• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016066P4 Programa de Pós-Graduação em Bioinformática
    • Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016066P4 Programa de Pós-Graduação em Bioinformática
    • Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Utilização de técnicas de otimização de desempenho em bioinformática

    Thumbnail
    Visualizar/Abrir
    R - D - SERGIO YOSHIMITSU FUJII.pdf (1.393Mb)
    Data
    2012-12-12
    Autor
    Fujii, Sergio Yoshimitsu
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: A área de bioinformática passou por um crescimento na quantidade de dados biológicos em formato digital devido ao desenvolvimento de novas tecnologias de sequenciamento de DNA e análise de expressão gênica. A base de dados vem crescendo em altas taxas anualmente e, atualmente, o desafio é a transformação dos dados biológicos digitais em conhecimento. No entanto, a dificuldade para processar a enorme quantidade de dados é apenas um dos vários problemas relacionados a este crescimento. A área de Ciência da Computação pode auxiliar na melhoria da bioinformática através da investigação focada em métodos eficientes para a montagem de genomas, expressão gênica, alinhamento de sequências, mineração de dados, predição de sRNA, entre outros. Além da grande quantidade de memória requerida, ferramentas de bioinformática também exigem alta capacidade de processamento. A computação de alto desempenho (CAD), incorporando vários núcleos de processador em uma placa com memória compartilhada e oferecendo técnicas de otimização de código, vem mudando paradigmas na área de computação. Ferramentas de bioinformática modernas precisam tirar proveito da computação paralela, o que sempre foi uma tarefa desafiadora. Porém, a conversão de código sequencial em paralelo é uma tarefa difícil e deve ser precedida por otimização. Essa otimização envolve tornar o programa o mais eficiente possível. Técnicas de otimização manual, por exemplo, otimização aritmética, eliminação de conversão de dados e otimização de loop, ajudam a melhorar o tempo de execução da aplicação. Este trabalho apresenta otimizações realizadas no software sRNAScanner, cuja motivação foram as respostas biológicas do software e o seu tempo de execução elevado. Para otimizar o programa, ferramentas de perfilação foram utilizadas para analisar e avaliar o seu desempenho. O software sofreu alterações em suas funções e em suas estruturas de dados. Utilizando o genoma da bactéria Salmonella enterica serovar Typhimurium e técnicas de otimização manual e programação paralela, o tempo médio diminuiu de 23 minutos para 16,283 segun dos, apresentando um aumento de desempenho (speedup) de 85 vezes. Os arquivos finais e temporário tiveram o conteúdo inalterado em comparação com os mesmos arquivos gravados pelo programa sRNAScanner original. Os resultados mostraram que a aplicação de técnicas de otimização utilizadas em computação de alto desempenho em ferramentas de bioinformática apresentou, neste caso, um ganho de desempenho expressivo.
    URI
    http://hdl.handle.net/1884/28955
    Collections
    • Dissertações [66]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV