• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016041P1 Programa de Pós-Graduação em Matemática
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Um estudo sobre os conjuntos tilting e a relação entre os silting e os aisles separáveis

    Thumbnail
    Visualizar/Abrir
    R - D - WESLEY DOS SANTOS VILLELA BATISTA.pdf (2.814Mb)
    Data
    2017
    Autor
    Batista, Wesley dos Santos Villela
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: O presente trabalho possui dois objetivos distintos. O primeiro e realizar um estudo a respeito de uma aplicação, introduzida por Keller e Vossieck em [13], que expressa uma bije.ao entre os An-quivers e os conjuntos tilting completos em V b(kAn). A motivação para estudarmos essa aplicação e o fato de Keller e Vossieck provarem a bije.ao e nao mostrarem a deducao da aplicação. Nosso objetivo e apresentar de forma intuitiva a razão pela qual a aplicação funciona. Nosso segundo objetivo e fazer um estudo da classificação, feita por Keller e Vossieck em [13], de certos tipos de aisles U de Db(kA), em que A e um quiver do tipo Dynkin. Keller e Vossieck introduziram dois tipos de aisles em uma categoria triangulada T, os aisles fieis e os aisles separ.veis. Um aisle e dito fiel se a inclusão U ^ T se estende a uma S-equivalencia Db(U0) ^ UneN U [-n], e um aisle e dito separável se HneN U[n] = 0. Em [13], Keller e Vossieck classificam os aisles fieis afirmando que existe uma bijecção entre eles e os conjuntos tilting completos. Estamos interessados em estudar uma classificação parecida para os aisles separáveis, através de uma bije..o entre eles e os conjuntos silting de Db(kA). No ultimo cap.tulo mostraremos como e poss.vel usufruir dos resultados vistos nos capítulos anteriores, utilizando-os como ferramentas na teoria tilting.
     
    Abstract: The present work has two distinct objectives. The first is to make a study about a map p introduced by Keller and Vossieck in [13], which expresses a bijection between An-quivers and the complete tilting sets in V b(kAn). The motivation for studying this map is that Keller and Vossieck prove the bijection but do not show the deduction of the application <^. Our objective is to present intuitively why the application works. The second objective is to make a study of the classification, made by Keller and Vossieck in [13], of aisles U C Db(kA), where A is a Dynkin-quiver. Keller and Vossieck introduced two types of aisle into a triangulated category T, the faithful aisle and the separable aisle. An aisle is said to be faithful if the inclusion U0 ^ T extends to an S-equivalence Db(U0) ^ UneNU[-n]; it is separated if HneNU[n] = 0. In [13], Keller and Vossieck classify the faithful aisles by a bijection between them and the complete tilting sets. We are interested in studying a similar classification for the separable aisles, through a bijection between them and the silting sets of Db(kA). In the last chapter we will show how it is possible to take advantage of the results seen in previous chapters, using them as tools in tilting theory.
     
    URI
    https://hdl.handle.net/1884/50359
    Collections
    • Dissertações [60]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV