• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Especialização
    • Ciências Exatas e da Terra
    • Inteligência Artificial Aplicada
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Especialização
    • Ciências Exatas e da Terra
    • Inteligência Artificial Aplicada
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Aplicação de kdd em dados de iterações de desenvolvimento de software

    Thumbnail
    Visualizar/Abrir
    R - E - VAGNER CARLOS MARCOLINO LIMA.pdf (16.64Mb)
    Data
    2021
    Autor
    Lima, Vagner Carlos Marcolino
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: O software está presente em várias categorias de sistemas atualmente. Ele pode ser desenvolvido de diferentes formas, o Desenvolvimento Iterativo é uma delas. Esse modelo de processo de software é a base para processos ou métodos amplamente praticados na indústria de software. Ele é capaz de lidar mais facilmente com softwares modernos, os quais estão cada vez complexos e exigindo entregas mais frequentes que agreguem valor ao serviço ou produto do cliente. Nessa abordagem o software é desenvolvido por meio de várias iterações. Esse processo pode gerar um grande volume de dados tornando- se inviável uma análise manual. É comum, portanto, que grandes empresas apliquem métodos ou processos específicos para obter conhecimento a partir desses dados para na sequência difundi-lo dentre os seus integrantes buscando melhorar seus processos produtivos. Nesse contexto, o objetivo deste trabalho foi identificar modelos e padrões que sejam válidos e potencialmente interpretáveis de tal forma que possam auxiliar as equipes de software na tomada de decisões inerente à realização de iterações de desenvolvimento de software. Esse objetivo foi norteado pelas seguintes questões, dadas as informações históricas dessas iterações: "é possível prever o resultado de uma iteração?" e "esses dados podem revelar algum padrão relacionado às práticas das equipes de software?". Para alcançar esse objetivo, foi aplicado um método de estudo baseado no KDD-process envolvendo dados de projetos reais e as técnicas de mineração de dados Árvore de Decisão e Floresta Aleatória. Foram identificados modelos capazes de prever o sucesso (ou falha) de uma iteração de software com até 93% de acurácia e padrões que evidenciam, por exemplo, a importância da prática de constantemente analisar e refinar os itens do backlog do produto.
    URI
    https://hdl.handle.net/1884/83402
    Collections
    • Inteligência Artificial Aplicada [48]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV