• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Teses
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Teses
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Algumas contribuições em controle ótimo discreto

    Thumbnail
    Visualizar/Abrir
    R - T - CAMILA ISOTON.pdf (1.302Mb)
    Data
    2017
    Autor
    Isoton, Camila
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Neste trabalho consideramos os problemas de controle .timo discretos com um e com vários objetivos, nos casos regulares e 2 regulares. Este estudo esta dividido em tr.s frentes: a primeira trata das condições de otímalidade destes dois tipos de problemas em suas versões mono e multiobjetivo. Nesta parte apresentamos uma versão do Princípio do Maximo Discreto e introduzimos conceitos de invexidade nos quais, os problemas PM-invexos e PM-pseudoinvexos são a chave para garantir a suficiência destas condições para o caso regular. Na segunda, discutimos os conceitos de estabilidade e sensibilidade a certos problemas de controle ótimo discretos escalares, para os quais obtivemos dois resultados importantes envolvendo condições de crescimento quadrático, independência linear e 2 regularidade. Já na ultima parte, abordamos a otimalidade de um certo problema de controle ótimo discreto multiobjetivo não diferençável. Através do conceito de diferenciabilidade generalizada de Clarke, apresentamos uma versão do Princípio do Máximo para tal problema.
     
    Abstract: In this Thesis, we discuss discrete optimal control problems for regular and irregular (2 regular) cases. This study was divided into three fronts: the first deals with the optimality conditions of these two types of problems in their scalar and multiobjective versions. In this part we present a version of the Discrete Maximum Principle and we introduce the concepts of MP-invexity and MP-pseudoinvexity for these problems; these notions were the key to guarantee the adequacy of these conditions for regular problems. In the second part, we discuss the concepts of stability and sensitivity for certain discrete scalar control problems, for which we obtained two important results involving quadratic growth conditions, linear independence and regularity. In this last part, we discuss the optimality of a certain class of nonsmooth discrete multiobjective optimal control problems. Based on Clarke's concept of generalized differentiability, we present a version of the Principle of Maximum.
     
    URI
    https://hdl.handle.net/1884/52775
    Collections
    • Teses [49]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV