• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Redução do erro de iteração e aceleração do método Multigrid com uso de extrapoladores

    Thumbnail
    View/Open
    R - D - MARCIO ALEXANDRO MACIEL DE ANUNCIACAO.pdf (1.748Mb)
    Date
    2013
    Author
    Anunciação, Márcio Alexandro Maciel de
    Metadata
    Show full item record
    Subject
    Dissertações
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: Determinar a solução de sistemas de equações lineares e não-lineares é um problema importante em Matemática Computacional. Métodos iterativos são amplamente utilizados para este fim. Entretanto, tais métodos podem convergir lentamente. Nas últimas décadas, um grande avanço na aceleração da taxa de convergência de processos iterativos se deu pelo desenvolvimento do método Multigrid. Outra forma de acelerar a convergência do método iterativo é utilizar um método de extrapolação associado ao processo iterativo. Alguns autores obtiveram resultados promissores com o estudo da combinação de métodos iterativos com métodos de extrapolação, o que mostra ser uma alternativa viável e promissora para aceleração de convergência. Neste trabalho foi resolvido numericamente o problema de condução de calor linear bidimensional, governado pela equação de Poisson, com condições de contorno de Dirichlet. Utilizou-se o Método das Diferenças Finitas (MDF), com esquema de aproximação de segunda ordem (CDS) para discretização do modelo matemático. Para a obtenção da solução, foi empregado o método Multigrid geométrico, solver Gauss-Seidel redblack, com esquema de correção (CS), restrição por ponderação completa, prolongação por interpolação bilinear e número máximo de níveis para os diversos casos estudados. Foram associados ao final do Multigrid os seguintes extrapoladores: Aitken, Empírico, Mitin, Épsilon escalar, Rho escalar, Épsilon topológico, Rho topológico, Múltipla extrapolação de Aitken e Múltipla extrapolação de Mitin. Durante o Multigrid, foi usado apenas o extrapolador Épsilon topológico. Os resultados podem ser considerados positivos, pois se verificou, entre outros, que o uso de extrapoladores associados ao método Multigrid reduz de forma satisfatória a magnitude do erro de iteração, do resíduo adimensionalizado com base na estimativa inicial e do fator de convergência, em um tempo praticamente equivalente ao da aplicação do método Multigrid puro ou apresentando uma leve melhoria de desempenho sobre o mesmo.
    URI
    http://hdl.handle.net/1884/33821
    Collections
    • Dissertações [222]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV