Uma teoria de conjugação simplificada para funções semicontínuas inferiormente e uma generalização da desigualdade forte de Fitzpatrick
Resumo
Resumo: Este trabalho engloba dois temas diferentes. O primeiro tópico trata de apresentar dois esquemas de c-conjugação para funções semicontínuas inferiormente (sci) definidas em espaços vetoriais reais de Banach cuja norma é Fréchet diferenciável fora da origem. Ambos os esquemas são baseados numa nova caracterização de funções sci via supremo pontual de um conjunto especial de funções contínuas. Para finalizar esta primeira frente do trabalho, estes esquemas são aplicados no desenvolvimento de uma teoria de dualidade. O segundo tópico trata de uma generalização da Desigualdade Forte de Fitzpatrick em espaços vetoriais de Banach reflexivos, envolvendo funções TBC. Ao final, introduz-se uma família de funções gap para o Problema de Inclusão Monótona Maximal e, graças à generalização proposta, é possível encontrar interessantes propriedades a respeito desta família. Abstract: We present two topics. Firstly, we introduce two generalized conjugation schemes for lower semi-continuous (lsc) functions defined on a real Banach space whose norm is Fréchet differentiable of the origin. Both approaches are based upon a new characterization of lower semi-continuous functions as pointwise suprema of a special class of continuous functions. In order to conclude this part of the work, we apply these ideas for building a optimization duality theory. In the second topic, we present a generalization of the strong Fitzpatrick inequality in the context of reflexive Banach spaces, involving a TBC function. We also introduce a related family of gap functions for maximal monotone inclusion problems. Thanks to the proposed generalization, we find interesting properties about this family.
Collections
- Teses [48]