been widely addressed in the literature to evaluate different EDAs [Echegoyen et al., 2007,
Mendiburu et al., 2012].

Let u(x) =
∑n

i=1 xi be a function defined in terms of its number of "1s". f (x) is a
unitation function if ∀x,y ∈ {0, 1}n and u(x) = u(y) → f (x) = f (y).

The function One-Max is defined as:

One-Max (x) =
n∑

i=1
xi = u(x) (4.11)

Unitation functions are also useful for the definition of deceptive functions. In deceptive
functions, the difficulty is given by the interactions that arise among subsets of variables. The
Trap3 is an additively separable (non-overlapping) function with a unique optimum. It divides
the vector x on p disjoint vectors x I of 3 variables.

Trap3(x) =
n/3∑
I=1

trap3(x I ) (4.12)

where

trap3(x I ) =



3, if u(x I ) = 3
2 − u if u < 3

(4.13)

This function has one global optimum and a large number of local optima, particularly
2n/3 − 1.

For Checkerboard, the goal is to create a checkerboard pattern of 0’s and 1’s in an N × N
grid. For each position in an (N − 2)(N − 2) grid centered on an N × N grid, +1 is added for
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each position whose four primary neighbors (above, below, left, right) have the opposite value to
that position.

The function FourPeaks is defined as:

FP(x, t) = max{head(1, x), tail (0, x)} + R(x, t) (4.14)

where head(1, x) is the number of leading 1’s in x, tail (0, x) is the number of trailing 0’s in x
and the reward value R(x, t) is 100 if head(1, x) > t and tail (0, x) > t, otherwise R(x, t) = 0.
The goal is to maximize the function. The global optimum is difficult to reach because the two
local optima (0, 0, ..., 0) and (1, 1, ..., 1) are easier to reach, i.e., the "hill-climbing" search gets
trapped quickly in these local optima. By increasing t, the bias of attraction surrounding the
inferior local optima increases in size exponentially, while the bias around the global optima
decreases.

4.4.1 Parameter Settings
We have investigated the behavior of PBIL variants using three values for the learning rate

α ∈ {0.01, 0.05, 0.1}. These α values have been commonly used in the analyses of PBIL variants
[Mendiburu et al., 2006]. Also, we have used two values for the population size, N ∈ {50, 100}.
The truncation selection is set to |S | = N/2. The stop criterion is 500 generations.

We have used different problem sizes to generate a large set test functions. The
parameters settings are: (i) One-Max: n = (100, 250, 500); (ii) Checkerboard: n = (36, 64, 100);
(iii) FourPeaks: t = (%20,%30) of n = 100; and (iv) Trap3: n = (102, 240, 360).

4.4.2 Comparison results
We have executed 30 runs for each combination PBIL variant × test function × parameter

setting. The best fitness solution (after the 500 generations) is used as the criterion to evaluate
the algorithms.

In addition, for each comparison result, we have applied the Kruskal-Wallis test
[Derrac et al., 2011] to check whether the final best solutions obtained by the PBIL variants have
a significant differences at 0.05 of significance level. For each comparison result, the algorithms
are ranked from "1" (which represents the best algorithm result) to "3" (which represents the
worst). If two or more algorithms have the same rank, it means that they are not significantly
different.

Tables 4.1,4.2,4.3 and 4.4 present the Kruskal-Wallis ranking for each combination of
parameters setting × test function. Figure 4.3 and 4.4 illustrate the behavior of the algorithms
throughout the generations. We make the following remarks:

The results from Tables 4.1-4.4 reveal that, according to the Kruskal-Wallis test and
under the same conditions, at least two PBIL variants achieved a significant difference in their
final results in 63 of the 66 cases. These results show that the PBIL search ability is affected
depending on how the learning mechanism is implemented. Also, the three variants have different
behaviors depending on the value of the learning parameter α. For the lowest values (α = 0.01
and α = 0.05), PBIL-OS-d achieves significantly better results than PBIL-OS-a in 24 of the
44 comparison results, and significantly better than PBIL-iUMDA in 16 of the 44 cases. For
the highest value (α = 0.1), PBIL-iUMDA achieves significantly better results than PBIL-OS-d
in 9 of the 22 comparison results and better than PBIL-OS-a in all of the 22 cases. Also, the
differences are more significant when n is larger.
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Table 4.1: Statistical ranking of the PBIL variants according to the Kruskal-Wallis test for the One-Max
optimization function

n N α PBIL-OS-d PBIL-OS-a PBIL-iUMDA

100

50
0.01 1.5 1.5 3
0.5 2 2.5 1.5
0.1 2 3 1

100
0.01 1.5 1.5 3
0.5 2 2 2
0.1 1.5 3 1.5

250

50
0.01 1.5 1.5 3
0.5 2 3 1
0.1 2 3 1

100
0.01 1.5 1.5 3
0.5 1.5 3 1.5
0.1 2 3 1

300

50
0.01 1.5 1.5 3
0.5 2 3 1
0.1 2 3 1

100
0.01 1.5 1.5 3
0.5 2 3 1
0.1 2 3 1

Table 4.2: Statistical ranking of the PBIL variants according to theKruskal-Wallis test for theCheckerboard
optimization function.

n N α PBIL-OS-d PBIL-OS-a PBIL-iUMDA

36

50
0.01 1.5 3 1.5
0.05 1.5 3 1.5
0.1 1.5 3 1.5

100
0.01 2 2 2
0.05 2 2 2
0.1 1.5 3 1.5

64

50
0.01 1.5 1.5 3
0.05 1.5 3 1.5
0.1 1.5 3 1.5

100
0.01 1.5 1.5 3
0.05 1.5 3 1.5
0.1 1.5 3 1.5

100

50
0.01 1.5 1.5 3
0.05 1.5 3 1.5
0.1 1.5 3 1.5

100
0.01 1 2 3
0.05 1.5 3 1.5
0.1 1.5 3 1.5

Table 4.3: Statistical ranking of the PBIL variants according to the Kruskal-Wallis test for the FourPeaks
optimization function.

t N α PBIL-OS-d PBIL-OS-a PBIL-iUMDA

20

50
0.01 1 2 3
0.05 1.5 3 1.5
0.1 2 3 1

100
0.01 1 2 3
0.05 1.5 3 1.5
0.1 2 3 1

30

50
0.01 1 2.5 2.5
0.05 1 3 2
0.1 2 3 1

100
0.01 1 2 3
0.05 1 3 2
0.1 2 3 1

Figure 4.3 and 4.4 clearly show that the three variants have different search behaviors
throughout the generations. PBIL-OS-d and PBIL-OS-a have different behaviors in terms of
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Table 4.4: Statistical ranking of the PBIL variants according to the Kruskal-Wallis test for the Trap5
optimization function.

n N α PBIL-OS-d PBIL-OS-a PBIL-iUMDA

102

50
0.01 1.5 1.5 3
0.5 2.5 2.5 1
0.1 2 3 1

100
0.01 1.5 1.5 3
0.5 2.5 2.5 1
0.1 2.5 2.5 1

140

50
0.01 1.5 1.5 3
0.5 2 3 1
0.1 2 3 1

100
0.01 1.5 1.5 3
0.5 1 2 3
0.1 2 3 1

360

50
0.01 1.5 1.5 3
0.5 1 2.5 2.5
0.1 2 3 1

100
0.01 1.5 1.5 3
0.5 1 2 3
0.1 2 3 1

convergence and diversity. Recall that the only difference between them is the order in which
their selected populations S are sorted. In the first generations, PBIL-OS-a converges faster than
the other variants but, after a number of generations, it easily falls in local optima. Thus, we
can conclude that, in PBIL-OS, when the probabilistic vector is updated using the solutions in S
sorted from the worst fitness solution to the best fitness solution it has a detrimental effect leading
to premature convergence of the model. Moreover, the lowest α value has the most detrimental
effect for the PBIL-iUMDA, leading to results far from the optimum after the 500 generations.

A low α value means that the algorithm needs more generations to converge to the
optimum. However, a high α value leads to a premature convergence of the probabilistic vector,
and consequently to a lack of diversity in the population.

4.5 Experiments: multiobjective case
As an approach to evaluate the PBIL variants in the multiobjective case, we have

incorporated them into our MOEA/D framework. In this case, the algorithm maintains N
probabilistic models, in which each subproblem i learns and samples a probabilistic model pi,
using the B(i) as the selected population.

Furthermore, we present the literature review of EDAs within MOEA/D in Section
6.3 where we provide a more intensive discussion about the use of probabilistic models within
MOEA/D.

The PBIL learningmechanisms incorporated into ourMOEA/D framework are described
in the following.

1. The conventional strategy used in MOEA/D that sorts B(i) from the closest neighbor to
the farthest. We call this variant as MOEA/D-PBIL-OS-c.

2. The solutions in S = B(i) are sorted according to the scalar aggregation function values,
in such a plan that S = B(i) = {g(xbest |λi), . . . , g(xworst |λi)}. We call this variant as
descendant order (MOEA/D-PBIL-OS-d).

3. The third variant is the reverse order of PBIL-OS-d, called MOEA/D-PBIL-OS-a.
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(b) Checkerboard α = 0.01
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(c) One-Max α = 0.05
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(e) One-Max α = 0.1
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Figure 4.3: Behavior of PBIL-OS-d, PBIL-OS-a and PBIL-iUMDA throughout the generations for the
One-Max (a) (c) and (e) with n = 500, N = 100; and Checkerboard (b) (d) (f) with n = 100, N = 100.

4. The last strategy is the MOEA/D-PBIL-iUMDA.

We have used the instances from the mUBQP repository [Liefooghe et al., 2014]. The
instances vary according to a fixed number of variables n = 1000, two objectives (m = 2), and
the correlation strength are ρ = {−0.5, 0.0, 0.5} (from the weakest to the strongest correlation,
respectively). We used the Hypervolume indicator and the cardinality to evaluate the outcomes.
The Kruskall-Wallis is applied to evaluate if there exist significant difference between them.

4.5.1 Parameter Settings
1. Number of subproblems: As in the previous chapter, N = 201.

2. Neighborhood size: As the number of selected solutions is crucial for EDAs, we test two
different values T = {20, 40}.
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(a) FourPeaks α = 0.01
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(b) Trap3 α = 0.01
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(c) FourPeaks α = 0.05
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(d) Trap3 α = 0.05
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(e) FourPeaks α = 0.1
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Figure 4.4: Behavior of PBIL-OS-d, PBIL-OS-a and PBIL-iUMDA throughout the generations for the
FourPeaks (a) (c) and (e) with n = 100, N = 100, t = 30; and Trap3 (b) (d) (f) with n = 360, N = 100

3. Maximal number of replacement by a new solution: As in the previous chapter, nr = 2.

4. PBIL learning rate: We used the same α that was used in the single-objective case
α = {0.01, 0.05, 0.1}.

Each test instance is independently run 30 times. The stopping condition for the
algorithms was 500 generations.

4.5.2 Comparison results
Figure 4.5 presents the normalized HV measure obtained. Table 4.5 presents a Kruskall-

Wallis ranking test (at 5% significance level) of the algorithms for each combination of parameters
× test instance. Table 4.6 presents the mean and the standard deviation of the size of the
approximated PFs size.
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(a) ρ = −0.5 (b) ρ = 0.0 (c) ρ = 0.5

Figure 4.5: Box plot of all normalized HV values obtained for the PBIL variants using Tm = 40
for the mUBQP instances with ρ = {−0.5, 0.0, 0.5}. Each column of a plot is a combination of
PBIL variant × α = {0.01, 0.05, 0.1}

Table 4.5: Kruskal-Wallis ranking according to the HV measure

ρ α Tm PBIL-OS-c PBIL-OS-d PBIL-OS-a PBIL-iUMDA

-0.5
0.01

20

2.5 1.5 2 4
0.0 2 2 2 4
0.5 2 2 2 4
-0.5

0.05
1 2.5 2.5 4

0.0 1 2.5 2.5 4
0.5 1 2.5 2.5 4
-0.5

0.1
1 4 3 2

0.0 1 3.5 3.5 2
0.5 1 3 4 2
-0.5

0.01

40

2.5 2.5 1 4
0.0 2 2 2 4
0.5 1 2.5 2.5 4
-0.5

0.05
2 3 1 4

0.0 1 3 2 4
0.5 1 2 3 4
-0.5

0.1
2 4 3 1

0.0 1.5 4 3 1.5
0.5 1 3 4 2

In terms of the HV, Figure 4.5 and Table 4.5 show that: In all the cases, there is, at least,
one result with significant difference. The differences among PBIL-OS(-c,-d,-a) increase when
Tm = 40 and when the α value is greater. Also, PBIL-OS-c (conventional sorting according
to the neighborhood Euclidean distance) achieved the best rank in 10 of the 18 cases, which
means that learning from the closest to the farthest neighbor is efficient for the search process
throughout the generations.

In terms of the final approximated Pareto front sizes, the three PBIL-OS variants produce
more populated approximated PFs than PBIL-iUMDA. As in the single-objective case, the results
seem to indicate that (in the same conditions) PBIL-iUMDA is slower than PBIL-OS variants
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Table 4.6: Mean (standard deviation) of the Pareto fronts final size, Tm = 40

ρ α PBIL-OS-c PBIL-OS-d PBIL-OS-a PBIL-iUMDA

-0.5

0.01

366.67 433.25 436.38 43.19
(36.78) (52.55) (52.62) (5.99)

0.0 288.50 335.14 334.14 23.70
(20.71) (27.76) (24.66) (4.45)

0.5 195.26 200.79 202.61 11.63
(15.30) (15.27) (14.15) (3.21)

-0.5

0.05

386.92 601.61 537.13 111.50
(39.0) (97.75) (56.94) (9.22)

0.0 296.72 456.33 349.87 69.89
(23.34) (45.66) (23.67) (7.04)

0.5 197.07 195.35 231.84 39.89
(16.41) (13.22) (18.77) (5.3)

-0.5

0.1

356.81 851.56 464.11 230.18
(39.65) (147.16) (61.05) (14.90)

0.0 283.09 596.41 385.10 168.59
(24.55) (91.63) (48.25) (12.06)

0.5 183.14 187.27 261.65 112.09
(15.6) (14.25) (42.75) (9.98)

to explore the search space and only achieves competitive results using a higher learning rate
(α = 0.1)

As in the analytical study, our results show that the different implementations of PBIL
produce a high variability in the vectors of probability which have an impact on the behavior of
the algorithms in terms of convergence and diversity during the search throughout the generations.

4.5.3 Comparison to MOEA/D-BACO
In this section, we have intended to compare the MOEA/B-BACO (proposed in the

previous chapter) and MOEA/D-PBIL-OS for solving the mUBQP. Here, we have considered
the MOEA/D-PBIL-c. Theoretically, both algorithms are sensitive to the quality function but in
different actions. MOEA/D-BACO gives proportionally more pheromone amount (update) for
the highest quality solutions, while the selected solutions in MOEA/D-PBIL is sorted according
to their quality assessment and this explicit sorting affects the search behavior.

The remaining parameters setting are as follows: neighborhood size T = 20, BACO
learning rate α = 0.1, PBIL learning rate α = 0.01, maximum replacements nr = 2, and the
stopping condition time = n ×m × 300 milliseconds, and the experiment was performed on a PC
with Intel Xeon E5-620 2.4 GHz processor and 12 GB memory. We have not used the UBQP
local search in this analysis.

The results in Table 4.7 show that MOEA/D-PBIL-OS-c significantly outperforms
MOEA/D-BACO after n × m × 300 milliseconds in 8 of the 10 cases. The MOEA/D-PBIL-OS-c
have less computational cost (complexity) than -BACO. As well as, the algorithms are too
sensitive to the parameter α, which can control the search process.

In this case, we have not compared these results to the best-known results
[Liefooghe et al., 2015] because we have used a limited computational cost as the stopping
condition instead of a maximum number of generations. Therefore, a deeply comparison of
MOEA/D-PBIL-c and the other variants against the best-known approximated PFs can be
investigated in the future.
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Table 4.7: Average HV results after time = n × m × 300 ms

Instance m = 2
n ρ MOEA/D-PBL-c MOEA/D-BACO

-0.5 0.6977 0.6707
-0.2 0.7434 0.6736
0.0 0.7682 0.6513
0.2 0.8257 0.6507
0.5 0.8322 0.5723

1000 m = 3
-0.5 0.4824 0.4481
-0.2 0.4709 0.3997
0.0 0.5091 0.3835
0.2 0.5026 0.3412
0.5 0.5574 0.2980

4.6 Conclusions and future work
Understanding the behavior of an EDA plays a vital role for its efficient application

to different problems, and this understanding enables us to produce better results. Due to the
simplicity of the model used by PBIL, and its low computational overhead, the algorithm has
been applied to a variety of problems. In this chapter, we have identified the two main learning
strategies that define PBIL applications reported in the literature. To the knowledge of the authors,
no previous research has addressed the question of how differences in the implementation of the
PBIL learning mechanism determine completely different behaviors of the algorithm.

Being one of the most applied EDAs, this is a relevant aspect because, as we report in
this chapter, the different implementations of the PBIL’s learning mechanism have an important
effect on their search behavior. We have studied it analytically, by deriving the expected value
of the probability vector for PBIL-OS and PBIL-iUMDA. The analysis shows that, while the
expected univariate probabilities of PBIL-iUMDA do not depend on the order of the solutions,
the univariate probability distributions of PBIL-OS are highly influenced by the form in which
the same set of solutions are sorted.

The empirical results show that the diversity produced by the variability inherent to the
PBIL variants has a direct effect on the search ability of the algorithm. In general, in PBIL-OS,
the last solution has a stronger impact on the final configuration of the probability vector. Thus,
ordering solutions from the best to the worst, contributes to the exploration. Furthermore, we
show that the best choice of α for PBIL-OS usually produces poor results for PBIL-iUMDA.

These finds is useful in some aspects. Firstly, when applying PBIL, practitioners will be
aware that two different variants of the algorithm exist, and could make an informed choice of
the appropriate variant. Besides, when applying the PBIL-OS variant, users will know that the
way selected solutions are sort to update the PBIL model has a strong impact in the behavior
of the algorithm, which can be used to bias learning. Newly, introduced algorithms should be
described to a great level of detail to avoid multiple interpretations and allow reproducibility.
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Chapter 5

On the design of hard mUBQP instances

5.1 Introduction
One of the avenues to understand the difficulties that MOPs represent for MOEAs is the

design of benchmark functions able to represent different facets of complexity ofMOPs. A number
of benchmarks have been proposed in the literature [Deb et al., 2005, Huband et al., 2006] and
they continue to be extensively used for evaluating MOEAs. Most of test functions are mainly
focused on continuous problems. However, research on combinatorial MOPs can provide insights
about how the structural characteristics of the objective functions influence the shape and other
attributes of the Pareto fronts [Aguirre e Tanaka, 2007, Verel et al., 2011, Verel et al., 2013].

The method to generate mUBQP instances, proposed in [Liefooghe et al., 2014], ensures
that instances will satisfy a number of characteristics related to the sparsity of the single-objective
problems and the degree of correlation between the objectives. Both characteristics have an
important impact on the behavior of MOEAs.

On the other hand, average-sense misleading (deceptive) functions
[Deb e Goldberg, 1993] have played a fundamental role in the analysis of GAs. In de-
ceptive functions, there are at least two optima, a true optimum and a deceptive optimum.
Commonly applied search operators tend to favor the deceptive optimum making very difficult
for the algorithm to find the true optimum. Pelikan et al. [Pelikan et al., 2005] used the simple
bi-objective deceptive function for analyzing the behavior of hBOA and other MOEDAs. The
bi-objective trap problem comprises unitations functions trap5 (Equation 6.1) and invtrap5
(Equation 6.2). These function are conflicting, and since the global optimum is reached in a
single point, for a problem of n = 5l variables, the number of solutions in the Pareto set is 2l .

In this chapter, we follow a different path to the construction of mUBQP instances. Our
proposal is based on planting deceptive modules in the matrices describing the structure of the
objective functions. We have used the trap5 and the invtrap5 functions as inspiration to propose
a way to construct deceptive pairs of UBQP submatrices.

The chapter is organized as follows: Section 5.2 discusses the related work. Our approach
to construct instances of the mUBQP is explained in Section 5.3. Section 5.4 summarizes the
process used to generate functions of varying difficulty. Section 5.5 presents the numerical
results. The main contributions are summarized in Section 5.6.
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5.2 Related work
A number of papers have proposed benchmarks for evaluating different facets of the

difficulty of MOPs [Deb et al., 2005, Huband et al., 2006, Li e Zhang, 2009]. These benchmarks
mainly comprise continuous functions and emphasis is put on the shape of the Pareto front and
not on the relationships between the decision variables.

Knowles and Corne [Knowles e Corne, 2003] introduced an instance generator for the
multi-objective quadratic assignment problem (mQAP) and investigated the effect of correlations
between the objectives. To enforce the correlations between the mQAP objectives, a correlation
parameter c is used. Based on this fixed parameter, the instances are generated.

Aguirre et al. [Aguirre e Tanaka, 2007] present an exhaustive investigation of how the
parameters of the MNK-landscape influence several characteristics of the fitness landscape,
including the size of the Pareto front and the number of fronts.

Verel et al. [Verel et al., 2011, Verel et al., 2013] extended the NK-model to design
multi-objective functions with correlations. In the ρMNK-landscapes, the epistatic structure
is the same for all the objectives, and the local fitness functions are not independent. In
[Verel et al., 2011], a complete enumeration of the small ρMNK-landscape instances was used
to investigate the effect of the correlations in the characteristics of the Pareto front. In a recent
work, the ρMNK-landscape model has been used to investigate the influence of the parameters
describing the landscapes in the behavior of different MOEAs [Marquet et al., 2014], showing
the general usefulness of this type of models. The approach followed to create instances is
different to the one presented here.

Much work in evolutionary computation has been devote to study deception for
combinatorial problems. The proposal presented in this chapter is inspired by previous analysis
of multi-objective deceptive functions [Pelikan et al., 2005, Martins et al., 2011].

5.3 Planting patches of difficult subfunctions in mUBQP ma-
trices
Regarding the mUBQP formulation described in Section 3.2, Liefooghe et al.

[Liefooghe et al., 2014] have proposed an approach to construct mUBQP instances accord-
ing to some properties. Each objective function k ∈ {1, ..,m} is defined by means of a matrix
Qk = (qk

i j ) of size n × n with constant positive, negative or zero values. The search space
Ω is defined on binary strings of size n. In the single-objective case, the density d gives the
expected proportion of non-zero number in the matrix. In order do define m matrices of a given
density d, they set qk

i j = 0 for all objectives at the same time. The correlation between the data
contained in the m matrices is set using the same correlation between all pair of objectives, given
by a correlation coefficient p > −1

m−1 . The positive (respectively negative) coefficient decreases
(respectively increases) the degree of conflict between all pair of objectives. These properties
have a direct effect on the number of solutions in the PFs.

In the following, we exemplify a bi-objective mUBQP instance (matrices Q1 and Q2)
with a density of non-zero d = 0.9, and a negative objective correlation ρ = −0.9. The problem
size is n = 3, consequently there is 3 × 3 coefficients qi j for each objective function.

Q1 =
*.
,

67 −8 0
−92 −53 −32

0 −96 0

+/
-

Q2 =
*.
,

30 20 0
−73 −34 77

0 7 0

+/
-

(5.1)
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We have followed a different strategy to create new mUBQP instances. We propose a
bottom-up algorithm in which the mUBQP matrices are filled by the addition of small deceptive
sub-matrices.

5.3.1 Parametrization of the UBQP problem

Figure 5.1: Two steps in the construction of an instance of a bi-objective UBQP problem (n = 15).
Top row: two compact submatrices (np = 5) containing the relationships between variables
{X2, X3, X4, X5, X6} are planted. Bottom row: two submatrices (np = 5) are planted containing
the relationships between variables {X7, X8, X11, X13, X14}.

The algorithm starts from m sets of zero matrices and, in each step, a single sub-matrix
is added to each of the m matrices. Each sub-matrix is “planted” in the same position of the
m mUBQP matrices. The process is illustrated in Figure 1, where we show an example of a
bi-objective problem of size n = 15. In the figure, green cells corresponding to matrix entries
equal to zero. In the first step (top matrices), there is one sub-matrix (np = 5) added to each
matrix. Although each pair of sub-matrices is added in the same location for each matrix, the
sub-matrices values are different between them. In the second step (bottom matrices), another
pair of sub-matrices is added. Notice that sub-matrices do not need to contain sequential
variables. For instance, the second set of sub-matrices shown in Figure 6.1 contains variables
{X7, X8, X11, X13, X14}.

There are a number of key issues relevant to our approach: 1) How are the submatrices
created? 2) How to select the position to insert the submatrices? 3) How many submatrices to
add? In the following, we discuss these issues.

To create a sub-matrix, we parameterize np < n variables of the problem (single-
objective) in terms of interactions between their qi j . For instance, we set np = 5. We constrain
the possible values each value can take and set qi j ∈ {−1, 1} and qi j = 0 if i = j. For np = 5, there
are np (np−1)

2 = 10 pairwise interactions contained in this submatrix. Considering the two values
each variable can take, the total number of possible UBQP functions that can be generated is
|F | = 210 = 1024, where F is the set of functions, and each function corresponds to a different
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submatrix. Equation 5.2 shows the expression for the general parameterization of such UBQP
problem.

Q =

*......
,

0 q12 q13 q14 q15
q12 0 q23 q24 q25
q13 q23 0 q34 q35
q14 q24 q34 0 q45
q15 q25 q35 q45 0

+//////
-

(5.2)

It is important to emphasize that, we refer here to the space of UBQP matrices that
satisfy the constraints of symmetry (qi j = qji) for a very reduced number of values of interactions
(qi j ∈ {−1, 1}). Each of the 1024 defines a different problem of size n = 5 and therefore, for each
of such problems we could find an optimal binary solution x = (x1, x2, x3, x4, x5) that maximizes
Equation (3.1) for this particular choice of matrix Q.

5.3.2 Computing the degree of deception
We start from all possible functions obtained by the parameterization proposed in

Section 5.3.1. From the space of |F | = 210 = 1024 functions, we would like to identify which
are deceptive.

First, we need a more formal definition of deception [Whitley, 2015]. Let h denote an
(n − j)-dimensional hyperplane where j variables have preassigned bit values and α(h) be a
mask with 1 bits marking the locations where the j variables appear in the problem location and
0 elsewhere. Let M AX (x, α(h)) return the hyperplane with the best mean over all 2 j order j
hyperplanes that can be defined using the α(h) mask.

A function is order-j deceptive [Whitley, 2015] if the j bit values returned by
M AX (x, α(h)) for all hyperplanes of order- j are not the same as the bit values found in a
string which is a global optimum.

We use, a more relaxed definition of an order- j deceptive function, in which a function is
midly order-1 deceptive if the j bit values returned by M AX (x, α(h)) for at least one hyperplane
of order j is not the same as the bit values found in a string which is a global optimum.

In the particular case of a mildly order-1 deceptive function, the definition requires
that the function will be deceptive if for at least one of the n order-1 hyperplanes the value of
M AX (x, α(h)) will be different to the optimum. For small values of n it is very easy to check if
a function is mildly deceptive. We can evaluate the entire space of solutions, compute the order-1
hyperplanes, and check whether there is any hyperplane M AX (x, α(h)) that is not in any global
optimum. However, for the construction of the mUBQP instances we are not just interested in
determining if a function is deceptive but also in measuring the degree of deception. We propose
a form to do this based on the computation of univariate probabilities.

One easy manner to test if a function is deceptive from a sufficiently large population
of solutions distributed according to the fitness is by computing the univariate frequencies of
the variables. If the most frequent configurations for the single variables are not consistent with
the configurations of these variables in the global optimum, then the function is midly order-1
deceptive.

For a given matrix Q, we compute the fitness for all the 25 = 32 configurations of
x = (x1, x2, x3, x4, x5). Using the UBQP fitness values as an energy function, we associate to each
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possible solution a probability value p(x) according to the Boltzmann probability distribution.
The Boltzmann probability distribution pB (x) is defined as

pB(x) =
e
g(x)
T∑

x′ e
g(x′)
T

, (5.3)

where g(x) is a given objective function and T is the system temperature that can be used as a
parameter to simulate the effect of the strength of selection in the frequency of the solutions. In
this work, we use T = 1. The Boltzmann or Gibbs distribution has the convenient property of
assigning an exponentially higher probability to solutions based on their fitness. It has been used
before to study the influence of variables interactions in the behavior of EAs in single-objective
problems [Mühlenbein et al., 1999, Santana et al., 2001a] and MOPs [Santana et al., 2015]. By
choosing T = 1 we set the probabilities to depend only on the fitness function.

Notice that, for small UBQP instances as the ones we use for planting solutions, it is
easy to compute the Boltzmann distribution since the size of the search space is small (32). Using
the Boltzmann distribution, we can also compute the univariate probabilities for each variable
(e.g p1(x1 = 1) =

∑
x′1=1 pB (x′)). Then, it is possible to compute the probability of the optimum

given by the univariate factorization pu(x) =
∏

i pB (xi).

Algorithm 5.1: Degree of deception for function f (x)
1 Compute the Boltzmann distribution pB (x) of function f (x) on the 25 solutions.
2 Compute the univariate probabilities from pB.
3 For each solution, compute its univariate factorization pu(x) =

∏5
i pB (xi)

4 Rank the solutions from the highest to lowest pu(x)
5 The average rank of the optimal solutions is the degree of deception

We use the univariate probability to rank all solutions from the one with the highest
probability to the one with the smallest probability. If the univariate factorization gives to the
optimal solution the highest probability, then the degree of deception is minimum (1). However,
as the rank given by univariate factorization increases it means that the function is more deceptive.
Since for n = 5 there are 25 = 32 possible solutions, the highest value of deception is 32.
Algorithm 5.1 summarizes the steps to compute the degree of deception for a function determined
by a matrix Q. We computed the degree of deception for each of the 1024 functions in F . This
information is shown in Figure 5.2 where functions are sorted in lexicographical order.

5.4 Deceptive mUBQP instances
To analyze the multi-objective case, we then consider all possible bi-objective functions

such that ga, gb ∈ F and ga , gb. We call this set O, where |O| = 1024∗1023
2 = 523776. The idea

is to identify which are the functions in O that satisfy conditions similar to the multi-objective
trap functions, i.e., they are deceptive for the two single objective problems involved, and the
Pareto set is as large as possible.

We computed the Pareto sets of all the bi-objective functions in O. We found that the
maximum size of the Pareto fronts for functions in O is 8, and the maximum number of Pareto
optimal solutions is 32. Table 5.1 shows the number of generated functions for each size of the
Pareto front.
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Figure 5.2: Degree of deception for all possible UBQP functions, n = 5, qi j = {−1, 1}.

Table 5.1: Number of bi-objective functions for different sizes of the Pareto fronts

Size PF 1 2 3 4
Numb. functions 94295 190059 150841 66745

Size PF 5 6 7 8
Numb functions 17411 3990 375 60

For a given bi-objective function (ga, gb), we compute first the Pareto set. Then, for
each Pareto-optimal solution, we compute the degree of deception in each objective. Finally, we
define the degree of deception of the bi-objective function (ga, gb), as the mean, computed among
the objectives, of the average rank of all the solutions in the Pareto-set. This is a straightforward
extension of the degree of deception defined for single-objective functions. Other ways to
define the degree of deception for MOPs are possible (e.g. considering the minimum degree of
deception among the Pareto-optimal solutions, quartile, mode, and other criteria). Figure 5.3
shows the histogram of the degree of deception for the bi-objective functions in O.

We assume that, if the Pareto-optimal solutions are deceptive, then MOEAs will spend
more computational effort to find these Pareto-optimal solutions or will miss them.

In the previous section, we have explained how to create bi-objective deceptive functions
and compute the degree of deception. We useO as a source of bi-objective functions (submatrices)
with a different number of solutions in the Pareto set and different degrees of deception. We will
use these submatrices to apply the planting procedure explained in Section 5.3 and create larger
deceptive mUBQP instances.

We define a deceptive mUBQP problem using the parameters {n, M, d, l} where n is
the number of variables, M is the number of objectives, d is the density of zeros in all the M
matrices that define the problem, and l is the amount of injected deception. We focus in the
bi-objective case, i.e. M = 2.

Parameters {n, M, d} are used in [Liefooghe et al., 2014], where a generator of mUBQP
instances is proposed. We define l = k

n′ , where k is the number of deceptive UBQP functions
(n = 5) injected to a traditional mUBQP instance generated with parameters {n′, M, d, c}, where
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Figure 5.3: Histogram of the degree of deception for functions in O.

n′ >> 5. The steps to generate the mUBQP instances are shown in Algorithm 5.2. The algorithm
receives as input a set of seeding functions O′ ⊂ O explained above.

Algorithm 5.2: Generation of large mUBQP instances
1 Initialize matrices Q1 and Q2 to zero.
2 for i = 1 to n′l do
3 Select a random set of 5 variables
4 Select a random function (ga, gb) from the seeding set of bi-objective functions
5 Substitute cells corresponding to the selected variables in Q1 by ga, and in Q2

by gb
6 end for

We designed five different datasets containing instances created using different criteria.
The first three datasets include instances generated using O. The first step consists in selecting
a set of seeding submatrices from O. Each type of instance is defined by the action this set
is selected. Then, a common algorithm is invoked to generate the instances from the set. All
instances used here have dimension n = 100.

• (T1) HardInst: Comprises problems with at least 7 non-dominated solutions and deceptive
values above 24. 10 instances.

• (T3) LessPopInst: The set comprises the bi-objective problems in O that have at least 4
non-dominated solutions and the degree of deception is above 29. 9 instances.

• (T4) ComposeInstHard: Comprises problems with at least 7 non-dominated solutions. The
100 such problems in O with maximum degree of deception are selected. 10 instances.

The second dataset has been manually engineered to include typical cases of deception.
The last dataset contains random instances generated according to the method proposed in
[Liefooghe et al., 2014].

• (T2) ArtTypeInst: Each of the instances corresponds to a different problem manually
defined. 5 instances.
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• (T5,T6,T7) RandomInst: The sparsity of the matrices was respectively set to 0.8, 0.02,
and 0.03. For each instance type, one instance was generated for each correlation value in
{−0.5, 0, 0.5}. Therefore there were 3 instances for each type.

5.5 Experiments
In addition to the exploratory analysis to investigate the space of mUBQP deceptive

functions presented in Section 5.3, we empirically evaluated the way in which the characteristics
of the generated instances influences the behavior of MOEAs. We applied our MOEA/D variants
presented in the previous chapters: MOEA/D-GA, MOEA/D-BACO, and MOEA/D-PBIL-c.

Here, our goal is not to focus on the comparison between the algorithms but evaluate
the difficulty of the instances introduced in the paper in a wider context, considering MOEAs
with different search strategies.

The modification of the IGD known as IGDp [Schütze et al., 2012] is used to asses the
quality of the approximated PFs obtained by each algorithm. Schutze et al. demonstrated that
IGDp is more Pareto compliant than the original IGD.

We will measure the difficulty of the instances in terms of the ability of the algorithms
to optimize this metric and the number of generations needed to produce a low IGDp. Therefore,
as a preliminary step and in order to compute the true PF, we have exhaustively executed the
algorithms to produce a reference PF (P∗) for each instance. The algorithms were guaranteed a
large number of function evaluations (5000 generations) to find accurate PF approximations. In a
second step of the experiments, we have used the produced reference PFs to compute the IGDp
metric and size of the PF in each generation of the algorithms. From this information we could
determine whether the IGDp metric was minimized at the end of the search and the number of
generations needed for minimizing it.

5.5.1 Parameters setting
The following parameters settings were used in the experimental study:

1. Number of subproblems (N ): The number of subproblems N and their correspondent
weight vectors λ1, . . . , λN are set according to the parameter H = 100 (described in Section
2.6), consequently N = 101.

2. Selection and replacement neighborhood size: The number of the selected solution S for
each B(i) is set to 0.2 × N , i.e., T = 20.

3. Maximal number of replacements by a new solution (nr ): Each new generated solution y
can update a maximum nr = 2 parents solution from B(i).

4. Genetic operators from MOEA/D-GA: uniform crossover and mutation rate µ = 1
n .

5. Learning rate: -PBIL-c α = 0.01, and -BACO α = 0.1.

6. Number of generations (second phase): MaxGen = 500.

For each of the 43 instances included in our study, the three algorithms performed 30
independent runs.
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Table 5.2: Size of the true Pareto fronts for the test instances. Instances for which qk
i j < {±1} are

underlined.

index T1 T2 T3 T4 T5 T6 T7
1 121 101 80 69 500 43 50
2 121 4921 80 72 289 22 23
3 121 243 80 67 140 13 11
4 121 9157 80 71
5 121 174 80 70
6 121 80 65
7 141 60 67
8 121 60 70
9 121 60 59
10 121 69

5.5.2 Analysis of the true PFs
Table 5.2 shows the size of the PFs for all the instances. One of the findings from the

analysis of the PFs was the observation that the most important factor in the size of PFs is the
range of values from which the mUBQP instances are generated. The higher the range of the
interval from which values of qk

i j are sampled the wider the range of the output values of the
functions and the PF. This is an issue that is usually overlooked. The PF can be arbitrarily
enlarged by increasing the range of values in the matrices, but this does not necessarily imply a
more “interesting” or difficult PF. In Table 5.2, instances for which qk

i j were selected for a range
different than {±1} are underlined. In the following, we focus on functions for which qk

i j ∈ {±1}.

5.5.3 Influence of the instance difficulty in the behavior of the algorithms
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Figure 5.4: Average number of generations needed to reach an optimal IGDp value for all
instances.

We computed average number of generations needed to achieve an optimal value of the
IGDp. When the optimal value of IGDp is not reached in a run we assign a value higher than
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the number of generations. Figures 5.4 shows the average number of generations reached for all
the instances. The values shown are an average of the results for all the algorithms, i.e. 90 runs.

It can be seen in Figure 5.4 that the number of generations to find reference IGDp value
changes considerably among the different classes of instances. All instances ComposeInstHard
(T4) and HardInst (T1) required on average between 50 and 200 more generations than the
random instances with the same sparsity (T6). As expected, increasing the number of non-zero
values in the matrices (T7) allows having more populated PFs and the algorithms need more
generations to obtain good approximations.

T1 T3 T4 T6 T7

Instances

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

IG
D

P

(a) MOEA/D-GA

T1 T3 T4 T6 T7

Instances

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IG
D

P

(b) MOEA/D-PBIL

T1 T3 T4 T6 T7

Instances

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IG
D

P

(c) MOEA/D-BACO

Figure 5.5: Distribution of the IGDp metric achieved by MOEA/D variants for instances in
classes {T1,T3,T4,T6,T7}

Another potential use of instances is to investigate the behavior of different algorithms.
We compare the behavior of the MOEA/D-GA, the MOEA/D-PBIL, and the MOEA/D-BACO in
all instances in classes {T1,T3,T4,T6,T7}. Figure 5.5 shows the average distribution of the IGDp
values for all the algorithms. To compute the distribution, we have first created a set containing
IGDp values for all instances in each class. Then a violin plot is created for each class showing
the distribution of the values.

It can be seen in Figure 5.5 that the MOEA/D variants clearly exhibit different behaviors.
Overall, MOEA/D-BACO and MOEA/D-PBIL have less difference between them compared to
MOEA/D-GA. For the class T1 and T3, MOEA/D-BACO and MOEA/D-PBIL achieve the best
results (low range of distribution), which means that they have achieved the reference IGDp
more frequently. MOEA/D-GA achieves the worst results for all classes of instances. A more
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deep analysis of the difference between the models within MOEA/D to solve deceptive MCOPs
is present in the next chapter.

5.6 Conclusions and future work
In this chapter, we have proposed a new method to generate hard instances for the

mUBQP problem. Our algorithm is based on planting deceptive subsolutions in the matrices
that define the mUBQP problem. We have empirically investigated the difficulty of the instances
using different variants of the MOEA/D algorithm that add probabilistic-based operators. This
study throw light on a number of issues that influence the complexity of mUBQP instances and
that should be taken into account at the time of using this problem as a MOEA benchmark.

Our experimental results suggest that the introduced instances are indeed harder for
MOEA/D than instances that are randomly generated. However, a more deep analysis is
needed using other metrics to confirm that these instances are harder to solve than those from
[Liefooghe et al., 2014].

Next chapter, we attempt to explore more complex EDAs in the context of MOEA/D for
solving deceptive MCOPs.
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Chapter 6

MOEA/D-GM: Using probabilistic
graphical models in MOEA/D for solving
combinatorial optimization problems

6.1 Introduction
Going more deeply on EDAs, we have extended our MOEA/D framework by incorporat-

ing multi-variate probabilistic models to solve complex MCOPs.
APGM in the context of EDAs [Larrañaga et al., 2012] comprises a graphical component

representing the conditional dependencies between the variables of the problem via tables of
marginal and conditional probabilities. Additionally, the analysis of the graphical components of
the PGMs learned during the search can provide information about the problem structure. PGMs
within Multi-objective EDAs (MOEDAs) have been also applied for solving different MOPs
[Pelikan et al., 2006, Karshenas et al., 2014].

For the experimental study present in this chapter, we have instantiated four MOEA/D
variants, and they are called (i) MOEA/D-GA (which applies the genetic operators), (ii)
MOEA/D-UMDA (using the marginal distribution probability), (iii) MOEA/D-PBIL-OS-c
(presented in Chapter 4) and the novel (iv) MOEA/D-Tree (which comprises the multivariate
Tree-EDA described in Section 2.4). We have investigated their search behaviors for solving the
bi-Trap5(x), and the mUBQP instances from [Liefooghe et al., 2014] and those proposed in the
previous chapter.

This chapter is organized as follows. Section 6.2 introduces the MOEA/D-GM. The
related work is discussed in detail in Section 6.3. The experiments are described in Section 6.5.
The conclusions and some trends for future work are presented in Section 6.7.

6.2 MOEA/D-GM: A MOEA/D framework with graphical
models
In MOEA/D framework, a simple approach to introduce probabilistic models is learning

and sampling a probabilistic model for each scalar subproblem i using the set of closest neighbors
as the selected population. Therefore, at each generation, the MOEA/D-GM keeps N probabilistic
models, and each model learned samples one solution.

In MOEA/D-GM, the model has to be set a priori. The framework follows the main
MOEA/D guidelines presented in Section 2.6. In the initialization step, N solutions (population)
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are initialized randomly, and the external Pareto (EP) is initialized with the non-dominated
solutions of the initial population. Within the main while-loop, in case the termination criteria
are not met, for each subproblem i, a probabilistic (graphical) model is learned using B(i) as the
selected population. Then, the sampling procedure is used to generate a new solution y from the
respective model. The new solutions is used to update the parent population as in MOEA/D. A
new solution can update a maximum of nr current solutions. Finally, EP is updated with the
non-dominated solutions from Pop.

Besides, the framework allows the application of the genetic operators using the same
structure of learning and sampling. In the learning step, two parent solutions are selected from
B(i). The sampling step proceed with the crossover and mutation.

Let i ∈ {1, ..., N }, pi represents a vector of positive distributions, and pi
T
represents the

structure (e.g., matrix) of conditional probabilities in accordance to Equation (2.5) from Section
2.4.

Therefore, depending on the model of choice, the MOEA/D-GM maintains univariate
probabilistic vectors pi and/or matrices of conditional probability distributions pτi that is
conformal with the Tree-EDA [Santana et al., 2001b]. Additionally, different classes of PGMs
can be used for each scalar subproblem but we do not consider this particular scenario in this
analysis.

We have already compared MOEA/D-BACO and MOEA/D-PBIL-OS-c in Chapter 4.
Therefore, we have not incorporated the -BACO in this study. Additionally, MOEA/D-GM also
includes two design modifications already introduced in our approaches. In the following, we
briefly mention them.

Optimal Mutation Rate for EDAs: We have also used the Bayesian priors
[Mahnig e Mühlenbein, 2001] to introduce a mutation operator. As mention before, the Bayesian
priors is used in such a way that the computed probabilities will include a mutation-like effect
[Mahnig e Mühlenbein, 2001].

Diversity preserving sampling (ds): In preliminary experiments, we have detected
that one cause for early convergence of the algorithm was that solutions that were already in the
population were newly sampled. As a form to avoid this situation, we have also used the simple
procedure in which each new sampled solution is tested for presence in the neighborhood B(i).

6.3 Related work
In this section, we review a number of related works emphasizing the differences to the

work presented in this chapter.

6.3.1 MOEA/D using univariate EDAs
In [Zhou et al., 2013a], the multi-objective estimation of distribution algorithm based

on decomposition (MEDA/D) is proposed for solving the multi-objective Traveling Salesman
Problem (mTSP). For each subproblem i, MEDA/D uses a matrix Qi to represent the connection
"strength" between cities in the best solutions found so far. Matrix Qi is combined with a priori
information about the distances between cities of problem i, in a new matrix Pi that represents the
probability that the sth and tth cities are connected in the route of the ith sub-problem. Although
each matrix Pi encodes a set of probabilities relevant for each corresponding TSP subproblem,
these matrices can not be considered PGMs since they do not comprise a graphical component
representing the dependencies of the problem. The type of updates applied to the matrices is
more related to parametric learning than to structural learning as done in PGMs. Furthermore,



71

this type of "models" resemble more the class of structures traditionally used for ACO and they
heavily depend on the use of prior information (in the case of MEDA/D, the incorporation of
information about the distances between cities). Therefore, we do not consider MEDA/D as a
member of the MOEA/D-GM class of algorithms.

Another approach combining the use of probabilistic models and MOEAD for mTSP
is presented in [Shim et al., 2012]. In that paper, a univariate model is used to encode the
probabilities of each city of the TSP being assigned to each of the possible positions of the
permutation. Therefore, the model is represented as a matrix of dimension n × n comprising the
univariate probabilities of the city configurations for each position. One main difference of this
hybrid MEDA/D with our approach, and with the proposal of Zhou et al [Zhou et al., 2013a],
is that a single matrix is learned using all the solutions. Therefore, the information contained
in the univariate model combines information from all the subproblems, disregarding the
potential regularities contained in the local neighborhoods. Furthermore, since the sampling
process from the matrix does not take into account the constraints related to the permutations,
repair mechanisms and penalty functions are used to "correct" the infeasible solutions. As a
consequence, much of the information sampled from the model to the solution can be modified
by the application of the repair mechanism.

These previousMEDA/Ds were applied for solving permutation-basedMOPs. The appli-
cation of EDAs for solving permutation problems is increasing in interest [Ceberio et al., 2012].
Also, a number of EDAs specifically designed to deal with permutation-based problems have been
proposed [Ceberio et al., 2011, Ceberio et al., 2013]. The framework proposed in this chapter
is only investigated for binary problems. We present the review of EDAs specially tailored for
permutation space in Chapter 7.

In [Wang et al., 2015], the authors proposed a univariate MEDA/D for solving the
multi-objective knapsack problem (MOKP) that uses an adaptive operator at the sampling step
to preserve diversity, i.e., prevents the learned probability vector from premature convergence.
Therefore, the sampling step depends on both the univariate probabilistic vector and an extra
parameter "r".

6.3.2 MOEA/D using multivariate EDAs
In [Giagkiozis et al., 2014], a decomposition-based algorithm is proposed to solve many-

objective optimization problems. The proposed framework (MACE-gD) involves two ingredients:
(i) a concept called generalized decomposition, in which the decision maker can guide the
underlying search algorithm toward specific regions of interest, or the entire Pareto front and
(ii) an EDA based on low-order statistics, namely the cross-entropy method [Botev et al., 2013].
MACE-gD is applied on a set of many-objective continuous functions. The obtained results
showed that the proposed algorithm is competitive with the standard MOEA/D and RM-MEDA
[Zhang et al., 2008]. The class of low-order statistics used by MACE-gD (Normal univariate
models) limit the ability of the algorithm to capture and represent interactions between the
variables. The univariate densities are updated using an updating rule as the one originally
proposed for the PBIL algorithm [Baluja, 1994].

In [Zapotecas-Martínez et al., 2015], the covariancematrix adaptation evolution strategy
(CMA-ES) [Hansen e Ostermeier, 1996] is used as the probabilistic model ofMOEA/D. Although
CMA-ES was introduced and has been developed in the context of evolutionary strategies, it
learns a Gaussian model of the search. The covariance matrix learned by CMA-ES is able to
capture dependencies between the variables. However, the nature of probabilistic modeling in the
continuous domain is different to the one in the discrete domain. The methods used for learning
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and sampling the models are different. Furthermore, the authors state that their main purpose
was to investigate to what extent the CMA-ES could be appropriately integrated in MOEA/D and
what are the benefits one could obtain. Therefore, emphasis was put on the particular adaptations
needed by CMA-ES to efficiently learn and sample its model in this different context. Since
these adaptations are essentially different that the ones required by the discrete EDAs used in this
chapter, the contributions are different.

6.3.3 Other MOEDAs
Pelikan et al. [Pelikan et al., 2006] discussed the multi-objective decomposable

problems and their difficulty. The authors attempted to review a number of MOEDAs,
such as: multi-objective mixture-based iterated density estimation algorithm (mMIDEA)
[Thierens e Bosman, 2001], multi-objective mixed Bayesian optimization algorithm (mmBOA)
[Laumanns e Ocenasek, 2002] and multi-objective hierarchical BOA (mohBOA) [Khan, 2003].
Moreover, the authors introduced an improvement to mohBOA which combines three ingredients:
(i) the hierarchical Bayesian optimization algorithm (hBOA), (ii) the multi-objective concepts
from NSGAII [Deb et al., 2002] and (iii) clustering in the objective space. The experimental
study showed that the mohBOA efficiently solved multi-objective decomposable problems with a
large number of competing building blocks. The algorithmwas capable of effective recombination
by building and sampling Bayesian networks with decision trees, and significantly outperformed
algorithms with standard variation operators on problems that require effective linkage learning.

All MOEDAs covered in [Pelikan et al., 2006] are Pareto-based and they use concepts
from algorithms such as NSGAII and SPEA2. Since, in the past few years, the MOEA/D
framework has been one of the major frameworks to design MOEAs. Incorporating probabilistic
graphical models into MOEA/D seems to be a promising technique to solve scalable deceptive
multi-objective problems.

Martins et al. [Martins et al., 2011] proposed a new approach for solving decomposable
deceptive multi-objective problems. The MOEDA, called moφGA, uses a probabilistic model
based on a phylogenetic tree. The moφGA was tested on the multi-objective deceptive functions
f trap5 and finv_trap5. The moφGA outperformed mohBOA in terms of number of function
evaluations to achieve the exact PF, specially when the problem in question increased in size.
A question discussed in [Martins et al., 2011] is: if such probabilistic model can identify the
correct correlation between the variables of a problem, the combination of improbable values of
variables can be avoided. However, as the model becomes more expressive, the computational
cost of incurred by the algorithm to build the model also grows. Thus, there is a trade-off between
the efficiency of the algorithm for building models and its accuracy.

In our framework, at each generation, N probabilistic graphical models are kept.
Therefore, a higher number of subproblems and a large problem-scale can be a drawback in
terms of efficiency (computational cost). However, if it has an adequate commitment between
the efficiency and accuracy (quality of the outcomes), then it is expected to behave satisfactorily.

6.3.4 Contributions with respect to previous work
We summarize some of the main contributions of our work with respect to the related

research.

• We use, for the first time, a probabilistic graphical model within MOEA/D to solve MCOPs.
In this case, the previous MOEA/Ds that incorporate probabilistic models cover only
univariate models.
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• We investigate a particular class of problems (deceptive MOPs) for which there exist
extensive evidence about the convenience of using probabilistic graphical models.

• We investigate the question of how the problem interactions are kept in the scalar
subproblems and how these interactions are translated to the probabilistic models.

6.4 Multi-objective Trap-k:
There exists a class of scalable problems where the difficulty is given by the interactions

that arise among subsets of decision variables. Thus, some problems should require the algorithm
to be capable of linkage learning, i.e., identifying and exploring interactions between the decision
variables to provide effective exploration. Decomposable deceptive problems have played a fun-
damental role in the analysis of EAs [Pelikan et al., 2007, Larrañaga et al., 2012]. One example
of this class of decomposable deceptive functions is the Trap-k, where k is the fixed number
of variables in the subsets (also called, partitions or building blocks) [Deb e Goldberg, 1993].
Trap deceives the algorithm away from the optimum if interactions between the variables in each
partition are not considered. According to [Pelikan et al., 2005], that is why standard crossover
operators of genetic algorithms fail to solve traps unless the bits in each partition are located
close to each other in the chosen representation.

Pelikan et al. [Pelikan et al., 2005] used a bi-objective version of Trap-k for analyzing
the behavior of multi-objective hierarchical BOA (mhBOA). The functions f trap5 (Equation (6.1))
and finv_trap5 (Equation (6.2)) consist in evaluating a vector of decision variables x ∈ {0, 1}n, in
which the positions of x are divided into disjoint subsets or partitions of 5 bits each (n is assumed
to be a multiple of 5). The partition is fixed during the entire optimization run, but the algorithm
is not given information about the partitioning in advance. Bits in each partition contribute to
trap of order 5 using the following functions:

f trap5(x) =
l−1∑
k=0

5∑
i=1

trap5(x5∗k+i) (6.1)

trap5(u) =



5 if u = 5
4 − u if u < 5

finv_trap5(x) =
l−1∑
k=0

5∑
i=1

inv_trap5(x5∗k+i) (6.2)

inv_trap5(u) =



5 if u = 0
u − 1 if u > 0

where l is the number of building blocks, i.e., n = 5l, and u is the number of ones in the input
string of 5 bits.

In the bi-objective problem, f trap5 and finv_trap5 are conflicting. Furthermore, the
amount of possible solutions grows exponentially with the problem size [Sastry et al., 2005].
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6.5 Experimental study
First, we present the analysis regarding the bi-objective deceptive function Trap-k. The

bi-Trap5(x) is defined as follows:

bi-Trap(x) = ( f trap5(x), finv_trap5(x)) (6.3)
subject to x ∈ {0, 1}n

We have evaluated it with three different problem-sizes n ∈ {30, 50, 100}.

6.5.1 Parameters Settings
In the following, we describe the parameters settings.

1. Number of subproblems (N ): As in most of MOEA/D algorithms proposed in the literature
[Zhang e Li, 2007, Li e Zhang, 2009, Deb e Jain, 2014], the number of subproblems N
and their correspondent weight vectors λ1, . . . , λN are controlled by a parameter H. For
the bi-objective problem, we set H = 200, consequently N = 201.

2. Neighborhood size (T ) for selection and replacement: As the number of selected
solutions is crucial for EDAs, we test a range of neighborhood size values T =
(1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150).

3. Maximal number of replacements by a new solution: nr = 2.

4. Scalarization function: We have applied both Weighted Sum and Tchebycheff approaches.
As both achieve very similar results, only the results with Tchebycheff are presented in this
chapter.

5. Genetic operators from MOEA/D-GA: uniform crossover and mutation rate µ = 1
n .

6. PBIL learning rate: α = 0.05.

Each combination of (algorithm × parameters setting × problem-scale) is independently
run 30 times.

6.5.2 Comparison results
For the bi-Trap-k the true PF is known. Thus, we have used the IGD indicator. We

also present the cardinality of the outcomes. First, the algorithms are evaluated using a fixed
neighborhood size (T = 20) and with and without the diversity preserving mechanism.

Table 6.1 presents the average values of the IGD values and the number of true Pareto
solutions |P+ | computed using found by the algorithms. Table 6.2 presents the results of the
Kruskall-Wallis test (at 5% significance level) applied to the results obtained (the same results
summarized in Table 6.1). The best rank algorithm(s) is(are) highlighted in boldface. Figure 6.1
and 6.2 show the behavior of the algorithms throughout the generations according to the average
|P+ | obtained.

From the analysis of the results, we can extract the following conclusions:
According to Table 6.2, the MOEA/D-Tree that uses the diversity preserving mechanism

(MOEA/D-Tree-ds) is the only algorithm that has achieved the best rank in all the cases according
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Table 6.1: Results from the average IGD and average number of true Pareto optimal solutions |P+ |
computed form the 30 runs for each combination (problem size n× Algorithm × preserving sampling).
The column |P∗ | is the total number of true Pareto solutions for each problem n.

Average number of true Pareto optimal solutions |P+ |

n |P∗ |
standard sampling diversity preserving sampling (ds)

MOEA/D-GA MOEA/D-PBIL MOEA/D-UMDA MOEA/D-Tree MOEA/D-GA MOEA/D-PBIL MOEA/D-UMDA MOEA/D-Tree

30 7 4.167 3.034 2.767 6.067 6.267 4.034 4.134 6.9
50 11 3.867 2.567 3.034 5.134 6.634 2.867 3.2 9.5
100 21 3.3 2.534 3.5 2.967 5.334 2.8 3.433 9.367

average IGD measure IGD(P∗, P)

30 7 1.076 1.764 1.853 0.418 0.371 1.258 1.246 0.053
50 11 2.174 3.585 3.229 1.657 1.308 3.4 3.158 0.501
100 21 4.757 7.663 6.38 4.815 4.142 7.473 6.726 3.359

Table 6.2: Kruskall Wallis statistical ranking test according to the IGD and |P+ | for each combination
(problem size n× Algorithm × preserving sampling). The first value is the average rank over the 240 runs
(i.e., 30 runs × 8 algorithms). The second value (in brackets) is the final ranking from 8 to 1. If two or
more ranks are the same, it means that there is no significant difference between them.

Kruskall-Wallis ranking - number of true Pareto optimal solutions |P+ |

n standard sampling diversity preserving sampling (ds)
MOEA/D-GA MOEA/D-PBIL MOEA/D-UMDA MOEA/D-Tree MOEA/D-GA MOEA/D-PBIL MOEA/D-UMDA MOEA/D-Tree

30 139.37 (5.50) 184.88 (6.00) 195.72 (6.50) 66.25 (2.00) 59.43 (2.00) 146.68 (6.00) 141.87 (6.00) 29.80 (2.00)
50 126.48 (5.00) 188.30 (6.50) 165.55 (6.00) 88.15 (3.00) 52.65 (2.00) 171.40 (6.00) 153.43 (6.00) 18.03 (1.50)
100 136.43 (5.50) 178.67 (6.00) 120.37 (5.00) 151.77 (5.50) 61.58 (2.00) 162.40 (5.50) 128.37 (5.50) 24.42 (1.50)

Kruskall-Wallis ranking - IGD measure
30 134.13 (5.50) 187.05 (6.00) 195.22 (6.50) 65.32 (2.00) 59.43 (2.00) 148.67 (6.00) 144.38 (6.00) 29.80 (2.00)
50 106.88 (3.50) 194.43 (6.50) 169.37 (6.50) 74.47 (2.50) 58.33 (2.50) 179.35 (6.50) 160.17 (6.00) 21.00 (2.00)
100 80.30 (2.50) 204.03 (7.00) 145.72 (6.00) 82.08 (2.50) 55.45 (2.50) 195.37 (6.50) 162.12 (6.50) 38.93 (2.50)
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Figure 6.1: Average true Pareto optimal solutions |P+ | over the generations. Each chart shows a
comparison between the standard sampling and the diversity preserving sampling using the same
algorithm.

to both indicators. Besides, the diversity preserving sampling has improved the behavior of all
the algorithms. Figure 6.1 confirms these results. Therefore, the diversity preserving sampling
has a positive effect in the algorithms for the bi-Trap5 problem, i.e., the algorithms are able to
achieve a more diverse set of solutions. Additionally, Figure 6.2 shows that MOEA/D-Tree-ds
achieves better results than the other algorithms since the first generations.
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Figure 6.2: Average true Pareto solutions |P+ | through the generations for problem size 50 and
100 with Ts = 20

All the algorithms can find, at least, one global optimal solution, i.e., a true Pareto
solution. One possible explanation for this behavior is a potential advantageous effect introduced
by the clustering of the solutions determined by the MOEA/D framework. This benefit would be
independent of the type of models used to represent the solutions. Grouping similar solutions in
a neighborhood may allow the univariate algorithm to produce some global optima, even if the
functions are deceptive.

6.5.3 Influence of the neighborhood size selection Ts for the learning
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Figure 6.3: Average IGD with different neighborhood sizes for selection T ∈

{1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150}

The neighborhood size has a direct impact in the search ability of the MOEA/Ds, which
can balance convergence and diversity. Figure 6.3 presents the IGD values obtained with different
neighborhood sizes (T ).

A multi-variate EDA needs a large set of selected solutions to be able to learn depen-
dencies between the decision variables [Mühlenbein e Paass, 1996]. Our results confirm this
assumption, which explain the differences between the algorithms in Figure 6.3. A remarkable
point in these results is that, a small T is better to solve bi-Trap5 for all algorithms except for
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the MOEA/D-Tree. MOEA/D-Tree achieves good results with a large neighborhood size (e.g.,
60, 70 and 80). Even if the neighborhood size has an important influence in the behavior of the
algorithm, this parameter can not be seen in isolation of other parameters that also influence the
behavior of the algorithm.

6.5.4 Analyzing the structure of problems as captured by the tree model
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Figure 6.4: Frequency matrices (heat maps) learned by the subproblems i = (1, 100, 201) from
the MOEA/D-Tree-ds for problem size n = 50.

One of the main benefits of EDAs is their capacity to reveal a priori unknown in-
formation about the problem structure. Although this question has been extensively stud-
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ied [Brownlee et al., 2012, Echegoyen et al., 2007, Santana et al., 2008] in the single-objective
domain, the analysis in the multi-objective domain are still few [Fritsche et al., 2015,
Karshenas et al., 2014, Santana et al., 2009]. Therefore, a relevant question was to determine
to what extent is the structure of the problem captured by the probabilistic models used in
MOEA/D-GM. This is a relevant question since there is no clue about the types of interactions
that could be captured from models learned for scalarized functions. In this section, the structures
learned from MOEA/D-Tree-ds while solving different subproblems are investigated.

In each generation, for each subproblem, a tree model is built according to the bi-variate
probabilities obtained from its selected population. We can represent the tree model as a matrix
Mn×n, where each position Mj k represents a relationship (pairwise) between two variables j, k.
Mj k = 1 if j is the parent of k in tree model learned, otherwise Mj k = 0.

Figure 6.4 represents the merge frequency matrices obtained by the 30 runs. The
frequencies are represented using heat maps, where lighter colors indicate a higher frequency.
We have plotted the merge matrices learned from the extreme subproblems and the middle
subproblem i.e., i = (1, 100, 201).

Thematrices clearly show a strong relationship between the subsets of variables "building
blocks" of size 5, which shows that the algorithm is able to learn the structure of the Trap5
functions. Notice that, for neighborhood size 70, the MOEA/D-Tree-ds was able to capture
more accurate structures, which exalts the good results found in accordance with the IGD metric.
This can be explained by the fact that a higher population size reduces the number of spurious
correlations learned from the data.

Moreover, analyzing the different scalar subproblems, we can see that, the algorithm is
able to learn a structure even for the middle scalar subproblem i = 100, where the two conflict
objectives functions f trap5 and finv_trap5 compete in every partition (building block) of the
decomposable problem.

6.6 Discussion: MOEA/D-GM to solve mUBQP
We have showed that a more complex probabilistic model that learns dependences

between the variables is efficient to solve the bi-Trap function. Therefore, we have extended the
analysis by evaluating the framework to solve the mUBQP instances. Our goal was to expand the
analysis of the search behavior of MOEA/D-Tree to a wider class of deceptive MCOPs. However,
in this scenario, we have faced some limitations.

Regarding, the general large-scale mUBQP instances from [Liefooghe et al., 2014], the
main shortcoming is the high computational cost to learn and sample marginal and conditional
probabilities, where the cost increases quadratically as the problem-scale increases. Therefore,
the application of MOEA/D-Tree for large-scale instances, such as n = 1000, is inefficient.
Additionally, as discussed in Chapter 5, the conventional mUBQP instances are generated
randomly and they do not consider building blocks of deception. So, a univariate model is quite
enough to solve the problem in this case.

Regarding the hard mUBQP instances (proposed in Chapter 5), which we have studied
only to small-scale instances (e.g., n = 100), the results obtained by MOEA/D-Tree were not as
expected. The results showed that, unfortunately, all the algorithms (MOEA/D-GA, MOEA/D-
PBIL, MOEA/D-UMDA and MOEA/D-Tree) obtained similar results, i.e., the algorithms do not
have a significance difference according to the Hypervolume indicator and the Kruskal-Wallis
test (at 5% of significance level). Therefore, regarding the trade-off between the accuracy and
the computational cost, MOEA/D-Tree is outperformed by the other algorithms to solve mUBQP.
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6.7 Conclusions and future work
In this chapter, a novel and general MOEA/D framework able to instantiate probabilistic

graphical models named MOEA/D-GM has been introduced. PGMs are used to obtain a more
comprehensible representation of a search space. Consequently, the algorithms that incorporate
PGMs can provide a model expressing the regularities of the problem structure as well as the
final solutions. The PGM investigated in this chapter takes into account the interactions between
the variables by learning a maximum weight spanning tree from the bi-variate probabilities
distributions.

In terms of accuracy, the results show that the MOEA/D-Tree significantly outperforms
the other MOEA/D variants for solving the bi-Trap5 function. Furthermore, the results show
that our diversity preserving mechanism introduced into the framework improves the algorithm
search ability. An analysis of the influence of the neighborhood size on the behavior of the
algorithms were conducted. In general, increasing the neighborhood size has a detrimental effect.
Although, this is not always the case for the MOEA/D-Tree. Also, independent of the type of
models used to represent the solutions, grouping similar solutions in a neighborhood may allow
to produce some global optima, even if the functions are deceptive. The "most appropriate"
model for bi-Trap5 should be able to learn higher order interactions (of order 4).

Even if relatively small neighborhoods are used (in comparison with the standard
population sizes used in EDAs), the models are able to capture the interactions of the problem.
One potential application of this finding, is that, we could reuse or transfer models between
subproblems, in a similar idea to the application of structural transfer between related problems
[Santana et al., 2012].

The scalability of MOEA/D-Tree for the mUBQP was a limitation of this work.
MOEA/D-Tree does not achieve a significant difference compared to the other variants to solve
the mUBQP instances investigated.

In the future, other PGMs, for instance, based on Bayesian or Markov networks could
investigated. Other directions for future work are: (i) Conceive strategies to avoid learning a
model for each subproblem. This would improve the results in terms of computational cost; (ii)
Use of the most probable configurations of the model to speed up convergence; (iii) Consider the
application of hybrid schemes incorporating local search that take advantage of the information
learned by the models; (iv) Evaluate MOEA/D-GM for solving other deceptive MCOPs.

Until here, we have worked with MCOPs with binary representations. However,
several real-world problems can be represented as a permutation. Besides its useful appli-
cation, permutation optimization problems have been used to provide algorithms challenges
[Yenisey e Yagmahan, 2014]. The use of EDAs for solving permutation problems is considered
recent [Ceberio et al., 2012]. The next chapter of this thesis attempts to propose a MOEA/D
variant based on Mallows Models EDA [Ceberio et al., 2011] for solving permutation-based
MOPs.



80

Chapter 7

Multi-objective Decomposition-based
Mallows Models EDA. A case of study for
Permutation Flowshop Scheduling
Problem

7.1 Introduction
Following with our research on EDAs, we have investigated them for solving permutation-

based optimization problems. This kind of problems reflect several real-world scenarios in different
fields of application, such as engineering, computer science, finance, industry, etc. Behind the
combinatorial nature of the solutions, every permutation-based problem are characterized with
particular challenges that have to be faced [Ceberio et al., 2012].

Over time, several approaches (including exact methods, heuristics, and meta-
heuristics) have been proposed to deal with permutation-based optimization problems
[Minella et al., 2011, Yenisey e Yagmahan, 2014]. Metaheuristics such as Simulated Annealing
[Brooks e Morgan, 1995], Genetic Algorithms [Holland, 1975], Tabu Search [Glover, 1989]
have shown their potentiality to solve permutation problems [Yenisey e Yagmahan, 2014].

Recently, Ceberio et. al. [Ceberio et al., 2011] proposed the use of a distance-based
exponential probability model called Mallows Model (MM) [Mallows, 1957] in the context of
EDAs to solve single-objective permutation-based optimization problems.

The MM is considered analogous to the Gaussian probability distribution over the space
of permutations. In [Ceberio et al., 2014a] the authors proposed the use of the Generalized
Mallows Model (GMM) in the context of EDAs (GM-EDA), and they achieved the state-of-the-art
results for the permutation flowshop scheduling problem minimizing the total flow time. In
addition, Kernels of Mallows models [Ceberio et al., 2015a] and Mixtures of Mallows models
[Ceberio et al., 2015b] were proposed to deal with multi-modal problems.

While the application of probabilistic models defined on permutations has shown its
potential for single-objective optimization problems, they have not been tested in the multi-
objective case. Thus, in this chapter, we propose a multi-objective EDA based on decomposition
and MM. The proposed framework involves two main ingredients: (i) Our MOEA/D framework,
already presented in the previous chapters; and (ii) the use of kernels of Mallows models EDA
[Ceberio et al., 2015a], which are able to model heterogeneous (multi-modal) populations. In
Mallows Kernel EDA, a model is learned for every selected solution.
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Themainmotivation behind combining these approaches is that, while the decomposition-
based method deals with the search in different regions of the objective space, the learning and
sampling steps of the kernels of Mallows models can efficiently produce promising solutions
through the generations. It is worth noting that this is the first time that a MOEDA based on the use
of a Mallows Model is proposed. The algorithm is called Multi-objective Decomposition-based
Mallows Kernel EDA (MEDA/D-MK framework).

Additionally, in order to test the potentiality of MEDA/D-MK, we applied it to the
multi-objective permutation flowshop scheduling problem (MoPFSP) minimizing the makespan
and the total flow time as the multi-objective criteria. The problem has been proved to be NP-hard,
and it is one of the most studied permutation optimization problems due to its significance in
both academic and real-world application [Yenisey e Yagmahan, 2014].

Two components are incorporated into MEDA/D-MK for MoPFSP to enhance its
performance: (i) the constructive LR(n/m) heuristic algorithm [Liu e Reeves, 2001] to initialize
the population, and (ii) a controlled perturbation procedure attempting to escape from local
optima.

We have used the 110 benchmark instances from [Minella et al., 2011] for the exper-
imental studies. We have evaluated MEDA/D-MK in two situations. First, we compare it to
the MOEA/D (which applies genetic operators, specially tailored for minimizing makespan and
total flowtime) [Chang et al., 2008, Alhindi e Zhang, 2014]. Next, we e have compared to a set
of approximated (PFs) produced by the state-of-the-art algorithms from [Minella et al., 2011]
[Dubois-Lacoste et al., 2011].

The remainder of the chapter is organized as follows. Section 7.2 introduces the proposed
MEDA/D-MK framework and describes the Mallows model in detail. In Section 7.3, we present
the target problem and the MEDA/D-MK algorithm configuration for MoPFSP. We present the
experimental study in Section 7.4. Finally, in Section 7.5, we present the conclusions and future
work.

7.2 The framework: Multi-objective decomposition-based
Kernel of Mallows model EDA
In this section, we present one of the goals of this thesis: the proposal of a general

multi-objective optimization algorithm based on the decomposition approach and the probabilistic
models defined directly in the space of permutations (Mallows Models) for solving permutation-
based MOPs efficiently. To the knowledge of the authors, this is the first time that an algorithm
of this kind is proposed.

In the following, we describe the MEDA/D-MK framework. Subsequently, we present
the Mallows model.

7.2.1 The main framework
Let σ denote a permutation vector solution and σ(i) represent the ith position (variable)

of the permutation. The general design follows our previous MOEA/D framework. Algorithm
7.1 presents the MEDA/D-MK pseudo-code. In the following, we describe its steps. In addition,
Table 7.1 summarizes the parameters required by the algorithm.

1. Initialization: First, the N uniform distributed weight vectors λ1, .., λN are set as in
Section 2.6. The initial population Pop = (σ1, ..., σN ) is generated randomly or by a
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Algorithm 7.1:MEDA/D-MK framework
1 Initialize N weight vectors, generate N permutation solutions Pop = {σ1, ..., σN }

randomly or by a problem-specific, and compute every F (σk )
2 Initialize EP with the non-dominated solutions from Pop
3 while a termination condition is not met do
4 for each subproblem k ∈ 1, ..., N do
5 σk

0, θ
k ← Estimate the MM parameters using B(k);

6 σk
s ← Sample a new solution from Pk (σ);

7 Compute F (σk
s ):

8 Pop = Update_Neighborhood(σk
s );

9 If a condition is met, σk ← Shaking(σk)
10 end for
11 UpdateEP(Pop, EP)
12 end while
13 Return Pop, EP

problem-specific method. Then, their corresponding fitness functions F (σ1), ..., F (σN )
are computed. The EP is initialized with the non-dominated solutions from the initial
population Pop.

2. Learning and Sampling: The framework, at each generation, for each subproblem k,
estimates the parameters θk and σk

0 (see Section 7.2.2). Next, the parameters are used to
compute the probability Pk (σ) of each σ ∈ Sn according to the distance metric (Figure 7.1).
Finally, it samples a new solution σk

s .

3. Update the neighborhood: Next, the sampled solution σk
s is used to update the current

population as described in Section 2.6.

4. Perturbation procedure: A drawback of most approaches dealing with multi-objective
permutation optimization problems is the lack of diversity, i.e., the search ability to explore
different regions of the search space while moving towards the PF. Therefore, optionally,
a destruction (perturbation) method can be performed in σk if it does not change after a
maximum number of generations. This scheme is performed to escape from local optima,
and thus to control the diversity of the population.

5. Update the EP: Finally, the EP is updated with the non-dominated solutions from Pop as
described in Section 2.6.

When the stopping condition is met, the algorithm returns Pop and EP.

7.2.2 Mallows model
The Mallows model [Mallows, 1957] is a distance-based exponential probability model

defined over permutation spaces. Under this model, the probability value of every permutation
σ ∈ Sn (where Sn stands for the set of n! permutations of n items) depends on two parameters:
a spread parameter θ, and the distance to a central permutation σ0, which is calculated by a
distance-metric D. Formally, the Mallows model is defined as

P(σ) =
e−θD(σ,σ0)

ψ(θ)
(7.1)
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Table 7.1: Summary of the input parameters for the Algorithm 2.4

Parameter Description

H Control parameter to generate the weight vectors as in [Zhang e Li, 2007]
N Number of subproblems
λk The weight vector associated to the subproblem k
T Neighborhood size
θ The spread parameter from Mallows models
σ0 The central permutation from Mallows models
nr maximum replacements by a new solution

where ψ(θ) denotes the normalization constant.
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Figure 7.1: The Mallows model exponential probability distribution of a permutation σ with a
spread parameter θ under a distance-metric D [Ceberio et al., 2011].

Figure 7.1 presents different exponential probabilities P(σ) according to different spread
parameter values (θ) and a distance D(σ, σ0). When θ > 0, the central permutation σ0 is the
permutation with the highest probability value, and the probability of the other n!−1 permutations
exponentially decreases with the distance to σ0. The larger the θ, the sharper the distribution
around σ0. When θ = 0, a uniform distribution is obtained, i.e., the equation assigns equal
probability to every permutation σ in Sn.

The most common distance metrics used with the Mallows model are the
Kendall’sτ distance [Fligner e Verducci, 1988, Ceberio et al., 2011] and the Cayley distance
[Irurozki et al., 2014a]. Ceberio et al. [Ceberio et al., 2014b], reported that Cayley distance
achieves the best results for the single-objective PFSP minimizing the total flow time. Therefore,
we only describe the Cayley distance in this work. For additional information about the Kendall-τ
and Ulam distance the reader is referred to [Ceberio et al., 2014b] and [Irurozki et al., 2014b]
respectively.

The Cayley distance Dc(σ, π), counts the minimum number of swaps (not necessary
adjacent) that have to be performed to transform σ into π. When the reference permutation
is the identity, e = 123 . . . n, the number of swaps equals n minus the number of cycles of
σ. A cycle is understood as a closed walk of elements in the permutation such that for every
1 ≤ i, j ≤ n for which σ(i) = j is true, then i and j are in the same cycle. In addition, the Cayley
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distance fulfills the right-invariant property, which means that D(σ, π) = D(σγ, πγ) for every
permutation γ ∈ Sn, where σγ stands for the composition of the permutations σ and γ, and is
defined as σγ(i) = (σ ◦ γ(i)) = σ(γ(i)). Thus, by right invariance, when γ = π−1, D(σ, π)
can be simplified as D(σπ−1, e) (also denoted as D(σπ−1)).

The Cayley distance Dc(σ) can be decomposed as the sum of n − 1 terms:

Dc(σ, π) =
n−1∑
j=1

X j (σπ−1)

where X j (σπ−1) = 0 if j is the largest item in its cycle in σπ−1, and 1 otherwise.
Under this distance, the normalization constant ψ(θ), is formalized as:

ψ(θ) =
n−1∏
j=1

ψ j (θ) =
n−1∏
j=1

(n − j) exp(−θ) + 1 (7.2)

For the incorporation of the MM as a probabilistic model into EDAs, it is necessary to
define effective learning and sampling methods. In the following, the general methods for these
steps are presented.

Learning:
Given a set of permutations, which works as a selected population, the learning process

consists of estimating the consensus (central) permutation (σ0) and the spread parameter (θ) for
MM (or (θ) for GMM). Different methods have been reported to estimate σ0 and θ in the context
of EDAs [Ceberio et al., 2014a, Ceberio et al., 2014b, Ceberio et al., 2015b].

Usually, this process is approached via maximum likelihood estimation (MLE). How-
ever, the time required for an exact learning scales factorially with the number of variables
[Ceberio et al., 2014a]. To deal with this shortcoming, Ceberio et al. [Ceberio et al., 2014b],
carried out an approximated learning mechanism. The estimated consensus permutation (σ0) is
calculated as the set median permutation, which is the permutation that minimizes the sum of the
distances to the rest of the permutations in the sample. Once σ0 is estimated, the MLE for the
spread parameter θ for MM (or θ for GM) is computed. The expression for this parameter is
obtained by equaling to zero the derivate of the likelihood.

X j =
j

j + exp(θ j )
(7.3)

Ceberio et al. [Ceberio et al., 2014b] have solved this equation through the Newton-Raphson
algorithm. Formally, after the learning step, the Mallows model under the Cayley distance can be
defined as follows:

P(σ) = ψ(θ)−1 exp(
n−1∑
j=1
−θX j (σσ−1

0 )) (7.4)

for every σ ∈ Sn.
Sampling:
The sampling step attempts to obtain new solutions from the model learned (Eq. 7.4)

given by the probability of any σ according to the n − 1 binary variables X1(σ), ..., Xn−1(σ) in
which the distance is decomposed. The probability of each X j (σ) follows:

P(X j (σσ−1
0 ) = 1) =

(n − j) exp(−θ)
ψ j (θ)

(7.5)
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Then, the sampling procedure follows a random method to generate a permutation σ
given X (σ) [Irurozki et al., 2014a]. Ceberio et al. [Ceberio et al., 2015a] described the sampling
process according to three steps. First, a random binary vector X (σσ−1

0 ) is sampled using
Eq. (7.5). Second, the associated σσ−1

0 is calculated according to the techniques described in
[Irurozki et al., 2014a]. Finally, by right invariance, the final permutation σ is obtained. The
complexity of this procedure is O(n2).

7.2.3 Kernels of Mallows Models
Despite the success of MM and GMM in the context of EDAs, they are unimodal models,

i.e., they can provide accurate distributions when the population of the problem is homogeneous
(low sparsity between the selected solutions). However, these models are not flexible enough
to accurately model populations with solutions that are very sparse regarding the distance
metric considered under the model. To overcome this drawback, mixtures of distance-based
probability models have been used to deal with multi-modal problems [Ceberio et al., 2015a,
Ceberio et al., 2015b] .

In [Ceberio et al., 2015a], Kernels of Mallows models EDA was proposed, where a
kernel is defined for each selected solution, using this solution as its central permutation. The
spread parameter θ is predefined to control the exploration/exploitation of the kernel. Then, new
solutions are sampled from each kernel under a distance metric D.

This strategy is suitable for the multi-objective case, since most of the MOPs are
multi-modal due to the number of Pareto optimal solutions that they may contain. Moreover, one
of the primary goals of MOEAs is to maintain a diverse population for finding solutions that
cover the entire true PF.

Therefore, in the MEDA/D-MK framework, each subproblem k is associated to a
Mallows Kernel. Consequently, N Mallows Kernel models are kept at every generation. The
interaction between the subproblems is kept by the update step.

7.3 A case of study: MEDA/D-MK for Multi-objective Per-
mutation Flowshop Scheduling Problem
The PFSP is an attractive research area. It is not only a theoretical field of study but also

interesting field of application in industry and other real-world scenarios [Minella et al., 2008,
Yenisey e Yagmahan, 2014].

The objective of the PFSP is to find a permutation that optimizes a particular criterion.
The PFSP schedules n jobs with given processing times on m machines, where the sequence of
processing a job on all machines is identical and unidirectional for each job. The problem has the
following assumptions [Yenisey e Yagmahan, 2014]: (i) All jobs are available at time zero, (ii)
each job can only be processed on, at most, one machine at the same time, (iii) each machine can
process only one job at a time, (iv) different jobs have the same processing order on all machines,
and (v) the set-up times of the jobs on machines are sequence-independent and are included in
the processing times.

A feasible permutation solution is denoted as σ = (σ(1), σ(2), ..., σ(n)) where σ(i)
represents the job to be processed in the ith position. Let pi j denote the processing time for job i
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on machine j. Ci j is the completion time of job i on machine j. The completion time of a job i in
the last machine m is indicated indicated as Cim, and it is recursively calculated as follows:

C11 = p11

Ci1 = C(i−1)1 + pi,1, i = 2, ..., n
C1 j = C1( j−1) + p1, j, j = 2, ...,m
Cim = max(C(i−1) j,Ci( j−1)) + pi j, i = 2, ..., n and j = 2, ...,m (7.6)

Usually, Cim is also indicated as Ci (σ). A scheduling problem can naturally involve
multiple objectives to be optimized at the same time. Most literature referring to the PFSP
focuses on a group of objectives based on the completion time, e.g., the minimization of the total
flow time (TFT) and the minimization of the makespan (Cmax). Other groups of objectives have
also been studied, such as the objectives based on due dates (tardiness) [Minella et al., 2008,
Yenisey e Yagmahan, 2014].

The makespan represents the time needed to process all the jobs. Minimizing makespan
is related to the increase of throughput and machine utilization, and it is formulated as follows:

Cmax (σ) = max {Ci (σ)}, i = 1, ..., n (7.7)

The flow time of a job (Fi) is the time elapsed between its release time and its completion
time. As the release time is always 0, therefore, Fi (σ) = Ci (σ). The total flow time is formulated
as follows:

TFT (σ) =
n∑

i=1
Ci (σ), i = 1, ..., n (7.8)

The total tardiness is defined as follows:

TT (σ) =
n∑

i=1
Ti, i = 1, ..., n (7.9)

where Tj is the tardiness of job i, defined as Tj = max{Ci (σ) − di} and represents the delay in its
completion with respect to its due date (di).

Thus, for instance, we can define a MoPFSP as:

minimize F (σ) = (Cmax (σ),TFT (σ)),
subject to σ ∈ Ω (7.10)

7.3.1 MoPFSP: Related Work
Minimizing two objectives:
Minella et al. [Minella et al., 2008] reviewed and evaluated a total of 23 algorithms

including both flowshop-specific and general multi-objective optimization approaches on 110
benchmark test instances. These PFSP instances are those of Taillard [Taillard, 1993] with the
addition of due dates (which are used for the total tardiness criterion). The best approaches that
they identified were those based on simulated annealing and genetic local search. The benchmark
is available at their web page repository http://soa.itit.es.

Several works have used this Taillard benchmark to evaluate their ap-
proaches [Minella et al., 2011, Li e Li, 2015]. Consequently, we have also used it to evaluate our
proposal.
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Minella et al. [Minella et al., 2011] introduced an efficient metaheuristic algorithm
based on an Iterated Greedy technique. The algorithm called restarted iterated Pareto greedy
(RIPG), combines (i) an efficient initialization of the population using the NEH heuristic
[Nawaz et al., 1983], (ii) the management of the approximated Pareto front, and (iii) a specially
tailored local search. In all computational tests, and performance indicators, the proposed RIPG
yields better results (many times in a significant way) than other 5 re-implemented (or adapted)
state-of-the-art methods for the following pairs of objectives: (i) makespan and total flowtime and
(ii) makespan and total tardiness. Additionally, their results are available at the same repository
containing the benchmark. As we will show later, we include their best-known results in our
comparison study.

In the same year, Dubois-Lacoste et al. [Dubois-Lacoste et al., 2011] proposed a hybrid
algorithm, called TP+PLS, which combines a two-phase local search and a Pareto local search.
The authors tested it for different bi-objective combinations (makespan, total flowtime, total
tardiness), showing a good performance. Their best-known results are also included in our
comparison study.

The authors in [Yenisey e Yagmahan, 2014] presented a more recent review of the
approaches designed to deal with the MoPFSP and the benchmarks available in the literature.
They reviewed 86 articles and reported that the number of studies has been gradually increasing
in time. Moreover, the most investigated metaheuristic methods have been genetic operators,
Tabu Search, and Simulated Annealing. Besides, most of these algorithms use a PFSP-specific
constructive method to initialize the population. The authors pointed out that one trend in this
area is the combination of efficient heuristic and metaheuristic methods to generate new hybrid
algorithms in order to take advantage of the different approaches. The framework proposed in
this chapter follows this trend.

Algorithms based on the MOEA/D framework have already been applied to solve
MoPFSP. Chang et al [Chang et al., 2008], proposed the application of a MOEA/D variant,
using the two-point crossover and the insert-based moving mutation, specifically tailored for
minimizing makespan and total flowtime. Their results showed that the algorithm outperformed
the Pareto-based algorithms NSGAII and SPEA2 for the set of test instances proposed by Ishibuchi
et al. [Ishibuchi et al., 2003]. Likewise, Alhindi and Zhang [Alhindi e Zhang, 2014] hybridized
MOEA/D and Tabu Search (TS). Their primary motivation was to use TS to helpMOEA/D escape
from local optimal solutions. As the TS has a higher computational cost, it was only applied to
good solutions. The results showed that MOEA/D-TS outperformed the MOEA/D for the test
instances proposed by [Ishibuchi et al., 2003]. As we will present later, we include a MOEA/D
variant based on the same genetic operators used by [Chang et al., 2008, Alhindi e Zhang, 2014]
in our experimental study.

The authors in [Li e Li, 2015] proposed a decomposition-based multi-objective local
search algorithm (MOLSD). First, they used an efficient PFSP heuristic procedure to initialize
the population. Next, the algorithm executes a Pareto local search embedded with a heavy
perturbation procedure, followed by a single insert-based local search and a restarted method
to escape from local optima. The results reported showed that MOLSD outperformed some
state-of-the-art algorithms, such as RIPG [Minella et al., 2011]. Unfortunately, their best-known
approximated PFs are not available for comparison.

Minimizing three objectives:
The number of studies focusing on three objectives is much smaller than the studies

on bi-objective [Yenisey e Yagmahan, 2014]. Ishibuchi and Murata [Ishubuchi e Murata, 1998]
proposed the multi-objective genetic local search algorithm (MOGLS). The algorithm applies a
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local search procedure to each new solution obtained by the genetic operators. The authors tested
the algorithm to minimize the objectives makespan, total flowtime and total tardiness.

The authors in [Arroyo e Souza Pereira, 2011] proposed an GRASP algorithm specially
designed to solve bi- and tri-objective PFSP. In case of tri-objective, the algorithm outperformed
two improved MOGLS variants [Arroyo e Armentano, 2005].

7.3.2 MEDA/D-MK for MoPFSP
In order to demonstrate the validity of MEDA/D-MK, we have applied it to solve the

MoPFSP minimizing the total flowtime and the makespan. The experimental study regarding
three objectives is presented in Appendix A.

First, we have defined some ad-hoc algorithm components, and they are described in
the following.

The objectives have different scales. Therefore, as in [Li e Li, 2015], we have used the
max-min normalization to compute the scalarizing functions (e.g.,Weighted sum and Tchebycheff ).
However, when the objective function values are normalized, z∗ does not guarantee a lowest
reference value. To deal with this issue, each zl is multiplied (decreased) by a factor α. For
the the bi-objective PFSP, we set α = 0.6 in accordance to [Chang et al., 2008]. The adapted
Weighted sum and Tchebycheff scalarizing functions are as follows:

Weighted Sum:

minimize gws (σ |λ, z∗,w∗) =
q∑

l=1
λl

f l (σ) − α z∗l
w∗l − z∗l

subject to σ ∈ Ω (7.11)

Thebycheff:

minimize gtc(σ |λ, z∗,w∗) = max
1≤l≤q

{
λl

f l (σ) − α z∗l
w∗l − z∗l

}
; (7.12)

subject to σ ∈ Ω

where z∗ is the reference point, i.e., the minimum (best) values found so far for each objective
value, and w∗ is the maximum (worst) values found so far for each objective value.

1. Initialization step: First, the LR(n/m) procedure constructs a single solution σlr . Next,
one subproblem is randomly chosen to be initialized with σlr . Second, the algorithm
randomly chooses (N/2) − 1 subproblems and initializes them with a light perturbed σlr
solution. The perturbation on σlr is based on n/10 insert-based moves. This strategy
allows the initial population to maintain some characteristics of σlr and also can find other
promising solutions. Next, the remaining N/2 subproblems are initialized randomly to
guarantee that the convergence and some diversity is maintained at the initial Pop. Finally,
the EP is initialized with the non-dominated solutions from Pop.

2. Learning step: The central permutation σk
0 is set to its current solution σk .

In [Ceberio et al., 2015a], to enhance the search ability of the model, an adaptive in-
terval of values for θ is defined. In their strategy, at every generation, if the best solution
was not improved, then θ was increased. Otherwise, θ was set to the lower bound value.
However, in our preliminary experiments, this strategy did not achieve successful results.
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Besides, a fixed θ value at every generation obtained good results. The experimental study
to assign different probabilities is presented in Section 7.4.6.

3. Sampling step: The new solution σk
s is sampled according to Eq. (7.4) and the steps

described in Section 7.2.2. Further, the sampling step has been enhanced by the addition
of two procedures:

(a) A single insert-based movement is applied to σk
s with a low probability.

(b) The diversity preserve mechanism is proceed to avoid that the same permutation
appears many times in the neighborhood. So, if the sampled solution σk

s ∈ B(k)
then, the algorithm discards σk

s , and tries to sample a new one until it samples a
solution σk

s < B(k) or reaches a maximum number of trials (T ). If T is reached, the
algorithm maintains the last sampled solution anyway.

4. Update Pop: the new sampled solution is used to update Pop. The update procedure
follows the scheme described in the general framework (Section 2.6).

5. Shaking procedure: To lead the algorithm to escape from local optima and control the
diversity of the population, MEDA/D-MK is improved with a controlled shaking procedure
that can be performed at any subproblem k. The procedure works as follows: If σk has not
been enhanced (updated) after a predefined number of generations (count), σk is updated
by receiving nsh random insert-based movements, even if it computes a worse F (σk ).
Then, the count for a new perturbation in the subproblem k is reset to 0.

Regarding the input parameters, besides those summarized in Table 7.1, the MEDA/D-
MK for MopFSP includes: 1) the factor α for the adapted Weighted Sum and Tchebycheff, 2)
the maximum number of consecutive generations without an improvement in the subproblem k
before to execute the shaking procedure (countk ), and 3) the number of random insert-based
movements (nsh) to perturb the solution.

7.4 Experimental studies
The goal of the experimental studies is to evaluate the performance of MEDA/D-MK

for MoPFSP compared to the state-of-the-art approaches. In this analysis, we: (i) evaluate if,
within the MOEA/D framework, using the Mallows Model is preferable to genetic operators, and
(ii) check if our approach is competitive compared to the state-of-the-art results reported by the
scientific community. Additional experiments are present in Appendix A.

7.4.1 Algorithms and the PFSP benchmark
Murata and Ishibuchi [Murata e Ishibuchi, 1994] evaluated various genetic operators

for makespan and total flowtime. Their results showed that the two-point crossover and the insert-
based mutation (see Figure 7.2) achieved the best results. Thus, as done in [Chang et al., 2008,
Alhindi e Zhang, 2014] to the MOEA/D variants for MoPFSP, we have incorporated these
operators in our MOEA/D instantiation. It is worth noting that, for a fair comparison, our
MOEA/D variant also incorporates the constructive PFSP initialization and the shaking procedure.

The execution time analysis was performed on a PC with Intel Xeon E5-620 2.4 GHz
processor and 12 GB memory.
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Figure 7.2: Two-point crossover and insert mutation operators

The Taillard PFSP benchmark [Minella et al., 2011] has been widely employed in the
literature. Each processing time pi j is generated from a random uniform distribution in the range
[0, 99]. The benchmark is composed by 110 test instances having different combinations of
number of jobs n = {20, 50, 100, 200} and number of machines m = {5, 10, 20}. The instances are
grouped in 11 different combinations (scale) n × m (20x5, 20x10, 20x20, 50x5, 50x10, 50x20,
100x5, 100x10, 100x20, 200x10 and 200x20) containing 10 instances each.

Usually, if the source code is not available, the researchers have to re-implement the
state-of-the-art algorithm(s) to compare them to their proposed approach. However, it is not easy
to make a fair re-implementation, and sometimes they achieve different results regarding those
previously reported. Another avenue is to use the best-known approximated PFs provided by the
research community for comparison.

Usually, if the source code is not available, the researchers have to re-implement the
state-of-the-art algorithm(s) to compare them to the proposed approach. However, it is not easy
to make a fair re-implementation, and sometimes they achieve different results regarding those
previously reported, as it was stated in [Minella et al., 2011]. The other option is to use the
best-known approximated PFs provided by the research community for comparison.

7.4.2 Parameters Setting
In the following, the parameter settings are described. These values were defined

according to a preliminary study.
For the genetic operators, the neighborhood size (T ) defines the range of neighbor

solutions that can be selected as the parents p1 and p2. In accordance to [Chang et al., 2008,
Alhindi e Zhang, 2014], we set T = 10, probability of crossover Pc = 1.0 and probability of the
single insert mutation Pm = 0.5. Furthermore, for the MEDA/D-MK sampling step (described in
Section 4.3), the probability to apply a unique insert-based movement in σk

s is also Pm = 0.5.

1. Number of subproblems (N ): A large number of subproblemsmeans a higher computational
cost because it increases the number of fitness evaluations at each generation. However, a
small number of subproblems can deteriorate the algorithm search ability to explore the
different regions of the objective space. Therefore, we set N = 100 as it is a reasonable
number of weight vectors (subproblems) for solving bi-objective problems.

2. Update neighborhood: We have used a scheme that we named range sensitive global
update, which means that, according to the Euclidean distance between the weight vectors,
a new sampled solution σk

s tries to update the current population from the closest neighbor
to the farther neighbor solution.

3. Maximum replacements (nr): Each sampled solution σk
s can update a maximum of nr = 2

subproblems.
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4. Spread parameter (θ): It is set to assign a probability of 0.8 to the central permutation
(σk

0 ) at every generation.

5. Stopping criterion: The algorithms stop when a maximum number of evaluations is
reached. For each problem, the maximum number of evaluations depends on the problem
size as MaxGen = n × 1000.

Moreover, we track the outcome of the algorithms at each (n × 1000)/100 generations
by inspecting the current PF, i.e., 10 approximated PFs are provided and evaluated in each run.
In this way, we can evaluate the algorithm’s behavior throughout the evolution.

7.4.3 Comparison to the MOEA/D variant
In this section, we have compared MEDA/D-MK to MOEA/D variant, using the

scalarizing functions Weighted sum and Tchebycheff. First, we have provided the average
normalized HV results obtained by MOEA/D and MEDA/D-MK for each one of the 110 Taillard
test instances and ranked their results according to the Kruskall-Wallis statistical test. This table is
presented in a in Appendix A. The results show that MEDA/D-MK with Weighted Sum achieves
the best results with a significant difference in 78 of the 110 test instances. We have summarized
these results by grouping the test instances according to the problem scale n × m (10 instances
each). Thus, the analysis of the results present in this section was conducted according to 100
independent runs using the two quality indicators and the non-parametric Friedman statistical
test (at 5% significance level) to check if the results obtained have a significant difference. Table
7.2 presents the average HV values obtained by MEDA/D-MK and MOEA/D. For each group of
instances, the best result, according to the statistical test, is highlighted in boldface. Table 7.3
shows the results of the C-metric obtained by the MEDA/D-MK against MOEA/D.

Table 7.2: Average HV results

instance Weighted Sum Tchebycheff
MOEA/Dw MEDA/D-MKw MOEA/Dt MEDA/D-MKt

20x5 0.8087 0.8728 0.7804 0.8413
20x10 0.8074 0.8757 0.7387 0.8289
20x20 0.8021 0.8577 0.7151 0.7985
50x5 0.8678 0.9242 0.7617 0.8381

50x10 0.7449 0.8378 0.5818 0.6642
50x20 0.7531 0.8544 0.6150 0.6914
100x5 0.8578 0.8892 0.7423 0.8151
100x10 0.7550 0.8161 0.5764 0.6350
100x20 0.7319 0.8344 0.5037 0.5491
200x10 0.8011 0.8258 0.5885 0.6219
200x20 0.7278 0.8101 0.4497 0.4816

The results in Table 7.2 show that Weighted sum outperforms Tchebycheff. Additionally,
MEDA/D-MK with Weighted sum (referenced as MEDA/D-MKw) outperforms MOEA/Dw with
a significant difference in 9 of the 11 groups of instances. The groups of test instances for
which MEDA/D-MKw does not outperform MOEA/Dw with a significant difference are 50x5
and 200x10. As Mietthen [Miettinen, 2012] argued, the Weighted sum approach is good at
convex (concave) bi-objective problems, while Tchebycheff approach is useful when the problem
is non-convex. This is also confirmed in our results, in which Weighted sum outperforms
Tchebycheff. So, for the remaining experimental studies, we have used the Weighted sum.
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Table 7.3: C-metric values between A = MEDA/D-MK against MOEA/D and the best-known
reference approximated PF. The algorithm that covered more solutions is highlighted in boldface.

instance B = MOEA/D B = reference sets
C(A,B) C(B,A) C(A,B) C(B,A)

20x5 0.54 0.03 0.12 0.15
20x10 0.40 0.06 0.08 0.12
20x20 0.25 0.07 0.09 0.11
50x5 0.96 0.02 0.79 0.11

50x10 0.91 0.07 0.94 0.02
50x20 0.83 0.12 0.98 0.02
100x5 0.98 0.02 0.78 0.02
100x10 0.96 0.01 0.82 0.04
100x20 0.82 0.15 1.00 0.00
200x10 0.72 0.16 0.83 0.00
200x20 0.85 0.13 1.00 0.00

In addition, it is evident from Table 7.3 that, according to the C-metric, the approximated
PFs from MEDA/D-MK dominates a large percentage of solutions from the approximated PFs
obtained by MOEA/D in all the groups of instances.
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Figure 7.3: Average computational time (in seconds) of MOEA/D (A) and MEDA/D-MK (B) for
the merged groups of instances with 50, 100 and 200 jobs, after nx1000 generations.

It is explicit from Figure 3 that the process performed by MEDA/D-MK to generate
new solutions is more time-consuming compared to the conventional genetic operators. The
difference increases as the problem scale (number of jobs) increases because the sampling step
from MEDA/D-MK is O(n2). This behavior is typical for EDAs, which are slower than GAs
and other similar approaches. Usually, EDAs are more complex but generally they are able to
produce solutions of better quality.

7.4.4 Discussion: Mallows model vs. genetic operators:
In MOEA/D, B(k) defines the range of solutions that can be chosen as parent solutions.

It is easy to prove that (at least for MOPs with concave (convex) PF shapes) the solutions of
two subproblems have a higher level of similarity as their weight vectors are closer. In Mallows
models, θ determines the probabilities of sampling a solution close to the central permutation
σ0. Thus, θ and B(k) has a similar effect, in which they can influence the search regarding the
sparsity (distance) between the offspring and their parents.
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Besides, the sampling from MM and the genetic operators are different regarding the
type of variation/movements that they perform: the Cayley distance is based on the minimum
number of swaps (not necessarily adjacent) that have to be carried out to transform σ into π, and
the genetic operator is based on the two-point crossover.

It is also known that, unlike other EAs, EDAs can provide models expressing the
regularities of the problem structure [Larrañaga et al., 2012], being this property one of the
primary motivations of using EDAs instead of other EAs.

7.4.5 Comparison to reference sets
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Figure 7.4: AverageHV values obtained byMEDA/D-MK throughout the generations (every%10)
compared to the reference sets from the literature (those fromMinella et. al [Minella et al., 2011]
and TP+PLS [Dubois-Lacoste et al., 2011]) for the 11 groups of instances (a)-(k)
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We devote this section to analyze our approach in the context of the state-of-the-art
approaches/results for the benchmark considered. As it has not been possible to obtain the
source code of the best-performing approaches (requested to the authors), we have used the
best-known approximated PFs reported by their respective authors. The best-known reference
sets reported by [Minella et al., 2011]1 were produced by joining all the approximated PFs
achieved by 7 re-implemented (or adapted) state-of-the-art methods, including their best-
performing proposed algorithm RIPG, different parameters configurations, and several runs.
[Dubois-Lacoste et al., 2011]2 provided the reference sets for each algorithm evaluated, including
their best-performing algorithm TP+PLS. In order to have comparable sets, we have followed the
same procedure, composing our reference sets by merging the outcomes from MEDA/D-MK.

It must be noted that the results shown in this section must be interpreted carefully,
since the reference sets were obtained with different stopping conditions and merging different
runs/algorithms. Therefore, we have compared MEDA/D-MK to the reference sets throughout
the generations. This comparison allow us to observe the dynamics of the MEDA/D-MK during
the search.

Figure 7.4 shows the average HV values obtained by MEDA/D-MK throughout the
generations (10 plots) compared to the average HV values obtained from the reference sets
(constant lines) for the group of instances. According to the results, we can make the following
remarks:

• In general, MEDA/D-MK is able to keep evolving throughout all the generations. However,
the algorithm slowly improves the results after 70% of the generations (except for the
group of instances 20 × 20). If source codes of the algorithms were available, it would be
interesting to analyze the ability of each algorithm to evolve throughout generations.

• The reference sets from Dubois-Lacoste et al. outperform the reference sets from Minella
et al. in all the cases. The difference increases as the problem scale increases.

• MEDA/D-MK achieves competitive results. Our approach easily outperforms the reference
sets from Minella et al. in all the cases, except for the 20 × 5. Also, it outperforms the
reference sets from Dubois-Lacoste et al. for many of the instances of size 20, and for
almost all the instances of size (e.g., 200 jobs). The HV values for each particular instance
are provided in the supplementary material.

• This type of probabilistic models, like the Mallows model we introduced, have a higher
complexity than those of its competitors. However, as it has been demonstrated in
other works on EDAs [Ceberio et al., 2014a], even if they are usually slower than other
approaches, they are able to continue evolving and thus obtain better results.

To complement the information presented in Figure 7.4, Table 7.4 presents a comparison
(by pairs) based on the final HVs obtained by the three different approaches for each of one the
110 test instances. In this table, for each group of instances, we count how many times one
approach outperforms the other. Regarding that, each group contains 10 instances. Looking
at the results, it can be seen that MEDA/D-MK and TP+PLS systematically outperform the
results provided by Minella’s reference sets. Regarding MEDA/D-MK and TP-PLS, the later
shows better results for the groups with 50 and 100 jobs, while the former behaves better for
20 × 10, 200 × 10 and 200 × 20.

1Minella et al.: http://soa.iti.es.
2Dubois-Lacoste et al.: http://iridia.ulb.ac.be/˜jdubois/pfsp_refsets.htm
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Finally, Figure 7.5 presents the plots of the final approximated PFs obtained by the
algorithms for four representative large-scale test instances (Ta071, Ta082, Ta091 and Ta101).
From this figure, we can observe that the PFs are concave, and that the cardinality of the fronts
increases with the number of machines. As expected, the best approximated PFs are those
obtained by MEDA/D-MK and TP+PLS. In general, TP+PLS find more solutions that covers the
extremes regions of the PFs because of its search behavior, in which the first phase of the method
applies a single-solution algorithm to find high-quality solutions for each objective function
separately.

Table 7.4: Comparison between pairs of algorithms according to the HV measure. For each
pair of algorithms × group of instances, a cell indicates three values: 1) the number of times
that the final HV of approach A is better than that of approach B, 2) the number of draws, 3) the
number of times that the HV of approach B is better than that of approach A). Reference sets: A
= MEDA/D-MK, B = Minella et. al best-known, C = Dubois-Lacoste et al. (TP+PLS)

Instances A-draw-B A-draw-C C-draw-B

20x5 2-5-3 1-3-6 6-2-2
20x10 6-3-1 6-3-1 4-2-4
20x20 6-1-3 5-3-2 6-1-3
50x5 9-0-1 0-0-10 10-0-0

50x10 10-0-0 0-0-10 10-0-0
50x20 10-0-0 0-0-10 10-0-0
100x5 9-0-1 3-1-6 10-0-0
100x10 10-0-0 1-0-9 10-0-0
100x20 10-0-0 2-0-8 10-0-0
200x10 10-0-0 9-0-1 10-0-0
200x20 10-0-0 8-0-2 10-0-0
Total 92-9-9 35-10-65 96-5-9

To ease the comparison to other methods, we have compiled our best-known reference
approximated PFs. Each reference set was produced by merging all the MEDA/D-MK results
regarding all runs and all parameter configurations. Our 110 best known reference sets are
available on-line3.

7.4.6 Influence of the MEDA/D-MK components
In this section, in order to further illustrate the dynamics of MEDA/D-MK and provide

an understanding of the parameters used, we present the study of (i) the spread parameter θ, (ii)
the constructive algorithm LR(n/m) to initialize the population, and (iii) the controlled shaking
procedure used to escape from the local optima.

The spread parameter is directly related to the shape of the exponential probabilistic
model [Irurozki et al., 2014a]. Thus, we have evaluated different θ values in order to assign the
following probabilities to the central permutation P(σ0) = {0.5, 0.6, 0.7, 0.8} that depends on the
number of variables (see Eq.(7.4)).

Table 7.5 presents the θ values for the different problem sizes and their corresponding
probabilities of sampling P(σ0). Table 7.6 shows that, regarding theHV indicator, MEDA/D-MK
with a higher P(σ0) achieves the best results. Besides, for P(σ0) = 0.7 and P(σ0) = 0.8 the

3Available at https://github.com/MuriloZangari/supplementary_results_mopfsp
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Figure 7.5: Illustrative plots of the final approximated PFs by MEDA/D-MK, Minella et. al
best-known and TP+PLS for (a) Ta071, (b) Ta081, (c) Ta091, and (d) Ta101 instances.

Table 7.5: The θ values using the Cayley distance for different problem sizes (n) and the respective
probabilities P(σ0) assigned.

n P(σ0) = 0.5 P(σ0) = 0.6 P(σ0) = 0.7 P(σ0) = 0.8
20 5.60 5.90 6.30 6.80
50 7.48 7.78 8.20 8.60
100 8.90 9.20 9.60 10.01
200 10.3 10.60 11.00 11.41

difference is not significant in 10 of the 11 cases. It is worth noting that we have used the strategy
that avoids the central permutation to be sampled to prevent many copies in the population. A
higher P(σ0) means that the probability of sampling a solution close to the σ0 is higher (low
sparsity between permutation solutions), which means that the algorithm conducts an exploitation
in each kernel. The other components/ingredients of the framework may promote the exploration
in different areas of the search space.

Table 7.7 shows that both MEDA/D-MK and MOEA/D achieve better results using the
LR(n/m) initialization (referenced as MOEA/DLR and MEDA/D-MKLR), mainly for the larger
test instances. Overall, the MEDA/D-MKLR produces the best results. For the smallest instances
n = {20, 50}, MEDA/D-MK does not achieve a significant difference with and without the
constructive initialization. There are two possible explanations for this behavior: the LR(n/m)
initialization can quickly approximate the solutions to the true PF, or the exploration-like behavior
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Table 7.6: HV values of the analysis of the MEDA/D-MK regarding the θ parameter.

instance P(σ0) = 0.5 P(σ0) = 0.6 P(σ0) = 0.7 P(σ0) = 0.8
20x5 0.7536 0.7661 0.7584 0.7575
20x10 0.8255 0.8261 0.8300 0.8297
20x20 0.7907 0.7910 0.7969 0.7958
50x5 0.9057 0.9048 0.8998 0.9008
50x10 0.7785 0.7793 0.8026 0.7879
50x20 0.7737 0.7713 0.8065 0.8074
100x5 0.8203 0.8191 0.8308 0.8007

100x10 0.7786 0.7907 0.7955 0.7989
100x20 0.7006 0.7599 0.7645 0.7655
200x10 0.7678 0.7822 0.7923 0.7972
200x20 0.6543 0.6531 0.6782 0.6883

Table 7.7: HV results of the analysis using the constructive algorithm LR(n/m) to initialize the
population.

instance MOEA/D MOEA/DLR MEDA/D-MK MEDA/D-MKLR

20x5 0.7342 0.7359 0.7509 0.7590
20x10 0.8372 0.8346 0.8467 0.8512
20x20 0.8167 0.8086 0.8281 0.8245
50x5 0.8712 0.8862 0.9079 0.9165
50x10 0.6936 0.7369 0.7735 0.7984
50x20 0.6605 0.7121 0.7751 0.8005
100x5 0.7143 0.8444 0.8184 0.8804

100x10 0.6587 0.7751 0.7654 0.8560
100x20 0.5881 0.6528 0.7469 0.7677
200x10 0.5251 0.8064 0.6204 0.8452
200x20 0.5460 0.6852 0.6481 0.7610

Table 7.8: HV results of analysis using the controlled shake procedure.

instance MOEA/D MOEA/DSH MEDA/D-MK MEDA/D-MKSH

20x5 0.7503 0.7499 0.7658 0.7725
20x10 0.8339 0.8335 0.8351 0.8501
20x20 0.8053 0.8050 0.8039 0.8201
50x5 0.8883 0.8869 0.9026 0.9245
50x10 0.7240 0.7420 0.7433 0.8061
50x20 0.6866 0.7205 0.7109 0.8140
100x5 0.7956 0.7932 0.8298 0.8577

100x10 0.7266 0.7458 0.7707 0.8422
100x20 0.6003 0.6454 0.6502 0.7636
200x10 0.7388 0.7420 0.7635 0.7933
200x20 0.5796 0.6396 0.6436 0.7196

of the algorithms is not efficient enough to evolve the population for the smallest problem scales.
We should further investigate this aspect.

The shaking procedure has two additional parameters to be set. To avoid the complexity
of the parameters setting, we set them according to the number of jobs (n). After n generations
without σk being improved, the procedure executes the perturbation based on (n/10) insert-based
movements.



98

MK MK-LR MK-SH all
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MEDA/D-MK configurations

a
v
e

ra
g

e
 h

y
p

e
rv

o
lu

m
e

(a) 50x10

MK MK-LR MK-SH all
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MEDA/D-MK configurations

a
v
e

ra
g

e
 h

y
p

e
rv

o
lu

m
e

(b) 100x20

MK MK-LR MK-SH all
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MEDA/D-MK configurations

a
v
e

ra
g

e
 h

y
p

e
rv

o
lu

m
e

(c) 200x20

Figure 7.6: Boxplot of the average HV obtained by 4 MEDA/D-MK configurations: (i) without
both the components (MK), (ii) MEDA/D-MK with LR(n/m) (MK-LR), (iii) MEDA/D-MK
with shaking procedure (MK-SH), and (iv) MEDA/D-MK with the both components (all).

Table 7.8 shows that MEDA/D-MK with the shaking procedure (MEDA/D-MKSH)
produces the best HV results with a significant difference in all the cases, except for 20x5,
and 20x10. Overall, the results show that the search needs an efficient balance between the
exploitation and exploration to keep converging to the true PF while it is able to escape from
local optima.

Figure 7.6 complements these results, where we compare four different MEDA/D-MK
configurations regarding its components to initialize the population and the shaking procedure.
The results indicate that the shaking procedure has a higher positive influence compared to
the constructive LR(n/m) initialization. Besides, the both components applied together really
improved the algorithm.

7.5 Conclusion and Future Work
Recently, EDAs that incorporate distance-based exponential probability models over

permutations have been proposed for solving different single-objective permutation optimization
problems efficiently. In this paper, we have presented, for the first time, a general multi-objective
estimation of distribution algorithm based on decomposition and Kernels of Mallows models
(MEDA/D-MK framework).
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In order to demonstrate the viability of the proposal to solve multi-objective permutation-
based problems, we have applied it on 110 MoPFSP test instances minimizing makespan
and total flow time. The MEDA/D-MK for MoPFSP is enhanced with a constructive PFSP-
specific procedure to initialize the solutions, and a perturbation procedure to control the
exploration/exploitation for finding a diverse set of non-dominated solutions.

The experimental study shows that MEDA/D-MK outperforms the tailored MOEA/D
for MoPFSP. Thus, we have showed the potentiality of using Mallows Models EDA in the context
of the MOEA/D framework. Moreover, the analysis demonstrated that our approach achieved
competitive results compared to the reference sets reported in the literature for the benchmark
considered. For the large-scale test instances, MEDA/D-MK has significantly produced better
approximated PFs using a reasonable number of evaluations and computational cost. Furthermore,
for reproducibility purposes, we have produced our best-known results, being they available at
https://github.com/MuriloZangari/supplementary_results_mopfsp for future comparison to other
approaches.

Departing from the significant results reported in this paper, we state some trends
for future work: (i) the analysis of other permutation distance metrics such as the Ulam
distance [Irurozki et al., 2014b], (ii) investigate the efficiency of our approach to deal with the
MoPFSP involving more objectives (e.g., the total tardiness), and (iii) to solve other permutation
problems, e.g., the multi-objective Quadratic Assign Problem.

In addition, components of our algorithm, such as the Mallows models, could also be
incorporated to recent methods proposed for automatically designing MOEAs. In particular, they
could be included in the AutoMOEA template [Bezerra et al., 2016], a recent component-wise
design of multi-objective algorithms, which is able to combine automatically different procedures
and components, creating novel MOEA algorithms.
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Chapter 8

Final considerations

In this thesis, we have proposed hybrid metaheuristics for solving MCOPs. Our
frameworks are considered MOEA/D variants because they follow the main guidelines from
MOEA/D, e.g., the decomposition of the problem at hand into a number of scalar single-objective
subproblems, and the use of the neighborhood concept to evolve the subproblems in a collaborative
manner. We have instantiated different models (metaheuristics) as the variation step in MOEA/D,
and we evaluated the potentiality of using these models instead of crossover andmutation. Further,
for each kind of problem addressed, we have incorporated a number of design modifications into
the framework aiming to improve their search ability, and thus achieving better results than the
state-of-the-art.

Depending on the problem at hand, one model can be more suitable than the others.
We have distinguished our proposal into three frameworks: (i) the MOEA/D-BACO, which we
have applied solve the mUBQP, (ii) the MOEA/D-GM, which is able to instantiate different
probabilistic models, including graphical models, for solving complex (e.g., deceptive) problems
with binary representation where, usually, traditional genetic operators fail to efficiently solve
them, and (iii) the MEDA/D-MK which is proposed for solving multi-objective permutation
problems.

The MOEA/D-BACO framework was firstly proposed to solve any MCOP with binary
representation. We have evaluated it on several mUBQP large-scale test instances. We have
also included the components (i) mutation-like effect, (ii) a diversity preserving mechanism, and
(iii) the varied neighborhood size to improve the algorithm search ability. The experimental
results show that MOEA/D-BACO significantly outperforms the MOEA/D in most of the test
instances. Moreover, we have evaluated the impact of using the mUBQP specific local search
within MOEA/D-BACO. We have also compared our proposal to a set of best-known results
for the benchmark considered. The results show the potentiality of our approach to solve the
problem which is able to balance the exploration vs. exploitation.

The MOEA/D-GM framework has been proposed as a general MOEA/D extension
able to instantiate well-known probabilistic models from EDAs. In the MOEA/D-GM, we can
instantiate both univariate and multivariate probabilistic models for each scalar optimization
subproblem. To validate the introduced framework, an experimental study was conducted
on a multi-objective version of the deceptive function Trap5. The results indicate that the
MOEA/D-Tree instantiation, in which tree models are learned from the matrices of mutual
information between the variables, is able to capture the structure of the problem, and thus
outperforming the MOEA/D with univariate models. However, for solving the mUBQP, the
framework using the univariate models, such as PBIL, outperforms the MOEA/D-Tree.
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Finally, the MEDA/D-MK is a novel general framework proposed to solve any multi-
objective permutation-based optimization problem. In order to demonstrate the validity of
the MEDA/D-MK, we applied it to solve the MoPFSP. The results show that MEDA/D-MK
outperforms theMOEA/D variant specially tailored for theMoPFSP. Furthermore, our approach is
able to outperform the best-known approximated PFs reported in the literature for the benchmark
considered.

Overall, we show that the MOEA/D guidelines hybridized to other metaheuristics (e.g.,
that incorporates probabilistic models) is a powerful strategy for solving MCOPs.

We have distinguished our contributions in different papers. The complete list of paper
is as follows:

Publications in Conferences:

1. [Zangari e Pozo, 2014a] Parallel MOEA/D-ACO on GPU. In Advances in Artificial Intelli-
gence (IBERAMIA), pages 405–417. Springer (2014).

2. [Zangari e Pozo, 2014b] A GPU Implementation of MOEA/D-ACO for the multi-objective
Traveling Salesman Problem. In Brazilian Conference on Intelligent Systems (BRACIS)
pages 324–329. IEEE (2014).

3. [Zangari e Pozo, 2015] Multi-objective Binary ACO for Unconstrained Binary Quadratic
Programming. In Proceedings of the Brazilian Conference on Intelligent Systems (BRACIS),
pages 86–91. IEEE (2015).

4. [Zangari et al., 2015a] PBIL: un mismo nombre para distintos algoritmos. Un caso de
estudio sobre un problema de optimización multi-objetivo. In Proceedings of the Spanish
Asociation in Artificial Inteligence (CAEPIA), pages 283-295, Albacete, Spain (2015).

5. [Zangari et al., 2016b] On the design of hard mUBQP instances. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pages 421–428, New York,
NY, USA. ACM (2016)

Publication is Journals:

1. [Zangari et al., 2017] Not all PBILs are the same: Unveiling the different learning mech-
anism of PBIL variants. Submitted for publication. In Applied Soft Computing, pages
88-96, volume 53, (2017).

Accepted for publication in journals:

1. [Zangari et al., 2016a] A Decomposition-based Binary ACO algorithm for the multi-
objective UBQP. Accept for publication in Neurocomputing. (2016)

Technical Report:

1. [Zangari et al., 2015b] MOEA/D-GM: Using Probabilistic Graphical Models in MOEA/D
for solving Combinatorial Optimization Problems. Technical Report arXiv:1511.05625,
Department of Computer Science and Artificial Intelligence, University of the Basque
Country (2015)

Under revision:

1. Multi-objective Decomposition-based Mallows Models Estimation of Distribution Algo-
rithm. A case of study for Permutation Flowshop Scheduling Problem. Submitted for
publication. (2016).
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8.1 Limitations
As might be expected, we have faced some limitations during our research. For instance,

the shortage of source codes of the state-of-the-art algorithms. The availability of the source
codes is fundamental to investigate the efficiency of a new approach. We have eliminated the
possibility of implementing various algorithms due to our time constraint. In fact, one of the
major shortcomings in our area of research is the efficient integration of algorithms, problems,
and results to facilitate further investigations. Besides, we make our best results available for
future research.

As Blum et al. discussed in [Blum et al., 2011], one of the main arguments in favor
of metaheuristics has always been their generality. However, over time, the focus of several
researches in metaheuristics and their applications has shifted towards their performance, at
the cost of loosing generality. The generalization of metaheuristics to solve single-objective,
multi-objective and many-objective optimization problems on discrete and continuous domain is
a difficult task, and the efforts to overcome this issue is an important research direction.

8.2 Future work
As future work, we have numerous possibilities. The main future work is to investigate

our MOEA/D variants to solve other problems. We can analyze MOEA/D-BACO and MOEA/D-
GM to solve other combinatorial problems with binary representation, and MEDA/D-MK to
solve other problems based permutation, such as the quadratic assignment problem.

Furthermore, the hyper-heuristics concepts can be used to improve the generalization
of the approaches, so that the framework can dynamically (automatically) set different design
choices of the MOEA/D, such as the neighborhood size for selection and update, the maximum
number of replacements by a new solution in the update step, to set the most appropriated
scalarizing function for a given problem, as well as the application of the different models (in
this case, each subproblem could apply diverse models throughout the generations intending to
find the best one).

Another relevant aspect is the use of more complex models in detriment of the
computational cost. Therefore, parallel designs could be a subject of matter. Moreover, we intend
to make available our source codes to the research community.
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Appendix A

MoPFSP: Supplementary results

This appendix presents additional studies regarding the MoPFSP minimizing three
combinations of objectives: (i) makespan and total flowtime (F (σ) = {Cmax,TFT }), (ii)
makespan and total tardiness (F (σ) = {Cmax,TT }), and (iii) makespan, total flowtime and total
tardiness (F (σ) = {Cmax,TFT,TT }).

A.1 Results on F (σ) = {Cmax,TFT }

Table A.1 (columns 2 and 3) presents the average HV results obtained by MOEA/D and
MEDA/D-MK using theWeighted Sum scalarizing function after n× 1000 generations on the 110
Taillard test instances (Ta_001,...,Ta_110) optimizing the objectives Cmax and TFT . The best
ranked results according to the Kruskal-Wallis test (at 5% of significance level) are highlighted in
boldface.

The results show that, overall, MEDA/D-MK significantly outperforms MOEA/D in 84
of the 110 test instances. The algorithms does not have a significant difference mainly for the
largest test instances (Ta_91,...,Ta_110). These results complement those in Section 7.4.3.

Table A.1: Average HV results for the combination of objectives (i) F (σ) = {Cmax,TFT }
(columns 2 and 3) and (ii) F (σ) = {Cmax,TT } (columns 4 and 5)

Instance F (σ) = {Cmax,TFT } F (σ) = {Cmax,TT }

MOEA/D MEDA/D-MK MOEA/D MEDA/D-MK

Ta_001 0.8722 0.9276 0.7710 0.7712
Ta_002 0.7280 0.7743 0.6841 0.7457
Ta_003 0.7111 0.8775 0.7500 0.7794
Ta_004 0.7725 0.8343 0.8103 0.8434
Ta_005 0.7440 0.7560 0.7601 0.7744
Ta_006 0.7344 0.7440 0.5544 0.5790
Ta_007 0.7312 0.7681 0.7054 0.7633
Ta_008 0.8256 0.9002 0.9185 0.9521
Ta_009 0.6999 0.7811 0.7990 0.8339
Ta_010 0.7637 0.8116 0.7805 0.8241
Ta_011 0.6409 0.7531 0.6541 0.7140
Ta_012 0.6316 0.7510 0.7532 0.7806
Ta_013 0.6858 0.8189 0.7859 0.8212
Ta_014 0.7121 0.8012 0.7538 0.7947
Ta_015 0.6966 0.8572 0.7503 0.8235
Ta_016 0.7929 0.8553 0.6653 0.6959

Continued on next page
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Table A.1 – continued from previous page

Instance F (σ) = {Cmax,TFT } F (σ) = {Cmax,TT }

MOEA/D MEDA/D-MK MOEA/D MEDA/D-MK

Ta_017 0.7704 0.7828 0.5157 0.6287
Ta_018 0.8037 0.9035 0.6462 0.8618
Ta_019 0.7302 0.8448 0.7773 0.8156
Ta_020 0.7432 0.8248 0.7602 0.8032
Ta_021 0.5342 0.6794 0.5897 0.6227
Ta_022 0.6870 0.8121 0.7724 0.7981
Ta_023 0.6576 0.7370 0.6500 0.7731
Ta_024 0.8710 0.9234 0.5068 0.7317
Ta_025 0.6588 0.6884 0.7434 0.7923
Ta_026 0.7108 0.7780 0.7878 0.8097
Ta_027 0.7194 0.8262 0.6791 0.7716
Ta_028 0.6665 0.7503 0.7007 0.7386
Ta_029 0.7037 0.8000 0.6199 0.6732
Ta_030 0.6306 0.7723 0.5472 0.5910
Ta_031 0.8858 0.9184 0.6885 0.8953
Ta_032 0.6935 0.7586 0.6301 0.8055
Ta_033 0.7723 0.8501 0.7868 0.9267
Ta_034 0.6467 0.7921 0.7117 0.9073
Ta_035 0.7974 0.9369 0.7775 0.9700
Ta_036 0.6348 0.7352 0.7591 0.9082
Ta_037 0.7619 0.8460 0.7663 0.9200
Ta_038 0.8657 0.9227 0.8135 0.9326
Ta_039 0.5733 0.6997 0.6947 0.8708
Ta_040 0.7914 0.9082 0.7672 0.9360
Ta_041 0.6197 0.6974 0.6700 0.8038
Ta_042 0.5198 0.6344 0.7388 0.8651
Ta_043 0.5331 0.6028 0.6515 0.7902
Ta_044 0.6896 0.7347 0.6720 0.8599
Ta_045 0.6030 0.6706 0.6521 0.7890
Ta_046 0.5808 0.6557 0.7041 0.8269
Ta_047 0.6336 0.6745 0.7617 0.8838
Ta_048 0.5948 0.6572 0.7123 0.8676
Ta_049 0.6390 0.6996 0.7368 0.8248
Ta_050 0.5243 0.6008 0.6575 0.7750
Ta_051 0.5699 0.6622 0.7242 0.8128
Ta_052 0.5726 0.5603 0.6625 0.7539
Ta_053 0.5645 0.6671 0.7491 0.8286
Ta_054 0.5419 0.6592 0.7501 0.8488
Ta_055 0.4919 0.6031 0.6424 0.7370
Ta_056 0.5583 0.6611 0.7886 0.8438
Ta_057 0.4625 0.6252 0.7588 0.8279
Ta_058 0.6331 0.7067 0.6989 0.8062
Ta_059 0.6033 0.6560 0.7400 0.7902
Ta_060 0.7125 0.7789 0.8117 0.8630
Ta_061 0.7784 0.8738 0.7713 0.9056
Ta_062 0.8442 0.8611 0.4999 0.7537
Ta_063 0.6537 0.7101 0.7235 0.8420
Ta_064 0.7838 0.8806 0.7210 0.8814
Ta_065 0.8312 0.9007 0.8692 0.9552
Ta_066 0.7369 0.7679 0.6499 0.8267
Ta_067 0.6861 0.7993 0.6383 0.8148
Ta_068 0.5837 0.7111 0.5558 0.7504
Ta_069 0.6609 0.7227 0.3585 0.5974

Continued on next page
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Table A.1 – continued from previous page

Instance F (σ) = {Cmax,TFT } F (σ) = {Cmax,TT }

MOEA/D MEDA/D-MK MOEA/D MEDA/D-MK

Ta_070 0.7112 0.8134 0.7452 0.8835
Ta_071 0.5507 0.6120 0.7036 0.8297
Ta_072 0.6600 0.6898 0.7179 0.8391
Ta_073 0.5284 0.6124 0.5891 0.7553
Ta_074 0.5164 0.5960 0.5913 0.7979
Ta_075 0.5193 0.6018 0.8108 0.8997
Ta_076 0.4833 0.6150 0.6005 0.7764
Ta_077 0.4942 0.5613 0.6583 0.7497
Ta_078 0.4561 0.5719 0.5946 0.7374
Ta_079 0.4555 0.5279 0.6623 0.7882
Ta_080 0.6270 0.7019 0.6715 0.7915
Ta_081 0.4645 0.5407 0.7388 0.8388
Ta_082 0.3876 0.4958 0.6542 0.7837
Ta_083 0.4457 0.5372 0.6118 0.7923
Ta_084 0.4276 0.4915 0.6582 0.7567
Ta_085 0.4838 0.5634 0.5703 0.7780
Ta_086 0.4672 0.5101 0.7132 0.8303
Ta_087 0.4670 0.4891 0.5440 0.7075
Ta_088 0.4555 0.5317 0.5516 0.7598
Ta_089 0.5800 0.5665 0.6221 0.8185
Ta_090 0.6115 0.6435 0.6975 0.7772
Ta_091 0.5965 0.6934 0.7151 0.7666
Ta_092 0.5612 0.5728 0.7555 0.8267
Ta_093 0.5798 0.5997 0.7060 0.7866
Ta_094 0.6793 0.6512 0.6906 0.7868
Ta_095 0.4965 0.5393 0.7411 0.8022
Ta_096 0.5846 0.6101 0.7481 0.8382
Ta_097 0.5687 0.6090 0.7962 0.8534
Ta_098 0.4535 0.5066 0.7382 0.8272
Ta_099 0.5325 0.6161 0.6868 0.8280
Ta_100 0.4528 0.4627 0.5209 0.5813
Ta_101 0.4480 0.4422 0.6384 0.7212
Ta_102 0.4035 0.4713 0.5535 0.7060
Ta_103 0.4708 0.5062 0.6180 0.7808
Ta_104 0.4473 0.5238 0.5744 0.6852
Ta_105 0.3811 0.4438 0.5083 0.6337
Ta_106 0.4561 0.4811 0.6375 0.6969
Ta_107 0.3703 0.4182 0.6328 0.7193
Ta_108 0.4738 0.4960 0.5397 0.6843
Ta_109 0.3492 0.4051 0.6439 0.7299
Ta_110 0.4468 0.4520 0.5100 0.6939

The execution time analysis was performed on a PC with Intel Xeon E5-620 2.4 GHz
processor and 12 GB memory. Table A.2 indicates that MEDA/D-MK consumes more CPU time
than MOEA/D. This is because the Mallows Model EDA components, learning and sampling
steps, involve more computational overhead than crossover and mutation operators. Regarding
that, the computational cost of the sampling in the MEDA/D-MK is O(n2). This should explain
why the difference between both algorithms increases as the problem size increases.
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Table A.2: Average CPU time (in seconds) used by MOEA/DT and MEDA/DT

Taillard Instance MOEA/D MEDA/D-MK
mean std ved mean std dev

Ta_001 73.05 8.83 93.15 2.84
Ta_002 72.19 6.59 92.33 1.46
Ta_003 79.95 4.34 91.09 4.05
Ta_004 73.04 5.00 92.89 3.45
Ta_005 74.96 3.14 94.97 4.18
Ta_006 75.73 7.71 91.86 2.42
Ta_007 79.01 3.29 93.39 2.14
Ta_008 72.07 5.40 91.31 2.20
Ta_009 71.93 5.60 93.37 4.30
Ta_010 72.37 4.42 92.02 3.78
Ta_011 89.59 6.89 101.42 1.88
Ta_012 83.29 5.76 102.44 3.13
Ta_013 81.65 3.54 96.30 5.18
Ta_014 84.19 1.60 103.58 2.19
Ta_015 85.60 2.93 103.31 1.50
Ta_016 87.04 3.31 102.10 2.60
Ta_017 87.01 4.94 97.61 3.42
Ta_018 83.59 1.42 98.93 1.70
Ta_019 80.57 3.50 103.25 2.09
Ta_020 88.45 2.90 101.50 2.23
Ta_021 100.51 3.47 117.04 3.62
Ta_022 99.47 2.23 118.18 1.90
Ta_023 100.36 3.12 121.18 2.53
Ta_024 101.67 2.25 117.09 2.45
Ta_025 105.48 3.75 117.78 2.34
Ta_026 103.58 2.74 115.64 2.25
Ta_027 101.43 2.56 119.57 3.51
Ta_028 99.38 4.37 118.92 3.08
Ta_029 100.44 4.75 118.43 2.62
Ta_030 105.53 3.81 116.99 2.37
Ta_031 217.35 6.43 303.42 5.98
Ta_032 228.03 5.97 312.20 2.89
Ta_033 224.24 6.10 307.18 7.81
Ta_034 221.43 5.89 305.71 4.49
Ta_035 223.08 3.24 309.09 4.70
Ta_036 225.31 6.49 310.94 3.52
Ta_037 222.35 3.13 306.17 4.75
Ta_038 221.72 7.12 309.08 4.10
Ta_039 228.40 6.00 305.58 8.07
Ta_040 223.07 2.63 305.41 4.81
Ta_041 271.91 3.51 368.68 4.41
Ta_042 279.66 6.22 366.26 3.21
Ta_043 277.87 2.01 366.54 2.19
Ta_044 278.06 5.95 366.01 6.25
Ta_045 278.01 4.37 366.33 4.98
Ta_046 282.20 9.51 369.12 5.05
Ta_047 275.67 4.01 362.17 4.25
Ta_048 279.91 3.59 368.40 2.97
Ta_049 279.47 4.64 367.16 4.00
Ta_050 276.11 9.23 367.18 8.11
Ta_051 389.90 3.72 480.24 2.74
Ta_052 393.41 3.12 482.20 2.18

Continued on next page
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Table A.2 – continued from previous page

Taillard Instance MOEA/D MEDA/D-MK
mean std ved mean std dev

Ta_053 389.67 4.35 478.65 2.48
Ta_054 389.59 4.45 476.73 3.43
Ta_055 399.29 5.85 480.22 4.41
Ta_056 394.70 5.63 481.69 5.48
Ta_057 394.38 5.64 477.36 6.18
Ta_058 392.12 5.31 477.43 3.46
Ta_059 396.09 7.70 478.83 4.29
Ta_060 391.73 3.22 477.30 8.15
Ta_061 548.77 6.86 892.75 9.54
Ta_062 564.76 14.99 880.62 9.46
Ta_063 547.39 6.97 883.68 8.30
Ta_064 549.89 8.52 892.55 13.22
Ta_065 561.64 12.25 867.95 10.37
Ta_066 552.11 5.90 869.71 12.62
Ta_067 549.52 5.24 889.50 5.13
Ta_068 557.51 9.90 874.56 15.09
Ta_069 547.54 6.34 884.94 5.10
Ta_070 550.07 9.65 880.50 3.91
Ta_071 775.07 6.93 1118.42 8.04
Ta_072 764.39 7.49 1106.47 6.80
Ta_073 782.00 7.33 1114.78 14.42
Ta_074 762.59 5.81 1114.07 8.07
Ta_075 787.13 9.43 1127.19 5.05
Ta_076 774.33 6.09 1110.00 6.41
Ta_077 772.64 6.65 1125.14 8.99
Ta_078 778.16 4.80 1119.39 10.38
Ta_079 780.24 5.43 1124.94 10.05
Ta_080 765.56 3.09 1123.50 5.14
Ta_081 1241.83 8.96 1586.35 9.08
Ta_082 1242.28 4.55 1586.54 9.09
Ta_083 1243.11 5.30 1598.08 9.31
Ta_084 1232.42 7.14 1573.39 7.75
Ta_085 1251.57 5.90 1589.51 10.26
Ta_086 1246.92 9.88 1585.96 6.85
Ta_087 1232.00 6.84 1575.23 10.91
Ta_088 1253.64 6.89 1593.02 9.83
Ta_089 1245.93 6.68 1586.87 11.24
Ta_090 1241.25 8.28 1587.45 8.55
Ta_091 2491.88 27.21 3789.63 25.26
Ta_092 2477.69 15.23 3760.98 22.98
Ta_093 2492.70 8.00 3786.04 14.15
Ta_094 2457.41 10.34 3787.36 41.81
Ta_095 2482.50 17.15 3749.81 22.27
Ta_096 2480.92 6.24 3739.61 13.52
Ta_097 2461.74 16.93 3792.48 24.49
Ta_098 2471.82 8.56 3731.21 19.35
Ta_099 2450.06 11.49 3724.39 11.58
Ta_100 2469.99 15.26 3754.15 19.43
Ta_101 4293.12 15.47 5639.96 24.15
Ta_102 4311.73 34.07 5584.47 20.77
Ta_103 4286.46 32.44 5571.16 20.14
Ta_104 4244.79 20.87 5544.95 32.86
Ta_105 4295.91 15.80 5600.41 25.71

Continued on next page
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Table A.2 – continued from previous page

Taillard Instance MOEA/D MEDA/D-MK
mean std ved mean std dev

Ta_106 4289.32 12.25 5578.47 23.18
Ta_107 4260.43 11.62 5582.55 15.94
Ta_108 4313.17 33.16 5597.05 28.62
Ta_109 4294.80 13.40 5614.86 29.65
Ta_110 3501.59 607.55 5562.85 23.67

We have produced our reference sets (best-known) for each test instance. Table A.3
presents the HV results obtained by MEDA/D-MK compared to the reference best-known
sets from Dubois-Lacoste et al. (TP+PLS) [Dubois-Lacoste et al., 2011] and Minella et. al
[Minella et al., 2011] for the 110 Taillard test instances optimizing the objectives Total Flowtime
(TFT), and the makespan (Cmax).

Table A.3: Hypervolume obtained from the reference sets

Taillard Instance TP+PLS Minella et al. MEDA/D-MK

20 × 5
Ta_001 0.436 0.436 0.436
Ta_002 0.492 0.464 0.461
Ta_003 0.899 0.894 0.895
Ta_004 0.861 0.859 0.849
Ta_005 0.629 0.644 0.644
Ta_006 0.589 0.589 0.576
Ta_007 0.816 0.792 0.792
Ta_008 0.884 0.882 0.882
Ta_009 0.785 0.782 0.785
Ta_010 0.658 0.659 0.659
20 × 10
Ta_011 0.726 0.739 0.739
Ta_012 0.766 0.772 0.774
Ta_013 0.845 0.846 0.847
Ta_014 0.787 0.775 0.789
Ta_015 0.612 0.613 0.614
Ta_016 0.850 0.845 0.844
Ta_017 0.713 0.713 0.713
Ta_018 0.840 0.828 0.840
Ta_019 0.943 0.943 0.943
Ta_020 0.853 0.849 0.854
20 × 20
Ta_021 0.643 0.628 0.619
Ta_022 0.773 0.779 0.778
Ta_023 0.808 0.807 0.809
Ta_024 0.874 0.864 0.874
Ta_025 0.821 0.818 0.821
Ta_026 0.867 0.878 0.876
Ta_027 0.827 0.804 0.822
Ta_028 0.824 0.823 0.826
Ta_029 0.767 0.767 0.767
Ta_030 0.764 0.777 0.781
50 × 5
Ta_031 0.954 0.771 0.864
Ta_032 0.953 0.865 0.911
Ta_033 0.922 0.806 0.876

Continued on next page
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Table A.3 – continued from previous page

Taillard Instance TP+PLS Minella et al. MEDA/D-MK

Ta_034 0.976 0.893 0.942
Ta_035 0.985 0.910 0.970
Ta_036 0.953 0.909 0.936
Ta_037 0.832 0.760 0.752
Ta_038 0.904 0.782 0.851
Ta_039 0.927 0.880 0.894
Ta_040 0.964 0.788 0.912
50 × 10
Ta_041 0.919 0.702 0.827
Ta_042 0.802 0.674 0.764
Ta_043 0.866 0.696 0.832
Ta_044 0.960 0.788 0.923
Ta_045 0.890 0.649 0.855
Ta_046 0.874 0.686 0.866
Ta_047 0.906 0.731 0.864
Ta_048 0.879 0.714 0.770
Ta_049 0.896 0.707 0.794
Ta_050 0.912 0.737 0.871
50 × 20
Ta_051 0.906 0.615 0.832
Ta_052 0.852 0.594 0.816
Ta_053 0.890 0.612 0.825
Ta_054 0.863 0.656 0.810
Ta_055 0.778 0.516 0.688
Ta_056 0.902 0.708 0.817
Ta_057 0.888 0.616 0.801
Ta_058 0.918 0.726 0.857
Ta_059 0.813 0.585 0.705
Ta_060 0.913 0.695 0.860
100 × 5
Ta_061 0.978 0.749 0.925
Ta_062 0.985 0.880 0.843
Ta_063 0.970 0.835 0.884
Ta_064 0.964 0.877 0.966
Ta_065 0.992 0.888 0.992
Ta_066 0.988 0.896 0.932
Ta_067 0.878 0.654 0.937
Ta_068 0.935 0.842 0.946
Ta_069 0.911 0.664 0.753
Ta_070 0.962 0.856 0.943

100 × 10
Ta_071 0.909 0.762 0.844
Ta_072 0.933 0.779 0.856
Ta_073 0.965 0.766 0.851
Ta_074 0.819 0.564 0.804
Ta_075 0.942 0.764 0.793
Ta_076 0.976 0.755 0.905
Ta_077 0.898 0.745 0.770
Ta_078 0.840 0.679 0.844
Ta_079 0.892 0.708 0.857
Ta_080 0.857 0.610 0.620

100 × 20
Ta_081 0.904 0.692 0.933
Ta_082 0.859 0.534 0.784

Continued on next page
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Table A.3 – continued from previous page

Taillard Instance TP+PLS Minella et al. MEDA/D-MK

Ta_083 0.893 0.586 0.840
Ta_084 0.908 0.652 0.827
Ta_085 0.879 0.540 0.847
Ta_086 0.862 0.476 0.826
Ta_087 0.811 0.484 0.802
Ta_088 0.863 0.556 0.892
Ta_089 0.906 0.598 0.853
Ta_090 0.867 0.547 0.843

200 × 10
Ta_091 0.854 0.622 0.947
Ta_092 0.823 0.715 0.903
Ta_093 0.713 0.637 0.793
Ta_094 0.767 0.734 0.875
Ta_095 0.901 0.750 0.967
Ta_096 0.896 0.768 0.899
Ta_097 0.855 0.718 0.827
Ta_098 0.836 0.767 0.882
Ta_099 0.911 0.818 0.962
Ta_100 0.714 0.679 0.758

200 × 20
Ta_101 0.820 0.611 0.918
Ta_102 0.792 0.527 0.882
Ta_103 0.845 0.576 0.901
Ta_104 0.805 0.580 0.850
Ta_105 0.775 0.562 0.782
Ta_106 0.802 0.560 0.914
Ta_107 0.740 0.450 0.859
Ta_108 0.873 0.564 0.769
Ta_109 0.862 0.632 0.918
Ta_110 0.858 0.525 0.845

The results show thatMEDA/D-MK achieves competitive results. Our approach achieves
the best results, in most of the cases, for the groups 20 × 10, 200 × 10, and 200 × 20. The
best-known sets from [Dubois-Lacoste et al., 2011] achieves the best HV values for 50 and 100
jobs. Our best-known approximated Pareto fronts are available on-line1 for future comparison to
other approaches.

A.2 Results on F (σ) = {Cmax,TFT,TT }

In this section, we present the experimental study minimizing three PFSP objectives
simultaneously. Unfortunately, for this study, a set of best-known approximated PFs for
comparison is not available. Therefore, we have compared only MOEA/D and MEDA/D-MK
using three different scalarizing function approaches (theWeighted Sum, the Tchebycheff, and the
PBI). We set the penalty parameter from PBI to θPBI = 5.0. It means that the PBI scalarizing
function has a sharp edge, which leads to slower convergence towards the reference point. The
ordering of the scalarizing functions in favor of diversity in the objective space is: Weighted Sum
< Tchebycheff < PBI 5.0.

Moreover, we set the number of subproblems to N = 231. As the stopping condition,
the algorithms stop after MaxGen = n × 1000 generations. The remaining parameters are set

1Available at at https://github.com/MuriloZangari/supplementary_results_mopfsp



125

as in Chapter 7, i.e., neighborhood size T = 10, probability to sample the central permutation
P(σ0) = 0.8, and maximum number of updates by a new solution nr = 2.

Table A.4: Average normalized HV results for F (σ) = {Cmax,TFT,TT }

Instance MOEA/D MEDA/D-MK
WS TC PBI WS TC PBI

Ta_001 0.8958 0.8704 0.7561 0.8959 0.886 0.8164
Ta_002 0.8583 0.9011 0.7853 0.8945 0.9120 0.7964
Ta_003 0.8427 0.8589 0.5494 0.8733 0.8655 0.6341
Ta_004 0.8008 0.8201 0.6316 0.8307 0.8257 0.6942
Ta_005 0.7953 0.8178 0.6369 0.8217 0.8171 0.6638
Ta_006 0.7212 0.7512 0.6167 0.7395 0.7613 0.6507
Ta_007 0.8967 0.9142 0.7714 0.9536 0.9493 0.7981
Ta_008 0.9274 0.9482 0.8108 0.9584 0.9515 0.9118
Ta_009 0.858 0.8835 0.6884 0.8976 0.8888 0.7479
Ta_010 0.7905 0.8096 0.6622 0.8244 0.8136 0.6778
Ta_011 0.9109 0.9268 0.6591 0.9305 0.9271 0.7458
Ta_012 0.7667 0.7899 0.5456 0.7949 0.7814 0.5977
Ta_013 0.8292 0.8501 0.6782 0.8597 0.8527 0.7348
Ta_014 0.7898 0.8279 0.6184 0.8328 0.8229 0.6835
Ta_015 0.8909 0.9079 0.7286 0.9282 0.9219 0.7763
Ta_016 0.7755 0.8021 0.5598 0.7955 0.8004 0.5373
Ta_017 0.7449 0.8179 0.6298 0.8145 0.8171 0.7027
Ta_018 0.859 0.9098 0.7561 0.9198 0.9185 0.8698
Ta_019 0.8298 0.8619 0.6174 0.8569 0.8651 0.6609
Ta_020 0.7998 0.8379 0.6284 0.8551 0.8440 0.7115
Ta_021 0.739 0.788 0.7585 0.7835 0.8490 0.7975
Ta_022 0.9094 0.9176 0.7326 0.9184 0.9174 0.7427
Ta_023 0.9646 0.9731 0.9339 0.9880 0.9871 0.9464
Ta_024 0.7199 0.772 0.7614 0.8526 0.8173 0.8564
Ta_025 0.7548 0.7810 0.555 0.7930 0.7846 0.6332
Ta_026 0.799 0.8121 0.6053 0.8162 0.8113 0.5969
Ta_027 0.8764 0.8956 0.6727 0.9121 0.8968 0.7688
Ta_028 0.8188 0.8386 0.7204 0.8494 0.8456 0.7592
Ta_029 0.8151 0.8422 0.7443 0.8400 0.8451 0.8012
Ta_030 0.8621 0.9183 0.862 0.8901 0.9404 0.9225
Ta_031 0.8791 0.8622 0.8344 0.9379 0.9248 0.9111
Ta_032 0.7892 0.7996 0.719 0.8976 0.8742 0.7941
Ta_033 0.8611 0.8172 0.7712 0.9498 0.8764 0.8399
Ta_034 0.8424 0.8588 0.7655 0.9474 0.9151 0.8852
Ta_035 0.8724 0.8197 0.8126 0.9773 0.9338 0.9113
Ta_036 0.8438 0.7778 0.7417 0.9481 0.8722 0.8445
Ta_037 0.8126 0.7772 0.7413 0.9255 0.8761 0.8587
Ta_038 0.8279 0.8222 0.8077 0.8732 0.8848 0.8634
Ta_039 0.8062 0.7982 0.7147 0.9126 0.8657 0.8223
Ta_040 0.891 0.8923 0.853 0.9699 0.9458 0.9287
Ta_041 0.7262 0.7391 0.5914 0.8397 0.7969 0.6701
Ta_042 0.7342 0.7237 0.5858 0.8166 0.7489 0.6719
Ta_043 0.6842 0.6927 0.524 0.8035 0.7172 0.6193
Ta_044 0.7524 0.764 0.5958 0.8674 0.8114 0.6958
Ta_045 0.7108 0.7169 0.56 0.8194 0.7324 0.6678
Ta_046 0.7697 0.7726 0.658 0.8528 0.8061 0.7461
Ta_047 0.7906 0.7812 0.6742 0.8779 0.793 0.7565
Ta_048 0.7912 0.7939 0.6488 0.8731 0.8087 0.7121
Ta_049 0.7356 0.7761 0.6202 0.8324 0.7854 0.7216

Continued on next page
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Table A.4 – continued from previous page

Instance MOEA/D MEDA/D-MK
WS TC PBI WS TC PBI

Ta_050 0.7103 0.7125 0.5945 0.8165 0.7301 0.6702
Ta_051 0.782 0.7639 0.5679 0.8475 0.7632 0.6532
Ta_052 0.7232 0.7108 0.4783 0.7952 0.7072 0.5392
Ta_053 0.8005 0.7815 0.5335 0.8528 0.7751 0.6247
Ta_054 0.7761 0.7716 0.5538 0.8422 0.7633 0.6235
Ta_055 0.6756 0.6955 0.4659 0.7511 0.6868 0.5378
Ta_056 0.8052 0.7945 0.5792 0.8597 0.7889 0.6424
Ta_057 0.779 0.7717 0.584 0.8340 0.775 0.6509
Ta_058 0.7676 0.7786 0.5573 0.8402 0.7784 0.6339
Ta_059 0.7366 0.7352 0.556 0.8293 0.7458 0.6624
Ta_060 0.8145 0.8102 0.6611 0.8637 0.8003 0.7052
Ta_061 0.9532 0.9044 0.8878 0.9859 0.9515 0.9552
Ta_062 0.888 0.8804 0.8332 0.9152 0.9074 0.8932
Ta_063 0.8269 0.8475 0.7576 0.873 0.8998 0.8069
Ta_064 0.9048 0.876 0.8372 0.9502 0.9205 0.8918
Ta_065 0.93 0.9124 0.8547 0.9739 0.95 0.9092
Ta_066 0.8339 0.8787 0.774 0.9111 0.9155 0.8333
Ta_067 0.8619 0.8537 0.8098 0.9234 0.9065 0.8599
Ta_068 0.8221 0.7995 0.7509 0.8852 0.8856 0.8147
Ta_069 0.8186 0.8613 0.779 0.8678 0.9192 0.8213
Ta_070 0.8851 0.8554 0.8308 0.9335 0.9124 0.8822
Ta_071 0.7547 0.7192 0.6172 0.8092 0.7656 0.7046
Ta_072 0.8321 0.7799 0.73 0.8818 0.8313 0.7948
Ta_073 0.7848 0.7678 0.6913 0.8293 0.8061 0.761
Ta_074 0.7143 0.6847 0.6227 0.7909 0.7289 0.7066
Ta_075 0.8249 0.7965 0.7099 0.8629 0.8341 0.7535
Ta_076 0.7731 0.7037 0.6857 0.8823 0.7785 0.7712
Ta_077 0.7524 0.7202 0.6817 0.8113 0.786 0.741
Ta_078 0.7322 0.6973 0.6598 0.8135 0.7295 0.731
Ta_079 0.6755 0.6531 0.5921 0.7341 0.7047 0.6697
Ta_080 0.7176 0.7627 0.6828 0.7396 0.8166 0.7144
Ta_081 0.718 0.6596 0.6192 0.8181 0.6901 0.7044
Ta_082 0.7573 0.7004 0.6298 0.8434 0.7318 0.7155
Ta_083 0.6964 0.6292 0.5835 0.7801 0.6559 0.6466
Ta_084 0.7229 0.6448 0.5986 0.7983 0.6746 0.6953
Ta_085 0.7233 0.5937 0.6325 0.8350 0.6388 0.7447
Ta_086 0.7056 0.6395 0.6052 0.8076 0.6586 0.6798
Ta_087 0.6562 0.6264 0.559 0.7912 0.6713 0.6725
Ta_088 0.7079 0.6243 0.6041 0.8260 0.6562 0.7171
Ta_089 0.7631 0.6699 0.6588 0.8670 0.7084 0.7591
Ta_090 0.7698 0.6363 0.6857 0.8457 0.6818 0.7695
Ta_091 0.9723 0.8847 0.8583 0.9844 0.9125 0.8842
Ta_092 0.8669 0.8174 0.783 0.8927 0.8395 0.8135
Ta_093 0.7813 0.7096 0.7037 0.8328 0.7385 0.743
Ta_094 0.7874 0.7674 0.6797 0.8178 0.7742 0.7327
Ta_095 0.8904 0.7473 0.7883 0.9243 0.7859 0.8369
Ta_096 0.9092 0.8364 0.8131 0.9336 0.8711 0.8446
Ta_097 0.8016 0.7903 0.7436 0.8318 0.8471 0.7638
Ta_098 0.8214 0.7509 0.7775 0.8578 0.7763 0.8131
Ta_099 0.864 0.7307 0.7832 0.8894 0.7831 0.8281
Ta_100 0.6234 0.6642 0.5771 0.6666 0.7039 0.6036
Ta_101 0.703 0.586 0.6033 0.7832 0.6049 0.6718
Ta_102 0.7093 0.5391 0.5756 0.7917 0.5814 0.7111

Continued on next page
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Table A.4 – continued from previous page

Instance MOEA/D MEDA/D-MK
WS TC PBI WS TC PBI

Ta_103 0.7223 0.5563 0.6101 0.8216 0.6145 0.7355
Ta_104 0.7434 0.6494 0.6574 0.8390 0.6946 0.738
Ta_105 0.7353 0.6431 0.6234 0.8164 0.6786 0.6713
Ta_106 0.789 0.5981 0.6796 0.8659 0.6293 0.7474
Ta_107 0.776 0.6081 0.6569 0.8477 0.6277 0.7465
Ta_108 0.6859 0.5831 0.6283 0.8095 0.622 0.703
Ta_109 0.7934 0.6391 0.6652 0.8638 0.6759 0.7874
Ta_110 0.7045 0.5889 0.6065 0.8077 0.629 0.7265

The results from Table A.4 show that MEDA/D-MK outperforms MOEA/D in most
of the cases for minimizing three objectives. Moreover, theWeighted Sum keeps being the best
scalarizing function in the context of the decomposition approach for solve the MoPFSP. These
results indicate that the choice of the scalarizing function has a fundamental impact on the
results, which can lead to more convergence or diversity during the search. Moreover, we make
our best-known results available2 for further studies. Moreover, the concept of using multiples
scalarizing functions simultaneously can be investigated in the future.

2https://github.com/MuriloZangari/supplementary_results_mopfsp
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Appendix B

Parallel MOEA/D-ACO on GPU

B.1 Introduction
ACO algorithms are, usually, more expansive than EAs. Due to this parallel ACO

have been investigated over time. Recently, ACO on GPU (Graphic Processing Unit) have been
proposed to solve single-objective problems [Dawson e Stewart, 2013, Delevacq et al., 2013,
Cecilia et al., 2013, Uchida et al., 2012].

In the multi-objective case, some studies have proposed parallel CPU-based
MOACOs [Mora et al., 2013, Mora et al., 2011]. Also, a parallel CPU-based MOEA/D
[Nebro e Durillo, 2010a] was proposed for continuous MOPs. Those studies have not achieved
high speedups due to target hardware. Parallel MOACO algorithms on GPU is a recent and open
research field.

NVIDIA introduced CUDA (Compute Unified Device Architecture), a general purpose
parallel computing platform and programming model for direct execution on GPUs to solve many
complex computational problems in a more efficient way than on a CPU. CUDA1 exposes the
GPU’s massively parallel architecture so parallel code can be written to execute faster than its
optimized sequential counterpart. The success of a GPU approach depends on the nature of the
particular problem and the underlying hardware available.

In this appendix, we describe a parallel implementation of MOEA/D-ACO
[Ke et al., 2013] on GPUwith CUDA, where both stages solution construction and the pheromone
update are parallelized for solving several instances fromMOKP and MOTS. The solution quality
and the speedups are compared to the sequential counterpart with different number of objectives
and subproblems.

B.2 MOEA/D-ACO
MOEA/D-ACO algorithm decomposes a MOP into N single-objective subproblems

by choosing N weight vectors λ1, ..., λN . Subproblem i is associated with weight vector λi and
its objective function is denoted as g(x |λi). The algorithm employs N ants for solving these
single-objective subproblems. Ant i represents the subproblem i. The algorithm has two concepts:
1) neighborhood B(i) (as described for MOEA/D), and 2) groups. The N ants are grouped into
K groups by clustering their corresponding weight vectors. The ants in the same group share
one pheromone matrix which contains the learned information about their position of the Pareto
region. Each group is intended to approximate to a small range of the PF.

1CUDA C Programing Guide v5.5. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
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The algorithm maintains: (I) τ1, ..., τK , where τ j is the current pheromone matrix for
group j, storing its learned knowledge about the sub-region ofPF that it aims at approximating; (II)
η1, ..., ηN , where ηi is the heuristic information matrix for subproblem i, which is predetermined
before the construction solution starts; (III) EP, which is the external archive containing all the
non-dominated solutions found so far.

First, the algorithm generate the N initial solutions, the heuristic information matrices,
and the pheromone information matrices. Then, at each iteration the MOEA/D-ACO executes
the following steps:

1. Generate N solutions according a probabilistic rule;

2. Update EP;

3. Update the pheromone matrices according with the new solutions that were constructed by
ants in group j and have just been added to EP;

4. Check the solutions on the neighborhood and updates the solutions if there is a solution that:
1) is better than its current solutions; 2) has not been used for updating other old solutions.
This mechanism makes collaboration among different ant groups (sharing information).

5. The algorithm stops if a criterion is met.

B.2.1 Parallel MOEA/D-ACO for MOKP
Data structure of Pheromone Matrices: Each candidate solution is a 0-1 n-

Dimensional vector, where n is the number of items. So, the pheromone matrix for group j is
τ j = (τ j

1, ..., τ
j

n ). The approach Max-Min [Stützle e Hoos, 2000] is used, so there are boundaries
to maximum and the minimum value of τ. All the τ j

k is initially with τmax = 1 for all j = 1, ..., K
and k = 1, ..., n.

Heuristic Information matrices: The heuristic information matrix for ant i is ηi =
(ηi

1, ..., η
i
n), where ηi

k is to measure the desirability, learned from the domain knowledge before
the search. The value of kth in ηi for ant i is

ηi
k =

∑m
l=1 λ

i
l pl,k∑m

l=1 wl,k
(B.1)

where pl,k is the profit of item k with the objective l, wl,k is the weight of item k with the objective
l. EP is initialized empty.

Solution Construction: At each subproblem N , the probability of each itemk is
denoted as φk calculated by Equation B.2. The solution vector starts empty, which means that
the n-Dimensional vector starts with 0 in all dimensions. The items are randomly (using roulette
wheel selection) added to the solution one by one, respecting the constraints. The probability is
calculated as follows:

φk =
(τi

k + ∆ × xi
k )α × (ηi

k ) β∑
k∈I φk

(B.2)

where I is the feasible items; τi
k is the pheromone of item k in the subproblem i; ∆ × xi

k is
a private knowledge; ηi

k is the heuristic value of item k in the subproblem i; α, β and ∆ are
control parameters. After all ants have constructed their solutions the EP is updated with the new
solutions. Solutions that are dominated by the new solutions are removed.
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Update the Pheromone Matrices: Let Π be the set of all the new solutions that satisfy:
(a) they were constructed by the ants in group j of the current iteration; (b) they were just added
to EP and (c) in which itemk = 1 in n-Dimensional vector . Then, τ j

k , i.e., the pheromone trail
value of item k for group j, is updated as follows:

τ
j
k := ρτ j

k +
∑
x∈Π

1∑m
l=1

∑n
k=1 plk − g(x |λ j )

(B.3)

where ρ is the persistence rate of the old pheromone trails; plk is the profit of item k on the
knapsack l and g(x |λ j ) is the objective function to subproblem λ j . According to [Ke et al., 2013],
in this update scheme, pheromone matrix τ j stores some statistical information of good solutions
found so far for the task of group j.

B.2.2 Parallel MOEA/D-ACO for MOTSP
Data structure of Pheromone matrices: Each group j has pheromone trail τ j

k,l for a
link between two different cities k and l. The approach Max-Min is also used. All the τk

k,l is
initialized to τmax = 1.

Heuristic Information matrices: Each ant i has an heuristic information value ηi
k,l for

a link between cities k and l. The value of heuristic information are initialized as

ηi
k,l =

1∑m
j=1 λ

i
jc

j
k,l

(B.4)

where m is the number of objectives, c j
k,l is the cost between k and l with respect the objective j.

Solution Construction: Assume that ant i is in group j, and its full-scale current
solution xi = (xi

1, ..., xi
n). Ant i constructs its new solution following the steps:

1) First, the probability of choosing a link is set. For k, l = 1, ..., n set

φk,l = [τi
k,l × In(xi, (k, l)]α (ηi

k,l )
β (B.5)

where α and β are control parameters. φ represents the attractiveness of the link between cities k
and l to ant i. The indicator function In(xi, (k, l)) is equal to 0 if link (k,l) is already in tour xi or
1 otherwise.

2) Ant i first randomly selects a city to start the tour. After, each city is chosen using the
roulette wheel selection. Suppose that its current position is k and it has not completed its tour.
It is chosen city l to visit from C (cities not visited so far), according to the following probability
by the roulette wheel selection:

φk,l∑
s∈C φs,l

(B.6)

3) If the ant has visited all the cities, return its tour.
Pheromone Update: Let Π be the set of all the new solutions that satisfy: (a) were

constructed by the ants in group j in the current iteration; (b) were just added to EP; (c) contain
the link between cities k and l.

The pheromone trail value of link (k,l) for group j, is updated as follows:

τ
j
k,l := ρτ j

k,l +
∑
x∈Π

1
g(x |λi)

(B.7)
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where ρ is the persistence rate of the old pheromone trail. As mentioned, τmax and τmin are used
to limit the range of the pheromone.

B.3 Parallel Implementation of MOEA/D-ACO
This section briefly describes the CUDA architecture and then reports the decisions that

we made to implement a parallel version of MOEA/D-ACO.
CUDA allows developers to run blocks of code, known as kernels, directly on the GPU

using a parallel programming interface and using familiar programming languages. CUDA
parallel programming model has a hierarchy of thread groups called grid, thread blocks and
threads. When a kernel function is invoked, it is executed N times in parallel by N different
CUDA threads. A single grid is organized by multiple blocks, each of which has equal number
of threads.

CUDA threads may access data from multiple memory spaces during their execution.
All threads have access to the same global memory, which is implemented as an off-chip DRAM
of the GPU, and has large capacity, say, 1.5-6 Gigabytes, but its access latency is very long.
Each thread block has shared memory visible to all threads into a block and with the same
lifetime as the thread block. The shared memory is an extremely fast on-chip memory with lower
capacity, say, 16-48 Kbytes. Each thread has its local (private) memory on-chip, called register
memory. Registers are the fastest form of storage and each thread within a block has access to a
set of fast local registers that are placed on-chip. Each thread can only access its own registers;
moreover the number of registers is limited per block, so blocks with many threads will have
fewer registers per thread. The efficient usage of the memory types is a key for CUDA developers
to accelerate applications using GPU. When threads accesses to continuous locations in a row
of a 2-dimensional array (horizontal access), the continuous locations in address space of the
global memory are accessed in the same time (coalesced access). From the structure of the
global memory, the coalesced access maximizes the bandwidth of memory access. On the other
hand, the stride access (vertical access) needs a lot of clock cycles [Uchida et al., 2012].

Cecilia et al., 2013 noted that the existing task-based approach of mapping one ant
per thread is not suited to the GPU, because each thread must store each ant’s memory (data
structures of a solution) and this approach works only for small solutions but quickly becomes
problematic with larger solutions, as there is limited shared memory and registers available
for each block. Based on this issue, the studies [Dawson e Stewart, 2013, Delevacq et al., 2013,
Cecilia et al., 2013] adopted a novel data parallel approach that maps each ant to a block. All
threads within the thread block then work in cooperation to perform a common task such as tour
construction.

The performance on GPU can be drastically affected by the use of a costly math function
like powf() see Eq.(B.2). Fortunately, there are analogous CUDA functions which map directly to
the hardware level (like __powf()), although this comes at the expense of some loss of accuracy.
[Cecilia et al., 2013] shown a comparison using __powf() on an equation which improve the
execution time.

First, the algorithm was implemented sequentially and the parallel implementation was
made based on it. We base our parallelization strategy on the works [Dawson e Stewart, 2013,
Delevacq et al., 2013, Cecilia et al., 2013] and adopt a data-parallel approach mapping each ant
to a thread block. The parallel implementation consists of three CUDA parts (initialization, tour
construction and pheromone update) and one CPU part (EP updated). The EP is updated in host
(sequential) because each new solution needs to be analyzed at time to update the EP. In parallel,
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it would be hard to guarantee correctness even using atomic functions. The details of the three
GPU parts for the MOKP and MOTSP are described as follows.

B.3.1 Parallel approach for the MOKP
Initialization: The algorithm allocates memory and the relevant data structures: N-

Dimensional ants vector (which contains the partial solution, the accumulated profit and its
group), n-Dimensional items vector (which contains the profit and weight of each item) and the
m-Dimensional knapsack vector (which contains the capacity of each knapsack).

The ants need to choose items in probabilistic way using the roulette wheel selection.
The algorithm initializes the random seeds using the CURAND2, which is a library that provides
a pseudorandom number generator on the GPU by NVIDIA.

Solution Construction: Each subproblem i is associated with a thread block. So the N
ants (subproblems) construct their solution in parallel. To improve the performance, the number
of access to global memory is decreased, allocating some structures on shared memory and
register memory. So, the data structure of an ant (solution) is saved on its respective thread
register memory; the items vector is also copied to each thread register memory because they are
accessed many times; and the data structure of m knapsacks are placed on the shared memory
because they are accessed few times. When an ant ends its solution construction the ant is copied
to the N-Dimensional vector allocated on the global memory. In [Delevacq et al., 2013], the
authors report that using the shared memory and registers for these structures would restrict the
algorithm to limited number of ants and this restriction would grow linearly with the problem
size. The N-Dimensional ants vector is copied to host to update the EP.

Pheromone Update: A new kernel is invoked, now each block corresponds to a group
and each thread corresponds to an ant that satisfies Π (see Section B.2.1). The data structure
of items is copied to device again, and placed in shared memory. The first step of the update
is the pheromone evaporation, which is trivial to parallelize as all pheromone matrices are
evaporated by a constant factor ρ. In the second step, each group updates its pheromone matrix in
parallel. For each ant in group j that was added to EP and in which itemk = 1 in n-Dimensional
vector updates the pheromone trail τ j

k following Equation B.3, so we do not need to use atomic
operations to guarantee correctness.

B.3.2 Parallel approach for the MOTSP
Initialization: Give n cities, the city-to-city distances are loaded in an (n × n) matrix

for each objective (recall, dk,l = dl,k). The N ants are loaded to store each ant current tour and
tour length. A kernel is invoked to calculate the distance between the cities and set the pheromone
matrix initialization. The heuristic value and probability to be chosen is executed during the tour
construction, so we do not need to allocate a vector with size N (number of subproblems) to store
the N heuristic values for each link (k,l). Also, the algorithm initializes the random seeds using
the CURAND3.

Tour Construction: Each subproblem i is associated with a thread block. So the N
ants (subproblems) construct their tour in parallel. The weigh vectors are allocated on shared
memory because they are accessed few times. Each ant stores its structure (current tour, tour
length, cities not visited, and its group) on the local memory (registers) of a thread. The matrix of
cities (n × n) is stored on the global memory, however, the treads access only continuous location

2CUDA Toolkit Guide v4.1 CURAND
3CUDA Toolkit Guide v4.1 CURAND
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in a row of the matrix (n × n), i.e., when the current city of a tour is k, the threads access only the
k row of the matrix (k,l), where l = (1,...,n). As we mentioned the coalesced access to the global
memory is a key issue to accelerate the computation. When an ant ends its tour construction the
ant is copied to the vector N-dimensional allocated on the global memory. When all N ants end
their tour construction, the N-Dimensional vector of ants is copied back to host to update EP.

Pheromone Update: A new kernel is called to update the pheromone. Now each thread
block corresponds to a group and each thread corresponds to an ant that satisfies Π (see Section
B.2.2). The matrix (n × n) is allocated on the global memory. The pheromone update uses the
same approach that the MOKP.

B.4 Experiments
Our sequential algorithm achieves similar results to original MOEA/D-ACO

[Ke et al., 2013] in terms of solution quality. In this section we have attained the compari-
son between the implementations (sequential and parallel) in terms of solution quality and
execution time. We have used twelve instances from [Zitzler e Thiele, 1999] for the MOKP, and
nine different combinations of instances for the MOTSP from Paquete repository4 (with a large
number of cities compared with studies [Mora et al., 2011, Nebro e Durillo, 2010a]).

We have used theWeighted Sum as the scalarizing function. The quality of the solutions
is evaluated by means of Hypervolume indicator. To evaluate the execution time, we show the
speedup of the parallel implementation against the sequential counterpart.

The implementations were made using an NVIDIA GeForce GTX680 that contains
1536 CUDA cores and has a processor speed of 1058 MHz. It uses 32 threads per warp and up to
1024 threads per thread block with maximum shared memory size of 64 Kb. The CPU is an
Intel i7-380QM and has 4 cores with support 8 threads with a clock speed of 3.60 GHz. The
implementation was written and compiled using the CUDA toolkit 5.0 for C with the Nsight
Eclipse environment executed under Ubuntu 12.04.

All the statistics are based on 30 independents runs.

B.4.1 Results from MOKP
The ACO parameters setting was the same used in [Ke et al., 2013]: α = 1, β = 10, ρ =

0.95. The algorithms stop after 300 generations. The test instance with 750 items and 4 objectives
was infeasible due to registers constraints.

Solution Quality: Also based on [Ke et al., 2013], we set the number of subproblems to
N=300 and number of groups toK=10. The average and standard deviation of hypervolume for the
30 runs are summarized in Table B.1. The name of the test instances are abbreviated, for example,
the instance with 500 items and 2 knapsacks is called 500-2. The highest hypervolume value for
each instance is highlighted in bold face. The Wilcoxon statistic test [Derrac et al., 2011] was
applied and showed that the results do not have significant difference at 0.99 level of confidence,
i.e., the results show that to parallelize the MOEA/D-ACO does not decrease the solutions quality.

Execution time: The parameters number of subproblems and the number of groups are
set to N = 300 and K = 10 respectively and the execution time is analyzed on the different test
instances. Table B.2 presents the average execution time (in seconds) for eleven test instances
and the speed up of the parallel against the sequential. The results show a speedup up to 19x
faster than the sequential implementation.

4Available at: http://eden.dei.uc.pt/ paquete/tsp/



134

Table B.1: Average hypervolume and standard deviation obtained

Instance
Sequential Parallel

Average Stand. Dev. Average Stand. Dev.
100-2 6.711E+05 6.213E+02 6.709E+05 3.643E+02
250-2 5.651E+06 4.127E+03 5.651E+06 5.972E+03
500-2 1.476E+07 1.002E+04 1.475E+07 7.016E+03
750-2 3.915E+07 4.521E+04 3.908E+07 4.123E+04
100-3 9.240E+08 1.256E+06 9.232E+08 1.484E+06
250-3 1.199E+10 1.050E+07 1.200E+10 8.038E+06
500-3 7.381E+10 1.249E+08 7.401E+10 1.656E+08
750-3 1.896E+11 2.295E+08 1.881E+11 2.564E+08
100-4 8.089E+11 4.409E+09 8.058E+11 2.618E+09
250-4 1.986E+15 1.601E+13 2.013E+15 1.725E+13
500-4 6.173E+16 7.504E+14 6.081E+16 4.521E+14

Table B.2: Average execution times in seconds (s)

Instance Sequential (CPU) Parallel (GPU) Speedup x
100-2 62.92 5.69 11.065
250-2 431.68 27.75 15.55
500-2 1952.95 105.74 18.47
750-2 4574.43 233.68 19.58
100-3 76.58 9.53 8.03
250-3 447.85 38.49 11.63
500-3 1692.39 123.62 13.69
750-3 3582.08 245.44 16.6
100-4 96.47 23.65 4.08
250-4 368.725 39.13 9.42
500-4 1306.98 137.43 9.51

As reported in Table B.2, the number of items affects the execution time. When the
number of items increases (see test instances: 100-2, 250-2, 500-2, 750-2), the speedup increases,
because the number of items affects the solution construction phase which is executed in the
parallel stage. Thus, when the algorithm consumes more time in the parallel stage the speedup
increases.

In addition, as shown in Table B.2, the number of objectives also affects the execution
time. When the number of objectives increases (see test instances: 500-2, 500-3, 500-4), the
speedup decreases because with more objectives more solutions become non-dominated with
each other on the objective space, consequently, the size of EP increases at each generation
consuming more time of the algorithm in the sequential part. For example, with 500-2 test
instance, one generation found 58 non-dominated solutions (19% of the solutions) with final size
of |EP |=190; with 500-4 test instance, one generation found 255 non-dominated solutions (85%
of the solutions) with the final size higher than 4000 solutions. The number of non-dominated
solutions is an issue on many-objective optimization problem.

The number of subproblems also affects the speedup. Figure 1 shows the speedup with
N = {150, 300, 450} on the 500-2 test instance. Each subproblem corresponds to a thread block
in the parallel solution construction phase, so higher the number of subproblems higher the
number of thread blocks will be executing in parallel which increases the speedup. However,
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Figure B.1: Speedup of parallel vs. sequential algorithm on 500-2 (MOKP) and kroAB100
(MOTSP) test instances with number of subproblems N = {150, 300, 450}. The number of
groups is fixed K=10 to 500-2 and K=3 to kroAB100.

Table B.3: Average hypervolume and standard deviation obtained

Instance
Sequential Parallel

Average Stand. Dev. Average Stand. Dev.
kroAB100 1.860E+10 2.439E+07 1.861E+10 1.938E+07

euclidAB300 1.654E+11 4.820E+07 1.654E+11 6.680E+07
euclidAB500 5.162E+11 7.569E+07 5.162E+11 6.367E+07
kroABC100 2.618E+15 1.616E+12 2.596E+15 2.488E+12

euclidABC300 5.461E+16 4.415E+13 5.446E+16 4.830E+13
euclidABC500 3.148E+17 2.802E+14 3.129E+17 2.213E+14
kroABCD100 2.156E+20 1.229E+19 2.551E+20 5.244E+17

euclidABCD300 1.307E+22 1.218E+20 1.337E+22 9.224E+19

because of the limited size of CUDA memories (shared memory and registers) a higher number
of subproblems can be infeasible.

B.4.2 Results from MOTSP
The ACO parameters setting was the same used in [Ke et al., 2013]: α = 1, β = 2, ρ =

0.95. The algorithms stop after 1000 generations. The test instance with 500 cities and 4
objectives was infeasible due to CUDA memory constraints.

Solution Quality: We set the number of subproblems and number of groups to N=300
and K=3 respectively. The average and standard deviation of hypervolume for the 30 independent
runs are summarized in Table B.3. The highest hypervolume value for each instance is highlighted
in bold face. The Wilcoxon statistic test was applied and showed that the results do not have
significant difference at 0.99 level of confidence as the same in MOKP.

Execution time: Table B.4 presents the average execution time (in seconds) for eight
test instances and the speed up of the parallel against the sequential. The results with 300
subproblems and 3 groups show a speedup up to 8x faster than the sequential counterpart.

As showed in Table B.4 the number of objectives affects the execution time for the same
reason on the MOKP. When the number of objectives increases (see test instances: kroAB100,
kroABC100 and kroABCD100) the speedup decreases.

As on the MOKP, the number of subproblems affects the speedup. Figure 1 shows the
speedup with N = {150, 300, 450} on the kroAB100 test instance. With 450 subproblems the
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Table B.4: Average execution times in seconds (s)

Instance Sequential (CPU) Parallel (GPU) Speedup x
kroAB100 172.02 20.14 8.54

euclidAB300 1327.92 169.10 7.85
euclidAB500 2870.92 459.00 6.25
kroABC100 491.46 186.18 2.64

euclidABC300 1617.44 474.19 3.41
euclidABC500 3726.14 798.40 4.67
kroABCD100 909.85 430.93 2.11

euclidABCD300 1895.88 582.07 3.26

parallel algorithm achieves a speedup up to 11x faster than the sequential counterpart. However,
because of the limited size of CUDAmemories a higher number of subproblems can be infeasible.

B.5 Final considerations
In this chapter, we have proposed a parallel implementation of the MOEA/D-ACO

on GPU using CUDA, where the both solution construction and pheromone update stages are
executed on GPU. Our results show a speedup up to 19x faster for the MOKP and 11x faster for
the MOTSP using a reasonable number of subproblems and groups. The algorithm achieves a
higher speedup for the MOKP because the algorithm makes fewer accesses to global memory
when compared with the MOTSP. On the MOTSP the data structure for the n × n matrix of cities
was infeasible to allocate on the shared memory or registers.

Other aspects which impacts on the execution time: (1) A great number of objectives
degrades the speedup because it affects the size of the EP, and consequently its update stage
which is executed on CPU; (2) A great number of subproblems increases the performance because
each subproblem executes its solution construction in parallel, but a high number can be an issue
due to the memory limits.

Some aspects to consider for future work: (1) How to deal with the memory limits for
largest test instances and a higher number of subproblems; (2) Improving the execution time
using other parallelization approaches, e.g., a parallel version of the roulette wheel selection as
in [Cecilia et al., 2013] (which has been not implemented here due the architecture of the GPU
available); (3) And also, a parallel approach for the EP update mechanism.
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