• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Graduação
    • Gestão da Informação
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Trabalhos de Graduação
    • Gestão da Informação
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Análise preditiva de churn em um e-commerce

    Thumbnail
    Visualizar/Abrir
    BRUNA-FRANCIANY-GIRATA-LUIZON.pdf (3.549Mb)
    Data
    2019
    Autor
    Luizon, Bruna Franciany Girata
    Metadata
    Mostrar registro completo
    Resumo
    Resumo : Estudo sobre a aplicação de machine learning em análises preditivas de churn em e-commerce. Busca entender o conceito de clientes churn dentro de organizações onde não há assinatura de um serviço e/ou produto, bem como o impacto da tecnologia na evolução do marketing e das novas formas de comércio. Analisa documentos recuperados sobre o tema na base de dados Scopus, fazendo uma revisão sistemática e análise bibliométrica dos documentos levantados. Há uma série de técnicas de mineração de dados aplicadas para a previsão de churn, tais como redes neurais artificiais, árvores de decisão e máquinas vetoriais de suporte. Apresenta a relação entre machine learning e a predição de churn. Conclui-se na primeira etapa a recência do assunto e a falta de estudos aprofundados sobre o tema, além de que os algoritmos mais utilizados envolvem árvore de decisão, Support Vector Machine, Rede Neural Artificial, Random Forest e Regressão Logística. Comenta que a maioria dos estudos existentes relacionados com a previsão do churn de clientes são análises estáticas e não estão bem adequados à realização de monitorizações individuais e dinâmicas, já que a análise de dados estáticas não fornecem monitoramento dinâmico do churn do cliente. No segundo momento do estudo, foram selecionados três métodos e aplicados em uma base de um e-commerce na área de varejo. Os métodos escolhidos foram: Árvore de Decisão (J48), Rede Neural Artificial (Multilayer Perceptron) e Support Vector Machine (SMO). Concluiu que os três modelos apresentaram resultados similares quando analisados a taxa de acertos do modelo, porém o que apresenta melhor tempo de execução do modelo é a Árvore de Decisão J48.
    URI
    https://hdl.handle.net/1884/64983
    Collections
    • Gestão da Informação [582]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV