• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Especialização
    • Ciências Exatas e da Terra
    • Data Science & Big Data
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Especialização
    • Ciências Exatas e da Terra
    • Data Science & Big Data
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelos de predição de séries temporais aplicados à demanda de energia elétrica da Califórnia

    Thumbnail
    Visualizar/Abrir
    R - E - LEONARDO MORETTINI E CASTELLA.pdf (1.198Mb)
    Data
    2022
    Autor
    Castella, Leonardo Morettini e
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: O trabalho mostra duas técnicas de predição de séries temporais, o tradicional ARIMA e a de deep learning chamada LSTM, aplicadas à demanda por energia elétrica na Califórnia. As bases de dados contêm a demanda residencial por energia elétrica, baixadas do site do departamento de energia dos Estados Unidos e tratada pelo autor. Foram separadas duas bases de dados para realizar as predições, demanda hora por hora e demanda média diária. O método ARIMA se mostrou mais eficiente para a predição de demanda por hora enquanto o modelo LSTM foi mais eficiente para a predição de demanda diária. O trabalho mostra também que o modelo de deep learning é mais eficiente para predições com bases de dados de maior tamanho do que o modelo tradicional ARIMA.
     
    Abstract: The paper shows two time series prediction techniques, the traditional ARIMA and the deep learning one called LSTM, applied to the electricity demand in California. The databases contain residential electricity demand, downloaded from the US Department of Energy website, and handled by the author. Two databases were separated to perform the predictions, hourly demand, and daily average demand. The ARIMA method proved to be more efficient for predicting hourly demand while the LSTM model was more efficient for predicting daily demand. The work also shows that the deep learning model is more efficient for predictions with larger databases than the traditional ARIMA model.
     
    URI
    https://hdl.handle.net/1884/79928
    Collections
    • Data Science & Big Data [138]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV