Mostrar registro simples

dc.contributor.advisorAlves, Marcelo Muniz Silva, 1970-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Matemáticapt_BR
dc.creatorBóschi, Jessicapt_BR
dc.date.accessioned2023-02-17T19:47:59Z
dc.date.available2023-02-17T19:47:59Z
dc.date.issued2022pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/81228
dc.descriptionOrientador: Prof. Dr. Marcelo Muniz Silva Alvespt_BR
dc.descriptionTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Matemática. Defesa : Curitiba, 28/11/2022pt_BR
dc.descriptionInclui referências (p.182-184) e índicept_BR
dc.description.abstractResumo: O estudo de ações e coações de álgebras de Hopf em álgebras é um dos objetivos centrais da teoria das álgebras de Hopf desde os anos setenta. Mais recentemente, em 2016, Batista, Caenepeel e Vercruysse introduziram uma generalização de álgebras de Hopf, chamada categorias de Hopf. Assim, é natural se perguntar se as definições e resultados já conhecidos para ações e coações de álgebras de Hopf, podem também ser generalizados para categorias de Hopf. Em 2018, Caenepeel e Fieremans dão algumas respostas neste sentido ao desenvolverem uma teoria de Galois para categorias de Hopf, porém várias questões permanecem ainda em aberto. Neste trabalho, usando a ação adjunta de uma álgebra de Hopf como inspiração, conseguimos obter uma definição de ação para categorias de Hopf. Como consequência obtivemos uma ação adjunta para categorias de Hopf, um produto smash que mostramos ser extensão de Galois de acordo com a teoria de Caenepeel e Fieremans, e uma conexão com a teoria clássica envolvendo ações por grupóides. Por fim, um teorema de dualidade foi construído para categorias de Hopf unindo as teorias desenvolvidas até aqui.pt_BR
dc.description.abstractAbstract: The study of actions and coactions of Hopf algebras on algebras has been one of the central goals of the theory of Hopf algebras since the 1970s. More recently, in 2016, Batista, Caenepeel and Vercruysse introduced a generalization of Hopf algebras, called Hopf categories. Thus, it is natural to ask whether the definitions and results already known for actions and coactions of Hopf algebras, can also be generalized to Hopf categories. In 2018, Caenepeel and Fieremans provide some answers in this regard by developing a Galois theory for Hopf categories, however several questions remain open. In this work, using the adjoint action of a Hopf algebra as inspiration, we were able to obtain a definition of action for Hopf categories. As a consequence, we managed to obtain an adjoint action for Hopf categories, a smash product which we showed to be a Galois extension according to the theory of Caenepeel and Fieremans, and a connection with the classical theory involving actions by groupoids. Finally, a duality theorem has been constructed for Hopf categories, unifying the theories developed so far.pt_BR
dc.format.extent1 recurso online : PDF.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectAlgebrapt_BR
dc.subjectHopf, Algebra dept_BR
dc.subjectGalois, Teoria dept_BR
dc.subjectGrupoidespt_BR
dc.subjectMatemáticapt_BR
dc.titleAções diagonais de categorias de Hopfpt_BR
dc.typeTese Digitalpt_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples