Algoritmos híbridos proximais extragradientes para os problemas de ponto de sela e equilíbrio de Nash
Resumo
Resumo: Neste trabalho são descritos métodos para determinar uma solução (aproximada) para os problemas de ponto-de-sela (PS) e equilíbrio de Nash. Os algoritmos são instâncias especiais do método híbrido extragradiente proximal introduzido por Svaiter e Solodov [Solodov; Svaiter, 2000] onde os sub-problemas de inclusão são resolvidos com o uso de um método de gradiente acelerado. Os métodos propostos generalizam o algoritmo acelerado de [He; Monteiro, 2014] das seguintes maneiras: a) em uma generalização os problemas considerados são problemas PS gerais ao invés de problemas PS com estrutura bilinear; b) em outra generalização o algoritmo é baseado em distâncias de Bregman ao invés da distância Euclidiana; c) em outra generalização o problema considerado é o de equilíbrio de Nash ao invés do problema de ponto-de-sela. Assim como no método de He e Monteiro, os métodos propostos têm a vantagem de que qualquer escolha de escalar para o tamanho do passo pode ser utilizada. Ainda, no contexto de problemas de ponto-de-sela, para certa escolha do tamanho do passo pode-se obter uma complexidade ótima para o método. Resultados computacionais ilustram a performance dos métodos em comparação com o método de suavização de Nesterov [Nesterov, 2005]. Abstract: In this work we describe methods to find an (approximate) solution for the saddle-point (SP) and Nash equilibrium problems. The algorithms are special instances of a hybrid extragradient proximal method introduced by Svaiter and Solodov [Solodov; Svaiter, 2000] where the inclusion sub-problems are solved using an accelerated gradient method. The proposed methods generalize the accelerated algorithm of [He; Monteiro, 2014] in the following ways: a) in a generalization, the considered problems are general SP problems instead of SP problems with a bilinear structure; b) in other generalization, the algorithm is based on Bregman distances rather than the Euclidian one; c) in other generalization, the considered problem is the Nash equilibrium problem instead of the saddle-point. As in He and Monteiro's method, the proposed methods have the advantage that any scalar choice for the stepsize can be used. Also, for the saddle-point problems, a certain choice for the stepsize can yield an optimal complexity for the method. Computational results show the performance of the methods in comparison with Nesterov's suavization scheme [Nesterov, 2005].
Collections
- Teses [46]