dc.contributor.author | Rafael de Lima Sterza | |
dc.contributor.author | Analice Costacurta Brandi | |
dc.creator | Faculdade de Ciências e Tecnologia - UNESP - SP | |
dc.date.accessioned | 2024-11-13T19:17:27Z | |
dc.date.available | 2024-11-13T19:17:27Z | |
dc.date.issued | 2017-10-03 | |
dc.identifier.uri | https://hdl.handle.net/1884/93015 | |
dc.description.abstract | As equações elípticas são equações diferenciais parciais e estão relacionadas com problemas de equilíbrio que não dependem, em geral, do tempo. A necessidade de obtenção de soluções aproximadas para problemas desse tipo impulsionou o estudo e a aplicação de métodos numéricos. Existem diversos métodos numéricos capazes de encontrar aproximação para a solução de uma equação elíptica, em especial, para a equação de Poisson bidimensional. Porém, a finalidade deste trabalho é explorar um método capaz de obter aproximações mais precisas e com baixo custo computacional, conhecido como método de diferenças finitas compactas e verificar o emprego de diferentes métodos iterativos na solução do sistema linear proveniente desta aproximação. | |
dc.format.mimetype | application/pdf | |
dc.relation.ispartof | II Simpósio de Métodos Numéricos em Engenharia (2017) | |
dc.subject | equação de Poisson | |
dc.subject | diferenças finitas compactas | |
dc.subject | métodos iterativos. | |
dc.title | Diferenças finitas compactas para a equação de Poisson utilizando métodos iterativos | |
dc.type | Artigo | |
dc.identifier.ocs | 632 | |