• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Teses
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Teses
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Método warimax-garch neural para previsão de séries temporais

    Thumbnail
    Visualizar/Abrir
    R - T - JAIRO MARLON CORREA.pdf (2.872Mb)
    Data
    2015
    Autor
    Correa, Jairo Marlon
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: A proposta deste trabalho é apresentar uma nova metodologia híbrida WARIMAX-GARCH Neural para a previsão pontual e intervalar de séries temporais estocásticas. Fundamentalmente, é aplicada a decomposição Wavelet em séries históricas compostas por registros de monitoramento de barragens e suas componentes de aproximação e detalhe, as quais são modeladas, individualmente, via ARIMA-GARCH e Redes Neurais Artificiais (RNA). A partir de então, são realizadas as previsões pontuais fora da amostra pelas técnicas de modelagem e os resultados são combinados linearmente. As componentes de aproximação e detalhe são completadas com as previsões combinadas e passam a ser utilizadas como variáveis de entrada (exógenas híbridas) na modelagem da série em estudo. Em cada série temporal é aplicada a metodologia WARIMAX-GARCH Neural e são realizadas as previsões pontuais e intervalares, sob a suposição de inovações gaussianas. As séries temporais utilizadas neste trabalho de tese foram as séries temporais dos deslocamentos horizontais de blocos da barragem principal da Usina Hidrelétrica de Itaipu, aferidas pelos pêndulos diretos automatizados. Os desempenhos preditivos alcançados pela metodologia proposta, em relação aos resultados obtidos pelas modelagens tradicionais ARIMA-GARCH e RNA, foram consideravelmente vantajosos. Nas comparações dos resultados obtidos através do modelo WARIMAX-GARCH Neural com métodos tradicionais, a redução do erro preditivo chegou a 91%.
     
    Abstract: This research proposes a new WARIMAX-GARCH Neural hybrid methodology for point and interval prediction of stochastic time series. Fundamentally, it is applied the wavelet decomposition on the time series made of monitoring data and its approximation and detail components were modeled by ARIMA-GARCH and Artificial Neural Networks (ANN). Thereafter, the point forecasts are performed out the sample by both modeling techniques and these results are combined linearly. The approximation and detail components are completed with the combined forecasts and are used as input variables (hybrid exogenous) in the modeling time series under study. In each time series is applied the WARIMAX-GARCH Neural methodology and are made the point and interval forecast, under the assumption of Gaussian innovations. The time series used in this research were the time series of horizontal displacements of the main dam blocks of Itaipu hydroelectric plant, measured by automated direct pendulums. The predictive performances achieved by the proposed method compared to the results obtained by traditional modeling ARIMA-GARCH and RNA were considerably advantageous. Comparing the results obtained by WARIMAX-GARCH Neural model to traditional methods there was a reduction of up to 91% of the predictive error.
     
    URI
    https://hdl.handle.net/1884/41955
    Collections
    • Teses [104]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV