• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Análise do impacto das estratégias de seleção de tradicionais MOEAs EM MOEDAs : CMA-ES E UMDA

    Thumbnail
    Visualizar/Abrir
    R - D - ANDREI STRICKLER.pdf (1.379Mb)
    Data
    2017
    Autor
    Strickler, Andrei Strickler
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Pesquisas apontam que, em problemas de otimização mono-objetivo, a capacidade de busca dos algoritmos de estimação de distribuição é fortemente influenciada pelo método de seleção que implementam. O mesmo se observa em problema de otimização multi-objetivo, isto é, os métodos de seleção e as estratégias de substituição desempenham papel importante. No entanto, esta relação entre modelos probabilísticos e os métodos de seleção não tem sido alvo de pesquisas ainda. Neste trabalho, é abordada esta questão avaliando algumas variantes de estratégias de seleção e diferentes modelos probabilísticos. Isto permite detectar possíveis interações entre esses dois componentes dos algoritmos evolutivos multi-objetivo. Especialmente, foram utilizadas as estratégias de seleção utilizadas nos algoritmos NSGA-II, SPEA2 e IBEA, e os modelos probabilísticos implementados como parte do UMDA e CMA-ES, bem como o operador de crossover (SBX). Dois conjuntos de problemas de benchmark para o contexto multi-objetivo com diferentes características são usados para a análise, são eles: problemas da família DTLZ e da ferramenta COCO recentemente introduzida. Os resultados mostram que utilizar modelos probabilísticos tem uma vantagem sobre o operador genético tradicional, desconsiderando o método de seleção aplicado. Entretanto, os resultados obtidos também mostram que alguns métodos de seleção apresentam um melhor desempenho quando aplicados em conjunto com MOEDAs.
     
    Abstract: Researches point that, in mono-objective optimization problems, the search capability of estimation of distribution algorithms is strongly influenced by the selection method they implement. The same is true in multi-objective optimization problem, that is, the selection methods and replacement strategies play an important role. However, this relationship between probabilistic models and selection methods has not been the subject of research yet. In this work, this question is approached by evaluating some variants of selection strategies and different probabilistic models. This allows to detect possible interactions between these two components of the multi-objective evolutionary algorithms. In particular, we used the selection strategies used in the NSGA-II, SPEA2 and IBEA algorithms, and the probabilistic models implemented as part of the UMDA and CMA-ES, as well as the crossover operator (SBX). Two sets of benchmark problems for the multi-objective context with different characteristics are used for the analysis, they are: problems of the DTLZ family and the recently introduced COCO framework. The results show that using probabilistic models has an advantage over the traditional genetic operator, disregarding the applied selection method. However, the obtained results also show that some selection methods present a better performance when applied in conjunction with MOEDAs.
     
    URI
    https://hdl.handle.net/1884/46054
    Collections
    • Dissertações [258]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV