• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uma abordagem para filtragem de arestas de grafos de palavras aplicada ao problema de classificação de texto

    Thumbnail
    Visualizar/Abrir
    R - D - MARCELA RIBEIRO DE OLIVEIRA.pdf (5.120Mb)
    Data
    2020
    Autor
    Oliveira, Marcela Ribeiro de, 1996-
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Classificação de texto é um problema clássico na área de Processamento de Linguagem Natural. Uma tarefa essencial na classificação de texto é a construção da representação, que deve prover informações relevantes para o classificador. Um dos modelos de representação mais efetivos utiliza grafos para representar textos. Esta pesquisa propõe uma abordagem que utiliza esse modelo de representação e medidas de associatividade de palavras para incorporar mais informações aos grafos. Essas medidas servem como um guia para identificar e remover arestas entre as palavras com baixo valor de associatividade. Então, utilizando o node2vec, extraímos as características de cada grafo e utilizamos uma rede neural convolucional de texto para realizar a classificação. Conduzimos experimentos para comparar diferentes tipos de modelagem dos grafos em termos de acerto na classificação e da proporção de arestas que foram removidas. Os resultados obtidos indicaram que essa abordagem torna possível reduzir a quantidade de arestas no grafo mantendo o desempenho da classificação. Palavras-chave: classificação de texto, grafo de palavras, aprendizagem de representação de grafos.
     
    Abstract: Text classification is a classic problem in Natural Language Processing. An essential task in text classification is the construction of the representation, which must provide relevant information to the classifier. One of the most effective representation model uses graphs to represent texts. This research proposes an approach that uses this representation model and word association measures to incorporate more information into the graphs. These measures then serve as a guide to identify and remove edges between words with low association levels. Then, using node2vec, we extract the features of each graph and use a text convolutional neural network for classification. We conducted experiments in order to compare different kinds of graph modeling in terms of classification score and the proportion of edges that were removed. The results obtained indicate that this approach makes it possible to reduce the amount of edges in the graphs maintaining classification performance. Keywords: text classification, graph of words, graph representation learning
     
    URI
    https://hdl.handle.net/1884/70832
    Collections
    • Dissertações [254]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV