Mostrar registro simples

dc.contributor.advisorSilva, Arinei Carlos Lindbeck da, 1960-pt_BR
dc.contributor.otherTeixeira Junior, Luiz Albinopt_BR
dc.contributor.otherUniversidade Federal do Paraná. Setor de Ciências Exatas. Programa de Pós-Graduação em Métodos Numéricos em Engenhariapt_BR
dc.creatorRodrigues, Samuel Bellidopt_BR
dc.date.accessioned2025-05-07T17:29:54Z
dc.date.available2025-05-07T17:29:54Z
dc.date.issued2015pt_BR
dc.identifier.urihttps://hdl.handle.net/1884/41960
dc.descriptionOrientador: Prof. Dr. Arinei Carlos Lindbeck da Silvapt_BR
dc.descriptionCoorientador: Prof. Dr. Luiz Albino Teixeira Júniorpt_BR
dc.descriptionTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Métodos Numéricos em Engenharia. Defesa: Curitiba, 22/12/2015pt_BR
dc.descriptionInclui referências : f.82-93pt_BR
dc.description.abstractResumo: Nesta tese de Doutorado é apresentado um novo método preditivo híbrido, formado basicamente pela combinação dos métodos SARIMA, Support Vector Regression e Wavelet, denominado como SARIMA Support Vector Regression Wavelet de Múltiplos Núcleos (SSVRWMN), para a predição de valores de leitura de instrumentos de barragens de concreto de usinas hidroelétricas. Tendo as previsões pontuais, estimase o intervalo de confiança por meio da técnica Bootstrap. O método SSVRWMN Bootstrap contempla as seguintes abordagens: os modelos SARIMA (para mapear estruturas de autodependência lineares sazonais e simples); a decomposição Wavelet integrada com modelos Support Vector Regression (SVRs) (que mapeiam estruturas de autodependência não lineares e da frequência espectral inerente aos dados); a programação não linear (utilizada no ajuste numérico dos parâmetros associados às combinações de previsões) e a técnica Bootstrap aplicada aos resíduos do modelo SSVRWMN com a finalidade de se estimar o intervalo de confiança Bootstrap. O objetivo é produzir previsões para as séries temporais provenientes de instrumentos de barragens, agregadoras de informações estocásticas distintas capturadas por diferentes métodos. A fim de avaliar a eficiência do método preditivo SSVRWMN, este foi aplicado a algumas séries temporais provenientes da aferição de instrumentos situados no bloco-chave I10 da barragem de Itaipu (as quais são utilizadas na análise probabilística de risco de tombamento dos blocos no sentido montante-jusante). O desempenho preditivo alcançado pelo método SSVRWMN, em relação aos métodos preditivos SARIMA, SVR e composto SARIMA-SVR, foi notadamente superior, na presente tese.pt_BR
dc.description.abstractAbstract: In this doctoral thesis is presented a new hybrid predictive method, formed by the combination of the methods SARIMA, Support Vector Regression and Wavelet referred as: SARIMA Support Vector Regression Wavelet of multiple kernels (SSVRWMN), for the prediction of reading values of concrete dams of hydroelectric plants. With the forecasts, it is estimated the confidence interval by Bootstrap technique. The method SSVRWMN Bootstrap includes the following approaches: SARIMA models (to map linear auto-dependence structures simple and seasonal); Wavelet decomposition integrated with Support Vector Regression models (SVR) (which map non-linear auto-dependence structures and spectral frequency inherent to data); nonlinear programming (used in the numerical adjustment of the parameters associated with combinations of forecasts) and the Bootstrap residual technique applied to residue the model SSVRWMN in order to estimate the Bootstrap confidence interval. The goal is to produce forecasts for the time series from instruments of dams that are aggregators of distinctive stochastic information captured by different methods. In order to evaluate the efficiency of method SSVRWMN predictive , this was applied to some time series from instruments located in block-key I10, of Itaipu Dam (which are used in probabilistic analysis tipover risk of blocks in the downstreamupstream direction). The predictive performance achieved by SSVRWMN concerning the traditional approaches SARIMA, SVR and composed SARIMA-SVR, have been remarkable superior.pt_BR
dc.format.extent93 f. : il. algumas color.pt_BR
dc.format.mimetypeapplication/pdfpt_BR
dc.languagePortuguêspt_BR
dc.relationDisponível em formato digitalpt_BR
dc.subjectAnálise numéricapt_BR
dc.subjectBarragens de concretopt_BR
dc.subjectWavelets (Matematica)pt_BR
dc.subjectAnalise de series temporais - Processamento de dadospt_BR
dc.titleMétodo híbrido interativo sarima support vector regression wavelet de múltiplos núcleos na previsão de séries temporais de instrumentos de barragenspt_BR
dc.typeTesept_BR


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples