• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reconhecimento de padrões de defeitos em concreto a partir de imagens térmicas estacionárias e redes neurais artificiais.

    Thumbnail
    View/Open
    RECONHECIMENTO DE PADROES DE DEFEITOS EM CONCRETO A PARTIR DE IMAGENS TERMICAS ESTACIONARIAS E RE.pdf (1.668Mb)
    Date
    2011-06-15
    Author
    Pettres, Roberto
    Metadata
    Show full item record
    Subject
    Teses
    Reconhecimento de padrões
    Concreto - Defeitos
    Calor - Transmissão
    Redes neurais (Computação)
    xmlui.dri2xhtml.METS-1.0.item-type
    Dissertação
    Abstract
    Resumo: Este trabalho apresenta um método não destrutivo para o diagnóstico da integridade subsuperficial de estruturas de concreto utilizando imagens térmicas estacionárias e redes neurais artificiais (RNA). As imagens térmicas utilizadas no estudo foram geradas pelo software Ansys 12®, onde foi simulado um bloco com as propriedades equivalentes ao concreto contendo um elemento de alta porosidade representando um defeito em seu interior. Nestas simulações, as dimensões do defeito foram parametrizadas e o modelo de transferência de calor adotado foi a Equação de Condução do calor de Fourier em regime estacionário sob condições de contorno que estabeleciam um fluxo de calor em uma única direção. A partir dos resultados obtidos nestas simulações, campos térmicos em uma das faces do bloco, e da aplicação de técnicas de processamento de imagens com o software Matlab R2010®, foi possível o desenvolvimento dos algoritmos de localização do defeito e de coleta de dados para o treinamento das topologias neurais. Um algoritmo foi elaborado para a otimização de quatro topologias do tipo feedforward para realização dos testes numéricos. Duas delas apresentaram melhor desempenho e foram selecionadas para validar o método proposto, sendo sintetizadas no aplicativo Thermography and Artificial Neural Network, desenvolvido com o intuito de realizar o diagnóstico de estruturas de concreto a partir de imagens térmicas. O aplicativo se mostrou preciso e eficiente na análise feita em imagens simuladas em modelos de maior dimensão e contendo defeitos com geometrias irregulares, indicando satisfatoriamente a localização do defeito e apresentando em média um percentual de êxito na identificação das anomalias de 81,73% nas simulações com dados sintéticos. Resultados similares também foram observados em uma análise experimental, indicando potencialidade do método de diagnóstico não destrutivo proposto.
    URI
    http://hdl.handle.net/1884/25671
    Collections
    • Dissertações [226]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV