Métodos computacionais para inversas generalizadas
Date
2014Author
Zontini, Diego Dutra
Metadata
Show full item recordSubject
Tesesxmlui.dri2xhtml.METS-1.0.item-type
TeseAbstract
Resumo: Neste trabalho apresentamos aspectos teóricos e computacionais sobre inversas generalizadas de matrizes e propomos três novos métodos computacionais. Propomos inicialmente um método direto baseado em decomposição conjugada para calcular a inversa de Moore-Penrose, no qual provamos que a inversa de Moore-Penrose de uma matriz A pode ser obtida por A† = Z??1Q? se A tem posto completo e A† = (U? 1??1 1 S1, 0)Q? caso contrário, sendo A = Q?Z?1 uma decomposição conjugada de A e S?1 1 ?1U1 uma decomposição conjugada da matriz obtida pelas r primeiras linhas de Q?A, onde r =posto(A). Em seguida, propomos um m´método direto baseado em decomposição conjugada para calcular a inversa de Drazin, o qual consiste em um processo de deflação ortogonal que usa k decomposições conjugadas, sendo k =Ind(A), para construir a inversa de Drazin da forma [...] sendo B1 não singular, N estritamente triangular inferior, W unitária e X solução de XB1 ? NX = B2. E por fim, propomos um m´etodo iterativo para aproximar a inversa de Moore-Penrose baseado nas equações de Penrose AXA = A e XAX = X, o qual considera uma aproximação inicial X0 = ?A?, e calcula Xk+1 = Xk[(1 + ?)I ? ?Y 2 k ], onde Yk = AXk. A convergˆencia do método é provada para 0 < ? < 2/?(A?A) e ? ? (0, 1/3], além disso propriedades e análises de erros são mostradas.
Collections
- Teses [47]