
UNIVERSIDADE FEDERAL DO PARANÁ

PAULO RICARDO GONÇALVES

MEMORIAL DE PROJETOS: USO DA INTELIGÊNCIA ARTIFICIAL NO

GERENCIAMENTO DE PROJETOS

Memorial de Projetos apresentado ao curso de
Especialização em Inteligência Artificial Aplicada,
Setor de Educação Profissional e Tecnológica,
Universidade Federal do Paraná, como requisito
parcial à obtenção do título de Especialista em
Inteligência Artificial Aplicada.

Orientador: Prof. Dr. Jaime Wojciechowski

CURITIBA

2025

MINISTÉRIO DA EDUCAÇÃO
SETOR DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PÓS-GRADUAÇÃO
CURSO DE PÓS-GRADUAÇÃO INTELIGÊNCIA ARTIFICIAL
APLICADA - 40001016399E1

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação Inteligência Artificial Aplicada da

Universidade Federal do Paraná foram convocados para realizar a arguição da Monografia de Especialização de PAULO RICARDO

GONÇALVES, intitulada: MEMORIAL DE PROJETOS: USO DA INTELIGÊNCIA ARTIFICIAL NO GERENCIAMENTO DE

PROJETOS, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer peta sua EProVEÇiO no

de defesa.

A outorga do título de especialista está sujeita à homologação pelo cofegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

Curitiba, 22 de Outubro de 2025.

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Rua Doutor Alcides Vieira Arco-verde - Curitiba - Paraná - Brasil
CEP 81520-260 - Tel: (41) 3361-4921 - E-mail: iaa@ufpr.br

mailto:iaa@ufpr.br

RESUMO

O crescimento exponencial das tecnologias tem trazido desafios significativos
às organizações e a sociedade em geral. A inteligência artificial, em especial, que
antes era utilizada de modo limitado em algumas áreas hoje é utilizada quase que em
todos os segmentos, seja na facilitação de tarefas repetitivas e até mesmo em
algumas tarefas domésticas, como na análise e diagnóstico de cenários complexos.
Esta evolução tem tornado as empresas ainda mais competitivas, obrigando-as a
adaptar-se rapidamente às mudanças impostas. Neste cenário, o gerenciamento de
projetos torna-se ainda mais fundamental para execução das estratégias obrigando
as instituições a romper com o modo como projetos eram conduzidos no passado para
uma nova forma de gestão com uso de ferramentas cada vez mais inteligentes. Não
se trata da substituição do conhecimento humano pela adoção de tecnologias, mas,
sim, de aplicar ferramentas de inteligência para melhor apoiar na gestão de projetos
como meio de garantir a obtenção de melhores resultados. Cabe ressaltar, que a
aplicação de ferramentas de inteligência artificial no apoio à gestão de projetos precisa
ser cautelosa para garantir o respeito aos preceitos éticos a aos direitos humanos.

Palavras-chave: agentes de IA; ferramentas de IA; gerenciamento de projetos;
inteligência artificial; projetos.

ABSTRACT

The exponential growth of technology has introduced significant challenges to
organizations and society at large. Artificial intelligence, in particular, which was
previously applied in a limited capacity within select domains, is now utilized across
nearly all sectors—from automating repetitive tasks and assisting with household
activities to analyzing and diagnosing complex scenarios. This evolution has
heightened competitiveness among companies, compelling them to rapidly adapt to
emerging changes. In this context, project management becomes increasingly vital for
the execution of strategic initiatives, requiring institutions to move beyond traditional
approaches and adopt new management models supported by increasingly intelligent
tools. This shift does not imply the replacement of human expertise with technology;
rather, it emphasizes the integration of intelligent systems to enhance project
management and improve outcomes. It is important to underscore that the application
of artificial intelligence tools in project management must be approached with caution
to ensure adherence to ethical principles and the protection of human rights.

Keywords: AI agents; AI tools; project management; artificial intelligence; projects.

SUMÁRIO

1 PARECER TÉCNICO..7

REFERÊNCIAS...10

APÊNDICE 1 - INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL.................................11

APÊNDICE 2 - LINGUAGEM DE PROGRAMAÇÃO APLICADA............................. 18

APÊNDICE 3 - LINGUAGEM R ... 25

APÊNDICE 4 - ESTATÍSTICA APLICADA I ... 37

APÊNDICE 5 - ESTATÍSTICA APLICADA I I .. 48

APÊNDICE 6 - ARQUITETURA DE DADOS.. 60

APÊNDICE 7 - APRENDIZADO DE MÁQUINA..79

APÊNDICE 8 - DEEP LEARNING...92

APÊNDICE 9 - BIG DATA..116

APÊNDICE 10 - VISÃO COMPUTACIONAL.. 119

APÊNDICE 11 - ASPECTOS FILOSÓFICOS E ÉTICOS DA IA...............................141

APÊNDICE 12 - GESTÃO DE PROJETOS DE IA ... 148

APÊNDICE 13 - FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL.......................152

APÊNDICE 14 - VISUALIZAÇÃO DE DADOS E STORYTELLING........................175

APÊNDICE 15 - TÓPICOS EM INTELIGÊNCIA ARTIFICIAL..................................183

7

1 PARECER TÉCNICO

O uso da inteligência artificial em nossas tarefas diárias seja na vida pessoal

como na profissional já não pode mais ser evitado. Se antes sua utilização mais

perceptível era na recomendação de itens de consumo em poderosos sites da

internet, hoje a utilizamos quase que em todas as tarefas que fazem o uso de algum

dispositivo tecnológico. No ambiente de projetos não é diferente; ferramentas de

inteligência artificial passam a ser utilizadas desde a melhoria de processos, no apoio

a tomada de decisão, ou na otimização das entregas de projetos, dentre várias outras

aplicações (Stachowiak, 2025). Um projeto é um esforço temporário empreendido

para criar um produto, serviço ou resultado único. Já o gerenciamento de projetos é a

aplicação de conhecimentos, habilidades, ferramentas e técnicas às atividades do

projeto para cumprir os requisitos definidos; refere-se a orientar o trabalho do projeto

para entregar os resultados pretendidos. O gerente de projeto, por sua vez, é a pessoa

designada pela organização executora para liderar a equipe do projeto, sendo o

responsável por alcançar os objetivos definidos (PMI, 2021). Em meio a isso, e sendo

a inteligência artificial um campo na área da ciência da computação que nos traz

milhares de ferramentas capazes de simular a capacidade humana, o seu uso através

de suas mais diversas ferramentas no gerenciamento de projetos vem a contribuir em

diversas frentes de trabalho nos mais diversos tipos de projetos (Alshaikhi, 2021).

Dentre as aplicações da inteligência artificial na gestão de projetos destacam-

se, mas não se limitam a estas, a seleção e priorização de projetos, o suporte a

escritórios de projetos, maior velocidade na definição, planejamento, apresentação de

relatórios, uso de assistentes virtuais, testes avançados de sistemas e softwares,

atuação em tarefas repetitivas, permitindo a gerentes de projetos atuar na liderança

de suas equipes (Rodriguez, 2023). Adicionalmente, ferramentas de IA podem ser

utilizadas para apoiar gerentes de projetos na elaboração de planos de projeto,

cronogramas, alocação de equipe ou na análise de riscos, além de serem cada vez

mais utilizadas no apoio na tomada de decisão, análise de custos, recuperação de

desvios, e incrementando eficiência nas comunicações (Alshaikhi, 2021).

A FIGURA 1, a seguir, traz alguns exemplos de ferramentas de IA e sua

aplicação durante parte do ciclo de vida de um projeto:

8

FIGURA 1 - Como Utilizar IA na Gestão de Projetos?

FONTE: Costa (2025)

Especialmente no apoio a tomada de decisões, o uso da IA resulta em

grandes benefícios aos projetos por possuirem a capacidade de análise de grandes

quantidades de dados e de variáveis com o uso de LLM - Large Language Model,

assim como nas comunicações do projeto por meio do uso de chatbots dotados de

NLP - Natural Language Processing, ou processamento de linguagem natural

(Vargas, 2025). Adicionalmente, uma tendência crescente é o uso de agentes virtuais

nas diferentes fases do ciclo de vida de projetos. Os agentes são capazes de predizer

riscos sugerindo ações de resposta, alocação da equipe do projeto considerando a

diversidade cultural, criação de metodologias especialmente desenhadas para um

objetivo específico, e têm a capacidade de tomada de decisão e execução de tarefas

de modo automático, sem intervenção humana, conforme a necessidade do projeto

(Vargas, 2025).

No entanto, a adoção de ferramentas de inteligência artifical pelas

organizações revela alguns desafios a serem superados. A qualidade dos dados

disponíveis para treinamento dos modelos de inteligência, questões legais em relação

ao uso de dados pessoais ou de sigilo corporativo, questões éticas ou vieses (biases)

gerados em respostas, desenvolvimento de pessoal para correto uso da tecnologia,

receio das pessoas quanto a substituição do conhecimento humano por máquinas,

9

constituem alguns destes desafios (Zia, 2024). As ações de adaptação nem sempre

são simples e requerem uma cultura aberta à inovação. A substituição de práticas

tradicionais de gerenciamento de projetos pelo uso de ferramentas de IA exige

investimento em capacitação, resiliência, tolerância a falhas durante fase de adoção,

e apoio da alta gestão (Rodriguez, 2023).

TABELA 1 - Benefícios da Adoção da IA no Gerenciamento de Projetos

Benefícios Percentual de Respondentes (%)
Automação de tarefas rotineiras 72
Capacidade aprimorada de tomada de decisão 84
Otimização da alocação de recursos 68
Melhoria nos resultados do projeto 76
Percepções preditivas para gestão de riscos 62

FONTE: Adaptado de Zia, M et al. (2024)

TABELA 2 - Desafios da Adoção da IA no Gerenciamento de Projetos

Benefícios Percentual de Respondentes (%)
Preocupações com privacidade de dados 48
Vieses algorítmicos 56
Implicações éticas 52
Resistencia organizacional 60
Lacunas de habilidades na equipe do projeto 64

FONTE: Adaptado de Zia, M et al. (2024)

As TABELAS 1 e 2, acima, trazem, respectivamente, os resultados de recente

pesquisa a cerca dos benefícios e desafios da adoção da IA no gerenciamento de

projetos reforçando quanto a importância de seu uso no apoio à tomada de decisões

e ratifica a falta de skill entre membros do time de projetos como um dos principais

desafios às organizações (Zia, 2024). À medida que novas ferramentas de IA são

desenvolvidas e as equipes de projeto se especializam em seu uso uma nova forma

de gestão de projetos se molda possibilitando aos gerentes de projetos atuarem com

maior ênfase na liderança dos times e na comunicação com principais stakeholders

enquanto tarefas repetitivas ou voltados à análise de dados sejam executadas por

agentes ou ferramentas especiais de inteligência artificial (Alshaikhi, 2021). A

inteligência artificial por meio de suas ferramentas vem suportar gerentes e times de

projetos e não para substituí-los.

10

REFERÊNCIAS

ALSHAIKHI, A.; KHAYYAT, M. An investigation into the Impact of Artificial
Intelligence on the Future of Project Management, 2021. Disponível em:
https://doi.org/10.1109/WiDSTaif52235.2021.9430234. Acesso em: 28 set. 2025.

COSTA, F. IA Generativa aplicada à Gestão de Projetos: otimização de tarefas e
potencialização da governança. LinkedIn, 16 set. 2025. Disponível em:
https://www.linkedin.com/posts/fabiocostapmp_gestaodeprojetos-inteligenciaartificial-
activity-7373489939923161088-6YfV/?originalSubdomain=pt. Acesso em: 28 set.
2025.

PMI - PROJECT MANAGEMENT INSTITUTE. Guia PMBOK®: um guia para o
conjunto de conhecimentos em gerenciamento de projetos. 7. ed. Newton
Square: Project Management Institute, 2021

RODRIGUEZ, A.; VARGAS, R. How AI Will Transform Project Management.
Harvard Business Review, 2023. Disponível em: https://hbr.org/2023/02/how-ai-
will-transform-project-management. Acesso em: 28 set. 2025.

STACHOWIAK, K. The Use of Artificial Intelligence in Project Management,
2025. Disponível em: http://dx.doi.org/10.29119/1641-3466.2025.217.17. Acesso em:
28 set. 2025.

VARGAS, R. Gerenciamento de Projetos com Agentes de IA [curso on-line].
LinkedIn, 2025. Disponível em: https://www.linkedin.com/learning/revolucionando-o-
gerenciamento-de-projetos-com-agentes-de-ia/gerenciamento-de-projetos-com-
agentes-de-ia. Acesso em: 28 set. 2025

ZIA, M. et al. Role Of Artificial Intelligence in Big Database Management. The Asian
Bulletin of Big Data Management, v. 4, n. 2, p. 186-194, 2024.
DOI: 10.62019/abbdm.v4i02.164. Disponível em:
https://abbdm.com/index.php/Journal/article/view/164. Acesso em: 28 set. 2025.

https://doi.org/10.1109/WiDSTaif52235.2021.9430234
https://www.linkedin.com/posts/fabiocostapmp_gestaodeprojetos-inteligenciaartificial-activity-7373489939923161088-6YfV/?originalSubdomain=pt
https://www.linkedin.com/posts/fabiocostapmp_gestaodeprojetos-inteligenciaartificial-activity-7373489939923161088-6YfV/?originalSubdomain=pt
https://hbr.org/2023/02/how-ai-will-transform-project-management
https://hbr.org/2023/02/how-ai-will-transform-project-management
http://dx.doi.org/10.29119/1641-3466.2025.217.17
https://www.linkedin.com/learning/revolucionando-o-gerenciamento-de-projetos-com-agentes-de-ia/gerenciamento-de-projetos-com-agentes-de-ia
https://www.linkedin.com/learning/revolucionando-o-gerenciamento-de-projetos-com-agentes-de-ia/gerenciamento-de-projetos-com-agentes-de-ia
https://www.linkedin.com/learning/revolucionando-o-gerenciamento-de-projetos-com-agentes-de-ia/gerenciamento-de-projetos-com-agentes-de-ia
https://doi.org/10.62019/abbdm.v4i02.164
https://abbdm.com/index.php/Journal/article/view/164

11

APÊNDICE 1 - INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL

A - ENUNCIADO

1 ChatGPT

a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas

em sala. Explique o porquê.
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4

abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha reta,

que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde

que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um
formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

A ra d 366 M ehadia 241
Bucareste 0 Neam t 234
C raiova 160 O rad ea 380
D robcta 242 Pitesti 100
Eforie 161 Rimnicu Vilcca 193
Fagaras 176 Sibiu 253
Giurgiu 77 Tim isoara 329
Hirsova 151 U rziceni 80
Iasi 226 Vaslui 199
Lugoj____________________ 244 Zerind 374

Figura 3.22 Valores de hDLR — distâncias em linha reta para Bucareste.

12

3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come

Se a raposa as come, então estão maduras

As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas

práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R1

R2

R3

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com

essas três primeiras sentenças devemos derivar q ^ p. Cuidado com a ordem em que as fórmulas

são geradas.

Equivalência Implicação: (a ^ fí) equivale a (- a v fí)

Silogismo Hipotético: a ^ fí, ^ y h a ^ y

Conjunção: a , h a h

13

Equivalência Bicondicional: (a fí) equivale a (a — fí) A (fí —— Q.)

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão descritas
acima e no material.

4 Redes Neurais Artificiais

Seja a RNA da figura abaixo.

Os neurônios Ni, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação

tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada xi=-3, x2=1, dê:

a) (6,25 pontos) Valor de saída do neurônio N1
b) (6,25 pontos) Valor de saída do neurônio N2
c) (6,25 pontos) Valor de saída do neurônio N3
d) (6,25 pontos) Valor de saída da rede como um todo

14

B - RESOLUÇÃO
1 ChatGPT
a) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o
resultado.

Inteligência Artificial (IA) é um campo da ciência da computação que se
concentra no desenvolvimento de sistemas e máquinas capazes de realizar
tarefas que normalmente requerem inteligência humana. Essas tarefas podem
incluir raciocínio, aprendizado, reconhecimento de padrões, resolução de
problemas, compreensão de linguagem natural, entre outras.

Os sistemas de IA são projetados para simular certos aspectos do comportamento
humano, como a capacidade de aprender com experiências passadas, tomar
decisões baseadas em dados e adaptar-se a novas situações. Eles podem ser
aplicados em uma ampla variedade de áreas, incluindo medicina, finanças,
transporte, manufatura, entretenimento, entre outros.

Existem diferentes abordagens e técnicas dentro do campo da IA, incluindo o
aprendizado de máquina, redes neurais artificiais, lógica simbólica,
algoritmos evolutivos, entre outras. O objetivo final da IA é criar sistemas
capazes de realizar tarefas de forma autônoma, eficiente e com desempenho
comparável ou superior ao humano em determinadas áreas.

b) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas
em sala. Explique o porquê.

A resposta, acima, dada pelo ChatGPT, pode ser enquadrada nas quatro
abordagens, conforme análise a seguir:

Agir como Humano: a resposta descreve a capacidade de sistemas de IA em
realizar tarefas que requerem inteligência humana, como raciocínio,
reconhecimento de padrões, interpretação de informações e compreensão da
linguagem natural. Isso se assemelha com a abordagem de agir como humano,
pois imita o comportamento de humanos diante de certas atividades como, por
exemplo, ser capaz de interpretar e engajar-se em uma conversa. A
representação do conhecimento se dá por meio de processamento de linguagem
natural.

Pensar como Humano: essa abordagem busca a implementação do processo de
pensamento, ou seja, codificar para o computador a forma de funcionamento do
cérebro humano. Esse aspecto pode ser identificado na resposta do ChatGPT
quando mencionada a simulação de aspectos do comportamento humano, como a
capacidade de aprender com experiências passadas, adaptar-se a novas
situações e interpretar informações.

Agir Racionalmente: a resposta destaca a capacidade de sistemas de IA em
realizar tarefas que requerem inteligência humana, de tomar decisões e de
realizar tarefas de forma eficaz, incluindo adaptação a novas situações.
Desta forma, a resposta associa-se ao Agir Racionalmente, visto que esta
abordagem é a mais ampla das quatro abordagens. Envolve a implementação de
sistemas/agentes capazes de responder a situações e buscar tomar as melhores
ações possíveis para atingir objetivo definido.

Pensar Racionalmente: essa abordagem busca modelar o processo de raciocínio
para que os sistemas de IA possam operar de acordo com princípios de
raciocínio lógico e dedutivo. Na resposta fornecida pelo ChatGPT podemos
associar o trecho "sistemas capazes de realizar tarefas" com o Pensar
Racionalmente, visto que para realizar uma tarefa é necessário algum uso de
raciocínio lógico e dedutivo.

15

c) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio
ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as
referências.

O ChatGPT pode ser definido como um Modelo de Linguagem de Grande Porte (LLM),
projetado para processamento de linguagem natural. Esse tipo de modelo é
exposto a quantidade massivas de dados para, assim, aprender os padrões
estatísticos da linguagem.

Os LLM são construídos com base na arquitetura de Transformer, uma estrutura
de rede neural proposta por Vaswani et al. no trabalho "Attention is All You
Need" em 2017. Essa arquitetura se constitui de vários neurônios
interconectados (unidades de atenção), o que permite que este modelo processe
informações em paralelo, capturando relacionamentos de longo alcance entre
palavras em uma sentença. Isso permite que o ChatGPT gere respostas coerentes
e contextuais.

Além disso, o ChatGPT é refinado por meio do processo de fine-tuning, onde é
ajustado para tarefas específicas e também recebe feedback humano para
melhorar seu desempenho. O processo de Aprendizado por Reforço com Feedback
Humano (RLHF), onde as interações humanas são usadas para orientar o
comportamento do modelo em direção aos resultados desejados, ajuda a garantir
que o ChatGPT possa fornecer respostas úteis e evitar a geração de conteúdo
problemático. Portanto, tal processo pode ser entendido como uma salvaguarda
aplicada ao modelo.

Em resumo, o ChatGPT é uma combinação de técnicas de aprendizado de máquina
e processamento de linguagem natural, projetado para entender e responder a
perguntas de maneira semelhante a um ser humano.

Referências:
https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://platform.openai.com/docs/introduction
https://www.consultingclub.com.br/post/intelig%C3%AAncias-artificiais-e-o-
chat-gpt-o-futuro-j%C3%A1-come%C3%A7ou
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-
1ce5fca96286
https://www.datacamp.com/blog/a-chat-with-chatgpt-on-the-method-behind-the-
bot
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-
gpt#:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20
de%20texto.
https://www.dio.me/articles/conheca-a-tecnologia-por-tras-do-chatgpt-o-que-
e-e-como-usar-a-ferramenta-na-programacao
https://www.youtube.com/watch?v=VcAAXzCKX g
https://www.youtube.com/watch?v=bSvTVREwSNw
Lee, Peter, et al. A Revolução da Inteligência Artificial na Medicina: GPT-4
e Além. Disponível em: Minha Biblioteca, Grupo A, 2024.

d) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as
4 abordagens vistas em sala. Explique o porquê.

O modo de funcionamento do ChatGPT enquadra-se na abordagem "Agir como
humanos", devido a compreensão da linguagem natural e a capacidade de
responder perguntas, conversar e até mesmo gerar novos conteúdos textuais,
utilizando-se da linguagem natural para apresentar seus resultados imitando
o comportamento humano. O ChatGPT não pensa como um humano, suas respostas
são baseadas em conhecimento obtido através de seus métodos de aprendizagem.

https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://platform.openai.com/docs/introduction
https://www.consultingclub.com.br/post/intelig%C3%AAncias-artificiais-e-o-chat-gpt-o-futuro-j%C3%A1-come%C3%A7ou
https://www.consultingclub.com.br/post/intelig%C3%AAncias-artificiais-e-o-chat-gpt-o-futuro-j%C3%A1-come%C3%A7ou
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286
https://www.datacamp.com/blog/a-chat-with-chatgpt-on-the-method-behind-the-bot
https://www.datacamp.com/blog/a-chat-with-chatgpt-on-the-method-behind-the-bot
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-gpt%23:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20de%20texto
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-gpt%23:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20de%20texto
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-gpt%23:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20de%20texto
https://www.dio.me/articles/conheca-a-tecnologia-por-tras-do-chatgpt-o-que-e-e-como-usar-a-ferramenta-na-programacao
https://www.dio.me/articles/conheca-a-tecnologia-por-tras-do-chatgpt-o-que-e-e-como-usar-a-ferramenta-na-programacao
https://www.youtube.com/watch?v=VcAAXzCKX_g
https://www.youtube.com/watch?v=bSvTVREwSNw

16

2 Busca Heurística

A ra d 366 Mc ha dia 241
Bucarestc 0 Neamt 234
C raiova 160 Oracle a 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcca 193
Fagaras 176 Sibiu 253
Giurgiu 77 Tim isoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
1 ugoj 244 Zerind 374

3 Lógica
Rl: p - q
R2: q - r
R3: -,r V p

R4: r — p (Equivalência Implicação em R3)
R5: q — p (Silogismo Hipotético em R2 e R4)
R6: (q — p) A (p — q) (Conjunção entre R5 e Rl)
R 7 : q « p (Equivalência Bi condicional em R6)

4 Redes Neurais Artificiais
a) Valor de saida do neurônio NI
u(NI) = (0,2 * -3) + (0,8 * 1) + (0,1 * 1)
u(Nl) = -0,6 + 0,8 + 0,1
u(NI) = 0,3
f(u) = 0,3

17

b) Valor de saida do neurônio N2
u(N2) = (0,1 * -3) + (0,2 * 1) + (0,4 * 1)
u(N2) = -0,3 + 0,2 + 0,4
u(N2) = 0,3
f(u) = 0,3

c) Valor de saida do neurônio N3
u(N3) = (0,9 * -3) + (0,5 * 1) + (0,2 * 1)
u(N3) = -2,7 + 0,5 + 0,2
u(N3) = -2
f(u) = -2

d) Valor de saida da rede como um todo
u(N4) = (0,9 * 0,3) + (0,3 * 0,3) + (0,3 * -2) + (0,1 * 1)
u(N4) = 0,27 + 0,09 - 0,6 + 0,1
u(N4) = -0,14
f(u) = tanh(u) = -0,139092448

18

APÊNDICE 2 - LINGUAGEM DE PROGRAMAÇÃO APLICADA

A - ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv

Informações sobre a base de dados:

Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021,

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A base

original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser

utilizada no presente exercício.

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém todos

os dados originais da tabela FIPE.

Metadados:

Nome do campo Descrição

year_of_reference O preço médio corresponde a um

mês de ano de referência

month_of_reference O preço médio corresponde a um

mês de referência, ou seja, a FIPE atualiza

sua tabela mensalmente

fipe_code Código único da FIPE

authentication Código de autenticação único para

consulta no site da FIPE

brand Marca do carro

model Modelo do carro

fuel Tipo de combustível do carro

gear Tipo de engrenagem do carro

engine_size Tamanho do motor em centímetros

cúbicos

https://www.kaggle.com/datasets/vagnerbessa/average-car-prices-bazil/data

19

year_model Ano do modelo do carro. Pode não

corresponder ao ano de fabricação

avg_price Preço médio do carro, em reais

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato

que será considerado correto na resolução do exercício.

1 Análise Exploratória dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Carregue a base de dados media_precos_carros_brasil.csv
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o

problema de valores faltantes
c. Verifique se há dados duplicados nos dados
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de

informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados

na Análise Exploratória dos dados

2 Visualização dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Gere um gráfico da distribuição da quantidade de carros por marca
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022

(variável de tempo no eixo X)
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis
independentes do modelo.A variável target é avg_price. Observação: caso julgue necessário,
faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo.
Indique quais variáveis foram transformadas e como foram transformadas

b. Crie partições contendo 75% dos dados para treino e 25% para teste
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário,
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram
inputados e indique o treinamento de cada modelo

d. Grave os valores preditos em variáveis criadas
e. Realize a análise de importância das variáveis para estimar a variável target, para cada

modelo treinado

20

f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na
análise de importância de variáveis

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R2
h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor

resultado e a métrica de avaliação utilizada

B - RESOLUÇÃO
1 Análise Exploratória dos Dados
Importar bibliotecas analise dados e gráficos
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime
from time import strptime
import warnings
warnings.filterwarnings('ignore')

Questão 1.a)
Importar a base de dados CSV - precos carros brasil.csv
tbDados = pd.read csv("precos carros brasil.csv")

Mostra o cabeçalho e pequena sequencia de dados
tbDados

Questão 1.b)
Verificar se faltam valores e tratativa para resolução do problema
*** HÁ ITENS FALTANTES EM TODAS AS 11 COLUNAS ***
tbDados.isna().any()
year of reference True
month of reference True
fipe code True
authentication True
brand True
model True
fuel True

21

gear True
engine size True
year model True
avg price brl True
dtype: bool

Contagem de itens faltantes
tbDados.isna().sum()
year of reference 65245
month of reference 65245
fipe code 65245
authentication 65245
brand 65245
model 65245
fuel 65245
gear 65245
engine size 65245
year model 65245
avg price brl 65245
dtype: int64

EXISTEM ITENS FALTANTES - Opção por apagar itens faltantes
tbDados.dropna(inplace=True)

Verifica novamente se existem itens faltantes
*** NÃO HÁ MAIS ITENS FALTANTES ***
tbDados.isna().any()
year of reference False
month of reference False
fipe code False
authentication False
brand False
model False
fuel False
gear False
engine_size False
year_model False
avg price brl False
dtype: bool

Realiza nova contagem dos itens faltantes

22

tbDados.isna().sum()
year of reference 0
month of reference 0
fipe code 0
authentication 0
brand 0
model 0
fuel 0
gear 0
engine size 0
year model 0
avg price brl 0
dtype: int64

Questão 1.c)
Verificar se há itens duplicados
tbDados.duplicated().sum()
2

Exclui itens duplicados
tbDados.drop duplicates(inplace=True)

Verifica novamente se há itens duplicados
tbDados.duplicated().sum()
0

Questão 1.d)
Dividir a categoria dos dados e impressão do resumo de informações das

variáveis numéricas e categóricas
num colms = [col for col in tbDados.columns if tbDados[col].dtype != 'object']
cat colms = [col for col in tbDados.columns if tbDados[col].dtype == 'object']

Impressão das infomações das variáveis numéricas
tbDados[num colms].describe()

23

Impressão das infomações das variáveis categóricas
tbDados[cat colms].describe()

Questão 1.e)
Impressão de valores por contagem de modelo (model) e marca do carro (brand)

#Impressão por modelo
tbDados["model"].value counts()

Impressão por marca
tbDados["brand"].value counts()

Questão 1.f)
Dê uma breve explicação (máximo de quatro linhas) sobre os principais
resultados encontrados na Análise Exploratória dos dados.

Durante a importação e tratamento dos dados observou-se a existência de 65.245
dados faltantes e dois duplicados sendo necessária a aplicação de correções
para eliminar estes problemas. Em relação aos dados, observou-se que as marcas
Fiat, Volkswagen e Chevrolet são predominantes no conjunto de dados. Foi
possível constatar que a maioria dos veículos tem um preço médio superior a
60 mil, são movidos a gasolina, e possuem câmbio manual.

Questão 2.a)
Gerar gráfico da distribuição da quantidade de carros por marca

24

Contagem dos valores por marca
valBrand = tbDados["brand"].value counts()
print(valBrand

Gráfico comparativo
plt.figure(figsize=(10,5))
grfBrand = plt.bar(valBrand.index, valBrand.values)
plt.title('Quantidade de Carros por Marca')
plt.xlabel('Marcas Veiculos')
plt.ylabel('Total de Carros')
plt.bar label(grfBrand, size=10);

Questão 2.b)
Gerar gráfico da quantidade de carros por tipo de engrenagem
Contagem dos valores por engrenagem
tpEngr = tbDados["gear"].value counts()
print(tpEngr)
gear
manual 161883
automatic 40412
Name: count, dtype: int64

25

Gráfico comparativo
plt.figure(figsize=(10,5
grfEngr = plt.bar(tpEngr.index, tpEngr.values)
plt.title('Quantidade por Tipo de Engrenagens')
plt.ylabel('Total de Engrenagem')
plt.bar label(grfEngr, size=10);

Questão 2.c)
Gerar gráfico da evolução da média de preços dos carros ao longo do ano de
2022 - Representar os meses no eixo X
Separando apenas dados de 2022
yearRef = tbDados[tbDados['year of reference'] == 2022]

Criando coluna para representar os valorese numericos dos meses
yearRef['month of reference numeric'] = [strptime(mes, '%B').tm mon for mes
in yearRef['month of reference']]
mdMes =
yearRef.groupby(['month of reference numeric','month of reference'])['avg p
rice brl'].mean()

16

Questão 2.d)
Gerar um gráfico da distribuição da média de preços dos carros por marca e
tipo de engrenagem
Separando apenas dados por preços
refPrice = tbDados.groupby(['brand',
'gear']).avg price brl.mean().reset index()

Gerando o gráfico
plt.figure(figsize=(20, 10))
Cores = dict(zip(refPrice['brand'].unique(), sns.color palette("husl",
len(refPrice['brand'].unique()))))

for marca in refPrice['brand'].unique():
for engrenagem in refPrice['gear'].unique():

dados = refPrice[(refPrice['brand'] == marca) & (refPrice['gear'] ==
engrenagem)]

plt.bar(f'{marca} - {engrenagem}', dados['avg price brl'],
label=f'{marca} - {engrenagem}')

Gerando gráfico de linha
plt.plot(mdMes.index.get level values('month of reference'), mdMes, "b-")
plt.xlabel("Mês")
plt.ylabel("Preço Médio (BRL)")
plt.title("Preço Médio por Mês em 2022")
plt.xticks(rotation=30)
plt.grid(True)

17

if not dados.empty:
plt.bar(f,{marca} - {engrenagem}’, dados[’avg_price_brl’],

color=Cores[marca], label=f’{marca} - {engrenagem}’)

plt.xticks(rotation=75)
plt.title(’Distribuição da Média de Preço dos Carros por Marca e Tipo de
Engrenagem’)
plt.xlabel(’Veículos | Tipo de Engrenagem’)
plt.ylabel(’Média de Preço’)

Questão 2.e)
O gráfico demonstra que as marcas Volkswagem, Fiat, e Nissan, possuem,
respectivamente, as médias mais altas de preços para cambio automático. Já o
modelo automático da marca Renault possui média de preço um pouco superior
quando comparado aos carros das marcas Volkswagem e Fiat com câmbio manual.
Pode-se concluir que os carros automáticos têm preço superior quando
comparados a carros manuais.

Questão 2.f)
Gerar um gráfico da distribuição da média de preços dos carros por marca e
tipo de combustível
Separando apenas dados por preços
refPrice = tbDados.groupby([’brand’,
’fuel’]).avg_price_brl.mean().reset_index()

18

Gerando o gráfico
plt.figure(figsize=(20, 10))
Cores = dict(zip(refPrice['brand'].unique(), sns.color_palette("husl",
len(refPrice['brand,].unique()))))

for marca in refPrice['brand'].unique():
for combustivel in refPrice['fuel'].unique():

dados = refPrice[(refPrice['brand'] == marca) & (refPrice['fuel'] ==
combustivel)]

for i, row in refPrice.iterrows():
plt.bar(f'{row["brand"]} - {row["fuel"]}', row['avg_price_brl'],

color=Cores[row['brand']], label=f'{row["brand"]} - {row["fuel"]}')

plt.xticks(rotation=75)
plt.title('Distribuição da Média de Preço dos Carros por Marca e Tipo de
Combustível')
plt.xlabel('Veículos | Tipo de Combustível')
plt.ylabel('Média de Preço');

Questão 2.g)
Veículos movidos a diesel possuem maior média de preço, seguidos pelos movidos
a gasolina e, por fim, pelos movidos a álcool. Adicionalmente, observa-se
que as marcas Renault e Nissan não possuem modelos movidos a álcool.

19

Questão 3.a)
Importação bibliotecas de Machine Learning
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import LabelEncoder

Métricas de avaliação dos modelos
from sklearn.metrics import mean squared error, mean absolute error,
r2_score

Mostrando tabela de dados original "limpa"
tbDados

Elegidas as seguintes variáveis: year of reference, brand, fuel, gear,
engine size, year model

tbDados Regr =
tbDados[['year of reference','brand','fuel','gear','engine size','year mode
l','avg price brl']]
tbDados Regr

Transformando variáveis categóricas'brand', 'fuel', 'gear' em numéricas
tbDados Regr = pd.get dummies(tbDados Regr,
columns=['brand','fuel','gear'],dtype='int64')

Tratamento da variável 'engine size' para indicação numérica

20

tbDados Regr['engine size'] =
LabelEncoder().fit transform(tbDados Regr['engine size'])
tbDados_Regr

Mapa de correlação das variáveis numéricas com variável Target
plt.figure(figsize=(20,10))
sns.heatmap(tbDados Regr.corr("spearman"), annot = True, cmap="coolwarm")
plt.title("Mapa de Correlação das Variáveis Numéricas\n", fontsize = 15)
plt.show()

Questão 3.b)
Variável X contém as variáveis numéricas de interesse para a análise,
excluindo a variável target
varX = tbDados Regr.drop(['avg price brl'],axis = 1)
varX.head()

21

Variável Y contém apenas a variável target - 'avg price brl'
varY = tbDados Regr['avg price brl']
varY.head()
0 9162.0
1 8832.0
2 8388.0
3 8453.0
4 12525.0
Name: avg price brl, dtype: float64

Atribuindo 75% dos dados para treinamento e 25% dos dados para testes
X train, X test, Y train, Y test = train test split(varX, varY, test size =
0.25, random state = 42)

Observando os dados de treinamento
print(X train.shape)
X train.head(1)
(151721, 14)

Observando a variável target
Y test.head()
180633 42595.0
13130 10989.0
163315 9087.0
121464 26965.0
14044 57102.0
Name: avg price brl, dtype: float64

Questão 3.c)
Treino RandomForest
mdlRanForest = RandomForestRegressor()

Ajuste do modelo conforme variáveis de treinamento
mdlRanForest.fit(X train, Y train)

Treino XGBoost
mdlXgboost = XGBRegressor()

22

Ajuste do modelo conforme variáveis de treinamento
mdlXgboost.fit(X train, Y train)

Questão 3.d)
Gravar os valores preditos em variáveis
Valores preditos em RandomForest com base nos dados de teste
valPredRanForest = mdlRanForest.predict(X test)
valPredRanForest
array([44889.62859266, 12739.80934143, 15295.85822716, ...,

117329.56881555, 16274.02237751, 21525.00267423])

Valores preditos em XGBoost com base nos dados de teste
valPredXgboost = mdlXgboost.predict(X test)
valPredXgboost
array([45345.223, 12810.657, 15979.231, ...,

117479.83 , 15259.941, 22179.574], dtype=float32)

Questão 3.e)
Análise da importância das variáveis em RandomForest para estimativa do
alvo
mdlRanForest.feature importances
feature importancesRF = pd.DataFrame(mdlRanForest.feature importances ,
index = X train.columns, columns=[’importance’]).sort values('importance',
ascending = False)
feature importancesRF

23

Análise da importância das variáveis em XGBoost para estimativa do alvo
mdlXgboost.feature importances
feature importancesXG = pd.DataFrame(mdlXgboost.feature importances , index
= X train.columns, columns=['importance']).sort values('importance',
ascending = False)
feature importancesXG

Questão 3.f)
No modelo de RandomForest as variáveis com maior importância foram o tamanho
do motor e o ano do modelo. Essa relevância pode ser observada ao computar
com o método feature importances e também no mapa de correlação de variáveis.
Para o XGBoost, as variáveis mais relevantes foram combustível a diesel,
tamanho do motor e o ano do modelo.

Questão 3.g)
Escolha do melhor modelo com base nas métricas de avaliação MSE, MAE, R2
Métrica RandomForest
Resultado análise MSE em RandomForest
valMSErf = mean squared error(Y test, valPredRanForest)
valMSErf
106634614.2088013

Resultado análise MAE em RandomForest
valMAErf = mean absolute error(Y test, valPredRanForest)
valMAErf
5599.162102900011

Resultado análise R2 em RandomForest
valR2rf = r2 score(Y test, valPredRanForest)
valR2rf
0.9603773993318255

24

Métricas XGBoost
Resultado análise MSE em XGBoost
valMSExg = mean squared error(Y test, valPredXgboost)
valMSExg
107807654.56567411

Resultado análise MAE em XGBoost
valMAExg = mean absolute error(Y test, valPredXgboost)
valMAExg
5668.311479710965

Resultado análise R2 em XGBoost
valR2xg = r2 score(Y test, valPredXgboost)
valR2xg
0.9599415285784788

Questão 3.h)
Analisando as métricas em ambos os modelos, observa-se que RandomForest e
XGBoost tiveram um bom desempenho. No entanto, o melhor modelo foi o do Random
Forest que atingiu coeficiente de determinação de 0.96 e menores valores para
MSE e MAE.

25

APÊNDICE 3 - LINGUAGEM R

A - ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é

prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) consiste

em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na

região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e

duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a

preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém

2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo

de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3

completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro

bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número

indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de

vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante,

com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro

valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma

vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote mlbench e é completo (não possui dados faltantes).

Tarefas:

1. Carregue a base de dados Satellite
2. Crie partições contendo 80% para treino e 20% para teste
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
4. Escolha o melhor modelo com base em suas matrizes de confusão.
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

26

2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário

abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes

dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo

de Spurr é dado por:

Volume = b0 + b1 * dap2 * Ht

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários modelos

alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão

envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma

equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
2. Eliminar a coluna NR, que só apresenta um número sequencial
3. Criar partição de dados: treinamento 80%, teste 20%
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes

Neurais (neuralnet) e o modelo alométrico de SPURR

■ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5))

5. Efetue as predições nos dados de teste
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados

observados

■ Coeficiente de determinação: R2

2 £ (yry,)
R = 1 - v r--------

X (.y -y)2
i = 1

onde y t é o valor observado, 1 é o valor predito e y é a média dos valores yt observados.

Quanto mais perto de 1 melhor é o modelo;

http://www.razer.net.br/datasets/Volumes.csv

27

Erro padrão da estimativa: S:yx

esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;

Syx%

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

■

B - RESOLUÇÃO
1 Pesquisa com Dados de Satélite
Entrada e saída de comandos:
> # instalação e carregamento de pacotes necessários
> install.packages('e1071')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/e1071 1.7-14.tgz'
Content type 'application/x-gzip' length 683532 bytes (667 KB)

downloaded 667 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded pac
kages
> install.packages('randomForest')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/randomForest 4.7-1.1.tgz'
Content type 'application/x-gzip' length 269721 bytes (263 KB)

downloaded 263 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp_wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded_pac
kages

https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-

28

> install.packages('kernlab')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/kernlab 0.9-32.tgz'
Content type 'application/x-gzip' length 2526541 bytes (2.4 MB)

downloaded 2.4 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded pac
kages
> install.packages('mlbench')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/mlbench 2.1-3.1.tgz'
Content type 'application/x-gzip' length 1052825 bytes (1.0 MB)

downloaded 1.0 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded pac
kages
> install.packages('caret')
Error in install.packages : Updating loaded packages

> install.packages("caret")
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/caret 6.0-94.tgz'
Content type 'application/x-gzip' length 3587235 bytes (3.4 MB)

downloaded 3.4 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmpde2FdR/downloaded pac
kages
> library('mlbench')
> library('caret')
Loading required package: ggplot2
Loading required package: lattice
> # carregando a base de dados Satellite
> set.seed(123)
> data("Satellite")
> # construindo dataframe apenas com dados de interesse para classificação

https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-

29

> database <- data.frame(Satellite[17:20])
> database$classes <- Satellite$classes
> # criando partições de treino e teste
> indices <- createDataPartition(database$classes,p = 0.8,list = FALSE)
> treino <- database[indices,]
> teste <- database[-indices,]
> # randomForest
> rf <- caret::train(classes~., data=treino, method='rf')
> # svm
> svm <- caret::train(classes~.,data=treino, method='svmRadial')
> # rna
> rna <- caret::train(classes~., data=treino, method='nnet', trace=FALSE)
> # randomForest
> predicoes.rf <- predict(rf,teste)
> #svm
> predicoes.svm <- predict(svm,teste)
> #rna
> predicoes.rna <- predict(rna,teste)
> # randomForest
> confusionMatrix(predicoes.rf, teste$classes)
Confusion Matrix and Statistics

Ref
Prediction re

red soil

erence
d soil cotl

294
:on crop gre

0
iy soil damp grey soil vegetation stubble

1 1 10
cotton crop 0 128 0 0 1
grey soil 6 0 247 27 2
damp grey soil 0 0 16 65 1
vegetation stubble e 12 0 1 110
very damp grey soil 0 0 7 31 17

Reference
Prediction very damp grey soil

red soil 0
cotton crop 0
grey soil 11
damp grey soil 34
vegetation stubble 6
very damp grey soil 250

Overall Statistics

Accuracy : 0.852
95* Cl : (0.8314, 0.871)

No Information Rate : 0.2383
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8169

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: red soil Class: cotton crop Class: grey soil
Sensitivity 0.9608 0.91429 0.9114
Specificity 0.9877 0.99913 0.9546
Pos Pred Value 0.9608 0.99225 0.8430
Neg Pred Value 0.9877 0.98961 0.9758
Prevalence 0.2383 0.10903 0.2111
Detection Rate 0.2290 0.09969 0.1924
Detection Prevalence 0.2383 0.10047 0.2282
Balanced Accuracy 0.9743 0.95671 0.9330

30

Class: damp grey soil Class: vegetation stubble
Sensitivity 0.52000 0.78014
Specificity 0.95600 0.97813
Pos Pred Value 0.56034 0.81481
Neg Pred Value 0.94863 0.97302
Prevalence 0.09735 0.10981
Detection Rate 0.05062 0.08567
Detection Prevalence 0.09034 0.10514
Balanced Accuracy 0.73800 0.87913

Class: very damp grey soil
Sensitivity 0.8306
Specificity 0.9440
Pos Pred Value 0.8197
Neg Pred Value 0.9479
Prevalence 0.2344
Detection Rate 0.1947
Detection Prevalence 0.2375
Balanced Accuracy 0.8873

> # svm
> confusionMatrix(predicoes.svm, teste$classes)

Confusion M a trix and S ta t is t ic s

Reference
Prediction red soil cotton crop grs
red soil 297 0

!y soil dairp t
1

jrey soil vegetat
1

ion stubble
14

cotton crop 0 127 0 0 0
grey soil 6 0 259 32 1
domp grey soil 0 0 10 66 0
vegetation stubble 3 13 0 1 102
very domp grey soil 0 0

Reference
Prediction very damp grey soil
red soil 0
cotton crop 0
grey soil 12
damp grey soil 32
vegetation stubble 7
very damp grey soil 250

1 25 24

Overall Statistics

Accuracy : 0.8575
95* Cl : (0.8371, 0.8762)

No Information Rate : 0.2383
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8233

Mcnemar's Test P-Value : NA

Statistics by Class:

Sensitivity
Specificity
Pos Pred Value
Neg Pred Value
Prevalence
Detection Rate
Detection Prevalence
Balanced Accurdcy

Sensitivity
Specificity
Pos Pred Value
Neg Pred Value
Prevalence
Detection Rate
Detection Prevalence
Balanced Accuracy

Sensitivity
Specificity
Pos Pred Value
Neg Pred Value
Prevalence
Detection Rate
Detection Prevalence
Balanced Accuracy

Class: red soil Class
0.9706
0.9836
0.9489
0.9907
0.2383
0.2313
0.2438
0.9771

Class: damp grey soil
0.52800
0.96376
0.61111
0.94983
0.09735
0.05140
0.08411
0.74588

Class: very damp grey
0
0
0
0
0
0
0
0

cotton crop Class: grey soil
0.90714 0.9557
1.00000 0.9497
1.00000 0.8355
0.98876 0.9877
0.10903 0.2111
0.09891 0.2017
0.09891 0.2414
0.95357 0.9527

Class: vegetation stubble
0.72340
0.97900
0.80952
0.96632
0.10981
0.07944
0.09813
0.85120

soil
8306
9491
8333
9482
2344
1947
2336
8899

31

> # rna
> confusionMatrix(predicoes.rna, teste$classes)
Confusion M a trix and S ta t is t ic s

S ta t is t ic s by Class:

Comparação Matriz de Confusão dos Modelos:
> confusionMatrix(predicoes.rf, teste$classes)
Accuracy : 0.852

95% CI : (0.8314, 0.871)

No Information Rate : 0.2383
P-Value [Acc > NIR] : < 2.2e-16

> confusionMatrix(predicoes.svm, teste$classes)
Accuracy : 0.8575

95% CI : (0.8371, 0.8762)

No Information Rate : 0.2383
P-Value [Acc > NIR] : < 2.2e-16

Reference
P red ic tion red s o i l co tton crop grey s o il damp grey s o il vegetation stubble

red s o il 297 3 1 4 16
co tton crop 0 116 0 0 0
grey s o il 5 0 265 83 2
damp grey s o il 0 0 0 0 0
vegetation stubble 3 18 0 0 91
very danp grey s o il 1

Reference
3 5 38 32

P red ic tion very damp grey s o il
red s o il 1
co tton crop 0
grey s o il 43
damp grey s o il 0
vegetation stubble 8
very damp grey s o il 249

O vera ll S ta t is t ic s

Accuracy : 0.7928
95% Cl : C0.7696, 0.8147)

No In fo rm ation Rate : 0.2383
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7394

Mcnemar’ s Test P-Value : NA

Class: red s o il Class: co tton crop Class: grey s o il
S e n s it iv ity 0.9706 0.82857 0.9779
S p e c if ic ity 0.9744 1.00000 0.8687
Pos Pred Value 0.9224 1.00000 0.6658
Neg Pred Value 0.9906 0.97945 0.9932
Prevalence 0.2383 0.10903 0.2111
Detection Rate 0.2313 0.09034 0.2064
Detection Prevalence 0.2508 0.09034 0.3100
Balanced Accuracy 0.9725 0.91429 0.9233

Class: damp grey s o il C lass: vegetation stubble
S e n s it iv ity 0.00000 0.64539
S p e c if ic ity 1.00000 0.97463
Pos Pred Value NaN 0.75833
Neg Pred Value 0.90265 0.95704
Prevalence 0.09735 0.10981
Detection Rate 0.00000 0.07087
Detection Prevalence 0.00000 0.09346
Balanced Accuracy 0.50000

C lass: very damp grey s o il
0.81001

S e n s it iv ity 0.8272
S p e c if ic ity 0.9196
Pos Pred Value 0.7591
Neg Pred Value 0.9456
Prevalence 0.2344
Detection Rate 0.1939
Detection Prevalence 0.2555
Balanced Accuracy 0.8734

32

> confusionMatrix(predicoes.rna, teste$classes)
Accuracy : 0.7928

95% CI : (0.7696, 0.8147)

No Information Rate : 0.2383
P-Value [Acc > NIR] : < 2.2e-16

Em problemas de classificação, uma das métricas de referência para avaliar a
performance de modelos é a acurácia que indica a proporção de instâncias
classificadas corretamente pelo modelo em relação ao total de previsões. Em
virtude disso, o modelo escolhido foi o de svm, que obteve 0.8575 de acurácia,
a melhor dentre os três modelos.

2 Estimativa de Volume de Árvores
Entrada e saida de comandos:
> # instalação e carregamento de pacotes necessários
> install.packages('e1071')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/e1071 1.7-14.tgz'
Content type 'application/x-gzip' length 683532 bytes (667 KB)

downloaded 667 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//RtmpQgB6zZ/downloaded pac
kages
> install.packages('randomForest')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/randomForest 4.7-1.1.tgz'
Content type 'application/x-gzip' length 269721 bytes (263 KB)

downloaded 263 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp_wwtm8n9zvc0000gn/T//RtmpQgB6zZ/downloaded_pac
kages
> install.packages('kernlab')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/kernlab 0.9-32.tgz'
Content type 'application/x-gzip' length 2526541 bytes (2.4 MB)

downloaded 2.4 MB

https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-

33

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//RtmpQgB6zZ/downloaded pac
kages
> install.packages(’caret’)
Error in install.packages : Updating loaded packages

> install.packages("caret")
trying URL ’https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/caret 6.0-94.tgz’
Content type ’application/x-gzip’ length 3587235 bytes (3.4 MB)

downloaded 3.4 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//RtmpSW76Bn/downloaded pac
kages
> library(’caret’)
Loading required package: ggplot2
Loading required package: lattice
> # carregar arquivo de volumes
> set.seed(123)
> data <- read.csv2("http://www.razer.net.br/datasets/Volumes.csv")
> # eliminando coluna NR
> data$NR <- NULL
> indices <- createDataPartition(data$VOL, p=0.8, list=FALSE)
> treino <- data[indices,]
> teste <- data[-indices,]
> # randomForest
> rf <- caret::train(VOL~.,data=treino,method=’rf’)
note: only 2 unique complexity parameters in default grid. Truncating the
grid to 2 .

> # svm
> svm <- caret::train(VOL~., data=treino, method=’svmRadial’)
> # rna
> rna <- caret::train(VOL~., data=treino, method=’nnet’, trace=FALSE)
Warning message:
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :

There were missing values in resampled performance measures.
> # alométrico

https://cran.rstudio.com/bin/macosx/big-sur-
http://www.razer.net.br/datasets/Volumes.csv

34

> alom <- nls(VOL ~b0 + b1 * DAP*DAP*HT, data=treino, start=list(b0=0.5,
b1=0.5))
> #randomForest
> predicoes.rf <- predict(rf,teste)
> #svm
> predicoes.svm <- predict(svm,teste)
> #rna
> predicoes.rna <- predict(rna,teste)
> #alométrico
> predicoes.alom <- predict(alom,teste)
> # UDF
> # coeficiente de determinação
> coef det <- function(obs, preds){
+ sum pos <- sum((obs - preds) A 2)
+ sum neg <- sum ((obs - mean(obs)) A2)
+ result <- 1 - (sum pos / sum neg)
+ return(result)
+ }
> # erro padrão da estimativa
> standard error <- function(obs, preds){
+ size <- length(obs)
+ sum pos <- sum((obs - preds) A 2)
+ result = sqrt((sum pos / (size - 2)))
+ return(result)
+ }
> percentage error <- function(obs,preds){
+ size <- length(obs)
+ sum pos <- sum((obs - preds) a 2)
+ partial result = sqrt((sum pos / (size - 2)))
+ result <- (partial result/mean(obs)) * 100
+ }
> #randomForest
> rf.coef <- coef det(teste$VOL, predicoes.rf)
> rf.error <- standard error(teste$VOL, predicoes.rf)
> rf.percentage error <- percentage error(teste$VOL, predicoes.rf)
> # svm
> svm.coef <- coef det(teste$VOL, predicoes.svm)
> svm.error <- standard error(teste$VOL, predicoes.svm)
> svm.percentage error <- percentage error(teste$VOL, predicoes.svm)
> # rna
> rna.coef <- coef det(teste$VOL, predicoes.rna)

35

> rna.error <- standard error(teste$VOL, predicoes.rna)
> rna.percentage error <- percentage error(teste$VOL, predicoes.rna)
> # alométrico
> alom.coef <- coef det(teste$VOL, predicoes.alom)
> alom.error <- standard error(teste$VOL, predicoes.alom)
> alom.percentage error <- percentage error(teste$VOL, predicoes.alom)
>
> rf.coef
[1] 0.8486654
> svm.coef
[1] 0.7899082
> rna.coef
[1] -0.8207433
> alom.coef
[1] 0.8694429
> rf.error
[1] 0.156604
> svm.error
[1] 0.1845178
> rna.error
[1] 0.5431978
> alom.error
[1] 0.1454567
> rf.percentage error
[1] 11.63489
> svm.percentage error
[1] 13.70874
> rna.percentage error
[1] 40.35687
> alom.percentage error
[1] 10.8067

Após aplicação dos cálculos obteve-se os seguintes resultados:

RandomForest SVM RNA Alométrico
Coeficiente de
determinação
R2

0.8486654 0.7899082 -0.8207433 0.8694429

Erro padrão da
estimativa Sy* 0.156604 0.1845178 0.5431978 0.1454567

Porcentagem
de erro Sy*% 11.63489 13.70874 40.35687 10.8067

36

Levando em consideração o coeficiente de determinação R2
o Alométrico, visto que é o que mais se aproxima de 1.
padrão também foi a menor neste modelo.

, o melhor modelo foi
A estimativa de erro

37

APÊNDICE 4 - ESTATÍSTICA APLICADA I

A - ENUNCIADO

1) Gráficos e tabelas

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e “husage”

(idade do marido) e comparar os resultados

2) Medidas de posição e dispersão

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

(15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age”

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

3) Testes paramétricos ou não paramétricos

(40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do

marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique sua

resposta sobre a escolha.

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes

citados no item 1 acima.

B - RESOLUÇÃO
1 Gráfico e tabelas
a) Elaborar os gráficos box-plot e histograma das variáveis "age" (idade da
esposa) e "husage" (idade do marido) e comparar os resultados:

Instalação de pacotes e upload/leitura base de dados:
install.packages("car")
install.packages("dplyr")
library("car")
library(dplyr)

38

load("salarios.RData")

Gerar histograma com idades das esposas e dos maridos:
hist(x = salarios$age,xlab = 'Idade das Esposas',ylab = 'Frequência',
col="#69b3a2",
main="Histograma Idade das Esposas")
hist(x=salarios$husage,xlab='Idade dos Maridos',
ylab='Frequência',main="Histograma
Idade dos Maridos",col="#69b3a2")

Gerar gráfico box-plot com idades das esposas e dos maridos:
ages list <- list(salarios$age, salarios$husage)
names(ages list) <- c("Esposas", "Maridos")
par(mfrow=c(1,1),mgp=c(3,2,0))
boxplot(ages list, col="#69b3a2", ylab="Idade", main="Gráfico Box-Plot das
Idades")

39

Complementando com a comparação das informações sumárias:
summary(salarios$age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 31.00 39.00 39.43 47.00 59.00

40

summary(salarios$husage)
Min. 1st Qu. Median Mean 3rd Qu. Max.
19.00 34.00 41.00 42.45 50.00 86.00

Conclusão:
Os maridos possuem idade média superior ao das esposas e tendem a ter mais
idade do que elas. No entanto, a diferença entre as médias e mediana não é
expressiva entre ambos. Algumas observações na amostra analisada indicam
outliers nas idades dos maridos que afetam a média e, em menor grau, poderiam
afetar a mediana deste grupo.

b) Elaborar a tabela de frequências das variáveis "age" (idade da esposa) e
"husage" (idade do marido) e comparar os resultados:
Instalação do pacote necessário:
install.packages("fdth")
library(fdth)

Gerar tabela de frequência com as idades das esposas:
print(fdt(salarios$age))

Class limits f rf rf(%) cf cf(%)
[17.82,20.804) 61 0.01 1.08 61 1.08

[20.804,23.787) 161 0.03 2.86 222 3.94
[23.787,26.771) 312 0.06 5.54 534 9.48
[26.771,29.754) 505 0.09 8.96 1039 18.44
[29.754,32.738) 562 0.10 9.98 1601 28.42
[32.738,35.721) 571 0.10 10.13 2172 38.55
[35.721,38.705) 624 0.11 11.08 2796 49.63
[38.705,41.689) 510 0.09 9.05 3306 58.68
[41.689,44.672) 542 0.10 9.62 3848 68.30
[44.672,47.656) 432 0.08 7.67 4280 75.97
[47.656,50.639) 389 0.07 6.90 4669 82.87
[50.639,53.623) 358 0.06 6.35 5027 89.23
[53.623,56.606) 304 0.05 5.40 5331 94.62
[56.606,59.59) 303 0.05 5.38 5634 100.00

Gerar tabela de frequência com as idades dos maridos:
print(fdt(salarios$husage))

41

Class lim its f rf rf(%) cf cf(%)
[18.81,23.671) 102 0.02 1.81 102 1.81

[23.671,28.531) 466 0.08 8.27 568 10.08
[28.531,33.392) 809 0.14 14.36 1377 24.44
[33.392,38.253) 895 0.16 15.89 2272 40.33
[38.253,43.114) 917 0.16 16.28 3189 56.60
[43.114,47.974) 629 0.11 11.16 3818 67.77
[47.974,52.835) 649 0.12 11.52 4467 79.29
[52.835,57.696) 541 0.10 9.60 5008 88.89
[57.696,62.556) 394 0.07 6.99 5402 95.88
[62.556,67.417) 152 0.03 2.70 5554 98.58
[67.417,72.278) 51 0.01 0.91 5605 99.49
[72.278,77.139) 21 0.00 0.37 5626 99.86
[77.139,81.999) 6 0.00 0.11 5632 99.96
[81.999,86.86) 2 0.00 0.04 5634 100.00

Conclusão:
Comparando os resultados de ambas tabelas pode-se obter algumas conclusões:
Observando-se a tabela de frequências das idades das esposas, percebe-se
que a frequência maior está entre as idades de 32 a 39 anos. Já a maior
frequência dos maridos está entre 28 e 43 anos. Algumas observações referentes
aos maridos indicam que pouco mais de 4% deles possuem idade superior a 60
anos, idade esta inferior a máxima idade observada na amostra referente as
esposas.

2 Medidas de posição e dispersão
a) Calcular a média, mediana e moda das variáveis "age" (idade da esposa) e
"husage" (idade do marido) e comparar os resultados:
Calcular a média da idade das esposas:
mean(salarios$age)
[1] 39.42758

Calcular a média da idade dos maridos:
mean(salarios$husage)
[1] 42.45296

Calcular a mediana da idade das esposas:
median(salarios$age)
[1] 39

42

Calcular a mediana da idade das esposas:
median(salarios$husage)
[1] 41

Calcular as modas das esposas:
table(salarios$age)
subset(table(salarios$age), table(salarios$age) == max(table(salarios$age)))
37
217

Calcular as modas dos maridos:
table(salarios$husage)
subset(table(salarios$husage), table(salarios$husage) ==
max(table(salarios$husage)))
44
201

Tabela resumo:

Item
Grupo

Média Mediana
Modal

Idade Frequência
Esposas 39.42758 39 37 217
Maridos 42.45296 41 44 201

Conclusão:
• A média das idades dos maridos é 7.67 % maior que a das esposas;
• A mediana das idades dos maridos é 5.13 % maior que a das esposas;
• A moda das idades dos maridos é 18.92 % maior que a das esposas;
• Os resultados indicam que as esposas são, de modo geral, mais jovens que
os homens, muito embora a diferença entre ambos os gupos seja pequena;
• Os valores de média e mediana são próximos entre as duas variáveis.

b) Calcular a variância, desvio padrão e coeficiente de variação das variáveis
"age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados:
• Calcular a variância da idade das esposas:
var(salarios$age)
[1] 99.75234

• Calcular a variância da idade dos maridos:
var(salarios$husage)
[1] 126.0717

43

Calcular o desvio padrão das idades das esposas:
sd(salarios$age)
[1] 9.98761

Calcular o desvio padrão das idades dos maridos:
sd(salarios$husage)
[1] 11.22817

Calcular o coeficiente de variação da idades das esposas:
(sd(salarios$age)/mean(salarios$age))*100
[1] 25.33153

Calcular o coeficiente de variação da idades das esposas:
(sd(salarios$husage)/mean(salarios$husage))*100
[1] 26.44849

Tabela resumo:

Item de Análise Esposas Maridos
Variância 99.75234 126.0717
Desvio padrão 9.98761 11.22817
Coeficiente de variação 25.33153 26.44849

Conclusão:
• A variância das idades dos maridos é 1.26 % maior que a das esposas;
• O desvio padrão das idades dos maridos é 1.12 % maior que a das esposas;
• Os resultados de variância apresentam uma maior distância da idade dos
maridos em referência a média padrão deste grupo;
• Comparando os resultados de desvio padrão, as idades dos maridos possuem
desvio também maior em relação ao desvio padrão das esposas;
• Com base nos valores de coeficiente de variação e utilizando a "regra de
bolso" para análise desse dado, podemos assumir que há uma dispersão média
tanto para as idades dos maridos (cv de 26%), quanto das esposas (cv de 25%).

3 Testes paramétricos ou não paramétricos
a) Testar se as médias (paramétrico) ou as medianas (não paramétrico) das
variáveis "age" (idade da esposa) e "husage" (idade do marido) são iguais,
construir os intervalos de confiança e comparar os resultados:
• Checar condições preliminares para decidir tipo de teste
• Amostras independentes, normalidade e homogeneidade
• das variâncias entre grupos
• Premissa 1: As duas amostras são independentes?

44

Sim, pois as idades das esposas e maridos não estão relacionados e
não se trata de uma amostra ou grupos emparelhados.
Premissa 2: Os dados de cada amostra/grupo possuem distribuição
normal?
Teste de normalidade Kolmogorov-Smirnov com o seguinte
teste de hipóteses:
- H0: os dados são normalmente distribuídos
- Ha: os dados não são normalmente distribuídos
Bibliotecas necessárias
library(nortest)
library("ggpubr")

Para evitar notação científica
options(scipen = 999)

Realizar os testes de Shapiro-Wilk com as seguintes hipóteses:
H0: Os dados são normalmente distribuídos
Ha: Os dados não são normalmente distribuídos

with(idades, shapiro.test(idades[grupo == "Marido"]))
Error in shapiro.test(idades[grupo == "Marido"]) :
sample size must be between 3 and 5000

Conclusão:
A amostra não pode ser testada com o método Shapiro-Wilk, devido o método
possuir restrições quanto ao tamanho da amostra; número máximo de até 5000
observações.

Primeiro vamos fazer o teste de normalidade Kolmogorov-Smirnov para a
idade das esposas
wife normality <- lillie.test(salarios$age)
wife normality

p-value < 0.05 (valor de 0.00000000000000022), logo não possui
distribuicao normal
husband normality <- lillie.test(salarios$husage)
husband normality

p-value < 0.05 (valor de 0.00000000000000022), logo não possui
distribuição normal
Premissa 3. As duas populações/amostras/grupos possuem

45

homogeneidade das variâncias?
O teste de hipóteses é:
H0: As variâncias são estatisticamente iguais(homogêneas)
HA: As variâncias não são estatisticamente iguais(homogêneas)
criando dataset para compara idade das esposas da idade dos maridos
idades <- data.frame(group = rep(c("Esposa","Marido"), each =
length(salarios$age)), idades = c(salarios$age,salarios$husage))

Analisando algumas medidas dos dados
group by(idades, group) %>%
summarise(count = n(),median = median(idades, na.rm = TRUE),IQR = IQR(idades,
na.rm = TRUE))

A tibble: 2 x 4
group count median IQR
<chr> <int> <dbl> <dbl>
1 Esposa 5634 39 16
2 Marido 5634 41 16

Visualizando boxplot
ggboxplot(idades, x = "group", y = "idades",
color = "group", palette=c("#00AFBB", "#E7B800"),
ylab = "Idade", xlab = "Groups")

46

Usaremos o teste F para testar a homogeneidade nas variâncias.
library("sjPlot")
res.ftest <- var.test(idades ~ group, data = idades)
res.ftest

Obtendo o valor tabelado da distribuição F
qf(0.95, 5633, 5633)
Temos F=1.04481
para a outra cauda temos:
1/1.04481
F = 0.9571118

Vamos construir o gráfico:
dist_f(f = 1.04481, deg.f1 = 5633, deg.f2 = 5633)
dist_f(f = 0.9571118, deg.f1 = 5633, deg.f2 = 5633)

O teste de F tem valor crítico entre 0.9571118 e 1.04481 (região de
não rejeição de H0), os valores acima de 1.04481 e abaixo de
0.9571118 estão na região de rejeição de H0.
O valor da estatística F calculada é de F = 0.79123. Como esse valor
se encontra na região de rejeição de H0, então rejeitamos a hipótese de
que as variâncias são estatisticamente iguais, ou seja, adotamos HA.
Como não foi verificado normalidade nos dados e nem homogeneidade da
variância, será adotado um teste não paramétrico e será feito teste para
verificar se as medianas das variáveis age(Idade Esposas) e husage (Idade
Maridos) são iguais.

Teste Não Paramétrico: Teste U de Mann-Whitney
Hipóteses
H0: O idade mediana dos homens é igual estatisticamente a idade
mediana das mulheres;
Ha: O idade mediana dos homens não é estatisticamente igual a
idade mediana das mulheres
Executando teste
res <- wilcox.test(idades ~ group, data = idades,exact = FALSE, conf.int=TRUE)
res

data: idades by group
W = 13619912, p-value < 0.00000000000000022
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:

47

-3.000024 -2.000033
sample estimates:
difference in location
-2.999966

O p-value do teste eh 0.00000000000000022 que é menor que o nível de
significância 0,05. Podemos concluir que a idade mediana dos homens é
estatisticamente diferente da idade mediana das mulheres, ou seja,
rejeitamos H0, e adotamos HA. A diferença na localização, a diferença nas
medianas, é estimada em -2.999966.
O intervalo de confiança de 95% para a diferença nas localizações é de
-3.000024 a -2.000033.

48

APÊNDICE 5 - ESTATÍSTICA APLICADA II

A - ENUNCIADO

Regressões Ridge, Lasso e ElasticNet

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente

“Iwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados

são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você

deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2) e

concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de

confiança para os seguintes valores:

husage = 40 (anos - idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos - idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidlt6 = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto você não

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para obter

0 resultado da predição.

B - RESOLUÇÃO
1 Regressões Ridge, Lasso e ElasticNet
Rotina utilizada para realizar as regressões Ridge, Lasso e ElasticNet
Carregando os pacotes necessários
library(plyr)
library(readr)
library(dplyr)
library(caret)

49

library(ggplot2)
library(repr)
library(glmnet)

set.seed(123)

Carregando base de dados
load('trabalhosalarios.RData')

armazenando base de dados
dataset <- trabalhosalarios

diminuindo a variancia de husage e age - as outras possuem zero
dataset['husage'] <- log(dataset['husage'])
dataset['age'] <- log(dataset['age'])

criando indice para separar em base de teste e de treino
index <- sample(1:nrow(dataset), 0.8*nrow(dataset))

criando base de treino
train <- dataset[index,]

criando base de teste
test <- dataset[-index,]

verificando dimensões das bases de treino e teste
dim(train)
dim(test)

Vamos padronizar as variaveis
Vamos criar um objeto com as variaveis para padronizar
As variaveis binarias nao sao padronizadas
cols = c('husage', 'husearns', 'huseduc', 'hushrs', 'age', 'educ', 'exper')

Padronizando a base de treinamento e teste
pre proc val <- preProcess(train[,cols], method = c("center", "scale"))
train[,cols] = predict(pre proc val, train[,cols])
test[,cols] = predict(pre proc val, test[,cols])

summary(train)
summary(test)

50

##
REGRESSAO RIDGE #
##
Vamos criar um objeto com as variaveis que usaremos no modelo
cols reg = c('husage,,,husunion', 'husearns', 'huseduc', 'hushrs',

'age', 'educ', 'husblck', 'hushisp', 'kidge6', 'black',
'hispanic', 'union', 'kidlt6','exper','lwage')

Vamos gerar variáveis dummies para organizar os datasets
em objetos tipo matriz
Estamos interessados em estimar o salário-hora da esposa em logaritmo
neperiano (lwage)
dummies <- dummyVars(lwage~husage+husunion+husearns+huseduc+hushrs+

age+educ+husblck+hushisp+
kidge6+black+hispanic+union+kidlt6+exper,

data = dataset[,cols reg])
train dummies = predict(dummies, newdata = train[,cols reg])
test dummies = predict(dummies, newdata = test[,cols reg])
print(dim(train dummies)); print(dim(test dummies))

Vamos guardar a matriz de dados de treinamento das
variaveis explicativas para o modelo em um objeto
chamado "x"
x = as.matrix(train dummies)

Vamos guardar o vetor de dados de treinamento da
variavel dependente para o modelo em um objeto
chamado "y_train"
y_train = train$lwage

Vamos guardar a matriz de dados de teste das variaveis
explicativas para o modelo em um objeto chamado
"x_test"
x test = as.matrix(test dummies)

Vamos guardar o vetor de dados de teste da variavel
dependente para o modelo em um objeto chamado "y test"
y test = test$lwage

Vamos calcular o valor otimo de lambda;
alpha = "0", é para regressao Ridge

51

Vamos testar os lambdas de 10A-3 até 10A2, a cada 0.1
lambdas <- 10Aseq(2, -3, by = -.1)

Calculando o lambda:
ridge lamb <- cv.glmnet(x, y train, alpha = 0, lambda = lambdas)

Vamos ver qual o lambda otimo
best lambda ridge <- ridge lamb$lambda.min
best lambda ridge

Estimando o modelo Ridge
ridge reg = glmnet(x, y train, nlambda = 25, alpha = 0, family = 'gaussian',

lambda = best lambda ridge)

Vamos ver o resultado (valores) da estimativa
(coeficientes)
ridge_reg[["beta"]]

Vamos calcular o RA2 dos valores verdadeiros e
preditos conforme a seguinte funcao:
eval results <- function(true, predicted, df) {

SSE <- sum((predicted - true)A2)
SST <- sum((true - mean(true))A2)
R_square <- 1 - SSE / SST
RMSE = sqrt(SSE/nrow(df))

As metricas de performace do modelo:
data.frame(

RMSE = RMSE,
Rsquare = R square

)
}

Predicao e avaliacao nos dados de treinamento:
predictions train <- predict(ridge reg, s = best lambda ridge,

newx = x)

As metricas da base de treinamento sao:
eval results(y train, predictions train, train)
RMSE Rsquare
#1 0.4361332 0.306454

52

Predicao e avaliacao nos dados de teste:
predictions test <- predict(ridge reg, s = best lambda ridge,

newx = x_test)

As metricas da base de teste sao:
eval results(y test, predictions test, test)
RMSE Rsquare
#1 0.4503715 0.2346912

Se compararmos as metricas de treinamento e teste
percebemos que o R2 é relativamente baixo em ambas, o que sugere
que o modelo não está adequado para capturara variabilidade
dos dados. Em resumo, o modelo não demonstra
ter um bom poder explicativo.

##
REGRESSAO LASSO #
##
Vamos atribuir alpha = 1 para implementar a regressao lasso
lasso lamb <- cv.glmnet(x, y train, alpha = 1, lambda = lambdas,

standardize = TRUE, nfolds = 5)

Vamos guardar o lambda "otimo" em um objeto chamado
best lambda lasso
best lambda lasso <- lasso lamb$lambda.min
best lambda lasso

Vamos estimar o modelo Lasso
lasso model <- glmnet(x, y train, alpha = 1, lambda = best lambda lasso,

standardize = TRUE)

Vamos visualizar os coeficientes estimados
lasso model[["beta"]]

Vamos fazer as predicoes na base de treinamento e
avaliar a regressao Lasso
predictions train lasso <- predict(lasso model, s = best lambda lasso,

newx = x)
Vamos calcular o RA2 dos valores verdadeiros e preditos
As metricas da base de treinamento sao:
eval results(y train, predictions train lasso, train)

53

RMSE Rsquare
#1 0.436358 0.305739

Vamos fazer as predicoes na base de teste
predictions test lasso <- predict(lasso model, s = best lambda lasso,

newx = x_test)

As metricas da base de teste sao:
eval results(y test, predictions test lasso, test)
RMSE Rsquare
#1 0.4503179 0.2348735

Novamente, se compararmos as metricas de treinamento e teste
percebemos que o R2 é relativamente baixo em ambas, o que sugere
que este modelo também não está adequado para capturara variabilidade
dos dados. Em resumo, o modelo não demonstra
ter um bom poder explicativo.

##
REGRESSAO ELASTICNET #
##
Vamos configurar o treinamento do modelo por
cross validation, com 10 folders, 5 repeticoes
e busca aleatoria dos componentes das amostras
de treinamento, o "verboseIter" é soh para
mostrar o processamento.
train cont <- trainControl(method = "repeatedcv", number = 10,

repeats = 5, search = "random",
verboseIter = TRUE)

Vamos treinar o modelo
elastic reg <- train(lwage~husage+husunion+husearns+huseduc+hushrs+

age+educ+husblck+hushisp+
kidge6+black+hispanic+union+kidlt6+exper,

data = train,
method = "glmnet",
tuneLength = 10,
trControl = train cont)

O melhor parametro alpha escolhido é:
elastic_reg$bestTune

54

E os parametros sao:
elastic_reg[["finalModel"]][["beta"]]

Vamos fazer as predicoes e avaliar a performance do modelo

Vamos fazer as predicoes no modelo de treinamento:
predictions train elasticnet <- predict(elastic reg, x)

As metricas de performance na base de treinamento sao:
eval results(y train, predictions train elasticnet, train)
RMSE Rsquare
1 0.437097 0.3033854

Vamos fazer as predicoes na base de teste
predictions test elasticnet <- predict(elastic reg, x test)

As metricas de performance na base de teste sao:
eval results(y test, predictions test elasticnet, test)
RMSE Rsquare
#1 0.4508652 0.23301243

O modelo com elasticnet também apresentou métricas de desempenho
relativamente baixas, tanto para treino quanto para teste.
Em resumo, o modelo não demonstra
ter um bom poder explicativo.

##
Escolha do melhor modelo
O modelo de Lasso parece ser a melhor escolha, pois apresenta o menor RMSE
e o maior R2 na base de teste, indicando uma melhor capacidade de previsão
e explicação da variabilidade dos dados de teste em comparação aos outros
modelos.

No entanto, as diferenças são mínimas, e todos os modelos apresentam
desempenho muito semelhante.

##
Preparando valores para as predições
husage = 40 anos (idade do marido)
husage = (log(40)-pre_proc_val[["mean"]][["husage"]])/

pre_proc_val[["std"]][["husage"]]

55

husunion = 0

husearns = 600 (rendimento do marido em US$)
husearns = (600-pre proc val[["mean"]][["husearns"]])/

pre proc val[["std"]][["husearns"]]

huseduc = 13 (anos de estudo do marido)
huseduc = (13-pre proc val[["mean"]][["huseduc"]])/

pre_proc_val[["std"]][["huseduc"]]

husblck = 1 (o marido é preto)
husblck = 1

hushisp = 0 (o marido nao é hispanico)
hushisp = 0

hushrs = 40 (o marido trabalha 40 horas semanais)
hushrs = (40-pre proc val[["mean"]][["hushrs"]])/

pre_proc_val[["std"]][["hushrs"]]

kidge6 = 0 (nao tem filhos maiores de 6 anos)
kidge6 = 1

age = 38 anos (idade da esposa)
age = (log(38)-pre proc val[["mean"]][["age"]])/

pre_proc_val[["std"]][["age"]]

black = 0 (esposa nao é preta)
black = 0

educ = 13 (esposa possui 13 anos de estudo)
educ = (13-pre_proc_val[["mean"]][["educ"]])/

pre_proc_val[["std"]][["educ"]]

hispanic = 1 (esposa é hispanica)
hispanic = 1

union = 0 (o casal nao possui uniao registrada)
union = 0

exper = 18 (esposa possui 18 anos de experiência)

56

exper = (18-pre proc val[["mean"]][["exper"]])/
pre_proc_val[["std"]][["exper"]]

kidlt6 = 0 (nao possui filhos com menos de 6 anos)
kidlt6 = 1

Vamos construir uma matriz de dados para a predicao
our pred = as.matrix(data.frame(husage=husage,

husunion=husunion,
husearns=husearns,
huseduc=huseduc,
husblck=husblck,
hushisp=hushisp,
hushrs=hushrs,
kidge6=kidge6,
age=age,
black=black,
educ=educ,
hispanic=hispanic,
union=union,
exper=exper,
kidlt6=kidlt6))

##
PREDIÇÃO RIDGE #
##
Fazendo a predicao:
predict our ridge <- predict(ridge reg, s = best lambda ridge,

newx = our pred)

O resultado da predicao é:
predict_our_ridge

O resultado é um valor padronizado, vamos convertê-lo
para o valor nominal, consistente com o dataset original
lwage pred ridge=exp(predict our ridge)

O resultado é:
lwage_pred_ridge

Este é o valor predito do salário por hora (US$),

57

segundo as caracteristicas que atribuimos

O intervalo de confianca para o nosso exemplo é:
n <- nrow(train) # tamanho da amostra
m <- lwage pred ridge # valor medio predito
s <- sd(dataset$lwage) # desvio padrao
dam <- s/sqrt(n) # distribuicao da amostragem da média
CIlwr ridge <- m + (qnorm(0.025))*dam # intervalo inferior
Clupr ridge <- m - (qnorm(0.025))*dam # intervalo superior

Os valores sao:
CIlwr_ridge
CIupr_ridge

Entao, segundo as caracteristicas que atribuimos o
salário-hora da esposa é em média US$6.27305 e pode
variar entre US$6.2505 e US$6.295599

##
PREDIÇÃO LASSO #
##
Fazendo a predição
predict our lasso <- predict(lasso model, s = best lambda lasso,

newx = our pred)

O resultado da predicao é:
predict our lasso

O resultado é um valor padronizado, vamos convertê-lo
para o valor nominal, consistente com o dataset original
lwage pred lasso = exp(predict our lasso)

O resultado é:
lwage_pred_lasso

Vamos criar o intervalo de confianca para o nosso exemplo
n <- nrow(train)
m <- lwage pred lasso
s <- sd(dataset$lwage) # desvio padrao
dam <- s/sqrt(n)
CIlwr lasso <- m + (qnorm(0.025))*dam

58

Clupr lasso <- m - (qnorm(0.025)) *dam

O intervalo de confianca é:
CIlwr lasso
Clupr lasso

Entao, o salário medio é de US$6.253206 e pode variar
entre US$6.230657 e US$6.275756

##
PREDIÇÃO ELASTICNET #
##
Vamos fazer a predicao com base nos parametros que
selecionamos
predict our elastic <- predict(elastic reg,our pred)
predict our elastic

Novamente, o resultado é padronizado, nós temos que revertê-lo para o
nivel dos valores originais do dataset, vamos fazer isso:
lwage pred elastic=exp(predict our elastic)
lwage pred elastic

Entao o salário-hora medio da esposa predito com base
nas caracteristicas informadas é US$7.8397

Vamos criar o intervalo de confianca para o nosso exemplo
n <- nrow(train)
m <- lwage pred elastic
s <- sd(dataset$lwage) # desvio padrao
dam <- s/sqrt(n)
CIlwr elastic <- m + (qnorm(0.025))*dam
Clupr elastic <- m - (qnorm(0.025))*dam

Os valores minimo e maximo sao:
CIlwr elastic
CIupr elastic

Entao, o salário-hora medio da esposa é de US$7.8397
e pode variar entre US$7.81715 e US$7.86225

59

2 Tabela com as estatísticas dos modelos (RMSE e R 2)

Tipo de Regressão
Treino Teste

R2 RMSE R2 RMSE
Ridge 0.306454 0.4361332 0.2346912 0.4503715
Lasso 0.305739 0.436358 0.2348735 0.4503179
ElasticNet 0.3033854 0.437097 0.23301243 0.4508652

Escolha do melhor modelo:
O modelo de Lasso parece ser a melhor escolha, pois apresenta o menor RMSE e
o maior R2 na base de teste, indicando uma melhor capacidade de previsão e
explicação da variabilidade dos dados de teste em comparação aos outros
modelos.
No entanto, as diferenças são mínimas, e todos os modelos apresentam
desempenho muito semelhante.

3 Predições
Tipo de

Regressão
Resultado Resultado com

antilog
Intervalo
Inferior

Intervalo
Superior

Ridge 1.836263 6.27305 6.2505 6.295599
Lasso 1.833094 6.253206 6.230657 6.275756
ElasticNet 2.059201 7.8397 7.81715 7.86225

60

APÊNDICE 6 - ARQUITETURA DE DADOS

A - ENUNCIADO

1 Construção de Características: Identificador automático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções para

calcular as diferentes características para o problema da identificação da língua do texto de entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o notebook

e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com origem

na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).

61

B - RESOLUÇÃO
Códigos Python utilizados no ambiente Google Colab

1 Construção de Características: Identificador automático de idioma
import re
from collections import Counter
from sklearn.model selection import train test split
from sklearn.svm import SVC
from sklearn.metrics import classification report
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.model selection import RepeatedStratifiedKFold, cross val score

ingles = [
"Hello, how are you?",
"I love to read books.",
"The weather is nice today.",
"Where is the nearest restaurant?",
"What time is it?",
"I enjoy playing soccer.",
"Can you help me with this?",
"I'm going to the movies tonight.",
"This is a beautiful place.",
"I like listening to music.",
"Do you speak English?",
"What is your favorite color?",
"I'm learning to play the guitar.",
"Have a great day!",
"I need to buy some groceries.",
"Let's go for a walk.",
"How was your weekend?",
"I'm excited for the concert.",
"Could you pass me the salt, please?",
"I have a meeting at 2 PM.",
"I'm planning a vacation.",
"She sings beautifully.",
"The cat is sleeping.",
"I want to learn French.",
"I enjoy going to the beach.",

62

"Where can I find a taxi?",
"I'm sorry for the inconvenience.",
"I'm studying for my exams.",
"I like to cook dinner at home.",
"Do you have any recommendations for restaurants?",
]

espanhol = [
"Hola, ^cómo estás?",
"Me encanta leer libros.",
"El clima está agradable hoy.",
"^Dónde está el restaurante más cercano?",
"iQué hora es?",
"Voy al parque todos los dias.",
"^Puedes ayudarme con esto?",
"Me gustaria ir de vacaciones.",
"Este es mi libro favorito.",
"Me gusta bailar salsa.",
"^Hablas espanol?",
"^Cuál es tu comida favorita?",
"Estoy aprendiendo a tocar el piano.",
";Que tengas un buen dia!",
"Necesito comprar algunas frutas.",
"Vamos a dar un paseo.",
"^Cómo estuvo tu fin de semana?",
"Estoy emocionado por el concierto.",
"^Me pasas la sal, por favor?",
"Tengo una reunión a las 2 PM.",
"Estoy planeando unas vacaciones.",
"Ella canta hermosamente.",
"El perro está jugando.",
"Quiero aprender italiano.",
"Disfruto ir a la playa.",
"^Dónde puedo encontrar un taxi?",
"Lamento las molestias.",
"Estoy estudiando para mis exámenes.",
"Me gusta cocinar la cena en casa.",
"^Tienes alguna recomendación de restaurantes?",
]

63

portugues = [
"Estou indo para o trabalho agora.",
"Adoro passar tempo com minha familia.",
"Preciso comprar leite e pão.",
"Vamos ao cinema no sábado.",
"Gosto de praticar esportes ao ar livre.",
"O trânsito está terrivel hoje.",
"A comida estava deliciosa!",
"Você já visitou o Rio de Janeiro?",
"Tenho uma reunião importante amanhã.",
"A festa começa às 20h.",
"Estou cansado depois de um longo dia de trabalho.",
"Vamos fazer um churrasco no final de semana.",
"O livro que estou lendo é muito interessante.",
"Estou aprendendo a cozinhar pratos novos.",
"Preciso fazer exercícios fisicos regularmente.",
"Vou viajar para o exterior nas férias.",
"Você gosta de dançar?",
"Hoje é meu aniversário!",
"Gosto de ouvir música clássica.",
"Estou estudando para o vestibular.",
"Meu time de futebol favorito ganhou o jogo.",
"Quero aprender a tocar violão.",
"Vamos fazer uma viagem de carro.",
"O parque fica cheio aos finais de semana.",
"O filme que assisti ontem foi ótimo.",
"Preciso resolver esse problema o mais rápido possível.",
"Adoro explorar novos lugares.",
"Vou visitar meus avós no domingo.",
"Estou ansioso para as férias de verão.",
"Gosto de fazer caminhadas na natureza.",
"O restaurante tem uma vista incrível.",
"Vamos sair para jantar no sábado.",
]
import random

pre_padroes = []

for frase in ingles:
pre padroes.append([frase, 'inglês'])

64

for frase in espanhol:
pre padroes.append([frase, 'espanhol'])

for frase in portugues:
pre padroes.append([frase, 'português'])

random.shuffle(pre padroes)

import pandas as pd
dados = pd.DataFrame(pre padroes)
dados

0 Voy al parque todos los dias. espanhol

1 Me gusta cocinar Ia cena en casa. espanhol

2 Vamos ao cinema no sábado, português

3 Vamos a dar un paseo. espanhol

88 l'm sorry for the inconvenience. inglês

89 Tengo una reunión a Ias 2 PM. espanhol

90 I like to cook dinner at home. inglês

91 Estou cansado depois de um longo dia de trabalho, português

92 rows x 2 columns

def tamanhoMedioFrases(texto):
palavras = re.split("\s", texto)
tamanhos = [len(s) for s in palavras if len(s) > 0]
return sum(tamanhos) / len(tamanhos)

def tamanho frase(frase):
return len(frase.split())

def encontros pt(frase):
encontros = ['ss','rr', 'ão']
if any(char in frase for char in encontros):

return 1
else:

return 0

def art prep espanhol(frase):
artigos pre espanhois = ['el', 'la', 'los', 'las', 'un', 'una',
'unas', 'lo', 'bajo', 'en', 'hacia', 'hasta', 'según', 'sin', 'via']
palavras = re.split('\s', frase.lower())

if any(artigo in palavras for artigo in artigos pre espanhois):
return 1

'unos',

65

else:
return 0

def caracter espanhol(frase):
caracteres espanhois = ['N','n', ';', 'i']
if any(char in frase for char in caracteres espanhois):

return 1
else:

return 0

def frequencia letras(frase):
letras = re.findall(r'\w', frase.lower())
contador = Counter(letras)
total letras = sum(contador.values())
frequencia = {f'freq {letra}': count / total letras for letra, count in

contador.items()}
return frequencia

def ocorrencia simbolos especiais(frase):
especiais = re.findall(r'[nç]', frase.lower())
contador = Counter(especiais)
frequencia = {f'simbolo {s}': count for s, count in contador.items()}
return frequencia

def sufixos palavras(frase, tamanho=3):
palavras = frase.split()
sufixos = [palavra[-tamanho:] for palavra in palavras if len(palavra) >=

tamanho]
contador = Counter(sufixos)
frequencia = {f'sufixo {s}': count for s, count in contador.items()}
return frequencia

def encontros es(frase):
encontros = ['ll','ch', 'qu']
if any(char in frase for char in encontros):

return 1
else:

return 0

def encontros ing(frase):
encontros = ['ll','mm', 'aa','ee', 'ii', 'oo', 'uu', 'ff']

66

if any(char in frase for char in encontros):
return 1

else:
return 0

def extraiCaracteristicas(frase):
texto = frase[0]
pattern regex = re.compile('[A\w+]', re.UNICODE)
texto = re.sub(pattern regex, ' ', texto)

caracteristicai = tamanhoMedioFrases(texto)
caracteristica2 = tamanho frase(texto)
caracteristica4 = ocorrencia simbolos especiais(texto)
caracteristica6 = sufixos palavras(texto)
caracteristica8 = art prep espanhol(texto)
caracteristica9 = encontros pt(texto)
caracteristica10 = encontros es(texto)
caracteristica11 = encontros ing(texto)
caracteristica12 = caracter espanhol(texto)

padrao = {
'tamanhoMedioFrases': caracteristica1,
'tamanho frase': caracteristica2,
**caracteristica4,
**caracteristica6,
'pre-espanhol':caracteristica8,
'en-pt':caracteristica9,
'en-es':caracteristica10,
'en-en':caracteristica11,
'es':caracteristica12,
'classe': frase[1]

}
return padrao

def geraPadroes(frases):
padroes = []
for frase in frases:

padrao = extraiCaracteristicas(frase)
padroes.append(padrao)

return padroes

67

padroes = geraPadroes(pre padroes)
dados = pd.DataFrame(padroes)

colunas numericas = dados.select dtypes(include=[np.number]).columns
imputer = SimpleImputer(strategy='mean')
dados[colunas numericas] = imputer.fit transform(dados[colunas numericas])

scaler = StandardScaler()
dados[colunas numericas] = scaler.fit transform(dados[colunas numericas])

tam anhoM ed ioFrases tam anho_frase v o g a is con soan tes su f ix o _ V o y su f ix o _ q u e su f ix o _ d o s s u f ix o _ lo s s u f ix o _ ia s
p re -

e sp an h o l ‘ * ‘

0 -0.646029 0.461833 -0.327281 0.327281 0.0 0.0 0.0 0.0 0.0 2.265686 ...

1 -0.748238 1.194395 0.172681 -0.172681 0.0 0.0 0.0 0.0 0.0 2.265686 ...

2 -0.331227 -0.270729 1.336284 -1.336284 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

3 -1.189780 -0.270729 0.891377 -0.891377 0.0 0.0 0.0 0.0 0.0 2.265686 ...

4 -0.789122 0.461833 -1.656726 1.656726 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

87 -1.361490 -1.003292 -0.665797 0.665797 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

88 -0.216753 0.461833 -1.264710 1.264710 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

89 -1.238840 1.194395 0.042009 -0.042009 0.0 0.0 0.0 0.0 0.0 2.265686 ...

90 -1.116189 1.194395 0.485158 -0.485158 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

91 -0.121358

92 rows x 228 columns

2.659519 0.424225 -0.424225 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

dados = dados.drop duplicates()
dados = dados.dropna()

X = dados.drop(columns=['classe'])
y = dados['classe']

class map = {'inglês': 0, 'espanhol': 1, 'português': 2}
y encoded = y.map(class map)

scaler = StandardScaler()
X scaled = scaler.fit transform(X)
pca = PCA(n components=0.95)
X pca = pca.fit transform(X scaled)

X train, X test, y train, y test = train test split(X pca, y encoded,
test size=0.2, random state=42)
modelo = SVC()
modelo.fit(X train, y train)

cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)

68

scores = cross val score(modelo, X train, y train, scoring='accuracy', cv=cv,
n jobs=-1)
acuracia treinamento = modelo.score(X train, y train)
print("Acurácia no treino: {:.2f}%".format(acuracia treinamento * 100))
acuracia teste = modelo.score(X test, y test)
print("Acurácia no teste: {:.2f}%".format(acuracia teste * 100))

y pred = modelo.predict(X test)
print(classification report(y test, y pred))

Acurácia no treino: 74.63%
Acurácia no teste: 70.59%

precision recall f1-score support

0 0.60 1.00 0.75 3
1 0.67 0.40 0.50 5
2 0.78 0.78 0.78 9

accuracy 0.71 17
macro avg 0.68 0.73 0.68 17

weighted avg 0.71 0.71 0.69 17

Resultado dos testes após adição de novas características:

Acurácia
No treino 74,63%
No teste 70,59%

Idioma Precision Recall F1-Score Support
Inglês (0) 0.60 1.00 0.75 3

Espanhol (1) 0.67 0.40 0.50 5
Português (2) 0.78 0.78 0.78 9

accuracy 0.71 17
macro avg 0.68 0.73 0.68 17

weigthed avg 0.71 0.71 0.69 17

2 Melhorar uma base de dados ruim
Base de referência: UCI-Predict students dropout and academic success
• Técnicas aplicadas
• Normalização com StandardScaler
• Seleção de atributos por PCA
• Correção de prevalência por repetição/remoção de exemplos da base

https://www.google.com/url?q=https%3A%2F%2Farchive.ics.uci.edu%2Fdataset%2F697%2Fpredict%2Bstudents%2Bdropout%2Band%2Bacademic%2Bsuccess

69

Instalando pacotes necessários
!pip install pandas
!pip install seaborn
!pip install scikit-learn
!pip install numpy
!pip install matplotlib
!pip install ucimlrepo

Bibliotecas necessárias
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
from sklearn import svm
from sklearn.metrics import confusion matrix
from sklearn.metrics import classification report
from sklearn.utils import resample
from sklearn.utils import shuffle
from ucimlrepo import fetch ucirepo

Carregando base de dados
predict students dropout and academic success = fetch ucirepo(id=697)

X = predict students dropout and academic success.data.features
y = predict students dropout and academic success.data.targets

Salvando as colunas
columns = X.columns
columns

Verificando informações sobre o dataset
metadata
print(predict students dropout and academic success.metadata)

Variable information
print(predict students dropout and academic success.variables)

70

Executando o SVM com o mínimo de intervenção
X original = X.copy()
y original = y.copy()

X_original_train, X_original_test, y_original_train, y_original_test =
train test split(X original, y original, test size=0.25,
stratify=y original,random state=10)

treinador = svm.SVC()

modelo orig = treinador.fit(X original train, y original train)

Treinamento
y original pred = modelo orig.predict(X original train)
cm orig train = confusion matrix(y original train, y original pred)
print('Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO')
print(cm orig train)
print(classification report(y original train, y original pred))

Teste
print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES')
y2 original pred = modelo orig.predict(X original test)
cm orig test = confusion matrix(y original test, y2 original pred)
print(cm orig test)
print(classification report(y original test, y2 original pred))

Aplicando tarefas de pré processamento
Verificando se o dataset contém valores ausentes
X.isna().sum()
Marital Status 0
Application mode 0
Application order 0
Course 0
Daytime/evening attendance 0
Previous qualification 0
Previous qualification (grade) 0
Nacionality 0
Mother's qualification 0
Father's qualification 0
Mother's occupation 0
Father's occupation 0

71

Admission grade 0
Displaced 0
Educational special needs 0
Debtor 0
Tuition fees up to date 0
Gender 0
Scholarship holder 0
Age at enrollment 0
International 0
Curricular units 1st sem (credited) 0
Curricular units 1st sem (enrolled) 0
Curricular units 1st sem (evaluations) 0
Curricular units 1st sem (approved) 0
Curricular units 1st sem (grade) 0
Curricular units 1st sem (without evaluations) 0
Curricular units 2nd sem (credited) 0
Curricular units 2nd sem (enrolled) 0
Curricular units 2nd sem (evaluations) 0
Curricular units 2nd sem (approved) 0
Curricular units 2nd sem (grade) 0
Curricular units 2nd sem (without evaluations) 0
Unemployment rate 0
Inflation rate 0
GDP 0
dtype: int64

Verificando tipos das variáveis
X.dtypes
Marital Status int64
Application mode int64
Application order int64
Course int64
Daytime/evening attendance int64
Previous qualification int64
Previous qualification (grade) float64
Nacionality int64
Mother's qualification int64
Father's qualification int64
Mother's occupation int64
Father's occupation int64
Admission grade float64

72

Displaced
Educational special needs
Debtor
Tuition fees up to date
Gender
Scholarship holder
Age at enrollment
International
Curricular units 1st sem (credited)
Curricular units 1st sem (enrolled)
Curricular units 1st sem (evaluations)
Curricular units 1st sem (approved)
Curricular units 1st sem (grade)
Curricular units 1st sem (without evaluations)
Curricular units 2nd sem (credited)
Curricular units 2nd sem (enrolled)
Curricular units 2nd sem (evaluations)
Curricular units 2nd sem (approved)
Curricular units 2nd sem (grade)
Curricular units 2nd sem (without evaluations)
Unemployment rate
Inflation rate
GDP
dtype: object

int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64

float64
int64
int64
int64
int64
int64

float64
int64

float64
float64
float64

Verificando valores das variáveis independentes
X.head()

Aplicando NORMALIZAÇÃO nas variáveis independentes, que não são booleanas,
para ajustar a escala dos valores
bool columns = ['International','Displaced','Educational special
needs','Debtor','Tuition fees up to date','Gender','Scholarship
holder','Daytime/evening attendance']

non bool columns = X.columns.difference(bool columns)

73

scaler = StandardScaler()
X scaled = X.copy()
X scaled[non bool columns] =
scaler.fit transform(X scaled[non bool columns])
X_scaled

Verificando relação das variáveis
plt.figure(figsize=(40,20))
sns.heatmap(X scaled.corr("spearman"), annot = True, cmap="coolwarm")
plt.title("Mapa de Correlação das Variáveis\n", fontsize = 15)
plt.show()

Mapa de Correlação das Variáveis

Para tratar correlação e evitar possíveis problemas com multicolinearidade,
será aplicado PCA para SELEÇÃO dos atributos relavantes para passar ao modelo

74

pca = PCA(n components=0.95)

Aplicar o PCA aos dados
X pca = pca.fit transform(X scaled)

Criar um DataFrame com os componentes principais
columns = [f"PC{i+1}" for i in range(X pca.shape[1])]
X pca df = pd.DataFrame(data=X pca, columns=columns)

Visualizar o DataFrame resultante
print(X pca df.head())

PCI PC2 PC3 PC4 PC5 PC6 PC7 \
0 -6.059586 0.201811 -1.005916 0.527048 1.763376 -2.949801 0.746578
1 -0.004017 -1.850271 -1.397830 1.924995 -0.047048 1.030895 -0.405920
2 -3.692111 0.297576 0.487145 -1.254448 0.679738 -2.220401 1.349643
3 0.366752 -0.613418 0.590129 -1.464175 -0.958946 0.078389 0.575616
4 0.296790 2.192877 0.765009 -0.598463 -2.325151 0.019984 -0.574183

PC8 PC9 PC10 . . . PC13 PC14 PC15 PC16
0 -0.642022 -0.525059 -0.681361 . . . 2.826824 0.969217 0.271315 -1.081445
1 -0.139694 0.169857 -0.431433 . . . -1 .017924 -0 .386330 0.156920 -0.483792
2 -0.310848 -0.460915 0.456740 . . . 0 .003908-1.091741 0.526780 0.179304
3 -0.184205 -0.741737 -1.400116 . . . -0.299870 0.688548 -1.352081 0.118306
4 -0.579538 0.314171 -1.924611 . . . 0.665829 -0.513619 0.080508 -1.205310

PC17 PC18 PC19 PC20 PC21 PC22
0 0.168302 0.077148 0.519182 -0.234177 0.376751 0.294855
1 -0.258657 -0.514296 0.093626 0.316925 0.384840 0.189487
2 0.544726 0.592807 0.113959 -0.167895 0.352222 0.559909
3 0.150519 -0.117216 -0.459142 -0.443121 -0.165409 -0.095460
4 0.542704 2.074307 0.488774 -0.450120 -0.493568 -0.537161

[5 rows x 22 columns]

Verificando variável dependente
y

3 Graduate

4 Graduate

4419 Graduate

4420 Dropout

4421 Dropout

4422 Graduate

4423 Graduate

4424 rows x 1 columns

75

Verificando distribuição das classes
y.value counts()
Target
Graduate 2209
Dropout 1421
Enrolled 794
Name: count, dtype: int64

CORREÇÃO DE PREVALÊNCIA
df = pd.concat([X pca df, y], axis=1)
df

separando num df os dados de classe dropout, visto que irá manter a
quantidade
df dropout = df[df['Target'] == 'Dropout']

Separar os exemplos por classe onde será realizado correção de prevalência
por replicação ou remoção
df majority = df[df['Target'] == 'Graduate']
df minority = df[df['Target'] == 'Enrolled']

Definir o número desejado de exemplos para cada classe
desired majority = 1400
desired minority = 1200

Realizar oversampling da classe minoritária ("Enrolled")
df minority oversampled = resample(df minority,

replace=True,
n samples=desired minority,
random state=42)

Realizar undersampling da classe majoritária ("Graduate")
df majority undersampled = resample(df majority, replace=False,

n samples=desired majority,
random state=42)

Concatenar os DataFrames resultantes
X balanced = pd.concat([df majority undersampled, df minority oversampled,
df dropout])

76

Embaralhar os dados
X balanced = shuffle(X balanced, random state=42)

Verificando dataframe final
X balanced

Separar novamente entre X e y para aplicar no modelo
X trated = X balanced.drop(columns='Target', axis=1)
y treated = X balanced['Target']

Com os dados tratados
X train, X test, y train, y test = train test split(X trated, y treated,
test size=0.25,

stratify=y treated,random state=10)

Treinando e testando o modelo
treinador = svm.SVC() #algoritmo escolhido

modelo = treinador.fit(X train, y train)

Predição com os mesmos dados usados para treinar
y pred = modelo.predict(X train)
cm train = confusion matrix(y train, y pred)
print('Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO')
print(cm train)
print(classification report(y train, y pred))

77

Predição com os mesmos dados usados para testar
print('Matriz de confusão - com os dados TRATADOS usados para TESTES')
y2 pred = modelo.predict(X test)
cm test = confusion matrix(y test, y2 pred)
print(cm test)
print(classification report(y test, y2 pred))

Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO
[[747 214 104]
[81 663 156]
[33 120 897]]

precision recall f1-score support

Dropout 0.87 0.70 0.78 1065
Enrolled 0.66 0.74 0.70 900
Graduate 0.78 0.85 0.81 1050

accuracy 0.77 3015
macro avg 0.77 0.76 0.76 3015

weighted avg 0.77 0.77 0.77 3015

Matriz de confusão - com os dados TRATADOS usados para TESTES
[[226 85 45]
[37 200 63]
[14 57 279]]

precision recall f1-score support

Dropout 0.82 0.63 0.71 356
Enrolled 0.58 0.67 0.62 300
Graduate 0.72 0.80 0.76 350

accuracy 0.70 1006
macro avg 0.71 0.70 0.70 1006

weighted avg 0.71 0.70 0.70 1006

Resultado dos testes:
a) Matriz de confusão obtida após treinar e testar modelo SVM com o minimo

de intervenção:

78

Acurácia no treino: 50%

b) Matriz de confusão obtida após treinar e testar modelo SVM com dados
tratados:

Acurácia no treino: 77%
Classe Precision recall F1-score Support

Dropout 0.87 0.70 0.78 1065
Enrolled 0.66 0.74 0.70 900

Graduate 0.78 0.85 0.81 1050

Accuracy 0.77 3015
macro avg 0.77 0.76 0.76 3015

weighted avg 0.77 0.77 0.77 3015

Acurácia no teste:: 70%
Classe Precision recall F1-score Support

Dropout 0.82 0.63 0.71 356
Enrolled 0.58 0.67 0.62 300

Graduate 0.72 0.80 0.76 350

Accuracy 0.70 1006
macro avg 0.71 0.70 0.70 1006

weighted avg 0.71 0.70 0.70 1006

Classe Precision recall F1-score Support
Dropout 0.0 0.0 0.0 1066
Enrolled 0.0 0.0 0.0 595

Graduate 0.50 1.0 0.67 1657

Accuracy 0.50 3318
macro avg 0.17 0.33 0.22 3318

weighted avg 0.25 0.50 0.33 3318

Acurácia no teste: 50%
Classe Precision recall F1-score Support

Dropout 0.0 0.0 0.0 355
Enrolled 0.0 0.0 0.0 199

Graduate 0.50 1.0 0.67 552

Accuracy 0.50 1106
macro avg 0.17 0.33 0.22 1106

weighted avg 0.25 0.50 0.33 1106

79

APÊNDICE 7 - APRENDIZADO DE MÁQUINA

A - ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo,

Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher

os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento.

B - RESOLUÇÃO
Classificação
Para o experimento de Classificação:
• Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor acurácia
ficará em primeiro na tabela.
• Após o quadro colocar:

o Um resultado com 3 linhas com a predição de novos casos para a
técnica/parâmetro de maior Acurácia (criar um arquivo com novos casos à
sua escolha)
o A lista de comandos emitidos no RStudio para conseguir os resultados
obtidos

VEICULO

%Predição para novos casos:
Melhor acurácia foi obtida pelo SVM com Cross Validation:

Script em R:
######################################
CLASSIFICAÇÃO Veiculo
######################################
install.packages("e1071")
install.packages("caret")
install.packages("Metrics")
install.packages("mice")

80

install.packages("kernlab")
library(mice)
library("caret")
library(kernlab)

Veículos
Ler arquivo
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/classificacao-veiculos")
dados <- read.csv("6 - Veiculos - Dados.csv")

Remover atributo desnecessário
dados$a <- NULL

Separação entre base de treino e teste que serão utilizadas em todos
os modelos
set.seed(202401)

randomIndexes <- sample(1:nrow(dados), 0.8 * nrow(dados))
treino <- dados[randomIndexes,]
SVM
C e sigma
set.seed(202401)
tuneGrid svm = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015,
0.2))

Treinar SVM com a base de Treino
Com Hold-out
svm <- train(tipo~., data=treino, method="svmRadial",
tuneGrid=tuneGrid svm)
svm

Aplicar modelos treinados na base de Teste
predict.svm <- predict(svm, teste)
confusionMatrix(predict.svm, as.factor(teste$tipo))

Cross-validation SVM
ctrl svm <- trainControl(method = "cv", number = 10)
set.seed(202401)

svm cv <- train(tipo~., data=treino, method="svmRadial",

81

trControl=ctrl svm, tuneGrid=tuneGrid svm)
svm cv

Matriz de confusão
predict.svm cv <- predict(svm cv, teste)
confusionMatrix(predict.svm cv, as.factor(teste$tipo))

Resultado -> SVM com Cross Validation obteve melhor acurácia
novos dados <- read.csv('6-Veiculos- Novos-Dados.csv')
novos dados$a <- NULL
predict.novos svm <- predict(svm cv, novos dados)
resultado <- cbind(novos dados, predict.novos svm)
View(resultado)

DIABETES

Predição para novos casos:
O Random Forest com Hold-Out obteve o melhor desempenho, logo, os novos casos
serão preditos com Random Forest com Hold-Out.

Script em R:
######################################
CLASSIFICAÇÃO Diabetes
######################################
install.packages("e1071")
install.packages("caret")
install.packages("Metrics")
install.packages("mice")
install.packages("kernlab")
library(mice)
library("caret")
library(kernlab)

82

set.seed(202401)

Diabetes
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/classificacao-diabetes")
dados <- read.csv("10 - Diabetes - Dados.csv")

Remover variável desnecessária
dados$num <- NULL
set.seed(202401)
randomIndexes <- sample(1:nrow(dados), 0.8 * nrow(dados))
treino <- dados[randomIndexes,]
teste <- dados[-randomIndexes,]

Random Forest
Mtry
set.seed(202401)
tuneGrid rf = expand.grid(mtry=c(2, 5, 7, 9))

Treinar com hold out
rf h <- train(diabetes~., data=treino, method="rf",
tuneGrid=tuneGrid rf)
rf_h

Aplicar modelos treinados na base de Teste
predict.rf h <- predict(rf h, teste)
confusionMatrix(predict.rf h, as.factor(teste$diabetes))

Treinar com cross-validation
set.seed(202401)
ctrl rf <- trainControl(method = "cv", number = 10)
rf cv <- train(diabetes~., data=treino, method="rf",
tuneGrid=tuneGrid_rf, trControl=ctrl_rf)
rf_cv

Aplicar modelos treinados na base de Teste
predict.rf cv <- predict(rf cv, teste)
confusionMatrix(predict.rf cv, as.factor(teste$diabetes))

Resultado -> RF com Hold out obteve a melhor acurácia
novos dados <- read.csv('10-Diabetes-Novos-Dados.csv')

83

novos dados$num <- NULL
novos dados$diabetes <- NULL
predict.novos rf h <- predict(rf h, novos dados)
resultado <- cbind(novos dados, predict.novos rf h)
View(resultado)

Regressão
Para o experimento de Regressão:
• Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em
primeiro na tabela.
• Após o quadro colocar:

o Um resultado com 3 linhas com a predição de novos casos para a
técnica/parâmetro de maior R2 (criar um arquivo com novos casos à sua
escolha)
o Gráfico de Resíduos para a técnica/parâmetro de maior R2
o A lista de comandos emitidos no RStudio para conseguir os resultados
obtidos

Técnica Parâmetro R2 Syx Pearson Rmse MAE
SVM - CV C=10

Sigma=0.01
0.7939 0.0676 0.89133 0.0670 0.0463

Predição para novos casos:
O SVM com Cross Validation obteve o melhor R2.

Gráficos dos Ruídos:

84

Script em R:
Pacotes necessários:
install.packages("e1071")
install.packages("caret")
library("caret")
library(Metrics)

setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/regressao-admissao")
dados <- read.csv("9 - Admissao - Dados.csv", header=T)

Remover variável desnecessária
dados$num <- NULL

Cria arquivos de treino e teste usados em todos os modelos
set.seed(202401)
randomIndexes <- createDataPartition(dados$ChanceOfAdmit, p=0.80,
list = FALSE)
treino <- dados[randomIndexes,]
teste <- dados[-randomIndexes,]

Cria funções necessárias para calculo das métricas
Erro padrão da estimativa - Syx
standard error <- function(obs, preds){

size <- length(obs)
sum pos <- sum((obs - preds) A 2)
result = sqrt((sum pos / (size - 2)))
return(result)}

mean absolute error <- function(obs, preds){
size <- length(obs)
sum abs <- sum(abs(obs - preds))
result <- sum abs / size
return(result)}

r2 <- function(predito, observado) {
return(1 - (sum((predito-observado)A2) / sum((observado-
mean(observado))A2)))}

pearson coefficient <- function(obs, preds) {
mean obs <- mean(obs)
mean preds <- mean(preds)
numerator <- sum((obs - mean obs) * (preds - mean preds))
denominator <- sqrt(sum((obs - mean obs)A2) * sum((preds -

85

mean preds)A2))
result <- numerator / denominator
return(result)}

SVM
set.seed(202401)

Vários C e sigma
tuneGrid svm = expand.grid(C=c(1, 2, 10, 50, 100),

sigma=c(.01, .015,0.2))

Treinar SVM com a base de Treino e Hold Out
svm h <- train(ChanceOfAdmit~., data=treino, method="svmRadial",
tuneGrid=tuneGrid svm)
svm h

Aplicar modelos treinados na base de Teste
predict.svm h <- predict(svm h, teste)

Calcular métricas do svm com hold out
svm h rmse <- rmse(teste$ChanceOfAdmit, predict.svm h)
svm h r2 <- r2(predict.svm h,teste$ChanceOfAdmit)
svm h syx <- standard error(teste$ChanceOfAdmit, predict.svm h)
svm h mae <- mean absolute error(teste$ChanceOfAdmit,predict.svm h)
svm h pearson <- pearson coefficient(teste$ChanceOfAdmit,predict.svm h)

Treinar com cross validation
set.seed(202401)
ctrl svm <- trainControl(method = "cv", number = 10)
svm cv <- train(ChanceOfAdmit~., data=treino, method="svmRadial",

trControl=ctrl svm, tuneGrid=tuneGrid svm)
svm cv

Aplicar modelos treinados na base de Teste
predict.svm cv <- predict(svm cv, teste)

calcular métricas do svm com hold out
svm cv rmse <- rmse(teste$ChanceOfAdmit, predict.svm cv)
svm cv r2 <- r2(predict.svm cv,teste$ChanceOfAdmit)
svm cv syx <- standard error(teste$ChanceOfAdmit, predict.svm cv)
svm cv mae <- mean absolute error(teste$ChanceOfAdmit,predict.svm cv)

86

svm cv pearson <- pearson coefficient(teste$ChanceOfAdmit,
predict.svm cv)

Resultado -> SVM com cross validation obteve as melhores métricas
novos dados <- read.csv('9-Admissao-Novos-Dados.csv')
novos dados$num <- NULL
predict.novos svm cv <- predict(svm cv, novos dados)
resultado <- cbind(novos dados, predict.novos svm cv)
View(resultado)
residuals svm cv <- teste$ChanceOfAdmit - predict.svm cv

Create the residual plot
plot(predict.svm cv, residuals svm cv,

main="Gráfico de Resíduos para modelo de SVM com cross
validation", xlab="Valores preditos",
ylab="Resíduos",
pch=19, col="blue")
abline(h=0, col="red", lwd=2)

BIOMASSA
Técnica Parâmetro R2 Syx Pearson R m se M A E

R N A - Hold-out size=3

decay=0.4

0.8967 403.93 0.9860 397.14 133.92

Predição para novos casos:
O RNA com Hold-Out obteve o melhor R2.

Gráfico de Resíduos:

87

Script em R:
Pacotes necessários:
install.packages("e1071")
install.packages("caret")
library("caret")
library(Metrics)
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/regressao-biomassa")
dados <- read.csv("5 - Biomassa - Dados.csv", header=T)

Cria arquivos de treino e teste
set.seed(202401)
randomIndexes <- createDataPartition(dados$biomassa, p=0.80, list =

FALSE)
treino <- dados[randomIndexes,]
teste <- dados[-randomIndexes,]

Cria funções necessárias para calculo das métricas
Erro padrão da estimativa - Syx
standard error <- function(obs, preds){

size <- length(obs)
sum pos <- sum((obs - preds) a 2)
result = sqrt((sum pos / (size - 2)))
return(result)}

mean absolute error <- function(obs, preds){
size <- length(obs)
sum abs <- sum(abs(obs - preds))
result <- sum abs / size
return(result)}

r2 <- function(predito, observado) {
return(1 - (sum((predito-observado)A2) / sum((observado-
mean(observado))A2)))}

pearson coefficient <- function(obs, preds) {
mean obs <- mean(obs)
mean preds <- mean(preds)
numerator <- sum((obs - mean obs) * (preds - mean preds))
denominator <- sqrt(sum((obs - mean obs)A2) * sum((preds -

mean preds)A2))
result <- numerator / denominator
return(result)}

88

RNA
set.seed(202401)
tuneGrid rna <- expand.grid(size = seq(from = 1, to = 3, by = 1), decay =

seq(from = 0.1, to = 0.7, by = 0.3))

Treino com hold out
rna h <- train(biomassa~., data=treino, method="nnet", linout=T,

trace=FALSE, tuneGrid=tuneGrid rna)
rna_h
predict.rna h <- predict(rna h, teste)

Calcular métricas do rna com hold out
rna h rmse <- rmse(teste$biomassa, predict.rna h)
rna h r2 <-r2(predict.rna h,teste$biomassa)
rna h syx <- standard error(teste$biomassa, predict.rna h)
rna h mae <- mean absolute error(teste$biomassa, predict.rna h)
rna h pearson <- pearson coefficient(teste$biomassa, predict.rna h)

Treino com cross validation CV
set.seed(202401)
control rna <- trainControl(method = "cv", number = 10)
rna cv <- train(biomassa~., data=treino, method="nnet",

trainControl=control rna, tuneGrid=tuneGrid rna, linout=T,
MaxNWts=10000, maxit=2000, trace=F)

rna_cv
predict.rna cv <- predict(rna cv, teste)

Calcular métricas do rna com hold out
rna cv rmse <- rmse(teste$biomassa, predict.rna cv)
rna cv r2 <- r2(predict.rna cv,teste$biomassa)
rna cv syx <- standard error(teste$biomassa, predict.rna cv)
rna cv mae <- mean absolute error(teste$biomassa, predict.rna cv)
rna cv pearson <- pearson coefficient(teste$biomassa,
predict.rna cv)

Resultado -> RNA com Hold Out obteve as melhores métricas
novos dados <- read.csv('5-Biomassa-Novos-Dados.csv')
novos dados$biomassa <- NULL
predict.novos rna h <- predict(rna h, novos dados)
resultado <- cbind(novos dados, predict.novos rna h)
View(resultado)

89

residuais rna h <- teste$biomassa - predict.rna h

Create the residual plot
plot(predict.rna h, residuals rna h,
main="Gráfico de Residuos para modelo de RNA com Hold Out",
xlab="Valores preditos",
ylab="Resíduos",
pch=19, col="blue")
abline(h=0, col="red", lwd=2)

Agrupamento
VEÍCULO
Lista de Clusters gerados:
• 10 primeiras linhas do arquivo com o cluster correspondente.
• Usar 10 clusters no experimento.
• Colocar a lista de comandos emitidos no RStudio para conseguir os resultados
obtidos

Linhas do arquivo e clusters:

Scripts em R:
Pacotes necessários
install.packages("mlbench")
install.packages("mice")

Para o k-modes
install.packages("klaR")
library(mlbench)
library(mice)
library(klaR)

90

Leitura dos dados
#setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/agrupamento-veiculo")
dados <- read.csv("4 - Veiculos - Dados.csv")
View(dados)

• Remover variável desnecessária
dados$a <- NULL
set.seed(202401)
cluster.results <- kmodes(dados, 10, iter.max = 10, weighted = FALSE)
cluster.results$cluster
cluster.results
resultado <- cbind(dados, cluster.results$cluster)
resultado

Regras de Associação
MUSCULAÇÃO
• Regras geradas com uma configuração de Suporte e Confiança.
• Colocar a lista de comandos emitidos no RStudio para conseguir os resultados
obtidos

Regras de confiança:
As 20 correspondências com maior confiança

Scripts em R:
Instalação dos pacotes necessários
install.packages('arules', dep=T)
library(arules)

91

set.seed(202401)

Ler arquivo
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/associacao-musculacao")
dados <- read.transactions(file="2 - Musculacao -

Dados.csv",format="basket",sep=";")
summary(dados)

Ver frequencia dos itens
itemFrequencyPlot(dados, topN=10, type="absolute")

Extrair regras
set.seed(202401)
rules <- apriori(dados, parameter = list(supp = 0.001, conf = 0.7,minlen=3))
summary(rules)

Visualizar as 20 regras com maior confiança
inspect(sort(rules[1:20], by="confidence"))

92

APÊNDICE 8 - DEEP LEARNING

A - ENUNCIADO

1 Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a

arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e

arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista

no curso.

4 Tradutor de Textos (Transformer)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a

arquitetura Transformer vista no curso.

B - RESOLUÇÃO
1 Classificação de Imagens (CNN)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout,

AveragePooling2D
from tensorflow.keras.models import Model
from mlxtend.plotting import plot confusion matrix
from sklearn.metrics import confusion matrix

Base
cifar10 = tf.keras.datasets.cifar10
(x train, y train), (x test, y test) = cifar10.load data()

93

Normalização dos dados
x train, x test = x train / 255.0, x test / 255.0
y train, y test = y train.flatten(), y test.flatten()

K = len(set(y train))

i = Input(shape=x train[0].shape)
x = Conv2D(32, (3, 3), strides=1, activation="relu")(i)
x = AveragePooling2D(pool size=(2,2),strides=2, padding="valid")(x)
x = Conv2D(64, (3, 3), strides=1, activation="relu")(x)
x = AveragePooling2D(pool size=(2,2),strides=2, padding="valid")(x)
x = Conv2D(128, (3, 3), strides=1, activation="relu")(x)
x = AveragePooling2D(pool size=(2,2),strides=2, padding="valid")(x)

x = Flatten()(x)

x = Dense(512, activation="relu")(x)
x = Dropout(0.2)(x)
x = Dense(K, activation="softmax")(x)

model = Model(i, x)

Visualizando arquitetura da rede
model.summary()
Hodel: "functional"

Layer (type) Output Shape Param #

input_layer (In p u tL a y e r) (None, 3 2 , 3 2 , 3) 0

conv2d (Conv2D) (None, 30 , 30 , 32) 896

average_pooling2d (A verageP oo ling2D) (None, 15 , 15 , 32) 0

conv2d_l (Conv2D) (None, 13 , 13 , 64) 18 ,496

average_pooling2d_l
(A verageP oo ling2D)

(None, 6 , 6 , 64) 0

conv2d_2 (Corv2D) (None, 4 , 4 , 128) 73 ,8 5 6

average_pooling2d_2
(A verageP oo ling2D)

(None, 2 , 2 , 128) 0

flatten (F la t t e n) (None, 512) 0

dense (Dense) (None, 512) 26 2 ,65 6

dropout (D ropout) (None, 512) 0

dense_l (Dense) (None, 10) 5 ,1 3 0

Total params: 361,034 (1.38 MB)
Trainable params: 361,034 (1.38 MB)
Non-trainable params: 0 (0.00 B)

94

Compilar o modelo
model.compile(optimizer="adam", loss="sparse categorical crossentropy",

metrics=["accuracy"])

Treinando o modelo
r = model.fit(x train, y train, validation data=(x test, y test),epochs=15)
Epoch 1 /15
1563/1563 -------------------------------------- 18s 8m s/step - a c cu ra cy : 0 .3411 - lo s s : 1.7784 - v a l_ a c c u ra c y : 0 .5201 - v a l_ lo s s : 1.3315
Epoch 2 /15
1563/1563 -------------------------------------- 9s 3m s/step - a c cu ra cy : 0 .5413 - lo s s : 1 .2757 - v a l_ a c c u ra c y : 0 .6051 - v a l_ lo s s : 1.0980
Epoch 3 /15
1563/1563 -------------------------------------- 6s 3m s/step - a c cu ra cy : 0 .6247 - lo s s : 1 .0578 - v a l_ a c c u ra c y : 0 .6343 - v a l_ lo s s : 1.0145
Epoch 4 /15
1563/1563 -------------------------------------- 4s 3m s/step - a c cu ra cy : 0 .6633 - lo s s : 0 .9502 - v a l_ a c c u ra c y : 0 .6646 - v a l_ lo s s : 0 .9588
Epoch 5 /15
1563/1563 -------------------------------------- 5s 3m s/step - a c cu ra cy : 0 .6999 - lo s s : 0 .8506 - v a l_ a c c u ra c y : 0 .7014 - v a l_ lo s s : 0 .8469
Epoch 6 /15
1563/1563 -------------------------------------- 5s 3m s/step - a c cu ra cy : 0 .7329 - lo s s : 0 .7605 - v a l_ a c c u ra c y : 0 .6998 - v a l_ lo s s : 0 .8659
Epoch 7 /15
1563/1563 --------------------------------------- 5s 3m s/step - a c cu ra cy : 0 .7512 - lo s s : 0 .7069 - v a l_ a c c u ra c y : 0 .7155 - v a l_ lo s s : 0 .8162
Epoch 8 /15
1563/1563 --------------------------------------- 6s 3m s/step - a c cu ra cy : 0 .7718 - lo s s : 0 .6441 - v a l_ a c c u ra c y : 0 .7126 - v a l_ lo s s : 0 .8495
Epoch 9 /15
1563/1563 -------------------------------------- 10s 4m s/step - a c cu ra cy : 0 .7927 - lo s s : 0 .5895 - v a l_ a c c u ra c y : 0 .7296 - v a l_ lo s s : 0.7907
Epoch 10/15
1563/1563 --------------------------------------- 5s 3m s/step - a c cu ra cy : 0 .8098 - lo s s : 0 .5380 - v a l_ a c c u ra c y : 0.7463
Epoch 11/15
1563/1563 --------------------------------------- 5s 3m s/step - a c cu ra cy : 0 .8277 - lo s s : 0 .4921 - v a l_ a c c u ra c y : 0.7140
Epoch 12/15
1563/1563 --------------------------------------- 6s 4m s/step - a c cu ra cy : 0 .8371 - lo s s : 0 .4607 - v a l_ a c c u ra c y : 0.7382
Epoch 13/15
1563/1563 --------------------------------------- 5s 3m s/step - a c cu ra cy : 0 .8517 - lo s s : 0 .4155 - v a l_ a c c u ra c y : 0 .7451
Epoch 14/15
1563/1563 --------------------------------------- 6s 4m s/step - a c cu ra cy : 0 .8678 - lo s s : 0 .3750 - v a l_ a c c u ra c y : 0 .7474
Epoch 15/15
1563/1563 --------------------------------------- 9s 3m s/step - a c cu ra cy : 0 .8775 - lo s s : 0 .3414 - v a l_ a c c u ra c y : 0.7463

- v a l . lo s s : 0 .7479

- v a l_ lo s s : 0 .8837

- v a l_ lo s s : 0 .8133

- v a l_ lo s s : 0 .8007

- v a l_ lo s s : 0 .8150

- v a l_ lo s s : 0.8502

Plotar acurácia, treino e validação
plt.plot(r.history["accuracy"], label="acc")

Plotar a função de perda, treino e validação
plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val loss"], label="val loss")
plt.legend()
plt.show()

95

plt.plot(r.history["val accuracy"], label="val acc")
plt.legend()
plt.show()

Predições na base de teste
y pred = model.predict(x test).argmax(axis=1)

Matriz de confusão
cm = confusion matrix(y test, y pred)
plot confusion matrix(conf mat=cm, figsize=(7, 7), show normed=True)

M 814||j| 0.3 1)
19

(0.02)
42

(0.04)
9

(0.01)
24

(0.02)
3

(0.00)
19

(0.02)
17

(0.02)
27

(0.03)
26

(0.03)

29
(0.03)

856
(0.86)

2
(0.00)

5
(0.01)

4
(0.00)

2
(0.00)

15
(0.01)

4
(0.00)

12
(0.01)

71
(0.07)

2- 49 í (0.05)
6

(0.01)
611

(0.61)
47

(0.05)
101

(0.10)
41

(0.04)
93

(0.09)
33

(0.03)
9

(0.01)
10

(0.01)

14
(0.01)

10
(0.01)

52
(0.05)

5 0 1
(0 .5 0)

69
(0.07)

164
(0.16)

128
(0.13)

34
(0.03)

11
(0.01)

17
(0.02)

_ . 13
5 (0.01)
jtj

1
(0.00)

54
(0.05)

30
(0.03)

761
(0.76)

20
(0.02)

60
(0.06)

49
(0.05)

6
(0.01)

6
(0.01)

(D
11

*- (0.01)
4

(0.00)
45

(0.04)
130

(0.13)
49

(0.05)
636

(0.64)
46

(0.05)
61

(0.06)
4

(0.00)
14

(0.01)

6 ' (0.01)
7

(0.01)
25

(0.03)
27

(0.03)
26

(0.03)
11

(0.01)
883
(0.88)

5
(0.01)

3
(0.00)

8
(0.01)

13
(0.01)

4
(0.00)

19
(0.02)

31
(0.03)

65
(0.07)

44
(0.04)

13
(0.01)

798
(0.80)

1
(0.00)

12
(0.01)

8- 93 B (0.09)
36

(0.04)
18

(0.02)
13

(0.01)
14

(0.01)
4

(0.00)
16

(0.02)
1

(0.00)
775
(0.78)

30
(0.03)

33
(0.03)

70
(0.07)

9
(0.01)

11
(0.01)

4
(0.00)

6
(0.01)

9
(0.01)

14
(0.01)

16
(0.02)

828
(0.83)

1
0

1
2

1
4

predicted labei

1
6

1
8

96

Exemplo de classificação correta
labels= ["airplane", "automobile", "bird", "cat", "deer", "dog",

"frog", "horse", "ship", "truck"]
classified = np.where(y pred == y test)[0]
i = np.random.choice(classified)
plt.imshow(x test[i], cmap="gray")
plt.title("True label: %s Predicted: %s" % (labels[y test[i]],
labels[y pred[i]]))

2 Detector de SPAM (RNN)
!pip install tensorflow
import tensorflow as tf

Exemplo de classificação errada
labels= ["airplane", "automobile", "bird", "cat", "deer", "dog",

"frog", "horse", "ship", "truck"]
misclassified = np.where(y pred != y test)[0]
i = np.random.choice(misclassified)
plt.imshow(x test[i], cmap="gray")
plt.title("True label: %s Predicted: %s" % (labels[y test[i]],
labels[y pred[i]]))

97

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model selection import train test split
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense
from tensorflow.keras.layers import GlobalMaxPoolinglD
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.sequence import pad sequences
from tensorflow.keras.preprocessing.text import Tokenizer

!wget http://www.razer.net.br/datasets/spam.csv

df = pd.read csv("spam.csv", encoding="ISO-8859-1", usecols=['v1',
'v2']).rename(columns={'v1': 'labels', 'v2' : 'data'})

df

0

1

2

3

4

la b e ls data

ham Go until jurong point, crazy.. Available only ...

ham Ok lar... Joking wif u oni...

spam Free entry in 2 a wkly comp to win FA Cup fina...

ham U dun say so early hor... U c already then say...

ham Nah I dont think he goes to usf, he lives aro...

5567 spam This is the 2nd time we have tried 2 contact u.

5568 ham Will l_ b going to esplanade fr hom e?

5569 ham Pity, * w as in mood for that. So...any other s...

5570 ham The guy did some bitching but I acted like i’d...

5571 ham Rofl. Its true to its name

5572 rows x 2 columns

df['b_labels'] = df.labels.map({"ham": 0, "spam": 1})
y = df.b labels.values
x train, x test, y train, y test = train test split(df.data, y,

test size = 0.33)
num_words = 20000
tokenizer = Tokenizer(num words = num words)
tokenizer.fit on texts(x train)
sequences train = tokenizer.texts to sequences(x train)
sequences test = tokenizer.texts to sequences(x test)
word2index = tokenizer.word index
V = len(word2index)

print(V)
7180

http://www.razer.net.br/datasets/spam.csv

98

data train = pad sequences(sequences train)
T = data train.shape[1]
data test = pad sequences(sequences test, maxlen=T)

print("data train.shape:", data train.shape)
print("data test.shape:", data test.shape)

data train.shape: (3733, 162)
data test.shape: (1839, 162)

D = 20
M = 5
i = Input(shape=(T,))
x = Embedding(V+1, D)(i)
x = LSTM(M)(x)
x = Dense(1, activation = 'sigmoid')(x)

model = Model(i,x)

model.summary()
Model: " fu n c t io n a l"

Layer (type) Output Shape Param #

in p u t_ la y e r_ l (Inpu tLaye r) (None, 162) 0

embedding_l (Embedding) (None, 162, 20) 143,620

ls tm _ l (LSTM) (None, 5) 520

dense_l (Dense) (None, 1) 6

T o ta l params: 144,146 (563.07 KB)
T ra inab le params: 144,146 (563.07 KB)
N o n -tra in ab le params: 0 (0 .00 B)

model.compile(loss='binary crossentropy', optimizer = 'adam',
metrics = ['accuracy'])

epochs = 5
r = model.fit(data train, y train, epochs = epochs,

validation data = (data test, y test))

117/117 ----------------------------------- l i s 72m s/step - a ccuracy: 0.8505 - lo s s : 0 .5173 - v a l_a cc u rac y : 0.9212 - v a l_ lo s s : 0 .2214

117/117 ----------------------------------- 7 s 56m s/step - a ccuracy: 0 .9475 - lo s s : 0 .1988 - va l_ a cc u ra c y : 0 .9755 - v a l_ lo s s : 0.1229

117/117 ----------------------------------- 8 s 72m s/step - a ccuracy: 0 .9826 - lo s s : 0 .1147 - va l_ a cc u ra c y : 0 .9853 - v a l_ lo s s : 0.0848

117/117 ----------------------------------- 7 s 56m s/step - a ccuracy: 0 .9935 - lo s s : 0 .0701 - va l_ a cc u ra c y : 0 .9864 - v a l_ lo s s : 0.0678

117/117 ----------------------------------- 23 s 167m s/step - a ccuracy: 0 .9961 - lo s s : 0 .0481 - va l_ a cc u ra c y : 0 .9869 - v a l_ lo s s : 0.0588

plt.plot(r.history['loss'], label = 'loss')
plt.plot(r.history['val loss'], label = 'val loss')
plt.xticks(np.arange(0, epochs, step=1), labels = range(1, epochs+1))

99

plt.legend()
plt.show()

plt.plot(r.history[,accuracy'], label = 'acuracia')
plt.plot(r.history['val accuracy'], label = 'val acc')
plt.xticks(np.arange(0, epochs, step=1), labels = range(1, epochs+1))
plt.legend()
plt.show()

texto = "Is your car dirty? Discovery our new product. Free for all. Click
the link."

seq texto = tokenizer.texts to sequences([texto])
data texto = pad sequences(seq texto, maxlen=T)

pred = model.predict(data_texto)
print(pred)
print("Spam" if pred >= 0.5 else 'ok')

1/1 --------------------- 0s 345ms/step
[[0.6511604]]
Spam

100

3 Gerador de Dígitos Fake (GAN)
!pip install imageio
!pip install git+https://github.com/tensorflow/docs

import tensorflow as tf
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from IPython import display

(train images, train labels), (,) = tf.keras.datasets.mnist.load data()

train images = train images.reshape(train images.shape[0], 28, 28,
1).astype('float32')

train images = (train images - 127.5) / 127.5

BUFFER_SIZE = 60000
BATCH_SIZE = 256

train dataset = tf.data.Dataset.from tensor slices(train images)
train dataset = train dataset.shuffle(BUFFER SIZE).batch(BATCH SIZE)

def make generator model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use bias = False, input shape = (100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7,7,256)))
assert model.output shape == (None, 7, 7, 256)
model.add(layers.Conv2DTranspose(128, (5,5), strides=(1,1),

padding = 'same', use bias= False))
assert model.output shape == (None, 7,7,128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

https://github.com/tensorflow/docs

101

model.add(layers.Conv2DTranspose(64, (5,5), strides=(2,2),
padding = 'same', use bias = False))

assert model.output shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5,5), strides=(2,2),

padding = 'same', use bias = False))
assert model.output shape == (None, 28, 28, 1)
return model

generator = make generator model()
noise = tf.random.normal([1,100])
generated image = generator(noise, training = False)

plt.imshow(generated image[0, :, :, 0], cmap = 'gray')

def make discriminator model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5,5), strides = (2,2),

padding = 'same', input shape = [28,28,1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5,5), strides = (2,2), padding =
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model

discriminator = make discriminator model()
decision = discriminator(generated image)
print(decision)
tf.Tensor([[0.00111132]], shape=(1, 1), dtype=float32)

'same'))

102

cross entropy = tf.keras.losses.BinaryCrossentropy(from logits=True)

def discriminator loss(real output, fake output):
real loss = cross entropy(tf.ones like(real output), real output)
fake loss = cross entropy(tf.zeros like(fake output), fake output)
total loss = real loss + fake loss
return total loss

def generator loss(fake output):
return(cross entropy(tf.ones like(fake output), fake output))

generator optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator optimizer = tf.keras.optimizers.Adam(1e-4)

checkpoint dir = './training chekcpoints'
checkpoint prefix = os.path.join(checkpoint dir, 'ckpt')
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

discriminator_optimizer = discriminator_optimizer,
generator=generator, discriminator = discriminator)

EPOCHS = 100
noise dim = 100
num example to generate = 16
seed = tf.random.normal([num example to generate, noise dim])

@tf.function
def train step(images):

noise = tf.random.normal([BATCH SIZE, noise dim])
with tf.GradientTape() as gen tape, tf.GradientTape() as disc tape:

generated image = generator(noise, training = True)
real output = discriminator(images, training=True)
fake output = discriminator(generated image, training=True)
gen loss = generator loss(fake output)
disc loss = discriminator loss(real output, fake output)

gradients of generator = gen tape.gradient(gen loss,
generator.trainable variables)

gradients of discriminator = disc tape.gradient(disc loss,
discriminator.trainable variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator,

103

generator.trainable variables))
discriminator optimizer.apply gradients(zip(gradients of discriminator,

discriminator.trainable variables))

def train(dataset, epochs):
for epoch in range(epochs):

start = time.time()
for image batch in dataset:

train step(image batch)
display.clear output(wait=True)
generate and save images(generator, epoch + 1, seed)
if (epoch + 1) % 15 == 0:

checkpoint.save(file prefix=checkpoint prefix)
print('Time for epoch {} is {} sec'.format(epoch + 1, time.time() -

start))
display.clear output(wait=True)
generate and save images(generator, epochs, seed)

def generate and save images(model, epoch, test input):
predictions = model(test input, training = False)
fig = plt.figure(figsize = (4,4))
for i in range(predictions.shape[0]):
plt.subplot(4,4,i+1)
plt.imshow(predictions[i, :, :, 0]*127.5+127.5, cmap='gray')
plt.axis('off')

plt.savefig('image at epoch {:04d}.png'.format(epoch))
plt.show()

train(train dataset, EPOCHS)

checkpoint.restore(tf.train.latest checkpoint(checkpoint dir))
<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus
0x7c9942730160>

at

104

import tensorflow docs.vis.embed as embed
def display image(epoch no):

return PIL.Image.open('image at epoch {:04d}.png'.format(epoch no))
display image(EPOCHS)
anim file = 'dcgan.gif'
with imageio.get writer(anim file, mode='I') as writer:

filenames = glob.glob('image at epoch *.png')
filenames = sorted(filenames)
for filename in filenames:

image = imageio.imread(filename)
writer.append data(image)

if filenames:
image = imageio.imread(filenames[-1])
writer.append data(image)

embed.embed file(anim file)

4 Tradutor de Textos (Transformer)
INSTALAÇÃO DE PACOTES
!pip uninstall tensorflow
!pip install tensorflow==2.15.0
!pip install tensorflow datasets
!pip install -U tensorflow-text==2.15.0

IMPORTAÇÃO DE BIBLIOTECAS
import collections
import logging
import os
import pathlib
import re
import string
import sys

105

import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow datasets as tfds
import tensorflow text as text
import tensorflow as tf
logging.getLogger('tensorflow').setLevel(logging.ERROR)

BASE DE DADOS E TESTE/TREINO
Carregar a base de dados
examples, metadata = tfds.load('ted hrlr translate/pt to en',

with info=True, as supervised=True)
train examples, val examples = examples['train'], examples['validation']

Verificar o dataset
for pt examples, en examples in train examples.batch(3).take(1):

for pt in pt examples.numpy():
print(pt.decode('utf-8'))

print()
for en in en examples.numpy():
print(en.decode('utf-8'))

TOKENIZAÇÃO E DESTOKENIZAÇÃO
Tokenização e Destokenização do texto
model name = "ted hrlr translate pt en converter"
tf.keras.utils.get file(f"{model name}.zip",

f"https://storage.googleapis.com/download.tensorflow.org/
models/{model name}.zip", cache dir='.', cache subdir='',
extract=True)

tokenizers.en tokeniza e detokeniza
tokenizers = tf.saved model.load(model name)

PIPELINE DE ENTRADA
Definindo função para codificar/tokenizar lotes de texto puro
def tokenize pairs(pt, en):

pt = tokenizers.pt.tokenize(pt)
pt = pt.to tensor()
en = tokenizers.en.tokenize(en)
en = en.to tensor()
return pt, en

https://storage.googleapis.com/download.tensorflow.org/

106

Pipeline: processa, embaralha, agrupa os dados, prefetch
BUFFER_SIZE = 20000
BATCH_SIZE = 64

def make batches(ds):
return (

ds
.cache()
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE)
.map(tokenize pairs, num parallel calls=tf.data.AUTOTUNE)

.prefetch(tf.data.AUTOTUNE))

train batches = make batches(train examples)
val batches = make batches(val examples)

DEFININDO FUNÇÕES PARA CODIFICAÇÃO POSICIONAL
def get angles(pos, i, d model):

angle rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d model))
return pos * angle rates

def positional encoding(position, d model):
angle rads = get angles(np.arange(position)[:,

np.newaxis],np.arange(d model)[np.newaxis, :], d model)
angle rads[:, 0::2] = np.sin(angle rads[:, 0::2])
angle rads[:, 1::2] = np.cos(angle rads[:, 1::2])
pos encoding = angle rads[np.newaxis, ...]
return tf.cast(pos encoding, dtype=tf.float32)

CODIFICAÇÃO POSICIONAL
n, d = 2048, 512
pos encoding = positional encoding(n, d)
print(pos encoding.shape)
pos encoding = pos encoding[0]

Arrumar as dimensões
pos encoding = tf.reshape(pos encoding, (n, d//2, 2))
pos encoding = tf.transpose(pos encoding, (2, 1, 0))
pos encoding = tf.reshape(pos encoding, (d, n))
plt.pcolormesh(pos encoding, cmap='RdBu')
plt.ylabel('Depth')

107

plt.xlabel('Position')
plt.colorbar()
plt.show()

DEFININDO FUNÇÕES PARA MASCARAMENTO POR 0 E 1
def create padding mask(seq):

seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
return seq[:, tf.newaxis, tf.newaxis, :]

def create look ahead mask(size):
mask = 1 - tf.linalg.band part(tf.ones((size, size)), -1, 0)
return mask

DEFININDO FUNÇÃO DE ATENÇÃO
def scaled dot product attention(q, k, v, mask):

matmul qk = tf.matmul(q, k, transpose b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled attention logits = matmul qk / tf.math.sqrt(dk)
if mask is not None:

scaled attention logits += (mask * -1e9)
attention weights = tf.nn.softmax(scaled attention logits, axis=-1)
output = tf.matmul(attention weights, v)
return output, attention weights

ATENÇÃO MULTI-CABEÇAS
class MultiHeadAttention(tf.keras.layers.Layer):

def init (self, d model, num heads):
super(MultiHeadAttention, self). init ()
self.num heads = num heads
self.d model = d model
assert d model % self.num heads == 0
self.depth = d model // self.num heads
self.wq = tf.keras.layers.Dense(d model)

108

self.wk = tf.keras.layers.Dense(d model)
self.wv = tf.keras.layers.Dense(d model)
self.dense = tf.keras.layers.Dense(d model)

def split heads(self, x, batch size):
x = tf.reshape(x, (batch size, -1, self.num heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])

def call(self, v, k, q, mask):
batch size = tf.shape(q)[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split heads(q, batch size)
k = self.split heads(k, batch size)
v = self.split heads(v, batch size)

scaled attention, attention weights = scaled dot product attention(q, k,
v, mask)

scaled attention = tf.transpose(scaled attention, perm=[0, 2, 1, 3])
concat attention = tf.reshape(scaled attention, (batch size, -1,

self.d model))
output = self.dense(concat attention)
return output, attention weights

DEFININDO FUNÇÃO PARA REDE FEED-FORWARD
def point wise feed forward network(d model, dff):

return tf.keras.Sequential([
tf.keras.layers.Dense(dff,

activation='relu'),tf.keras.layers.Dense(d model)])

DEFININDO CLASSE E FUNÇÕES PARA CAMADA DO CODIFICADOR
class EncoderLayer(tf.keras.layers.Layer):

def init (self, d model, num heads, dff, rate=0.1):
super(EncoderLayer, self). init ()
self.mha = MultiHeadAttention(d model, num heads)
self.ffn = point wise feed forward network(d model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)

109

def call(self, x, training, mask):
attn output, = self.mha(x, x, x, mask)
attn output = self.dropout1(attn output, training=training)
out1 = self.layernorm1(x + attn output)
ffn output = self.ffn(out1)
ffn output = self.dropout2(ffn output, training=training)
out2 = self.layernorm2(out1 + ffn output)
return out2

DEFININDO CLASSE E FUNÇÕES PARA CAMADA DO DECODIFICADOR
class DecoderLayer(tf.keras.layers.Layer):

def init (self, d model, num heads, dff, rate=0.1):
super(DecoderLayer, self). init ()
self.mha1 = MultiHeadAttention(d model, num heads)
self.mha2 = MultiHeadAttention(d model, num heads)
self.ffn = point wise feed forward network(d model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)

def call(self, x, enc output, training, look ahead mask, padding mask):
attn1, attn weights block1 = self.mha1(x, x, x, look ahead mask)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layernorm1(attn1 + x)
attn2, attn weights block2 = self.mha2(enc output, enc output,

out1, padding mask)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(attn2 + out1)
ffn output = self.ffn(out2)
ffn output = self.dropout3(ffn output, training=training)
out3 = self.layernorm3(ffn output + out2)
return out3, attn weights block1, attn weights block2

DEFININDO CLASSE E FUNÇÕES PARA ENCODER
class Encoder(tf.keras.layers.Layer):

def init (self, num layers, d model, num heads, dff,input vocab size,
maximum position encoding, rate=0.1):

super(Encoder, self). init ()

110

self.d model = d model
self.num layers = num layers
self.embedding = tf.keras.layers.Embedding(input vocab size, d model)
self.pos encoding = positional encoding(maximum position encoding,

self.d model)
self.enc layers = [EncoderLayer(d model, num heads, dff, rate) for in

range(num layers)]
self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, training, mask):
seq len = tf.shape(x)[1]
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d model, tf.float32))
x += self.pos encoding[:, :seq len, :]
x = self.dropout(x, training=training)
for i in range(self.num layers):
x = self.enc layers[i](x, training, mask)

return x

DEFININDO CLASSE E FUNÇÕES PARA DECODER
class Decoder(tf.keras.layers.Layer):

def init (self, num layers, d model, num heads,
dff, target vocab size,maximum position encoding, rate=0.1):

super(Decoder, self). init ()
self.d model = d model
self.num layers = num layers
self.embedding = tf.keras.layers.Embedding(target vocab size, d model)
self.pos encoding = positional encoding(maximum position encoding,
d model)

self.dec layers = [DecoderLayer(d model, num heads, dff, rate) for in
range(num layers)]

self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, enc output, training, look ahead mask, padding mask):
seq len = tf.shape(x)[1]
attention_weights = {}

x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d model, tf.float32))
x += self.pos encoding[:, :seq len, :]
x = self.dropout(x, training=training)

111

for i in range(self.num layers):
x, block1, block2 = self.dec layers[i](x, enc output,

training,look ahead mask, padding mask)
attention weights[f'decoder layer{i+1} block1'] = block1
attention weights[f'decoder layer{i+1} block2'] = block2

return x, attention_weights

DEFININDO CLASSE E FUNÇÕES PARA TRANSFORMER
class Transformer(tf.keras.Model):

def init (self, num layers, d model, num heads, dff,
input vocab size,target vocab size, pe input, pe target, rate=0.1):

super(). init ()
self.encoder = Encoder(num layers, d model, num heads, dff,
input vocab size, pe input, rate)

self.decoder = Decoder(num layers, d model, num heads, dff,
target_vocab_size, pe_target, rate)

self.final layer = tf.keras.layers.Dense(target vocab size)

def call(self, inputs, training):
inp, tar = inputs
enc padding mask, look ahead mask, dec padding mask =

self.create masks(inp, tar)
enc output = self.encoder(inp, training, enc padding mask)
dec output, attention weights = self.decoder(tar, enc output, training,

look ahead mask, dec padding mask)
final output = self.final layer(dec output)
return final output, attention weights

def create masks(self, inp, tar):
enc padding mask = create padding mask(inp)
dec padding mask = create padding mask(inp)
look ahead mask = create look ahead mask(tf.shape(tar)[1])
dec target padding mask = create padding mask(tar)
look ahead mask = tf.maximum(dec target padding mask, look ahead mask)
return enc padding mask, look ahead mask, dec padding mask

DEFININDO HIPERPARÂMETROS
num layers = 4
d model = 128
dff = 512
num heads = 8

112

dropout_rate = 0.1

DEFININDO FUNÇÕES PARA OTIMIZADOR
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):

def init (self, d model, warmup steps=4000):
super(CustomSchedule, self). init ()
self.d model = d model
self.d model = tf.cast(self.d model, tf.float32)
self.warmup steps = warmup steps

def call (self, step):
step = tf.cast(step, tf.float32)
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup steps ** -1.5)
return tf.math.rsqrt(self.d model) * tf.math.minimum(arg1, arg2)

learning rate = CustomSchedule(d model)
optimizer = tf.keras.optimizers.Adam(learning rate, beta 1=0.9, beta 2=0.98,
epsilon=1e-9)

DEFININDO FUNÇÕES DE PERDA E MÉTRICA DE ACURÁCIA
loss object =

tf.keras.losses.SparseCategoricalCrossentropy(from logits = True,
reduction='none')

def loss function(real, pred):
mask = tf.math.logical not(tf.math.equal(real, 0))
loss = loss object(real, pred)
mask = tf.cast(mask, dtype=loss .dtype)
loss *= mask
return tf.reduce sum(loss)/tf.reduce sum(mask)

def accuracy function(real, pred):
accuracies = tf.equal(real, tf.argmax(pred, axis=2))
mask = tf.math.logical not(tf.math.equal(real, 0))
accuracies = tf.math.logical and(mask, accuracies)
accuracies = tf.cast(accuracies, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
return tf.reduce sum(accuracies)/tf.reduce sum(mask)

train loss = tf.keras.metrics.Mean(name='train loss')
train accuracy = tf.keras.metrics.Mean(name='train accuracy')

113

TREINAMENTO DO MODELO
transformer = Transformer(

num layers=num layers,
d model=d model,
num heads=num heads, dff=dff,

input vocab size=tokenizers.pt.get vocab size().numpy(),
target vocab size=tokenizers.en.get vocab size().numpy(),
pe input=1000, pe target=1000, rate=dropout rate)

CHECKPOINT
checkpoint_path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)
ckpt manager = tf.train.CheckpointManager(ckpt, checkpoint path,

max to keep=5)

if ckpt manager.latest checkpoint:
ckpt.restore(ckpt manager.latest checkpoint)
print('Latest checkpoint restored!!')

PROCESSO DE TREINAMENTO
EPOCHS = 20
train step signature = [tf.TensorSpec(shape=(None, None),

dtype=tf.int64),tf.TensorSpec(shape=(None, None), dtype=tf.int64),]
@tf.function(input signature=train step signature)

def train step(inp, tar):
tar inp = tar[:, :-1]
tar real = tar[:, 1:]
with tf.GradientTape() as tape:

predictions, = transformer([inp, tar inp], training = True)
loss = loss function(tar real, predictions)

gradients = tape.gradient(loss, transformer.trainable variables)
optimizer.apply gradients(zip(gradients,

transformer.trainable variables))
train loss(loss)
train accuracy(accuracy function(tar real, predictions))

PROCESSO DE TREINAMENTO
for epoch in range(EPOCHS):

start = time.time()
train loss.reset state()

114

train accuracy.reset state()
for (batch, (inp, tar)) in enumerate(train batches):

train step(inp, tar)
if batch % 50 == 0:

print(f'Epoch {epoch + 1} Batch {batch} Loss {train loss.result():.4f}
Accuracy {train accuracy.result():.4f}')

if (epoch + 1) % 5 == 0:
ckpt save path = ckpt manager.save()
print(f'Saving checkpoint for epoch {epoch+1} at {ckpt save path}')

print(f'Epoch {epoch + 1} Loss {train loss.result():.4f}
Accuracy {train accuracy.result():.4f}')

print(f'Time taken for 1 epoch: {time.time() - start:.2f} secs\n')
Epoch 20 Batch 0 Loss 1.4211 Accuracy 0.6914
Epoch 20 Batch 50 Loss]L.3913 Accuracy 0.6889
Epoch 20 Batch 100 Loss 1.3962 Accuracy 0.6890
Epoch 20 Batch 150 Loss 1.4023 Accuracy 0.6882
Epoch 20 Batch 200 Loss 1.4098 Accuracy 0.6870
Epoch 20 Batch 250 Loss 1.4143 Accuracy 0.6865
Epoch 20 Batch 300 Loss 1.4190 Accuracy 0.6858
Epoch 20 Batch 350 Loss 1.4203 Accuracy 0.6853
Epoch 20 Batch 400 Loss 1.4242 Accuracy 0.6844
Epoch 20 Batch 450 Loss 1.4271 Accuracy 0.6838
Epoch 20 Batch 500 Loss 1.4314 Accuracy 0.6831
Epoch 20 Batch 550 Loss 1.4349 Accuracy 0.6823
Epoch 20 Batch 600 Loss 1.4376 Accuracy 0.6820
Epoch 20 Batch 650 Loss 1.4401 Accuracy 0.6816
Epoch 20 Batch 700 Loss 1.4428 Accuracy 0.6814
Epoch 20 Batch 750 Loss 1.4471 Accuracy 0.6804
Epoch 20 Batch 800 Loss 1.4523 Accuracy 0.6797
Saving checkpoint for epoch 20
Epoch 20 Loss 1.4525 Accuracy (
Time taken for 1 epoch: 97.16 :

at ./checkpoints/train/ckpt-4
5.6797
;ecs

DEFININDO FUNÇÕES DO TRADUTOR
class Translator(tf.Module):

def init (self, tokenizers, transformer):
self.tokenizers = tokenizers
self.transformer = transformer

def call (self, sentence, max length=20):
assert isinstance(sentence, tf.Tensor)
if len(sentence.shape) == 0:

sentence = sentence[tf.newaxis]
sentence = self.tokenizers.pt.tokenize(sentence).to tensor()
encoder_input = sentence
start end = self.tokenizers.en.tokenize([''])[0]
start = start end[0][tf.newaxis]
end = start end[1][tf.newaxis]

115

output array = tf.TensorArray(dtype=tf.int64, size=0, dynamic size=True)
output array = output array.write(0, start)

for i in tf.range(max length):
output = tf.transpose(output array.stack())
predictions, = self.transformer([encoder input, output],

training=False)
predictions = predictions[:, -1:, :]
predicted id = tf.argmax(predictions, axis=-1)
output array = output array.write(i+1, predicted id[0])
if predicted id == end:

break
output = tf.transpose(output array.stack())
text = tokenizers.en.detokenize(output)[0]
tokens = tokenizers.en.lookup(output)[0]
, attention weights = self.transformer([encoder input, output[:,:-1]],
training=False)

return text, tokens, attention weights

EFETUANDO UMA TRADUÇÃO
translator = Translator(tokenizers, transformer)
sentence = [["Eu li sobre triceratops na enciclopédia.", "Ela chegou como

uma chuva de verão.", "Eu li varios livros em minhas férias.",],["O
tempo passou e só agora eles se deram conta do que perderam."," O onibus
estava lotado quando passou por aqui.","Ninguem viu o que aconteceu"]]

for txt in sentence:
for frase in txt:

translated text, translated tokens, attention weights = translator
(tf.constant(frase))

print(f'{"Prediction":15s}: {translated text}')

Prediction : b"time has just gone back and they ' ve been told when they lost it
Prediction : b'the onebbus was cut when it went on here

116

APÊNDICE 9 - BIG DATA

A - ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de

uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL).

Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de

dados empregados.

B - RESOLUÇÃO
Entretenimento Baseado em Dados: Um Estudo de Caso sobre o Sistema de

Personalização, Recomendação e Produção da Netflix

A Netflix é uma das maiores e mais influentes empresas de streaming
do mundo, contando com milhões de assinantes em mais de 190 paises e um
catálogo extenso de filmes, séries, documentários e conteúdo original. Mas
como uma empresa fundada em 1997 oferecendo um serviço de aluguel de DVDs
por correio, evoluiu de maneira significativa ao longo dos anos, tornando-se
um dos principais nomes no mercado global de entretenimento? A resposta é
simples: atenção especial aos dados de seus clientes.

Desde os anos 2000 a Netflix começou a usar dados dos clientes para
aprimorar a experiência de uso de sua plataforma. A abordagem baseada em
dados foi desenvolvida para ajudar os clientes a descobrir o que assistir de
forma mais rápida e assertiva, tornando a experiência mais personalizada. Por
exemplo, se a maioria dos usuários que gostam de doramas também costuma
assistir a filmes de drama e comédia romântica, o sistema da Netflix
identifica esses padrões e, com base nisso, recomenda conteúdos similares
para novos assinantes que começam a assistir doramas.

No entanto, com o crescimento da base de usuários e do volume de
dados, a empresa percebeu a necessidade de aprimorar seus modelos de
recomendação e escalar sua infraestrutura. Inicialmente, a Netflix usava
algoritmos simples para sugerir filmes com base nas avaliações e no histórico
de visualização dos usuários. Mas, à medida que a plataforma cresceu, também
aumentou a complexidade de seu sistema de recomendações. Para lidar com essa
enorme quantidade de dados e melhorar a precisão das sugestões, a empresa
adotou ferramentas avançadas, como Hadoop, Apache Spark e AWS, para processar
e analisar dados em grande escala.

A primeira parte desse sistema de recomendação começa com a coleta de
dados, ou seja, a Netflix coleta dados sobre as interações que seus usuários
têm com a plataforma, desde um simples login até interações como pausar e

117

fechar conteúdos e clicar num link recomendado. Todas essas interações, ou
eventos, são processados pelo Apache Kafka e enviados para armazenamento na
AWS.

Na AWS, os dados podem ser armazenados de diferentes formas:
• S3: utilizado para armazenar os dados brutos e não estruturados
• Amazon Redshift: utilizado para armazenar dados estruturados

Num primeiro momento os dados brutos são apenas armazenados no S3 e,
para processar e manipular esses dados, o Netflix utiliza uma gama de
tecnologias como Apache Pig, Spark, Jupiter etc. Parte desses dados
manipulados são então armazenados em tecnologias que permitem acesso rápido
e performático, como Amazon Redshift.

Possuir dados nesses ambientes é crucial para que tecnologias de
visualização de dado, como Tableau, possam ter acesso rápido aos dados. Essas
ferramentas permitem que a Netflix oriente suas decisões estratégicas, como
direcionamento de orçamento para a aquisição ou produção de novos conteúdos,
com base nas tendências de preferências dos usuários e na identificação de
nichos de oportunidade a serem explorados.

Para personalizar as recomendações, a primeira etapa foi coletar e
armazenar uma vasta quantidade de dados. Além dos dados das interações dos
usuários, histórico de visualização e avaliações, a Netflix também coleta
informações demográficas, como idade, localização e perfil dos usuários.

Após a coleta, o próximo passo é processar esse grande volume de
dados, utilizando diversas ferramentas e tecnologias para otimizar o sistema
de recomendação:

118

• Hadoop: usado para processamento em larga escala, especialmente
em análises e processamento batch.

• Apache Kafka: permite a transmissão de dados em tempo real,
possibilitando que informações sejam coletadas e processadas à
medida que os usuários interagem com a plataforma.

• Apache Flink: utilizado para análises em tempo real, permitindo
o processamento continuo de dados e ajustes rápidos nas
recomendações.

A análise de dados é uma parte fundamental do processo, pois, com o
processamento em tempo real, os modelos de recomendação são constantemente
atualizados. Esse método permite que os algoritmos de machine learning
identifiquem padrões e preferências comuns entre os usuários de forma rápida
e precisa. Como resultado, as recomendações tornam-se cada vez mais
relevantes, aumentando o engajamento dos usuários. Quanto mais a Netflix
acerta nas recomendações, mais tempo os usuários passam assistindo e
interagindo com a plataforma, fornecendo ainda mais dados para a empresa.

Atualmente, a Netflix contém um alto volume de dados, contendo 230
milhões de usuários que geram petabytes de dados a cada dia.

A velocidade em que os dados precisam ser processados é levado em
consideração, pois, os dados são processados em tempo real para fornecer as
recomendações imediatas e atualizadas.

A Netflix possui uma variedade nos dados, podemos dividi-los em: dados
estruturados, que são os dados históricos de visualizações e, também, dados
não estruturados como os feedbacks e comentários.

A veracidade diz respeito a qualidade e precisão das recomendações,
pois, isso depende muito da qualidade dos dados e dos algoritmos de análises
garantindo recomendações relevantes.

Podemos concluir que a Netflix faz uso exemplar de big data para se
destacar como uma empresa orientada por dados. Ao priorizar a análise e o
entendimento dos dados, a empresa cria experiências únicas e relevantes para
seus usuários, aumenta a satisfação e o engajamento deles, e impulsiona a
retenção na plataforma.

Referências
https://netflixtechblog.com/
https://www.youtube.com/watch?v=nMyuCdqzpZc

https://netflixtechblog.com/
https://www.youtube.com/watch?v=nMyuCdqzpZc

119

APÊNDICE 10 - VISÃO COMPUTACIONAL

A - ENUNCIADO

1) Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno-

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas

em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma base de

imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging)

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada.

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não

utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de

treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última

camada de classificação e armazene os valores da penúltima camada como um vetor de

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:

a) Carregue a base de dados de Treino.
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada

extrator).
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
e) Carregue a base de Teste e execute a tarefa 3 nesta base.
f) Aplique os modelos treinados nos dados de treino
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas

matrizes de confusão.
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2) Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Leaming), refaça as camadas Fully

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation

cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.

https://pubmed.ncbi.nlm.nih.gov/28771788/

120

Tarefas:

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício
anterior

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation
c) Aplique os modelos treinados nas imagens da base de Teste
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas

matrizes de confusão.
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada

B - RESOLUÇÃO
Preparação para tarefas
Montar google drive
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive

Caminhos
root = 'drive/MyDrive/IAA011/trabalho/'
train path = root + 'Train 4cls amostra/'
test path = root + 'Test 4cls amostra/'

Importações
import os
import pandas as pd
import cv2
import numpy as np
from skimage.feature import local binary pattern
from google.colab.patches import cv2 imshow
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications.vgg16 import preprocess input
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import load img, img to array
from keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint, EarlyStopping
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm, preprocessing
from sklearn.metrics import accuracy score, multilabel confusion matrix,
confusion matrix, precision recall fscore support
from sklearn.preprocessing import StandardScaler
from sklearn.neural network import MLPClassifier
from tensorflow.keras.applications import ResNet50

https://file+.vscode-resource.vscode-cdn.net/content/drive

121

from tensorflow.keras.layers import Dense, Flatten, Dropout

Verificar quantidade de amostras por classe para avaliar balanceamento das
amostras
classes = {}
total = 0

Percorrer diretórios no caminho de treino
for path, , files in os.walk(train path):

Pega o nome da pasta atual como label
label = os.path.basename(path)
Total de arquivos na pasta
samples = len(files)
if samples > 0:

total += samples
classes[label] = samples

Imprime a quantidade de amostras por classe e o total de amostras
print(f'Total por classe: {classes}')
print(f'Total de amostras para treino: {total}')
Total por classe: {'0': 146, '3': 150, '1': 147, '2': 150}
Total de amostras para treino: 593

Separação base de treino (~80%) e validação (~20%)
Sempre o primeiro paciente de cada classe vai ser separado para servir
como validador
train features = pd.DataFrame(columns=['patientId','imagePath', 'label'])
val features = pd.DataFrame(columns=['patientId','imagePath','label'])
Índice para treino
i train = 0
Índice para validação
i val = 0

for path, , folder in os.walk(train path):
if not folder:

continue
Extrair o nome da pasta como label
label = os.path.basename(path)
Referência para o primeiro paciente
patient ref = None

122

Ordenar para garantir consistência na separação
for image in sorted(folder):

patient id = image.split(' ')[0]
if patient ref is None:

patient_ref = patient_id

Adiciona ao conjunto de validação se for o primeiro
paciente da classe
if patient_id == patient_ref:

val features.at[i val, "patientId"] = patient id
val features.at[i val, "imagePath"] = os.path.join(train path,

label, image)
val features.at[i val, "label"] = label
i val += 1

else:
Adiciona ao conjunto de treino
train features.at[i train, "patientId"] = patient id
train features.at[i train, "imagePath"] =

os.path.join(train path, label, image)
train features.at[i train, "label"] = label
i_train += 1

train features.set index('patientId', inplace=True)
val features.set index('patientId', inplace=True)

train features shuffled = train features.sample(frac=1)
val features shuffled = val features.sample(frac=1)

print(f'Tamanho do conjunto de treino: {train features shuffled.shape}')
print(f'Tamanho do conjunto de validação: {val features shuffled.shape}')
Tamanho do conjunto de treino: (477, 2)
Tamanho do conjunto de validação: (116, 2)

1 Extração de Características
LBP
Função para calcular o histograma lbp
def get lbp(img):

if img is None:
return None

Verifica se a imagem já está em grayscale, se não estiver converte
para grayscale

123

if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

Parâmetros do LBP
METHOD = 'uniform'
radius = 3
n points = 8 * radius

Calcula o histograma do LBP
lbp image = local binary pattern(img, n points, radius, METHOD)
lbp hist, = np.histogram(lbp image.flatten(), bins=np.arange(0,

n points + 3), range=(0, n points + 2))
return lbp hist

Função para obter valores lbp de todas as imagens
def extract lbp features(image paths):

lbp_features = []
for image in image paths:

open image = cv2.imread(image, cv2.IMREAD GRAYSCALE)
lbp value = get lbp(open image)
lbp features.append(lbp value)

return lbp_features

VGG16
Carregando modelo VGG16 sem a camada de classificação
base model = VGG16(weights='imagenet', include top=False, input shape=(224,

224, 3))
model = Model(inputs=base model.input, outputs=base model.output)

Função para converter as imagens de entrada no formato esperado pela VGG16
def preprocess image(image path):

img = load img(image path, target size=(224, 224))
img array = img to array(img)
img array = np.expand dims(img array, axis=0)
img array = preprocess input(img array)
return img array

Função para extrair características de uma única imagem com a VGG16
def get features vgg16(image path):

img array = preprocess image(image path)
features = model.predict(img array)

124

features flattened = features.flatten()
return features flattened

Função para extrair de todas as imagens
def extract features vgg16(image paths):

features list = []
for image path in image paths:

features = get features vgg16(image path)
features list.append(features)

return np.array(features list)

Extraindo características
Criando X, y de treino
X train images = train features shuffled['imagePath'].values
y train = train features shuffled['label'].values

Extraindo características com LBP
lbp values array = extract lbp features(X train images)

Extraindo características com VGG16
vgg16 values array = extract features vgg16(X train images)

CSV
Função para gerar o csv
import csv

def save features to csv(image paths, features, labels, output file):
with open(output file, mode='w', newline='') as file:

writer = csv.writer(file)
Escreve o cabeçalho
header = ['imagePath'] + [f'feature {i}' for i in

range(len(features[0]))] + ['label']
writer.writerow(header)

Escreve as características
for img, feature, label in zip(image paths, features, labels):

125

writer.writerow([img] + feature.tolist() + [label])

save features to csv(X train images, lbp values array, y train,
'features lbp train.csv')

save features to csv(X train images, vgg16 values array, y train,
'features vgg16 train.csv')

Treinando modelos Random Forest, SVM e RNA
Normalizando os dados
scaler = StandardScaler()
norm features lbp = scaler.fit transform(lbp values array)
norm features vgg16 = scaler.fit transform(vgg16 values array)

Random Forest
clfRandomForest = RandomForestClassifier(random state=42,

class_weight="balanced")

SVM
clfSVM = (svm.SVC(C=15,kernel='rbf',class weight='balanced',random state=42,

decision function shape='ovr',probability=True));

RNA
clfRNA = MLPClassifier(random state=42, max iter=500)

Preparando dados para validação
Criando X, y de validação
X val images = val features shuffled['imagePath'].values
y val = val features shuffled['label'].values

Lendo base de teste
test features = pd.DataFrame(columns=['patientId', 'imagePath', 'label'])

Índice para teste
i_test = 0
for path, , folder in os.walk(test path):

if not folder:
continue

Extrair o nome da pasta como label
label = os.path.basename(path)

126

for image in folder:
patientId = image.split(' ')[0]
test features.at[i test, "patientId"] = patientId
test features.at[i test, "imagePath"] = os.path.join(test path,

label, image)
test features.at[i test, "label"] = label
i_test += 1

test features.set index('patientId', inplace=True)
print(f'Tamanho do conjunto de teste: {test features.shape}')

Criando X, y de teste
X test images = test features['imagePath'].values
y test = test features['label'].values
Tamanho do conjunto de teste: (371, 2)

LBP
Treinando modelos pra LBP
clfRandomForest.fit(norm features lbp,y train)
clfSVM.fit(norm features lbp,y train)
clfRNA.fit(norm features lbp,y train)

Validação modelos LBP
Extraindo características com LBP
val lbp values array = extract lbp features(X val images)
val norm features lbp = scaler.fit transform(val lbp values array)

predição com valores de validação
y val pred rf = clfRandomForest.predict(val norm features lbp)
y val pred svm = clfSVM.predict(val norm features lbp)
y val pred rna = clfRNA.predict(val norm features lbp)

print(f'LBP:\nAcurácia com Random Forest {accuracy score(y val,
y val pred rf)}\nAcurácia com SVM {accuracy score(y val,
y val pred svm)}\nAcurácia com RNA {accuracy score(y val,
y val pred rna)}')

LBP:
Acurácia com Random Forest 0.8620689655172413
Acurácia com SVM 0.853448275862069

127

Acurácia com RNA 0.8103448275862069

Testes dos modelos LBP
Extraindo características com LBP
test lbp values array = extract lbp features(X test images)
test norm features lbp = scaler.fit transform(test lbp values array)

Predição com valores de teste
y test pred rf = clfRandomForest.predict(test norm features lbp)
y test pred svm = clfSVM.predict(test norm features lbp)
y test pred rna = clfRNA.predict(test norm features lbp)

Random Forest
Acurácia
rf accuracy lbp = accuracy score(y test, y test pred rf)
print(f'Acurácia {rf accuracy lbp}')

Matriz de confusão
rf cm lbp = confusion matrix(y test, y test pred rf)
print(f"Matriz de Confusão:\n{rf cm lbp}")

Sensibilidade, precisão, e Fl-score
rf recall lbp, rf precision lbp, rf fl lbp, =
precision recall fscore support(y test, y test pred rf)
print("Sensibilidade por classe:", rf recall lbp)
print("Precisão por classe:", rf precision lbp)
print("F1-Score por classe:", rf fl lbp)
Acurácia 0.7601078167115903
Matriz de Confusão:
[[86 7 8 0]
[6 30 53 1]
[7 6 77 0]
[0 1 0 89]]

Sensibilidade por classe: [0.86868687 0.68181818 0.55797101 0.98888889]
Precisão por classe: [0.85148515 0.33333333 0.85555556 0.98888889]
F1-Score por classe: [0.86 0.44776119 0.6754386 0.98888889]

SVM
Acurácia
svm accuracy lbp = accuracy score(y test, y test pred svm)
print(f'Acurácia {svm accuracy lbp}')

128

Matriz de confusão
svm cm lbp = confusion matrix(y test, y test pred svm)
print(f"Matriz de Confusão:\n{svm cm lbp}")

Sensibilidade, precisão, e F1-score
svm recall lbp, svm precision lbp, svm f1 lbp, =

precision recall fscore support(y test, y test pred svm)
print("Sensibilidade por classe:", svm recall lbp)
print("Precisão por classe:", svm precision lbp)
print("F1-Score por classe:", svm f1 lbp)
Acurácia 0.7358490566037735
Matriz de Confusão:
[[72 26 3 0]
[4 36 50 0]
[2 9 79 0]
[0 2 2 86]]

Sensibilidade por classe: [0.92307692 0.49315068 0.58955224 1.]
Precisão por classe: [0.71287129 0.4 0.87777778 0.95555556]
F1-Score por classe: [0.80446927 0.44171779 0.70535714 0.97727273]

RNA
Acurácia
rna accuracy lbp = accuracy score(y test, y test pred rna)
print(f'Acurácia {rna accuracy lbp}')

Matriz de confusão
rna cm lbp = confusion matrix(y test, y test pred rna)
print(f"Matriz de Confusão:\n{rna cm lbp}")

Sensibilidade, precisão, e F1-score
rna recall lbp, rna precision lbp, rna f1 lbp, =
precision recall fscore support(y test, y test pred rna)
print("Sensibilidade por classe:", rna recall lbp)
print("Precisão por classe:", rna precision lbp)
print("F1-Score por classe:", rna f1 lbp)

Acurácia 0.7520215633423181
Matriz de Confusão:
[[78 20 3 0]
[4 34 52 0]
[2 6 80 2]

129

[0 3 0 87]]
Sensibilidade por classe: [0.92857143 0.53968254 0.59259259 0.97752809]
Precisão por classe: [0.77227723 0.37777778 0.88888889 0.96666667]
F1-Score por classe: [0.84324324 0.44444444 0.71111111 0.97206704]

VGG16
Treinando modelos VGG16
clfRandomForest.fit(norm features vgg16,y train)
clfSVM.fit(norm features vgg16,y train)
clfRNA.fit(norm features vgg16,y train)

Validação modelos VGG16
Extraindo características com VGG16
val vgg16 values array = extract features vgg16(X val images)

val norm features vgg16 = scaler.fit transform(val vgg16 values array)

Predição com valores de validação
y val pred rf vgg16 = clfRandomForest.predict(val norm features vgg16)
y val pred svm vgg16 = clfSVM.predict(val norm features vgg16)
y val pred rna vgg16 = clfRNA.predict(val norm features vgg16)
print(f'VGG16:\nAcurácia com Random Forest {accuracy score(y val,

y val pred rf vgg16)}\nAcurácia com SVM {accuracy score(y val,
y val pred svm vgg16)}\nAcurácia com RNA {accuracy score(y val,
y val pred rna vgg16)}')

VGG16:
Acurácia com Random Forest 0.5603448275862069
Acurácia com SVM 0.603448275862069
Acurácia com RNA 0.7931034482758621

Testes dos modelos VGG16
Extraindo características com VGG16
test vgg16 values array = extract features vgg16(X test images)

130

test norm features vgg16 = scaler.fit transform(test vgg16 values array)
Predição com valores de validação
y test pred rf vgg16 = clfRandomForest.predict(test norm features vgg16)
y test pred svm vgg16 = clfSVM.predict(test norm features vgg16)
y test pred rna vgg16 = clfRNA.predict(test norm features vgg16)

Random Forest
Acurácia
rf accuracy vgg16 = accuracy score(y test, y test pred rf vgg16)
print(f'Acurácia {rf accuracy vgg16}')

Matriz de confusão
rf cm vgg16 = confusion matrix(y test, y test pred rf vgg16)
print(f"Matriz de Confusão:\n{rf cm vgg16}")

Sensibilidade, precisão, e F1-score
rf_recall_vgg16, rf_precision_vgg16, rf_f1_vgg16, _
precision recall fscore support(y test, y test pred rf vgg16)
print("Sensibilidade por classe:", rf recall vgg16)
print("Precisão por classe:", rf precision vgg16)
print("F1-Score por classe:", rf f1 vgg16)
Acurácia 0.7520215633423181
Matriz de Confusão:
[[83 18 0 0]
[32 34 23 1]
[1 1 72 16]
[0 0 0 90]]

Sensibilidade por classe: [0.71551724 0.64150943 0.75789474 0.8411215]
Precisão por classe: [0.82178218 0.37777778 0.8 1.]
F1-Score por classe: [0.76497696 0.47552448 0.77837838 0.91370558]

SVM
Acurácia
svm accuracy vgg16 = accuracy score(y test, y test pred svm vgg16)

131

print(f'Acurácia {svm accuracy vgg16}')

Matriz de confusão
svm cm vgg16 = confusion matrix(y test, y test pred svm vgg16)
print(f"Matriz de Confusão:\n{svm cm vgg16}")

Sensibilidade, precisão, e F1-score
svm recall vgg16, svm precision vgg16, svm f1 vgg16, =

precision recall fscore support(y test, y test pred svm vgg16)
print("Sensibilidade por classe:", svm recall vgg16)
print("Precisão por classe:", svm precision vgg16)
print("F1-Score por classe:", svm f1 vgg16)
Acurácia 0.77088948787062
Matriz de Confusão:
[[88 13 0 0]
[22 40 24 4]
[0 0 74 16]
[0 0 6 84]]

Sensibilidade por classe: [0.8 0.75471698 0.71153846 0.80769231]
Precisão por classe: [0.87128713 0.44444444 0.82222222 0.93333333]
F1-Score por classe: [0.83412322 0.55944056 0.7628866 0.86597938]

RNA
Acurácia
rna accuracy vgg16 = accuracy score(y test, y test pred rna vgg16)
print(f'Acurácia {rna accuracy vgg16}')

Matriz de confusão
rna cm vgg16 = confusion matrix(y test, y test pred rna vgg16)
print(f"Matriz de Confusão:\n{rna cm vgg16}")

Sensibilidade, precisão, e F1-score
rna recall vgg16, rna precision vgg16, rna f1 vgg16, =
precision recall fscore support(y test, y test pred rna vgg16)
print("Sensibilidade por classe:", rna recall vgg16)
print("Precisão por classe:", rna precision vgg16)
print("F1-Score por classe:", rna f1 vgg16)
Acurácia 0.8652291105121294
Matriz de Confusão:
[[93 8 0 0]
[16 68 6 0]

132

[2 4 70 14]
[0 0 0 90]]

Sensibilidade por classe: [0.83783784 0.85 0.92105263 0.86538462]
Precisão por classe: [0.92079208 0.75555556 0.77777778 1.]
F1-Score por classe: [0.87735849 0.8 0.84337349 0.92783505]

Conclusão:
Modelo que apresentou melhor desempenho foi o de RNA treinado com as
características extraídas pela VGG16, levando em consideração as métricas de
acurácia, com 0.86, mas principalmente o F1-score obtido para cada classe do
problema, demonstrando um equilíbrio para identificar corretamente os casos
positivos e minimizar falsos positivos e falsos negativos.

2 Redes Neurais
Data augmentation
train generator = ImageDataGenerator(rotation range=90,

brightness range=[0.4,0.7], width shift range=0.5,
height shift range=0.5, horizontal flip=True,
vertical flip=True, validation split=0.2,
preprocessing function=preprocess input)

test generator = ImageDataGenerator(preprocessing function=preprocess input)

Quantidade de imagens criadas em cada ciclo
BATCH_SIZE = 32

traingen = train generator.flow from dataframe(train features shuffled,
x col='imagePath', y col='label', target size=(224,224),
batch size=BATCH SIZE, shuffle=True, class mode='sparse',
seed=42, subset='training')

validgen = train generator.flow from dataframe(train features shuffled,
x col='imagePath', y col='label',target size=(224,224),
batch size=BATCH SIZE, shuffle=True, class mode='sparse',
seed=42, subset='validation')

Found 382 validated image filenames belonging to 4 classes.
Found 95 validated image filenames belonging to 4 classes.

testgen = test generator.flow from dataframe(test features,
x col='imagePath', y col='label', target size=(224,224),
batch size=BATCH SIZE, shuffle=False, class mode=None,
seed=42,)

Found 371 validated image filenames.

133

VGG16
Carregando modelo VGG16 sem a camada de classificação
vgg16 base model = VGG16(weights='imagenet', include top=False,

input shape=(224, 224, 3))

Não treinar os pesos existentes
for layer in vgg16 base model.layers:

layer.trainable = False

Adicionando as camadas para problema das 4 classes:
x = Flatten()(vgg16 base model.output)
x = Dense(4, activation='softmax')(x)

Criando modelo com camadas totalmente conectadas
vgg16 model = Model(inputs=vgg16 base model.input,outputs=x)

Compilando o modelo
vgg16 model.compile(optimizer='adam',
loss='sparse categorical crossentropy', metrics=['accuracy'])
vgg16 model.summary()
Model: " fu n c t io n a l_ l"

Layer (typ e) Output Shape Param #

in p u t_ la y e r_ l (In p u tL a y e r) (None, 224, 224, 3) 0

b lo c k l_ c o n v l (Conv2D) (None, 224, 224, 64) 1,792

b lock l_conv2 (Conv2D) (None, 224, 224, 64) 36,928

b lo c k l_ p o o l (MaxPooling2D) (None, 112, 112, 64) 0

b lock2_conv l (Conv2D) (None, 112, 112, 128) 73,856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147,584

b lock2_poo l (MaxPooling2D) (None, 56, 56, 128) 0

b lock3_conv l (Conv2D) (None, 56, 56, 256) 295,168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590,080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590,080

b lock3_poo l (MaxPooling2D) (None, 28, 28, 256) 0

b lock4_conv l (Conv2D) (None, 28, 28, 512) 1,180,160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2,359,808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2,359,808

b lock4_poo l (MaxPooling2D) (None, 14, 14, 512) 0

b lock5_conv l (Conv2D) (None, 14, 14, 512) 2,359,808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2,359,808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2,359,808

b lock5_poo l (MaxPooling2D) (None, 7 , 7, 512) 0

f la t t e n (F la t te n) (None, 25088) 0

dense (Dense) (None, 4) 100,356

T o ta l params: 14,815,044 (56.51 MB)
T ra in a b le params: 100,356 (392.02 KB)
N o n -tra in a b le params: 14,714,688 (56.13 MB)

134

Resnet50
resnet base model = ResNet50(input shape=(224,224,3), weights='imagenet',
include top=False)

Não treinar os pesos existentes
for layer in resnet base model.layers:

layer.trainable = False

Adicionando as camadas para problema das 4 classes:
x = Flatten()(resnet base model.output)
x = Dense(4, activation='softmax')(x)

Criando modelo com camadas totalmente conectadas
resnet50 model = Model(inputs=resnet base model.input,outputs=x)

Compilando o modelo
resnet50 model.compile(optimizer='adam',
loss='sparse categorical crossentropy', metrics=['accuracy'])
resnet50 model.summary()
Model: ''functional_2"

Layer (type) Output Shape Param # Connected to

input_layer_2
(InputLayer)

(None, 224, 224, 3) 0 -

convl_pad (ZeroPadding2D) (None, 230, 230, 3) 0 input_layer_2[0][0)

convl_conv (Conv2D) (None, 112, 112, 64) 9,472 convl_pad(0)[0]

convl_bn
(BatchNormalization)

(None, 112, 112, 64) 256 convl_conv[0][0]

convl_relu (Activation) (None, 112, 112, 64) 0 convl_bn[0][0]

pooll_pad (ZeroPadding2D) (None, 114, 114, 64) 0 convl_relu[0][0]

pooll_pool (MaxPooling2D) (None, 56, 56, 64) 0 pooll_pad(0)[0]

conv2_blockl_l_conv
(Conv2D)

(None, 56, 56, 64) 4,160 pooll_pool[0][0]

conv2_blockl_l_bn
(BatchNormalization)

(None, 56, 56, 64) 256 conv2_blockl_l_conv [0..

c o n v2_blo c kl_l_ relu
(Activation)

(None, 56, 56, 64) 0 conv2_blockl_l_bn [0] [...

conv2_blockl_2_conv
(Conv2D)

(None, 56, 56, 64) 36,928 conv2_blockl_l_relu[0-

conv2_blockl_2_bn
(BatchNormalization)

(None, 56, 56, 64) 256 conv2_blockl_2_conv[0_.

conv2_blockl_2_relu
(Activation)

(None, 56, 56, 64) 0 conv2_blockl_2_bn [0] 1...

conv2_bloc kl_0_c o nv
(Conv2D)

(None, 56, 56, 256) 16,640 pooll_pool[0)[0]

conv2_blockl_3_conv
(Conv2D)

(None, 56, 56, 256) 16,640 conv2_blockl_2_relu [0_.

conv2_blockl_0_bn
(BatchNormalization)

(None, 56, 56, 256) 1,024 conv2_blockl_0_conv[0_.

135

Data Augmentation
%%time
steps per epoch = traingen.samples // BATCH SIZE
val steps = validgen.samples // BATCH SIZE
n_epochs = 10

Treinamento do Modelo
vgg16 model.fit(traingen, epochs=n epochs, steps per epoch=steps per epoch,

validation data=validgen, validation steps=val steps,
callbacks=None, verbose=True)

Epoch 1/10
/ u s r/ lo c a l/ lib / p y th o n 3 .1 0 / d is t -p a c k a g e s/ k e ra s/ s rc / t ra in e r s/ d a ta _ a d a p te r s / p y _ d a ta se t_ a d a p te r .p y :121: U se rW arn ing: Your

se l f . _ w a rn _ if _ s u p e r _ n o t _ c a l le d ()
11/11 ----------------------------------- 43 s 2 s / s te p - a ccu ra cy: 0 .3868 - lo s s : 7 .3268 - v a l_ a cc u ra c y : 0 .6 719 - v a l_ lo s s : 3 .5296
Epoch 2/10

1/11 - l s 119m s/step - a ccu ra cy : 0 .6562 - lo s s : 3 .0 3 0 8 / u s r/ lib / p y th o n 3 .1 0 / c o n te x t lib .p y :1 5 3 : UserWc
se lf . g e n .t h ro w (t y p , v a lu e , tra ceb ack)

11/11 ----------------------------------- 18s 2 s / s te p - a ccu ra cy: 0 .6562 - lo s s : 3 .0308 - v a l_ a cc u ra c y : 0 .7097 - v a l_ lo s s : 2 .6398
Epoch 3/10
11/11 ----------------------------------- l i s 590m s/step - a ccuracy: 0 .7292 - lo s s : 2 .5661 - v a l_ a c c u ra c y : 0 .7 031 - v a l_ lo s s : 3 .2836
Epoch 4/10
11/11 ----------------------------------- l s 50m s/step - a ccu ra cy: 0 .7812 - lo s s : 1 .5147 - v a l_ a cc u ra c y : 0 .7742 - v a l_ lo s s : 2.2740
Epoch 5/10
11/11 ----------------------------------- 10 s 494m s/step - a ccuracy: 0 .7618 - lo s s : 2 .5391 - v a l_ a c c u ra c y : 0 .8 594 - v a l_ lo s s : 1 .2864
Epoch 6/10
11/11 ----------------------------------- l s 86m s/step - a ccu ra cy: 0 .7188 - lo s s : 2 .3250 - v a l_ a cc u ra c y : 0 .7097 - v a l_ lo s s : 3 .6079
Epoch 7/10
11/11 ----------------------------------- 10s 450m s/step - a ccuracy: 0 .7968 - lo s s : 2 .0041 - v a l_ a cc u ra c y : 0 .8 750 - v a l_ lo s s : 0 .9892
Epoch 8/10
11/11 ----------------------------------- l s 53m s/step - a ccu ra cy: 0 .8438 - lo s s : 1 .0856 - v a l_ a cc u ra c y : 0 .8387 - v a l_ lo s s : 0 .8129
Epoch 9/10
11/11 ----------------------------------- l i s 457m s/step - a ccuracy: 0 .8386 - lo s s : 1 .2825 - v a l_ a c c u ra c y : 0 .9062 - v a l_ lo s s : 0 .6515
Epoch 10/10
11/11 ----------------------------------- l s 52m s/step - a ccu ra cy: 0 .8750 - lo s s : 0 .8133 - v a l_ a cc u ra c y : 0 .8387 - v a l_ lo s s : 1 .5431
CPU tim e s: u se r lm in 33 s, s y s : 1 .65 s, t o t a l : lm in 35s
W a ll tim e: lm in 46s
< k e r a s . s r c . c a l lb a c k s . h is t o r y . H i s t o r y a t 0x7bb756956ce0>

Treinamento do Modelo
resnet50 model.fit(traingen, epochs=n epochs, steps per epoch =

steps_per_epoch, validation_data=validgen,
validation steps=val steps, callbacks=None,
verbose=True)

Epoch 1/10
11/11 ----------------------------------- 31 s ls / s t e p - a ccuracy: 0.4298 - lo s s : 12 .0453 - v a l_a cc u rac y : 0 .7344 - v a l_ lo s s : 2.9962
Epoch 2/10
11/11 ----------------------------------- 5 s 521m s/step - a ccuracy: 0.6875 - lo s s : 6 .7072 - va l_ a cc u ra c y : 0 .6129 - v a l_ lo s s : 5.0195
Epoch 3/10
11/11 ----------------------------------- 9 s 421m s/step - a ccuracy: 0.6856 - lo s s : 5 .9422 - v a l_a cc u rac y : 0 .7969 - v a l_ lo s s : 3.3152
Epoch 4/10
11/11 ----------------------------------- l s 55m s/step - a ccuracy: 0 .7188 - lo s s : 5 .4231 - va l_ a cc u ra c y : 0 .8387 - v a l_ lo s s : 1.4088
Epoch 5/10
11/11 ----------------------------------- 10s 418m s/step - a ccuracy: 0 .7910 - lo s s : 3.0186 - v a l_a cc u rac y : 0 .8906 - v a l_ lo s s : 0 .8024
Epoch 6/10
11/11 ----------------------------------- l s 52m s/step - a ccuracy: 0 .8438 - lo s s : 2 .3277 - va l_ a cc u ra c y : 0 .9032 - v a l_ lo s s : 1.7724
Epoch 7/10
11/11 ----------------------------------- 20 s 550m s/step - a ccuracy: 0 .8520 - lo s s : 2.1586 - v a l_ a c c u ra c y : 0 .8906 - v a l_ lo s s : 0.6141
Epoch 8/10
11/11 ----------------------------------- l s 80m s/step - a ccuracy: 0 .8750 - lo s s : 1.6965 - va l_ a cc u ra c y : 0 .9032 - v a l_ lo s s : 2.7587
Epoch 9/10
11/11 ----------------------------------- 20 s 426m s/step - a ccuracy: 0 .8847 - lo s s : 1.5170 - v a l_ a c c u ra c y : 0 .7969 - v a l_ lo s s : 2.1935
Epoch 10/10
11/11 ----------------------------------- l s 54m s/step - a ccuracy: 0 .9375 - lo s s : 0.9702 - va l_ a cc u ra c y : 0 .9355 - v a l_ lo s s : 1.2078
< k e r a s . s r c . c a l lb a c k s . h is t o r y . H i s t o r y a t 0x7bb738795d20>

Testando os modelos com data augmentation
VGG16
vgg16_preds = vgg16_model.predict(testgen)
predicted vgg16 classes = np.argmax(vgg16 preds, axis=1)

136

predicted vgg16 classes = [str(pred) for pred in predicted vgg16 classes]

Acurácia
vgg16 accuracy = accuracy score(y test, predicted vgg16 classes)
print(f'Acurácia {vgg16 accuracy}')

Matriz de confusão
vgg16 cm = confusion matrix(y test, predicted vgg16 classes)
print(f"Matriz de Confusão:\n{vgg16 cm}")

Sensibilidade, precisão, e F1-score
vgg16 recall, vgg16 precision, vgg16 f1, =

precision recall fscore support(y test, predicted vgg16 classes)
print("Sensibilidade por classe:", vgg16 recall)
print("Precisão por classe:", vgg16 precision)
print("F1-Score por classe:", vgg16 f1)

Acurácia 0.7169811320754716
Matriz de Confusão:
[[101 0 0 0]

[49 1 40 0]

[11 3 75 1]

[0 0 1 89]]
Sensibilidade por classe: [0.62732919 0.25 0.64655172 0.98888889]
Precisão por classe: [1. 0.01111111 0.83333333 0.98888889]
F1-Score por classe: [0.77099237 0.0212766 0.72815534 0.98888889]

Resnet50
resnet50 preds = resnet50 model.predict(testgen)
predicted resnet50 classes = np.argmax(resnet50 preds, axis=1)

predicted resnet50 classes = [str(pred) for pred in
predicted resnet50 classes]

Acurácia
resnet50 accuracy = accuracy score(y test, predicted resnet50 classes)
print(f'Acurácia {resnet50 accuracy}')

137

Matriz de confusão
resnet50 cm = confusion matrix(y test, predicted resnet50 classes)
print(f"Matriz de Confusão:\n{resnet50 cm}")

Sensibilidade, precisão, e F1-score
resnet50 recall, resnet50 precision, resnet50 f1, =

precision recall fscore support(y test, predicted resnet50 classes)
print("Sensibilidade por classe:", resnet50 recall)
print("Precisão por classe:", resnet50 precision)
print("F1-Score por classe:", resnet50 f1)
Acurácia 0.9002695417789758
Matriz de Confusão:
[[101 0 0 0]
[10 77 2 1]
[3 9 68 10]
[0 0 2 88]]

Sensibilidade por classe: [0.88596491 0.89534884 0.94444444 0.88888889]
Precisão por classe: [1. 0.85555556 0.75555556 0.97777778]
F1-Score por classe: [0.93953488 0.875 0.83950617 0.93121693]

Testando os modelos com data augmentation
Gerador sem configurações de data augmentation
train generator without data augmentation = ImageDataGenerator

(preprocessing function=preprocess input,validation split=0.2)
traingen without data augmentation =

train generator without data augmentation.flow from dataframe
(train features shuffled, x col='imagePath', y col='label',
target size=(224,224), batch size=BATCH SIZE, shuffle=True,
class mode='sparse', seed=42, subset='training')

validgen_without_data_augmentation =
train generator without data augmentation.flow from dataframe

(train features shuffled, x col='imagePath', y col='label',
target size=(224,224), batch size=BATCH SIZE, shuffle=True,
class mode='sparse', seed=42, subset='validation')

Found 382 validated image filenames belonging to 4 classes.
Found 95 validated image filenames belonging to 4 classes.

Treinamento do Modelo
vgg16 model.fit(traingen without data augmentation, epochs=n epochs,

steps per epoch=steps per epoch,

138

validation_data=validgen_without_data_augmentation,
validation steps=val steps, callbacks=None,
verbose=True)

Treinamento do Modelo
resnet50 model.fit(traingen without data augmentation, epochs=n epochs,

steps per epoch=steps per epoch,
validation_data=validgen_without_data_augmentation,
validation steps=val steps, callbacks=None,
verbose=True)

< k e ra s . s rc .c a llb a c k s .h is to r y .H is t o ry at 0x7bb730108940>

Testando os modelos
VGG16 Sem Data augmentation
vgg16 preds without = vgg16 model.predict(testgen)
predicted vgg16 without classes = np.argmax(vgg16 preds without, axis=1)

predicted vgg16 without classes = [str(pred) for pred in
predicted vgg16 without classes]

Acurácia
vgg16_accuracy_without =

accuracy score(y test, predicted vgg16 without classes)
print(f'Acurácia {vgg16 accuracy without}')

139

Matriz de confusão
vgg16 cm without = confusion matrix(y test, predicted vgg16 without classes)
print(f"Matriz de Confusão:\n{vgg16 cm without}")
Sensibilidade, precisão, e F1-score
vgg16 recall without, vgg16 precision without, vgg16 f1 without, =
precision recall fscore support(y test, predicted vgg16 without classes)
print("Sensibilidade por classe:", vgg16 recall without)
print("Precisão por classe:", vgg16 precision without)
print("F1-Score por classe:", vgg16 f1 without)

Acurácia 0.7601078167115903
Matriz de Confusão:
[[93 6 2 0]
[13 13 64 0]
[0 0 87 3]
[0 0 1 89]]

Sensibilidade por classe: [0.87735849 0.68421053 0.56493506 0.9673913]
Precisão por classe: [0.92079208 0.14444444 0.96666667 0.98888889]
F1-Score por classe: [0.89855072 0.23853211 0.71311475 0.97802198]

Resnet50 Sem Data augmentation
resnet50 preds without = resnet50 model.predict(testgen)
predicted resnet50 without classes = np.argmax(resnet50 preds without,
axis=1)
12/12 3s 223ms/step

predicted resnet50 without classes =
predicted resnet50 without classes]

[str(pred) for pred in

Acurácia
resnet50_accuracy_without =
predicted resnet50 without classes)
print(f'Acurácia {resnet50 accuracy without}')

accuracy score(y test

Matriz de confusão
resnet50 cm without =
predicted resnet50 without classes)
print(f"Matriz de Confusão:\n{resnet50 cm without}")

confusion matrix(y test

Sensibilidade, precisão, e F1-score

140

resnet50 recall without, resnet50 precision without, resnet50 f1 without,
= precision recall fscore support(y test,
predicted resnet50 without classes)

print("Sensibilidade por classe:", resnet50 recall without)
print("Precisão por classe:", resnet50 precision without)
print("F1-Score por classe:", resnet50 f1 without)

Acurácia 0.9191374663072777
Matriz de Confusão:
[[86 15 0 0]
[1 87 2 0]
[0 4 83 3]
[0 0 5 85]]

Sensibilidade por classe: [0.98850575 0.82075472 0.92222222 0.96590909]
Precisão por classe: [0.85148515 0.96666667 0.92222222 0.94444444]
F1-Score por classe: [0.91489362 0.8877551 0.92222222 0.95505618]

Conclusão:
O modelo que apresentou melhor desempenho foi o do Resnet50 treinado sem

dados provenientes de data augmentation. As métricas consideradas foram as
de acurácia, com 0.91, mas principalmente o F1-score obtido para cada

classe do problema, demonstrando um equilibrio para identificar
corretamente os casos positivos e minimizar falsos positivos e falsos

negativos.

141

APÊNDICE 11 - ASPECTOS FILOSÓFICOS E ÉTICOS DA IA

A - ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06)

integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e

propor soluções responsáveis para lidar com esses dilemas.

Parâmetros para elaboração do Trabalho:

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como usuários,

desenvolvedores e a sociedade em geral.

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso,

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas,

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. Eles

devem considerar como essas soluções podem equilibrar os interesses de diferentes partes

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.

4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais

aprendidos ao analisar um caso concreto.

5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500

e 3000 palavras.

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução,

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas,

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.

7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.

142

8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir

suas mensagens de maneira sucinta.

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve-

se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp-

content/uploads/2022/03/template-artigo-de-periodico.docx

B - RESOLUÇÃO
RESUMO
A inteligência artificial (IA), desde sua concepção em 1956, tem evoluído
rapidamente, especialmente na forma de IA generativa, que cria conteúdos como
texto, imagem e áudio baseados em dados de treinamento. O ChatGPT, principal
exemplo de IA generativa, exemplifica o potencial e os desafios éticos dessa
tecnologia. Treinado com vastos conjuntos de dados da internet, levanta
diversas questões éticas, como consentimento dos dados utilizados,
preconceito ocasionado por viés algorítmico e facilidade na criação de fake
news. Para mitigar esses problemas, propõem-se políticas de transparência e
consentimento para o uso de dados, auditorias de viés algorítmico e educação
em ética para desenvolvedores. Além disso, medidas de verificação de conteúdo
e políticas de alfabetização midiática são necessárias para combater a
disseminação de fake news. Em conclusão, apesar dos benefícios significativos
do ChatGPT, é essencial abordar suas implicações éticas de maneira cuidadosa.

Palavras-chave: inteligência artificial. inteligência artificial generativa.
ética. viés. privacidade.

ABSTRACT
Artificial intelligence (AI), since its conception in 1956, has rapidly
evolved, especially in the form of generative AI, which creates content such
as text, images, and audio based on training data. ChatGPT, a prominent
example of generative AI, exemplifies both the potential and ethical
challenges of this technology. Trained on vast datasets from the internet,
it raises various ethical questions, including consent for data used, bias
introduced by algorithmic bias, and ease of creating fake news. To mitigate
these issues, proposed solutions include transparency and consent policies
for data usage, algorithmic bias audits, and ethics education for developers.
Additionally, content verification measures and media literacy policies are
necessary to combat the spread of fake news. In conclusion, despite the

143

significant benefits of ChatGPT, addressing its ethical implications
carefully is essential.

Keywords: artificial intelligence. generative artificial intelligence.
ethics. bias. Privacy.

1 Introdução
O termo "inteligência artificial" (IA) foi cunhado em 1956, durante uma
conferência na Universidade de Dartmouth promovida por John McCarthy, Marvin
Minsky, Nathaniel Rochester e Claude Shannon. Desde então, a definição de IA
tem sido objeto de debate, mas geralmente se refere à capacidade de máquinas
e sistemas computacionais de executar tarefas que normalmente exigiriam a
inteligência humana. Alternativamente, IA pode ser entendida como a área de
estudo que busca construir agentes inteligentes capazes de realizar a melhor
ação possível em uma dada situação1. Exemplos de tarefas e agentes
inteligentes incluem reconhecimento de voz, reconhecimento de imagens,
aprendizado de padrões, diagnóstico médico, veículos autônomos e recomendação
de conteúdo.
Recentemente, um subcampo da IA tem ganhado destaque: a IA generativa. A IA
generativa representa sistemas capazes de criar novos conteúdos, seja texto,
imagem ou áudio, baseados em dados de treinamento. Para alcançar esses
resultados, a IA generativa utiliza aprendizado de máquina, em particular
redes neurais profundas. O sucesso no uso das redes neurais profundas foi
viabilizado pelos avanços na capacidade de processamento e no desenvolvimento
de hardware, resultando em processadores mais rápidos e eficientes, como GPUs
(unidades de processamento gráfico) e TPUs (unidades de processamento
tensorial), que permitem que sistemas de IA realizem cálculos complexos em
velocidades sem precedentes.

As grandes companhias de tecnologia, conhecidas como Big Tech, têm
investido intensamente em pesquisas para o avanço das inteligências
artificiais (IA). As estratégias de coleta de dados e estudo do comportamento
humano no meio digital estão cada vez mais sofisticadas, permitindo a sugestão
e direcionamento de produtos e serviços com grande eficiência. Os usuários
de mídias sociais e da internet em geral tornaram-se produtos valiosos,
disputados pelas grandes companhias, gerando uma competição feroz entre as
Big Tech e impulsionando a evolução tecnológica de forma exponencial.

No entanto, essa evolução tecnológica supera a capacidade da sociedade
tradicional de acompanhá-la com suas leis e regras. Novas tecnologias
introduzem vieses complexos, exigindo atenção contínua de governos, órgãos
reguladores e sociedade civil para assegurar os direitos e padrões éticos
existentes. Entre os desafios estão a proteção da propriedade intelectual, a

144

privacidade dos dados pessoais, os direitos humanos, a criação de noticias
falsas (fake news) por algoritmos inteligentes e os vieses decorrentes do
mau uso da tecnologia. O uso do ChatGPT, devido à sua popularidade e rápida
ascensão2, exemplifica algumas dessas implicações éticas. Este estudo de caso
explora as implicações éticas do uso do ChatGPT, destacando a importância de
considerar aspectos como privacidade dos usuários e de seus dados, viés e
impacto social.

2 Desenvolvimento
O ChatGPT, desenvolvido pela OpenAI3, é o exemplo mais conhecido de IA
generativa. Ele pode ser definido como um Modelo de Linguagem de Grande Porte,
projetado para o processamento de linguagem natural. Esse tipo de modelo é
exposto a quantidades massivas de dados para aprender os padrões estatísticos
da linguagem, permitindo que ele "gere" novos textos e sequências de palavras
com base na probabilidade de como um humano usaria as palavras em um dado
contexto.
De acordo com estimativas do banco de investimento UBS2, o ChatGPT conseguiu
alcançar mais de 100 milhões de usuários mensais ativos em menos de três
meses, marca que o transformou no aplicativo com o mais rápido crescimento
na história. Entretanto, essa rápida adoção levanta questões éticas que não
podem ser desconsideradas.
Para compreender os padrões linguísticos e, mais recentemente, ser capaz de
processar entradas multimodais, ou seja, texto e imagem, o ChatGPT demandou
um grande volume de dados. Uma das primeiras questões éticas levantadas diz
respeito à proveniência desses dados. Os dados utilizados para treinar modelos
como o ChatGPT são, em sua maioria, oriundos de conteúdos públicos da
internet. Mas, apesar de estar disponível publicamente, os autores/donos de
tais conteúdos não deram consentimento explícito ao ChatGPT. Eles podem até
ter concordado com os termos de uso das plataformas em que originalmente
postaram conteúdo, mas não imaginaram que, no futuro, seus materiais seriam
utilizados para treinar e até mesmo servir de base para IAs generativas. Até
que ponto algo que está disponível publicamente e gratuitamente na internet
pode ser utilizado, sem consentimento direto dos autores, por empresas
privadas no desenvolvimento e melhoria de tecnologias que eventualmente vão
gerar lucros para as mesmas?
Esse questionamento se amplia pois, recentemente, a Meta, empresa por traz
de aplicativos como Instagram, Facebook e Whatsapp, adicionou uma seção à
sua política de privacidade do Instagram para que os usuários possam optar
ou não em fornecer suas postagens públicas como fonte de dados para
treinamento de Ias generativas da Meta4. Ou seja, os usuários de aplicações
da Meta vão ter a chance de recusar o uso de seus dados, mas como fica o

145

direito de escolha frente a outros modelos de IA generativa que simplesmente
afirmam usar dados compartilhados publicamente na internet? Os usuários
saberão algum dia que seus conteúdos foram usados por esses modelos?
Outro caso recente envolvendo IA generativa e suposto uso não autorizado de
dados de terceiros é o da Associação Americana da Indústria de Gravação
(Recording Industry Assoiation of America - RIAA) que entrou com processos
contra duas empresas do ramo de IA generativa para música, a Udio e a Suno.
A RIAA alega que estas empresas fizeram uso de uma quantidade massiva de
músicas protegidas por direitos autorais para conseguir treinar seus
modelos5. Caso a RIAA ganhe a causa, pode conseguir abrir precedentes legais
relevantes contra casos similares, demonstrando para empresas de IA
generativa que elas não podem simplesmente se apropriar de material disponível
online para suprir a considerável quantidade de dados necessárias para treinar
seus modelos.
Outra questão ética envolvendo dados diz respeito à possível introdução de
viés algoritmo, visto que os dados são selecionados para o treinamento, ou
seja, a imparcialidade do modelo resultante do treinamento depende dos dados
apresentados a ele. Caso os dados selecionados sejam preconceituosos ou
desiguais entre diferentes grupos, ou ainda, tenha ocorrido processo de
rotulação manual tendenciosa, o modelo vai incorporar isso e acabar replicando
esses vieses, impactando na desejada neutralidade algorítmica.
A simplicidade no uso de ferramentas de IA generativa, como o ChatGPT, onde
o usuário apenas escreve num prompt de comando e rapidamente é respondido
com textos ou imagens, em comparação com métodos "antigos" de obter conteúdo
generativo, que exigia conhecimento em programação e técnicas de inteligência
artificial, ou de editores de fotos, para caso das imagens, levanta outra
questão ética: A facilidade, e velocidade, na criação de conteúdos fantasiosos
que podem servir como fonte de notícias falsas, as famosas fake news.
A sofisticação dos conteúdos obtidos com ChatGPT dificulta a capacidade de
distinguir entre o que é real e o que não é, assim, conteúdos falsos gerados
dessa forma podem rapidamente serem distribuídos entre a população,
contribuindo para enfraquecimento na confiança pública nas fontes de
informação e levando a uma sociedade "informada" por pós verdade.
As implicações éticas em torno do uso do ChatGPT e outras IAs generativas
constituem um campo vasto. Este trabalho optou por discutir questões
relacionadas à origem dos dados utilizados no treinamento dos modelos de IA,
os riscos ideológicos introduzidos durante esse processo e a facilidade na
geração de notícias falsas. A seguir, serão apresentadas possíveis soluções
para mitigar esses problemas.
Primeiramente, a respeito da privacidade e consentimento dos dados. É
imprescindível a implementação de políticas de transparência que informem aos

146

usuários sobre como seus dados poderão ser utilizados para treinamento de
modelos de IA. Além disso, assim como a iniciativa da Meta, oferecer uma
opção para que o usuário informe que não permite que seus dados sejam usados
para este fim.
Com relação ao problema do viés algorítmico, é necessário garantir que os
conjuntos de dados utilizados nos treinamentos sejam diversos, garantindo
assim representatividade desses dados. Outra medida aplicável para mitigar o
viés é a realização de auditorias, buscando identificação e correção de
possíveis vieses. Além disso, a capacitação dos desenvolvedores e
pesquisadores em boas práticas éticas aplicadas à IA pode contribuir para
que os vieses sejam reduzidos ainda na fase de desenvolvimento.
O combate à disseminação de fake news e conteúdos enganosos de modo geral
demanda tanto esforços por parte das empresas por trás dos modelos de IA
quanto das redes sociais e do governo. As empresas devem implementar
ferramentas, ou consumir de empresas terceiras, para verificar e monitorar a
qualidade e a veracidade dos conteúdos gerados por seus modelos. Já as
plataformas de redes sociais devem sinalizar conteúdos potencialmente falsos
ou enganosos, ou no mínimo, mencionar quanto a geração da resposta/conteúdo
por um mecanismo de inteligência artificial. Por sua vez, o governo deve
promover políticas de alfabetização midiática à população, capacitando as
pessoas a discernirem entre informações confiáveis e falsas, sem serem
influenciadas por crenças pessoais e focando, em especial, na educação
infantil, como meio de desenvolver uma geração de pessoas mais bem preparada
para uso dos recursos cibernéticos.
Resumindo, o enfrentamento das implicações éticas relacionadas ao ChatGPT
exige um esforço conjunto entre desenvolvedores, pesquisadores, empresas,
órgão reguladores e população em geral.

3 Conclusão
O rápido crescimento das tecnologias de informação e comunicação traz
benefícios, mas também desafios para salvaguardar os direitos humanos e a
privacidade. A disseminação da IA, acessível a grande parte da população
mundial, levanta questões sobre os desafios enfrentados pela sociedade
informacional. Compreender e tratar esses desafios éticos e morais é urgente
e necessário. Acompanhando a evolução tecnológica e garantindo que regras
éticas estejam atualizadas, podemos evitar resultados ineficazes ou
obsoletos. O envolvimento de reguladores, desenvolvedores de tecnologia, a
sociedade e governos é essencial para criar regras que abranjam e arbitrem
todos os interesses comuns. Além disso, é necessário adaptar os padrões éticos
para a sociedade informacional, considerando o uso das tecnologias desde a

147

infância e a inclusão de gerações anteriores menos familiarizadas com essas
inovações.

Referências
1. RUSSEL, S.; NORVIG, P. Artificial Intelligence: A modern approach. Ed.
Prentice-Hall, Egnlewood Cliffs, 1995.
2. AI Business - UBS: ChatGPT May Be the Fastest Growing App of All Time.
Disponível em: https://aibusiness.com/nlp/ubs-chatgpt-is-the-fastest-
growing-app-of-all-time. Acesso em 16 jun. 2024.
3. OpenAI - What is ChatGPT?. Disponível em:
https://help.openai.com/en/articles/6783457-what-is-chatgpt. Acesso em 16
jun.2024.
4. Aos Fatos - Como impedir que a Meta use seus dados para alimentar modelos
de IA. Disponível em: https://www.aosfatos.org/noticias/como-impedir-uso-
dados-pessoais-ia-meta-facebook/. Acesso em 21 jun. 2024.
5. Variety - Major Labels Sue AI Music Services Suno and Udio for Copyright
Infringement. Disponível em: https://variety.com/2024/music/news/record-
labels-sue-ai-music-services-suno-and-udio-copyright-infringement-
1236045366/. Acesso em 25jun. 2024.

https://aibusiness.com/nlp/ubs-chatgpt-is-the-fastest-
https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://www.aosfatos.org/noticias/como-impedir-uso-
https://variety.com/2024/music/news/record-

148

APÊNDICE 12 - GESTÃO DE PROJETOS DE IA

A - ENUNCIADO

1 Objetivo

Individualmente, ler e resumir - seguindo o template fornecido - um dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied

Soft Computing. 143. 2023. DOI https://doi .org/ 10.1016/j .asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems:

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207.

2024. DOI https://doi .org/10.1016/i.iss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for

machine learning - Adoption, effects, and team assessment. The Journal of Systems &

Software. 209. 2024. DOI https://doi.org/10.1016/i.iss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development

of artificial intelligence models - Current state of research and practice. The Journal of

Systems & Software. 199. 2023. DOI https://doi.org/10.1016/i.iss.2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML?

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on

Human Factors in Computing Systems (CHI'21), Maio 8-13, 2021, Yokohama, Japão. DOI

https://doi.org/10.1145/3411764.3445306

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para

entender o conteúdo dos artigos - caso precise, mas escreva o resumo em língua portuguesa e nas

suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo

escolhido.

No template, você deverá responder às seguintes questões:

• Qual o obietivo do estudo descrito pelo artigo?
• Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?
• Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
• Quais os principais resultados obtidos pelo estudo?

https://doi.org/10.1016/j.asoc.2023.110421
https://doi.org/10.1016/j.jss.2023.111860
https://doi.org/10.1016/j.jss.2023.111907
https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/10.1145/3411764.3445306

149

Responda cada questão utilizando o espaço fornecido no template, sem alteração do tamanho

da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o

trabalho em PDF.

B - RESOLUÇÃO
Questão 1)
Qual o objetivo do estudo descrito pelo artigo?

O artigo tem por objetivo identificar os desafios comuns, as melhores práticas
de design e as principais decisões de design de arquitetura de software de
sistemas habilitados para aprendizado de máquina do ponto de vista de
pesquisadores e profissionais da área. Com o crescimento cada vez mais veloz
das necessidades de uso das técnicas de Machine Learning em áreas tais como
na de veículos autônomos, robótica e Internet das Coisas, o estudo visa
fornecer apoio no enfrentamento destas complexidades e especificidades de
modo a melhorar sua eficiência, confiabilidade e capacidade de manutenção e
evolução contínua. Os autores baseiam sua pesquisa na revisão da literatura
existente e em entrevistas com especialistas da área, com o objetivo de
combinar as teorias acadêmicas com as experiências práticas do mercado.

Questão 2)
Qual o problema/oportunidade/situação que levou à necessidade de realização
desse estudo?

O estudo foi motivado pela crescente complexidade dos sistemas habilitados
para aprendizado de máquina. Por tratar-se de sistemas atuantes em áreas
críticas trazem desafios específicos tanto para o design quanto para a
arquitetura devido à natureza dos modelos de Machine Learning que
frequentemente precisam lidar com grandes quantidades de dados e realizar
operações complexas. A necessidade de garantir a confiabilidade e a manutenção
desses sistemas altamente sensíveis a alterações exige atualizações
constantes para melhorar o desempenho e a precisão dos modelos. Tendo em
vista que as abordagens tradicionais de engenharia de software são
insuficientes para lidar com este cenário o estudo procura criar uma
compreensão estruturada dos desafios identificando ideias que podem ajudar

150

pesquisadores e profissionais da área no desenvolvimento mais eficaz de
sistema habilitados para aprendizado de máquina.

Questão 3)
Qual a metodologia que os autores usaram para obter e analisar as informações
do estudo?

Os autores utilizaram uma abordagem mista que combina a revisão sistemática
da literatura existente com entrevistas com especialistas. Para revisão
sistemática da literatura foram utilizados como base os dados acadêmicos de
3038 estudos relacionados ao tema. A estes estudos foram aplicados critérios
de inclusão e exclusão resultando em 41 estudos classificados para maior
aprofundamento dos quais foram identificados os desafios, as práticas de
design e as decisões de arquitetura. Já as entrevistas com especialistas
tiveram por objetivo a validação e complemento dos estudos acadêmicos. Tais
entrevistas foram aplicadas a 12 especialistas de 09 países, todos com
experiência significativa em desenvolvimento e implementação de sistemas de
Machine Learning, resultando em insights práticos sobre os desafios e práticas
observados no dia a dia. Os dados obtidos através destas duas abordagens
foram comparados, correlacionados e discutidos intra equipe de pesquisa com
o objetivo de identificar temas sobrepostos e perspectivas únicas. Foram
utilizados métodos quantitativos e qualitativos para analisar os dados
coletados o que incluiu técnicas de codificação para categorizar a informação,
análise temática para extração de padrões e percepções.

Questão 4)
Quais os principais resultados obtidos pelo estudo?

Como principais resultados obtidos do estudo inclui-se a identificação de
desafios, tendo sido identificados 35 desafios, estes agrupados por
categorias como arquitetura, dados, evolução, ciclo de vida de
desenvolvimento de software, e garantia de qualidade. Os desafios mais
significativos incluem a gestão de dependências de dados, a garantia da
qualidade e confiabilidade do sistema, o tratamento de complexidades de
arquitetura, o apoio à evolução do modelo, e a integração entre sistemas. Um
outro resultado obtido foi a relação de melhores práticas, tendo sido
identificadas 42 melhores práticas. A adoção de arquiteturas de micro serviços
para modularidade, a implementação de mecanismos de tolerância a falhas, a
normalização do processo de formação foram alguns dos exemplos de melhores
práticas identificadas às quais também foram atribuídas categorias, idênticas
as anteriores. O estudo destacou ainda 27 importantes decisões a respeito de

151

design de arquitetura que consideram a seleção de arquiteturas adequadas, a
escolha de plataformas de aprendizado de máquina apropriadas, e a gestão de
configurações de pipeline de dados, decisões que têm por objetivo orientar
os profissionais na criação de sistemas escaláveis, flexíveis. Em resumo, o
estudo fornece uma base estruturada para que pesquisadores e profissionais
da área possam apoiar-se ao desenvolver seus sistemas de Machine Learning
com destacando a importância de práticas e decisões específicas para lidar
com a complexidade e os desafios únicos desses sistemas.

Referência bibliográfica:
https://www.sciencedirect.com/science/article/pii/S0164121223002558?via%3Di
hub

https://www.sciencedirect.com/science/article/pii/S0164121223002558?via%3Di

152

APÊNDICE 13 - FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL

A - ENUNCIADO

1 Classificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação.

Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula

prática.
Informações:

• Base de dados: Fashion MNIST Dataset
• Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de vestuário.

É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de dígitos.
• Tamanho: 70.000 amostras, 784 features (28x28 pixels).
• Importação do dataset: Copiar código abaixo.

da ta = t f .k e ra s .d a ta s e ts . fa s h io n _ m n is t

(x _ t r a in , y _ t r a in) , (x _ te s t , y _ te s t) = fa s h io n _ m n is t. lo a d _ d a ta ()

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a arquitetura

RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão. Além disso,

fazer uma breve explicação dos seguintes resultados:

• Gráficos de avaliação do modelo (loss);
• Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R2).

Informações:

• Base de dados: Wine Quality
• Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas

características químicas. A variável target (y) neste exemplo será o score de qualidade do
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)

• Tamanho: 1599 amostras, 12 features.
• Importação: Copiar código abaixo.

u r l = " h t tp s : / /a r c h iv e . ic s .u c i.e d u /m l/m a c h in e - le a r n in g -d a ta b a s e s /w in e -

q u a l i t y /w in e q u a l i t y - r e d .c s v "

da ta = p d .re a d _ c s v (u r l, d e l im i t e r = ' ; ')

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-

153

D ica 1. Para f a c i l i t a r o t ra b a lh o , renomeie o nome das co lunas para

p o rtu g uê s , dessa fo rm a:

da ta .co lu m n s = [

'a c id e z _ f ix a ' , #

'a c id e z _ v o la t i l ' , #

'a c id o _ c i t r i c o ' , #

'a c u c a r _ re s id u a l ', #

'c lo r e t o s ' , #

'd io x id o _ d e _ e n x o f re _ l iv re ',

'd io x id o _ d e _ e n x o fre _ to ta l ',

'd e n s id a d e ', #

'p H ', #

's u l f a t o s ' , #

'a l c o o l ' , #

's c o re _ q u a lid a d e _ v in h o '

]

D ica 2 . Separe os dados (x e y) de t a l form a que a ú lt im a co luna (ín d ic e

- 1) , chamada sco re _ q u a lid a d e _ v in h o , s e ja a v a r iá v e l ta r g e t (y)

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de Sistemas

de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados:

• Gráficos de avaliação do modelo (loss);
• Exemplo de recomendação de livro para determinado Usuário.

Informações:

• Base de dados: Base_livros.csv
• Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas),

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
• Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros

(formato .csv).

f ix e d a c id i t y

v o la t i l e a c id i t y

c i t r i c a c id

re s id u a l sugar

c h lo r id e s

f re e s u l f u r d io x id e

t o t a l s u l f u r d io x id e

d e n s ity

pH

s u lp h a te s

a lc o h o l

q u a l i t y

4 Deepdream

154

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de um

felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - Prática

Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:

• Imagem onírica obtida por Main Loop;
• Imagem onírica obtida ao levar o modelo até uma oitava;
• Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

Informações:

• Base de dados: https://commons.wikimedia.org/wiki/File:Felis catus-cat on snow.jpg
• Importação da imagem: Copiar código abaixo.

u r l =

" h t tp s : / /c o m m o n s .w ik im e d ia .O rg /w ik i /S p e c ia l :F i le P a th /F e lis c a tu s -

c a t on s n o w .jp g "

D ica : Para e x ib i r a imagem u t i l iz a n d o d is p la y (d is p la y .h tm l) use o l i n k

h t tp s : / /c o m m o n s .w ik im e d ia .o rg /w ik i/F i le :F e lis _ c a tu s -c a t_ o n _ s n o w . jp g

B - RESOLUÇÃO
Questão 1)
CLASSIFICAÇÃO
Importação das bibliotecas
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from mlxtend.plotting import plot confusion matrix
from sklearn.metrics import confusion matrix

Importação dos dados
(x train, y train), (x test, y test) =

tf.keras.datasets.fashion mnist.load data()
D ow nloading da ta from h t t o s : / / s t o r a ge .aooale a p is . c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t r a in - la b e ls - id x l - u b v te . az

D ow nloading da ta from h t t p s : / / s t o r a a e .a oo a le a p is .c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t r a in - im a ae s - id x 3 - u b v te .az

D ow nloading da ta from h t t p s : / / s t o r a ae .ao o a le a p is .c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t lO k - la b e ls - id x l- u b v te .az

D ow nloading da ta from h t t p s : / / s t o r a ae .aooale a p is .c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t l8 k - im a ae s - id x 3 - u b v te .az

Pré processamento dos dados
x train, x test = x train/255.0, x test/255.0

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://storaae.aooaleapis.com/tensorflow/tf-keras-datasets/train-imaaes-idx3-ubvte.az
https://storaae.aooaleapis.com/tensorflow/tf-keras-datasets/tlOk-labels-idxl-ubvte.az
https://storaae.aooaleapis.com/tensorflow/tf-keras-datasets/tl8k-imaaes-idx3-ubvte.az

155

Criando modelo
i = tf.keras.layers.Input(shape=(28, 28))
x = tf.keras.layers.Flatten()(i)
x = tf.keras.layers.Dense(128, activation="relu")(x)
x = tf.keras.layers.Dropout(0.2)(x)
x = tf.keras.layers.Dense(10, activation="softmax")(x)
model = tf.keras.models.Model(i, x)

Compilando modelo
model.compile(optimizer='adam', loss='sparse categorical crossentropy',

metrics=['accuracy'])

Treinando o modelo
result = model.fit(x train, y

epochs=10)
train, validation data=(x test, y test),

Epoch 1/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 2/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 3/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 4/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 5/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 6/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 7/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 8/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 9/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 10/10
1 8 7 5 /1 8 7 5 -----------------

10s 4m s/step •- a ccuracy: 0 .7670 -- lo s s : : 0.6712 -- va l_accu racy:: 0 .8414 -- v a i _ lo s s : : 0.4391

6s 3m s/step - a ccuracy: 0 .8498 - lo s s : 0 .4162 - va l_a ccu racy : 0.8605 - va l_ lo s s : 0.3869

9s 3m s/step - a ccuracy: 0 .8635 - lo s s : 0 .3718 - va l_a ccu racy : 0.8615 - v a l_ lo s s : 0.3849

5s 2m s/step - a ccuracy: 0 .8727 - lo s s : 0 .3417 - va l_a ccu racy : 0.8711 - va l_ lo s s : 0.3553

4s 2m s/step - accuracy: 0 .8808 - lo s s : 0 .3289 - va l_a ccu racy : 0.8700 - va l_ lo s s : 0.3547

3s 2m s/step - a ccuracy: 0 .8830 - lo s s : 0 .3155 - va l_a ccu racy : 0 .8734 - v a l_ lo s s : 0.3533

4s 2m s/step - a ccuracy: 0 .8850 - lo s s : 0 .3050 - va l_a ccu racy : 0.8785 - v a l_ lo s s : 0.3354

4s 2m s/step - a ccuracy: 0 .8915 - lo s s : 0 .2959 - va l_a ccu racy : 0.8806 - v a l_ lo s s : 0.3312

5s 2m s/step - a ccuracy: 0 .8919 - lo s s : 0 .2865 - va l_a ccu racy : 0.8700 - v a l_ lo s s : 0.3556

5s 2m s/step - a ccuracy: 0 .8927 - lo s s : 0 .2844 - va l_a ccu racy : 0.8825 - va l_ lo s s : 0.3324

Avaliando o modelo
Plotar a função de perda
plt.plot(result.history["loss"], label="loss")
plt.plot(result.history["val loss"], label="val loss")
plt.legend()

156

Gráfico de perda
Durante o treinamento do modelo, observamos que, em apenas 10 épocas, houve
uma redução significativa na perda do treinamento, que caiu de aproximadamente
0.67 para menos de 0.3. Este resultado é positivo, indicando que o modelo
conseguiu aprender a representação dos dados de treinamento de maneira
eficiente.
No entanto, a perda de validação não seguiu a mesma tendência de redução
esperada, apresentando oscilações ao longo das épocas. Isso pode sugerir a
necessidade de mais épocas para observar uma redução mais estável na perda
de validação. Alternativamente, se essas oscilações persistirem, pode ser
necessário revisar tanto a qualidade e a quantidade dos dados de validação
quanto a arquitetura do modelo. Vale destacar que oscilações na perda de
validação podem ser indicativas de overfitting, onde o modelo ajusta-se muito
bem aos dados de treinamento, mas não generaliza tão bem para dados não vistos

Plotar a acurácia
plt.plot(result.history["accuracy"], label="acc")
plt.plot(result.history["val accuracy"], label="val acc")
plt.legend()

Gráfico de acurácia
Quanto à acurácia, o comportamento observado foi o esperado. A acurácia de
treinamento teve um crescimento continuo, alcançando um valor próximo de 0.9,
o que indica que o modelo está aprendendo de forma eficaz. Já a acurácia de
validação também cresceu, mas com pequenas flutuações. Embora tenha mantido
uma tendência ascendente, essas oscilações podem ser um sinal de que o modelo
ainda precisa de mais ajustes para estabilizar a generalização.

Avaliar o modelo com a base de teste
print(model.evaluate(x test, y test))

157

Predições
y pred = model.predict(x test).argmax(axis=1)
print(y pred)

Matriz de confusão
cm = confusion matrix(y test, y pred)
plot confusion matrix(conf mat=cm, figsize=(7, 7),

show normed=True)
(< F ig u re s iz e 700x700 w ith 1 Axes>,
<Axes: x la b e l= ’ p re d ic te d la b e i1, y la b e l= ' t r u e la b e l '>)

Visualizando classificações erradas
misclassified = np.where(y pred != y test)[0]
i = np.random.choice(misclassified)
plt.imshow(x test[i].reshape(28, 28), cmap="gray")
plt.title("True label: %s Predicted: %s" % (y test[i], y_pred[i]))

158

Questão 2)
REGRESSÃO

Importação de bibliotecas
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.metrics import mean absolute error, mean squared error,

r2_score
from sklearn.preprocessing import StandardScaler

Importando os dados
url = "https://archive.ics.uci.edu/ml/machine-learning-

databases/wine-quality/winequality-red.csv"
data = pd.read csv(url, delimiter=';')

data.shape
(1599, 12)

Text(0.5, 1.0, 'True label: 4 Predicted: 2')

Classificação errada
No exemplo de classificação incorreta, temos uma amostra da categoria 4 que
foi erroneamente classificada pelo modelo como categoria 2. Ao analisar a
matriz de confusão, observamos que a maior dificuldade do modelo em relação
à categoria 4 ocorreu justamente com a categoria 2. Especificamente, o modelo
classificou 98 amostras da categoria 4 como pertencentes à categoria 2,
resultando na maior taxa de confusão para essa classe.

https://archive.ics.uci.edu/ml/machine-learning-

159

Separando em variáveis independentes (X) e dependente (y)
X = data.drop("quality", axis=1).values
y = data["quality"].values

Pré processamento dos dados
scaler = StandardScaler()

X scaled = scaler.fit transform(X)

Dividir os dados em treino e teste (75% treino, 25% teste)
X train, X test, y train, y test = train test split(X scaled,

y,random state=42, test size=0.25)

Criando o modelo
i = tf.keras.layers.Input(shape=(11,))
x = tf.keras.layers.Dense(50, activation="relu")(i)
x = tf.keras.layers.Dense(1)(x)

model = tf.keras.models.Model(i, x)

Compilação
model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=0.001

), loss='mse')

Early stop para epochs
early stop = tf.keras.callbacks.EarlyStopping(

monitor='val loss',
patience=20,
restore_best_weights=True)

Treinar o modelo
history = model.fit(X train, y train, epochs=1500,

validation split=0.2,callbacks=[early stop])

160

3s 32ms/step -- loss : 28.6536 - val_loss;: 22.9032

0s 4ms/step - lo ss: 21.1536 - v a l_ lo s s : 16.2289

0S 3ms/step - lo ss: 14.3322 - v a l_ lo ss: 10.8584

0S 4ms/step - lo ss: 9.6321 - v a l_ lo ss: 6.9232

0S 4ms/step - lo ss: 6.1569 - v a l_ lo ss: 4.5370

0S 3ms/step - lo ss: 4.1051 - v a l_ lo ss: 3.2617

0S 4ms/step - lo ss: 2.9594 - v a l_ lo ss: 2.6936

0S 6ms/step - lo ss: 2.5560 - v a l_ lo ss: 2.4147

0S 3ms/step - lo ss: 2.2935 - v a l_ lo ss: 2.2617

0S 4ms/step - lo ss: 2.1241 - v a l_ lo ss: 2.1590

0s 3ms/step - lo s s : 0.3039 - val_.lo ss: 0.3395

0s 2ms/step - lo ss: 0.2764 - val_.lo ss: 0.3501

0S 2ms/step - lo ss: 0.2795 - val_.lo ss: 0.3444

0S 2ms/step - lo ss: 0.2915 - val_.lo ss: 0.3429

0S 2ms/step - lo ss: 0.3004 - val_.lo ss: 0.3501

0S 3ms/step - lo ss: 0.3002 - val_.lo ss: 0.3481

0S 4ms/step - lo ss: 0.3034 - val_.lo ss: 0.3435

0S 4ms/step - lo ss: 0.3077 - val_.lo ss: 0.3426

0S 3ms/step - lo ss: 0.2900 - val_.lo ss: 0.3439

0S 4ms/step - lo ss: 0.2906 - val_.lo ss: 0.3475

Plotar os gráficos de loss
plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label='Loss (Treinamento)')
plt.plot(history.history['val loss'], label='Loss (Validação)')
plt.title('Função de Perda Durante o Treinamento')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

Epoch 1/1500
3 0 / 3 0 --
Epoch 2/1500
3 0 / 3 0 --
Epoch 3/1500
3 0 / 3 0 --
Epoch 4/1500
3 0 / 3 0 --
Epoch 5/1500
3 0 / 3 0 --
Epoch 6/1500
3 0 / 3 0 --
Epoch 7/1500
3 0 / 3 0 --
Epoch 8/1500
3 0 / 3 0 --
Epoch 9/1500
3 0 / 3 0 --
Epoch 10/1500
3 0 / 3 0 --
Epoch 11/1500
Epoch 183/1500
3 0 / 3 0 ---
Epoch 184/1500
3 0 / 3 0 ---
Epoch 185/1500
3 0 / 3 0 ---
Epoch 186/1500
3 0 / 3 0 ---
Epoch 187/1500
3 0 / 3 0 ---
Epoch 188/1500
3 0 / 3 0 ---
Epoch 189/1500
3 0 / 3 0 ---
Epoch 190/1500
3 0 / 3 0 ---
Epoch 191/1500
3 0 / 3 0 ---
Epoch 192/1500
3 0 / 3 0 ---

161

Gráfico de perda
Pelo gráfico de perda, podemos observar que por volta de 40 epochs, o modelo
atingiu um valor minimo de perda, o que implica na não necessidade de
continuar treinando o modelo, visto que a perda se tornou estável.

Fazer predições com o conjunto de teste
y pred = model.predict(X test).flatten()

Calcular MAE, MSE e R2
mae = mean absolute error(y test, y pred)
mse = mean squared error(y test, y pred)
r2 = r2 score(y test, y pred)

Plotar as métricas
print(f”MAE: {mae}”)
print(f”MSE: {mse}”)
print(f”R2: {r2}”)

MAE: 0.4805771422386169
MSE: 0.3634197126441913
R2: 0.412506639957428

Avaliando as métricas
MAE (0.48): O erro médio absoluto indica que o modelo prevê valores com uma
média de erro moderada. Embora não seja muito alto, ainda há espaço para
reduzir a diferença entre as previsões e os valores reais.
MSE (0.36): Esse valor reforça que o modelo não comete muitos erros grandes,
mas ainda apresenta alguma inconsistência que poderia ser melhorada.
R2 (0.41): O modelo explica 41% da variação nas classes, indicando uma
correlação modesta com as classes reais. Isso sugere que ele ainda não captura
totalmente as variações no padrão dos dados.

162

ISBN Titulo Autor

0 2005018 Clara Callan Richard Bruce Wright

1 60973129 Decision in Normandy Cario D'Este

Ano

2001

1991

Editora II

HarperFlamingo Canada

HarperPerennial

)_usuario Ni

276725

276726

Dtas

0

2

2 374157065 Flu: The Story of the Great Influenza Pandemic... Gina Bari Kolata 1999 Farrar Straus Giroux 276727 6
3 393045218 The Mummies of Urumchi E. J. W. Barber 1999 W. W. Norton & Company 276729 1

4 399135782 The Kitchen God's Wife AmyTan 1991 Putnam Pub Group 276729 9

Em resumo, o modelo possui um desempenho razoável, mas ajustes finos, como
aprimoramento no pré-processamento, ajustando as features e a regularização
ou experimentação com diferentes configurações, poderiam melhorar os
resultados.

Questão 3)
SISTEMA DE RECOMENDAÇÃO
Importação de bibliotecas
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Embedding, Flatten,

Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import SGD, Adam
from sklearn.utils import shuffle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Leitura dos arquivos
Antes de executar, importar para o ambiente o arquivo base
data = pd.read csv('./Base livros.csv')
data.head()

data.dtypes

Converter IDusuario e ISBN em categóricos e criar novos códigos
data.ID usuario = pd.Categorical(data.ID usuario)
data['new user id'] = data.ID usuario.cat.codes

163

data.ISBN = pd.Categorical(data.ISBN)
data['new isbn'] = data.ISBN.cat.codes
data.head()

Dimensões
N = len(set(data.new user id))
M = len(set(data.new isbn))

user ids, isbn, ratings = shuffle(data.new user id, data.new isbn,
data.Notas)
Ntrain = int(0.8 * len(ratings)) # separar os dados 80% x 20%
train user = user ids[:Ntrain]
train book = isbn[:Ntrain]
train ratings = ratings[:Ntrain]
test user = user ids[Ntrain:]
test book = isbn[Ntrain:]
test ratings = ratings[Ntrain:]

Centralizar as notas
avg rating = train ratings.mean()
train_ratings = train_ratings - avg_rating
test_ratings = test_ratings - avg_rating

Lista de valores de K para testar
embedding sizes = [10, 20, 50]

Dicionário para armazenar os resultados
results = {}

for K in embedding sizes:
print(f"\nTreinando modelo com K = {K}")
Camada de entrada e embedding para usuários
u = Input(shape=(1,))
u emb = Embedding(N, K)(u)
u emb = Flatten()(u emb)

Camada de entrada e embedding para livros

164

m = Input(shape=(1,))
m emb = Embedding(M, K)(m)
m emb = Flatten()(m emb)

Concatenar embeddings e passar pelas camadas densas
x = Concatenate()([u emb, m emb])
x = Dense(1024, activation="relu")(x)
x = Dense(1)(x)

Criar o modelo
model = Model(inputs=[u, m], outputs=x)

Compilar o modelo
model.compile(

loss="mse",
optimizer=SGD(learning rate=0.08, momentum=0.9)

)

Treinamento do modelo
r = model.fit(

x=[train user, train book],
y=train ratings,
epochs=25,
batch_size=1024,
verbose=2,
validation data=([test user, test book], test ratings)

)

Salvar histórico de treinamento
results[K] = {

"history": r.history,
"model": model

}

Plotar os gráficos de perda para análise
plt.plot(r.history["loss"], label=f"train loss (K={K})")
plt.plot(r.history["val loss"], label=f"val loss (K={K})")

Mostrar o gráfico consolidado
plt.title("Evolução da Perda para Diferentes Valores de K")
plt.xlabel("Épocas")

165

plt.ylabel("Erro Quadrático Médio (MSE)")
plt.legend()
plt.show()

Treinando modelo com K = 10
Epoch 1/25
101/101 - 2s - 22ms/step - loss: 9.9870 - val loss: 9.9850
Epoch 2/25
101/101 - 1s - 10ms/step - loss: 9.9880 - val loss: 9.9926
Epoch 3/25
101/101 - 0s - 3ms/step - loss: 9.9878 - val loss: 9.9994
Epoch 4/25
101/101 - 0s - 3ms/step - loss: 9.9685 - val loss: 10.0103
Epoch 5/25
101/101 - 0s - 3ms/step - loss: 9.3093 - val loss: 10.7648
Epoch 6/25
101/101 - 0s - 3ms/step - loss: 1.9306 - val loss: 11.1163
Epoch 7/25
101/101 - 0s - 3ms/step - loss: 0.3591 - val loss: 10.6396
Epoch 8/25
101/101 - 0s - 2ms/step - loss: 0.0571 - val loss: 10.6241
Epoch 9/25
101/101 - 0s - 3ms/step - loss: 0.0125 - val loss: 10.6101
Epoch 10/25
101/101 - 0s - 3ms/step - loss: 0.0037 - val loss: 10.6141
Epoch 11/25
101/101 - 0s - 3ms/step - loss: 0.0014 - val loss: 10.6112
Epoch 12/25
101/101 - 0s - 3ms/step - loss: 6.0859e-04 - val loss: 10.6120
Epoch 13/25
101/101 - 0s - 3ms/step - loss: 2.8776e-04 - val loss: 10.6108
Epoch 14/25
101/101 - 1s - 6ms/step - loss: 1.4380e-04 - val loss: 10.6123
Epoch 15/25
101/101 - 0s - 3ms/step - loss: 7.2827e-05 - val loss: 10.6120
Epoch 16/25
101/101 - 0s - 3ms/step - loss: 3.6910e-05 - val loss: 10.6117
Epoch 17/25
101/101 - 1s - 6ms/step - loss: 1.8649e-05 - val loss: 10.6118
Epoch 18/25
101/101 - 0s - 3ms/step - loss: 9.4559e-06 - val loss: 10.6119

166

Epoch 19/25
101/101 - 0s - 3ms/step - loss: 4.8864e-06 - val loss: 10.6119
Epoch 20/25
101/101 - 0s - 3ms/step - loss: 2.4205e-06 - val loss: 10.6118
Epoch 21/25
101/101 - 0s - 3ms/step - loss: 1.2979e-06 - val loss: 10.6118
Epoch 22/25
101/101 - 0s - 3ms/step - loss: 7.7653e-07 - val loss: 10.6119
Epoch 23/25
101/101 - 0s - 3ms/step - loss: 4.5746e-07 - val loss: 10.6119
Epoch 24/25
101/101 - 0s - 2ms/step - loss: 3.7219e-07 - val loss: 10.6119
Epoch 25/25
101/101 - 0s - 2ms/step - loss: 2.9629e-07 - val loss: 10.6119

Treinando modelo com K = 20
Epoch 1/25
101/101 - 2s - 23ms/step - loss: 9.9893 - val loss: 10.0220
Epoch 2/25
101/101 - 1s - 10ms/step - loss: 9.9903 - val loss: 9.9911
Epoch 3/25
101/101 - 0s - 3ms/step - loss: 9.9631 - val loss: 10.0077
Epoch 4/25
101/101 - 0s - 3ms/step - loss: 9.4633 - val loss: 10.6271
Epoch 5/25
101/101 - 0s - 3ms/step - loss: 2.1928 - val loss: 11.1953
Epoch 6/25
101/101 - 0s - 3ms/step - loss: 0.5357 - val loss: 10.5957
Epoch 7/25
101/101 - 0s - 3ms/step - loss: 0.0845 - val loss: 10.5507
Epoch 8/25
101/101 - 0s - 2ms/step - loss: 0.0200 - val loss: 10.5499
Epoch 9/25
101/101 - 0s - 3ms/step - loss: 0.0067 - val loss: 10.5403
Epoch 10/25
101/101 - 0s - 3ms/step - loss: 0.0027 - val loss: 10.5397
Epoch 11/25
101/101 - 0s - 3ms/step - loss: 0.0013 - val loss: 10.5393
Epoch 12/25
101/101 - 0s - 3ms/step - loss: 6.8140e-04 - val loss: 10.5381
Epoch 13/25

167

101/101 - 0s - 3ms/step - loss: 3.7453e-04 - val loss: 10.5378
Epoch 14/25
101/101 - 0s - 3ms/step - loss: 2.1258e-04 - val loss: 10.5379
Epoch 15/25
101/101 - 0s - 3ms/step - loss: 1.2302e-04 - val loss: 10.5380
Epoch 16/25
101/101 - 0s - 3ms/step - loss: 7.0752e-05 - val loss: 10.5380
Epoch 17/25
101/101 - 0s - 3ms/step - loss: 3.9592e-05 - val loss: 10.5375
Epoch 18/25
101/101 - 1s - 6ms/step - loss: 2.2476e-05 - val loss: 10.5376
Epoch 19/25
101/101 - 1s - 6ms/step - loss: 1.2828e-05 - val loss: 10.5377
Epoch 20/25
101/101 - 1s - 6ms/step - loss: 7.4559e-06 - val loss: 10.5377
Epoch 21/25
101/101 - 0s - 3ms/step - loss: 4.2742e-06 - val loss: 10.5377
Epoch 22/25
101/101 - 0s - 3ms/step - loss: 2.4040e-06 - val loss: 10.5377
Epoch 23/25
101/101 - 0s - 3ms/step - loss: 1.3768e-06 - val loss: 10.5377
Epoch 24/25
101/101 - 0s - 3ms/step - loss: 8.0975e-07 - val loss: 10.5377
Epoch 25/25
101/101 - 0s - 3ms/step - loss: 4.7374e-07 - val loss: 10.5377

Treinando modelo com K = 50
Epoch 1/25
101/101 - 2s - 24ms/step - loss: 9.9945 - val loss: 9.9876
Epoch 2/25
101/101 - 1s - 10ms/step - loss: 9.9811 - val loss: 9.9865
Epoch 3/25
101/101 - 0s - 3ms/step - loss: 9.9909 - val loss: 10.0288
Epoch 4/25
101/101 - 0s - 3ms/step - loss: 9.7871 - val loss: 10.2950
Epoch 5/25
101/101 - 0s - 3ms/step - loss: 10.5080 - val loss: 11.0647
Epoch 6/25
101/101 - 0s - 3ms/step - loss: 5.1707 - val loss: 10.7645
Epoch 7/25
101/101 - 0s - 3ms/step - loss: 1.1846 - val loss: 10.5256

168

Epoch 8/25
101/101 - 0s - 3ms/step - loss: 0.3747 - val loss: 10.4614
Epoch 9/25
101/101 - 1s - 6ms/step - loss: 0.1778 - val loss: 10.4936
Epoch 10/25
101/101 - 0s - 3ms/step - loss: 0.1158 - val loss: 10.4628
Epoch 11/25
101/101 - 0s - 3ms/step - loss: 0.0866 - val loss: 10.4564
Epoch 12/25
101/101 - 0s - 3ms/step - loss: 0.0641 - val loss: 10.4712
Epoch 13/25
101/101 - 1s - 6ms/step - loss: 0.0452 - val loss: 10.4582
Epoch 14/25
101/101 - 0s - 3ms/step - loss: 0.0304 - val loss: 10.4679
Epoch 15/25
101/101 - 0s - 3ms/step - loss: 0.0166 - val loss: 10.4700
Epoch 16/25
101/101 - 0s - 3ms/step - loss: 0.0071 - val loss: 10.4616
Epoch 17/25
101/101 - 0s - 4ms/step - loss: 0.0034 - val loss: 10.4633
Epoch 18/25
101/101 - 1s - 6ms/step - loss: 0.0017 - val loss: 10.4591
Epoch 19/25
101/101 - 0s - 4ms/step - loss: 0.0011 - val loss: 10.4602
Epoch 20/25
101/101 - 0s - 4ms/step - loss: 6.6750e-04 - val loss: 10.4609
Epoch 21/25
101/101 - 0s - 4ms/step - loss: 4.2016e-04 - val loss: 10.4601
Epoch 22/25
101/101 - 1s - 6ms/step - loss: 2.9959e-04 - val loss: 10.4607
Epoch 23/25
101/101 - 1s - 6ms/step - loss: 2.3958e-04 - val loss: 10.4604
Epoch 24/25
101/101 - 0s - 3ms/step - loss: 1.9933e-04 - val loss: 10.4605
Epoch 25/25
101/101 - 0s - 3ms/step - loss: 1.5061e-04 - val loss: 10.4605

169

Avaliação função de perda
Os resultados obtidos indicam que o modelo apresenta sobreajuste, com a perda
de treinamento diminuindo significativamente, mas a perda de validação
permanecendo estável em torno de 10,5. Isso sugere que o modelo está ajustando
bem os dados de treinamento, mas não consegue generalizar para o conjunto de
validação. Além disso, não houve melhorias significativas na perda de
validação ao testar diferentes valores para K. Logo, é necessário reavaliar
o modelo, modificar sua arquitetura, testar diferentes funções de perda e
avaliar a qualidade e representatividade dos dados para melhorar o desempenho.

Nova recomendação
Gerar o array com o usuário único
Repete a quantidade de livros
books = np.array(list(set(isbn)))
input usuario = np.repeat(a=6636, repeats=M)
preds = model.predict([input usuario, books])

Descentraliza as predições
rat = preds.flatten() + avg rating

Índice da maior nota
idx = np.argmax(rat)
print("Recomendação: Livro - ", books[idx], " / ", rat[idx] , "*")

Recomendação: Livro - 109231 / 10.528166 *

Avaliação da recomendação

170

O modelo recomendou que o usuário com ID 6636 daria nota de aproximadamente
10 para o livro com ISBN 109231.

Questão 4)
DEEPDREAM
Importação das bibliotecas
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as display
import PIL.Image

Importação da imagem
url = 'https://upload.wikimedia.org/wikipedia/commons/b/b6/Felis catus-
cat on snow.jpg'

Download da imagem e gravação em array Numpy
def download(url, max dim=None):

name = url.split('/')[-1]
image path = tf.keras.utils.get file(name, origin=url)
img = PIL.Image.open(image path)
if max dim:

img.thumbnail((max dim, max dim))
return np.array(img)

Normalização da imagem
def deprocess(img):

img = 255*(img + 1.0)/2.0
return tf.cast(img, tf.uint8)

Exibir a imagem
def show(img):

display.display(PIL.Image.fromarray(np.array(img)))

Leitura da Imagem
original img = download(url, max dim=500)
show(original img)
display.display(display.HTML('<a
"href=https://commons.wikimedia.org/wiki/File:Felis catus-
cat on snow.jpg"/>'))

https://upload.wikimedia.org/wikipedia/commons/b/b6/Felis
https://commons.wikimedia.org/wiki/File:Felis

171

Preparando modelo de classificação
base model = tf.keras.applications.InceptionV3(include top=False,

weights='imagenet')
Downloading data from h ttp s:// sto raq e.aooqleapis.com /tensorflow /kera s-app lic a t io n s/ in c e p t io n v3/ inception v3 w eights t f dim orderinq t f ke rne ls notop.h5

Selecionando as camadas da rede para maximizar a perda
names = ['mixed3', 'mixed5']
layers = [base model.get layer(name).output for name in names]

Criação do modelo dream
dream model = tf.keras.Model(inputs=base model.input, outputs=layers)

Função para calcular a perda
def calc loss(img, model):

img batch = tf.expand dims(img, axis=0)
layer activations = model(img batch)
if len(layer activations) == 1:

layer activations = [layer activations]
losses = []
for act in layer activations:

loss = tf.math.reduce mean(act)
losses.append(loss)

return tf.reduce_sum(losses)

DeepDream
class DeepDream(tf.Module):

def init (self, model):
self.model = model

@tf.function(
input signature=(

tf.TensorSpec(shape=[None,None,3], dtype=tf.float32),

https://storaqe.aooqleapis.com/tensorflow/keras-applications/inception

172

tf.TensorSpec(shape=[], dtype=tf.int32),
tf.TensorSpec(shape=[], dtype=tf.float32),)

)
def call (self, img, steps, step size):

print("Tracing")
loss = tf.constant(0.0)
for n in tf.range(steps):
with tf.GradientTape() as tape:

tape.watch(img)
loss = calc loss(img, self.model)

gradients = tape.gradient(loss, img)
gradients /= tf.math.reduce std(gradients) + 1e-8
img = img + gradients*step_size
img = tf.clip by value(img, -1, 1)

return loss, img
deepdream = DeepDream(dream model)

Main Loop
def run deep dream simple(img, steps=100, step size=0.01):

img = tf.keras.applications.inception v3.preprocess input(img)
img = tf.convert to tensor(img)
step size = tf.convert to tensor(step size)
steps_remaining = steps
step = 0
while steps remaining:

if steps remaining>100:
run steps = tf.constant(100)

else:
run steps = tf.constant(steps remaining)

steps remaining -= run steps
step += run steps
loss, img = deepdream(img, run steps, tf.constant(step size))
display.clear output(wait=True)
show(deprocess(img))
print ("Step {}, loss {}".format(step, loss))

result = deprocess(img)
display.clear output(wait=True)
show(result)
return result

Aplicando Main Loop

173

dream img = run deep dream simple(img=original img,
steps=100, step size=0.01)

Explicação resultado Main Loop
A imagem onírica obtida após o Main Loop representa uma visão alucinada e
distorcida da imagem original. Apesar da baixa resolução, podemos observar
que alguns padrões detectados pela rede neural foram ampliados, contudo esses
padrões não parecem ser tão distintos entre si.

Levando modelo até uma oitava
import time
start = time.time()
OCTAVE_SCALE = 1.30
img = tf.constant(np.array(original img))
base shape = tf.shape(img)[:-1]
float base shape = tf.cast(base shape, tf.float32)
for n in range(-2, 3):
new shape = tf.cast(float base shape*(OCTAVE SCALE**n), tf.int32)
img = tf.image.resize(img, new shape).numpy()
img = run deep dream simple(img=img, steps=50, step size=0.01)

display.clear output(wait=True)
img = tf.image.resize(img, base shape)
img = tf.image.convert image dtype(img/255.0, dtype=tf.uint8)
show(img)
end = time.time()
end-start

174

5.43707537651062

Explicação da imagem obtida com oitava
A imagem obtida da aplicação da técnica das oitavas apresenta uma aparência
mais complexa e detalhada com relação aos padrões aprendidos pela rede neural.
Isso ocorre pois a imagem é passada pela rede em diferentes escalas de
tamanho.

Explicação das diferenças entre imagens oníricas obtidas com Main Loop e
levando o modelo até a oitava.
A principal diferença entre as imagens está na complexidade e diversidade dos
padrões resultados conforme a técnica aplicada:

• Com o Main Loop, a imagem onírica é uma visão distorcida da original,
onde os padrões detectados são ampliados, mas de maneira uniforme e em
baixa resolução, resultando em detalhes pouco distintos e uma aparência
menos rica.

• Já com a técnica das oitavas, a imagem passa por diferentes escalas de
tamanho, o que cria uma composição mais detalhada e complexa. Assim,
os padrões surgem em várias granularidades, desde texturas finas até
formas maiores, dando profundidade e diversidade à imagem final.

175

APÊNDICE 14 - VISUALIZAÇÃO DE DADOS E STORYTELLING

A - ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e

com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu

possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam,

quais possíveis ações podem ser feitas com base neles.

Entregue em um PDF:

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que possa

ser melhorada);

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que será

desenvolvido;

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de

sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos)

B - RESOLUÇÃO
1. O Conjunto de Dados Brutos
Para desenvolvimento deste trabalho foi utilizada uma matéria jornalística
elaborada e publicada pela assessoria de comunicação do Ministério Público
do Paraná em 03 de outubro de 2024, sendo esta reproduzida em sua íntegra,
abaixo:
"Operação no Paraná identifica 1,4 mil hectares de desmatamento e aplica R$
13 milhões em multas. A edição de 2024 da Operação Mata Atlântica em Pé foi
encerrada na última sexta-feira, 27 de setembro, no Paraná e em outros 16
estados brasileiros em que a força-tarefa foi realizada. No estado, durante
duas semanas de fiscalizações - o início foi no dia 16 de setembro - foram
vistoriados 405 polígonos e identificados 1.433,33 hectares de área
ilegalmente desmatada. A partir da ação, os órgãos ambientais aplicaram, até
agora, um total de R$ 13.100.500,00 em multas administrativas aos responsáveis
pelos ilícitos ambientais.

176

Em sua sétima edição nacional a força-tarefa que é coordenada localmente
pelos Ministérios Públicos e executada pelos órgãos ambientais, foi iniciada
pelo MP do Paraná e tornou-se a maior ação de fiscalização conjunta para o
combate ao desmatamento do bioma Mata Atlântica em todo o país.

Cumprimento - No Paraná, a execução da operação fica a cargo dos três órgãos
ambientais que atuam no estado, o Instituto Água e Terra (IAT), o Batalhão
de Polícia Ambiental Força Verde e a Superintendência do Paraná do Instituto
Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). A
ação no estado neste ano deu enfoque à fiscalização do cumprimento de embargo
das áreas já autuadas em edições anteriores da Operação. O objetivo foi
verificar se as mesmas estão sendo destinadas à recuperação de vegetação,
conforme prevê a legislação.

Tecnologia - Do total das áreas fiscalizadas, 116,52 hectares desmatados
foram identificados pelo Instituto Água e Terra a partir do uso de tecnologias
de georreferenciamento e monitoramento via imagens de satélite. A
fiscalização remota resultou na lavratura de 115 autos de infração, o que
gerou a aplicação de R$ 6.621.500,00 em multas pelas infrações administrativas
praticadas. O emprego dessas novas tecnologias de monitoramento por satélite
- um aprimoramento da operação ao longo dos anos - tem permitido que várias
etapas do trabalho, incluindo a elaboração de laudos georreferenciados e a
lavratura de autos de infração e termos de embargo, sejam feitas sem a

necessidade de visitas ao local do ilícito. Além disso, com a utilização dos
dados do Cadastro Ambiental Rural (CAR), são identificados os proprietários
das áreas onde há o desmatamento ilegal. Em locais onde não são obtidos,
pelas imagens de satélite, elementos suficientes sobre os danos ambientais
causados, são realizadas visitas das equipes de fiscalização.

Responsabilização - A atuação integrada dos órgãos ambientais garante ainda
a devida responsabilização dos infratores. Uma vez constatados os ilícitos
ambientais, os responsáveis são autuados e podem responder judicialmente -
nas esferas cível e criminal - além de serem impostas restrições

administrativas relacionadas aos registros das propriedades rurais.

Dados nacionais - De acordo com o Mlinistério Público de Minas Gerais e a
Associação Brasileira dos Membros do Ministério Público de Meio Ambiente
(Abrampa), que neste ano coordenaram nacionalmente a ação, somando todos os
estados participantes, foram constatados 11.124 hectares com supressão ilegal
de vegetação nativa e o montante em multas aplicadas foi de R$ 131.515.308,05.

A ação também conta com o apoio da Fundação SOS Mata Atlântica e da plataforma

177

MapBiomas, rede colaborativa que monitora o uso da terra e a cobertura de
vegetação, disponibilizando dados de alertas de desmatamento para acesso
público (alerta.mapbiomas.org). Neste ano, assim como nas edições anteriores,
participaram todos os 17 estados cobertos pelo bioma Mata Atlântica: além do
Paraná, os estados de Alagoas, Bahia, Ceará, Espírito Santo, Goiás, Mato
Grosso do Sul, Minas Gerais, Paraíba, Pernambuco, Piauí, Rio de Janeiro, Rio
Grande do Norte, Rio Grande do Sul, Santa Catarina, São Paulo e Sergipe."

Fonte: https://mppr.mp.br/Noticia/Operacao-no-Parana-identifica-14-mil-
hectares-dedesmatamento-e-aplica-R-13-milhoes-em

A partir da matéria acima elaborou-se a seguinte tabela para melhor tratamento
dos dados:

2. Contexto e Público-Alvo
Tomando como fator de motivação os efeitos das recentes ondas de calor, tais
como inundações em bairros e municipios diversos e temperaturas e sensação
térmica elevadas, que acometem as populações da região de Curitiba e litoral
paranaense - ainda que esperados para esta época do ano (primeiro bimestre
de 2025), optou-se por utilizar para desenvolvimento deste trabalho um tema
relacionado ao desmatamento da Mata Atlântica.
A matéria original informa dos resultados alcançados pela força tarefa
coordenada pelo Ministério Público do Paraná e que envolve ainda outros três
órgãos fiscalizadores - IAT, Batalhão de Policia Ambiental Força Verde, e
IBAMA, durante o exercício da operação Mata Atlântica em Pé 2024.
Neste contexto, o storytelling disponibilizado mais adiante neste trabalho
apresenta ao público em geral, mantendo o público-alvo da matéria original,
utilizando-se de recursos visuais, preservando como base o conteúdo escrito
originalmente. Com isso, espera-se maior engajamento/interesse do público em
relação a importância do tema e das ações desempenhadas pelos órgãos citados.

https://mppr.mp.br/Noticia/Operacao-no-Parana-identifica-14-mil-

178

3. Visualização dos Dados
A nova visualização de dados sugerida foi elaborada mantendo o padrão
jornalístico original adicionando recursos visuais para auxílio no
entendimento. Os dados foram tratados e gráficos foram gerados utilizando o
software Microsoft Excel. O layout do documento foi elaborado utilizando a
plataforma Canva.com. A nova disponibilização está disponível no Anexo I
deste trabalho.

4. Descrição da Narrativa Storytelling
Para criação da nova visualização utilizou-se a estrutura tradicional de
storytelling com introdução - apresentando o cenário geral em relação aos
desafios de preservação da Mata Atlântica e de sua fiscalização, apresentação
de dados - indicando os dados principais em relação aos resultados obtidos,
enredo - enfatizando a importância da tecnologia como aliado na fiscalização,
clímax - evidenciando as consequências aos infratores, bem como penalidades
a que estão sujeitos em especial pelo uso das tecnologias na fiscalização, e
conclusão - reforçando a importância da participação de todo a sociedade como
complemento aos esforços dos órgãos governamentais.

179

180

O desmatamento pode parecer um problema distante, mas suas conseqüências são diretas:

redução da biodiversidade, impacto nos recursos hídricos e intensificação das mudanças

climáticas. Cada árvore derrubada ilegalmente compromete um futuro sustentável, tornando a

fiscalização uma ferramenta essencial na luta pela preservação do bioma.

A Realidade do Desmatamento

Em sua sétima edição nacional a força-tarefa que é coordenada localmente pelos Ministérios

Públicos e executada pelos órgãos ambientais, foi iniciada pelo Ministério Público do Paraná e

tornou-se a maior ação de fiscalização conjunta para o combate ao desmatamento do bioma

Mata Atlântica em todo o país. No Paraná, a execução da operação fica a cargo dos três órgãos

ambientais que atuam no estado, o Instituto Água e Terra (IAT), o Batalhão de Polícia Ambiental

Força Verde e o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

(Ibama). A ação também conta com o apoio da Fundação SOS Mata Atlântica e da plataforma

MapBiomas, rede colaborativa que monitora o uso da terra e a cobertura de vegetação,

disponibilizando dados de alertas de desmatamento para acesso público.

A edição de 2024 da Operação trouxe números preocupantes. Considerando todos os 17 estados

brasileiros participantes da força-tarefa e que suportam o bioma Mata Atlântica, foram

identificados 17.124 hectares de área desmatada ilegalmente, resultando na aplicação de R$

137.515.308,05 em multas aos infratores. Somente no Paraná, houve a identificação de 1.433

hectares de desmatamento ilegal tendo sido aplicadas até o momento o total de R$ 13.100.500,00

em multas administrativas:

181

O Avanço da Fiscalização e a Reação dos Infratores

Os dados refletem não apenas a escala do problema, mas também os avanços tecnológicos

utilizados na fiscalização. No Paraná, o uso de tecnologias permitiu a identificação remota de

776,52 hectares irregularidades resultando na aplicação de R$ 6.621.500,00 em multas,

permitindo maior eficiência das autuações e reduzindo a necessidade de deslocamentos de

equipes aos locais de infração:

Ainda no Paraná, as equipes concentraram esforços nas áreas já autuadas anteriormente com o

objetivo de garantir que estas propriedades estivessem cumprindo as exigências de recuperação

da vegetação. No entanto, a realidade em campo revelou que muitas áreas ainda estavam sendo

exploradas, resultando em novas autuações e sanções severas.

Resultados obtidos com o uso de tecnologias, como o de imagens de satélite e sistemas de

georreferenciamento para cruzamento de dados e identificação dos responsáveis, tornam estes

recursos aliados imprescindíveis no monitoramento e aplicação das leis existentes:

182

O Cerco Contra o Desmatamento

Os infratores que antes contavam com a dificuldade de monitoramento agora enfrentam um

novo cenário. A Operação Mata Atlântica em Pé não se limita apenas à aplicação de multas - os

responsáveis pelo desmatamento ilegal podem responder judicialmente nas esferas cível e

criminal. Além disso, sanções administrativas restringem o uso das propriedades, impedindo sua

regularização até que a recuperação ambiental seja comprovada.

A ação integrada dos Ministérios Públicos, Ibama e órgãos ambientais estaduais tem garantido

que quem desmata ilegalmente seja identificado e responsabilizado. O avanço tecnológico

combinado à fiscalização presencial torna cada vez mais difícil a continuidade dessas práticas sem

conseqüências.

O Futuro da Mata Atlântica Está em Nossas Mãos

A Operação Mata Atlântica em Pé representa um avanço significativo na fiscalização ambiental no

Brasil. No entanto, a luta contra o desmatamento não pode depender exclusivamente das ações

governamentais. A sociedade tem um papel fundamental na proteção do meio ambiente:

• Denunciar atividades ilegais é uma forma de contribuir para a preservação;

• Cobrar políticas públicas mais eficazes fortalece o combate ao desmatamento;

• Apoiar projetos de recuperação ambiental ajuda a restaurar áreas degradadas.

A Mata Atlântica ainda resiste, mas cada hectare perdido compromete o equilíbrio ecológico do

país. O combate ao desmatamento precisa ser uma prioridade contínua para garantir um futuro

sustentável para as próximas gerações.

Fonte:

https.//mDpr.mp.br/Notiüa/OperacaonoParanaidentifica-14-milhectaresde-desmatamentoeaplicaR-13milhQesem

183

APÊNDICE 15 - TÓPICOS EM INTELIGÊNCIA ARTIFICIAL

A - ENUNCIADO

1) Algoritmo Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab,

ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita

simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso

de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado

de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações.

Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas posições
de 1 a 99 deverão ser definidas pelo algoritmo genético.

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
(3) Utilize no mínimo uma população com 100 indivíduos;
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento (crossover-

ox);
(6) Preserve sempre a melhor solução de uma geração para outra.

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”.

2) Compare a representação de dois modelos vetoriais

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que

poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de

184

palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão

produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e

objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a

PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B - RESOLUÇÃO
1. ALGORITMO GENÉTICO
Caixeiro Viajante
Bibliotecas
import matplotlib.pyplot as plt
import numpy as np
import random

Constantes
Número de cidades
QUANTIDADE_CIDADES = 100
Número de indivíduos
QUANTIDADE_INDIVIDUOS = 100
Referência para dimensão plano cartesiano
TAMANHO_ESPACO = 100
Taxa mutação
TAXA_MUTACAO = 0.01
Taxa cruzamento
TAXA_CRUZAMENTO = 0.9
Número de gerações
QUANTIDADE_GERACOES = 1000

Função para gerar cidades aleatórias
def gerar cidades():
cidades = []
for _ in range(QUANTIDADE_CIDADES):

x coord, y coord = random.randint(0,TAMANHO ESPACO),random.
randint(0,TAMANHO_ESPACO)

cidades.append((x coord, y coord))

185

Adiciona cidade inicial ao fim
cidades.append(cidades[0])
return cidades

Função para gerar população inicial
def gerar populacao inicial(cidades):

indices = list(range(len(cidades)))
populacao = []
for _ in range(QUANTIDADE_INDIVIDUOS):

Gera individuo com caminho aleatório
individuo = random.sample(indices[1:QUANTIDADE CIDADES],

k=QUANTIDADE_CIDADES-1)
Insere cidade inicial/final no individuo
individuo.insert(0, 0)
individuo.append(100)
populacao.append(individuo)

return populacao

Função para calcular a distância euclidiana entre as cidades
d = V((x2 - x1) 2 + (y2 - y1) 2
def calc distancia euclidiana(x1, y1, x2, y2) -> float:

distancia = ((x2 - x1) **2 + (y2 - y1) ** 2) ** 0.5
return distancia

Função de avaliação
def calc custo(caminho, cidades):

custo = 0
for i in range(len(caminho) - 1):

x1, y1 = cidades[caminho[i]]
x2, y2 = cidades[caminho[i+1]]
custo += calc distancia euclidiana(x1, y1, x2, y2)

return custo

Função para realizar seleção por torneio
def selecionar pais torneio(populacao, cidades, k= 5):

escolhidos = random.sample(populacao, k)
escolhidos.sort(key=lambda x: calc custo(x, cidades))
return escolhidos[0], escolhidos[1]

Função para realizar mutação
def mutar(individuo):

186

if random.random() < TAXA_MUTACAO:
i, j = sorted(random.sample(range(1,len(individuo)-1),2))
individuo[i:j+1] = reversed(individuo[i:j+1])
return individuo

Função para cruzamento crossover-ox
def cruzamento(pai1,pai2):

tamanho = len(pai1)
comeco, fim = sorted(random.sample(range(1, tamanho -1),2))
filho = [-1] * tamanho
filho[comeco:fim] = pai1[comeco:fim]
genes pai1 = set(filho[comeco:fim])
restantes = [gene for gene in pai2 if gene not in genes pai1]
indice = 0
for i in range(tamanho):

if filho[i] == -1 and indice < len(restantes):
filho[i] = restantes[indice]
indice += 1

filho[0] = pai1[0]
filho[-1] = pai1[-1]
return filho

def calcular metricas populacao(populacao, cidades):
solucao = min(populacao, key=lambda x: calc custo(x, cidades))
custo solucao = calc custo(solucao,cidades)

return solucao, custo solucao

def plotar caminho(cidades, caminho, titulo):
plt.figure(figsize=(12, 8))
Extrai as coordenadas do caminho
caminho coords = [cidades[i] for i in caminho]
caminho x, caminho y = zip(*caminho coords)
Plota o caminho
plt.plot(caminho x, caminho y, linestyle='-', marker='o',

color='#4c95c2', linewidth=2, markersize=8,label="Caminho")
plt.plot(caminho x[0], caminho y[0], marker='o', color='red',

markersize=10, label="Início/Fim")
plt.xlabel("Eixo X")
plt.ylabel("Eixo Y")
plt.title(titulo)
plt.legend()

187

plt.show()

Função principal
def algoritmo genetico(cidades):

populacao = gerar populacao inicial(cidades=cidades)
melhor solucao, melhor custo =calcular metricas populacao(

populacao=populacao, cidades=cidades)
solucao inicial = melhor solucao.copy()
custo inicial = float(melhor custo)

Plotando gráfico da solução inicial
print(f'Custo inicial da solução {custo inicial}')
plotar caminho(cidades, melhor solucao,

"Solução Inicial - Caminho do Caixeiro Viajante")
for geracao in range(QUANTIDADE GERACOES):

nova populacao = [melhor solucao]
quantidade individuo cruzamento = int(

QUANTIDADE_INDIVIDUOS * TAXA_CRUZAMENTO)
while len(nova populacao) < quantidade individuo cruzamento:

pai1, pai2 = selecionar pais torneio(populacao,cidades)
filho = cruzamento(pai1,pai2)
filho = mutar(filho)
nova populacao.append(filho)

while len(nova_populacao) < QUANTIDADE_INDIVIDUOS:
individuo = random.choice(populacao)
filho = mutar(individuo)
nova populacao.append(individuo)

populacao = nova populacao.copy()
melhor solucao atual, melhor custo atual =

calcular metricas populacao(populacao,cidades)
if melhor custo atual < melhor custo:

melhor solucao, melhor custo = melhor solucao atual,
melhor custo atual

return melhor solucao, melhor custo

Algoritmo genético
cidades = gerar cidades()
melhor_solucao_encontrada, melhor_custo_encontrado =

algoritmo genetico(cidades)
Custo inicial da solução 4765.895726084021

188

plotar caminho(cidades, melhor solucao encontrada,
"Solução Final - Caminho do Caixeiro Viajante")

Solução Final ■ Caminho do Caixeiro Viajante

print(f'Custo final da solução {melhor custo encontrado}')
Custo final da solução 1375.535553111489

2. COMPARE A REPRESENTAÇÃO DE DOIS MODELOS VETORIAIS
Modelos Vetoriais
import numpy as np

189

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.feature extraction.text import TfidfVectorizer
from sentence transformers import SentenceTransformer
from mpl toolkits.mplot3d import Axes3D

texts = [
"The algorithm is analyzing the dataset.",
"The algorithm is optimizing the parameters.",
"The neural network is processing the data.",
"The neural network is training on images.",
"The database is storing user records.",
"The database is retrieving user records."

]

PCA
def apply pca(vectors, n components = 3):
pca = PCA(n components)
return pca.fit transform(vectors)

TF-IDF
tfidf vectorizer = TfidfVectorizer(stop words='english')
tfidf vectors = tfidf vectorizer.fit transform(texts).toarray()

SentenceTransformer
model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = model.encode(texts)

/usr/local/lib/python3.11/dist-packages/huggingface hub/utils/ auth.py:94:
UserWarning:
The secret 'HF TOKEN' does not exist in your Colab secrets.
To authenticate with the Hugging Face Hub, create a token in your settings
tab (https://huggingface.co/settings/tokens), set it as secret in your Google
Colab and restart your session.
You will be able to reuse this secret in all of your notebooks.
Please note that authentication is recommended but still optional to
accesspublic models or datasets.
warnings.warn(
modules.json: 0%| | 0.00/349 [00:00<?, ?B/s]
config sentence transformers.json: 0%| | 0.00/116 [00:00<?, ?B/s]
README.md: 0%| | 0.00/10.5k [00:00<?, ?B/s]

https://huggingface.co/settings/tokens

190

sentence bert config.json: 0%| | 0.00/53.0 [00:00<?, ?B/s]
config.json: 0%| | 0.00/612 [00:00<?, ?B/s]
model.safetensors: 0%| | 0.00/90.9M [00:00<?, ?B/s]
tokenizer config.json: 0%| | 0.00/350 [00:00<?, ?B/s]
vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]
tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]
special tokens map.json: 0%| | 0.00/112 [00:00<?, ?B/s]
config.json: 0%| | 0.00/190 [00:00<?, ?B/s]

Aplicando PCA
to pca tfidf = apply pca(tfidf vectors, n components=2)
to pca bert = apply pca(embeddings,n components=2)

Plotando 2D
plt.figure(figsize=(12, 6))

TF-IDF
plt.subplot(1, 2, 1)
plt.scatter(to pca tfidf[:, 0], to pca tfidf[:, 1], color='blue',

label='TF-IDF',alpha=0.7)
for i, txt in enumerate(texts):

plt.annotate(txt, (to pca tfidf[i, 0], to pca tfidf[i, 1]))
plt.title('TF-IDF - PCA')

SentenceTransformer
plt.subplot(1, 2, 2)
plt.scatter(to pca bert[:, 0], to pca bert[:, 1], color='red',

label='SentenceTransformer',alpha=0.7)
for i, txt in enumerate(texts):

plt.annotate(txt, (to pca bert[i, 0], to pca bert[i, 1]))
plt.title('SentenceTransformer - PCA')
plt.tight layout()
plt.show()

191

Plotando 3D
Aplicando PCA
to pca tfidf 3d = apply pca(tfidf vectors)
to pca bert 3d = apply pca(embeddings)
fig = plt.figure(figsize=(12, 6))

TF-IDF
ax1 = fig.add subplot(121, projection='3d')
ax1.scatter(to pca tfidf 3d[:, 0], to pca tfidf 3d[:, 1],

to pca tfidf 3d[:,2], color='blue', alpha=0.7)
for i, txt in enumerate(texts):

ax1.text(to pca tfidf 3d[i, 0], to pca tfidf 3d[i, 1],
to pca tfidf 3d[i,2], txt, fontsize=8)

ax1.set_title('TF-IDF - PCA (3D)')

SentenceTransformer
ax2 = fig.add subplot(122, projection='3d')
ax2.scatter(to pca bert 3d[:, 0], to pca bert 3d[:, 1], to pca bert 3d[:,

2], color='red', alpha=0.7)
for i, txt in enumerate(texts):

ax2.text(to pca bert 3d[i, 0], to pca bert 3d[i, 1], to pca bert 3d[i,
2],txt, fontsize=8)

ax2.set title('SentenceTransformer - PCA (3D)')
plt.show()

192

