• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • Teses & Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • Teses & Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Desempenho do método de lagrangeano aumentado com penalidade quadrática

    Thumbnail
    Visualizar/Abrir
    luisfernandojussiani.pdf (694.1Kb)
    Data
    2004
    Autor
    Jussiani, Luis Fernando
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Neste trabalho, serão utilizadas duas metodologias para construção de funções de penalização para algoritmos de Lagrangeano Aumentado, aplicados a problemas de programação convexa comrestrições. Métodos de Lagrangeano Aumentado partem normalmente de funções de penalização ? : R ? R, estritamente convexas e crescentes, que são combinadas com multiplicadores de Lagrange para compor termos de penalização com os formatos: (y, ?) ? R×R++ 7?? p(y, u) = ??(y) e (y, ?) ? R×R++ 7?? p(y, u) = ?(?y). Propõe-se uma função de penalização ? a ser usada no algoritmo de Lagrangeano Aumentado, definida por y ? R 7?? ?(y) = 1 2 y2 + y, sendo ? estritamente convexa, porém nãocrescente em todo o seu domínio. Neste caso, em que as penalidades são quadráticas, os multiplicadores gerados pelo algoritmo de Lagrangeano Aumentado podem ser negativos, pois a derivada da função não é crescente em todo o seu domínio. Este problema é contornado aumentando-se o parâmetro de penalidade, conforme relações mostradas no Capítulo 2, entre os métodos de Ponto Proximal e Região de Confiança. Implementam-se os algoritmos de Lagrangeano Aumentado para problemas com restrições de desigualdades, utilizando duas metodologias para construção das funções de penalidades quadrática e m2b. Os resultados numéricos obtidos em Matlab ilustram a eficiência da penalidade quadrática.
     
    Abstract: In this work, two methodologies are used for constructing penalization functions of Augmented Lagrangian algorithms, solving convex programming problems with constraints. Augmented Lagrangian methods are usually built from strictly convex and increasing penalization functions ? : R ? R, combined with Lagrange multipliers ? to compose penalization terms: (y, ?) ? R × R++ 7?? p(y, u) = ??(y) and (y, ?) ? R × R++ 7?? p(y, u) = ?(?y). The penalization function ?, defined by y ? R 7?? ?(y) = 1 2 y2 + y, is ? strictly convex, but non-increasing in all its domain. In this case, the multipliers generated by the Augmented Lagrangian algorithm can be negative. Therefore the derivative of the function is not increasing in all its domain. This problem has been turned around by increasing the penalty parameter, according to relations shown in chapter 2, between the Proximal Point and Trust-Region methods. Augmented Lagrangian algorithms are implemented and tested for problems with inequality constraints, using the quadratic and m2b penalty functions. The numeric results obtained in Matlab illustrate the efficiency of the quadratic penalty.
     
    URI
    https://hdl.handle.net/1884/995
    Collections
    • Teses & Dissertações [10563]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV