• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016034P5 Programa de Pós-Graduação em Informática
    • Dissertações
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Um algoritmo de otimização por nuvem de partículas para resolução de problemas combinatórios

    Thumbnail
    View/Open
    dissertacao_matheus_rosendo.pdf (1.800Mb)
    Date
    2010-11-26
    Author
    Rosendo, Matheus
    Metadata
    Show full item record
    Abstract
    Resumo: O Particle Swarm Optimization (PSO) pertence a uma classe de algoritmos inspirados em comportamentos sociais naturais inteligentes, chamada Swarm Intelligence (SI). O algoritmo PSO tem sido aplicado com sucesso na resolução de problemas de otimização contínua, no entanto, o seu potencial em problemas discretos não foi suficientemente explorado. Trabalhos recentes têm proposto a implementação de PSO usando algoritmos de busca local e Path relinking com resultados promissores. Este trabalho tem como objetivo apresentar um algoritmo PSO como um meta-modelo que utiliza internamente busca local e Path relinking, mas diferentemente das abordagens anteriores, o algoritmo proposto mantém o conceito principal de PSO para a atualização da velocidade da partícula. O trabalho descreve o algoritmo proposto como uma plataforma geral para problemas combinatórios. Tal proposta é validada em duas implementações: uma aplicada ao Problema do Caixeiro Viajante e outra ao Problema da Mochila. As peculiaridades e uma série de experimentos de calibragem de ambos os algoritmos são relatados. Finalmente, a qualidade do algoritmo proposto é testada na comparação com outros PSO discretos da literatura recente e também com outro conhecido algoritmo de metaheurística: o Ant Colony Optimization (ACO). Os resultados são encorajadores e reforçam a idéia de que o algoritmo PSO também pode ser competitivo em espaço de busca discreto, assim como levam a crer que a utilização de métodos dependentes do problema pode ser uma excelente alternativa na aplicação de PSO a este tipo de problema.
    URI
    http://hdl.handle.net/1884/24862
    Collections
    • Dissertações [365]

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2022  LYRASIS
    Contact Us | Send Feedback
    Theme by 
    Atmire NV