• Login
    View Item 
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Teses
    • View Item
    •   DSpace Home
    • BIBLIOTECA DIGITAL: Teses & Dissertações
    • 40001016030P0 Programa de Pós-Graduação em Métodos Numéricos em Engenharia
    • Teses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Otimização de parâmetros do método Multigrid Algébrico para problemas difusivos bidimensionais

    Thumbnail
    View/Open
    ROBERTA_SUERO_TESE.pdf (2.528Mb)
    Date
    2010-08-30
    Author
    Suero, Roberta
    Metadata
    Show full item record
    Subject
    Teses
    xmlui.dri2xhtml.METS-1.0.item-type
    Tese
    Abstract
    Resumo: Este trabalho apresenta comparações de parâmetros entre os métodos multigrid algébrico (AMG) e multigrid geométrico (GMG) para as equações bidimensionais de Laplace e Poisson, em malhas estruturadas quadrangulares e triangulares. Os parâmetros analisados são: número de iterações internas no solver, número de malhas e número de incógnitas. Para o AMG, também são estudados os efeitos do fator de redução de malha e do fator de forte dependência na malha grossa sobre o tempo de CPU necessário para obter a solução numérica. Para malhas quadrangulares é empregado o método de diferenças finitas, e para malhas triangulares, o de volumes finitos. Os resultados são obtidos com uma adaptação do código computacional AMG1R6 de Ruge e Stüben. Para o AMG são usadas as seguintes componentes multigrid: restrição por engrossamento padrão, prolongação padrão, esquema de correção (CS), solver Gauss-Seidel lexicográfico e ciclo V. São feitos estudos comparativos entre os tempos de CPU do método multigrid geométrico, multigrid algébrico e singlegrid (método de malha única). Verificou-se que: 1) o número ótimo de iterações internas obtidas para o AMG e GMG, em malhas quadrangulares, é o mesmo, porém diferente para malhas triangulares; 2) o número ótimo de malhas é o número máximo, tanto para malhas quadrangulares quanto para malhas triangulares; 3) o AMG mostrou-se sensível à variação do fator de redução de malha e do fator de forte dependência na malha grossa, tanto com relação às equações abordadas, quanto aos tipos de malha e 4) para malhas quadrangulares, o GMG resolve o problema em 20% do tempo gasto pelo AMG.
    URI
    http://hdl.handle.net/1884/24201
    Collections
    • Teses [148]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_type

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV