• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Otimização por nuvem de partículas multiobjetivo no aprendizado indutivo de regras

    Thumbnail
    View/Open
    Dissertacao - Andre Britto de Carvalho.pdf (1.242Mb)
    Date
    2010-05-28
    Author
    Carvalho, André Britto de
    Metadata
    Show full item record
    Subject
    Informática
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: A área da Mineraçãoo de Dados (MD), ou Data Mining, consiste em analisar uma grande quantidade de dados buscando-se identificar associações e relações entre os dados que não são conhecidas a priori. Nesta área há uma necessidade por novas ferramentas e técnicas com a habilidade de ajudar software de forma inteligente na análise de grandes massas de dados. Neste sentido, algoritmos de Aprendizado de Máquina são as técnicas mais indicadas para estas aplicações. Para a representação do conhecimento extraído, regras são as formas mais utilizadas atualmente, devido a seu caráter intuitivo e simplicidade. O Aprendizado de Regras é uma técnica de Aprendizado de Máquina que têm o objetivo de produzir um conjunto de regras a partir de um conjunto de dados de entrada, que representam o conhecimento extraído. Além disso, o modelo gerado pode ser usado como um classificador. Este trabalho tem como objetivo o desenvolvimento de um algoritmo para o problema do Aprendizado de Regras no contexto da Mineração de Dados. Para isto, a técnica escolhida e a metaheurística Otimização por Nuvem de Partículas Multiobjetivo. Esta metaheurística é pouco explorada no Aprendizado de Regras e possui alguns problemas ainda sem solução. Assim, além do desenvolvimento do algoritmo, são propostas algumas soluções de problemas que surgem na aplicação da técnica MOPSO no Aprendizado de Regra. Neste trabalho, busca-se também produzir um bom classificador em termo da área abaixo da curva ROC, AUC. Para a validação do algoritmo e suas extensões é proposto um conjunto de experimentos, que comparam a técnica MOPSO com alguns algoritmos conhecidos da literatura. Por fim, o algoritmo é aplicado num estudo de caso do contexto da predição de defeitos em softwares.
    URI
    http://hdl.handle.net/1884/23718
    Collections
    • Dissertações [353]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV