Mostrar registro simples

dc.contributor.advisorCenteno, Jorge Antonio Silva, 1963-pt_BR
dc.contributor.otherJijón-Palma, Mario Ernesto, 1979-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências da Terra. Programa de Pós-Graduação em Ciências Geodésicaspt_BR
dc.creatorCrato, Jorgiana Kamila Teixeirapt_BR
dc.date.accessioned2024-01-17T14:47:27Z
dc.date.available2024-01-17T14:47:27Z
dc.date.issued2023pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/86032
dc.descriptionOrientador: Prof. Dr. Jorge Antônio Silva Centenopt_BR
dc.descriptionCoorientador: Dr. Mario Ernesto Jijón Palmapt_BR
dc.descriptionDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências da Terra, Programa de Pós-Graduação em Ciências Geodésicas. Defesa : Curitiba, 25/08/2023pt_BR
dc.descriptionInclui referênciaspt_BR
dc.description.abstractResumo: O Brasil, um dos países mais extensos do mundo, possui uma significativa parcela de vias de rodagem situada em ambiente rural, sem a devida manutenção, o que dificulta a extensão de serviços à população rural. Muitas dessas estradas desempenham um papel fundamental na gestão territorial, uma vez que são responsáveis pelo escoamento da produção agrícola do interior do país e pela conectividade das comunidades rurais. A manutenção destas estradas e sua exploração para a extensão de serviços básicos, como energia e água, é somente possível com uma adequada atualização cartográfica da rede viária. Mais recentemente, o uso de métodos de aprendizado profundo para a análise de imagens orbitais tem crescido significativamente. Dentro desta nova realidade, esta pesquisa propõe uma abordagem baseada em técnicas de sensoriamento remoto aliadas a ferramentas de inteligência artificial, com o intuito de contribuir para solucionar o problema do mapeamento de estradas em áreas rurais. Para isto, se propõe o uso das redes convolucionais. Utilizando a arquitetura U-Net, foi possível identificar um potencial promissor na detecção de estradas rurais em imagens da constelação Planet. A taxa de detecção alcançada foi notável, atingindo uma acurácia de 92%. Contudo, é importante ressaltar a necessidade de aprimoramentos, visto que outras métricas de avaliação, como a precisão (76,66%) e o f1-score (69,48%), indicam margem para otimização dos parâmetros utilizados. No estudo também é feita uma análise comparativa entre o uso dos interpretadores na nuvem, do Google Colab (em ambiente virtual) e Pyzo (em ambiente local, utilizando o computador desktop/workstation fornecido pela UFPR). Verificou-se que o Colab apresenta vantagens em termos de custo e acesso a recursos de processamento. Entretanto, é relevante destacar que o uso do Colab também traz consigo algumas limitações, as quais requerem uma abordagem cuidadosa ao ajustar a complexidade do modelo e o tamanho do conjunto de dados.pt_BR
dc.description.abstractAbstract: Brazil, one of the largest countries in the world, has a significant number of roads in rural areas that are not properly maintained, making it difficult to extend services to the rural population. Many of these roads play a fundamental role in land management, as they are responsible for transporting agricultural produce from the interior of the country and for connecting rural communities. Maintaining these roads and exploiting them to extend basic services, such as energy and water, is only possible with a proper cartographic update of the road network. More recently, the use of deep learning methods to analyse orbital images has grown significantly. Within this new reality, this research proposes an approach based on remote sensing techniques combined with artificial intelligence tools, with the aim of helping to solve the problem of mapping roads in rural areas. To this end, the use of convolutional networks is proposed. Using the U-Net architecture, it was possible to identify promising potential for detecting rural roads in images from the Planet constellation. The detection rate achieved was remarkable, reaching an accuracy of 92 per cent. However, it is important to highlight the need for improvement, since other evaluation metrics, such as accuracy (76.66%) and f1-score (69.48%), indicate room for optimization of the parameters used. The study also makes a comparative analysis between the use of interpreters in the cloud, Google Colab (in a virtual environment) and Pyzo (in a local environment, using the desktop/workstation computer provided by UFPR). Colab was found to have advantages in terms of cost and access to processing resources. However, it is important to emphasize that the use of Colab also brings with it some limitations, which require a careful approach when adjusting the complexity of the model and the size of the data set.pt_BR
dc.format.extent1 recurso online : PDF.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.subjectEstradas ruraispt_BR
dc.subjectRedes neuraispt_BR
dc.subjectSensoriamento remotopt_BR
dc.subjectImagens multiespectraispt_BR
dc.subjectGeodésiapt_BR
dc.titleDetecção de estradas rurais em imagens Planet usando rede convolutional U-Netpt_BR
dc.typeDissertação Digitalpt_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples