• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Especialização
    • Ciências Exatas e da Terra
    • Data Science & Big Data
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Especialização
    • Ciências Exatas e da Terra
    • Data Science & Big Data
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inteligência artificial no ciclo de crédito

    Thumbnail
    Visualizar/Abrir
    R - E - THIAGO DA SILVA ALVES.pdf (259.0Kb)
    Data
    2019
    Autor
    Alves, Thiago da Silva, 1985-
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Clientes inadimplentes representam um dos maiores riscos às instituições financeiras, dado seu potencial de provocar prejuízo. Somado a isso, está o esforço para minimizar esse risco, que consome recurso com o objetivo de repará-lo. Naturalmente, uma relação de custo e benefício onde o correto destino do recurso transforma o prejuízo em retorno financeiro. Nesse contexto, o objetivo deste trabalho é explorar o uso de algoritmos de inteligência artificial baseados em aprendizado supervisionado (machine learning) para classificar clientes inadimplentes. Serão descritas as etapas desde a construção da base da dados analítica (ABT), seleção de variáveis utilizando algoritmo genético (AG) até estratégia de aprendizado considerando custo do erro de classificação, reamostragem e medidas de avaliação (Precision, Recall e F1Score) para conjutos de dados desbalanceados
     
    Abstract: Overdue customers are one of the biggest threats to financial institutions, given their potencial to cause losses. Farther, is the effort to minimize this risk, wich expend resources to recover it. Clearly a cost benefit ratio, where correctly allocate resources turns losses into profits. In this context, the goal of this work is explore artificial intelligence algorithms based on supervised machine learning to classify overdue customers. Will describe steps from analytical base table (ABT) building, variable selection with genetic algorithm (GA) to learning strategy with misclassification cost, resample and evaluate metrics (Precision, Recall and F1Score) for unbalanced data
     
    URI
    https://hdl.handle.net/1884/75371
    Collections
    • Data Science & Big Data [138]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV