• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016066P4 Programa de Pós-Graduação em Bioinformática
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016066P4 Programa de Pós-Graduação em Bioinformática
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    BioSom

    Thumbnail
    Visualizar/Abrir
    R - D - KELLY RAFAELA OTEMAIER.pdf (5.199Mb)
    Data
    2013-09-11
    Autor
    Otemaier, Kelly Rafaela
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Genes e proteínas são de grande importância biológica para a compreensão de processos bioquímicos e requerem nomes consistentes. Existem diversas diretrizes para nomenclatura de genes, mas elas não são rigorosamente aplicadas à atribuição de nomes aos genes recém-identificados, gerando assim, inúmeras maneiras de nomear um mesmo gene. Este trabalho tem o objetivo de detectar e minimizar a redundância e a inconsistência de dados para colaborar com a identificação correta de genes. Para isso foram utilizadas técnicas de Inteligência Artificial para identificar os sinônimos realizando um estudo dirigido a dez experimentos distintos. Para selecionar os dados dos experimentos foi construído um banco de dados relacional para armazenar as informações constantes na base NR do NCBI e as informações identificadas neste estudo. Os dados do experimento foram minerados através das técnicas de mapas auto-organizáveis de Kohonen. A Rede SOM de Kohonen foi aplicada para exprimir as relações de similaridade entre os dados. Para identificação dos agrupamentos gerados pela rede SOM foi utilizada a técnica denominada Matriz-U. As informações resultantes deste trabalho permitem inferir os sinônimos dos genes, identificar prováveis nomes para genes nomeados como hipotéticos e apontar possíveis erros de anotação.
    URI
    http://hdl.handle.net/1884/31637
    Collections
    • Dissertações [66]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV