• Entrar
    Ver item 
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • Teses & Dissertações
    • Ver item
    •   Página inicial
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • Teses & Dissertações
    • Ver item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mineração de dados usando algoritmos genéticos

    Thumbnail
    Visualizar/Abrir
    D - HASSE, MOZART.pdf (2.606Mb)
    Data
    2000
    Autor
    Hasse, Mozart
    Metadata
    Mostrar registro completo
    Resumo
    Resumo: Este trabalho implementa uma ferramenta para Mineração de Dados. A ferramenta consiste em um classificador que utiliza Algoritmos Genéticos para a indução de regras. Este paradigma foi escolhido devido à grande capacidade dos algoritmos genéticos em lidar com dados inválidos ou imprecisos e a facilidade de adaptá-lo a diferentes aplicações, seja pela configuração de parâmetros ou pela implementação ou modificação de operadores. O algoritmo genético usa a abordagem de Michigan. Nesta abordagem, o algoritmo busca por uma população inteira de regras, que são posteriormente filtradas e organizadas para formar o classificador. A implementação atual consegue tratar conjuntos de dados com atributos contínuos ou discretos, independente do domínio. Diferentes aspectos desta ferramenta são discutidos ao longo deste trabalho. Entre eles destacam-se o uso de compartilhamento de recursos no espaço fenotípico com baixo custo computacional, a separação por classes durante a busca de regras, e o uso de um teste de significância na montagem do classificador. A ferramenta permite a configuração de diversos parâmetros, que podem inclusive ser modificados durante a execução. A busca de regras pode ser parada em qualquer estágio, sendo também possível dedicar mais processamento a classes mais difíceis de classificar de acordo com o desejo do usuário. A eficiência da ferramenta é comparada com 33 outros algoritmos classificadores em 32 bases de teste, usando os mesmos dados e metodologia. A precisão na classificação, medida pelo percentual de erro, não é significativamente diferente (ao nível de 10%) da precisão do melhor dos outros 33 classificadores. Os resultados obtidos até agora mostram que a ferramenta é robusta e genérica, e está pronta para uso em aplicações reais de mineração de dados. Futuras implementações pretendem adicionar novos operadores e características a fim de tornar os resultados ainda melhores.
    URI
    https://hdl.handle.net/1884/24726
    Collections
    • Teses & Dissertações [10564]

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV
     

     

    Navegar

    Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosTipoEsta coleçãoPor data do documentoAutoresTítulosAssuntosTipo

    Minha conta

    EntrarCadastro

    Estatística

    Ver as estatísticas de uso

    DSpace software copyright © 2002-2022  LYRASIS
    Entre em contato | Deixe sua opinião
    Theme by 
    Atmire NV