Uso de redes neurais artificiais para mapeamento de biomassa e carbono organico no componente arboreo de uma floresta ombrofila densa

View/ Open
Date
2013-06-05Author
Schoeninger, Emerson Roberto
Metadata
Show full item recordSubject
Biomassa vegetalRedes neurais (Computação)
Sensoriamento remoto
IKONOS II (Satélites)
Engenharia Florestal - Teses
Teses
Carbono
Mapeamento florestal
Sequestro de carbono
xmlui.dri2xhtml.METS-1.0.item-type
TeseAbstract
O objetivo principal do presente estudo foi utilizar imagens do satélite IKONOS II para obter mapas temáticos para estimativas de biomassa arbórea e da quantidade de carbono orgânico armazenado em uma Floresta Ombrófila Densa. A área total avaliada foi 3.800 hectares, dos quais 3.324 hectares são cobertos atualmente por floresta natural. Na primeira etapa do estudo foram levantadas 48 amostras de 2700 m2 onde todos os indivíduos com diâmetro a 1,30 metros do solo (dap) acima de 10 cm foram medidos e identificados. Na segunda etapa, baseada nos resultados advindos do inventário florestal, 219 árvores foram abatidas, mensuradas e pesadas em toda sua parte aérea para a determinação de sua biomassa arbórea e quantidade de carbono armazenado. As estimativas obtidas foram relacionadas com dados oriundos das bandas das imagens do satélite IKONOS II. Foi verificado o desempenho de Redes Neurais Artificiais (RNA) e de equações de regressão lineares na quantificação de biomassa arbórea e na quantidade de carbono arbóreo armazenado. As estimativas obtidas por ambos os métodos geraram mapas temáticos de biomassa arbórea e da quantidade de carbono armazenado. A biomassa arbórea total média estimada foi de 141,4 t ha-1, enquanto que a média de carbono armazenado na vegetação foi de 59,3 t ha-1. O teor de carbono médio determinado na vegetação arbórea foi de 422 g kg-1. A arquitetura de RNA que apresentou melhores resultados foi com 12 neurônios na camada de entrada e 4 na camada de saída, para um liminar de erro de 0,01, para ambas as variáveis estimadas. O erro percentual médio em relação às amostras de verificação foi de 3,73 e 3,59%, para biomassa e quantidade de carbono, respectivamente. A melhor equação de regressão linear apresentou erros padrão da estimativa em porcentagem na ordem de 29,8 % para ambas as variáveis estimadas. A aplicação de Redes Neurais Artificiais mostrou-se mais exata na estimativa da biomassa e da quantidade de carbono do que as equações de regressão lineares ajustadas. A técnica de Redes Neurais Artificiais mostrou-se promissora na obtenção de estimativas de variáveis biométricas no setor florestal, sendo o estudo de outras variáveis e a aplicação da técnica em outras áreas recomendável para seu uso de forma mais ampla.
Collections
- Teses [348]