• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Teses
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Teses
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Método de Galerkin descontínuo para dois problemas de convecção-difusão

    Thumbnail
    Visualizar/Abrir
    R - T - SHUQIN WANG.pdf (6.313Mb)
    Data
    2015
    Autor
    Wang Shuqin
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Nesta tese consideramos dois tipos de problemas de convecção-difusão, a saber, as equações de Navier-Stokes para meios incompressíveis e dependentes do tempo e as equações de convecção-difusão espaço-fracionária em duas dimensões. Para as equações de Navier-Stokes usamos o método das características para linearizar equações não-lineares e introduzimos uma variável auxiliar para reduzir a equação de ordem alta a um sistema de primeira ordem. Escolhendo-se cuidadosamente os fluxos numéricos e adicionando os termos de penalização propomos um método de Galerkin descontínuo característico local (CLDG) simétrico e estável. Com essa simetria, é fácil provar estabilidade numérica e estimativas de erros. Experimentos numéricos são realizados para verificar os resultados teóricos. Para os problemas de convecção-difusão espaço-fracionária ainda utilizamos o método das características para tratar a derivada no tempo e os termos convectivos conjuntamente. Para o termo fracionário introduzimos algumas variáveis auxiliares para decompor a derivada de Riemann-Liouville na integral de Riemann-Liouville e na derivada de ordem inteira. Em seguida um método de Galerkin descontínuo hibridizado (HDG) 'e proposto. Finalmente usamos os métodos analíticos para realizar a análise de estabilidade e estimativas de convergência do esquema HDG. Pelo nosso conhecimento, este é o primeiro trabalho que combina o método de Galerkin descontínuo característico às equações de Navier-Stokes e às equações convecção-difusão espaço-fracionária em 2D. Estes esquemas também podem ser aplicados e estudados em outros problemas. Os resultados numéricos são consistentes com os resultados teóricos.
     
    Abstract: In this thesis, we consider two kinds of convection-diffusion problems, namely the classical time-dependent incompressible Navier-Stokes equations and the space-fractional convection-diffusion equations in two dimensions. For Navier-Stokes equations, we use the method of characteristics to make nonlinear equations linear, and we introduce an auxiliary variable to reduce high-order equation to one order system. Carefully choosing numerical fluxes and adding penalty terms, a stable and symmetric characteristic local discontinuous Galerkin (CLDG) method is proposed. With this symmetry, it is easy to perform numerical stability and error estimates. Numerical experiments are performed to verify theoretical results. For the space-fractional convection-diffusion problems, we still use the method of characteristics to tackle the time derivative and convective terms together. For the fractional term, we introduce some auxiliary variables to split the Riemann-Liouville derivative into Riemann-Liouville integral and integer order derivative. Thus a hybridized discontinuous Galerkin method (HDG) is proposed. Finally we use general analytic methods to perform the stability analysis and convergence estimates of the HDG scheme. As far as we know, this is the first time the discontinuous Galerkin method and the method of characteristics are combined to numerically solve the Navier-Stokes equations and space-fractional convection-diffusion equations in 2D. These schemes can be applied and further studied into other problems as well. The numerical results are consistent with theoretical results.
     
    URI
    https://hdl.handle.net/1884/40459
    Collections
    • Teses [49]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV