• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016020P4 Programa de Pós-Graduação em Física
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016020P4 Programa de Pós-Graduação em Física
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vetores covariantes de Liapunov em sistemas espacialmente estendidos

    Thumbnail
    Visualizar/Abrir
    R - D - LUIZ MENON JUNIOR.pdf (5.011Mb)
    Data
    2020
    Autor
    Menon, Luiz, 1994-
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Os expoentes de Lyapunov são uma das ferramentas mais usadas na caracterização de sistemas dinâmicos não lineares e descrevem as taxas de crescimento e contração de perturbações aplicadas a sua trajetória em diferentes direções do espaço de fase. Porem com as técnicas convencionais para a obtenção dos expoentes Lyapunov e impossível identificar a real direção dessas taxas de crescimento. Essa informação e acessível apenas através dos vetores covariantes de Lyapunov (VCLs). Embora o conceito de vetores covariantes de Lyaponov seja bem estabelecido h muito tempo, ainda não haviam algoritmos eficientes para obtenção numérica destes vetores ate o recente desenvolvimento sugerido por Ginneli e colaboradores [1]. Neste sentindo utilizamos esse procedimento para revisitar alguns resultados ja estabelecidos na literatura e na caraterização de sistemas espacialmente estendidos, mais especificamente redes mapas quadráticos acoplados e osciladores de Kuramoto-Sakaguchi, sendo que este ultimo apresenta um comportamento espaço-temporal que vem sido exaustivamente explorado, os chamados estados quimera.
     
    Abstract: Lyapunov exponents are one of the most used tools in the characterization of nonlinear dynamic systems, capable of describing the growth rates of disturbances applied on trajectories in different directions of phase space. However with conventional techniques to obtain Lyapunov exponents it is impossible to identify the real direction of these growth rates. This information is accessible to covariant Lyapunov vectors. While this concept has been well established for a long time there were still no efficient algorithms for obtaining these vectors numerically until the recent development suggested by Ginneli et al.[1]. In this sense we use this procedure to revisit some results already established in the literature and also characterize some spatially developed systems. More specifically, coupled map lattice of quadratic maps and Kuramoto-Sakaguchi oscillators. The latter shows a space-time behavior that has been exhaustively explored, the so-called chimera states, consisting of the coexistence of incoherent oscillations with synchronized behavior.
     
    URI
    https://hdl.handle.net/1884/71825
    Collections
    • Dissertações [186]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV