Show simple item record

dc.contributor.advisorVolpi, Neida Maria Patias, 1953-pt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Tecnologia. Programa de Pós-Graduação em Métodos Numéricos em Engenhariapt_BR
dc.creatorObal, Thalita Monteiropt_BR
dc.date.accessioned2024-05-13T17:35:33Z
dc.date.available2024-05-13T17:35:33Z
dc.date.issued2016pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/44471
dc.descriptionOrientador: Neida Maria Patias Volpipt_BR
dc.descriptionTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 08/07/2016pt_BR
dc.descriptionInclui referências : f. 71-75pt_BR
dc.descriptionÁrea de concentraçãopt_BR
dc.description.abstractResumo: O processo de planejamento de radioterapia é um fator essencial para garantir o nível máximo de eficiência do tratamento subsequente. Neste planejamento, há pelo menos dois problemas de decisão que podem ser modelados e resolvidos utilizando técnicas de Pesquisa Operacional. Estes incluem a melhor posição para emissão do feixe (problema do posicionamento dos feixes) e a quantidade ótima da dose que deve ser entregue através de cada feixe (problema da distribuição de dose). Esta tese apresenta um modelo matemático para otimizar concomitantemente os problemas do posicionamento dos feixes e da distribuição de dose, na presença de múltiplos objetivos. Três matheurísticas são propostas para resolver casos realistas que são de grande escala. As matheurísticas usam, respectivamente, Algoritmos Genéticos, Busca Tabu e Busca em Vizinhança Variável e são, portanto, denominadas GArad, TSrad e VNSrad. O desempenho das metodologias propostas é avaliado em dois tipos de instâncias de câncer na região da próstata, que envolvem um único corte de tomografia computadorizada (CT) e um conjunto de cortes de CT (problema 3D). Para o problema em um único corte de CT, os resultados das matheurísticas propostas são comparados com a solução ótima obtida por método exato. Em ambas instâncias, avaliaram-se os resultados em relação à cobertura de dose no tumor, e aos limites percentuais de dose nos órgãos de risco, além de avaliar a performance das metodologias em diferentes tempos computacionais. No geral, as metodologias fornecem uma solução para os problemas do posicionamento dos feixes e distribuição de dose, e, além disso, são metodologias flexíveis para considerar as necessidades específicas do paciente.pt_BR
dc.description.abstractAbstract: Radiotherapy planning is a vital component in ensuring the maximum level of effectiveness of the subsequent treatment. In the planning task, there are at least two connected decision problems that can be modelled and solved using Operational Research techniques. These include the best position of the radiotherapy machine (beam angle problem) and the optimal quantity of the dose that has to be delivered through each beam (dose distribution problem). This thesis presents a mathematical optimisation model for solving the combined beam angle and dose distribution problem in the presence of multiple objectives. Three matheuristics are developed to solve realistic large-scale instances. The matheuristics use Genetic Algorithms, Tabu Search and Variable Neighbourhood Search and are hence termed GArad, TSrad and VNSrad, respectively. The performance of the proposed methods is assessed on two prostate cancer instances, namely a single computed tomography (CT) slice and a set of CT slices (3D problem). For the single-slice problem, the results of the proposed matheuristics are compared to the optimal solutions obtained by an exact method where the experiments show that the proposed methods are able to achieve optimality or to produce a relatively small deviation. For the multi-slice problem, the computational experiments show that the proposed methods produce viable solutions which can be attained in a reasonable computational time. Overall, the methodologies can provide a solution for beam angle and dose distribution problems, and besides that they are flexible to consider the patient needs.pt_BR
dc.format.extent124f. : il. algumas color.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.relationDisponível em formato digitalpt_BR
dc.subjectAnálise numéricapt_BR
dc.subjectOtimização matemáticapt_BR
dc.subjectAlgorítmos genéticospt_BR
dc.subjectRadioterapiapt_BR
dc.titleDesenvolvimento e avaliação de matheurísticas para o combinado problema do posicionamento dos feixes e distribuição de dose no planejamento de radioterapiapt_BR
dc.typeTesept_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record