• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Condicionamento do problema de autovalores obtido do método de elementos finitos generalizados na dinâmica de estruturas

    Thumbnail
    View/Open
    R - D - THAMARA PETROLI.pdf (2.543Mb)
    Date
    2016
    Author
    Petroli, Thamara
    Metadata
    Show full item record
    Abstract
    Resumo: Sabe-se que o Método dos Elementos Finitos (MEF) é uma importante ferramenta utilizada na análise dinâmica de estruturas, principalmente pelos bons resultados apresentados. O Método dos Elementos Finitos Generalizados (MEFG), é uma extensão do MEF, que tem por característica trabalhar com espaços de aproximações locais, que consistem em funções, não necessariamente polinomiais, que apresentam informações sobre a solução da equação diferencial a ser resolvida. Ao aplicar métodos numéricos na análise de vibrações livres de estruturas, a solução numérica recai em um problema de autovalores e autovetores generalizado. Mesmo o MEFG apresentando excelentes resultados para o problema de autovalores generalizado com soluções mais precisas do que os refinamentos h e p do MEF, em alguns casos, obtém-se autovalores negativos, dependendo da precisão empregada nas rotinas computacionais. Sendo assim, este trabalho propõe uma análise da sensibilidade gerada pela construção numérica das matrizes de massa e rigidez do MEFG para o caso de vibração livre de barra e viga de Euler Bernoulli. São aplicados também outros métodos de enriquecimento e comparados os resultados, a fim de verificar se o número de condição da matriz de massa, pode ser empregado como uma medida de sensibilidade do método numérico utilizado.
     
    Abstract: It is known that the Finite Element Method (FEM) is an important tool used in the dynamic analysis of structures, mainly by the good results presented. The Generalized Finite Element Method (GFEM) is an extension of the FEM whose feature work spaces with local approaches, consisting of functions, not necessarily polynomial, which present information about the solution of the differential equation to be solved. By applying numerical methods in the analysis of free vibrations of structures, the problem is reduced to numerical solution of a generalized eigenvalue problem. Even GFEM showing excellent results for generalized eigenvalue problem and more accurated solutions than h and p FEM refinements, in some cases, negative eigenvalues are obtained, depending on the precision used in computer routines. Thus, this work proposes a sensitivity analysis generated by the numerical construction of the mass and stiffness matrices of GFEM in case of free vibration bar and Euler Bernoulli beam problems. Other enrichment approaches were also applied comparing the results in order to verify that the condition number of mass matrix can be employed as a measure of sensitivity of the used numerical method.
     
    URI
    https://hdl.handle.net/1884/45757
    Collections
    • Dissertações [102]

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV