Mostrar registro simples

dc.contributor.advisorYuan, J.-Y. (Jin-Yun), 1957-pt_BR
dc.contributor.otherWu Yujiangpt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemáticapt_BR
dc.creatorWang Shuqinpt_BR
dc.date.accessioned2024-05-02T18:41:03Z
dc.date.available2024-05-02T18:41:03Z
dc.date.issued2015pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/40459
dc.descriptionOrientador: Prof. Dr. JinYun Yuanpt_BR
dc.descriptionCoorientador: Prof. Dr. Yujiang Wupt_BR
dc.descriptionTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa: Curitiba, 03/09/2015pt_BR
dc.descriptionInclui referências : f. 82-86pt_BR
dc.description.abstractResumo: Nesta tese consideramos dois tipos de problemas de convecção-difusão, a saber, as equações de Navier-Stokes para meios incompressíveis e dependentes do tempo e as equações de convecção-difusão espaço-fracionária em duas dimensões. Para as equações de Navier-Stokes usamos o método das características para linearizar equações não-lineares e introduzimos uma variável auxiliar para reduzir a equação de ordem alta a um sistema de primeira ordem. Escolhendo-se cuidadosamente os fluxos numéricos e adicionando os termos de penalização propomos um método de Galerkin descontínuo característico local (CLDG) simétrico e estável. Com essa simetria, é fácil provar estabilidade numérica e estimativas de erros. Experimentos numéricos são realizados para verificar os resultados teóricos. Para os problemas de convecção-difusão espaço-fracionária ainda utilizamos o método das características para tratar a derivada no tempo e os termos convectivos conjuntamente. Para o termo fracionário introduzimos algumas variáveis auxiliares para decompor a derivada de Riemann-Liouville na integral de Riemann-Liouville e na derivada de ordem inteira. Em seguida um método de Galerkin descontínuo hibridizado (HDG) 'e proposto. Finalmente usamos os métodos analíticos para realizar a análise de estabilidade e estimativas de convergência do esquema HDG. Pelo nosso conhecimento, este é o primeiro trabalho que combina o método de Galerkin descontínuo característico às equações de Navier-Stokes e às equações convecção-difusão espaço-fracionária em 2D. Estes esquemas também podem ser aplicados e estudados em outros problemas. Os resultados numéricos são consistentes com os resultados teóricos.pt_BR
dc.description.abstractAbstract: In this thesis, we consider two kinds of convection-diffusion problems, namely the classical time-dependent incompressible Navier-Stokes equations and the space-fractional convection-diffusion equations in two dimensions. For Navier-Stokes equations, we use the method of characteristics to make nonlinear equations linear, and we introduce an auxiliary variable to reduce high-order equation to one order system. Carefully choosing numerical fluxes and adding penalty terms, a stable and symmetric characteristic local discontinuous Galerkin (CLDG) method is proposed. With this symmetry, it is easy to perform numerical stability and error estimates. Numerical experiments are performed to verify theoretical results. For the space-fractional convection-diffusion problems, we still use the method of characteristics to tackle the time derivative and convective terms together. For the fractional term, we introduce some auxiliary variables to split the Riemann-Liouville derivative into Riemann-Liouville integral and integer order derivative. Thus a hybridized discontinuous Galerkin method (HDG) is proposed. Finally we use general analytic methods to perform the stability analysis and convergence estimates of the HDG scheme. As far as we know, this is the first time the discontinuous Galerkin method and the method of characteristics are combined to numerically solve the Navier-Stokes equations and space-fractional convection-diffusion equations in 2D. These schemes can be applied and further studied into other problems as well. The numerical results are consistent with theoretical results.pt_BR
dc.format.extent86 f. : il. algumas color., tabs.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.relationDisponível em formato digitalpt_BR
dc.subjectEquações diferenciais não-lineares - Soluções numéricaspt_BR
dc.subjectMatemática aplicadapt_BR
dc.subjectGalerkin, Metodos dept_BR
dc.subjectDinamica dos fluidospt_BR
dc.titleMétodo de Galerkin descontínuo para dois problemas de convecção-difusãopt_BR
dc.typeTesept_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples