On indexing highly dynamic multidimensional datasets for interactive analytics
Resumo
Resumo: Indexação de dados multidimensionais tem sido extensivamente pesquisada nas últimas décadas. Neste trabalho, um novo workload OLAP identificado no Facebook é apresentado, caracterizado por (a) alta dinamicidade e dimensionalidade, (b) escala e (c) interatividade e simplicidade de consultas, inadequado para os SGBDs OLAP e técnicas de indexação de dados multidimensionais atuais. Baseado nesse caso de uso, uma nova estratégia de indexação e organização de dados multidimensionais para SGBDs em memória chamada Granular Partitioning é proposta. Essa técnica extende a visão tradicional de partitionamento em banco de dados, particionando por intervalo todas as dimensões do conjunto de dados e formando pequenos blocos que armazenam dados de forma não-coordenada e esparsa. Desta forma, é possível atingir altas taxas de ingestão de dados sem manter estrutura auxiliar alguma de indexação. Este trabalho também descreve como um SGBD OLAP capaz de suportar um modelo de dados composto por cubos, dimensões e métricas, além de operações como roll-ups, drill-downs e slice and dice (filtros) eficientes pode ser construído com base nessa nova técnica de organização de dados. Com objetivo de validar experimentalmente a técnica apresentada, este trabalho apresenta o Cubrick, um novo SGBD OLAP em memória distribuída e otimizada para a execução de consultas analíticas baseado em Granular Partitioning, escritas desde a primeira linha de código para este trabalho. Finalmente, os resultados de uma avaliação experimental extensiva contendo conjuntos de dados e consultas coletadas de projetos pilotos que utilizam Cubrick é apresentada; em seguida, é mostrado que a escala desejada pode ser alcançada caso os dados sejam organizados de acordo com o Granular Partitioning e o projeto seja focado em simplicidade, ingerindo milhões de registros por segundo continuamente de uxos de dados em tempo real, e concorrentemente executando consultas com latência inferior a 1 segundo. Abstrct: Indexing multidimensional data has been an active focus of research in the last few decades. In this work, we present a new type of OLAP workload found at Facebook and characterized by (a) high dynamicity and dimensionality, (b) scale and (c) interactivity and simplicity of queries, that is unsuited for most current OLAP DBMSs and multidimensional indexing techniques. To address this use case, we propose a novel multidimensional data organization and indexing strategy for in-memory DBMSs called Granular Partitioning. This technique extends the traditional view of database partitioning by range partitioning every dimension of the dataset and organizing the data within small containers in an unordered and sparse fashion, in such a way to provide high ingestion rates and indexed access through every dimension without maintaining any auxiliary data structures. We also describe how an OLAP DBMS able to support a multidimensional data model composed of cubes, dimensions and metrics and operations such as roll-up, drill-down as well as efficient slice and dice filtering) can be built on top of this new data organization technique. In order to experimentally validate the described technique we present Cubrick, a new in-memory distributed OLAP DBMS for interactive analytics based on Granular Partitioning we have written from the ground up at Facebook. Finally, we present results from a thorough experimental evaluation that leveraged datasets and queries collected from a few pilot Cubrick deployments. We show that by properly organizing the dataset according to Granular Partitioning and focusing the design on simplicity, we are able to achieve the target scale and store tens of terabytes of in-memory data, continuously ingest millions of records per second from realtime data streams and still execute sub-second queries.
Collections
- Teses [124]