• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Álgebra parcial de grupo

    Thumbnail
    Visualizar/Abrir
    R - D - WILLIAN VALVERDE.pdf (5.139Mb)
    Data
    2016
    Autor
    Valverde, Willian
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Sendo G um grupo e K um anel, abordaremos o conceito de álgebra parcial do grupo G, denotada por Kpar (G), que e a K-algebra associada as representações parciais de G sobre K e e uma ferramenta bastante fina para dizer quando dois grupos nao sao isomorfos. Mostraremos uma construcao de Kpar (G) por meio de um grupoide denotado por r(G) e faremos detalhadamente a construcao das componentes conexas de r(S3), a fim de calcularmos Kpar(S3). Tambem apre-sentaremos o calculo das algebras parciais Cpar(S3), Cpar(Zp x Zp) e Cpar(Zp2). Para compreender melhor este assunto, apresentaremos o Semigrupo de Exel S(G), que e um monoide inverso cujas acoes em um conjunto X estao em cor- respondencia biunívoca com acoes parciais de G em X. Alem do mais, temos que a algebra de semigrupo KS(G), que e semissimples, e isomorfa a Kpar (G).
     
    Abstract: Let G be a group and K be a ring. In this work we study the partial group algebra of G, denoted by Kpar (G), which is the algebra associated to partial representations of G over K and is a refined tool to tell when two groups are not isomorphic. We present a construction of Kpar (G) by means of a groupoid denoted by r(G). We present in detail the description of Kpar (S3) via construction of the connected components of the groupoid r(S3). We also present the calculation of the partial group algebras Cpar (S3), Cpar (Zp x Zp) and Cpar (Zp2). In order to better understand this issue, we present the Exel Semigroup S(G), which is an inverse monoid whose actions in a set X are in one-one correspondence with partial actions of G in X. Moreover, the algebra semigroup KS (G) (that is semisimple) is isomorphic to Kpar (G).
     
    URI
    https://hdl.handle.net/1884/46516
    Collections
    • Dissertações [60]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV