Mostrar registro simples

dc.contributor.advisorMenotti, David, 1978-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Informáticapt_BR
dc.creatorNascimento, Valfride Wallace dopt_BR
dc.date.accessioned2023-05-04T18:53:18Z
dc.date.available2023-05-04T18:53:18Z
dc.date.issued2023pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/82378
dc.descriptionOrientador: David Menottipt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 24/04/2023pt_BR
dc.descriptionInclui referências: p. 51-59pt_BR
dc.descriptionÁrea de concentração: Ciência da Computaçãopt_BR
dc.description.abstractResumo: Nos últimos anos, houve avanços significativos no campo de Reconhecimento de placas de veiculares (LPR, do inglês License Plate Recognition) por meio da integração de técnicas de aprendizado profundo e do aumento da disponibilidade de dados para treinamento. No entanto, reconstruir placas veiculares a partir de imagens de sistemas de vigilância em baixa resolução ainda é um desafio. Para enfrentar essa dificuldade, apresentamos uma abordagem de Super Resolução de Imagem Única (SISR, do inglês Single-Image Super-Resolution) que integra módulos de atenção para aprimorar a detecção de característica estruturais e texturais em imagens de baixa resolução. Nossa abordagem utiliza camadas de convolução sub-pixel (também conhecidas como PixelShuffle) e uma função de perda que emprega um modelo de Reconhecimento Óptico de Caracteres (OCR, do inglês Optical Character Recognition) para extração de características. Treinamos a arquitetura proposta com imagens sintéticas criadas aplicando ruído gaussiano pesado à imagens de alta resolução de placas veiculares de dois conjuntos de dados públicos, seguido de redução de sua resolução com interpolação bicúbica. Como resultado, as imagens geradas têm um Índice de Similaridade Estrutural (SSIM, do inglês Structural Similarity Index Measure) inferior a 0,10. Nossos resultados experimentais mostram que a abordagem proposta para reconstruir essas imagens sintéticas de baixa resolução superou as existentes tanto em medidas quantitativas quanto qualitativas.pt_BR
dc.description.abstractAbstract: Recent years have seen significant developments in the field of License Plate Recognition (LPR) through the integration of deep learning techniques and the increasing availability of training data. Nevertheless, reconstructing license plates (LPs) from low-resolution (LR) surveillance footage remains challenging. To address this issue, we introduce a Single-Image Super-Resolution (SISR) approach that integrates attention and transformer modules to enhance the detection of structural and textural features in LR images. Our approach incorporates sub-pixel convolution layers (also known as PixelShuffle) and a loss function that uses an Optical Character Recognition (OCR) model for feature extraction. We trained the proposed architecture on synthetic images created by applying heavy Gaussian noise to high-resolution LP images from two public datasets, followed by bicubic downsampling. As a result, the generated images have a Structural Similarity Index Measure (SSIM) of less than 0.10. Our results show that our approach for reconstructing these low-resolution synthesized images outperforms existing ones in both quantitative and qualitative measures.pt_BR
dc.format.extent1 recurso online : PDF.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languageInglêspt_BR
dc.subjectVeiculospt_BR
dc.subjectProcessamento de imagenspt_BR
dc.subjectAutomóveis - Identificaçãopt_BR
dc.subjectCiência da Computaçãopt_BR
dc.titleSuper-resolution towards license plate recognitionpt_BR
dc.typeDissertação Digitalpt_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples