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RESUMO

O crescimento exponencial das tecnologias tem trazido desafios significativos 
às organizações e a sociedade em geral. A inteligência artificial, em especial, que 
antes era utilizada de modo limitado em algumas áreas hoje é utilizada quase que em 
todos os segmentos, seja na facilitação de tarefas repetitivas e até mesmo em 
algumas tarefas domésticas, como na análise e diagnóstico de cenários complexos. 
Esta evolução tem tornado as empresas ainda mais competitivas, obrigando-as a 
adaptar-se rapidamente às mudanças impostas. Neste cenário, o gerenciamento de 
projetos torna-se ainda mais fundamental para execução das estratégias obrigando 
as instituições a romper com o modo como projetos eram conduzidos no passado para 
uma nova forma de gestão com uso de ferramentas cada vez mais inteligentes. Não 
se trata da substituição do conhecimento humano pela adoção de tecnologias, mas, 
sim, de aplicar ferramentas de inteligência para melhor apoiar na gestão de projetos 
como meio de garantir a obtenção de melhores resultados. Cabe ressaltar, que a 
aplicação de ferramentas de inteligência artificial no apoio à gestão de projetos precisa 
ser cautelosa para garantir o respeito aos preceitos éticos a aos direitos humanos.

Palavras-chave: agentes de IA; ferramentas de IA; gerenciamento de projetos; 
inteligência artificial; projetos.



ABSTRACT

The exponential growth of technology has introduced significant challenges to 
organizations and society at large. Artificial intelligence, in particular, which was 
previously applied in a limited capacity within select domains, is now utilized across 
nearly all sectors—from automating repetitive tasks and assisting with household 
activities to analyzing and diagnosing complex scenarios. This evolution has 
heightened competitiveness among companies, compelling them to rapidly adapt to 
emerging changes. In this context, project management becomes increasingly vital for 
the execution of strategic initiatives, requiring institutions to move beyond traditional 
approaches and adopt new management models supported by increasingly intelligent 
tools. This shift does not imply the replacement of human expertise with technology; 
rather, it emphasizes the integration of intelligent systems to enhance project 
management and improve outcomes. It is important to underscore that the application 
of artificial intelligence tools in project management must be approached with caution 
to ensure adherence to ethical principles and the protection of human rights.

Keywords: AI agents; AI tools; project management; artificial intelligence; projects.
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1 PARECER TÉCNICO

O uso da inteligência artificial em nossas tarefas diárias seja na vida pessoal 

como na profissional já não pode mais ser evitado. Se antes sua utilização mais 

perceptível era na recomendação de itens de consumo em poderosos sites da 

internet, hoje a utilizamos quase que em todas as tarefas que fazem o uso de algum 

dispositivo tecnológico. No ambiente de projetos não é diferente; ferramentas de 

inteligência artificial passam a ser utilizadas desde a melhoria de processos, no apoio 

a tomada de decisão, ou na otimização das entregas de projetos, dentre várias outras 

aplicações (Stachowiak, 2025). Um projeto é um esforço temporário empreendido 

para criar um produto, serviço ou resultado único. Já o gerenciamento de projetos é a 

aplicação de conhecimentos, habilidades, ferramentas e técnicas às atividades do 

projeto para cumprir os requisitos definidos; refere-se a orientar o trabalho do projeto 

para entregar os resultados pretendidos. O gerente de projeto, por sua vez, é a pessoa 

designada pela organização executora para liderar a equipe do projeto, sendo o 

responsável por alcançar os objetivos definidos (PMI, 2021). Em meio a isso, e sendo 

a inteligência artificial um campo na área da ciência da computação que nos traz 

milhares de ferramentas capazes de simular a capacidade humana, o seu uso através 

de suas mais diversas ferramentas no gerenciamento de projetos vem a contribuir em 

diversas frentes de trabalho nos mais diversos tipos de projetos (Alshaikhi, 2021).

Dentre as aplicações da inteligência artificial na gestão de projetos destacam- 

se, mas não se limitam a estas, a seleção e priorização de projetos, o suporte a 

escritórios de projetos, maior velocidade na definição, planejamento, apresentação de 

relatórios, uso de assistentes virtuais, testes avançados de sistemas e softwares, 

atuação em tarefas repetitivas, permitindo a gerentes de projetos atuar na liderança 

de suas equipes (Rodriguez, 2023). Adicionalmente, ferramentas de IA podem ser 

utilizadas para apoiar gerentes de projetos na elaboração de planos de projeto, 

cronogramas, alocação de equipe ou na análise de riscos, além de serem cada vez 

mais utilizadas no apoio na tomada de decisão, análise de custos, recuperação de 

desvios, e incrementando eficiência nas comunicações (Alshaikhi, 2021).

A FIGURA 1, a seguir, traz alguns exemplos de ferramentas de IA e sua 

aplicação durante parte do ciclo de vida de um projeto:
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FIGURA 1 -  Como Utilizar IA na Gestão de Projetos?

FONTE: Costa (2025)

Especialmente no apoio a tomada de decisões, o uso da IA resulta em 

grandes benefícios aos projetos por possuirem a capacidade de análise de grandes 

quantidades de dados e de variáveis com o uso de LLM -  Large Language Model, 

assim como nas comunicações do projeto por meio do uso de chatbots dotados de 

NLP -  Natural Language Processing, ou processamento de linguagem natural 

(Vargas, 2025). Adicionalmente, uma tendência crescente é o uso de agentes virtuais 

nas diferentes fases do ciclo de vida de projetos. Os agentes são capazes de predizer 

riscos sugerindo ações de resposta, alocação da equipe do projeto considerando a 

diversidade cultural, criação de metodologias especialmente desenhadas para um 

objetivo específico, e têm a capacidade de tomada de decisão e execução de tarefas 

de modo automático, sem intervenção humana, conforme a necessidade do projeto 

(Vargas, 2025).

No entanto, a adoção de ferramentas de inteligência artifical pelas 

organizações revela alguns desafios a serem superados. A qualidade dos dados 

disponíveis para treinamento dos modelos de inteligência, questões legais em relação 

ao uso de dados pessoais ou de sigilo corporativo, questões éticas ou vieses (biases) 

gerados em respostas, desenvolvimento de pessoal para correto uso da tecnologia, 

receio das pessoas quanto a substituição do conhecimento humano por máquinas,
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constituem alguns destes desafios (Zia, 2024). As ações de adaptação nem sempre 

são simples e requerem uma cultura aberta à inovação. A substituição de práticas 

tradicionais de gerenciamento de projetos pelo uso de ferramentas de IA exige 

investimento em capacitação, resiliência, tolerância a falhas durante fase de adoção, 

e apoio da alta gestão (Rodriguez, 2023).

TABELA 1 -  Benefícios da Adoção da IA no Gerenciamento de Projetos

Benefícios Percentual de Respondentes (%)
Automação de tarefas rotineiras 72
Capacidade aprimorada de tomada de decisão 84
Otimização da alocação de recursos 68
Melhoria nos resultados do projeto 76
Percepções preditivas para gestão de riscos 62

FONTE: Adaptado de Zia, M et al. (2024)

TABELA 2 -  Desafios da Adoção da IA no Gerenciamento de Projetos

Benefícios Percentual de Respondentes (%)
Preocupações com privacidade de dados 48
Vieses algorítmicos 56
Implicações éticas 52
Resistencia organizacional 60
Lacunas de habilidades na equipe do projeto 64

FONTE: Adaptado de Zia, M et al. (2024)

As TABELAS 1 e 2, acima, trazem, respectivamente, os resultados de recente 

pesquisa a cerca dos benefícios e desafios da adoção da IA no gerenciamento de 

projetos reforçando quanto a importância de seu uso no apoio à tomada de decisões 

e ratifica a falta de skill entre membros do time de projetos como um dos principais 

desafios às organizações (Zia, 2024). À medida que novas ferramentas de IA são 

desenvolvidas e as equipes de projeto se especializam em seu uso uma nova forma 

de gestão de projetos se molda possibilitando aos gerentes de projetos atuarem com 

maior ênfase na liderança dos times e na comunicação com principais stakeholders 

enquanto tarefas repetitivas ou voltados à análise de dados sejam executadas por 

agentes ou ferramentas especiais de inteligência artificial (Alshaikhi, 2021). A 

inteligência artificial por meio de suas ferramentas vem suportar gerentes e times de 

projetos e não para substituí-los.
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APÊNDICE 1 -  INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 

A -  ENUNCIADO

1 ChatGPT

a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas 

em sala. Explique o porquê.
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio 

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 

abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a 

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo 

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha reta, 

que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde 

que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi 
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um 
formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

A ra d 366 M ehadia 241
Bucareste 0 Neam t 234
C raiova 160 O rad ea 380
D robcta 242 Pitesti 100
Eforie 161 Rimnicu Vilcca 193
Fagaras 176 Sibiu 253
Giurgiu 77 Tim isoara 329
Hirsova 151 U rziceni 80
Iasi 226 Vaslui 199
Lugoj____________________ 244 Zerind 374

Figura 3.22 Valores de hDLR  —  distâncias em linha reta para Bucareste.
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3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come 

Se a raposa as come, então estão maduras 

As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas 

práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R1 

R2 

R3

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com 

essas três primeiras sentenças devemos derivar q ^  p. Cuidado com a ordem em que as fórmulas 

são geradas.

Equivalência Implicação: (a ^  fí) equivale a ( - a v  fí)

Silogismo Hipotético: a ^  fí, ^  y h a ^  y

Conjunção: a ,  h  a h
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Equivalência Bicondicional: (a fí) equivale a (a — fí) A (fí —— Q.)

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato 
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão descritas 
acima e no material.

4 Redes Neurais Artificiais

Seja a RNA da figura abaixo.

Os neurônios Ni, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação 

tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada xi=-3, x2=1, dê:

a) (6,25 pontos) Valor de saída do neurônio N1
b) (6,25 pontos) Valor de saída do neurônio N2
c) (6,25 pontos) Valor de saída do neurônio N3
d) (6,25 pontos) Valor de saída da rede como um todo
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B -  RESOLUÇÃO
1 ChatGPT
a) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o 
resultado.

Inteligência Artificial (IA) é um campo da ciência da computação que se 
concentra no desenvolvimento de sistemas e máquinas capazes de realizar 
tarefas que normalmente requerem inteligência humana. Essas tarefas podem 
incluir raciocínio, aprendizado, reconhecimento de padrões, resolução de 
problemas, compreensão de linguagem natural, entre outras.

Os sistemas de IA são projetados para simular certos aspectos do comportamento 
humano, como a capacidade de aprender com experiências passadas, tomar 
decisões baseadas em dados e adaptar-se a novas situações. Eles podem ser 
aplicados em uma ampla variedade de áreas, incluindo medicina, finanças, 
transporte, manufatura, entretenimento, entre outros.

Existem diferentes abordagens e técnicas dentro do campo da IA, incluindo o 
aprendizado de máquina, redes neurais artificiais, lógica simbólica, 
algoritmos evolutivos, entre outras. O objetivo final da IA é criar sistemas 
capazes de realizar tarefas de forma autônoma, eficiente e com desempenho 
comparável ou superior ao humano em determinadas áreas.

b) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas 
em sala. Explique o porquê.

A resposta, acima, dada pelo ChatGPT, pode ser enquadrada nas quatro 
abordagens, conforme análise a seguir:

Agir como Humano: a resposta descreve a capacidade de sistemas de IA em
realizar tarefas que requerem inteligência humana, como raciocínio, 
reconhecimento de padrões, interpretação de informações e compreensão da 
linguagem natural. Isso se assemelha com a abordagem de agir como humano, 
pois imita o comportamento de humanos diante de certas atividades como, por 
exemplo, ser capaz de interpretar e engajar-se em uma conversa. A 
representação do conhecimento se dá por meio de processamento de linguagem 
natural.

Pensar como Humano: essa abordagem busca a implementação do processo de
pensamento, ou seja, codificar para o computador a forma de funcionamento do 
cérebro humano. Esse aspecto pode ser identificado na resposta do ChatGPT 
quando mencionada a simulação de aspectos do comportamento humano, como a 
capacidade de aprender com experiências passadas, adaptar-se a novas 
situações e interpretar informações.

Agir Racionalmente: a resposta destaca a capacidade de sistemas de IA em
realizar tarefas que requerem inteligência humana, de tomar decisões e de 
realizar tarefas de forma eficaz, incluindo adaptação a novas situações. 
Desta forma, a resposta associa-se ao Agir Racionalmente, visto que esta 
abordagem é a mais ampla das quatro abordagens. Envolve a implementação de 
sistemas/agentes capazes de responder a situações e buscar tomar as melhores 
ações possíveis para atingir objetivo definido.

Pensar Racionalmente: essa abordagem busca modelar o processo de raciocínio
para que os sistemas de IA possam operar de acordo com princípios de 
raciocínio lógico e dedutivo. Na resposta fornecida pelo ChatGPT podemos 
associar o trecho "sistemas capazes de realizar tarefas" com o Pensar 
Racionalmente, visto que para realizar uma tarefa é necessário algum uso de 
raciocínio lógico e dedutivo.
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c) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio
ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as 
referências.

O ChatGPT pode ser definido como um Modelo de Linguagem de Grande Porte (LLM), 
projetado para processamento de linguagem natural. Esse tipo de modelo é 
exposto a quantidade massivas de dados para, assim, aprender os padrões 
estatísticos da linguagem.

Os LLM são construídos com base na arquitetura de Transformer, uma estrutura 
de rede neural proposta por Vaswani et al. no trabalho "Attention is All You 
Need" em 2017. Essa arquitetura se constitui de vários neurônios 
interconectados (unidades de atenção), o que permite que este modelo processe 
informações em paralelo, capturando relacionamentos de longo alcance entre 
palavras em uma sentença. Isso permite que o ChatGPT gere respostas coerentes 
e contextuais.

Além disso, o ChatGPT é refinado por meio do processo de fine-tuning, onde é 
ajustado para tarefas específicas e também recebe feedback humano para 
melhorar seu desempenho. O processo de Aprendizado por Reforço com Feedback 
Humano (RLHF), onde as interações humanas são usadas para orientar o 
comportamento do modelo em direção aos resultados desejados, ajuda a garantir 
que o ChatGPT possa fornecer respostas úteis e evitar a geração de conteúdo 
problemático. Portanto, tal processo pode ser entendido como uma salvaguarda 
aplicada ao modelo.

Em resumo, o ChatGPT é uma combinação de técnicas de aprendizado de máquina 
e processamento de linguagem natural, projetado para entender e responder a 
perguntas de maneira semelhante a um ser humano.

Referências:
https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://platform.openai.com/docs/introduction
https://www.consultingclub.com.br/post/intelig%C3%AAncias-artificiais-e-o-
chat-gpt-o-futuro-j%C3%A1-come%C3%A7ou
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-
1ce5fca96286
https://www.datacamp.com/blog/a-chat-with-chatgpt-on-the-method-behind-the-
bot
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat- 
gpt#:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20 
de%20texto.
https://www.dio.me/articles/conheca-a-tecnologia-por-tras-do-chatgpt-o-que- 
e-e-como-usar-a-ferramenta-na-programacao 
https://www.youtube.com/watch?v=VcAAXzCKX g 
https://www.youtube.com/watch?v=bSvTVREwSNw
Lee, Peter, et al. A Revolução da Inteligência Artificial na Medicina: GPT-4
e Além. Disponível em: Minha Biblioteca, Grupo A, 2024.

d) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 
4 abordagens vistas em sala. Explique o porquê.

O modo de funcionamento do ChatGPT enquadra-se na abordagem "Agir como
humanos", devido a compreensão da linguagem natural e a capacidade de 
responder perguntas, conversar e até mesmo gerar novos conteúdos textuais, 
utilizando-se da linguagem natural para apresentar seus resultados imitando 
o comportamento humano. O ChatGPT não pensa como um humano, suas respostas 
são baseadas em conhecimento obtido através de seus métodos de aprendizagem.

https://help.openai.com/en/articles/6783457-what-is-chatgpt
https://platform.openai.com/docs/introduction
https://www.consultingclub.com.br/post/intelig%C3%AAncias-artificiais-e-o-chat-gpt-o-futuro-j%C3%A1-come%C3%A7ou
https://www.consultingclub.com.br/post/intelig%C3%AAncias-artificiais-e-o-chat-gpt-o-futuro-j%C3%A1-come%C3%A7ou
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286
https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286
https://www.datacamp.com/blog/a-chat-with-chatgpt-on-the-method-behind-the-bot
https://www.datacamp.com/blog/a-chat-with-chatgpt-on-the-method-behind-the-bot
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-gpt%23:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20de%20texto
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-gpt%23:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20de%20texto
https://www.engenhariahibrida.com.br/post/a-tecnologia-por-tras-do-chat-gpt%23:~:text=O%20Chat%20GPT%2C%20alimentado%20por,artificial%20por%20meio%20de%20texto
https://www.dio.me/articles/conheca-a-tecnologia-por-tras-do-chatgpt-o-que-e-e-como-usar-a-ferramenta-na-programacao
https://www.dio.me/articles/conheca-a-tecnologia-por-tras-do-chatgpt-o-que-e-e-como-usar-a-ferramenta-na-programacao
https://www.youtube.com/watch?v=VcAAXzCKX_g
https://www.youtube.com/watch?v=bSvTVREwSNw
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2 Busca Heurística

A ra d 366 Mc ha dia 241
Bucarestc 0 Neamt 234
C raiova 160 Oracle a 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcca 193
Fagaras 176 Sibiu 253
Giurgiu 77 Tim isoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
1 ugoj 244 Zerind 374

3 Lógica
Rl: p - q 
R2: q - r 
R3: -,r V p

R4: r — p (Equivalência Implicação em R3)
R5: q — p (Silogismo Hipotético em R2 e R4)
R6: (q — p) A (p — q) (Conjunção entre R5 e Rl)
R 7 : q « p (Equivalência Bi condicional em R6)

4 Redes Neurais Artificiais
a) Valor de saida do neurônio NI
u(NI) = (0,2 * -3) + (0,8 * 1) + (0,1 * 1)
u(Nl) = -0,6 + 0,8 + 0,1
u(NI) = 0,3
f(u) = 0,3
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b) Valor de saida do neurônio N2
u(N2) = (0,1 * -3) + (0,2 * 1) + (0,4 * 1)
u(N2) = -0,3 + 0,2 + 0,4
u(N2) = 0,3
f(u) = 0,3

c) Valor de saida do neurônio N3
u(N3) = (0,9 * -3) + (0,5 * 1) + (0,2 * 1)
u(N3) = -2,7 + 0,5 + 0,2
u(N3) = -2
f(u) = -2

d) Valor de saida da rede como um todo
u(N4) = (0,9 * 0,3) + (0,3 * 0,3) + (0,3 * -2) + (0,1 * 1)
u(N4) = 0,27 + 0,09 - 0,6 + 0,1
u(N4) = -0,14
f(u) = tanh(u) = -0,139092448
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APÊNDICE 2 -  LINGUAGEM DE PROGRAMAÇÃO APLICADA 

A -  ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv

Informações sobre a base de dados:

Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021, 

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A base 

original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser 

utilizada no presente exercício.

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna 

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores 

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém todos 

os dados originais da tabela FIPE.

Metadados:

Nome do campo Descrição

year_of_reference O preço médio corresponde a um 

mês de ano de referência

month_of_reference O preço médio corresponde a um 

mês de referência, ou seja, a FIPE atualiza 

sua tabela mensalmente

fipe_code Código único da FIPE

authentication Código de autenticação único para 

consulta no site da FIPE

brand Marca do carro

model Modelo do carro

fuel Tipo de combustível do carro

gear Tipo de engrenagem do carro

engine_size Tamanho do motor em centímetros 

cúbicos

https://www.kaggle.com/datasets/vagnerbessa/average-car-prices-bazil/data
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year_model Ano do modelo do carro. Pode não 

corresponder ao ano de fabricação

avg_price Preço médio do carro, em reais

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato 

que será considerado correto na resolução do exercício.

1 Análise Exploratória dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Carregue a base de dados media_precos_carros_brasil.csv
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o 

problema de valores faltantes
c. Verifique se há dados duplicados nos dados
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de

informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados 

na Análise Exploratória dos dados

2 Visualização dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Gere um gráfico da distribuição da quantidade de carros por marca
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 

(variável de tempo no eixo X)
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis 
independentes do modelo.A variável target é avg_price. Observação: caso julgue necessário, 
faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo. 
Indique quais variáveis foram transformadas e como foram transformadas

b. Crie partições contendo 75% dos dados para treino e 25% para teste
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca 

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário, 
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram 
inputados e indique o treinamento de cada modelo

d. Grave os valores preditos em variáveis criadas
e. Realize a análise de importância das variáveis para estimar a variável target, para cada 

modelo treinado
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f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na 
análise de importância de variáveis

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R2
h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor 

resultado e a métrica de avaliação utilizada

B - RESOLUÇÃO
## 1 Análise Exploratória dos Dados
# Importar bibliotecas analise dados e gráficos 
import pandas as pd
import seaborn as sns 
import matplotlib.pyplot as plt 
from datetime import datetime 
from time import strptime 
import warnings
warnings.filterwarnings('ignore')

Questão 1.a)
# Importar a base de dados CSV - precos carros brasil.csv 
tbDados = pd.read csv("precos carros brasil.csv")

# Mostra o cabeçalho e pequena sequencia de dados 
tbDados

Questão 1.b)
# Verificar se faltam valores e tratativa para resolução do problema
# *** HÁ ITENS FALTANTES EM TODAS AS 11 COLUNAS *** 
tbDados.isna().any()
year of reference True
month of reference True
fipe code True
authentication True
brand True
model True
fuel True
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gear True
engine size True
year model True
avg price brl True
dtype: bool

# Contagem de itens faltantes 
tbDados.isna().sum()
year of reference 65245
month of reference 65245 
fipe code 65245
authentication 65245
brand 65245
model 65245
fuel 65245
gear 65245
engine size 65245
year model 65245
avg price brl 65245
dtype: int64

# EXISTEM ITENS FALTANTES - Opção por apagar itens faltantes 
tbDados.dropna(inplace=True)

# Verifica novamente se existem itens faltantes
# *** NÃO HÁ MAIS ITENS FALTANTES ***
tbDados.isna().any() 
year of reference False
month of reference False 
fipe code False
authentication False
brand False
model False
fuel False
gear False
engine_size False
year_model False
avg price brl False
dtype: bool

# Realiza nova contagem dos itens faltantes
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tbDados.isna().sum()
year of reference 0
month of reference 0 
fipe code 0
authentication 0
brand 0
model 0
fuel 0
gear 0
engine size 0
year model 0
avg price brl 0
dtype: int64

Questão 1.c)
# Verificar se há itens duplicados 
tbDados.duplicated().sum()
2

# Exclui itens duplicados 
tbDados.drop duplicates(inplace=True)

# Verifica novamente se há itens duplicados 
tbDados.duplicated().sum()
0

Questão 1.d)
# Dividir a categoria dos dados e impressão do resumo de informações das

variáveis numéricas e categóricas
num colms = [col for col in tbDados.columns if tbDados[col].dtype != 'object']
cat colms = [col for col in tbDados.columns if tbDados[col].dtype == 'object']

# Impressão das infomações das variáveis numéricas
tbDados[num colms].describe()
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# Impressão das infomações das variáveis categóricas 
tbDados[cat colms].describe()

Questão 1.e)
# Impressão de valores por contagem de modelo (model) e marca do carro (brand)

#Impressão por modelo 
tbDados["model"].value counts()

# Impressão por marca 
tbDados["brand"].value counts()

Questão 1.f)
Dê uma breve explicação (máximo de quatro linhas) sobre os principais 
resultados encontrados na Análise Exploratória dos dados.

Durante a importação e tratamento dos dados observou-se a existência de 65.245 
dados faltantes e dois duplicados sendo necessária a aplicação de correções 
para eliminar estes problemas. Em relação aos dados, observou-se que as marcas 
Fiat, Volkswagen e Chevrolet são predominantes no conjunto de dados. Foi 
possível constatar que a maioria dos veículos tem um preço médio superior a 
60 mil, são movidos a gasolina, e possuem câmbio manual.

Questão 2.a)
# Gerar gráfico da distribuição da quantidade de carros por marca



24

# Contagem dos valores por marca
valBrand = tbDados["brand"].value counts()
print(valBrand

# Gráfico comparativo 
plt.figure(figsize=(10,5))
grfBrand = plt.bar(valBrand.index, valBrand.values) 
plt.title('Quantidade de Carros por Marca') 
plt.xlabel('Marcas Veiculos') 
plt.ylabel('Total de Carros') 
plt.bar label(grfBrand, size=10);

Questão 2.b)
# Gerar gráfico da quantidade de carros por tipo de engrenagem
# Contagem dos valores por engrenagem 
tpEngr = tbDados["gear"].value counts() 
print(tpEngr)
gear
manual 161883
automatic 40412
Name: count, dtype: int64
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# Gráfico comparativo 
plt.figure(figsize=(10,5
grfEngr = plt.bar(tpEngr.index, tpEngr.values) 
plt.title('Quantidade por Tipo de Engrenagens') 
plt.ylabel('Total de Engrenagem') 
plt.bar label(grfEngr, size=10);

Questão 2.c)
# Gerar gráfico da evolução da média de preços dos carros ao longo do ano de
2022 - Representar os meses no eixo X
# Separando apenas dados de 2022
yearRef = tbDados[tbDados['year of reference'] == 2022]

# Criando coluna para representar os valorese numericos dos meses 
yearRef['month of reference numeric'] = [strptime(mes, '%B').tm mon for mes 
in yearRef['month of reference']]
mdMes =
yearRef.groupby(['month of reference numeric','month of reference'])['avg p 
rice brl'].mean()
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Questão 2.d)
# Gerar um gráfico da distribuição da média de preços dos carros por marca e 
tipo de engrenagem
# Separando apenas dados por preços
refPrice = tbDados.groupby(['brand',
'gear']).avg price brl.mean().reset index()

# Gerando o gráfico 
plt.figure(figsize=(20, 10))
Cores = dict(zip(refPrice['brand'].unique(), sns.color palette("husl",
len(refPrice['brand'].unique()))))

for marca in refPrice['brand'].unique():
for engrenagem in refPrice['gear'].unique():

dados = refPrice[(refPrice['brand'] == marca) & (refPrice['gear'] == 
engrenagem)]

plt.bar(f'{marca} - {engrenagem}', dados['avg price brl'],
label=f'{marca} - {engrenagem}')

# Gerando gráfico de linha
plt.plot(mdMes.index.get level values('month of reference'), mdMes, "b-")
plt.xlabel("Mês")
plt.ylabel("Preço Médio (BRL)")
plt.title("Preço Médio por Mês em 2022")
plt.xticks(rotation=30)
plt.grid(True)
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if not dados.empty:
plt.bar(f,{marca} - {engrenagem}’, dados[’avg_price_brl’], 

color=Cores[marca], label=f’{marca} - {engrenagem}’)

plt.xticks(rotation=75)
plt.title(’Distribuição da Média de Preço dos Carros por Marca e Tipo de 
Engrenagem’)
plt.xlabel(’Veículos | Tipo de Engrenagem’) 
plt.ylabel(’Média de Preço’)

Questão 2.e)
O gráfico demonstra que as marcas Volkswagem, Fiat, e Nissan, possuem, 
respectivamente, as médias mais altas de preços para cambio automático. Já o 
modelo automático da marca Renault possui média de preço um pouco superior 
quando comparado aos carros das marcas Volkswagem e Fiat com câmbio manual. 
Pode-se concluir que os carros automáticos têm preço superior quando 
comparados a carros manuais.

Questão 2.f)
# Gerar um gráfico da distribuição da média de preços dos carros por marca e 
tipo de combustível
# Separando apenas dados por preços
refPrice = tbDados.groupby([’brand’,
’fuel’]).avg_price_brl.mean().reset_index()
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# Gerando o gráfico 
plt.figure(figsize=(20, 10))
Cores = dict(zip(refPrice['brand'].unique(), sns.color_palette("husl", 
len(refPrice['brand,].unique()))))

for marca in refPrice['brand'].unique():
for combustivel in refPrice['fuel'].unique():

dados = refPrice[(refPrice['brand'] == marca) & (refPrice['fuel'] == 
combustivel)]

for i, row in refPrice.iterrows():
plt.bar(f'{row["brand"]} - {row["fuel"]}', row['avg_price_brl'], 

color=Cores[row['brand']], label=f'{row["brand"]} - {row["fuel"]}')

plt.xticks(rotation=75)
plt.title('Distribuição da Média de Preço dos Carros por Marca e Tipo de 
Combustível')
plt.xlabel('Veículos | Tipo de Combustível') 
plt.ylabel('Média de Preço');

Questão 2.g)
Veículos movidos a diesel possuem maior média de preço, seguidos pelos movidos 
a gasolina e, por fim, pelos movidos a álcool. Adicionalmente, observa-se 
que as marcas Renault e Nissan não possuem modelos movidos a álcool.
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Questão 3.a)
# Importação bibliotecas de Machine Learning
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import LabelEncoder

# Métricas de avaliação dos modelos
from sklearn.metrics import mean squared error, mean absolute error, 
r2_score

# Mostrando tabela de dados original "limpa" 
tbDados

# Elegidas as seguintes variáveis: year of reference, brand, fuel, gear,
engine size, year model

tbDados Regr =
tbDados[['year of reference','brand','fuel','gear','engine size','year mode 
l','avg price brl']] 
tbDados Regr

# Transformando variáveis categóricas'brand', 'fuel', 'gear' em numéricas 
tbDados Regr = pd.get dummies(tbDados Regr,
columns=['brand','fuel','gear'],dtype='int64')

# Tratamento da variável 'engine size' para indicação numérica
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tbDados Regr['engine size'] =
LabelEncoder().fit transform(tbDados Regr['engine size'])
tbDados_Regr

# Mapa de correlação das variáveis numéricas com variável Target 
plt.figure(figsize=(20,10))
sns.heatmap(tbDados Regr.corr("spearman"), annot = True, cmap="coolwarm") 
plt.title("Mapa de Correlação das Variáveis Numéricas\n", fontsize = 15) 
plt.show()

Questão 3.b)
# Variável X contém as variáveis numéricas de interesse para a análise, 
excluindo a variável target
varX = tbDados Regr.drop(['avg price brl'],axis = 1) 
varX.head()
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# Variável Y contém apenas a variável target - 'avg price brl' 
varY = tbDados Regr['avg price brl']
varY.head()
0 9162.0
1 8832.0
2 8388.0
3 8453.0
4 12525.0
Name: avg price brl, dtype: float64

# Atribuindo 75% dos dados para treinamento e 25% dos dados para testes
X train, X test, Y train, Y test = train test split(varX, varY, test size = 
0.25, random state = 42)

# Observando os dados de treinamento 
print(X train.shape)
X train.head(1)
(151721, 14)

# Observando a variável target 
Y test.head()
180633 42595.0
13130 10989.0
163315 9087.0
121464 26965.0
14044 57102.0
Name: avg price brl, dtype: float64

Questão 3.c)
# Treino RandomForest
mdlRanForest = RandomForestRegressor()

# Ajuste do modelo conforme variáveis de treinamento 
mdlRanForest.fit(X train, Y train)

# Treino XGBoost 
mdlXgboost = XGBRegressor()
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# Ajuste do modelo conforme variáveis de treinamento 
mdlXgboost.fit(X train, Y train)

Questão 3.d)
# Gravar os valores preditos em variáveis
# Valores preditos em RandomForest com base nos dados de teste 
valPredRanForest = mdlRanForest.predict(X test) 
valPredRanForest
array([ 44889.62859266, 12739.80934143, 15295.85822716, ...,

117329.56881555, 16274.02237751, 21525.00267423])

# Valores preditos em XGBoost com base nos dados de teste 
valPredXgboost = mdlXgboost.predict(X test) 
valPredXgboost
array([ 45345.223, 12810.657, 15979.231, ...,

117479.83 , 15259.941, 22179.574], dtype=float32)

Questão 3.e)
# Análise da importância das variáveis em RandomForest para estimativa do 
alvo
mdlRanForest.feature importances
feature importancesRF = pd.DataFrame(mdlRanForest.feature importances , 
index = X train.columns, columns=[’importance’]).sort values('importance', 
ascending = False) 
feature importancesRF
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# Análise da importância das variáveis em XGBoost para estimativa do alvo 
mdlXgboost.feature importances
feature importancesXG = pd.DataFrame(mdlXgboost.feature importances , index 
= X train.columns, columns=['importance']).sort values('importance',
ascending = False) 
feature importancesXG

Questão 3.f)
No modelo de RandomForest as variáveis com maior importância foram o tamanho 
do motor e o ano do modelo. Essa relevância pode ser observada ao computar 
com o método feature importances e também no mapa de correlação de variáveis. 
Para o XGBoost, as variáveis mais relevantes foram combustível a diesel, 
tamanho do motor e o ano do modelo.

Questão 3.g)
# Escolha do melhor modelo com base nas métricas de avaliação MSE, MAE, R2
# Métrica RandomForest
# Resultado análise MSE em RandomForest
valMSErf = mean squared error(Y test, valPredRanForest) 
valMSErf
106634614.2088013

# Resultado análise MAE em RandomForest
valMAErf = mean absolute error(Y test, valPredRanForest) 
valMAErf
5599.162102900011

# Resultado análise R2 em RandomForest 
valR2rf = r2 score(Y test, valPredRanForest) 
valR2rf
0.9603773993318255
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# Métricas XGBoost
# Resultado análise MSE em XGBoost
valMSExg = mean squared error(Y test, valPredXgboost) 
valMSExg
107807654.56567411

# Resultado análise MAE em XGBoost
valMAExg = mean absolute error(Y test, valPredXgboost) 
valMAExg
5668.311479710965

# Resultado análise R2 em XGBoost 
valR2xg = r2 score(Y test, valPredXgboost) 
valR2xg
0.9599415285784788 

Questão 3.h)
Analisando as métricas em ambos os modelos, observa-se que RandomForest e 
XGBoost tiveram um bom desempenho. No entanto, o melhor modelo foi o do Random 
Forest que atingiu coeficiente de determinação de 0.96 e menores valores para 
MSE e MAE.
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APÊNDICE 3 -  LINGUAGEM R 

A -  ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma 

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é 

prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) consiste 

em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na 

região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e 

duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a 

preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém 

2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo 

de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3 

completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro 

bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número 

indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de 

vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você 

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro 

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores 

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, 

com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro 

valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode 

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma 

vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote mlbench e é completo (não possui dados faltantes).

Tarefas:

1. Carregue a base de dados Satellite
2. Crie partições contendo 80% para treino e 20% para teste
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
4. Escolha o melhor modelo com base em suas matrizes de confusão.
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada
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2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal 

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário 

abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas 

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes 

dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em 

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo 

de Spurr é dado por:

Volume = b0 + b1 * dap2 * Ht

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários modelos 

alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão 

envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma 

equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de 

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
2. Eliminar a coluna NR, que só apresenta um número sequencial
3. Criar partição de dados: treinamento 80%, teste 20%
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes

Neurais (neuralnet) e o modelo alométrico de SPURR

■ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5))

5. Efetue as predições nos dados de teste
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados

observados

■ Coeficiente de determinação: R2

2 £ (yry,)
R  =  1 -  v r--------

X ( .y -y )2
i =  1

onde y t é o valor observado, 1  é o valor predito e y  é a média dos valores yt observados. 

Quanto mais perto de 1 melhor é o modelo;

http://www.razer.net.br/datasets/Volumes.csv
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Erro padrão da estimativa: S:yx

esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;

Syx%

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

■

B -  RESOLUÇÃO
1 Pesquisa com Dados de Satélite
Entrada e saída de comandos:
> # instalação e carregamento de pacotes necessários
> install.packages('e1071')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/e1071 1.7-14.tgz'
Content type 'application/x-gzip' length 683532 bytes (667 KB)

downloaded 667 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded pac 
kages
> install.packages('randomForest')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/randomForest 4.7-1.1.tgz'
Content type 'application/x-gzip' length 269721 bytes (263 KB)

downloaded 263 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp_wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded_pac
kages

https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
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> install.packages('kernlab')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/kernlab 0.9-32.tgz'
Content type 'application/x-gzip' length 2526541 bytes (2.4 MB)

downloaded 2.4 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded pac 
kages
> install.packages('mlbench')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/mlbench 2.1-3.1.tgz'
Content type 'application/x-gzip' length 1052825 bytes (1.0 MB)

downloaded 1.0 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmp4EsWHz/downloaded pac 
kages
> install.packages('caret')
Error in install.packages : Updating loaded packages

> install.packages("caret")
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/caret 6.0-94.tgz'
Content type 'application/x-gzip' length 3587235 bytes (3.4 MB)

downloaded 3.4 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//Rtmpde2FdR/downloaded pac 
kages
> library('mlbench')
> library('caret')
Loading required package: ggplot2 
Loading required package: lattice
> # carregando a base de dados Satellite
> set.seed(123)
> data("Satellite")
> # construindo dataframe apenas com dados de interesse para classificação

https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
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> database <- data.frame(Satellite[17:20])
> database$classes <- Satellite$classes
> # criando partições de treino e teste
> indices <- createDataPartition(database$classes,p = 0.8,list = FALSE)
> treino <- database[indices,]
> teste <- database[-indices,]
> # randomForest
> rf <- caret::train(classes~., data=treino, method='rf')
> # svm
> svm <- caret::train(classes~.,data=treino, method='svmRadial')
> # rna
> rna <- caret::train(classes~., data=treino, method='nnet', trace=FALSE)
> # randomForest
> predicoes.rf <- predict(rf,teste)
> #svm
> predicoes.svm <- predict(svm,teste)
> #rna
> predicoes.rna <- predict(rna,teste)
> # randomForest
> confusionMatrix(predicoes.rf, teste$classes)
Confusion Matrix and Statistics

Ref
Prediction re 

red soil

erence 
d soil cotl 

294
:on crop gre 

0
iy soil damp grey soil vegetation stubble 

1 1  10
cotton crop 0 128 0 0 1
grey soil 6 0 247 27 2
damp grey soil 0 0 16 65 1
vegetation stubble e 12 0 1 110
very damp grey soil 0 0 7 31 17

Reference
Prediction very damp grey soil

red soil 0
cotton crop 0
grey soil 11
damp grey soil 34
vegetation stubble 6
very damp grey soil 250

Overall Statistics

Accuracy : 0.852 
95* Cl : (0.8314, 0.871) 

No Information Rate : 0.2383 
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8169

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: red soil Class: cotton crop Class: grey soil
Sensitivity 0.9608 0.91429 0.9114
Specificity 0.9877 0.99913 0.9546
Pos Pred Value 0.9608 0.99225 0.8430
Neg Pred Value 0.9877 0.98961 0.9758
Prevalence 0.2383 0.10903 0.2111
Detection Rate 0.2290 0.09969 0.1924
Detection Prevalence 0.2383 0.10047 0.2282
Balanced Accuracy 0.9743 0.95671 0.9330
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Class: damp grey soil Class: vegetation stubble 
Sensitivity 0.52000 0.78014
Specificity 0.95600 0.97813
Pos Pred Value 0.56034 0.81481
Neg Pred Value 0.94863 0.97302
Prevalence 0.09735 0.10981
Detection Rate 0.05062 0.08567
Detection Prevalence 0.09034 0.10514
Balanced Accuracy 0.73800 0.87913

Class: very damp grey soil 
Sensitivity 0.8306
Specificity 0.9440
Pos Pred Value 0.8197
Neg Pred Value 0.9479
Prevalence 0.2344
Detection Rate 0.1947
Detection Prevalence 0.2375
Balanced Accuracy 0.8873

> # svm
> confusionMatrix(predicoes.svm, teste$classes) 

Confusion M a trix  and S ta t is t ic s

Reference
Prediction red soil cotton crop grs 
red soil 297 0

!y soil dairp t 
1

jrey soil vegetat 
1

ion stubble 
14

cotton crop 0 127 0 0 0
grey soil 6 0 259 32 1
domp grey soil 0 0 10 66 0
vegetation stubble 3 13 0 1 102
very domp grey soil 0 0 

Reference
Prediction very damp grey soil 
red soil 0 
cotton crop 0 
grey soil 12 
damp grey soil 32 
vegetation stubble 7 
very damp grey soil 250

1 25 24

Overall Statistics

Accuracy : 0.8575 
95* Cl : (0.8371, 0.8762) 

No Information Rate : 0.2383 
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8233 

Mcnemar's Test P-Value : NA

Statistics by Class:

Sensitivity 
Specificity 
Pos Pred Value 
Neg Pred Value 
Prevalence 
Detection Rate 
Detection Prevalence 
Balanced Accurdcy

Sensitivity 
Specificity 
Pos Pred Value 
Neg Pred Value 
Prevalence 
Detection Rate 
Detection Prevalence 
Balanced Accuracy

Sensitivity 
Specificity 
Pos Pred Value 
Neg Pred Value 
Prevalence 
Detection Rate 
Detection Prevalence 
Balanced Accuracy

Class: red soil Class 
0.9706 
0.9836 
0.9489 
0.9907 
0.2383 
0.2313 
0.2438 
0.9771 

Class: damp grey soil 
0.52800 
0.96376 
0.61111 
0.94983 
0.09735 
0.05140 
0.08411 
0.74588 

Class: very damp grey 
0 
0 
0 
0 
0 
0 
0 
0

cotton crop Class: grey soil 
0.90714 0.9557
1.00000 0.9497
1.00000 0.8355
0.98876 0.9877
0.10903 0.2111
0.09891 0.2017
0.09891 0.2414
0.95357 0.9527

Class: vegetation stubble 
0.72340 
0.97900 
0.80952 
0.96632 
0.10981 
0.07944 
0.09813 
0.85120

soil
8306
9491
8333
9482
2344
1947
2336
8899
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> # rna
> confusionMatrix(predicoes.rna, teste$classes)
Confusion M a trix  and S ta t is t ic s

S ta t is t ic s  by Class:

Comparação Matriz de Confusão dos Modelos:
> confusionMatrix(predicoes.rf, teste$classes)
Accuracy : 0.852

95% CI : (0.8314, 0.871)

No Information Rate : 0.2383 
P-Value [Acc > NIR] : < 2.2e-16

> confusionMatrix(predicoes.svm, teste$classes)
Accuracy : 0.8575

95% CI : (0.8371, 0.8762)

No Information Rate : 0.2383 
P-Value [Acc > NIR] : < 2.2e-16

Reference
P red ic tion red s o i l  co tton  crop grey s o il  damp grey s o il  vegetation  stubble

red s o il 297 3 1 4 16
co tton  crop 0 116 0 0 0
grey s o il 5 0 265 83 2
damp grey s o il 0 0 0 0 0
vegetation  stubble 3 18 0 0 91
very danp grey s o il 1

Reference
3 5 38 32

P red ic tion very damp grey s o il
red s o il 1
co tton  crop 0
grey s o il 43
damp grey s o il 0
vegetation stubble 8
very damp grey s o il 249

O vera ll S ta t is t ic s

Accuracy : 0.7928 
95% Cl : C0.7696, 0.8147) 

No In fo rm ation  Rate : 0.2383 
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7394

Mcnemar’ s Test P-Value : NA

Class: red s o il  Class: co tton  crop Class: grey s o il
S e n s it iv ity 0.9706 0.82857 0.9779
S p e c if ic ity 0.9744 1.00000 0.8687
Pos Pred Value 0.9224 1.00000 0.6658
Neg Pred Value 0.9906 0.97945 0.9932
Prevalence 0.2383 0.10903 0.2111
Detection Rate 0.2313 0.09034 0.2064
Detection Prevalence 0.2508 0.09034 0.3100
Balanced Accuracy 0.9725 0.91429 0.9233

Class: damp grey s o il  C lass: vegetation  stubble
S e n s it iv ity 0.00000 0.64539
S p e c if ic ity 1.00000 0.97463
Pos Pred Value NaN 0.75833
Neg Pred Value 0.90265 0.95704
Prevalence 0.09735 0.10981
Detection Rate 0.00000 0.07087
Detection Prevalence 0.00000 0.09346
Balanced Accuracy 0.50000 

C lass: very damp grey s o il
0.81001

S e n s it iv ity 0.8272
S p e c if ic ity 0.9196
Pos Pred Value 0.7591
Neg Pred Value 0.9456
Prevalence 0.2344
Detection Rate 0.1939
Detection Prevalence 0.2555
Balanced Accuracy 0.8734
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> confusionMatrix(predicoes.rna, teste$classes)
Accuracy : 0.7928

95% CI : (0.7696, 0.8147)

No Information Rate : 0.2383 
P-Value [Acc > NIR] : < 2.2e-16

Em problemas de classificação, uma das métricas de referência para avaliar a 
performance de modelos é a acurácia que indica a proporção de instâncias 
classificadas corretamente pelo modelo em relação ao total de previsões. Em 
virtude disso, o modelo escolhido foi o de svm, que obteve 0.8575 de acurácia, 
a melhor dentre os três modelos.

2 Estimativa de Volume de Árvores
Entrada e saida de comandos:
> # instalação e carregamento de pacotes necessários
> install.packages('e1071')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/e1071 1.7-14.tgz'
Content type 'application/x-gzip' length 683532 bytes (667 KB)

downloaded 667 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//RtmpQgB6zZ/downloaded pac 
kages
> install.packages('randomForest')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/randomForest 4.7-1.1.tgz'
Content type 'application/x-gzip' length 269721 bytes (263 KB)

downloaded 263 KB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp_wwtm8n9zvc0000gn/T//RtmpQgB6zZ/downloaded_pac
kages
> install.packages('kernlab')
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/kernlab 0.9-32.tgz'
Content type 'application/x-gzip' length 2526541 bytes (2.4 MB)

downloaded 2.4 MB

https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
https://cran.rstudio.com/bin/macosx/big-sur-
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The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//RtmpQgB6zZ/downloaded pac 
kages
> install.packages(’caret’)
Error in install.packages : Updating loaded packages

> install.packages("caret")
trying URL ’https://cran.rstudio.com/bin/macosx/big-sur-
x86 64/contrib/4.3/caret 6.0-94.tgz’
Content type ’application/x-gzip’ length 3587235 bytes (3.4 MB)

downloaded 3.4 MB

The downloaded binary packages are in
/var/folders/8r/b5l78l452x7gp wwtm8n9zvc0000gn/T//RtmpSW76Bn/downloaded pac 
kages
> library(’caret’)
Loading required package: ggplot2 
Loading required package: lattice
> # carregar arquivo de volumes
> set.seed(123)
> data <- read.csv2("http://www.razer.net.br/datasets/Volumes.csv")
> # eliminando coluna NR
> data$NR <- NULL
> indices <- createDataPartition(data$VOL, p=0.8, list=FALSE)
> treino <- data[indices,]
> teste <- data[-indices,]
> # randomForest
> rf <- caret::train(VOL~.,data=treino,method=’rf’)
note: only 2 unique complexity parameters in default grid. Truncating the
grid to 2 .

> # svm
> svm <- caret::train(VOL~., data=treino, method=’svmRadial’)
> # rna
> rna <- caret::train(VOL~., data=treino, method=’nnet’, trace=FALSE)
Warning message:
In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, : 

There were missing values in resampled performance measures.
> # alométrico

https://cran.rstudio.com/bin/macosx/big-sur-
http://www.razer.net.br/datasets/Volumes.csv
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> alom <- nls(VOL ~b0 + b1 * DAP*DAP*HT, data=treino, start=list(b0=0.5, 
b1=0.5))
> #randomForest
> predicoes.rf <- predict(rf,teste)
> #svm
> predicoes.svm <- predict(svm,teste)
> #rna
> predicoes.rna <- predict(rna,teste)
> #alométrico
> predicoes.alom <- predict(alom,teste)
> # UDF
> # coeficiente de determinação
> coef det <- function(obs, preds){
+ sum pos <- sum((obs - preds) A 2)
+ sum neg <- sum ((obs - mean(obs)) A2)
+ result <- 1 - (sum pos / sum neg)
+ return(result)
+ }
> # erro padrão da estimativa
> standard error <- function(obs, preds){
+ size <- length(obs)
+ sum pos <- sum((obs - preds) A 2)
+ result = sqrt((sum pos / (size - 2)))
+ return(result)
+ }
> percentage error <- function(obs,preds){
+ size <- length(obs)
+ sum pos <- sum((obs - preds) a 2)
+ partial result = sqrt((sum pos / (size - 2)))
+ result <- (partial result/mean(obs)) * 100
+ }
> #randomForest
> rf.coef <- coef det(teste$VOL, predicoes.rf)
> rf.error <- standard error(teste$VOL, predicoes.rf)
> rf.percentage error <- percentage error(teste$VOL, predicoes.rf)
> # svm
> svm.coef <- coef det(teste$VOL, predicoes.svm)
> svm.error <- standard error(teste$VOL, predicoes.svm)
> svm.percentage error <- percentage error(teste$VOL, predicoes.svm)
> # rna
> rna.coef <- coef det(teste$VOL, predicoes.rna)
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> rna.error <- standard error(teste$VOL, predicoes.rna)
> rna.percentage error <- percentage error(teste$VOL, predicoes.rna)
> # alométrico
> alom.coef <- coef det(teste$VOL, predicoes.alom)
> alom.error <- standard error(teste$VOL, predicoes.alom)
> alom.percentage error <- percentage error(teste$VOL, predicoes.alom)
>
> rf.coef 
[1] 0.8486654
> svm.coef 
[1] 0.7899082
> rna.coef
[1] -0.8207433
> alom.coef 
[1] 0.8694429
> rf.error 
[1] 0.156604
> svm.error 
[1] 0.1845178
> rna.error 
[1] 0.5431978
> alom.error 
[1] 0.1454567
> rf.percentage error 
[1] 11.63489
> svm.percentage error 
[1] 13.70874
> rna.percentage error 
[1] 40.35687
> alom.percentage error 
[1] 10.8067

Após aplicação dos cálculos obteve-se os seguintes resultados:

RandomForest SVM RNA Alométrico
Coeficiente de
determinação
R2

0.8486654 0.7899082 -0.8207433 0.8694429

Erro padrão da 
estimativa Sy* 0.156604 0.1845178 0.5431978 0.1454567

Porcentagem 
de erro Sy*% 11.63489 13.70874 40.35687 10.8067
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Levando em consideração o coeficiente de determinação R2 
o Alométrico, visto que é o que mais se aproxima de 1. 
padrão também foi a menor neste modelo.

, o melhor modelo foi 
A estimativa de erro
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APÊNDICE 4 -  ESTATÍSTICA APLICADA I 

A -  ENUNCIADO

1) Gráficos e tabelas

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados

(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e “husage” 

(idade do marido) e comparar os resultados

2) Medidas de posição e dispersão

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados

(15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age” 

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

3) Testes paramétricos ou não paramétricos

(40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se 

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do 

marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você 

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique sua 

resposta sobre a escolha.

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes 

citados no item 1 acima.

B -  RESOLUÇÃO
1 Gráfico e tabelas
a) Elaborar os gráficos box-plot e histograma das variáveis "age" (idade da 
esposa) e "husage" (idade do marido) e comparar os resultados:

# Instalação de pacotes e upload/leitura base de dados:
install.packages("car")
install.packages("dplyr")
library("car")
library(dplyr)



38

load("salarios.RData")

# Gerar histograma com idades das esposas e dos maridos:
hist(x = salarios$age,xlab = 'Idade das Esposas',ylab = 'Frequência', 
col="#69b3a2",
main="Histograma Idade das Esposas")
hist(x=salarios$husage,xlab='Idade dos Maridos',
ylab='Frequência',main="Histograma
Idade dos Maridos",col="#69b3a2")

# Gerar gráfico box-plot com idades das esposas e dos maridos: 
ages list <- list(salarios$age, salarios$husage) 
names(ages list) <- c("Esposas", "Maridos") 
par(mfrow=c(1,1),mgp=c(3,2,0))
boxplot(ages list, col="#69b3a2", ylab="Idade", main="Gráfico Box-Plot das 
Idades")
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# Complementando com a comparação das informações sumárias: 
summary(salarios$age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 31.00 39.00 39.43 47.00 59.00
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summary(salarios$husage)
Min. 1st Qu. Median Mean 3rd Qu. Max.
19.00 34.00 41.00 42.45 50.00 86.00

Conclusão:
Os maridos possuem idade média superior ao das esposas e tendem a ter mais 
idade do que elas. No entanto, a diferença entre as médias e mediana não é 
expressiva entre ambos. Algumas observações na amostra analisada indicam 
outliers nas idades dos maridos que afetam a média e, em menor grau, poderiam 
afetar a mediana deste grupo.

b) Elaborar a tabela de frequências das variáveis "age" (idade da esposa) e 
"husage" (idade do marido) e comparar os resultados:
# Instalação do pacote necessário:
install.packages("fdth")
library(fdth)

# Gerar tabela de frequência com as idades das esposas: 
print(fdt(salarios$age))

Class limits f rf rf(%) cf cf(%)
[17.82,20.804) 61 0.01 1.08 61 1.08

[20.804,23.787) 161 0.03 2.86 222 3.94
[23.787,26.771) 312 0.06 5.54 534 9.48
[26.771,29.754) 505 0.09 8.96 1039 18.44
[29.754,32.738) 562 0.10 9.98 1601 28.42
[32.738,35.721) 571 0.10 10.13 2172 38.55
[35.721,38.705) 624 0.11 11.08 2796 49.63
[38.705,41.689) 510 0.09 9.05 3306 58.68
[41.689,44.672) 542 0.10 9.62 3848 68.30
[44.672,47.656) 432 0.08 7.67 4280 75.97
[47.656,50.639) 389 0.07 6.90 4669 82.87
[50.639,53.623) 358 0.06 6.35 5027 89.23
[53.623,56.606) 304 0.05 5.40 5331 94.62
[56.606,59.59) 303 0.05 5.38 5634 100.00

# Gerar tabela de frequência com as idades dos maridos: 
print(fdt(salarios$husage))
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Class lim its f rf rf(%) cf cf(%)
[18.81,23.671) 102 0.02 1.81 102 1.81

[23.671,28.531) 466 0.08 8.27 568 10.08
[28.531,33.392) 809 0.14 14.36 1377 24.44
[33.392,38.253) 895 0.16 15.89 2272 40.33
[38.253,43.114) 917 0.16 16.28 3189 56.60
[43.114,47.974) 629 0.11 11.16 3818 67.77
[47.974,52.835) 649 0.12 11.52 4467 79.29
[52.835,57.696) 541 0.10 9.60 5008 88.89
[57.696,62.556) 394 0.07 6.99 5402 95.88
[62.556,67.417) 152 0.03 2.70 5554 98.58
[67.417,72.278) 51 0.01 0.91 5605 99.49
[72.278,77.139) 21 0.00 0.37 5626 99.86
[77.139,81.999) 6 0.00 0.11 5632 99.96
[81.999,86.86) 2 0.00 0.04 5634 100.00

Conclusão:
Comparando os resultados de ambas tabelas pode-se obter algumas conclusões:
# Observando-se a tabela de frequências das idades das esposas, percebe-se 
que a frequência maior está entre as idades de 32 a 39 anos. Já a maior 
frequência dos maridos está entre 28 e 43 anos. Algumas observações referentes 
aos maridos indicam que pouco mais de 4% deles possuem idade superior a 60 
anos, idade esta inferior a máxima idade observada na amostra referente as 
esposas.

2 Medidas de posição e dispersão
a) Calcular a média, mediana e moda das variáveis "age" (idade da esposa) e 
"husage" (idade do marido) e comparar os resultados:
# Calcular a média da idade das esposas: 
mean(salarios$age)
[1] 39.42758

# Calcular a média da idade dos maridos: 
mean(salarios$husage)
[1] 42.45296

# Calcular a mediana da idade das esposas: 
median(salarios$age)
[1] 39
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# Calcular a mediana da idade das esposas: 
median(salarios$husage)
[1] 41

# Calcular as modas das esposas: 
table(salarios$age)
subset(table(salarios$age), table(salarios$age) == max(table(salarios$age)))
37
217

# Calcular as modas dos maridos: 
table(salarios$husage)
subset(table(salarios$husage), table(salarios$husage) ==
max(table(salarios$husage)))
44
201

Tabela resumo:

Item
Grupo

Média Mediana
Modal

Idade Frequência
Esposas 39.42758 39 37 217
Maridos 42.45296 41 44 201

Conclusão:
• A média das idades dos maridos é 7.67 % maior que a das esposas;
• A mediana das idades dos maridos é 5.13 % maior que a das esposas;
• A moda das idades dos maridos é 18.92 % maior que a das esposas;
• Os resultados indicam que as esposas são, de modo geral, mais jovens que 
os homens, muito embora a diferença entre ambos os gupos seja pequena;
• Os valores de média e mediana são próximos entre as duas variáveis.

b) Calcular a variância, desvio padrão e coeficiente de variação das variáveis
"age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados:
• Calcular a variância da idade das esposas: 
var(salarios$age)
[1] 99.75234

• Calcular a variância da idade dos maridos: 
var(salarios$husage)
[1] 126.0717
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# Calcular o desvio padrão das idades das esposas: 
sd(salarios$age)
[1] 9.98761

# Calcular o desvio padrão das idades dos maridos: 
sd(salarios$husage)
[1] 11.22817

# Calcular o coeficiente de variação da idades das esposas: 
(sd(salarios$age)/mean(salarios$age))*100
[1] 25.33153

# Calcular o coeficiente de variação da idades das esposas: 
(sd(salarios$husage)/mean(salarios$husage))*100
[1] 26.44849

Tabela resumo:

Item de Análise Esposas Maridos
Variância 99.75234 126.0717
Desvio padrão 9.98761 11.22817
Coeficiente de variação 25.33153 26.44849

Conclusão:
• A variância das idades dos maridos é 1.26 % maior que a das esposas;
• O desvio padrão das idades dos maridos é 1.12 % maior que a das esposas;
• Os resultados de variância apresentam uma maior distância da idade dos 
maridos em referência a média padrão deste grupo;
• Comparando os resultados de desvio padrão, as idades dos maridos possuem 
desvio também maior em relação ao desvio padrão das esposas;
• Com base nos valores de coeficiente de variação e utilizando a "regra de 
bolso" para análise desse dado, podemos assumir que há uma dispersão média 
tanto para as idades dos maridos (cv de 26%), quanto das esposas (cv de 25%).

3 Testes paramétricos ou não paramétricos
a) Testar se as médias (paramétrico) ou as medianas (não paramétrico) das 
variáveis "age" (idade da esposa) e "husage" (idade do marido) são iguais,
construir os intervalos de confiança e comparar os resultados:
• Checar condições preliminares para decidir tipo de teste
• Amostras independentes, normalidade e homogeneidade
• das variâncias entre grupos
• Premissa 1: As duas amostras são independentes?
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# Sim, pois as idades das esposas e maridos não estão relacionados e
# não se trata de uma amostra ou grupos emparelhados.
# Premissa 2: Os dados de cada amostra/grupo possuem distribuição
# normal?
# Teste de normalidade Kolmogorov-Smirnov com o seguinte
# teste de hipóteses:
# - H0: os dados são normalmente distribuídos
# - Ha: os dados não são normalmente distribuídos
# Bibliotecas necessárias 
library(nortest) 
library("ggpubr")

# Para evitar notação científica 
options(scipen = 999)

# Realizar os testes de Shapiro-Wilk com as seguintes hipóteses:
# H0: Os dados são normalmente distribuídos
# Ha: Os dados não são normalmente distribuídos

with(idades, shapiro.test(idades[grupo == "Marido"]))
Error in shapiro.test(idades[grupo == "Marido"]) : 
sample size must be between 3 and 5000

Conclusão:
A amostra não pode ser testada com o método Shapiro-Wilk, devido o método 
possuir restrições quanto ao tamanho da amostra; número máximo de até 5000 
observações.

# Primeiro vamos fazer o teste de normalidade Kolmogorov-Smirnov para a
# idade das esposas
wife normality <- lillie.test(salarios$age) 
wife normality

# p-value < 0.05 (valor de 0.00000000000000022), logo não possui
# distribuicao normal
husband normality <- lillie.test(salarios$husage) 
husband normality

# p-value < 0.05 (valor de 0.00000000000000022), logo não possui
# distribuição normal
# Premissa 3. As duas populações/amostras/grupos possuem
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# homogeneidade das variâncias?
# O teste de hipóteses é:
# H0: As variâncias são estatisticamente iguais(homogêneas)
# HA: As variâncias não são estatisticamente iguais(homogêneas)
# criando dataset para compara idade das esposas da idade dos maridos 
idades <- data.frame(group = rep(c("Esposa","Marido"), each = 
length(salarios$age)), idades = c(salarios$age,salarios$husage))

# Analisando algumas medidas dos dados 
group by(idades, group) %>%
summarise(count = n(),median = median(idades, na.rm = TRUE),IQR = IQR(idades, 
na.rm = TRUE))

# A tibble: 2 x 4 
group count median IQR 
<chr> <int> <dbl> <dbl>
1 Esposa 5634 39 16
2 Marido 5634 41 16

# Visualizando boxplot
ggboxplot(idades, x = "group", y = "idades", 
color = "group", palette=c("#00AFBB", "#E7B800"), 
ylab = "Idade", xlab = "Groups")
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# Usaremos o teste F para testar a homogeneidade nas variâncias. 
library("sjPlot")
res.ftest <- var.test(idades ~ group, data = idades) 
res.ftest

# Obtendo o valor tabelado da distribuição F 
qf(0.95, 5633, 5633)
# Temos F=1.04481
# para a outra cauda temos:
1/1.04481
# F = 0.9571118

# Vamos construir o gráfico:
dist_f(f = 1.04481, deg.f1 = 5633, deg.f2 = 5633) 
dist_f(f = 0.9571118, deg.f1 = 5633, deg.f2 = 5633)

# O teste de F tem valor crítico entre 0.9571118 e 1.04481 (região de
# não rejeição de H0), os valores acima de 1.04481 e abaixo de
# 0.9571118 estão na região de rejeição de H0.
# O valor da estatística F calculada é de F = 0.79123. Como esse valor
# se encontra na região de rejeição de H0, então rejeitamos a hipótese de
# que as variâncias são estatisticamente iguais, ou seja, adotamos HA.
# Como não foi verificado normalidade nos dados e nem homogeneidade da
# variância, será adotado um teste não paramétrico e será feito teste para
# verificar se as medianas das variáveis age(Idade Esposas) e husage (Idade
# Maridos) são iguais.

# Teste Não Paramétrico: Teste U de Mann-Whitney
# Hipóteses
# H0: O idade mediana dos homens é igual estatisticamente a idade
# mediana das mulheres;
# Ha: O idade mediana dos homens não é estatisticamente igual a
# idade mediana das mulheres
# Executando teste
res <- wilcox.test(idades ~ group, data = idades,exact = FALSE, conf.int=TRUE) 
res

data: idades by group
W = 13619912, p-value < 0.00000000000000022
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval:
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-3.000024 -2.000033 
sample estimates: 
difference in location 
-2.999966

# O p-value do teste eh 0.00000000000000022 que é menor que o nível de
# significância 0,05. Podemos concluir que a idade mediana dos homens é
# estatisticamente diferente da idade mediana das mulheres, ou seja,
# rejeitamos H0, e adotamos HA. A diferença na localização, a diferença nas
# medianas, é estimada em -2.999966.
# O intervalo de confiança de 95% para a diferença nas localizações é de
# -3.000024 a -2.000033.
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APÊNDICE 5 -  ESTATÍSTICA APLICADA II 

A -  ENUNCIADO

Regressões Ridge, Lasso e ElasticNet

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente 

“Iwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados 

são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você 

deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2) e 

concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de 

confiança para os seguintes valores:

husage = 40 (anos -  idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos -  idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidlt6 = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto você não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para obter

0 resultado da predição.

B -  RESOLUÇÃO
1 Regressões Ridge, Lasso e ElasticNet
Rotina utilizada para realizar as regressões Ridge, Lasso e ElasticNet
# Carregando os pacotes necessários
library(plyr)
library(readr)
library(dplyr)
library(caret)
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library(ggplot2)
library(repr)
library(glmnet)

set.seed(123)

# Carregando base de dados 
load('trabalhosalarios.RData')

# armazenando base de dados 
dataset <- trabalhosalarios

# diminuindo a variancia de husage e age - as outras possuem zero 
dataset['husage'] <- log(dataset['husage'])
dataset['age'] <- log(dataset['age'])

# criando indice para separar em base de teste e de treino 
index <- sample(1:nrow(dataset), 0.8*nrow(dataset))

# criando base de treino 
train <- dataset[index,]

# criando base de teste 
test <- dataset[-index,]

# verificando dimensões das bases de treino e teste 
dim(train)
dim(test)

# Vamos padronizar as variaveis
# Vamos criar um objeto com as variaveis para padronizar
# As variaveis binarias nao sao padronizadas
cols = c('husage', 'husearns', 'huseduc', 'hushrs', 'age', 'educ', 'exper')

# Padronizando a base de treinamento e teste
pre proc val <- preProcess(train[,cols], method = c("center", "scale")) 
train[,cols] = predict(pre proc val, train[,cols]) 
test[,cols] = predict(pre proc val, test[,cols])

summary(train)
summary(test)
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##########################################
# REGRESSAO RIDGE # 
##########################################
# Vamos criar um objeto com as variaveis que usaremos no modelo 
cols reg = c('husage,,,husunion', 'husearns', 'huseduc', 'hushrs',

'age', 'educ', 'husblck', 'hushisp', 'kidge6', 'black', 
'hispanic', 'union', 'kidlt6','exper','lwage')

# Vamos gerar variáveis dummies para organizar os datasets
# em objetos tipo matriz
# Estamos interessados em estimar o salário-hora da esposa em logaritmo 
neperiano (lwage)
dummies <- dummyVars(lwage~husage+husunion+husearns+huseduc+hushrs+

age+educ+husblck+hushisp+
kidge6+black+hispanic+union+kidlt6+exper, 

data = dataset[,cols reg]) 
train dummies = predict(dummies, newdata = train[,cols reg]) 
test dummies = predict(dummies, newdata = test[,cols reg]) 
print(dim(train dummies)); print(dim(test dummies))

# Vamos guardar a matriz de dados de treinamento das
# variaveis explicativas para o modelo em um objeto
# chamado "x"
x = as.matrix(train dummies)

# Vamos guardar o vetor de dados de treinamento da
# variavel dependente para o modelo em um objeto
# chamado "y_train" 
y_train = train$lwage

# Vamos guardar a matriz de dados de teste das variaveis
# explicativas para o modelo em um objeto chamado
# "x_test"
x test = as.matrix(test dummies)

# Vamos guardar o vetor de dados de teste da variavel
# dependente para o modelo em um objeto chamado "y test"
y test = test$lwage

# Vamos calcular o valor otimo de lambda;
# alpha = "0", é para regressao Ridge
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# Vamos testar os lambdas de 10A-3 até 10A2, a cada 0.1 
lambdas <- 10Aseq(2, -3, by = -.1)

# Calculando o lambda:
ridge lamb <- cv.glmnet(x, y train, alpha = 0, lambda = lambdas)

# Vamos ver qual o lambda otimo
best lambda ridge <- ridge lamb$lambda.min 
best lambda ridge

# Estimando o modelo Ridge
ridge reg = glmnet(x, y train, nlambda = 25, alpha = 0, family = 'gaussian',

lambda = best lambda ridge)

# Vamos ver o resultado (valores) da estimativa
# (coeficientes) 
ridge_reg[["beta"]]

# Vamos calcular o RA2 dos valores verdadeiros e
# preditos conforme a seguinte funcao:
eval results <- function(true, predicted, df) {

SSE <- sum((predicted - true)A2)
SST <- sum((true - mean(true))A2)
R_square <- 1 - SSE / SST 
RMSE = sqrt(SSE/nrow(df))

# As metricas de performace do modelo: 
data.frame(

RMSE = RMSE,
Rsquare = R square

)
}

# Predicao e avaliacao nos dados de treinamento: 
predictions train <- predict(ridge reg, s = best lambda ridge,

newx = x)

# As metricas da base de treinamento sao:
eval results(y train, predictions train, train)
# RMSE Rsquare 
#1 0.4361332 0.306454
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# Predicao e avaliacao nos dados de teste:
predictions test <- predict(ridge reg, s = best lambda ridge,

newx = x_test)

# As metricas da base de teste sao:
eval results(y test, predictions test, test)
# RMSE Rsquare 
#1 0.4503715 0.2346912

# Se compararmos as metricas de treinamento e teste
# percebemos que o R2 é relativamente baixo em ambas, o que sugere
# que o modelo não está adequado para capturara variabilidade
# dos dados. Em resumo, o modelo não demonstra
# ter um bom poder explicativo.

##########################################
# REGRESSAO LASSO # 
##########################################
# Vamos atribuir alpha = 1 para implementar a regressao lasso 
lasso lamb <- cv.glmnet(x, y train, alpha = 1, lambda = lambdas,

standardize = TRUE, nfolds = 5)

# Vamos guardar o lambda "otimo" em um objeto chamado
# best lambda lasso
best lambda lasso <- lasso lamb$lambda.min 
best lambda lasso

# Vamos estimar o modelo Lasso
lasso model <- glmnet(x, y train, alpha = 1, lambda = best lambda lasso,

standardize = TRUE)

# Vamos visualizar os coeficientes estimados 
lasso model[["beta"]]

# Vamos fazer as predicoes na base de treinamento e
# avaliar a regressao Lasso
predictions train lasso <- predict(lasso model, s = best lambda lasso,

newx = x)
# Vamos calcular o RA2 dos valores verdadeiros e preditos
# As metricas da base de treinamento sao:
eval results(y train, predictions train lasso, train)
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# RMSE Rsquare 
#1 0.436358 0.305739

# Vamos fazer as predicoes na base de teste
predictions test lasso <- predict(lasso model, s = best lambda lasso,

newx = x_test)

# As metricas da base de teste sao:
eval results(y test, predictions test lasso, test)
# RMSE Rsquare
#1 0.4503179 0.2348735

# Novamente, se compararmos as metricas de treinamento e teste
# percebemos que o R2 é relativamente baixo em ambas, o que sugere
# que este modelo também não está adequado para capturara variabilidade
# dos dados. Em resumo, o modelo não demonstra
# ter um bom poder explicativo.

##########################################
# REGRESSAO ELASTICNET # 
##########################################
# Vamos configurar o treinamento do modelo por
# cross validation, com 10 folders, 5 repeticoes
# e busca aleatoria dos componentes das amostras
# de treinamento, o "verboseIter" é soh para
# mostrar o processamento.
train cont <- trainControl(method = "repeatedcv", number = 10,

repeats = 5, search = "random", 
verboseIter = TRUE)

# Vamos treinar o modelo
elastic reg <- train(lwage~husage+husunion+husearns+huseduc+hushrs+

age+educ+husblck+hushisp+
kidge6+black+hispanic+union+kidlt6+exper, 

data = train, 
method = "glmnet", 
tuneLength = 10, 
trControl = train cont)

# O melhor parametro alpha escolhido é: 
elastic_reg$bestTune
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# E os parametros sao:
elastic_reg[["finalModel"]][["beta"]]

# Vamos fazer as predicoes e avaliar a performance do modelo

# Vamos fazer as predicoes no modelo de treinamento: 
predictions train elasticnet <- predict(elastic reg, x)

# As metricas de performance na base de treinamento sao: 
eval results(y train, predictions train elasticnet, train)
# RMSE Rsquare
# 1 0.437097 0.3033854

# Vamos fazer as predicoes na base de teste
predictions test elasticnet <- predict(elastic reg, x test)

# As metricas de performance na base de teste sao: 
eval results(y test, predictions test elasticnet, test)
# RMSE Rsquare
#1 0.4508652 0.23301243

# O modelo com elasticnet também apresentou métricas de desempenho
# relativamente baixas, tanto para treino quanto para teste.
# Em resumo, o modelo não demonstra
# ter um bom poder explicativo.

##########################################
# Escolha do melhor modelo
# O modelo de Lasso parece ser a melhor escolha, pois apresenta o menor RMSE
# e o maior R2 na base de teste, indicando uma melhor capacidade de previsão
# e explicação da variabilidade dos dados de teste em comparação aos outros
# modelos.

# No entanto, as diferenças são mínimas, e todos os modelos apresentam
# desempenho muito semelhante.

##########################################
# Preparando valores para as predições
# husage = 40 anos (idade do marido)
husage = (log(40)-pre_proc_val[["mean"]][["husage"]])/ 

pre_proc_val[["std"]][["husage"]]
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husunion = 0

# husearns = 600 (rendimento do marido em US$) 
husearns = (600-pre proc val[["mean"]][["husearns"]])/

pre proc val[["std"]][["husearns"]]

# huseduc = 13 (anos de estudo do marido)
huseduc = (13-pre proc val[["mean"]][["huseduc"]])/ 

pre_proc_val[["std"]][["huseduc"]]

# husblck = 1 (o marido é preto) 
husblck = 1

# hushisp = 0 (o marido nao é hispanico) 
hushisp = 0

# hushrs = 40 (o marido trabalha 40 horas semanais) 
hushrs = (40-pre proc val[["mean"]][["hushrs"]])/

pre_proc_val[["std"]][["hushrs"]]

# kidge6 = 0 (nao tem filhos maiores de 6 anos) 
kidge6 = 1

# age = 38 anos (idade da esposa)
age = (log(38)-pre proc val[["mean"]][["age"]])/ 

pre_proc_val[["std"]][["age"]]

# black = 0 (esposa nao é preta) 
black = 0

# educ = 13 (esposa possui 13 anos de estudo) 
educ = (13-pre_proc_val[["mean"]][["educ"]])/

pre_proc_val[["std"]][["educ"]]

# hispanic = 1 (esposa é hispanica) 
hispanic = 1

# union = 0 (o casal nao possui uniao registrada) 
union = 0

# exper = 18 (esposa possui 18 anos de experiência)
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exper = (18-pre proc val[["mean"]][["exper"]])/ 
pre_proc_val[["std"]][["exper"]]

# kidlt6 = 0 (nao possui filhos com menos de 6 anos) 
kidlt6 = 1

# Vamos construir uma matriz de dados para a predicao 
our pred = as.matrix(data.frame(husage=husage,

husunion=husunion,
husearns=husearns,
huseduc=huseduc,
husblck=husblck,
hushisp=hushisp,
hushrs=hushrs,
kidge6=kidge6,
age=age,
black=black,
educ=educ,
hispanic=hispanic,
union=union,
exper=exper,
kidlt6=kidlt6))

##########################################
# PREDIÇÃO RIDGE # 
##########################################
# Fazendo a predicao:
predict our ridge <- predict(ridge reg, s = best lambda ridge,

newx = our pred)

# O resultado da predicao é: 
predict_our_ridge

# O resultado é um valor padronizado, vamos convertê-lo
# para o valor nominal, consistente com o dataset original 
lwage pred ridge=exp(predict our ridge)

# O resultado é: 
lwage_pred_ridge

# Este é o valor predito do salário por hora (US$),
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# segundo as caracteristicas que atribuimos

# O intervalo de confianca para o nosso exemplo é: 
n <- nrow(train) # tamanho da amostra
m <- lwage pred ridge # valor medio predito 
s <- sd(dataset$lwage) # desvio padrao
dam <- s/sqrt(n) # distribuicao da amostragem da média 
CIlwr ridge <- m + (qnorm(0.025))*dam # intervalo inferior 
Clupr ridge <- m - (qnorm(0.025))*dam # intervalo superior

# Os valores sao:
CIlwr_ridge
CIupr_ridge

# Entao, segundo as caracteristicas que atribuimos o
# salário-hora da esposa é em média US$6.27305 e pode
# variar entre US$6.2505 e US$6.295599

##########################################
# PREDIÇÃO LASSO # 
##########################################
# Fazendo a predição
predict our lasso <- predict(lasso model, s = best lambda lasso,

newx = our pred)

# O resultado da predicao é: 
predict our lasso

# O resultado é um valor padronizado, vamos convertê-lo
# para o valor nominal, consistente com o dataset original 
lwage pred lasso = exp(predict our lasso)

# O resultado é: 
lwage_pred_lasso

# Vamos criar o intervalo de confianca para o nosso exemplo 
n <- nrow(train)
m <- lwage pred lasso
s <- sd(dataset$lwage) # desvio padrao 
dam <- s/sqrt(n)
CIlwr lasso <- m + (qnorm(0.025))*dam
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Clupr lasso <- m - (qnorm(0.025)) *dam

# O intervalo de confianca é:
CIlwr lasso
Clupr lasso

# Entao, o salário medio é de US$6.253206 e pode variar
# entre US$6.230657 e US$6.275756

##########################################
# PREDIÇÃO ELASTICNET # 
##########################################
# Vamos fazer a predicao com base nos parametros que
# selecionamos
predict our elastic <- predict(elastic reg,our pred) 
predict our elastic

# Novamente, o resultado é padronizado, nós temos que revertê-lo para o
# nivel dos valores originais do dataset, vamos fazer isso: 
lwage pred elastic=exp(predict our elastic)
lwage pred elastic

# Entao o salário-hora medio da esposa predito com base
# nas caracteristicas informadas é US$7.8397

# Vamos criar o intervalo de confianca para o nosso exemplo 
n <- nrow(train)
m <- lwage pred elastic
s <- sd(dataset$lwage) # desvio padrao 
dam <- s/sqrt(n)
CIlwr elastic <- m + (qnorm(0.025))*dam 
Clupr elastic <- m - (qnorm(0.025))*dam

# Os valores minimo e maximo sao:
CIlwr elastic
CIupr elastic

# Entao, o salário-hora medio da esposa é de US$7.8397
# e pode variar entre US$7.81715 e US$7.86225
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2 Tabela com as estatísticas dos modelos (RMSE e R 2)

Tipo de Regressão
Treino Teste

R2 RMSE R2 RMSE
Ridge 0.306454 0.4361332 0.2346912 0.4503715
Lasso 0.305739 0.436358 0.2348735 0.4503179
ElasticNet 0.3033854 0.437097 0.23301243 0.4508652

Escolha do melhor modelo:
O modelo de Lasso parece ser a melhor escolha, pois apresenta o menor RMSE e 
o maior R2 na base de teste, indicando uma melhor capacidade de previsão e 
explicação da variabilidade dos dados de teste em comparação aos outros 
modelos.
No entanto, as diferenças são mínimas, e todos os modelos apresentam 
desempenho muito semelhante.

3 Predições
Tipo de 

Regressão
Resultado Resultado com 

antilog
Intervalo
Inferior

Intervalo
Superior

Ridge 1.836263 6.27305 6.2505 6.295599
Lasso 1.833094 6.253206 6.230657 6.275756
ElasticNet 2.059201 7.8397 7.81715 7.86225
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APÊNDICE 6 -  ARQUITETURA DE DADOS 

A -  ENUNCIADO

1 Construção de Características: Identificador automático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto 

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções para 

calcular as diferentes características para o problema da identificação da língua do texto de entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o notebook 

e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com origem 

na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para 

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o 

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de 

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).
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B -  RESOLUÇÃO
Códigos Python utilizados no ambiente Google Colab

1 Construção de Características: Identificador automático de idioma
import re
from collections import Counter
from sklearn.model selection import train test split 
from sklearn.svm import SVC
from sklearn.metrics import classification report 
from sklearn.preprocessing import StandardScaler 
from sklearn.decomposition import PCA 
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.model selection import RepeatedStratifiedKFold, cross val score 

ingles = [
"Hello, how are you?",
"I love to read books.",
"The weather is nice today.",
"Where is the nearest restaurant?",
"What time is it?",
"I enjoy playing soccer.",
"Can you help me with this?",
"I'm going to the movies tonight.",
"This is a beautiful place.",
"I like listening to music.",
"Do you speak English?",
"What is your favorite color?",
"I'm learning to play the guitar.",
"Have a great day!",
"I need to buy some groceries.",
"Let's go for a walk.",
"How was your weekend?",
"I'm excited for the concert.",
"Could you pass me the salt, please?",
"I have a meeting at 2 PM.",
"I'm planning a vacation.",
"She sings beautifully.",
"The cat is sleeping.",
"I want to learn French.",
"I enjoy going to the beach.",
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"Where can I find a taxi?",
"I'm sorry for the inconvenience.",
"I'm studying for my exams.",
"I like to cook dinner at home.",
"Do you have any recommendations for restaurants?", 
]

espanhol = [
"Hola, ^cómo estás?",
"Me encanta leer libros.",
"El clima está agradable hoy.",
"^Dónde está el restaurante más cercano?",
"iQué hora es?",
"Voy al parque todos los dias.",
"^Puedes ayudarme con esto?",
"Me gustaria ir de vacaciones.",
"Este es mi libro favorito.",
"Me gusta bailar salsa.",
"^Hablas espanol?",
"^Cuál es tu comida favorita?",
"Estoy aprendiendo a tocar el piano.",
";Que tengas un buen dia!",
"Necesito comprar algunas frutas.",
"Vamos a dar un paseo.",
"^Cómo estuvo tu fin de semana?",
"Estoy emocionado por el concierto.",
"^Me pasas la sal, por favor?",
"Tengo una reunión a las 2 PM.",
"Estoy planeando unas vacaciones.",
"Ella canta hermosamente.",
"El perro está jugando.",
"Quiero aprender italiano.",
"Disfruto ir a la playa.",
"^Dónde puedo encontrar un taxi?",
"Lamento las molestias.",
"Estoy estudiando para mis exámenes.",
"Me gusta cocinar la cena en casa.",
"^Tienes alguna recomendación de restaurantes?",
]
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portugues = [
"Estou indo para o trabalho agora.",
"Adoro passar tempo com minha familia.",
"Preciso comprar leite e pão.",
"Vamos ao cinema no sábado.",
"Gosto de praticar esportes ao ar livre.",
"O trânsito está terrivel hoje.",
"A comida estava deliciosa!",
"Você já visitou o Rio de Janeiro?",
"Tenho uma reunião importante amanhã.",
"A festa começa às 20h.",
"Estou cansado depois de um longo dia de trabalho.", 
"Vamos fazer um churrasco no final de semana.",
"O livro que estou lendo é muito interessante.",
"Estou aprendendo a cozinhar pratos novos.",
"Preciso fazer exercícios fisicos regularmente.",
"Vou viajar para o exterior nas férias.",
"Você gosta de dançar?",
"Hoje é meu aniversário!",
"Gosto de ouvir música clássica.",
"Estou estudando para o vestibular.",
"Meu time de futebol favorito ganhou o jogo.",
"Quero aprender a tocar violão.",
"Vamos fazer uma viagem de carro.",
"O parque fica cheio aos finais de semana.",
"O filme que assisti ontem foi ótimo.",
"Preciso resolver esse problema o mais rápido possível.", 
"Adoro explorar novos lugares.",
"Vou visitar meus avós no domingo.",
"Estou ansioso para as férias de verão.",
"Gosto de fazer caminhadas na natureza.",
"O restaurante tem uma vista incrível.",
"Vamos sair para jantar no sábado.",
]
import random

pre_padroes = []

for frase in ingles:
pre padroes.append( [frase, 'inglês'])
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for frase in espanhol:
pre padroes.append( [frase, 'espanhol'])

for frase in portugues:
pre padroes.append( [frase, 'português'])

random.shuffle(pre padroes)

import pandas as pd
dados = pd.DataFrame(pre padroes) 
dados

0 Voy al parque todos los dias. espanhol

1 Me gusta cocinar Ia cena en casa. espanhol

2 Vamos ao cinema no sábado, português

3 Vamos a dar un paseo. espanhol

88 l'm sorry for the inconvenience. inglês

89 Tengo una reunión a Ias 2 PM. espanhol

90 I like to cook dinner at home. inglês

91 Estou cansado depois de um longo dia de trabalho, português

92 rows x 2 columns

def tamanhoMedioFrases(texto):
palavras = re.split("\s", texto)
tamanhos = [len(s) for s in palavras if len(s) > 0] 
return sum(tamanhos) / len(tamanhos)

def tamanho frase(frase):
return len(frase.split())

def encontros pt(frase):
encontros = ['ss','rr', 'ão']
if any(char in frase for char in encontros): 

return 1 
else:

return 0

def art prep espanhol(frase):
artigos pre espanhois = ['el', 'la', 'los', 'las', 'un', 'una',
'unas', 'lo', 'bajo', 'en', 'hacia', 'hasta', 'según', 'sin', 'via']
palavras = re.split('\s', frase.lower())

if any(artigo in palavras for artigo in artigos pre espanhois): 
return 1

'unos',
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else:
return 0

def caracter espanhol(frase):
caracteres espanhois = ['N','n', ';', 'i']
if any(char in frase for char in caracteres espanhois): 

return 1 
else:

return 0

def frequencia letras(frase):
letras = re.findall(r'\w', frase.lower())
contador = Counter(letras)
total letras = sum(contador.values())
frequencia = {f'freq {letra}': count / total letras for letra, count in

contador.items()}
return frequencia

def ocorrencia simbolos especiais(frase):
especiais = re.findall(r'[nç]', frase.lower()) 
contador = Counter(especiais)
frequencia = {f'simbolo {s}': count for s, count in contador.items()} 
return frequencia

def sufixos palavras(frase, tamanho=3): 
palavras = frase.split()
sufixos = [palavra[-tamanho:] for palavra in palavras if len(palavra) >=

tamanho]
contador = Counter(sufixos)
frequencia = {f'sufixo {s}': count for s, count in contador.items()} 
return frequencia

def encontros es(frase):
encontros = ['ll','ch', 'qu']
if any(char in frase for char in encontros): 

return 1 
else:

return 0

def encontros ing(frase):
encontros = ['ll','mm', 'aa','ee', 'ii', 'oo', 'uu', 'ff']
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if any(char in frase for char in encontros): 
return 1 

else:
return 0

def extraiCaracteristicas(frase): 
texto = frase[0]
pattern regex = re.compile('[A\w+]', re.UNICODE) 
texto = re.sub(pattern regex, ' ', texto)

caracteristicai = tamanhoMedioFrases(texto) 
caracteristica2 = tamanho frase(texto)
caracteristica4 = ocorrencia simbolos especiais(texto) 
caracteristica6 = sufixos palavras(texto) 
caracteristica8 = art prep espanhol(texto) 
caracteristica9 = encontros pt(texto) 
caracteristica10 = encontros es(texto) 
caracteristica11 = encontros ing(texto) 
caracteristica12 = caracter espanhol(texto)

padrao = {
'tamanhoMedioFrases': caracteristica1, 
'tamanho frase': caracteristica2, 
**caracteristica4,
**caracteristica6,
'pre-espanhol':caracteristica8,
'en-pt':caracteristica9,
'en-es':caracteristica10,
'en-en':caracteristica11,
'es':caracteristica12,
'classe': frase[1]

}
return padrao

def geraPadroes(frases): 
padroes = []
for frase in frases:

padrao = extraiCaracteristicas(frase) 
padroes.append(padrao) 

return padroes
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padroes = geraPadroes(pre padroes) 
dados = pd.DataFrame(padroes)

colunas numericas = dados.select dtypes(include=[np.number]).columns 
imputer = SimpleImputer(strategy='mean')
dados[colunas numericas] = imputer.fit transform(dados[colunas numericas]) 

scaler = StandardScaler()
dados[colunas numericas] = scaler.fit transform(dados[colunas numericas])

tam anhoM ed ioFrases tam anho_frase v o g a is con soan tes su f ix o _ V o y su f ix o _ q u e su f ix o _ d o s s u f ix o _ lo s s u f ix o _ ia s
p re -  

e sp an h o l ‘ * ‘

0 -0.646029 0.461833 -0.327281 0.327281 0.0 0.0 0.0 0.0 0.0 2.265686 ...

1 -0.748238 1.194395 0.172681 -0.172681 0.0 0.0 0.0 0.0 0.0 2.265686 ...

2 -0.331227 -0.270729 1.336284 -1.336284 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

3 -1.189780 -0.270729 0.891377 -0.891377 0.0 0.0 0.0 0.0 0.0 2.265686 ...

4 -0.789122 0.461833 -1.656726 1.656726 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

87 -1.361490 -1.003292 -0.665797 0.665797 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

88 -0.216753 0.461833 -1.264710 1.264710 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

89 -1.238840 1.194395 0.042009 -0.042009 0.0 0.0 0.0 0.0 0.0 2.265686 ...

90 -1.116189 1.194395 0.485158 -0.485158 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

91 -0.121358 

92 rows x 228 columns

2.659519 0.424225 -0.424225 0.0 0.0 0.0 0.0 0.0 -0.441367 ...

dados = dados.drop duplicates() 
dados = dados.dropna()

X = dados.drop(columns=['classe']) 
y = dados['classe']

class map = {'inglês': 0, 'espanhol': 1, 'português': 2}
y encoded = y.map(class map)

scaler = StandardScaler()
X scaled = scaler.fit transform(X) 
pca = PCA(n components=0.95)
X pca = pca.fit transform(X scaled)

X train, X test, y train, y test = train test split(X pca, y encoded, 
test size=0.2, random state=42) 
modelo = SVC()
modelo.fit(X train, y train)

cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)
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scores = cross val score(modelo, X train, y train, scoring='accuracy', cv=cv, 
n jobs=-1)
acuracia treinamento = modelo.score(X train, y train)
print("Acurácia no treino: {:.2f}%".format(acuracia treinamento * 100))
acuracia teste = modelo.score(X test, y test)
print("Acurácia no teste: {:.2f}%".format(acuracia teste * 100))

y pred = modelo.predict(X test) 
print(classification report(y test, y pred))

Acurácia no treino: 74.63%
Acurácia no teste: 70.59%

precision recall f1-score support

0 0.60 1.00 0.75 3
1 0.67 0.40 0.50 5
2 0.78 0.78 0.78 9

accuracy 0.71 17
macro avg 0.68 0.73 0.68 17

weighted avg 0.71 0.71 0.69 17

Resultado dos testes após adição de novas características:

Acurácia
No treino 74,63%
No teste 70,59%

Idioma Precision Recall F1-Score Support
Inglês (0) 0.60 1.00 0.75 3

Espanhol (1) 0.67 0.40 0.50 5
Português (2) 0.78 0.78 0.78 9

accuracy 0.71 17
macro avg 0.68 0.73 0.68 17

weigthed avg 0.71 0.71 0.69 17

2 Melhorar uma base de dados ruim
Base de referência: UCI-Predict students dropout and academic success
• Técnicas aplicadas
• Normalização com StandardScaler
• Seleção de atributos por PCA
• Correção de prevalência por repetição/remoção de exemplos da base

https://www.google.com/url?q=https%3A%2F%2Farchive.ics.uci.edu%2Fdataset%2F697%2Fpredict%2Bstudents%2Bdropout%2Band%2Bacademic%2Bsuccess
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# Instalando pacotes necessários 
!pip install pandas
!pip install seaborn 
!pip install scikit-learn 
!pip install numpy 
!pip install matplotlib 
!pip install ucimlrepo

# Bibliotecas necessárias 
import pandas as pd 
import numpy as np
import matplotlib.pyplot as plt 
import seaborn as sns
from sklearn.preprocessing import StandardScaler 
from sklearn.decomposition import PCA 
from sklearn.preprocessing import LabelEncoder 
from sklearn.model selection import train test split 
from sklearn import svm
from sklearn.metrics import confusion matrix 
from sklearn.metrics import classification report 
from sklearn.utils import resample 
from sklearn.utils import shuffle 
from ucimlrepo import fetch ucirepo

# Carregando base de dados
predict students dropout and academic success = fetch ucirepo(id=697)

X = predict students dropout and academic success.data.features 
y = predict students dropout and academic success.data.targets

# Salvando as colunas 
columns = X.columns 
columns

# Verificando informações sobre o dataset
# metadata
print(predict students dropout and academic success.metadata)

# Variable information
print(predict students dropout and academic success.variables)
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# Executando o SVM com o mínimo de intervenção 
X original = X.copy()
y original = y.copy()

X_original_train, X_original_test, y_original_train, y_original_test = 
train test split(X original, y original, test size=0.25, 
stratify=y original,random state=10)

treinador = svm.SVC()

modelo orig = treinador.fit(X original train, y original train)

# Treinamento
y original pred = modelo orig.predict(X original train) 
cm orig train = confusion matrix(y original train, y original pred)
print('Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO')
print(cm orig train)
print(classification report(y original train, y original pred))

# Teste
print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES')
y2 original pred = modelo orig.predict(X original test)
cm orig test = confusion matrix(y original test, y2 original pred) 
print(cm orig test)
print(classification report(y original test, y2 original pred))

# Aplicando tarefas de pré processamento
# Verificando se o dataset contém valores ausentes
X.isna().sum()
Marital Status 0
Application mode 0
Application order 0
Course 0
Daytime/evening attendance 0
Previous qualification 0
Previous qualification (grade) 0
Nacionality 0
Mother's qualification 0
Father's qualification 0
Mother's occupation 0
Father's occupation 0
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Admission grade 0
Displaced 0
Educational special needs 0
Debtor 0
Tuition fees up to date 0
Gender 0
Scholarship holder 0
Age at enrollment 0
International 0
Curricular units 1st sem (credited) 0
Curricular units 1st sem (enrolled) 0
Curricular units 1st sem (evaluations) 0
Curricular units 1st sem (approved) 0
Curricular units 1st sem (grade) 0
Curricular units 1st sem (without evaluations) 0
Curricular units 2nd sem (credited) 0
Curricular units 2nd sem (enrolled) 0
Curricular units 2nd sem (evaluations) 0
Curricular units 2nd sem (approved) 0
Curricular units 2nd sem (grade) 0
Curricular units 2nd sem (without evaluations) 0
Unemployment rate 0
Inflation rate 0
GDP 0
dtype: int64

# Verificando tipos das variáveis 
X.dtypes
Marital Status int64
Application mode int64
Application order int64
Course int64
Daytime/evening attendance int64
Previous qualification int64
Previous qualification (grade) float64
Nacionality int64
Mother's qualification int64
Father's qualification int64
Mother's occupation int64
Father's occupation int64
Admission grade float64
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Displaced
Educational special needs 
Debtor
Tuition fees up to date 
Gender
Scholarship holder 
Age at enrollment 
International
Curricular units 1st sem (credited)
Curricular units 1st sem (enrolled)
Curricular units 1st sem (evaluations) 
Curricular units 1st sem (approved)
Curricular units 1st sem (grade)
Curricular units 1st sem (without evaluations) 
Curricular units 2nd sem (credited)
Curricular units 2nd sem (enrolled)
Curricular units 2nd sem (evaluations) 
Curricular units 2nd sem (approved)
Curricular units 2nd sem (grade)
Curricular units 2nd sem (without evaluations)
Unemployment rate 
Inflation rate 
GDP
dtype: object

int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64
int64

float64
int64
int64
int64
int64
int64

float64
int64

float64
float64
float64

# Verificando valores das variáveis independentes 
X.head()

# Aplicando NORMALIZAÇÃO nas variáveis independentes, que não são booleanas,
# para ajustar a escala dos valores
bool columns = ['International','Displaced','Educational special
needs','Debtor','Tuition fees up to date','Gender','Scholarship 
holder','Daytime/evening attendance']

non bool columns = X.columns.difference(bool columns)
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scaler = StandardScaler()
X scaled = X.copy()
X scaled[non bool columns] =
scaler.fit transform(X scaled[non bool columns])
X_scaled

# Verificando relação das variáveis 
plt.figure(figsize=(40,20))
sns.heatmap(X scaled.corr("spearman"), annot = True, cmap="coolwarm") 
plt.title("Mapa de Correlação das Variáveis\n", fontsize = 15) 
plt.show()

Mapa de Correlação das Variáveis

# Para tratar correlação e evitar possíveis problemas com multicolinearidade, 
será aplicado PCA para SELEÇÃO dos atributos relavantes para passar ao modelo
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pca = PCA(n components=0.95)

# Aplicar o PCA aos dados
X pca = pca.fit transform(X scaled)

# Criar um DataFrame com os componentes principais 
columns = [f"PC{i+1}" for i in range(X pca.shape[1])] 
X pca df = pd.DataFrame(data=X pca, columns=columns)

# Visualizar o DataFrame resultante 
print(X pca df.head())

PCI PC2 PC3 PC4 PC5 PC6 PC7 \
0 -6.059586 0.201811 -1.005916 0.527048 1.763376 -2.949801 0.746578
1 -0.004017 -1.850271 -1.397830 1.924995 -0.047048 1.030895 -0.405920
2 -3.692111 0.297576 0.487145 -1.254448 0.679738 -2.220401 1.349643
3 0.366752 -0.613418 0.590129 -1.464175 -0.958946 0.078389 0.575616
4 0.296790 2.192877 0.765009 -0.598463 -2.325151 0.019984 -0.574183

PC8 PC9 PC10 . . .  PC13 PC14 PC15 PC16
0 -0.642022 -0.525059 -0.681361 . . .  2.826824 0.969217 0.271315 -1.081445
1 -0.139694 0.169857 -0.431433 . . .  -1 .017924 -0 .386330  0.156920 -0.483792
2 -0.310848 -0.460915 0.456740 . . .  0 .003908-1.091741 0.526780 0.179304
3 -0.184205 -0.741737 -1.400116 . . .  -0.299870 0.688548 -1.352081 0.118306
4 -0.579538 0.314171 -1.924611 . . .  0.665829 -0.513619 0.080508 -1.205310

PC17 PC18 PC19 PC20 PC21 PC22
0 0.168302 0.077148 0.519182 -0.234177 0.376751 0.294855
1 -0.258657 -0.514296 0.093626 0.316925 0.384840 0.189487
2 0.544726 0.592807 0.113959 -0.167895 0.352222 0.559909
3 0.150519 -0.117216 -0.459142 -0.443121 -0.165409 -0.095460
4 0.542704 2.074307 0.488774 -0.450120 -0.493568 -0.537161

[5 rows x 22 columns]

# Verificando variável dependente 
y

3 Graduate

4 Graduate

4419 Graduate

4420 Dropout

4421 Dropout

4422 Graduate

4423 Graduate 

4424 rows x 1 columns
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# Verificando distribuição das classes 
y.value counts()
Target
Graduate 2209
Dropout 1421
Enrolled 794
Name: count, dtype: int64

# CORREÇÃO DE PREVALÊNCIA
df = pd.concat([X pca df, y], axis=1) 
df

# separando num df os dados de classe dropout, visto que irá manter a 
quantidade
df dropout = df[df['Target'] == 'Dropout']

# Separar os exemplos por classe onde será realizado correção de prevalência
# por replicação ou remoção
df majority = df[df['Target'] == 'Graduate'] 
df minority = df[df['Target'] == 'Enrolled']

# Definir o número desejado de exemplos para cada classe 
desired majority = 1400
desired minority = 1200

# Realizar oversampling da classe minoritária ("Enrolled") 
df minority oversampled = resample(df minority,

replace=True,
n samples=desired minority, 
random state=42)

# Realizar undersampling da classe majoritária ("Graduate")
df majority undersampled = resample(df majority, replace=False,

n samples=desired majority, 
random state=42)

# Concatenar os DataFrames resultantes
X balanced = pd.concat([df majority undersampled, df minority oversampled, 
df dropout])
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# Embaralhar os dados
X balanced = shuffle(X balanced, random state=42)

# Verificando dataframe final 
X balanced

# Separar novamente entre X e y para aplicar no modelo 
X trated = X balanced.drop(columns='Target', axis=1)
y treated = X balanced['Target']

# Com os dados tratados
X train, X test, y train, y test = train test split(X trated, y treated, 
test size=0.25,

stratify=y treated,random state=10)

# Treinando e testando o modelo 
treinador = svm.SVC() #algoritmo escolhido

modelo = treinador.fit(X train, y train)

# Predição com os mesmos dados usados para treinar 
y pred = modelo.predict(X train)
cm train = confusion matrix(y train, y pred)
print('Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO') 
print(cm train)
print(classification report(y train, y pred))
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# Predição com os mesmos dados usados para testar
print('Matriz de confusão - com os dados TRATADOS usados para TESTES')
y2 pred = modelo.predict(X test)
cm test = confusion matrix(y test, y2 pred)
print(cm test)
print(classification report(y test, y2 pred))

Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO
[[747 214 104]
[ 81 663 156]
[ 33 120 897]]

precision recall f1-score support

Dropout 0.87 0.70 0.78 1065
Enrolled 0.66 0.74 0.70 900
Graduate 0.78 0.85 0.81 1050

accuracy 0.77 3015
macro avg 0.77 0.76 0.76 3015

weighted avg 0.77 0.77 0.77 3015

Matriz de confusão - com os dados TRATADOS usados para TESTES 
[[226 85 45]
[ 37 200 63]
[ 14 57 279]]

precision recall f1-score support

Dropout 0.82 0.63 0.71 356
Enrolled 0.58 0.67 0.62 300
Graduate 0.72 0.80 0.76 350

accuracy 0.70 1006
macro avg 0.71 0.70 0.70 1006

weighted avg 0.71 0.70 0.70 1006

Resultado dos testes:
a) Matriz de confusão obtida após treinar e testar modelo SVM com o minimo 

de intervenção:
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Acurácia no treino: 50%

b) Matriz de confusão obtida após treinar e testar modelo SVM com dados 
tratados:

Acurácia no treino: 77%
Classe Precision recall F1-score Support

Dropout 0.87 0.70 0.78 1065
Enrolled 0.66 0.74 0.70 900

Graduate 0.78 0.85 0.81 1050

Accuracy 0.77 3015
macro avg 0.77 0.76 0.76 3015

weighted avg 0.77 0.77 0.77 3015

Acurácia no teste:: 70%
Classe Precision recall F1-score Support

Dropout 0.82 0.63 0.71 356
Enrolled 0.58 0.67 0.62 300

Graduate 0.72 0.80 0.76 350

Accuracy 0.70 1006
macro avg 0.71 0.70 0.70 1006

weighted avg 0.71 0.70 0.70 1006

Classe Precision recall F1-score Support
Dropout 0.0 0.0 0.0 1066
Enrolled 0.0 0.0 0.0 595

Graduate 0.50 1.0 0.67 1657

Accuracy 0.50 3318
macro avg 0.17 0.33 0.22 3318

weighted avg 0.25 0.50 0.33 3318

Acurácia no teste: 50%
Classe Precision recall F1-score Support

Dropout 0.0 0.0 0.0 355
Enrolled 0.0 0.0 0.0 199

Graduate 0.50 1.0 0.67 552

Accuracy 0.50 1106
macro avg 0.17 0.33 0.22 1106

weighted avg 0.25 0.50 0.33 1106
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APÊNDICE 7 -  APRENDIZADO DE MÁQUINA

A -  ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo, 

Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher 

os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento.

B -  RESOLUÇÃO
Classificação
Para o experimento de Classificação:
• Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor acurácia 
ficará em primeiro na tabela.
• Após o quadro colocar:

o Um resultado com 3 linhas com a predição de novos casos para a 
técnica/parâmetro de maior Acurácia (criar um arquivo com novos casos à 
sua escolha)
o A lista de comandos emitidos no RStudio para conseguir os resultados 
obtidos

VEICULO

%Predição para novos casos:
Melhor acurácia foi obtida pelo SVM com Cross Validation:

Script em R:
######################################
# CLASSIFICAÇÃO Veiculo #
######################################
install.packages("e1071")
install.packages("caret")
install.packages("Metrics")
install.packages("mice")
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install.packages("kernlab")
library(mice)
library("caret")
library(kernlab)

# Veículos
# Ler arquivo
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/classificacao-veiculos")
dados <- read.csv("6 - Veiculos - Dados.csv")

# Remover atributo desnecessário 
dados$a <- NULL

# Separação entre base de treino e teste que serão utilizadas em todos 
os modelos
set.seed(202401)

randomIndexes <- sample(1:nrow(dados), 0.8 * nrow(dados)) 
treino <- dados[randomIndexes,]
## SVM
### C e sigma 
set.seed(202401)
tuneGrid svm = expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 
0.2))

### Treinar SVM com a base de Treino
# Com Hold-out
svm <- train(tipo~., data=treino, method="svmRadial",
tuneGrid=tuneGrid svm)
svm

### Aplicar modelos treinados na base de Teste 
predict.svm <- predict(svm, teste)
confusionMatrix(predict.svm, as.factor(teste$tipo))

#### Cross-validation SVM
ctrl svm <- trainControl(method = "cv", number = 10) 
set.seed(202401)

svm cv <- train(tipo~., data=treino, method="svmRadial",
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trControl=ctrl svm, tuneGrid=tuneGrid svm) 
svm cv

### Matriz de confusão
predict.svm cv <- predict(svm cv, teste) 
confusionMatrix(predict.svm cv, as.factor(teste$tipo))

## Resultado -> SVM com Cross Validation obteve melhor acurácia 
novos dados <- read.csv('6-Veiculos- Novos-Dados.csv') 
novos dados$a <- NULL
predict.novos svm <- predict(svm cv, novos dados) 
resultado <- cbind(novos dados, predict.novos svm) 
View(resultado)

DIABETES

Predição para novos casos:
O Random Forest com Hold-Out obteve o melhor desempenho, logo, os novos casos 
serão preditos com Random Forest com Hold-Out.

Script em R:
######################################
# CLASSIFICAÇÃO Diabetes #
######################################
install.packages("e1071")
install.packages("caret")
install.packages("Metrics")
install.packages("mice")
install.packages("kernlab")
library(mice)
library("caret")
library(kernlab)
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set.seed(202401)

# Diabetes
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/classificacao-diabetes")
dados <- read.csv("10 - Diabetes - Dados.csv")

# Remover variável desnecessária 
dados$num <- NULL 
set.seed(202401)
randomIndexes <- sample(1:nrow(dados), 0.8 * nrow(dados)) 
treino <- dados[randomIndexes,] 
teste <- dados[-randomIndexes,]

## Random Forest 
#### Mtry 
set.seed(202401)
tuneGrid rf = expand.grid(mtry=c(2, 5, 7, 9))

# Treinar com hold out
rf h <- train(diabetes~., data=treino, method="rf",
tuneGrid=tuneGrid rf)
rf_h

### Aplicar modelos treinados na base de Teste 
predict.rf h <- predict(rf h, teste)
confusionMatrix(predict.rf h, as.factor(teste$diabetes))

#### Treinar com cross-validation 
set.seed(202401)
ctrl rf <- trainControl(method = "cv", number = 10) 
rf cv <- train(diabetes~., data=treino, method="rf", 
tuneGrid=tuneGrid_rf, trControl=ctrl_rf) 
rf_cv

### Aplicar modelos treinados na base de Teste 
predict.rf cv <- predict(rf cv, teste)
confusionMatrix(predict.rf cv, as.factor(teste$diabetes))

## Resultado -> RF com Hold out obteve a melhor acurácia 
novos dados <- read.csv('10-Diabetes-Novos-Dados.csv')
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novos dados$num <- NULL 
novos dados$diabetes <- NULL
predict.novos rf h <- predict(rf h, novos dados) 
resultado <- cbind(novos dados, predict.novos rf h) 
View(resultado)

Regressão
Para o experimento de Regressão:
• Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em 
primeiro na tabela.
• Após o quadro colocar:

o Um resultado com 3 linhas com a predição de novos casos para a 
técnica/parâmetro de maior R2 (criar um arquivo com novos casos à sua 
escolha)
o Gráfico de Resíduos para a técnica/parâmetro de maior R2
o A lista de comandos emitidos no RStudio para conseguir os resultados
obtidos

Técnica Parâmetro R2 Syx Pearson Rmse MAE
SVM -  CV C=10

Sigma=0.01
0.7939 0.0676 0.89133 0.0670 0.0463

Predição para novos casos:
O SVM com Cross Validation obteve o melhor R2.

Gráficos dos Ruídos:
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Script em R:
### Pacotes necessários:
install.packages("e1071")
install.packages("caret")
library("caret")
library(Metrics)

setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/regressao-admissao")
dados <- read.csv("9 - Admissao - Dados.csv", header=T)

# Remover variável desnecessária 
dados$num <- NULL

### Cria arquivos de treino e teste usados em todos os modelos 
set.seed(202401)
randomIndexes <- createDataPartition(dados$ChanceOfAdmit, p=0.80, 
list = FALSE)
treino <- dados[randomIndexes,] 
teste <- dados[-randomIndexes,]

# Cria funções necessárias para calculo das métricas
# Erro padrão da estimativa - Syx 
standard error <- function(obs, preds){

size <- length(obs) 
sum pos <- sum((obs - preds) A 2) 
result = sqrt((sum pos / (size - 2))) 
return(result)} 

mean absolute error <- function(obs, preds){ 
size <- length(obs) 
sum abs <- sum(abs(obs - preds)) 
result <- sum abs / size 
return(result)} 

r2 <- function(predito, observado) {
return(1 - (sum((predito-observado)A2) / sum((observado- 
mean(observado))A2)))} 

pearson coefficient <- function(obs, preds) { 
mean obs <- mean(obs) 
mean preds <- mean(preds)
numerator <- sum((obs - mean obs) * (preds - mean preds)) 
denominator <- sqrt(sum((obs - mean obs)A2) * sum((preds -
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mean preds)A2))
result <- numerator / denominator 
return(result)}

## SVM
set.seed(202401)

#### Vários C e sigma
tuneGrid svm = expand.grid(C=c(1, 2, 10, 50, 100), 

sigma=c(.01, .015,0.2))

### Treinar SVM com a base de Treino e Hold Out
svm h <- train(ChanceOfAdmit~., data=treino, method="svmRadial", 
tuneGrid=tuneGrid svm) 
svm h

### Aplicar modelos treinados na base de Teste 
predict.svm h <- predict(svm h, teste)

### Calcular métricas do svm com hold out
svm h rmse <- rmse(teste$ChanceOfAdmit, predict.svm h)
svm h r2 <- r2(predict.svm h,teste$ChanceOfAdmit)
svm h syx <- standard error(teste$ChanceOfAdmit, predict.svm h)
svm h mae <- mean absolute error(teste$ChanceOfAdmit,predict.svm h)
svm h pearson <- pearson coefficient(teste$ChanceOfAdmit,predict.svm h)

## Treinar com cross validation 
set.seed(202401)
ctrl svm <- trainControl(method = "cv", number = 10) 
svm cv <- train(ChanceOfAdmit~., data=treino, method="svmRadial", 

trControl=ctrl svm, tuneGrid=tuneGrid svm)
svm cv

### Aplicar modelos treinados na base de Teste 
predict.svm cv <- predict(svm cv, teste)

### calcular métricas do svm com hold out
svm cv rmse <- rmse(teste$ChanceOfAdmit, predict.svm cv)
svm cv r2 <- r2(predict.svm cv,teste$ChanceOfAdmit)
svm cv syx <- standard error(teste$ChanceOfAdmit, predict.svm cv)
svm cv mae <- mean absolute error(teste$ChanceOfAdmit,predict.svm cv)
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svm cv pearson <- pearson coefficient(teste$ChanceOfAdmit, 
predict.svm cv)

## Resultado -> SVM com cross validation obteve as melhores métricas 
novos dados <- read.csv('9-Admissao-Novos-Dados.csv') 
novos dados$num <- NULL
predict.novos svm cv <- predict(svm cv, novos dados) 
resultado <- cbind(novos dados, predict.novos svm cv)
View(resultado)
residuals svm cv <- teste$ChanceOfAdmit - predict.svm cv

# Create the residual plot 
plot(predict.svm cv, residuals svm cv,

main="Gráfico de Resíduos para modelo de SVM com cross
validation", xlab="Valores preditos",
ylab="Resíduos",
pch=19, col="blue")
abline(h=0, col="red", lwd=2)

BIOMASSA
Técnica Parâmetro R2 Syx Pearson R m se M A E

R N A  - Hold-out size=3

decay=0.4

0.8967 403.93 0.9860 397.14 133.92

Predição para novos casos:
O RNA com Hold-Out obteve o melhor R2.

Gráfico de Resíduos:
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Script em R:
### Pacotes necessários:
install.packages("e1071")
install.packages("caret")
library("caret")
library(Metrics)
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/regressao-biomassa")
dados <- read.csv("5 - Biomassa - Dados.csv", header=T)

### Cria arquivos de treino e teste 
set.seed(202401)
randomIndexes <- createDataPartition(dados$biomassa, p=0.80, list = 

FALSE)
treino <- dados[randomIndexes,] 
teste <- dados[-randomIndexes,]

# Cria funções necessárias para calculo das métricas
# Erro padrão da estimativa - Syx 
standard error <- function(obs, preds){

size <- length(obs) 
sum pos <- sum((obs - preds) a 2 ) 
result = sqrt((sum pos / (size - 2))) 
return(result)} 

mean absolute error <- function(obs, preds){ 
size <- length(obs) 
sum abs <- sum(abs(obs - preds)) 
result <- sum abs / size 
return(result)} 

r2 <- function(predito, observado) {
return(1 - (sum((predito-observado)A2) / sum((observado- 
mean(observado))A2)))} 

pearson coefficient <- function(obs, preds) { 
mean obs <- mean(obs) 
mean preds <- mean(preds)
numerator <- sum((obs - mean obs) * (preds - mean preds)) 
denominator <- sqrt(sum((obs - mean obs)A2) * sum((preds - 

mean preds)A2)) 
result <- numerator / denominator 
return(result)}



88

# RNA
set.seed(202401)
tuneGrid rna <- expand.grid(size = seq(from = 1, to = 3, by = 1), decay = 

seq(from = 0.1, to = 0.7, by = 0.3))

## Treino com hold out
rna h <- train(biomassa~., data=treino, method="nnet", linout=T, 

trace=FALSE, tuneGrid=tuneGrid rna)
rna_h
predict.rna h <- predict(rna h, teste)

### Calcular métricas do rna com hold out
rna h rmse <- rmse(teste$biomassa, predict.rna h)
rna h r2 <-r2(predict.rna h,teste$biomassa)
rna h syx <- standard error(teste$biomassa, predict.rna h)
rna h mae <- mean absolute error(teste$biomassa, predict.rna h)
rna h pearson <- pearson coefficient(teste$biomassa, predict.rna h)

## Treino com cross validation CV 
set.seed(202401)
control rna <- trainControl(method = "cv", number = 10) 
rna cv <- train(biomassa~., data=treino, method="nnet",

trainControl=control rna, tuneGrid=tuneGrid rna, linout=T, 
MaxNWts=10000, maxit=2000, trace=F) 

rna_cv
predict.rna cv <- predict(rna cv, teste)

### Calcular métricas do rna com hold out
rna cv rmse <- rmse(teste$biomassa, predict.rna cv)
rna cv r2 <- r2(predict.rna cv,teste$biomassa)
rna cv syx <- standard error(teste$biomassa, predict.rna cv)
rna cv mae <- mean absolute error(teste$biomassa, predict.rna cv)
rna cv pearson <- pearson coefficient(teste$biomassa,
predict.rna cv)

## Resultado -> RNA com Hold Out obteve as melhores métricas 
novos dados <- read.csv('5-Biomassa-Novos-Dados.csv') 
novos dados$biomassa <- NULL
predict.novos rna h <- predict(rna h, novos dados) 
resultado <- cbind(novos dados, predict.novos rna h)
View(resultado)



89

residuais rna h <- teste$biomassa - predict.rna h

# Create the residual plot 
plot(predict.rna h, residuals rna h,
main="Gráfico de Residuos para modelo de RNA com Hold Out",
xlab="Valores preditos",
ylab="Resíduos",
pch=19, col="blue")
abline(h=0, col="red", lwd=2)

Agrupamento
VEÍCULO
Lista de Clusters gerados:
• 10 primeiras linhas do arquivo com o cluster correspondente.
• Usar 10 clusters no experimento.
• Colocar a lista de comandos emitidos no RStudio para conseguir os resultados 
obtidos

Linhas do arquivo e clusters:

Scripts em R:
### Pacotes necessários
install.packages("mlbench")
install.packages("mice")

## Para o k-modes
install.packages("klaR")
library(mlbench)
library(mice)
library(klaR)
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### Leitura dos dados
#setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de-
Maquina/trabalho/agrupamento-veiculo")
dados <- read.csv("4 - Veiculos - Dados.csv")
View(dados)

• Remover variável desnecessária 
dados$a <- NULL 
set.seed(202401)
cluster.results <- kmodes(dados, 10, iter.max = 10, weighted = FALSE )
cluster.results$cluster
cluster.results
resultado <- cbind(dados, cluster.results$cluster) 
resultado

Regras de Associação
MUSCULAÇÃO
• Regras geradas com uma configuração de Suporte e Confiança.
• Colocar a lista de comandos emitidos no RStudio para conseguir os resultados 
obtidos

Regras de confiança:
As 20 correspondências com maior confiança

Scripts em R:
### Instalação dos pacotes necessários 
install.packages('arules', dep=T) 
library(arules)
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set.seed(202401)

# Ler arquivo
setwd("~/Documentos/IBM/pós/IAA008-Aprendizado-de- 
Maquina/trabalho/associacao-musculacao") 
dados <- read.transactions(file="2 - Musculacao - 

Dados.csv",format="basket",sep=";") 
summary(dados)

# Ver frequencia dos itens
itemFrequencyPlot(dados, topN=10, type="absolute")

# Extrair regras 
set.seed(202401)
rules <- apriori(dados, parameter = list(supp = 0.001, conf = 0.7,minlen=3)) 
summary(rules)

# Visualizar as 20 regras com maior confiança 
inspect(sort(rules[1:20], by="confidence"))
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APÊNDICE 8 -  DEEP LEARNING 

A -  ENUNCIADO

1 Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a 

arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e 

arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista 

no curso.

4 Tradutor de Textos (Transformer)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a 

arquitetura Transformer vista no curso.

B -  RESOLUÇÃO
1 Classificação de Imagens (CNN)
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout, 

AveragePooling2D 
from tensorflow.keras.models import Model 
from mlxtend.plotting import plot confusion matrix 
from sklearn.metrics import confusion matrix

# Base
cifar10 = tf.keras.datasets.cifar10
(x train, y train), (x test, y test) = cifar10.load data()
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# Normalização dos dados
x train, x test = x train / 255.0, x test / 255.0 
y train, y test = y train.flatten(), y test.flatten()

K = len(set(y train))

i = Input(shape=x train[0].shape)
x = Conv2D(32, (3, 3), strides=1, activation="relu")(i)
x = AveragePooling2D(pool size=(2,2),strides=2, padding="valid")(x)
x = Conv2D(64, (3, 3), strides=1, activation="relu")(x)
x = AveragePooling2D(pool size=(2,2),strides=2, padding="valid")(x)
x = Conv2D(128, (3, 3), strides=1, activation="relu")(x)
x = AveragePooling2D(pool size=(2,2),strides=2, padding="valid")(x)

x = Flatten()(x)

x = Dense(512, activation="relu")(x) 
x = Dropout(0.2)(x)
x = Dense(K, activation="softmax")(x) 

model = Model(i, x)

# Visualizando arquitetura da rede 
model.summary()
Hodel: "functional" 

Layer (type) Output Shape Param #

input_layer ( In p u tL a y e r) (None, 3 2 , 3 2 , 3) 0

conv2d (Conv2D) (None, 30 , 30 , 32) 896

average_pooling2d (A verageP oo ling2D ) (None, 15 , 15 , 32) 0

conv2d_l (Conv2D) (None, 13 , 13 , 64) 18 ,496

average_pooling2d_l
(A verageP oo ling2D )

(None, 6 , 6 , 64) 0

conv2d_2 (Corv2D) (None, 4 , 4 , 128) 73 ,8 5 6

average_pooling2d_2
(A verageP oo ling2D )

(None, 2 , 2 , 128) 0

flatten (F la t t e n ) (None, 512) 0

dense (Dense) (None, 512) 26 2 ,65 6

dropout (D ropout) (None, 512) 0

dense_l (Dense) (None, 10) 5 ,1 3 0

Total params: 361,034 (1.38 MB) 
Trainable params: 361,034 (1.38 MB) 
Non-trainable params: 0 (0.00 B)
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# Compilar o modelo 
model.compile(optimizer="adam", loss="sparse categorical crossentropy", 

metrics=["accuracy"])

# Treinando o modelo 
r = model.fit(x train, y train, validation data=(x test, y test),epochs=15) 
Epoch 1 /15
1563/1563 --------------------------------------  18s 8m s/step  -  a c cu ra cy : 0 .3411 -  lo s s :  1.7784 -  v a l_ a c c u ra c y : 0 .5201 -  v a l_ lo s s :  1.3315
Epoch 2 /15
1563/1563 --------------------------------------  9s 3m s/step  -  a c cu ra cy : 0 .5413 -  lo s s :  1 .2757 -  v a l_ a c c u ra c y : 0 .6051  -  v a l_ lo s s :  1.0980
Epoch 3 /15
1563/1563 --------------------------------------  6s 3m s/step  -  a c cu ra cy : 0 .6247 -  lo s s :  1 .0578 -  v a l_ a c c u ra c y : 0 .6343 -  v a l_ lo s s :  1.0145
Epoch 4 /15
1563/1563 --------------------------------------  4s 3m s/step  -  a c cu ra cy : 0 .6633 -  lo s s :  0 .9502 -  v a l_ a c c u ra c y : 0 .6646  -  v a l_ lo s s :  0 .9588
Epoch 5 /15
1563/1563 --------------------------------------  5s 3m s/step  -  a c cu ra cy : 0 .6999 -  lo s s :  0 .8506 -  v a l_ a c c u ra c y : 0 .7014  -  v a l_ lo s s :  0 .8469
Epoch 6 /15
1563/1563 --------------------------------------  5s 3m s/step  -  a c cu ra cy : 0 .7329 -  lo s s :  0 .7605 -  v a l_ a c c u ra c y : 0 .6998  -  v a l_ lo s s :  0 .8659
Epoch 7 /15
1563/1563 ---------------------------------------  5s 3m s/step  -  a c cu ra cy : 0 .7512 -  lo s s :  0 .7069 -  v a l_ a c c u ra c y : 0 .7155 -  v a l_ lo s s :  0 .8162
Epoch 8 /15
1563/1563 ---------------------------------------  6s 3m s/step  -  a c cu ra cy : 0 .7718 -  lo s s :  0 .6441 -  v a l_ a c c u ra c y : 0 .7126  -  v a l_ lo s s :  0 .8495
Epoch 9 /15
1563/1563 --------------------------------------  10s 4m s/step  -  a c cu ra cy : 0 .7927 -  lo s s :  0 .5895 -  v a l_ a c c u ra c y : 0 .7296 -  v a l_ lo s s :  0.7907
Epoch 10/15
1563/1563 ---------------------------------------  5s 3m s/step  -  a c cu ra cy : 0 .8098 -  lo s s :  0 .5380 -  v a l_ a c c u ra c y : 0.7463
Epoch 11/15
1563/1563 ---------------------------------------  5s 3m s/step  -  a c cu ra cy : 0 .8277 -  lo s s :  0 .4921 -  v a l_ a c c u ra c y : 0.7140
Epoch 12/15
1563/1563 ---------------------------------------  6s 4m s/step  -  a c cu ra cy : 0 .8371 -  lo s s :  0 .4607 -  v a l_ a c c u ra c y : 0.7382
Epoch 13/15
1563/1563 ---------------------------------------  5s 3m s/step  -  a c cu ra cy : 0 .8517 -  lo s s :  0 .4155 -  v a l_ a c c u ra c y : 0 .7451
Epoch 14/15
1563/1563 ---------------------------------------  6s 4m s/step  -  a c cu ra cy : 0 .8678 -  lo s s :  0 .3750 -  v a l_ a c c u ra c y : 0 .7474
Epoch 15/15
1563/1563 ---------------------------------------  9s 3m s/step  -  a c cu ra cy : 0 .8775 -  lo s s :  0 .3414 -  v a l_ a c c u ra c y : 0.7463

-  v a l . lo s s :  0 .7479

-  v a l_ lo s s :  0 .8837

-  v a l_ lo s s :  0 .8133

-  v a l_ lo s s :  0 .8007

-  v a l_ lo s s :  0 .8150

-  v a l_ lo s s :  0.8502

# Plotar acurácia, treino e validação 
plt.plot(r.history["accuracy"], label="acc")

# Plotar a função de perda, treino e validação 
plt.plot(r.history["loss"], label="loss") 
plt.plot(r.history["val loss"], label="val loss") 
plt.legend() 
plt.show()
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plt.plot(r.history["val accuracy"], label="val acc")
plt.legend()
plt.show()

# Predições na base de teste
y pred = model.predict(x test).argmax(axis=1)

# Matriz de confusão
cm = confusion matrix(y test, y pred)
plot confusion matrix(conf mat=cm, figsize=(7, 7), show normed=True)
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# Exemplo de classificação correta
labels= ["airplane", "automobile", "bird", "cat", "deer", "dog", 

"frog", "horse", "ship", "truck"] 
classified = np.where(y pred == y test)[0] 
i = np.random.choice(classified) 
plt.imshow(x test[i], cmap="gray")
plt.title("True label: %s Predicted: %s" % (labels[y test[i]], 
labels[y pred[i]]))

2 Detector de SPAM (RNN)
!pip install tensorflow 
import tensorflow as tf

# Exemplo de classificação errada
labels= ["airplane", "automobile", "bird", "cat", "deer", "dog", 

"frog", "horse", "ship", "truck"] 
misclassified = np.where(y pred != y test)[0] 
i = np.random.choice(misclassified) 
plt.imshow(x test[i], cmap="gray")
plt.title("True label: %s Predicted: %s" % (labels[y test[i]], 
labels[y pred[i]]))
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import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model selection import train test split 
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense 
from tensorflow.keras.layers import GlobalMaxPoolinglD 
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.sequence import pad sequences 
from tensorflow.keras.preprocessing.text import Tokenizer

!wget http://www.razer.net.br/datasets/spam.csv

df = pd.read csv("spam.csv", encoding="ISO-8859-1", usecols=['v1',
'v2']).rename(columns={'v1': 'labels', 'v2' : 'data'})

df

0

1

2

3

4

la b e ls  data

ham Go until jurong point, crazy.. Available only ...

ham Ok lar... Joking wif u oni...

spam  Free entry in 2 a wkly comp to win FA  Cup fina... 

ham U dun say so  early hor... U c already then say...

ham Nah I dont think he goes to usf, he lives aro...

5567 spam  This is the 2nd time we have tried 2 contact u.

5568 ham Will l_  b going to esplanade fr hom e?

5569 ham Pity, * w as in mood for that. So...any other s...

5570 ham The guy did some bitching but I acted like i’d...

5571 ham Rofl. Its true to its name

5572 rows x  2 columns

df['b_labels'] = df.labels.map({"ham": 0, "spam": 1})
y = df.b labels.values
x train, x test, y train, y test = train test split(df.data, y, 

test size = 0.33) 
num_words = 20000
tokenizer = Tokenizer(num words = num words) 
tokenizer.fit on texts(x train)
sequences train = tokenizer.texts to sequences(x train) 
sequences test = tokenizer.texts to sequences(x test) 
word2index = tokenizer.word index 
V = len(word2index)

print(V)
7180

http://www.razer.net.br/datasets/spam.csv
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data train = pad sequences(sequences train)
T = data train.shape[1]
data test = pad sequences(sequences test, maxlen=T)

print("data train.shape:", data train.shape) 
print("data test.shape:", data test.shape)

data train.shape: (3733, 162)
data test.shape: (1839, 162)

D = 20 
M = 5
i = Input(shape=(T,)) 
x = Embedding(V+1, D)(i) 
x = LSTM(M)(x)
x = Dense(1, activation = 'sigmoid')(x)

model = Model(i,x)

model.summary()
Model: " fu n c t io n a l"  

Layer (type ) Output Shape Param #

in p u t_ la y e r_ l (Inpu tLaye r) (None, 162) 0

embedding_l (Embedding) (None, 162, 20) 143,620

ls tm _ l (LSTM) (None, 5) 520

dense_l (Dense) (None, 1) 6

T o ta l params: 144,146 (563.07 KB) 
T ra inab le  params: 144,146 (563.07 KB) 
N o n -tra in ab le  params: 0 (0 .00 B)

model.compile(loss='binary crossentropy', optimizer = 'adam', 
metrics = ['accuracy']) 

epochs = 5
r = model.fit(data train, y train, epochs = epochs, 

validation data = (data test, y test))

117/117 ----------------------------------- l i s  72m s/step -  a ccuracy: 0.8505  -  lo s s :  0 .5173  -  v a l_a cc u rac y :  0.9212  -  v a l_ lo s s :  0 .2214

117/117 ----------------------------------- 7 s  56m s/step -  a ccuracy: 0 .9475  -  lo s s :  0 .1988  -  va l_ a cc u ra c y :  0 .9755 -  v a l_ lo s s :  0.1229

117/117 ----------------------------------- 8 s 72m s/step -  a ccuracy: 0 .9826  -  lo s s :  0 .1147  -  va l_ a cc u ra c y :  0 .9853 -  v a l_ lo s s :  0.0848

117/117 ----------------------------------- 7 s  56m s/step -  a ccuracy: 0 .9935  -  lo s s :  0 .0701  -  va l_ a cc u ra c y :  0 .9864 -  v a l_ lo s s :  0.0678

117/117 ----------------------------------- 23 s 167m s/step -  a ccuracy: 0 .9961 -  lo s s :  0 .0481  -  va l_ a cc u ra c y :  0 .9869  -  v a l_ lo s s :  0.0588

plt.plot(r.history['loss'], label = 'loss') 
plt.plot(r.history['val loss'], label = 'val loss')
plt.xticks(np.arange(0, epochs, step=1), labels = range(1, epochs+1))
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plt.legend()
plt.show()

plt.plot(r.history[,accuracy'], label = 'acuracia') 
plt.plot(r.history['val accuracy'], label = 'val acc')
plt.xticks(np.arange(0, epochs, step=1), labels = range(1, epochs+1))
plt.legend()
plt.show()

texto = "Is your car dirty? Discovery our new product. Free for all. Click 
the link."

seq texto = tokenizer.texts to sequences([texto]) 
data texto = pad sequences(seq texto, maxlen=T)

pred = model.predict(data_texto) 
print(pred)
print("Spam" if pred >= 0.5 else 'ok')

1/1 ---------------------  0s 345ms/step
[[0.6511604]]
Spam
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3 Gerador de Dígitos Fake (GAN)
!pip install imageio
!pip install git+https://github.com/tensorflow/docs

import tensorflow as tf 
import glob 
import imageio
import matplotlib.pyplot as plt 
import numpy as np 
import os 
import PIL
from tensorflow.keras import layers 
import time
from tensorflow.keras.losses import BinaryCrossentropy 
from tensorflow.keras.optimizers import Adam, SGD, RMSprop 
from IPython import display

(train images, train labels), ( , )  = tf.keras.datasets.mnist.load data()

train images = train images.reshape(train images.shape[0], 28, 28,
1).astype('float32') 

train images = (train images - 127.5) / 127.5

BUFFER_SIZE = 60000 
BATCH_SIZE = 256

train dataset = tf.data.Dataset.from tensor slices(train images) 
train dataset = train dataset.shuffle(BUFFER SIZE).batch(BATCH SIZE)

def make generator model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use bias = False, input shape = (100,))) 
model.add(layers.BatchNormalization()) 
model.add(layers.LeakyReLU()) 
model.add(layers.Reshape((7,7,256))) 
assert model.output shape == (None, 7, 7, 256) 
model.add(layers.Conv2DTranspose(128, (5,5), strides=(1,1), 

padding = 'same', use bias= False)) 
assert model.output shape == (None, 7,7,128) 
model.add(layers.BatchNormalization()) 
model.add(layers.LeakyReLU())

https://github.com/tensorflow/docs
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model.add(layers.Conv2DTranspose(64, (5,5), strides=(2,2), 
padding = 'same', use bias = False)) 

assert model.output shape == (None, 14, 14, 64) 
model.add(layers.BatchNormalization()) 
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5,5), strides=(2,2), 

padding = 'same', use bias = False)) 
assert model.output shape == (None, 28, 28, 1) 
return model

generator = make generator model() 
noise = tf.random.normal([1,100])
generated image = generator(noise, training = False) 

plt.imshow(generated image[0, :, :, 0], cmap = 'gray')

def make discriminator model(): 
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5,5), strides = (2,2), 

padding = 'same', input shape = [28,28,1])) 
model.add(layers.LeakyReLU()) 
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5,5), strides = (2,2), padding =
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model

discriminator = make discriminator model() 
decision = discriminator(generated image) 
print(decision)
tf.Tensor([[0.00111132]], shape=(1, 1), dtype=float32)

'same'))
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cross entropy = tf.keras.losses.BinaryCrossentropy(from logits=True)

def discriminator loss(real output, fake output):
real loss = cross entropy(tf.ones like(real output), real output) 
fake loss = cross entropy(tf.zeros like(fake output), fake output) 
total loss = real loss + fake loss 
return total loss

def generator loss(fake output):
return(cross entropy(tf.ones like(fake output), fake output))

generator optimizer = tf.keras.optimizers.Adam(1e-4) 
discriminator optimizer = tf.keras.optimizers.Adam(1e-4)

checkpoint dir = './training chekcpoints'
checkpoint prefix = os.path.join(checkpoint dir, 'ckpt')
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, 

discriminator_optimizer = discriminator_optimizer, 
generator=generator, discriminator = discriminator)

EPOCHS = 100
noise dim = 100
num example to generate = 16
seed = tf.random.normal([num example to generate, noise dim])

@tf.function
def train step(images):

noise = tf.random.normal([BATCH SIZE, noise dim])
with tf.GradientTape() as gen tape, tf.GradientTape() as disc tape: 

generated image = generator(noise, training = True) 
real output = discriminator(images, training=True) 
fake output = discriminator(generated image, training=True) 
gen loss = generator loss(fake output)
disc loss = discriminator loss(real output, fake output)

gradients of generator = gen tape.gradient(gen loss, 
generator.trainable variables) 

gradients of discriminator = disc tape.gradient(disc loss, 
discriminator.trainable variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator,
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generator.trainable variables)) 
discriminator optimizer.apply gradients(zip(gradients of discriminator, 

discriminator.trainable variables))

def train(dataset, epochs):
for epoch in range(epochs): 

start = time.time() 
for image batch in dataset: 

train step(image batch) 
display.clear output(wait=True)
generate and save images(generator, epoch + 1, seed) 
if (epoch + 1) % 15 == 0:

checkpoint.save(file prefix=checkpoint prefix) 
print('Time for epoch {} is {} sec'.format(epoch + 1, time.time() - 

start))
display.clear output(wait=True)
generate and save images(generator, epochs, seed)

def generate and save images(model, epoch, test input): 
predictions = model(test input, training = False) 
fig = plt.figure(figsize = (4,4)) 
for i in range(predictions.shape[0]): 
plt.subplot(4,4,i+1)
plt.imshow(predictions[i, :, :, 0]*127.5+127.5, cmap='gray')
plt.axis('off') 

plt.savefig('image at epoch {:04d}.png'.format(epoch)) 
plt.show()

train(train dataset, EPOCHS)

checkpoint.restore(tf.train.latest checkpoint(checkpoint dir))
<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus
0x7c9942730160>

at
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import tensorflow docs.vis.embed as embed 
def display image(epoch no):

return PIL.Image.open('image at epoch {:04d}.png'.format(epoch no)) 
display image(EPOCHS) 
anim file = 'dcgan.gif'
with imageio.get writer(anim file, mode='I') as writer: 

filenames = glob.glob('image at epoch *.png') 
filenames = sorted(filenames) 
for filename in filenames:

image = imageio.imread(filename) 
writer.append data(image) 

if filenames:
image = imageio.imread(filenames[-1]) 
writer.append data(image) 

embed.embed file(anim file)

4 Tradutor de Textos (Transformer)
# INSTALAÇÃO DE PACOTES 
!pip uninstall tensorflow 
!pip install tensorflow==2.15.0 
!pip install tensorflow datasets 
!pip install -U tensorflow-text==2.15.0

# IMPORTAÇÃO DE BIBLIOTECAS
import collections
import logging
import os
import pathlib
import re
import string
import sys
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import time 
import numpy as np 
import matplotlib.pyplot as plt 
import tensorflow datasets as tfds 
import tensorflow text as text 
import tensorflow as tf
logging.getLogger('tensorflow').setLevel(logging.ERROR)

# BASE DE DADOS E TESTE/TREINO
# Carregar a base de dados
examples, metadata = tfds.load('ted hrlr translate/pt to en', 

with info=True, as supervised=True) 
train examples, val examples = examples['train'], examples['validation']

# Verificar o dataset
for pt examples, en examples in train examples.batch(3).take(1): 

for pt in pt examples.numpy(): 
print(pt.decode('utf-8')) 

print()
for en in en examples.numpy(): 
print(en.decode('utf-8'))

# TOKENIZAÇÃO E DESTOKENIZAÇÃO
# Tokenização e Destokenização do texto
model name = "ted hrlr translate pt en converter" 
tf.keras.utils.get file(f"{model name}.zip",

f"https://storage.googleapis.com/download.tensorflow.org/ 
models/{model name}.zip", cache dir='.', cache subdir='', 
extract=True)

# tokenizers.en tokeniza e detokeniza 
tokenizers = tf.saved model.load(model name)

# PIPELINE DE ENTRADA
# Definindo função para codificar/tokenizar lotes de texto puro 
def tokenize pairs(pt, en):

pt = tokenizers.pt.tokenize(pt) 
pt = pt.to tensor() 
en = tokenizers.en.tokenize(en) 
en = en.to tensor() 
return pt, en

https://storage.googleapis.com/download.tensorflow.org/
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# Pipeline: processa, embaralha, agrupa os dados, prefetch 
BUFFER_SIZE = 20000
BATCH_SIZE = 64

def make batches(ds): 
return ( 

ds
.cache()
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE)
.map(tokenize pairs, num parallel calls=tf.data.AUTOTUNE) 

.prefetch(tf.data.AUTOTUNE))

train batches = make batches(train examples) 
val batches = make batches(val examples)

# DEFININDO FUNÇÕES PARA CODIFICAÇÃO POSICIONAL 
def get angles(pos, i, d model):

angle rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d model))
return pos * angle rates

def positional encoding(position, d model):
angle rads = get angles(np.arange(position)[:,

np.newaxis],np.arange(d model)[np.newaxis, :], d model) 
angle rads[:, 0::2] = np.sin(angle rads[:, 0::2]) 
angle rads[:, 1::2] = np.cos(angle rads[:, 1::2]) 
pos encoding = angle rads[np.newaxis, ...] 
return tf.cast(pos encoding, dtype=tf.float32)

# CODIFICAÇÃO POSICIONAL 
n, d = 2048, 512
pos encoding = positional encoding(n, d)
print(pos encoding.shape)
pos encoding = pos encoding[0]

# Arrumar as dimensões
pos encoding = tf.reshape(pos encoding, (n, d//2, 2))
pos encoding = tf.transpose(pos encoding, (2, 1, 0))
pos encoding = tf.reshape(pos encoding, (d, n))
plt.pcolormesh(pos encoding, cmap='RdBu') 
plt.ylabel('Depth')
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plt.xlabel('Position')
plt.colorbar()
plt.show()

# DEFININDO FUNÇÕES PARA MASCARAMENTO POR 0 E 1
def create padding mask(seq):

seq = tf.cast(tf.math.equal(seq, 0), tf.float32) 
return seq[:, tf.newaxis, tf.newaxis, :]

def create look ahead mask(size):
mask = 1 - tf.linalg.band part(tf.ones((size, size)), -1, 0)
return mask

# DEFININDO FUNÇÃO DE ATENÇÃO
def scaled dot product attention(q, k, v, mask): 

matmul qk = tf.matmul(q, k, transpose b=True) 
dk = tf.cast(tf.shape(k)[-1], tf.float32) 
scaled attention logits = matmul qk / tf.math.sqrt(dk) 
if mask is not None:

scaled attention logits += (mask * -1e9) 
attention weights = tf.nn.softmax(scaled attention logits, axis=-1) 
output = tf.matmul(attention weights, v) 
return output, attention weights

# ATENÇÃO MULTI-CABEÇAS
class MultiHeadAttention(tf.keras.layers.Layer): 

def init (self, d model, num heads):
super(MultiHeadAttention, self). init ()
self.num heads = num heads
self.d model = d model
assert d model % self.num heads == 0
self.depth = d model // self.num heads
self.wq = tf.keras.layers.Dense(d model)
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self.wk = tf.keras.layers.Dense(d model) 
self.wv = tf.keras.layers.Dense(d model) 
self.dense = tf.keras.layers.Dense(d model)

def split heads(self, x, batch size):
x = tf.reshape(x, (batch size, -1, self.num heads, self.depth)) 
return tf.transpose(x, perm=[0, 2, 1, 3])

def call(self, v, k, q, mask): 
batch size = tf.shape(q)[0] 
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split heads(q, batch size)
k = self.split heads(k, batch size)
v = self.split heads(v, batch size)

scaled attention, attention weights = scaled dot product attention(q, k, 
v, mask)

scaled attention = tf.transpose(scaled attention, perm=[0, 2, 1, 3])
concat attention = tf.reshape(scaled attention, (batch size, -1, 

self.d model)) 
output = self.dense(concat attention) 
return output, attention weights

# DEFININDO FUNÇÃO PARA REDE FEED-FORWARD
def point wise feed forward network(d model, dff): 

return tf.keras.Sequential([ 
tf.keras.layers.Dense(dff, 

activation='relu'),tf.keras.layers.Dense(d model)])

# DEFININDO CLASSE E FUNÇÕES PARA CAMADA DO CODIFICADOR 
class EncoderLayer(tf.keras.layers.Layer):

def init (self, d model, num heads, dff, rate=0.1): 
super(EncoderLayer, self). init () 
self.mha = MultiHeadAttention(d model, num heads) 
self.ffn = point wise feed forward network(d model, dff) 
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.dropout1 = tf.keras.layers.Dropout(rate) 
self.dropout2 = tf.keras.layers.Dropout(rate)
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def call(self, x, training, mask):
attn output, = self.mha(x, x, x, mask)
attn output = self.dropout1(attn output, training=training) 
out1 = self.layernorm1(x + attn output) 
ffn output = self.ffn(out1)
ffn output = self.dropout2(ffn output, training=training) 
out2 = self.layernorm2(out1 + ffn output) 
return out2

# DEFININDO CLASSE E FUNÇÕES PARA CAMADA DO DECODIFICADOR 
class DecoderLayer(tf.keras.layers.Layer):

def init (self, d model, num heads, dff, rate=0.1): 
super(DecoderLayer, self). init () 
self.mha1 = MultiHeadAttention(d model, num heads) 
self.mha2 = MultiHeadAttention(d model, num heads) 
self.ffn = point wise feed forward network(d model, dff) 
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
self.dropout1 = tf.keras.layers.Dropout(rate) 
self.dropout2 = tf.keras.layers.Dropout(rate) 
self.dropout3 = tf.keras.layers.Dropout(rate)

def call(self, x, enc output, training, look ahead mask, padding mask): 
attn1, attn weights block1 = self.mha1(x, x, x, look ahead mask) 
attn1 = self.dropout1(attn1, training=training) 
out1 = self.layernorm1(attn1 + x)
attn2, attn weights block2 = self.mha2(enc output, enc output, 

out1, padding mask) 
attn2 = self.dropout2(attn2, training=training) 
out2 = self.layernorm2(attn2 + out1) 
ffn output = self.ffn(out2)
ffn output = self.dropout3(ffn output, training=training)
out3 = self.layernorm3(ffn output + out2)
return out3, attn weights block1, attn weights block2

# DEFININDO CLASSE E FUNÇÕES PARA ENCODER 
class Encoder(tf.keras.layers.Layer):

def init (self, num layers, d model, num heads, dff,input vocab size, 
maximum position encoding, rate=0.1): 

super(Encoder, self). init ()
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self.d model = d model 
self.num layers = num layers
self.embedding = tf.keras.layers.Embedding(input vocab size, d model) 
self.pos encoding = positional encoding(maximum position encoding, 

self.d model)
self.enc layers = [EncoderLayer(d model, num heads, dff, rate) for in 

range(num layers)] 
self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, training, mask): 
seq len = tf.shape(x)[1] 
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d model, tf.float32)) 
x += self.pos encoding[:, :seq len, :] 
x = self.dropout(x, training=training) 
for i in range(self.num layers):
x = self.enc layers[i](x, training, mask) 

return x

# DEFININDO CLASSE E FUNÇÕES PARA DECODER 
class Decoder(tf.keras.layers.Layer):

def init (self, num layers, d model, num heads,
dff, target vocab size,maximum position encoding, rate=0.1): 

super(Decoder, self). init () 
self.d model = d model 
self.num layers = num layers
self.embedding = tf.keras.layers.Embedding(target vocab size, d model) 
self.pos encoding = positional encoding(maximum position encoding, 
d model)

self.dec layers = [DecoderLayer(d model, num heads, dff, rate) for in 
range(num layers)] 

self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, enc output, training, look ahead mask, padding mask): 
seq len = tf.shape(x)[1] 
attention_weights = {}

x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d model, tf.float32)) 
x += self.pos encoding[:, :seq len, :] 
x = self.dropout(x, training=training)
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for i in range(self.num layers):
x, block1, block2 = self.dec layers[i](x, enc output, 

training,look ahead mask, padding mask) 
attention weights[f'decoder layer{i+1} block1'] = block1 
attention weights[f'decoder layer{i+1} block2'] = block2 

return x, attention_weights

# DEFININDO CLASSE E FUNÇÕES PARA TRANSFORMER 
class Transformer(tf.keras.Model):

def init (self, num layers, d model, num heads, dff,
input vocab size,target vocab size, pe input, pe target, rate=0.1): 

super(). init ()
self.encoder = Encoder(num layers, d model, num heads, dff, 
input vocab size, pe input, rate) 

self.decoder = Decoder(num layers, d model, num heads, dff, 
target_vocab_size, pe_target, rate) 

self.final layer = tf.keras.layers.Dense(target vocab size)

def call(self, inputs, training): 
inp, tar = inputs
enc padding mask, look ahead mask, dec padding mask = 

self.create masks(inp, tar) 
enc output = self.encoder(inp, training, enc padding mask) 
dec output, attention weights = self.decoder(tar, enc output, training, 

look ahead mask, dec padding mask) 
final output = self.final layer(dec output) 
return final output, attention weights

def create masks(self, inp, tar):
enc padding mask = create padding mask(inp) 
dec padding mask = create padding mask(inp)
look ahead mask = create look ahead mask(tf.shape(tar)[1]) 
dec target padding mask = create padding mask(tar)
look ahead mask = tf.maximum(dec target padding mask, look ahead mask) 
return enc padding mask, look ahead mask, dec padding mask

# DEFININDO HIPERPARÂMETROS 
num layers = 4
d model = 128 
dff = 512 
num heads = 8
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dropout_rate = 0.1

# DEFININDO FUNÇÕES PARA OTIMIZADOR
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): 

def init (self, d model, warmup steps=4000):
super(CustomSchedule, self). init () 
self.d model = d model
self.d model = tf.cast(self.d model, tf.float32) 
self.warmup steps = warmup steps

def call (self, step):
step = tf.cast(step, tf.float32)
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup steps ** -1.5)
return tf.math.rsqrt(self.d model) * tf.math.minimum(arg1, arg2) 

learning rate = CustomSchedule(d model)
optimizer = tf.keras.optimizers.Adam(learning rate, beta 1=0.9, beta 2=0.98, 
epsilon=1e-9)

# DEFININDO FUNÇÕES DE PERDA E MÉTRICA DE ACURÁCIA 
loss object =

tf.keras.losses.SparseCategoricalCrossentropy(from logits = True, 
reduction='none') 

def loss function(real, pred):
mask = tf.math.logical not(tf.math.equal(real, 0))
loss = loss object(real, pred)
mask = tf.cast(mask, dtype=loss .dtype)
loss *= mask
return tf.reduce sum(loss )/tf.reduce sum(mask)

def accuracy function(real, pred):
accuracies = tf.equal(real, tf.argmax(pred, axis=2)) 
mask = tf.math.logical not(tf.math.equal(real, 0)) 
accuracies = tf.math.logical and(mask, accuracies) 
accuracies = tf.cast(accuracies, dtype=tf.float32) 
mask = tf.cast(mask, dtype=tf.float32) 
return tf.reduce sum(accuracies)/tf.reduce sum(mask)

train loss = tf.keras.metrics.Mean(name='train loss')
train accuracy = tf.keras.metrics.Mean(name='train accuracy')
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# TREINAMENTO DO MODELO 
transformer = Transformer(

num layers=num layers,
d model=d model,
num heads=num heads, dff=dff,

input vocab size=tokenizers.pt.get vocab size().numpy(), 
target vocab size=tokenizers.en.get vocab size().numpy(), 
pe input=1000, pe target=1000, rate=dropout rate)

# CHECKPOINT
checkpoint_path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer) 
ckpt manager = tf.train.CheckpointManager(ckpt, checkpoint path, 

max to keep=5)

if ckpt manager.latest checkpoint:
ckpt.restore(ckpt manager.latest checkpoint) 
print('Latest checkpoint restored!!')

# PROCESSO DE TREINAMENTO 
EPOCHS = 20
train step signature = [tf.TensorSpec(shape=(None, None),

dtype=tf.int64),tf.TensorSpec(shape=(None, None), dtype=tf.int64), ] 
@tf.function(input signature=train step signature)

def train step(inp, tar): 
tar inp = tar[:, :-1] 
tar real = tar[:, 1:] 
with tf.GradientTape() as tape:

predictions, = transformer([inp, tar inp], training = True) 
loss = loss function(tar real, predictions) 

gradients = tape.gradient(loss, transformer.trainable variables) 
optimizer.apply gradients(zip(gradients, 

transformer.trainable variables)) 
train loss(loss)
train accuracy(accuracy function(tar real, predictions))

# PROCESSO DE TREINAMENTO 
for epoch in range(EPOCHS):

start = time.time() 
train loss.reset state()
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train accuracy.reset state()
for (batch, (inp, tar)) in enumerate(train batches): 

train step(inp, tar) 
if batch % 50 == 0:

print(f'Epoch {epoch + 1} Batch {batch} Loss {train loss.result():.4f} 
Accuracy {train accuracy.result():.4f}')

if (epoch + 1) % 5 == 0:
ckpt save path = ckpt manager.save()
print(f'Saving checkpoint for epoch {epoch+1} at {ckpt save path}')

print(f'Epoch {epoch + 1} Loss {train loss.result():.4f}
Accuracy {train accuracy.result():.4f}') 

print(f'Time taken for 1 epoch: {time.time() - start:.2f} secs\n')
Epoch 20 Batch 0 Loss 1.4211 Accuracy 0.6914
Epoch 20 Batch 50 Loss ]L.3913 Accuracy 0.6889
Epoch 20 Batch 100 Loss 1.3962 Accuracy 0.6890
Epoch 20 Batch 150 Loss 1.4023 Accuracy 0.6882
Epoch 20 Batch 200 Loss 1.4098 Accuracy 0.6870
Epoch 20 Batch 250 Loss 1.4143 Accuracy 0.6865
Epoch 20 Batch 300 Loss 1.4190 Accuracy 0.6858
Epoch 20 Batch 350 Loss 1.4203 Accuracy 0.6853
Epoch 20 Batch 400 Loss 1.4242 Accuracy 0.6844
Epoch 20 Batch 450 Loss 1.4271 Accuracy 0.6838
Epoch 20 Batch 500 Loss 1.4314 Accuracy 0.6831
Epoch 20 Batch 550 Loss 1.4349 Accuracy 0.6823
Epoch 20 Batch 600 Loss 1.4376 Accuracy 0.6820
Epoch 20 Batch 650 Loss 1.4401 Accuracy 0.6816
Epoch 20 Batch 700 Loss 1.4428 Accuracy 0.6814
Epoch 20 Batch 750 Loss 1.4471 Accuracy 0.6804
Epoch 20 Batch 800 Loss 1.4523 Accuracy 0.6797
Saving checkpoint for epoch 20 
Epoch 20 Loss 1.4525 Accuracy ( 
Time taken for 1 epoch: 97.16 :

at ./checkpoints/train/ckpt-4 
5.6797 
;ecs

# DEFININDO FUNÇÕES DO TRADUTOR 
class Translator(tf.Module):

def init (self, tokenizers, transformer): 
self.tokenizers = tokenizers 
self.transformer = transformer

def call (self, sentence, max length=20): 
assert isinstance(sentence, tf.Tensor) 
if len(sentence.shape) == 0:

sentence = sentence[tf.newaxis] 
sentence = self.tokenizers.pt.tokenize(sentence).to tensor() 
encoder_input = sentence
start end = self.tokenizers.en.tokenize([''])[0] 
start = start end[0][tf.newaxis] 
end = start end[1][tf.newaxis]
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output array = tf.TensorArray(dtype=tf.int64, size=0, dynamic size=True) 
output array = output array.write(0, start)

for i in tf.range(max length):
output = tf.transpose(output array.stack())
predictions, = self.transformer([encoder input, output], 

training=False) 
predictions = predictions[:, -1:, :]
predicted id = tf.argmax(predictions, axis=-1) 
output array = output array.write(i+1, predicted id[0]) 
if predicted id == end: 

break
output = tf.transpose(output array.stack()) 
text = tokenizers.en.detokenize(output)[0] 
tokens = tokenizers.en.lookup(output)[0]
, attention weights = self.transformer([encoder input, output[:,:-1]], 
training=False) 

return text, tokens, attention weights

# EFETUANDO UMA TRADUÇÃO
translator = Translator(tokenizers, transformer)
sentence = [["Eu li sobre triceratops na enciclopédia.", "Ela chegou como 

uma chuva de verão.", "Eu li varios livros em minhas férias.",],["O 
tempo passou e só agora eles se deram conta do que perderam."," O onibus 
estava lotado quando passou por aqui.","Ninguem viu o que aconteceu"]]

for txt in sentence: 
for frase in txt:

translated text, translated tokens, attention weights = translator 
( tf.constant(frase)) 

print(f'{"Prediction":15s}: {translated text}')

Prediction : b"time has just gone back and they ' ve been told when they lost it
Prediction : b'the onebbus was cut when it went on here
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APÊNDICE 9 -  BIG DATA 

A -  ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de 

uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL). 

Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de 

dados empregados.

B -  RESOLUÇÃO
Entretenimento Baseado em Dados: Um Estudo de Caso sobre o Sistema de 

Personalização, Recomendação e Produção da Netflix

A Netflix é uma das maiores e mais influentes empresas de streaming 
do mundo, contando com milhões de assinantes em mais de 190 paises e um 
catálogo extenso de filmes, séries, documentários e conteúdo original. Mas 
como uma empresa fundada em 1997 oferecendo um serviço de aluguel de DVDs 
por correio, evoluiu de maneira significativa ao longo dos anos, tornando-se 
um dos principais nomes no mercado global de entretenimento? A resposta é 
simples: atenção especial aos dados de seus clientes.

Desde os anos 2000 a Netflix começou a usar dados dos clientes para 
aprimorar a experiência de uso de sua plataforma. A abordagem baseada em 
dados foi desenvolvida para ajudar os clientes a descobrir o que assistir de 
forma mais rápida e assertiva, tornando a experiência mais personalizada. Por 
exemplo, se a maioria dos usuários que gostam de doramas também costuma 
assistir a filmes de drama e comédia romântica, o sistema da Netflix 
identifica esses padrões e, com base nisso, recomenda conteúdos similares 
para novos assinantes que começam a assistir doramas.

No entanto, com o crescimento da base de usuários e do volume de 
dados, a empresa percebeu a necessidade de aprimorar seus modelos de 
recomendação e escalar sua infraestrutura. Inicialmente, a Netflix usava 
algoritmos simples para sugerir filmes com base nas avaliações e no histórico 
de visualização dos usuários. Mas, à medida que a plataforma cresceu, também 
aumentou a complexidade de seu sistema de recomendações. Para lidar com essa 
enorme quantidade de dados e melhorar a precisão das sugestões, a empresa 
adotou ferramentas avançadas, como Hadoop, Apache Spark e AWS, para processar 
e analisar dados em grande escala.

A primeira parte desse sistema de recomendação começa com a coleta de 
dados, ou seja, a Netflix coleta dados sobre as interações que seus usuários 
têm com a plataforma, desde um simples login até interações como pausar e
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fechar conteúdos e clicar num link recomendado. Todas essas interações, ou 
eventos, são processados pelo Apache Kafka e enviados para armazenamento na 
AWS.

Na AWS, os dados podem ser armazenados de diferentes formas:
• S3: utilizado para armazenar os dados brutos e não estruturados
• Amazon Redshift: utilizado para armazenar dados estruturados

Num primeiro momento os dados brutos são apenas armazenados no S3 e,
para processar e manipular esses dados, o Netflix utiliza uma gama de 
tecnologias como Apache Pig, Spark, Jupiter etc. Parte desses dados 
manipulados são então armazenados em tecnologias que permitem acesso rápido 
e performático, como Amazon Redshift.

Possuir dados nesses ambientes é crucial para que tecnologias de 
visualização de dado, como Tableau, possam ter acesso rápido aos dados. Essas 
ferramentas permitem que a Netflix oriente suas decisões estratégicas, como 
direcionamento de orçamento para a aquisição ou produção de novos conteúdos, 
com base nas tendências de preferências dos usuários e na identificação de 
nichos de oportunidade a serem explorados.

Para personalizar as recomendações, a primeira etapa foi coletar e 
armazenar uma vasta quantidade de dados. Além dos dados das interações dos 
usuários, histórico de visualização e avaliações, a Netflix também coleta 
informações demográficas, como idade, localização e perfil dos usuários.

Após a coleta, o próximo passo é processar esse grande volume de 
dados, utilizando diversas ferramentas e tecnologias para otimizar o sistema 
de recomendação:
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• Hadoop: usado para processamento em larga escala, especialmente 
em análises e processamento batch.

• Apache Kafka: permite a transmissão de dados em tempo real,
possibilitando que informações sejam coletadas e processadas à 
medida que os usuários interagem com a plataforma.

• Apache Flink: utilizado para análises em tempo real, permitindo 
o processamento continuo de dados e ajustes rápidos nas 
recomendações.

A análise de dados é uma parte fundamental do processo, pois, com o 
processamento em tempo real, os modelos de recomendação são constantemente 
atualizados. Esse método permite que os algoritmos de machine learning 
identifiquem padrões e preferências comuns entre os usuários de forma rápida 
e precisa. Como resultado, as recomendações tornam-se cada vez mais
relevantes, aumentando o engajamento dos usuários. Quanto mais a Netflix
acerta nas recomendações, mais tempo os usuários passam assistindo e
interagindo com a plataforma, fornecendo ainda mais dados para a empresa.

Atualmente, a Netflix contém um alto volume de dados, contendo 230 
milhões de usuários que geram petabytes de dados a cada dia.

A velocidade em que os dados precisam ser processados é levado em 
consideração, pois, os dados são processados em tempo real para fornecer as 
recomendações imediatas e atualizadas.

A Netflix possui uma variedade nos dados, podemos dividi-los em: dados 
estruturados, que são os dados históricos de visualizações e, também, dados 
não estruturados como os feedbacks e comentários.

A veracidade diz respeito a qualidade e precisão das recomendações, 
pois, isso depende muito da qualidade dos dados e dos algoritmos de análises 
garantindo recomendações relevantes.

Podemos concluir que a Netflix faz uso exemplar de big data para se 
destacar como uma empresa orientada por dados. Ao priorizar a análise e o 
entendimento dos dados, a empresa cria experiências únicas e relevantes para 
seus usuários, aumenta a satisfação e o engajamento deles, e impulsiona a 
retenção na plataforma.

Referências
https://netflixtechblog.com/
https://www.youtube.com/watch?v=nMyuCdqzpZc

https://netflixtechblog.com/
https://www.youtube.com/watch?v=nMyuCdqzpZc
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APÊNDICE 10 -  VISÃO COMPUTACIONAL 

A -  ENUNCIADO

1) Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno- 

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas 

em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma base de 

imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging) 

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão 

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada. 

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não 

utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de 

treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última 

camada de classificação e armazene os valores da penúltima camada como um vetor de 

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:

a) Carregue a base de dados de Treino.
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada 

extrator).
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
e) Carregue a base de Teste e execute a tarefa 3 nesta base.
f) Aplique os modelos treinados nos dados de treino
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2) Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais 

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Leaming), refaça as camadas Fully 

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data 

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem 

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será 

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation 

cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.

https://pubmed.ncbi.nlm.nih.gov/28771788/
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Tarefas:

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício 
anterior

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation
c) Aplique os modelos treinados nas imagens da base de Teste
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada

B -  RESOLUÇÃO
Preparação para tarefas
# Montar google drive
from google.colab import drive 
drive.mount('/content/drive')
Mounted at /content/drive

# Caminhos
root = 'drive/MyDrive/IAA011/trabalho/' 
train path = root + 'Train 4cls amostra/' 
test path = root + 'Test 4cls amostra/'

# Importações 
import os
import pandas as pd
import cv2
import numpy as np
from skimage.feature import local binary pattern 
from google.colab.patches import cv2 imshow 
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications.vgg16 import preprocess input 
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import load img, img to array 
from keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from keras.callbacks import ModelCheckpoint, EarlyStopping 
from sklearn.ensemble import RandomForestClassifier 
from sklearn import svm, preprocessing
from sklearn.metrics import accuracy score, multilabel confusion matrix, 
confusion matrix, precision recall fscore support 
from sklearn.preprocessing import StandardScaler 
from sklearn.neural network import MLPClassifier 
from tensorflow.keras.applications import ResNet50

https://file+.vscode-resource.vscode-cdn.net/content/drive
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from tensorflow.keras.layers import Dense, Flatten, Dropout

# Verificar quantidade de amostras por classe para avaliar balanceamento das 
amostras
classes = {} 
total = 0

# Percorrer diretórios no caminho de treino 
for path, , files in os.walk(train path):

# Pega o nome da pasta atual como label 
label = os.path.basename(path)
# Total de arquivos na pasta 
samples = len(files)
if samples > 0:

total += samples 
classes[label] = samples

# Imprime a quantidade de amostras por classe e o total de amostras 
print(f'Total por classe: {classes}')
print(f'Total de amostras para treino: {total}')
Total por classe: {'0': 146, '3': 150, '1': 147, '2': 150}
Total de amostras para treino: 593

# Separação base de treino (~80%) e validação (~20%)
# Sempre o primeiro paciente de cada classe vai ser separado para servir
# como validador
train features = pd.DataFrame(columns=['patientId','imagePath', 'label']) 
val features = pd.DataFrame(columns=['patientId','imagePath','label'])
# Índice para treino 
i train = 0
# Índice para validação 
i val = 0

for path, , folder in os.walk(train path): 
if not folder: 

continue
# Extrair o nome da pasta como label 
label = os.path.basename(path)
# Referência para o primeiro paciente 
patient ref = None
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# Ordenar para garantir consistência na separação 
for image in sorted(folder):

patient id = image.split(' ')[0] 
if patient ref is None:

patient_ref = patient_id

# Adiciona ao conjunto de validação se for o primeiro
# paciente da classe
if patient_id == patient_ref:

val features.at[i val, "patientId"] = patient id 
val features.at[i val, "imagePath"] = os.path.join(train path, 

label, image) 
val features.at[i val, "label"] = label 
i val += 1 

else:
# Adiciona ao conjunto de treino
train features.at[i train, "patientId"] = patient id 
train features.at[i train, "imagePath"] =

os.path.join(train path, label, image) 
train features.at[i train, "label"] = label 
i_train += 1

train features.set index('patientId', inplace=True) 
val features.set index('patientId', inplace=True)

train features shuffled = train features.sample(frac=1) 
val features shuffled = val features.sample(frac=1)

print(f'Tamanho do conjunto de treino: {train features shuffled.shape}')
print(f'Tamanho do conjunto de validação: {val features shuffled.shape}')
Tamanho do conjunto de treino: (477, 2)
Tamanho do conjunto de validação: (116, 2)

1 Extração de Características
# LBP
# Função para calcular o histograma lbp 
def get lbp(img):

if img is None: 
return None

# Verifica se a imagem já está em grayscale, se não estiver converte
# para grayscale
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if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)

# Parâmetros do LBP 
METHOD = 'uniform' 
radius = 3
n points = 8 * radius

# Calcula o histograma do LBP
lbp image = local binary pattern(img, n points, radius, METHOD) 
lbp hist, = np.histogram(lbp image.flatten(), bins=np.arange(0, 

n points + 3), range=(0, n points + 2)) 
return lbp hist

# Função para obter valores lbp de todas as imagens 
def extract lbp features(image paths):

lbp_features = []
for image in image paths:

open image = cv2.imread(image, cv2.IMREAD GRAYSCALE) 
lbp value = get lbp(open image) 
lbp features.append(lbp value) 

return lbp_features

# VGG16
# Carregando modelo VGG16 sem a camada de classificação
base model = VGG16(weights='imagenet', include top=False, input shape=(224, 

224, 3))
model = Model(inputs=base model.input, outputs=base model.output)

# Função para converter as imagens de entrada no formato esperado pela VGG16 
def preprocess image(image path):

img = load img(image path, target size=(224, 224)) 
img array = img to array(img)
img array = np.expand dims(img array, axis=0) 
img array = preprocess input(img array) 
return img array

# Função para extrair características de uma única imagem com a VGG16 
def get features vgg16(image path):

img array = preprocess image(image path) 
features = model.predict(img array)
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features flattened = features.flatten() 
return features flattened

# Função para extrair de todas as imagens 
def extract features vgg16(image paths):

features list = []
for image path in image paths:

features = get features vgg16(image path) 
features list.append(features) 

return np.array(features list)

# Extraindo características
# Criando X, y de treino
X train images = train features shuffled['imagePath'].values 
y train = train features shuffled['label'].values

# Extraindo características com LBP
lbp values array = extract lbp features(X train images)

# Extraindo características com VGG16
vgg16 values array = extract features vgg16(X train images)

# CSV
# Função para gerar o csv 
import csv

def save features to csv(image paths, features, labels, output file): 
with open(output file, mode='w', newline='') as file: 

writer = csv.writer(file)
# Escreve o cabeçalho
header = ['imagePath'] + [f'feature {i}' for i in 

range(len(features[0]))] + ['label'] 
writer.writerow(header)

# Escreve as características
for img, feature, label in zip(image paths, features, labels):



125

writer.writerow([img] + feature.tolist() + [label])

save features to csv(X train images, lbp values array, y train,
'features lbp train.csv') 

save features to csv(X train images, vgg16 values array, y train,
'features vgg16 train.csv')

# Treinando modelos Random Forest, SVM e RNA
# Normalizando os dados 
scaler = StandardScaler()
norm features lbp = scaler.fit transform(lbp values array) 
norm features vgg16 = scaler.fit transform(vgg16 values array)

# Random Forest
clfRandomForest = RandomForestClassifier(random state=42, 

class_weight="balanced")

# SVM
clfSVM = (svm.SVC(C=15,kernel='rbf',class weight='balanced',random state=42, 

decision function shape='ovr',probability=True));

# RNA
clfRNA = MLPClassifier(random state=42, max iter=500)

# Preparando dados para validação
# Criando X, y de validação
X val images = val features shuffled['imagePath'].values 
y val = val features shuffled['label'].values

# Lendo base de teste
test features = pd.DataFrame(columns=['patientId', 'imagePath', 'label'])

# Índice para teste 
i_test = 0
for path, , folder in os.walk(test path): 

if not folder: 
continue

# Extrair o nome da pasta como label 
label = os.path.basename(path)
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for image in folder:
patientId = image.split(' ')[0]
test features.at[i test, "patientId"] = patientId 
test features.at[i test, "imagePath"] = os.path.join(test path, 

label, image) 
test features.at[i test, "label"] = label 
i_test += 1

test features.set index('patientId', inplace=True) 
print(f'Tamanho do conjunto de teste: {test features.shape}')

# Criando X, y de teste
X test images = test features['imagePath'].values 
y test = test features['label'].values 
Tamanho do conjunto de teste: (371, 2)

# LBP
# Treinando modelos pra LBP
clfRandomForest.fit(norm features lbp,y train) 
clfSVM.fit(norm features lbp,y train) 
clfRNA.fit(norm features lbp,y train)

# Validação modelos LBP
# Extraindo características com LBP
val lbp values array = extract lbp features(X val images)
val norm features lbp = scaler.fit transform(val lbp values array)

# predição com valores de validação
y val pred rf = clfRandomForest.predict(val norm features lbp) 
y val pred svm = clfSVM.predict(val norm features lbp) 
y val pred rna = clfRNA.predict(val norm features lbp)

print(f'LBP:\nAcurácia com Random Forest {accuracy score(y val, 
y val pred rf)}\nAcurácia com SVM {accuracy score(y val, 
y val pred svm)}\nAcurácia com RNA {accuracy score(y val,
y val pred rna)}')

LBP:
Acurácia com Random Forest 0.8620689655172413 
Acurácia com SVM 0.853448275862069
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Acurácia com RNA 0.8103448275862069

# Testes dos modelos LBP
# Extraindo características com LBP
test lbp values array = extract lbp features(X test images)
test norm features lbp = scaler.fit transform(test lbp values array)

# Predição com valores de teste
y test pred rf = clfRandomForest.predict(test norm features lbp) 
y test pred svm = clfSVM.predict(test norm features lbp) 
y test pred rna = clfRNA.predict(test norm features lbp)

# Random Forest 
## Acurácia
rf accuracy lbp = accuracy score(y test, y test pred rf) 
print(f'Acurácia {rf accuracy lbp}')

## Matriz de confusão
rf cm lbp = confusion matrix(y test, y test pred rf) 
print(f"Matriz de Confusão:\n{rf cm lbp}")

## Sensibilidade, precisão, e Fl-score
rf recall lbp, rf precision lbp, rf fl lbp, =
precision recall fscore support(y test, y test pred rf) 
print("Sensibilidade por classe:", rf recall lbp) 
print("Precisão por classe:", rf precision lbp)
print("F1-Score por classe:", rf fl lbp)
Acurácia 0.7601078167115903 
Matriz de Confusão:
[[86 7 8 0]
[ 6 30 53 1]
[ 7 6 77 0]
[ 0 1 0 89]]

Sensibilidade por classe: [0.86868687 0.68181818 0.55797101 0.98888889]
Precisão por classe: [0.85148515 0.33333333 0.85555556 0.98888889]
F1-Score por classe: [0.86 0.44776119 0.6754386 0.98888889]

# SVM
## Acurácia
svm accuracy lbp = accuracy score(y test, y test pred svm) 
print(f'Acurácia {svm accuracy lbp}')
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## Matriz de confusão
svm cm lbp = confusion matrix(y test, y test pred svm) 
print(f"Matriz de Confusão:\n{svm cm lbp}")

## Sensibilidade, precisão, e F1-score
svm recall lbp, svm precision lbp, svm f1 lbp, =

precision recall fscore support(y test, y test pred svm) 
print("Sensibilidade por classe:", svm recall lbp) 
print("Precisão por classe:", svm precision lbp) 
print("F1-Score por classe:", svm f1 lbp)
Acurácia 0.7358490566037735 
Matriz de Confusão:
[[72 26 3 0]
[ 4 36 50 0]
[ 2 9 79 0]
[ 0 2 2 86]]

Sensibilidade por classe: [0.92307692 0.49315068 0.58955224 1. ]
Precisão por classe: [0.71287129 0.4 0.87777778 0.95555556]
F1-Score por classe: [0.80446927 0.44171779 0.70535714 0.97727273]

# RNA
## Acurácia
rna accuracy lbp = accuracy score(y test, y test pred rna) 
print(f'Acurácia {rna accuracy lbp}')

## Matriz de confusão
rna cm lbp = confusion matrix(y test, y test pred rna) 
print(f"Matriz de Confusão:\n{rna cm lbp}")

## Sensibilidade, precisão, e F1-score
rna recall lbp, rna precision lbp, rna f1 lbp, =
precision recall fscore support(y test, y test pred rna) 
print("Sensibilidade por classe:", rna recall lbp) 
print("Precisão por classe:", rna precision lbp) 
print("F1-Score por classe:", rna f1 lbp)

Acurácia 0.7520215633423181 
Matriz de Confusão:
[[78 20 3 0]
[ 4 34 52 0]
[ 2 6 80 2]
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[ 0 3 0 87]]
Sensibilidade por classe: [0.92857143 0.53968254 0.59259259 0.97752809]
Precisão por classe: [0.77227723 0.37777778 0.88888889 0.96666667]
F1-Score por classe: [0.84324324 0.44444444 0.71111111 0.97206704]

# VGG16
# Treinando modelos VGG16
clfRandomForest.fit(norm features vgg16,y train) 
clfSVM.fit(norm features vgg16,y train) 
clfRNA.fit(norm features vgg16,y train)

# Validação modelos VGG16
# Extraindo características com VGG16
val vgg16 values array = extract features vgg16(X val images)

val norm features vgg16 = scaler.fit transform(val vgg16 values array)

# Predição com valores de validação
y val pred rf vgg16 = clfRandomForest.predict(val norm features vgg16) 
y val pred svm vgg16 = clfSVM.predict(val norm features vgg16)
y val pred rna vgg16 = clfRNA.predict(val norm features vgg16)
print(f'VGG16:\nAcurácia com Random Forest {accuracy score(y val,

y val pred rf vgg16)}\nAcurácia com SVM {accuracy score(y val, 
y val pred svm vgg16)}\nAcurácia com RNA {accuracy score(y val,
y val pred rna vgg16)}')

VGG16:
Acurácia com Random Forest 0.5603448275862069 
Acurácia com SVM 0.603448275862069 
Acurácia com RNA 0.7931034482758621

# Testes dos modelos VGG16
# Extraindo características com VGG16
test vgg16 values array = extract features vgg16(X test images)
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test norm features vgg16 = scaler.fit transform(test vgg16 values array)
# Predição com valores de validação
y test pred rf vgg16 = clfRandomForest.predict(test norm features vgg16) 
y test pred svm vgg16 = clfSVM.predict(test norm features vgg16) 
y test pred rna vgg16 = clfRNA.predict(test norm features vgg16)

# Random Forest 
## Acurácia
rf accuracy vgg16 = accuracy score(y test, y test pred rf vgg16) 
print(f'Acurácia {rf accuracy vgg16}')

## Matriz de confusão
rf cm vgg16 = confusion matrix(y test, y test pred rf vgg16) 
print(f"Matriz de Confusão:\n{rf cm vgg16}")

## Sensibilidade, precisão, e F1-score
rf_recall_vgg16, rf_precision_vgg16, rf_f1_vgg16, _
precision recall fscore support(y test, y test pred rf vgg16) 
print("Sensibilidade por classe:", rf recall vgg16) 
print("Precisão por classe:", rf precision vgg16)
print("F1-Score por classe:", rf f1 vgg16)
Acurácia 0.7520215633423181 
Matriz de Confusão:
[[83 18 0 0]
[32 34 23 1]
[ 1 1 72 16]
[ 0 0 0 90]]

Sensibilidade por classe: [0.71551724 0.64150943 0.75789474 0.8411215 ]
Precisão por classe: [0.82178218 0.37777778 0.8 1. ]
F1-Score por classe: [0.76497696 0.47552448 0.77837838 0.91370558]

# SVM
## Acurácia
svm accuracy vgg16 = accuracy score(y test, y test pred svm vgg16)
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print(f'Acurácia {svm accuracy vgg16}')

## Matriz de confusão
svm cm vgg16 = confusion matrix(y test, y test pred svm vgg16) 
print(f"Matriz de Confusão:\n{svm cm vgg16}")

## Sensibilidade, precisão, e F1-score
svm recall vgg16, svm precision vgg16, svm f1 vgg16, =

precision recall fscore support(y test, y test pred svm vgg16) 
print("Sensibilidade por classe:", svm recall vgg16) 
print("Precisão por classe:", svm precision vgg16) 
print("F1-Score por classe:", svm f1 vgg16)
Acurácia 0.77088948787062 
Matriz de Confusão:
[[88 13 0 0]
[22 40 24 4]
[ 0 0 74 16]
[ 0 0 6 84]]

Sensibilidade por classe: [0.8 0.75471698 0.71153846 0.80769231]
Precisão por classe: [0.87128713 0.44444444 0.82222222 0.93333333]
F1-Score por classe: [0.83412322 0.55944056 0.7628866 0.86597938]

# RNA
## Acurácia
rna accuracy vgg16 = accuracy score(y test, y test pred rna vgg16) 
print(f'Acurácia {rna accuracy vgg16}')

## Matriz de confusão
rna cm vgg16 = confusion matrix(y test, y test pred rna vgg16) 
print(f"Matriz de Confusão:\n{rna cm vgg16}")

## Sensibilidade, precisão, e F1-score
rna recall vgg16, rna precision vgg16, rna f1 vgg16, =
precision recall fscore support(y test, y test pred rna vgg16) 
print("Sensibilidade por classe:", rna recall vgg16) 
print("Precisão por classe:", rna precision vgg16) 
print("F1-Score por classe:", rna f1 vgg16)
Acurácia 0.8652291105121294 
Matriz de Confusão:
[[93 8 0 0]
[16 68 6 0]
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[ 2 4 70 14]
[ 0 0 0 90]]

Sensibilidade por classe: [0.83783784 0.85 0.92105263 0.86538462]
Precisão por classe: [0.92079208 0.75555556 0.77777778 1. ]
F1-Score por classe: [0.87735849 0.8 0.84337349 0.92783505]

Conclusão:
Modelo que apresentou melhor desempenho foi o de RNA treinado com as 
características extraídas pela VGG16, levando em consideração as métricas de 
acurácia, com 0.86, mas principalmente o F1-score obtido para cada classe do 
problema, demonstrando um equilíbrio para identificar corretamente os casos 
positivos e minimizar falsos positivos e falsos negativos.

2 Redes Neurais
# Data augmentation
train generator = ImageDataGenerator(rotation range=90,

brightness range=[0.4,0.7], width shift range=0.5, 
height shift range=0.5, horizontal flip=True, 
vertical flip=True, validation split=0.2, 
preprocessing function=preprocess input) 

test generator = ImageDataGenerator(preprocessing function=preprocess input)

# Quantidade de imagens criadas em cada ciclo 
BATCH_SIZE = 32

traingen = train generator.flow from dataframe(train features shuffled,
x col='imagePath', y col='label', target size=(224,224), 
batch size=BATCH SIZE, shuffle=True, class mode='sparse', 
seed=42, subset='training') 

validgen = train generator.flow from dataframe(train features shuffled,
x col='imagePath', y col='label',target size=(224,224), 
batch size=BATCH SIZE, shuffle=True, class mode='sparse', 
seed=42, subset='validation')

Found 382 validated image filenames belonging to 4 classes.
Found 95 validated image filenames belonging to 4 classes.

testgen = test generator.flow from dataframe(test features,
x col='imagePath', y col='label', target size=(224,224), 
batch size=BATCH SIZE, shuffle=False, class mode=None, 
seed=42,)

Found 371 validated image filenames.
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# VGG16
# Carregando modelo VGG16 sem a camada de classificação
vgg16 base model = VGG16(weights='imagenet', include top=False, 

input shape=(224, 224, 3))

# Não treinar os pesos existentes 
for layer in vgg16 base model.layers:

layer.trainable = False

# Adicionando as camadas para problema das 4 classes: 
x = Flatten()(vgg16 base model.output)
x = Dense(4, activation='softmax')(x)

# Criando modelo com camadas totalmente conectadas
vgg16 model = Model(inputs=vgg16 base model.input,outputs=x)

# Compilando o modelo
vgg16 model.compile(optimizer='adam',
loss='sparse categorical crossentropy', metrics=['accuracy']) 
vgg16 model.summary()
Model: " fu n c t io n a l_ l"

Layer (typ e ) Output Shape Param #

in p u t_ la y e r_ l ( In p u tL a y e r) (None, 224, 224, 3) 0

b lo c k l_ c o n v l (Conv2D) (None, 224, 224, 64) 1,792

b lock l_conv2  (Conv2D) (None, 224, 224, 64) 36,928

b lo c k l_ p o o l (MaxPooling2D) (None, 112, 112, 64) 0

b lock2_conv l (Conv2D) (None, 112, 112, 128) 73,856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147,584

b lock2_poo l (MaxPooling2D) (None, 56, 56, 128) 0

b lock3_conv l (Conv2D) (None, 56, 56, 256) 295,168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590,080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590,080

b lock3_poo l (MaxPooling2D) (None, 28, 28, 256) 0

b lock4_conv l (Conv2D) (None, 28, 28, 512) 1,180,160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2,359,808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2,359,808

b lock4_poo l (MaxPooling2D) (None, 14, 14, 512) 0

b lock5_conv l (Conv2D) (None, 14, 14, 512) 2,359,808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2,359,808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2,359,808

b lock5_poo l (MaxPooling2D) (None, 7 , 7, 512) 0

f la t t e n  (F la t te n ) (None, 25088) 0

dense (Dense) (None, 4) 100,356

T o ta l params: 14,815,044 (56.51 MB) 
T ra in a b le  params: 100,356 (392.02 KB) 
N o n -tra in a b le  params: 14,714,688 (56.13 MB)
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# Resnet50
resnet base model = ResNet50(input shape=(224,224,3), weights='imagenet', 
include top=False)

# Não treinar os pesos existentes
for layer in resnet base model.layers: 

layer.trainable = False

# Adicionando as camadas para problema das 4 classes: 
x = Flatten()(resnet base model.output)
x = Dense(4, activation='softmax')(x)

# Criando modelo com camadas totalmente conectadas
resnet50 model = Model(inputs=resnet base model.input,outputs=x)

# Compilando o modelo
resnet50 model.compile(optimizer='adam',
loss='sparse categorical crossentropy', metrics=['accuracy']) 
resnet50 model.summary()
Model: ''functional_2"

Layer (type) Output Shape Param # Connected to

input_layer_2
(InputLayer)

(None, 224, 224, 3) 0 -

convl_pad (ZeroPadding2D) (None, 230, 230, 3) 0 input_layer_2[0][0)

convl_conv (Conv2D) (None, 112, 112, 64) 9,472 convl_pad(0)[0]

convl_bn
(BatchNormalization)

(None, 112, 112, 64) 256 convl_conv[0][0]

convl_relu (Activation) (None, 112, 112, 64) 0 convl_bn[0][0]

pooll_pad (ZeroPadding2D) (None, 114, 114, 64) 0 convl_relu[0][0]

pooll_pool (MaxPooling2D) (None, 56, 56, 64) 0 pooll_pad(0)[0]

conv2_blockl_l_conv
(Conv2D)

(None, 56, 56, 64) 4,160 pooll_pool[0][0]

conv2_blockl_l_bn
(BatchNormalization)

(None, 56, 56, 64) 256 conv2_blockl_l_conv [0..

c o n v2_blo c kl_l_ relu
(Activation)

(None, 56, 56, 64) 0 conv2_blockl_l_bn [0] [...

conv2_blockl_2_conv
(Conv2D)

(None, 56, 56, 64) 36,928 conv2_blockl_l_relu[0-

conv2_blockl_2_bn
(BatchNormalization)

(None, 56, 56, 64) 256 conv2_blockl_2_conv[0_.

conv2_blockl_2_relu
(Activation)

(None, 56, 56, 64) 0 conv2_blockl_2_bn [0] 1...

conv2_bloc kl_0_c o nv
(Conv2D)

(None, 56, 56, 256) 16,640 pooll_pool[0)[0]

conv2_blockl_3_conv
(Conv2D)

(None, 56, 56, 256) 16,640 conv2_blockl_2_relu [0_.

conv2_blockl_0_bn
(BatchNormalization)

(None, 56, 56, 256) 1,024 conv2_blockl_0_conv[0_.
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# Data Augmentation 
%%time
steps per epoch = traingen.samples // BATCH SIZE 
val steps = validgen.samples // BATCH SIZE 
n_epochs = 10

# Treinamento do Modelo
vgg16 model.fit(traingen, epochs=n epochs, steps per epoch=steps per epoch,

validation data=validgen, validation steps=val steps, 
callbacks=None, verbose=True)

Epoch 1/10
/ u s r/ lo c a l/ lib / p y th o n 3 .1 0 / d is t -p a c k a g e s/ k e ra s/ s rc / t ra in e r s/ d a ta _ a d a p te r s / p y _ d a ta se t_ a d a p te r .p y :121: U se rW arn ing: Your

se l f . _ w a rn _ if _ s u p e r _ n o t _ c a l le d ( )
11/11 -----------------------------------  43 s 2 s / s te p  -  a ccu ra cy: 0 .3868  -  lo s s :  7 .3268  -  v a l_ a cc u ra c y :  0 .6 719  -  v a l_ lo s s :  3 .5296
Epoch 2/10

1/11 -  l s  119m s/step -  a ccu ra cy :  0 .6562  -  lo s s :  3 .0 3 0 8 / u s r/ lib / p y th o n 3 .1 0 / c o n te x t lib .p y :1 5 3 :  UserWc
se lf . g e n .t h ro w (t y p ,  v a lu e ,  tra ceb ack )

11/11 -----------------------------------  18s 2 s / s te p  -  a ccu ra cy: 0 .6562 -  lo s s :  3 .0308  -  v a l_ a cc u ra c y :  0 .7097  -  v a l_ lo s s :  2 .6398
Epoch 3/10
11/11 -----------------------------------  l i s  590m s/step -  a ccuracy: 0 .7292  -  lo s s :  2 .5661  -  v a l_ a c c u ra c y : 0 .7 031  -  v a l_ lo s s :  3 .2836
Epoch 4/10
11/11 -----------------------------------  l s  50m s/step -  a ccu ra cy: 0 .7812  -  lo s s :  1 .5147  -  v a l_ a cc u ra c y :  0 .7742  -  v a l_ lo s s :  2.2740
Epoch 5/10
11/11 -----------------------------------  10 s 494m s/step -  a ccuracy: 0 .7618  -  lo s s :  2 .5391  -  v a l_ a c c u ra c y : 0 .8 594  -  v a l_ lo s s :  1 .2864
Epoch 6/10
11/11 -----------------------------------  l s  86m s/step -  a ccu ra cy: 0 .7188  -  lo s s :  2 .3250  -  v a l_ a cc u ra c y :  0 .7097  -  v a l_ lo s s :  3 .6079
Epoch 7/10
11/11 -----------------------------------  10s 450m s/step -  a ccuracy: 0 .7968  -  lo s s :  2 .0041  -  v a l_ a cc u ra c y :  0 .8 750  -  v a l_ lo s s :  0 .9892
Epoch 8/10
11/11 -----------------------------------  l s  53m s/step -  a ccu ra cy: 0 .8438  -  lo s s :  1 .0856  -  v a l_ a cc u ra c y :  0 .8387  -  v a l_ lo s s :  0 .8129
Epoch 9/10
11/11 -----------------------------------  l i s  457m s/step -  a ccuracy: 0 .8386  -  lo s s :  1 .2825  -  v a l_ a c c u ra c y : 0 .9062  -  v a l_ lo s s :  0 .6515
Epoch 10/10
11/11 -----------------------------------  l s  52m s/step -  a ccu ra cy: 0 .8750  -  lo s s :  0 .8133  -  v a l_ a cc u ra c y :  0 .8387  -  v a l_ lo s s :  1 .5431
CPU tim e s: u se r  lm in  33 s, s y s :  1 .65  s,  t o t a l :  lm in  35s 
W a ll tim e: lm in  46s
< k e r a s . s r c . c a l lb a c k s . h is t o r y . H i s t o r y  a t  0x7bb756956ce0>

# Treinamento do Modelo
resnet50 model.fit(traingen, epochs=n epochs, steps per epoch = 

steps_per_epoch, validation_data=validgen, 
validation steps=val steps, callbacks=None, 
verbose=True)

Epoch 1/10
11/11 ----------------------------------- 31 s ls / s t e p  -  a ccuracy: 0.4298  -  lo s s :  12 .0453  -  v a l_a cc u rac y :  0 .7344 -  v a l_ lo s s :  2.9962
Epoch 2/10
11/11 ----------------------------------- 5 s 521m s/step -  a ccuracy: 0.6875  -  lo s s :  6 .7072 -  va l_ a cc u ra c y :  0 .6129  -  v a l_ lo s s :  5.0195
Epoch 3/10
11/11 ----------------------------------- 9 s 421m s/step -  a ccuracy: 0.6856  -  lo s s :  5 .9422 -  v a l_a cc u rac y :  0 .7969  -  v a l_ lo s s :  3.3152
Epoch 4/10
11/11 ----------------------------------- l s  55m s/step -  a ccuracy: 0 .7188  -  lo s s :  5 .4231  -  va l_ a cc u ra c y :  0 .8387  -  v a l_ lo s s :  1.4088
Epoch 5/10
11/11 ----------------------------------- 10s 418m s/step -  a ccuracy: 0 .7910 -  lo s s :  3.0186  -  v a l_a cc u rac y :  0 .8906  -  v a l_ lo s s :  0 .8024
Epoch 6/10
11/11 ----------------------------------- l s  52m s/step -  a ccuracy: 0 .8438  -  lo s s :  2 .3277  -  va l_ a cc u ra c y :  0 .9032 -  v a l_ lo s s :  1.7724
Epoch 7/10
11/11 ----------------------------------- 20 s 550m s/step -  a ccuracy: 0 .8520 -  lo s s :  2.1586  -  v a l_ a c c u ra c y : 0 .8906  -  v a l_ lo s s :  0.6141
Epoch 8/10
11/11 ----------------------------------- l s  80m s/step -  a ccuracy: 0 .8750  -  lo s s :  1.6965 -  va l_ a cc u ra c y :  0 .9032 -  v a l_ lo s s :  2.7587
Epoch 9/10
11/11 ----------------------------------- 20 s 426m s/step -  a ccuracy: 0 .8847 -  lo s s :  1.5170  -  v a l_ a c c u ra c y : 0 .7969  -  v a l_ lo s s :  2.1935
Epoch 10/10
11/11 ----------------------------------- l s  54m s/step -  a ccuracy: 0 .9375  -  lo s s :  0.9702  -  va l_ a cc u ra c y :  0 .9355 -  v a l_ lo s s :  1.2078
< k e r a s . s r c . c a l lb a c k s . h is t o r y . H i s t o r y  a t 0x7bb738795d20>

# Testando os modelos com data augmentation 
## VGG16
vgg16_preds = vgg16_model.predict(testgen)
predicted vgg16 classes = np.argmax(vgg16 preds, axis=1)
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predicted vgg16 classes = [str(pred) for pred in predicted vgg16 classes] 

## Acurácia
vgg16 accuracy = accuracy score(y test, predicted vgg16 classes) 
print(f'Acurácia {vgg16 accuracy}')

## Matriz de confusão
vgg16 cm = confusion matrix(y test, predicted vgg16 classes) 
print(f"Matriz de Confusão:\n{vgg16 cm}")

## Sensibilidade, precisão, e F1-score 
vgg16 recall, vgg16 precision, vgg16 f1, =

precision recall fscore support(y test, predicted vgg16 classes) 
print("Sensibilidade por classe:", vgg16 recall) 
print("Precisão por classe:", vgg16 precision) 
print("F1-Score por classe:", vgg16 f1)

Acurácia 0.7169811320754716 
Matriz de Confusão:
[[101 0 0 0]

[ 49 1 40 0]

[ 11 3 75 1]

[ 0 0 1 89]]
Sensibilidade por classe: [0.62732919 0.25 0.64655172 0.98888889]
Precisão por classe: [1. 0.01111111 0.83333333 0.98888889]
F1-Score por classe: [0.77099237 0.0212766 0.72815534 0.98888889]

## Resnet50
resnet50 preds = resnet50 model.predict(testgen)
predicted resnet50 classes = np.argmax(resnet50 preds, axis=1)

predicted resnet50 classes = [str(pred) for pred in 
predicted resnet50 classes]

## Acurácia
resnet50 accuracy = accuracy score(y test, predicted resnet50 classes) 
print(f'Acurácia {resnet50 accuracy}')
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## Matriz de confusão
resnet50 cm = confusion matrix(y test, predicted resnet50 classes) 
print(f"Matriz de Confusão:\n{resnet50 cm}")

## Sensibilidade, precisão, e F1-score
resnet50 recall, resnet50 precision, resnet50 f1, =

precision recall fscore support(y test, predicted resnet50 classes) 
print("Sensibilidade por classe:", resnet50 recall) 
print("Precisão por classe:", resnet50 precision) 
print("F1-Score por classe:", resnet50 f1)
Acurácia 0.9002695417789758 
Matriz de Confusão:
[[101 0 0 0]
[ 10 77 2 1]
[ 3 9 68 10]
[ 0 0 2 88]]

Sensibilidade por classe: [0.88596491 0.89534884 0.94444444 0.88888889]
Precisão por classe: [1. 0.85555556 0.75555556 0.97777778]
F1-Score por classe: [0.93953488 0.875 0.83950617 0.93121693]

# Testando os modelos com data augmentation
# Gerador sem configurações de data augmentation
train generator without data augmentation = ImageDataGenerator

(preprocessing function=preprocess input,validation split=0.2)
traingen without data augmentation =

train generator without data augmentation.flow from dataframe 
(train features shuffled, x col='imagePath', y col='label', 
target size=(224,224), batch size=BATCH SIZE, shuffle=True, 
class mode='sparse', seed=42, subset='training')

validgen_without_data_augmentation =
train generator without data augmentation.flow from dataframe

(train features shuffled, x col='imagePath', y col='label', 
target size=(224,224), batch size=BATCH SIZE, shuffle=True, 
class mode='sparse', seed=42, subset='validation')

Found 382 validated image filenames belonging to 4 classes.
Found 95 validated image filenames belonging to 4 classes.

# Treinamento do Modelo
vgg16 model.fit(traingen without data augmentation, epochs=n epochs,

steps per epoch=steps per epoch,
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validation_data=validgen_without_data_augmentation, 
validation steps=val steps, callbacks=None, 
verbose=True)

# Treinamento do Modelo
resnet50 model.fit(traingen without data augmentation, epochs=n epochs,

steps per epoch=steps per epoch,
validation_data=validgen_without_data_augmentation, 
validation steps=val steps, callbacks=None, 
verbose=True)

< k e ra s . s rc .c a llb a c k s .h is to r y .H is t o ry  at 0x7bb730108940>

# Testando os modelos
# VGG16 Sem Data augmentation
vgg16 preds without = vgg16 model.predict(testgen)
predicted vgg16 without classes = np.argmax(vgg16 preds without, axis=1)

predicted vgg16 without classes = [str(pred) for pred in 
predicted vgg16 without classes]

## Acurácia
vgg16_accuracy_without =

accuracy score(y test, predicted vgg16 without classes) 
print(f'Acurácia {vgg16 accuracy without}')
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## Matriz de confusão
vgg16 cm without = confusion matrix(y test, predicted vgg16 without classes) 
print(f"Matriz de Confusão:\n{vgg16 cm without}")
## Sensibilidade, precisão, e F1-score
vgg16 recall without, vgg16 precision without, vgg16 f1 without, =
precision recall fscore support(y test, predicted vgg16 without classes) 
print("Sensibilidade por classe:", vgg16 recall without) 
print("Precisão por classe:", vgg16 precision without) 
print("F1-Score por classe:", vgg16 f1 without)

Acurácia 0.7601078167115903 
Matriz de Confusão:
[[93 6 2 0]
[13 13 64 0]
[ 0 0 87 3]
[ 0 0 1 89]]

Sensibilidade por classe: [0.87735849 0.68421053 0.56493506 0.9673913 ]
Precisão por classe: [0.92079208 0.14444444 0.96666667 0.98888889]
F1-Score por classe: [0.89855072 0.23853211 0.71311475 0.97802198]

# Resnet50 Sem Data augmentation
resnet50 preds without = resnet50 model.predict(testgen)
predicted resnet50 without classes = np.argmax(resnet50 preds without,
axis=1)
12/12 3s 223ms/step

predicted resnet50 without classes =
predicted resnet50 without classes]

[str(pred) for pred in

## Acurácia
resnet50_accuracy_without =
predicted resnet50 without classes) 
print(f'Acurácia {resnet50 accuracy without}')

accuracy score(y test

## Matriz de confusão
resnet50 cm without =
predicted resnet50 without classes)
print(f"Matriz de Confusão:\n{resnet50 cm without}")

confusion matrix(y test

## Sensibilidade, precisão, e F1-score
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resnet50 recall without, resnet50 precision without, resnet50 f1 without,
= precision recall fscore support(y test, 
predicted resnet50 without classes) 

print("Sensibilidade por classe:", resnet50 recall without) 
print("Precisão por classe:", resnet50 precision without) 
print("F1-Score por classe:", resnet50 f1 without)

Acurácia 0.9191374663072777 
Matriz de Confusão:
[[86 15 0 0]
[ 1 87 2 0]
[ 0 4 83 3]
[ 0 0 5 85]]

Sensibilidade por classe: [0.98850575 0.82075472 0.92222222 0.96590909]
Precisão por classe: [0.85148515 0.96666667 0.92222222 0.94444444]
F1-Score por classe: [0.91489362 0.8877551 0.92222222 0.95505618]

Conclusão:
O modelo que apresentou melhor desempenho foi o do Resnet50 treinado sem 

dados provenientes de data augmentation. As métricas consideradas foram as 
de acurácia, com 0.91, mas principalmente o F1-score obtido para cada 

classe do problema, demonstrando um equilibrio para identificar 
corretamente os casos positivos e minimizar falsos positivos e falsos

negativos.
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APÊNDICE 11 -  ASPECTOS FILOSÓFICOS E ÉTICOS DA IA 

A -  ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06) 

integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e 

propor soluções responsáveis para lidar com esses dilemas.

Parâmetros para elaboração do Trabalho:

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da 

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas 

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como usuários, 

desenvolvedores e a sociedade em geral.

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do 

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a 

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso, 

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções 

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas, 

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. Eles 

devem considerar como essas soluções podem equilibrar os interesses de diferentes partes 

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.

4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os 

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões 

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como 

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais 

aprendidos ao analisar um caso concreto.

5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500 

e 3000 palavras.

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução, 

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas, 

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.

7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o 

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em 

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.
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8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições 

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir 

suas mensagens de maneira sucinta.

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com 

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve- 

se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp- 

content/uploads/2022/03/template-artigo-de-periodico.docx

B -  RESOLUÇÃO
RESUMO
A inteligência artificial (IA), desde sua concepção em 1956, tem evoluído 
rapidamente, especialmente na forma de IA generativa, que cria conteúdos como 
texto, imagem e áudio baseados em dados de treinamento. O ChatGPT, principal 
exemplo de IA generativa, exemplifica o potencial e os desafios éticos dessa 
tecnologia. Treinado com vastos conjuntos de dados da internet, levanta 
diversas questões éticas, como consentimento dos dados utilizados, 
preconceito ocasionado por viés algorítmico e facilidade na criação de fake 
news. Para mitigar esses problemas, propõem-se políticas de transparência e 
consentimento para o uso de dados, auditorias de viés algorítmico e educação 
em ética para desenvolvedores. Além disso, medidas de verificação de conteúdo 
e políticas de alfabetização midiática são necessárias para combater a 
disseminação de fake news. Em conclusão, apesar dos benefícios significativos 
do ChatGPT, é essencial abordar suas implicações éticas de maneira cuidadosa.

Palavras-chave: inteligência artificial. inteligência artificial generativa. 
ética. viés. privacidade.

ABSTRACT
Artificial intelligence (AI), since its conception in 1956, has rapidly 
evolved, especially in the form of generative AI, which creates content such 
as text, images, and audio based on training data. ChatGPT, a prominent 
example of generative AI, exemplifies both the potential and ethical 
challenges of this technology. Trained on vast datasets from the internet, 
it raises various ethical questions, including consent for data used, bias 
introduced by algorithmic bias, and ease of creating fake news. To mitigate 
these issues, proposed solutions include transparency and consent policies 
for data usage, algorithmic bias audits, and ethics education for developers. 
Additionally, content verification measures and media literacy policies are 
necessary to combat the spread of fake news. In conclusion, despite the
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significant benefits of ChatGPT, addressing its ethical implications 
carefully is essential.

Keywords: artificial intelligence. generative artificial intelligence.
ethics. bias. Privacy.

1 Introdução
O termo "inteligência artificial" (IA) foi cunhado em 1956, durante uma 
conferência na Universidade de Dartmouth promovida por John McCarthy, Marvin 
Minsky, Nathaniel Rochester e Claude Shannon. Desde então, a definição de IA 
tem sido objeto de debate, mas geralmente se refere à capacidade de máquinas 
e sistemas computacionais de executar tarefas que normalmente exigiriam a 
inteligência humana. Alternativamente, IA pode ser entendida como a área de 
estudo que busca construir agentes inteligentes capazes de realizar a melhor 
ação possível em uma dada situação1. Exemplos de tarefas e agentes 
inteligentes incluem reconhecimento de voz, reconhecimento de imagens, 
aprendizado de padrões, diagnóstico médico, veículos autônomos e recomendação 
de conteúdo.
Recentemente, um subcampo da IA tem ganhado destaque: a IA generativa. A IA 
generativa representa sistemas capazes de criar novos conteúdos, seja texto,
imagem ou áudio, baseados em dados de treinamento. Para alcançar esses
resultados, a IA generativa utiliza aprendizado de máquina, em particular 
redes neurais profundas. O sucesso no uso das redes neurais profundas foi 
viabilizado pelos avanços na capacidade de processamento e no desenvolvimento 
de hardware, resultando em processadores mais rápidos e eficientes, como GPUs 
(unidades de processamento gráfico) e TPUs (unidades de processamento
tensorial), que permitem que sistemas de IA realizem cálculos complexos em 
velocidades sem precedentes.

As grandes companhias de tecnologia, conhecidas como Big Tech, têm 
investido intensamente em pesquisas para o avanço das inteligências
artificiais (IA). As estratégias de coleta de dados e estudo do comportamento 
humano no meio digital estão cada vez mais sofisticadas, permitindo a sugestão 
e direcionamento de produtos e serviços com grande eficiência. Os usuários 
de mídias sociais e da internet em geral tornaram-se produtos valiosos, 
disputados pelas grandes companhias, gerando uma competição feroz entre as 
Big Tech e impulsionando a evolução tecnológica de forma exponencial.

No entanto, essa evolução tecnológica supera a capacidade da sociedade 
tradicional de acompanhá-la com suas leis e regras. Novas tecnologias 
introduzem vieses complexos, exigindo atenção contínua de governos, órgãos 
reguladores e sociedade civil para assegurar os direitos e padrões éticos 
existentes. Entre os desafios estão a proteção da propriedade intelectual, a
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privacidade dos dados pessoais, os direitos humanos, a criação de noticias 
falsas (fake news) por algoritmos inteligentes e os vieses decorrentes do 
mau uso da tecnologia. O uso do ChatGPT, devido à sua popularidade e rápida 
ascensão2, exemplifica algumas dessas implicações éticas. Este estudo de caso 
explora as implicações éticas do uso do ChatGPT, destacando a importância de 
considerar aspectos como privacidade dos usuários e de seus dados, viés e 
impacto social.

2 Desenvolvimento
O ChatGPT, desenvolvido pela OpenAI3, é o exemplo mais conhecido de IA 
generativa. Ele pode ser definido como um Modelo de Linguagem de Grande Porte, 
projetado para o processamento de linguagem natural. Esse tipo de modelo é 
exposto a quantidades massivas de dados para aprender os padrões estatísticos 
da linguagem, permitindo que ele "gere" novos textos e sequências de palavras 
com base na probabilidade de como um humano usaria as palavras em um dado 
contexto.
De acordo com estimativas do banco de investimento UBS2, o ChatGPT conseguiu 
alcançar mais de 100 milhões de usuários mensais ativos em menos de três 
meses, marca que o transformou no aplicativo com o mais rápido crescimento 
na história. Entretanto, essa rápida adoção levanta questões éticas que não 
podem ser desconsideradas.
Para compreender os padrões linguísticos e, mais recentemente, ser capaz de 
processar entradas multimodais, ou seja, texto e imagem, o ChatGPT demandou 
um grande volume de dados. Uma das primeiras questões éticas levantadas diz 
respeito à proveniência desses dados. Os dados utilizados para treinar modelos 
como o ChatGPT são, em sua maioria, oriundos de conteúdos públicos da 
internet. Mas, apesar de estar disponível publicamente, os autores/donos de 
tais conteúdos não deram consentimento explícito ao ChatGPT. Eles podem até 
ter concordado com os termos de uso das plataformas em que originalmente 
postaram conteúdo, mas não imaginaram que, no futuro, seus materiais seriam 
utilizados para treinar e até mesmo servir de base para IAs generativas. Até 
que ponto algo que está disponível publicamente e gratuitamente na internet 
pode ser utilizado, sem consentimento direto dos autores, por empresas 
privadas no desenvolvimento e melhoria de tecnologias que eventualmente vão 
gerar lucros para as mesmas?
Esse questionamento se amplia pois, recentemente, a Meta, empresa por traz 
de aplicativos como Instagram, Facebook e Whatsapp, adicionou uma seção à 
sua política de privacidade do Instagram para que os usuários possam optar 
ou não em fornecer suas postagens públicas como fonte de dados para 
treinamento de Ias generativas da Meta4. Ou seja, os usuários de aplicações 
da Meta vão ter a chance de recusar o uso de seus dados, mas como fica o
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direito de escolha frente a outros modelos de IA generativa que simplesmente 
afirmam usar dados compartilhados publicamente na internet? Os usuários 
saberão algum dia que seus conteúdos foram usados por esses modelos?
Outro caso recente envolvendo IA generativa e suposto uso não autorizado de 
dados de terceiros é o da Associação Americana da Indústria de Gravação 
(Recording Industry Assoiation of America - RIAA) que entrou com processos 
contra duas empresas do ramo de IA generativa para música, a Udio e a Suno. 
A RIAA alega que estas empresas fizeram uso de uma quantidade massiva de 
músicas protegidas por direitos autorais para conseguir treinar seus 
modelos5. Caso a RIAA ganhe a causa, pode conseguir abrir precedentes legais 
relevantes contra casos similares, demonstrando para empresas de IA 
generativa que elas não podem simplesmente se apropriar de material disponível 
online para suprir a considerável quantidade de dados necessárias para treinar 
seus modelos.
Outra questão ética envolvendo dados diz respeito à possível introdução de 
viés algoritmo, visto que os dados são selecionados para o treinamento, ou 
seja, a imparcialidade do modelo resultante do treinamento depende dos dados 
apresentados a ele. Caso os dados selecionados sejam preconceituosos ou 
desiguais entre diferentes grupos, ou ainda, tenha ocorrido processo de 
rotulação manual tendenciosa, o modelo vai incorporar isso e acabar replicando 
esses vieses, impactando na desejada neutralidade algorítmica.
A simplicidade no uso de ferramentas de IA generativa, como o ChatGPT, onde 
o usuário apenas escreve num prompt de comando e rapidamente é respondido 
com textos ou imagens, em comparação com métodos "antigos" de obter conteúdo 
generativo, que exigia conhecimento em programação e técnicas de inteligência 
artificial, ou de editores de fotos, para caso das imagens, levanta outra 
questão ética: A facilidade, e velocidade, na criação de conteúdos fantasiosos 
que podem servir como fonte de notícias falsas, as famosas fake news.
A sofisticação dos conteúdos obtidos com ChatGPT dificulta a capacidade de 
distinguir entre o que é real e o que não é, assim, conteúdos falsos gerados 
dessa forma podem rapidamente serem distribuídos entre a população, 
contribuindo para enfraquecimento na confiança pública nas fontes de 
informação e levando a uma sociedade "informada" por pós verdade.
As implicações éticas em torno do uso do ChatGPT e outras IAs generativas 
constituem um campo vasto. Este trabalho optou por discutir questões 
relacionadas à origem dos dados utilizados no treinamento dos modelos de IA, 
os riscos ideológicos introduzidos durante esse processo e a facilidade na 
geração de notícias falsas. A seguir, serão apresentadas possíveis soluções 
para mitigar esses problemas.
Primeiramente, a respeito da privacidade e consentimento dos dados. É 
imprescindível a implementação de políticas de transparência que informem aos
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usuários sobre como seus dados poderão ser utilizados para treinamento de 
modelos de IA. Além disso, assim como a iniciativa da Meta, oferecer uma 
opção para que o usuário informe que não permite que seus dados sejam usados 
para este fim.
Com relação ao problema do viés algorítmico, é necessário garantir que os 
conjuntos de dados utilizados nos treinamentos sejam diversos, garantindo 
assim representatividade desses dados. Outra medida aplicável para mitigar o 
viés é a realização de auditorias, buscando identificação e correção de 
possíveis vieses. Além disso, a capacitação dos desenvolvedores e 
pesquisadores em boas práticas éticas aplicadas à IA pode contribuir para 
que os vieses sejam reduzidos ainda na fase de desenvolvimento.
O combate à disseminação de fake news e conteúdos enganosos de modo geral 
demanda tanto esforços por parte das empresas por trás dos modelos de IA 
quanto das redes sociais e do governo. As empresas devem implementar 
ferramentas, ou consumir de empresas terceiras, para verificar e monitorar a 
qualidade e a veracidade dos conteúdos gerados por seus modelos. Já as 
plataformas de redes sociais devem sinalizar conteúdos potencialmente falsos 
ou enganosos, ou no mínimo, mencionar quanto a geração da resposta/conteúdo 
por um mecanismo de inteligência artificial. Por sua vez, o governo deve 
promover políticas de alfabetização midiática à população, capacitando as 
pessoas a discernirem entre informações confiáveis e falsas, sem serem 
influenciadas por crenças pessoais e focando, em especial, na educação 
infantil, como meio de desenvolver uma geração de pessoas mais bem preparada 
para uso dos recursos cibernéticos.
Resumindo, o enfrentamento das implicações éticas relacionadas ao ChatGPT 
exige um esforço conjunto entre desenvolvedores, pesquisadores, empresas, 
órgão reguladores e população em geral.

3 Conclusão
O rápido crescimento das tecnologias de informação e comunicação traz 
benefícios, mas também desafios para salvaguardar os direitos humanos e a 
privacidade. A disseminação da IA, acessível a grande parte da população 
mundial, levanta questões sobre os desafios enfrentados pela sociedade 
informacional. Compreender e tratar esses desafios éticos e morais é urgente 
e necessário. Acompanhando a evolução tecnológica e garantindo que regras 
éticas estejam atualizadas, podemos evitar resultados ineficazes ou 
obsoletos. O envolvimento de reguladores, desenvolvedores de tecnologia, a 
sociedade e governos é essencial para criar regras que abranjam e arbitrem 
todos os interesses comuns. Além disso, é necessário adaptar os padrões éticos 
para a sociedade informacional, considerando o uso das tecnologias desde a
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infância e a inclusão de gerações anteriores menos familiarizadas com essas 
inovações.
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APÊNDICE 12 -  GESTÃO DE PROJETOS DE IA 

A -  ENUNCIADO

1 Objetivo

Individualmente, ler e resumir -  seguindo o template fornecido -  um dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements 

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied 

Soft Computing. 143. 2023. DOI https://doi .org/ 10.1016/j .asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems: 

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207. 

2024. DOI https://doi .org/10.1016/i.iss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for 

machine learning -  Adoption, effects, and team assessment. The Journal of Systems & 

Software. 209. 2024. DOI https://doi.org/10.1016/i.iss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development 

of artificial intelligence models -  Current state of research and practice. The Journal of 

Systems & Software. 199. 2023. DOI https://doi.org/10.1016/i.iss.2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML? 

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on 

Human Factors in Computing Systems (CHI'21), Maio 8-13, 2021, Yokohama, Japão. DOI 

https://doi.org/10.1145/3411764.3445306

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para 

entender o conteúdo dos artigos -  caso precise, mas escreva o resumo em língua portuguesa e nas 

suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo 

escolhido.

No template, você deverá responder às seguintes questões:

• Qual o obietivo do estudo descrito pelo artigo?
• Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?
• Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
• Quais os principais resultados obtidos pelo estudo?

https://doi.org/10.1016/j.asoc.2023.110421
https://doi.org/10.1016/j.jss.2023.111860
https://doi.org/10.1016/j.jss.2023.111907
https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/10.1145/3411764.3445306
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Responda cada questão utilizando o espaço fornecido no template, sem alteração do tamanho 

da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o 

trabalho em PDF.

B -  RESOLUÇÃO
Questão 1)
Qual o objetivo do estudo descrito pelo artigo?

O artigo tem por objetivo identificar os desafios comuns, as melhores práticas 
de design e as principais decisões de design de arquitetura de software de 
sistemas habilitados para aprendizado de máquina do ponto de vista de 
pesquisadores e profissionais da área. Com o crescimento cada vez mais veloz 
das necessidades de uso das técnicas de Machine Learning em áreas tais como 
na de veículos autônomos, robótica e Internet das Coisas, o estudo visa 
fornecer apoio no enfrentamento destas complexidades e especificidades de 
modo a melhorar sua eficiência, confiabilidade e capacidade de manutenção e 
evolução contínua. Os autores baseiam sua pesquisa na revisão da literatura 
existente e em entrevistas com especialistas da área, com o objetivo de 
combinar as teorias acadêmicas com as experiências práticas do mercado.

Questão 2)
Qual o problema/oportunidade/situação que levou à necessidade de realização 
desse estudo?

O estudo foi motivado pela crescente complexidade dos sistemas habilitados 
para aprendizado de máquina. Por tratar-se de sistemas atuantes em áreas 
críticas trazem desafios específicos tanto para o design quanto para a 
arquitetura devido à natureza dos modelos de Machine Learning que 
frequentemente precisam lidar com grandes quantidades de dados e realizar 
operações complexas. A necessidade de garantir a confiabilidade e a manutenção 
desses sistemas altamente sensíveis a alterações exige atualizações 
constantes para melhorar o desempenho e a precisão dos modelos. Tendo em 
vista que as abordagens tradicionais de engenharia de software são 
insuficientes para lidar com este cenário o estudo procura criar uma 
compreensão estruturada dos desafios identificando ideias que podem ajudar
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pesquisadores e profissionais da área no desenvolvimento mais eficaz de 
sistema habilitados para aprendizado de máquina.

Questão 3)
Qual a metodologia que os autores usaram para obter e analisar as informações 
do estudo?

Os autores utilizaram uma abordagem mista que combina a revisão sistemática 
da literatura existente com entrevistas com especialistas. Para revisão 
sistemática da literatura foram utilizados como base os dados acadêmicos de 
3038 estudos relacionados ao tema. A estes estudos foram aplicados critérios 
de inclusão e exclusão resultando em 41 estudos classificados para maior 
aprofundamento dos quais foram identificados os desafios, as práticas de 
design e as decisões de arquitetura. Já as entrevistas com especialistas 
tiveram por objetivo a validação e complemento dos estudos acadêmicos. Tais 
entrevistas foram aplicadas a 12 especialistas de 09 países, todos com 
experiência significativa em desenvolvimento e implementação de sistemas de 
Machine Learning, resultando em insights práticos sobre os desafios e práticas 
observados no dia a dia. Os dados obtidos através destas duas abordagens 
foram comparados, correlacionados e discutidos intra equipe de pesquisa com 
o objetivo de identificar temas sobrepostos e perspectivas únicas. Foram 
utilizados métodos quantitativos e qualitativos para analisar os dados 
coletados o que incluiu técnicas de codificação para categorizar a informação, 
análise temática para extração de padrões e percepções.

Questão 4)
Quais os principais resultados obtidos pelo estudo?

Como principais resultados obtidos do estudo inclui-se a identificação de 
desafios, tendo sido identificados 35 desafios, estes agrupados por 
categorias como arquitetura, dados, evolução, ciclo de vida de 
desenvolvimento de software, e garantia de qualidade. Os desafios mais 
significativos incluem a gestão de dependências de dados, a garantia da 
qualidade e confiabilidade do sistema, o tratamento de complexidades de 
arquitetura, o apoio à evolução do modelo, e a integração entre sistemas. Um 
outro resultado obtido foi a relação de melhores práticas, tendo sido 
identificadas 42 melhores práticas. A adoção de arquiteturas de micro serviços 
para modularidade, a implementação de mecanismos de tolerância a falhas, a 
normalização do processo de formação foram alguns dos exemplos de melhores 
práticas identificadas às quais também foram atribuídas categorias, idênticas 
as anteriores. O estudo destacou ainda 27 importantes decisões a respeito de
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design de arquitetura que consideram a seleção de arquiteturas adequadas, a 
escolha de plataformas de aprendizado de máquina apropriadas, e a gestão de 
configurações de pipeline de dados, decisões que têm por objetivo orientar 
os profissionais na criação de sistemas escaláveis, flexíveis. Em resumo, o 
estudo fornece uma base estruturada para que pesquisadores e profissionais 
da área possam apoiar-se ao desenvolver seus sistemas de Machine Learning 
com destacando a importância de práticas e decisões específicas para lidar 
com a complexidade e os desafios únicos desses sistemas.

Referência bibliográfica:
https://www.sciencedirect.com/science/article/pii/S0164121223002558?via%3Di
hub

https://www.sciencedirect.com/science/article/pii/S0164121223002558?via%3Di
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APÊNDICE 13 -  FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL

A -  ENUNCIADO

1 Classificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a 

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação.

Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula 

prática.
Informações:

•  Base de dados: Fashion MNIST Dataset
•  Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de vestuário. 

É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de dígitos.
•  Tamanho: 70.000 amostras, 784 features (28x28 pixels).
•  Importação do dataset: Copiar código abaixo.

da ta  = t f .k e ra s .d a ta s e ts . fa s h io n _ m n is t

( x _ t r a in ,  y _ t r a in ) ,  ( x _ te s t ,  y _ te s t )  = fa s h io n _ m n is t. lo a d _ d a ta ( )

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a arquitetura 

RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão. Além disso, 

fazer uma breve explicação dos seguintes resultados:

•  Gráficos de avaliação do modelo (loss);
•  Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R2).

Informações:

•  Base de dados: Wine Quality
•  Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas

características químicas. A variável target (y) neste exemplo será o score de qualidade do
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)

•  Tamanho: 1599 amostras, 12 features.
•  Importação: Copiar código abaixo.

u r l  = " h t tp s : / /a r c h iv e . ic s .u c i.e d u /m l/m a c h in e - le a r n in g -d a ta b a s e s /w in e -  

q u a l i t y /w in e q u a l i t y - r e d .c s v "

da ta  = p d .re a d _ c s v (u r l,  d e l im i t e r = ' ; ' )

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-
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D ica 1. Para f a c i l i t a r  o t ra b a lh o ,  renomeie o nome das co lunas  para 

p o rtu g uê s , dessa fo rm a:

da ta .co lu m n s  = [

'a c id e z _ f ix a ' ,  #

'a c id e z _ v o la t i l ' ,  #

'a c id o _ c i t r i c o ' ,  #

'a c u c a r _ re s id u a l ',  #

'c lo r e t o s ' ,  #

'd io x id o _ d e _ e n x o f re _ l iv re ',

'd io x id o _ d e _ e n x o fre _ to ta l ',

'd e n s id a d e ',  #

'p H ',  #

's u l f a t o s ' ,  #

'a l c o o l ' ,  #

's c o re _ q u a lid a d e _ v in h o '

]

D ica 2 . Separe os dados (x  e y ) de t a l  form a que a ú lt im a  co luna  ( ín d ic e  

- 1 ) ,  chamada sco re _ q u a lid a d e _ v in h o , s e ja  a v a r iá v e l  ta r g e t  (y )

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados 

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de Sistemas 

de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados:

•  Gráficos de avaliação do modelo (loss);
•  Exemplo de recomendação de livro para determinado Usuário.

Informações:

•  Base de dados: Base_livros.csv
•  Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas),

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
•  Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros

(formato .csv).

f ix e d  a c id i t y  

v o la t i l e  a c id i t y  

c i t r i c  a c id  

re s id u a l sugar 

c h lo r id e s

# f re e  s u l f u r  d io x id e

# t o t a l  s u l f u r  d io x id e  

d e n s ity

pH

s u lp h a te s

a lc o h o l

# q u a l i t y

4 Deepdream
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Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de um

felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - Prática

Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:

•  Imagem onírica obtida por Main Loop;
•  Imagem onírica obtida ao levar o modelo até uma oitava;
•  Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava. 

Informações:

•  Base de dados: https://commons.wikimedia.org/wiki/File:Felis catus-cat on snow.jpg
•  Importação da imagem: Copiar código abaixo.

u r l  =

" h t tp s : / /c o m m o n s .w ik im e d ia .O rg /w ik i /S p e c ia l :F i le P a th /F e lis  c a tu s -  

c a t on s n o w .jp g "

D ica : Para e x ib i r  a imagem u t i l iz a n d o  d is p la y  ( d is p la y .h tm l)  use o l i n k  

h t tp s : / /c o m m o n s .w ik im e d ia .o rg /w ik i/F i le :F e lis _ c a tu s -c a t_ o n _ s n o w . jp g

B -  RESOLUÇÃO
Questão 1)
CLASSIFICAÇÃO
# Importação das bibliotecas 
import tensorflow as tf 
import matplotlib.pyplot as plt 
import numpy as np
from mlxtend.plotting import plot confusion matrix 
from sklearn.metrics import confusion matrix

# Importação dos dados
(x train, y train), (x test, y test) =

tf.keras.datasets.fashion mnist.load data()
D ow nloading da ta  from  h t t o s : / / s t o r a ge .aooale a p is . c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t r a in - la b e ls - id x l - u b v te . az 

D ow nloading da ta  from  h t t p s : / / s t o r a a e .a oo a le a p is .c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t r a in - im a ae s - id x 3 - u b v te .az 

D ow nloading da ta  from  h t t p s : / / s t o r a ae .ao o a le a p is .c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t lO k - la b e ls - id x l- u b v te .az 

D ow nloading da ta  from  h t t p s : / / s t o r a ae .aooale a p is .c o m / te n s o r f lo w / t f - k e r a s - d a ta s e ts / t l8 k - im a ae s - id x 3 - u b v te .az

# Pré processamento dos dados
x train, x test = x train/255.0, x test/255.0

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://storaae.aooaleapis.com/tensorflow/tf-keras-datasets/train-imaaes-idx3-ubvte.az
https://storaae.aooaleapis.com/tensorflow/tf-keras-datasets/tlOk-labels-idxl-ubvte.az
https://storaae.aooaleapis.com/tensorflow/tf-keras-datasets/tl8k-imaaes-idx3-ubvte.az
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# Criando modelo
i = tf.keras.layers.Input(shape=(28, 28)) 
x = tf.keras.layers.Flatten()(i)
x = tf.keras.layers.Dense(128, activation="relu")(x) 
x = tf.keras.layers.Dropout(0.2)(x)
x = tf.keras.layers.Dense(10, activation="softmax")(x) 
model = tf.keras.models.Model(i, x)

# Compilando modelo
model.compile(optimizer='adam', loss='sparse categorical crossentropy', 

metrics=['accuracy'])

# Treinando o modelo 
result = model.fit(x train, y 

epochs=10)
train, validation data=(x test, y test),

Epoch 1/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 2/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 3/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 4/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 5/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 6/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 7/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 8/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 9/10
1 8 7 5 /1 8 7 5 -----------------
Epoch 10/10
1 8 7 5 /1 8 7 5 -----------------

10s 4m s/step •- a ccuracy: 0 .7670  -- lo s s : : 0.6712  -- va l_accu racy:: 0 .8414  -- v a i _ lo s s : : 0.4391

6s 3m s/step - a ccuracy: 0 .8498  - lo s s : 0 .4162  - va l_a ccu racy : 0.8605  - va l_ lo s s : 0.3869

9s 3m s/step - a ccuracy: 0 .8635  - lo s s : 0 .3718  - va l_a ccu racy : 0.8615  - v a l_ lo s s : 0.3849

5s 2m s/step - a ccuracy: 0 .8727  - lo s s : 0 .3417  - va l_a ccu racy : 0.8711  - va l_ lo s s : 0.3553

4s 2m s/step - accuracy: 0 .8808  - lo s s : 0 .3289  - va l_a ccu racy : 0.8700  - va l_ lo s s : 0.3547

3s 2m s/step - a ccuracy: 0 .8830  - lo s s : 0 .3155  - va l_a ccu racy : 0 .8734  - v a l_ lo s s : 0.3533

4s 2m s/step - a ccuracy: 0 .8850  - lo s s : 0 .3050  - va l_a ccu racy : 0.8785  - v a l_ lo s s : 0.3354

4s 2m s/step - a ccuracy: 0 .8915  - lo s s : 0 .2959  - va l_a ccu racy : 0.8806  - v a l_ lo s s : 0.3312

5s 2m s/step - a ccuracy: 0 .8919  - lo s s : 0 .2865  - va l_a ccu racy : 0.8700  - v a l_ lo s s : 0.3556

5s 2m s/step - a ccuracy: 0 .8927  - lo s s : 0 .2844  - va l_a ccu racy : 0.8825  - va l_ lo s s : 0.3324

# Avaliando o modelo
# Plotar a função de perda
plt.plot(result.history["loss"], label="loss") 
plt.plot(result.history["val loss"], label="val loss") 
plt.legend()
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Gráfico de perda
Durante o treinamento do modelo, observamos que, em apenas 10 épocas, houve 
uma redução significativa na perda do treinamento, que caiu de aproximadamente
0.67 para menos de 0.3. Este resultado é positivo, indicando que o modelo 
conseguiu aprender a representação dos dados de treinamento de maneira 
eficiente.
No entanto, a perda de validação não seguiu a mesma tendência de redução 
esperada, apresentando oscilações ao longo das épocas. Isso pode sugerir a 
necessidade de mais épocas para observar uma redução mais estável na perda 
de validação. Alternativamente, se essas oscilações persistirem, pode ser 
necessário revisar tanto a qualidade e a quantidade dos dados de validação 
quanto a arquitetura do modelo. Vale destacar que oscilações na perda de 
validação podem ser indicativas de overfitting, onde o modelo ajusta-se muito 
bem aos dados de treinamento, mas não generaliza tão bem para dados não vistos

# Plotar a acurácia
plt.plot(result.history["accuracy"], label="acc") 
plt.plot(result.history["val accuracy"], label="val acc") 
plt.legend()

Gráfico de acurácia
Quanto à acurácia, o comportamento observado foi o esperado. A acurácia de 
treinamento teve um crescimento continuo, alcançando um valor próximo de 0.9, 
o que indica que o modelo está aprendendo de forma eficaz. Já a acurácia de 
validação também cresceu, mas com pequenas flutuações. Embora tenha mantido 
uma tendência ascendente, essas oscilações podem ser um sinal de que o modelo 
ainda precisa de mais ajustes para estabilizar a generalização.

# Avaliar o modelo com a base de teste 
print( model.evaluate(x test, y test) )
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# Predições
y pred = model.predict(x test).argmax(axis=1) 
print(y pred)

# Matriz de confusão
cm = confusion matrix(y test, y pred)
plot confusion matrix(conf mat=cm, figsize=(7, 7),

show normed=True)
(< F ig u re  s iz e  700x700 w ith  1 Axes>,
<Axes: x la b e l= ’ p re d ic te d  la b e i1, y la b e l= ' t r u e  la b e l '> )

# Visualizando classificações erradas 
misclassified = np.where(y pred != y test)[0] 
i = np.random.choice(misclassified)
plt.imshow(x test[i].reshape(28, 28), cmap="gray") 
plt.title("True label: %s Predicted: %s" % (y test[i], y_pred[i]))



158

Questão 2)
REGRESSÃO

# Importação de bibliotecas 
import tensorflow as tf 
import pandas as pd 
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.metrics import mean absolute error, mean squared error, 

r2_score
from sklearn.preprocessing import StandardScaler

# Importando os dados
url = "https://archive.ics.uci.edu/ml/machine-learning-

databases/wine-quality/winequality-red.csv"
data = pd.read csv(url, delimiter=';')

data.shape 
(1599, 12)

Text(0.5, 1.0, 'True label: 4 Predicted: 2')

Classificação errada
No exemplo de classificação incorreta, temos uma amostra da categoria 4 que 
foi erroneamente classificada pelo modelo como categoria 2. Ao analisar a 
matriz de confusão, observamos que a maior dificuldade do modelo em relação 
à categoria 4 ocorreu justamente com a categoria 2. Especificamente, o modelo 
classificou 98 amostras da categoria 4 como pertencentes à categoria 2, 
resultando na maior taxa de confusão para essa classe.

https://archive.ics.uci.edu/ml/machine-learning-
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# Separando em variáveis independentes (X) e dependente (y)
X = data.drop("quality", axis=1).values
y = data["quality"].values

# Pré processamento dos dados 
scaler = StandardScaler()

X scaled = scaler.fit transform(X)

# Dividir os dados em treino e teste (75% treino, 25% teste)
X train, X test, y train, y test = train test split(X scaled,

y,random state=42, test size=0.25)

# Criando o modelo
i = tf.keras.layers.Input(shape=(11,)) 
x = tf.keras.layers.Dense(50, activation="relu")(i) 
x = tf.keras.layers.Dense(1)(x)

model = tf.keras.models.Model(i, x)

# Compilação
model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=0.001 

), loss='mse')

# Early stop para epochs
early stop = tf.keras.callbacks.EarlyStopping(

monitor='val loss', 
patience=20,
restore_best_weights=True)

# Treinar o modelo
history = model.fit(X train, y train, epochs=1500,

validation split=0.2,callbacks=[early stop])
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3s 32ms/step -- loss : 28.6536 -  val_loss;: 22.9032

0s 4ms/step - lo ss: 21.1536 -  v a l_ lo s s : 16.2289

0S 3ms/step - lo ss: 14.3322 -  v a l_ lo ss: 10.8584

0S 4ms/step - lo ss: 9.6321 -  v a l_ lo ss: 6.9232

0S 4ms/step - lo ss: 6.1569 -  v a l_ lo ss: 4.5370

0S 3ms/step - lo ss: 4.1051 -  v a l_ lo ss: 3.2617

0S 4ms/step - lo ss: 2.9594 -  v a l_ lo ss: 2.6936

0S 6ms/step - lo ss: 2.5560 -  v a l_ lo ss: 2.4147

0S 3ms/step - lo ss: 2.2935 -  v a l_ lo ss: 2.2617

0S 4ms/step - lo ss: 2.1241 -  v a l_ lo ss: 2.1590

0s 3ms/step - lo s s : 0.3039 -  val_.lo ss: 0.3395

0s 2ms/step - lo ss: 0.2764 -  val_.lo ss: 0.3501

0S 2ms/step - lo ss: 0.2795 -  val_.lo ss: 0.3444

0S 2ms/step - lo ss: 0.2915 -  val_.lo ss: 0.3429

0S 2ms/step - lo ss: 0.3004 -  val_.lo ss: 0.3501

0S 3ms/step - lo ss: 0.3002 -  val_.lo ss: 0.3481

0S 4ms/step - lo ss: 0.3034 -  val_.lo ss: 0.3435

0S 4ms/step - lo ss: 0.3077 -  val_.lo ss: 0.3426

0S 3ms/step - lo ss: 0.2900 -  val_.lo ss: 0.3439

0S 4ms/step - lo ss: 0.2906 -  val_.lo ss: 0.3475

# Plotar os gráficos de loss 
plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label='Loss (Treinamento)')
plt.plot(history.history['val loss'], label='Loss (Validação)')
plt.title('Função de Perda Durante o Treinamento')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

Epoch 1/1500
3 0 / 3 0  --------------------------------------------
Epoch 2/1500
3 0 / 3 0  --------------------------------------------
Epoch 3/1500
3 0 / 3 0  --------------------------------------------
Epoch 4/1500
3 0 / 3 0  --------------------------------------------
Epoch 5/1500
3 0 / 3 0  --------------------------------------------
Epoch 6/1500
3 0 / 3 0  --------------------------------------------
Epoch 7/1500
3 0 / 3 0  --------------------------------------------
Epoch 8/1500
3 0 / 3 0  --------------------------------------------
Epoch 9/1500
3 0 / 3 0  --------------------------------------------
Epoch 10/1500
3 0 / 3 0  --------------------------------------------
Epoch 11/1500
Epoch 183/1500
3 0 / 3 0  ---------------------------------------------
Epoch 184/1500
3 0 / 3 0  ---------------------------------------------
Epoch 185/1500
3 0 / 3 0  ---------------------------------------------
Epoch 186/1500
3 0 / 3 0  ---------------------------------------------
Epoch 187/1500
3 0 / 3 0  ---------------------------------------------
Epoch 188/1500
3 0 / 3 0  ---------------------------------------------
Epoch 189/1500
3 0 / 3 0  ---------------------------------------------
Epoch 190/1500
3 0 / 3 0  ---------------------------------------------
Epoch 191/1500
3 0 / 3 0  ---------------------------------------------
Epoch 192/1500
3 0 / 3 0  ---------------------------------------------
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Gráfico de perda
Pelo gráfico de perda, podemos observar que por volta de 40 epochs, o modelo 
atingiu um valor minimo de perda, o que implica na não necessidade de 
continuar treinando o modelo, visto que a perda se tornou estável.

# Fazer predições com o conjunto de teste 
y pred = model.predict(X test).flatten()

# Calcular MAE, MSE e R2
mae = mean absolute error(y test, y pred) 
mse = mean squared error(y test, y pred) 
r2 = r2 score(y test, y pred)

# Plotar as métricas 
print(f”MAE: {mae}”)
print(f”MSE: {mse}”)
print(f”R2: {r2}”)

MAE: 0.4805771422386169 
MSE: 0.3634197126441913 
R2: 0.412506639957428

Avaliando as métricas
MAE (0.48): O erro médio absoluto indica que o modelo prevê valores com uma 
média de erro moderada. Embora não seja muito alto, ainda há espaço para 
reduzir a diferença entre as previsões e os valores reais.
MSE (0.36): Esse valor reforça que o modelo não comete muitos erros grandes, 
mas ainda apresenta alguma inconsistência que poderia ser melhorada.
R2 (0.41): O modelo explica 41% da variação nas classes, indicando uma
correlação modesta com as classes reais. Isso sugere que ele ainda não captura 
totalmente as variações no padrão dos dados.
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ISBN Titulo Autor

0 2005018 Clara Callan Richard Bruce Wright

1 60973129 Decision in Normandy Cario D'Este

Ano

2001

1991

Editora II

HarperFlamingo Canada 

HarperPerennial

)_usuario Ni

276725

276726

Dtas

0

2

2 374157065 Flu: The Story of the Great Influenza Pandemic... Gina Bari Kolata 1999 Farrar Straus Giroux 276727 6
3 393045218 The Mummies of Urumchi E. J. W. Barber 1999 W. W. Norton & Company 276729 1

4 399135782 The Kitchen God's Wife AmyTan 1991 Putnam Pub Group 276729 9

Em resumo, o modelo possui um desempenho razoável, mas ajustes finos, como 
aprimoramento no pré-processamento, ajustando as features e a regularização 
ou experimentação com diferentes configurações, poderiam melhorar os 
resultados.

Questão 3)
SISTEMA DE RECOMENDAÇÃO
# Importação de bibliotecas 
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, 

Concatenate 
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import SGD, Adam 
from sklearn.utils import shuffle 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt

# Leitura dos arquivos
# Antes de executar, importar para o ambiente o arquivo base 
data = pd.read csv('./Base livros.csv')
data.head()

data.dtypes

# Converter IDusuario e ISBN em categóricos e criar novos códigos 
data.ID usuario = pd.Categorical(data.ID usuario) 
data['new user id'] = data.ID usuario.cat.codes
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data.ISBN = pd.Categorical(data.ISBN) 
data['new isbn'] = data.ISBN.cat.codes 
data.head()

# Dimensões
N = len(set(data.new user id))
M = len(set(data.new isbn))

user ids, isbn, ratings = shuffle(data.new user id, data.new isbn, 
data.Notas)
Ntrain = int(0.8 * len(ratings)) # separar os dados 80% x 20%
train user = user ids[:Ntrain]
train book = isbn[:Ntrain]
train ratings = ratings[:Ntrain]
test user = user ids[Ntrain:]
test book = isbn[Ntrain:]
test ratings = ratings[Ntrain:]

# Centralizar as notas
avg rating = train ratings.mean() 
train_ratings = train_ratings - avg_rating 
test_ratings = test_ratings - avg_rating

# Lista de valores de K para testar 
embedding sizes = [10, 20, 50]

# Dicionário para armazenar os resultados 
results = {}

for K in embedding sizes:
print(f"\nTreinando modelo com K = {K}")
# Camada de entrada e embedding para usuários 
u = Input(shape=(1,)) 
u emb = Embedding(N, K)(u) 
u emb = Flatten()(u emb)

# Camada de entrada e embedding para livros
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m = Input(shape=(1,)) 
m emb = Embedding(M, K)(m) 
m emb = Flatten()(m emb)

# Concatenar embeddings e passar pelas camadas densas 
x = Concatenate()([u emb, m emb])
x = Dense(1024, activation="relu")(x) 
x = Dense(1)(x)

# Criar o modelo
model = Model(inputs=[u, m], outputs=x)

# Compilar o modelo 
model.compile(

loss="mse",
optimizer=SGD(learning rate=0.08, momentum=0.9)

)

# Treinamento do modelo 
r = model.fit(

x=[train user, train book], 
y=train ratings, 
epochs=25, 
batch_size=1024, 
verbose=2,
validation data=([test user, test book], test ratings)

)

# Salvar histórico de treinamento 
results[K] = {

"history": r.history,
"model": model

}

# Plotar os gráficos de perda para análise 
plt.plot(r.history["loss"], label=f"train loss (K={K})") 
plt.plot(r.history["val loss"], label=f"val loss (K={K})")

# Mostrar o gráfico consolidado
plt.title("Evolução da Perda para Diferentes Valores de K") 
plt.xlabel("Épocas")
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plt.ylabel("Erro Quadrático Médio (MSE)")
plt.legend()
plt.show()

Treinando modelo com K = 10 
Epoch 1/25
101/101 - 2s - 22ms/step - loss: 9.9870 - val loss: 9.9850 
Epoch 2/25
101/101 - 1s - 10ms/step - loss: 9.9880 - val loss: 9.9926 
Epoch 3/25
101/101 - 0s - 3ms/step - loss: 9.9878 - val loss: 9.9994 
Epoch 4/25
101/101 - 0s - 3ms/step - loss: 9.9685 - val loss: 10.0103 
Epoch 5/25
101/101 - 0s - 3ms/step - loss: 9.3093 - val loss: 10.7648 
Epoch 6/25
101/101 - 0s - 3ms/step - loss: 1.9306 - val loss: 11.1163 
Epoch 7/25
101/101 - 0s - 3ms/step - loss: 0.3591 - val loss: 10.6396 
Epoch 8/25
101/101 - 0s - 2ms/step - loss: 0.0571 - val loss: 10.6241 
Epoch 9/25
101/101 - 0s - 3ms/step - loss: 0.0125 - val loss: 10.6101 
Epoch 10/25
101/101 - 0s - 3ms/step - loss: 0.0037 - val loss: 10.6141 
Epoch 11/25
101/101 - 0s - 3ms/step - loss: 0.0014 - val loss: 10.6112 
Epoch 12/25
101/101 - 0s - 3ms/step - loss: 6.0859e-04 - val loss: 10.6120 
Epoch 13/25
101/101 - 0s - 3ms/step - loss: 2.8776e-04 - val loss: 10.6108 
Epoch 14/25
101/101 - 1s - 6ms/step - loss: 1.4380e-04 - val loss: 10.6123 
Epoch 15/25
101/101 - 0s - 3ms/step - loss: 7.2827e-05 - val loss: 10.6120 
Epoch 16/25
101/101 - 0s - 3ms/step - loss: 3.6910e-05 - val loss: 10.6117 
Epoch 17/25
101/101 - 1s - 6ms/step - loss: 1.8649e-05 - val loss: 10.6118 
Epoch 18/25
101/101 - 0s - 3ms/step - loss: 9.4559e-06 - val loss: 10.6119
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Epoch 19/25
101/101 - 0s - 3ms/step - loss: 4.8864e-06 - val loss: 10.6119 
Epoch 20/25
101/101 - 0s - 3ms/step - loss: 2.4205e-06 - val loss: 10.6118 
Epoch 21/25
101/101 - 0s - 3ms/step - loss: 1.2979e-06 - val loss: 10.6118 
Epoch 22/25
101/101 - 0s - 3ms/step - loss: 7.7653e-07 - val loss: 10.6119 
Epoch 23/25
101/101 - 0s - 3ms/step - loss: 4.5746e-07 - val loss: 10.6119 
Epoch 24/25
101/101 - 0s - 2ms/step - loss: 3.7219e-07 - val loss: 10.6119 
Epoch 25/25
101/101 - 0s - 2ms/step - loss: 2.9629e-07 - val loss: 10.6119

Treinando modelo com K = 20 
Epoch 1/25
101/101 - 2s - 23ms/step - loss: 9.9893 - val loss: 10.0220 
Epoch 2/25
101/101 - 1s - 10ms/step - loss: 9.9903 - val loss: 9.9911 
Epoch 3/25
101/101 - 0s - 3ms/step - loss: 9.9631 - val loss: 10.0077 
Epoch 4/25
101/101 - 0s - 3ms/step - loss: 9.4633 - val loss: 10.6271 
Epoch 5/25
101/101 - 0s - 3ms/step - loss: 2.1928 - val loss: 11.1953 
Epoch 6/25
101/101 - 0s - 3ms/step - loss: 0.5357 - val loss: 10.5957 
Epoch 7/25
101/101 - 0s - 3ms/step - loss: 0.0845 - val loss: 10.5507 
Epoch 8/25
101/101 - 0s - 2ms/step - loss: 0.0200 - val loss: 10.5499 
Epoch 9/25
101/101 - 0s - 3ms/step - loss: 0.0067 - val loss: 10.5403 
Epoch 10/25
101/101 - 0s - 3ms/step - loss: 0.0027 - val loss: 10.5397 
Epoch 11/25
101/101 - 0s - 3ms/step - loss: 0.0013 - val loss: 10.5393 
Epoch 12/25
101/101 - 0s - 3ms/step - loss: 6.8140e-04 - val loss: 10.5381 
Epoch 13/25
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101/101 - 0s - 3ms/step - loss: 3.7453e-04 - val loss: 10.5378 
Epoch 14/25
101/101 - 0s - 3ms/step - loss: 2.1258e-04 - val loss: 10.5379 
Epoch 15/25
101/101 - 0s - 3ms/step - loss: 1.2302e-04 - val loss: 10.5380 
Epoch 16/25
101/101 - 0s - 3ms/step - loss: 7.0752e-05 - val loss: 10.5380 
Epoch 17/25
101/101 - 0s - 3ms/step - loss: 3.9592e-05 - val loss: 10.5375 
Epoch 18/25
101/101 - 1s - 6ms/step - loss: 2.2476e-05 - val loss: 10.5376 
Epoch 19/25
101/101 - 1s - 6ms/step - loss: 1.2828e-05 - val loss: 10.5377 
Epoch 20/25
101/101 - 1s - 6ms/step - loss: 7.4559e-06 - val loss: 10.5377 
Epoch 21/25
101/101 - 0s - 3ms/step - loss: 4.2742e-06 - val loss: 10.5377 
Epoch 22/25
101/101 - 0s - 3ms/step - loss: 2.4040e-06 - val loss: 10.5377 
Epoch 23/25
101/101 - 0s - 3ms/step - loss: 1.3768e-06 - val loss: 10.5377 
Epoch 24/25
101/101 - 0s - 3ms/step - loss: 8.0975e-07 - val loss: 10.5377 
Epoch 25/25
101/101 - 0s - 3ms/step - loss: 4.7374e-07 - val loss: 10.5377

Treinando modelo com K = 50 
Epoch 1/25
101/101 - 2s - 24ms/step - loss: 9.9945 - val loss: 9.9876 
Epoch 2/25
101/101 - 1s - 10ms/step - loss: 9.9811 - val loss: 9.9865 
Epoch 3/25
101/101 - 0s - 3ms/step - loss: 9.9909 - val loss: 10.0288 
Epoch 4/25
101/101 - 0s - 3ms/step - loss: 9.7871 - val loss: 10.2950 
Epoch 5/25
101/101 - 0s - 3ms/step - loss: 10.5080 - val loss: 11.0647 
Epoch 6/25
101/101 - 0s - 3ms/step - loss: 5.1707 - val loss: 10.7645 
Epoch 7/25
101/101 - 0s - 3ms/step - loss: 1.1846 - val loss: 10.5256
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Epoch 8/25
101/101 - 0s - 3ms/step - loss: 0.3747 - val loss: 10.4614 
Epoch 9/25
101/101 - 1s - 6ms/step - loss: 0.1778 - val loss: 10.4936 
Epoch 10/25
101/101 - 0s - 3ms/step - loss: 0.1158 - val loss: 10.4628 
Epoch 11/25
101/101 - 0s - 3ms/step - loss: 0.0866 - val loss: 10.4564 
Epoch 12/25
101/101 - 0s - 3ms/step - loss: 0.0641 - val loss: 10.4712 
Epoch 13/25
101/101 - 1s - 6ms/step - loss: 0.0452 - val loss: 10.4582 
Epoch 14/25
101/101 - 0s - 3ms/step - loss: 0.0304 - val loss: 10.4679 
Epoch 15/25
101/101 - 0s - 3ms/step - loss: 0.0166 - val loss: 10.4700 
Epoch 16/25
101/101 - 0s - 3ms/step - loss: 0.0071 - val loss: 10.4616 
Epoch 17/25
101/101 - 0s - 4ms/step - loss: 0.0034 - val loss: 10.4633 
Epoch 18/25
101/101 - 1s - 6ms/step - loss: 0.0017 - val loss: 10.4591 
Epoch 19/25
101/101 - 0s - 4ms/step - loss: 0.0011 - val loss: 10.4602 
Epoch 20/25
101/101 - 0s - 4ms/step - loss: 6.6750e-04 - val loss: 10.4609 
Epoch 21/25
101/101 - 0s - 4ms/step - loss: 4.2016e-04 - val loss: 10.4601 
Epoch 22/25
101/101 - 1s - 6ms/step - loss: 2.9959e-04 - val loss: 10.4607 
Epoch 23/25
101/101 - 1s - 6ms/step - loss: 2.3958e-04 - val loss: 10.4604 
Epoch 24/25
101/101 - 0s - 3ms/step - loss: 1.9933e-04 - val loss: 10.4605 
Epoch 25/25
101/101 - 0s - 3ms/step - loss: 1.5061e-04 - val loss: 10.4605
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Avaliação função de perda
Os resultados obtidos indicam que o modelo apresenta sobreajuste, com a perda 
de treinamento diminuindo significativamente, mas a perda de validação 
permanecendo estável em torno de 10,5. Isso sugere que o modelo está ajustando 
bem os dados de treinamento, mas não consegue generalizar para o conjunto de 
validação. Além disso, não houve melhorias significativas na perda de 
validação ao testar diferentes valores para K. Logo, é necessário reavaliar 
o modelo, modificar sua arquitetura, testar diferentes funções de perda e 
avaliar a qualidade e representatividade dos dados para melhorar o desempenho.

# Nova recomendação
# Gerar o array com o usuário único
# Repete a quantidade de livros 
books = np.array(list(set(isbn)))
input usuario = np.repeat(a=6636, repeats=M) 
preds = model.predict( [input usuario, books] )

# Descentraliza as predições
rat = preds.flatten() + avg rating

# Índice da maior nota 
idx = np.argmax(rat)
print("Recomendação: Livro - ", books[idx], " / ", rat[idx] , "*")

Recomendação: Livro - 109231 / 10.528166 *

Avaliação da recomendação
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O modelo recomendou que o usuário com ID 6636 daria nota de aproximadamente 
10 para o livro com ISBN 109231.

Questão 4)
DEEPDREAM
# Importação das bibliotecas 
import tensorflow as tf 
import numpy as np
import matplotlib.pyplot as plt 
import IPython.display as display 
import PIL.Image

# Importação da imagem
url = 'https://upload.wikimedia.org/wikipedia/commons/b/b6/Felis catus- 
cat on snow.jpg'

# Download da imagem e gravação em array Numpy 
def download(url, max dim=None):

name = url.split('/')[-1]
image path = tf.keras.utils.get file(name, origin=url) 
img = PIL.Image.open(image path) 
if max dim:

img.thumbnail((max dim, max dim)) 
return np.array(img)

# Normalização da imagem 
def deprocess(img):

img = 255*(img + 1.0)/2.0 
return tf.cast(img, tf.uint8)

# Exibir a imagem 
def show(img):

display.display(PIL.Image.fromarray(np.array(img)))

# Leitura da Imagem
original img = download(url, max dim=500) 
show(original img)
display.display(display.HTML('<a
"href=https://commons.wikimedia.org/wiki/File:Felis catus- 
cat on snow.jpg"/>'))

https://upload.wikimedia.org/wikipedia/commons/b/b6/Felis
https://commons.wikimedia.org/wiki/File:Felis


171

Preparando modelo de classificação
base model = tf.keras.applications.InceptionV3(include top=False, 

weights='imagenet')
Downloading data from h ttp s:// sto raq e.aooqleapis.com /tensorflow /kera s-app lic a t io n s/ in c e p t io n  v3/ inception  v3 w eights t f  dim orderinq  t f  ke rne ls notop.h5

# Selecionando as camadas da rede para maximizar a perda 
names = ['mixed3', 'mixed5']
layers = [base model.get layer(name).output for name in names]

# Criação do modelo dream
dream model = tf.keras.Model(inputs=base model.input, outputs=layers)

# Função para calcular a perda 
def calc loss(img, model):

img batch = tf.expand dims(img, axis=0) 
layer activations = model(img batch) 
if len(layer activations) == 1:

layer activations = [layer activations] 
losses = []
for act in layer activations:

loss = tf.math.reduce mean(act) 
losses.append(loss) 

return tf.reduce_sum(losses)

# DeepDream
class DeepDream(tf.Module): 

def init (self, model): 
self.model = model 

@tf.function(
input signature=(

tf.TensorSpec(shape=[None,None,3], dtype=tf.float32),

https://storaqe.aooqleapis.com/tensorflow/keras-applications/inception
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tf.TensorSpec(shape=[], dtype=tf.int32), 
tf.TensorSpec(shape=[], dtype=tf.float32),)

)
def call (self, img, steps, step size): 

print("Tracing") 
loss = tf.constant(0.0) 
for n in tf.range(steps):
with tf.GradientTape() as tape: 

tape.watch(img)
loss = calc loss(img, self.model) 

gradients = tape.gradient(loss, img) 
gradients /= tf.math.reduce std(gradients) + 1e-8 
img = img + gradients*step_size 
img = tf.clip by value(img, -1, 1)

return loss, img 
deepdream = DeepDream(dream model)

# Main Loop
def run deep dream simple(img, steps=100, step size=0.01):

img = tf.keras.applications.inception v3.preprocess input(img)
img = tf.convert to tensor(img)
step size = tf.convert to tensor(step size)
steps_remaining = steps
step = 0
while steps remaining: 

if steps remaining>100:
run steps = tf.constant(100) 

else:
run steps = tf.constant(steps remaining) 

steps remaining -= run steps 
step += run steps
loss, img = deepdream(img, run steps, tf.constant(step size))
display.clear output(wait=True)
show(deprocess(img))
print ("Step {}, loss {}".format(step, loss)) 

result = deprocess(img) 
display.clear output(wait=True) 
show(result) 
return result

# Aplicando Main Loop
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dream img = run deep dream simple(img=original img,
steps=100, step size=0.01)

Explicação resultado Main Loop
A imagem onírica obtida após o Main Loop representa uma visão alucinada e 
distorcida da imagem original. Apesar da baixa resolução, podemos observar 
que alguns padrões detectados pela rede neural foram ampliados, contudo esses 
padrões não parecem ser tão distintos entre si.

# Levando modelo até uma oitava
import time
start = time.time()
OCTAVE_SCALE = 1.30
img = tf.constant(np.array(original img)) 
base shape = tf.shape(img)[:-1]
float base shape = tf.cast(base shape, tf.float32) 
for n in range(-2, 3):
new shape = tf.cast(float base shape*(OCTAVE SCALE**n), tf.int32) 
img = tf.image.resize(img, new shape).numpy()
img = run deep dream simple(img=img, steps=50, step size=0.01) 

display.clear output(wait=True) 
img = tf.image.resize(img, base shape)
img = tf.image.convert image dtype(img/255.0, dtype=tf.uint8)
show(img)
end = time.time()
end-start
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5.43707537651062

Explicação da imagem obtida com oitava
A imagem obtida da aplicação da técnica das oitavas apresenta uma aparência 
mais complexa e detalhada com relação aos padrões aprendidos pela rede neural. 
Isso ocorre pois a imagem é passada pela rede em diferentes escalas de 
tamanho.

Explicação das diferenças entre imagens oníricas obtidas com Main Loop e 
levando o modelo até a oitava.
A principal diferença entre as imagens está na complexidade e diversidade dos 
padrões resultados conforme a técnica aplicada:

• Com o Main Loop, a imagem onírica é uma visão distorcida da original, 
onde os padrões detectados são ampliados, mas de maneira uniforme e em 
baixa resolução, resultando em detalhes pouco distintos e uma aparência 
menos rica.

• Já com a técnica das oitavas, a imagem passa por diferentes escalas de 
tamanho, o que cria uma composição mais detalhada e complexa. Assim, 
os padrões surgem em várias granularidades, desde texturas finas até 
formas maiores, dando profundidade e diversidade à imagem final.
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APÊNDICE 14 -  VISUALIZAÇÃO DE DADOS E STORYTELLING 

A -  ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que 

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e 

com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os 

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu 

possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam, 

quais possíveis ações podem ser feitas com base neles.

Entregue em um PDF:

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que possa 

ser melhorada);

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que será 

desenvolvido;

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de 

sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos)

B -  RESOLUÇÃO
1. O Conjunto de Dados Brutos
Para desenvolvimento deste trabalho foi utilizada uma matéria jornalística 
elaborada e publicada pela assessoria de comunicação do Ministério Público 
do Paraná em 03 de outubro de 2024, sendo esta reproduzida em sua íntegra, 
abaixo:
"Operação no Paraná identifica 1,4 mil hectares de desmatamento e aplica R$ 
13 milhões em multas. A edição de 2024 da Operação Mata Atlântica em Pé foi 
encerrada na última sexta-feira, 27 de setembro, no Paraná e em outros 16 
estados brasileiros em que a força-tarefa foi realizada. No estado, durante 
duas semanas de fiscalizações - o início foi no dia 16 de setembro - foram 
vistoriados 405 polígonos e identificados 1.433,33 hectares de área 
ilegalmente desmatada. A partir da ação, os órgãos ambientais aplicaram, até 
agora, um total de R$ 13.100.500,00 em multas administrativas aos responsáveis 
pelos ilícitos ambientais.
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Em sua sétima edição nacional a força-tarefa que é coordenada localmente 
pelos Ministérios Públicos e executada pelos órgãos ambientais, foi iniciada 
pelo MP do Paraná e tornou-se a maior ação de fiscalização conjunta para o 
combate ao desmatamento do bioma Mata Atlântica em todo o país.

Cumprimento - No Paraná, a execução da operação fica a cargo dos três órgãos 
ambientais que atuam no estado, o Instituto Água e Terra (IAT), o Batalhão 
de Polícia Ambiental Força Verde e a Superintendência do Paraná do Instituto 
Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama). A 
ação no estado neste ano deu enfoque à fiscalização do cumprimento de embargo 
das áreas já autuadas em edições anteriores da Operação. O objetivo foi 
verificar se as mesmas estão sendo destinadas à recuperação de vegetação, 
conforme prevê a legislação.

Tecnologia - Do total das áreas fiscalizadas, 116,52 hectares desmatados 
foram identificados pelo Instituto Água e Terra a partir do uso de tecnologias 
de georreferenciamento e monitoramento via imagens de satélite. A 
fiscalização remota resultou na lavratura de 115 autos de infração, o que 
gerou a aplicação de R$ 6.621.500,00 em multas pelas infrações administrativas 
praticadas. O emprego dessas novas tecnologias de monitoramento por satélite 
- um aprimoramento da operação ao longo dos anos - tem permitido que várias 
etapas do trabalho, incluindo a elaboração de laudos georreferenciados e a 
lavratura de autos de infração e termos de embargo, sejam feitas sem a

necessidade de visitas ao local do ilícito. Além disso, com a utilização dos 
dados do Cadastro Ambiental Rural (CAR), são identificados os proprietários 
das áreas onde há o desmatamento ilegal. Em locais onde não são obtidos, 
pelas imagens de satélite, elementos suficientes sobre os danos ambientais 
causados, são realizadas visitas das equipes de fiscalização.

Responsabilização - A atuação integrada dos órgãos ambientais garante ainda 
a devida responsabilização dos infratores. Uma vez constatados os ilícitos 
ambientais, os responsáveis são autuados e podem responder judicialmente - 
nas esferas cível e criminal - além de serem impostas restrições

administrativas relacionadas aos registros das propriedades rurais.

Dados nacionais - De acordo com o Mlinistério Público de Minas Gerais e a 
Associação Brasileira dos Membros do Ministério Público de Meio Ambiente 
(Abrampa), que neste ano coordenaram nacionalmente a ação, somando todos os 
estados participantes, foram constatados 11.124 hectares com supressão ilegal 
de vegetação nativa e o montante em multas aplicadas foi de R$ 131.515.308,05.

A ação também conta com o apoio da Fundação SOS Mata Atlântica e da plataforma
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MapBiomas, rede colaborativa que monitora o uso da terra e a cobertura de 
vegetação, disponibilizando dados de alertas de desmatamento para acesso 
público (alerta.mapbiomas.org). Neste ano, assim como nas edições anteriores, 
participaram todos os 17 estados cobertos pelo bioma Mata Atlântica: além do 
Paraná, os estados de Alagoas, Bahia, Ceará, Espírito Santo, Goiás, Mato 
Grosso do Sul, Minas Gerais, Paraíba, Pernambuco, Piauí, Rio de Janeiro, Rio 
Grande do Norte, Rio Grande do Sul, Santa Catarina, São Paulo e Sergipe."

Fonte: https://mppr.mp.br/Noticia/Operacao-no-Parana-identifica-14-mil-
hectares-dedesmatamento-e-aplica-R-13-milhoes-em

A partir da matéria acima elaborou-se a seguinte tabela para melhor tratamento 
dos dados:

2. Contexto e Público-Alvo
Tomando como fator de motivação os efeitos das recentes ondas de calor, tais 
como inundações em bairros e municipios diversos e temperaturas e sensação 
térmica elevadas, que acometem as populações da região de Curitiba e litoral 
paranaense - ainda que esperados para esta época do ano (primeiro bimestre 
de 2025), optou-se por utilizar para desenvolvimento deste trabalho um tema 
relacionado ao desmatamento da Mata Atlântica.
A matéria original informa dos resultados alcançados pela força tarefa 
coordenada pelo Ministério Público do Paraná e que envolve ainda outros três 
órgãos fiscalizadores - IAT, Batalhão de Policia Ambiental Força Verde, e 
IBAMA, durante o exercício da operação Mata Atlântica em Pé 2024.
Neste contexto, o storytelling disponibilizado mais adiante neste trabalho 
apresenta ao público em geral, mantendo o público-alvo da matéria original, 
utilizando-se de recursos visuais, preservando como base o conteúdo escrito 
originalmente. Com isso, espera-se maior engajamento/interesse do público em 
relação a importância do tema e das ações desempenhadas pelos órgãos citados.

https://mppr.mp.br/Noticia/Operacao-no-Parana-identifica-14-mil-
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3. Visualização dos Dados
A nova visualização de dados sugerida foi elaborada mantendo o padrão 
jornalístico original adicionando recursos visuais para auxílio no 
entendimento. Os dados foram tratados e gráficos foram gerados utilizando o 
software Microsoft Excel. O layout do documento foi elaborado utilizando a 
plataforma Canva.com. A nova disponibilização está disponível no Anexo I 
deste trabalho.

4. Descrição da Narrativa Storytelling
Para criação da nova visualização utilizou-se a estrutura tradicional de 
storytelling com introdução - apresentando o cenário geral em relação aos 
desafios de preservação da Mata Atlântica e de sua fiscalização, apresentação 
de dados - indicando os dados principais em relação aos resultados obtidos, 
enredo - enfatizando a importância da tecnologia como aliado na fiscalização, 
clímax - evidenciando as consequências aos infratores, bem como penalidades 
a que estão sujeitos em especial pelo uso das tecnologias na fiscalização, e 
conclusão - reforçando a importância da participação de todo a sociedade como 
complemento aos esforços dos órgãos governamentais.
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O desmatamento pode parecer um problema distante, mas suas conseqüências são diretas: 

redução da biodiversidade, impacto nos recursos hídricos e intensificação das mudanças 

climáticas. Cada árvore derrubada ilegalmente compromete um futuro sustentável, tornando a 

fiscalização uma ferramenta essencial na luta pela preservação do bioma.

A Realidade do Desmatamento

Em sua sétima edição nacional a força-tarefa que é coordenada localmente pelos Ministérios 

Públicos e executada pelos órgãos ambientais, foi iniciada pelo Ministério Público do Paraná e 

tornou-se a maior ação de fiscalização conjunta para o combate ao desmatamento do bioma 

Mata Atlântica em todo o país. No Paraná, a execução da operação fica a cargo dos três órgãos 

ambientais que atuam no estado, o Instituto Água e Terra (IAT), o Batalhão de Polícia Ambiental 

Força Verde e o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis 

(Ibama). A ação também conta com o apoio da Fundação SOS Mata Atlântica e da plataforma 

MapBiomas, rede colaborativa que monitora o uso da terra e a cobertura de vegetação, 

disponibilizando dados de alertas de desmatamento para acesso público.

A edição de 2024 da Operação trouxe números preocupantes. Considerando todos os 17 estados 

brasileiros participantes da força-tarefa e que suportam o bioma Mata Atlântica, foram 

identificados 17.124 hectares de área desmatada ilegalmente, resultando na aplicação de R$ 

137.515.308,05 em multas aos infratores. Somente no Paraná, houve a identificação de 1.433 

hectares de desmatamento ilegal tendo sido aplicadas até o momento o total de R$ 13.100.500,00 

em multas administrativas:



181

O Avanço da Fiscalização e a Reação dos Infratores

Os dados refletem não apenas a escala do problema, mas também os avanços tecnológicos 

utilizados na fiscalização. No Paraná, o uso de tecnologias permitiu a identificação remota de 

776,52 hectares irregularidades resultando na aplicação de R$ 6.621.500,00 em multas, 

permitindo maior eficiência das autuações e reduzindo a necessidade de deslocamentos de 

equipes aos locais de infração:

Ainda no Paraná, as equipes concentraram esforços nas áreas já autuadas anteriormente com o 

objetivo de garantir que estas propriedades estivessem cumprindo as exigências de recuperação 

da vegetação. No entanto, a realidade em campo revelou que muitas áreas ainda estavam sendo 

exploradas, resultando em novas autuações e sanções severas.

Resultados obtidos com o uso de tecnologias, como o de imagens de satélite e sistemas de 

georreferenciamento para cruzamento de dados e identificação dos responsáveis, tornam estes 

recursos aliados imprescindíveis no monitoramento e aplicação das leis existentes:



182

O Cerco Contra o Desmatamento

Os infratores que antes contavam com a dificuldade de monitoramento agora enfrentam um 

novo cenário. A Operação Mata Atlântica em Pé não se limita apenas à aplicação de multas - os 

responsáveis pelo desmatamento ilegal podem responder judicialmente nas esferas cível e 

criminal. Além disso, sanções administrativas restringem o uso das propriedades, impedindo sua 

regularização até que a recuperação ambiental seja comprovada.

A ação integrada dos Ministérios Públicos, Ibama e órgãos ambientais estaduais tem garantido 

que quem desmata ilegalmente seja identificado e responsabilizado. O avanço tecnológico 

combinado à fiscalização presencial torna cada vez mais difícil a continuidade dessas práticas sem 

conseqüências.

O Futuro da Mata Atlântica Está em Nossas Mãos

A Operação Mata Atlântica em Pé representa um avanço significativo na fiscalização ambiental no 

Brasil. No entanto, a luta contra o desmatamento não pode depender exclusivamente das ações 

governamentais. A sociedade tem um papel fundamental na proteção do meio ambiente:

• Denunciar atividades ilegais é uma forma de contribuir para a preservação;

• Cobrar políticas públicas mais eficazes fortalece o combate ao desmatamento;

• Apoiar projetos de recuperação ambiental ajuda a restaurar áreas degradadas.

A Mata Atlântica ainda resiste, mas cada hectare perdido compromete o equilíbrio ecológico do 

país. O combate ao desmatamento precisa ser uma prioridade contínua para garantir um futuro 

sustentável para as próximas gerações.

Fonte:

https.//mDpr.mp.br/Notiüa/OperacaonoParanaidentifica-14-milhectaresde-desmatamentoeaplicaR-13milhQesem
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APÊNDICE 15 -  TÓPICOS EM INTELIGÊNCIA ARTIFICIAL 

A -  ENUNCIADO

1) Algoritmo Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab, 

ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita 

simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades 

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso 

de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas 

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado 

de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na 

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações. 

Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida 
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas posições 
de 1 a 99 deverão ser definidas pelo algoritmo genético.

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
(3) Utilize no mínimo uma população com 100 indivíduos;
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento (crossover- 

ox);
(6) Preserve sempre a melhor solução de uma geração para outra.

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”.

2) Compare a representação de dois modelos vetoriais

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que 

poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de



184

palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão 

produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e 

objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após 

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a 

PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B -  RESOLUÇÃO
1. ALGORITMO GENÉTICO 
Caixeiro Viajante
# Bibliotecas
import matplotlib.pyplot as plt 
import numpy as np 
import random

# Constantes
# Número de cidades 
QUANTIDADE_CIDADES = 100
# Número de indivíduos 
QUANTIDADE_INDIVIDUOS = 100
# Referência para dimensão plano cartesiano 
TAMANHO_ESPACO = 100
# Taxa mutação 
TAXA_MUTACAO = 0.01
# Taxa cruzamento 
TAXA_CRUZAMENTO = 0.9
# Número de gerações 
QUANTIDADE_GERACOES = 1000

# Função para gerar cidades aleatórias 
def gerar cidades():
cidades = []
for _ in range(QUANTIDADE_CIDADES):

x coord, y coord = random.randint(0,TAMANHO ESPACO),random.
randint(0,TAMANHO_ESPACO) 

cidades.append((x coord, y coord))
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# Adiciona cidade inicial ao fim 
cidades.append(cidades[0]) 
return cidades

# Função para gerar população inicial 
def gerar populacao inicial(cidades):

indices = list(range(len(cidades))) 
populacao = []
for _ in range(QUANTIDADE_INDIVIDUOS):

# Gera individuo com caminho aleatório
individuo = random.sample(indices[1:QUANTIDADE CIDADES], 

k=QUANTIDADE_CIDADES-1)
# Insere cidade inicial/final no individuo 
individuo.insert(0, 0) 
individuo.append(100) 
populacao.append(individuo)

return populacao

# Função para calcular a distância euclidiana entre as cidades
# d = V((x2 - x1) 2 + (y2 - y1) 2
def calc distancia euclidiana(x1, y1, x2, y2) -> float:

distancia = ((x2 - x1) **2 + (y2 - y1) ** 2) ** 0.5 
return distancia

# Função de avaliação
def calc custo(caminho, cidades): 

custo = 0
for i in range(len(caminho) - 1): 

x1, y1 = cidades[caminho[i]] 
x2, y2 = cidades[caminho[i+1]]
custo += calc distancia euclidiana(x1, y1, x2, y2) 

return custo

# Função para realizar seleção por torneio
def selecionar pais torneio(populacao, cidades, k= 5): 

escolhidos = random.sample(populacao, k) 
escolhidos.sort(key=lambda x: calc custo(x, cidades)) 
return escolhidos[0], escolhidos[1]

# Função para realizar mutação 
def mutar(individuo):
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if random.random() < TAXA_MUTACAO:
i, j = sorted(random.sample(range(1,len(individuo)-1),2)) 
individuo[i:j+1] = reversed(individuo[i:j+1]) 
return individuo

# Função para cruzamento crossover-ox 
def cruzamento(pai1,pai2): 

tamanho = len(pai1)
comeco, fim = sorted(random.sample(range(1, tamanho -1),2)) 
filho = [-1] * tamanho
filho[comeco:fim] = pai1[comeco:fim] 
genes pai1 = set(filho[comeco:fim])
restantes = [gene for gene in pai2 if gene not in genes pai1] 
indice = 0
for i in range(tamanho):

if filho[i] == -1 and indice < len(restantes): 
filho[i] = restantes[indice] 
indice += 1 

filho[0] = pai1[0] 
filho[-1] = pai1[-1] 
return filho

def calcular metricas populacao(populacao, cidades):
solucao = min(populacao, key=lambda x: calc custo(x, cidades)) 
custo solucao = calc custo(solucao,cidades) 

return solucao, custo solucao

def plotar caminho(cidades, caminho, titulo): 
plt.figure(figsize=(12, 8))
# Extrai as coordenadas do caminho
caminho coords = [cidades[i] for i in caminho] 
caminho x, caminho y = zip(*caminho coords)
# Plota o caminho
plt.plot(caminho x, caminho y, linestyle='-', marker='o',

color='#4c95c2', linewidth=2, markersize=8,label="Caminho") 
plt.plot(caminho x[0], caminho y[0], marker='o', color='red', 

markersize=10, label="Início/Fim") 
plt.xlabel("Eixo X") 
plt.ylabel("Eixo Y") 
plt.title(titulo) 
plt.legend()
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plt.show()

# Função principal
def algoritmo genetico(cidades):

populacao = gerar populacao inicial(cidades=cidades) 
melhor solucao, melhor custo =calcular metricas populacao( 

populacao=populacao, cidades=cidades) 
solucao inicial = melhor solucao.copy() 
custo inicial = float(melhor custo)

# Plotando gráfico da solução inicial 
print(f'Custo inicial da solução {custo inicial}') 
plotar caminho(cidades, melhor solucao,

"Solução Inicial - Caminho do Caixeiro Viajante") 
for geracao in range(QUANTIDADE GERACOES): 

nova populacao = [melhor solucao] 
quantidade individuo cruzamento = int(

QUANTIDADE_INDIVIDUOS * TAXA_CRUZAMENTO) 
while len(nova populacao) < quantidade individuo cruzamento: 

pai1, pai2 = selecionar pais torneio(populacao,cidades) 
filho = cruzamento(pai1,pai2) 
filho = mutar(filho) 
nova populacao.append(filho) 

while len(nova_populacao) < QUANTIDADE_INDIVIDUOS: 
individuo = random.choice(populacao) 
filho = mutar(individuo) 
nova populacao.append(individuo) 

populacao = nova populacao.copy() 
melhor solucao atual, melhor custo atual =

calcular metricas populacao(populacao,cidades) 
if melhor custo atual < melhor custo:

melhor solucao, melhor custo = melhor solucao atual, 
melhor custo atual 

return melhor solucao, melhor custo

# Algoritmo genético
cidades = gerar cidades()
melhor_solucao_encontrada, melhor_custo_encontrado = 

algoritmo genetico(cidades)
Custo inicial da solução 4765.895726084021
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plotar caminho(cidades, melhor solucao encontrada,
"Solução Final - Caminho do Caixeiro Viajante") 

Solução Final ■ Caminho do Caixeiro Viajante

print(f'Custo final da solução {melhor custo encontrado}') 
Custo final da solução 1375.535553111489

2. COMPARE A REPRESENTAÇÃO DE DOIS MODELOS VETORIAIS 
Modelos Vetoriais 
import numpy as np
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import matplotlib.pyplot as plt 
from sklearn.decomposition import PCA
from sklearn.feature extraction.text import TfidfVectorizer 
from sentence transformers import SentenceTransformer 
from mpl toolkits.mplot3d import Axes3D

texts = [
"The algorithm is analyzing the dataset.",
"The algorithm is optimizing the parameters.",
"The neural network is processing the data.",
"The neural network is training on images.",
"The database is storing user records.",
"The database is retrieving user records."

]

# PCA
def apply pca(vectors, n components = 3):
pca = PCA(n components)
return pca.fit transform(vectors)

# TF-IDF
tfidf vectorizer = TfidfVectorizer(stop words='english') 
tfidf vectors = tfidf vectorizer.fit transform(texts).toarray()

# SentenceTransformer
model = SentenceTransformer("all-MiniLM-L6-v2") 
embeddings = model.encode(texts)

/usr/local/lib/python3.11/dist-packages/huggingface hub/utils/ auth.py:94: 
UserWarning:
The secret 'HF TOKEN' does not exist in your Colab secrets.
To authenticate with the Hugging Face Hub, create a token in your settings 
tab (https://huggingface.co/settings/tokens), set it as secret in your Google 
Colab and restart your session.
You will be able to reuse this secret in all of your notebooks.
Please note that authentication is recommended but still optional to
accesspublic models or datasets.
warnings.warn(
modules.json: 0%| | 0.00/349 [00:00<?, ?B/s]
config sentence transformers.json: 0%| | 0.00/116 [00:00<?, ?B/s]
README.md: 0%| | 0.00/10.5k [00:00<?, ?B/s]

https://huggingface.co/settings/tokens
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sentence bert config.json: 0%| | 0.00/53.0 [00:00<?, ?B/s]
config.json: 0%| | 0.00/612 [00:00<?, ?B/s] 
model.safetensors: 0%| | 0.00/90.9M [00:00<?, ?B/s]
tokenizer config.json: 0%| | 0.00/350 [00:00<?, ?B/s]
vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]
tokenizer.json: 0%| | 0.00/466k [00:00<?, ?B/s]
special tokens map.json: 0%| | 0.00/112 [00:00<?, ?B/s]
config.json: 0%| | 0.00/190 [00:00<?, ?B/s]

# Aplicando PCA
to pca tfidf = apply pca(tfidf vectors, n components=2) 
to pca bert = apply pca(embeddings,n components=2)

# Plotando 2D
plt.figure(figsize=(12, 6))

# TF-IDF
plt.subplot(1, 2, 1)
plt.scatter(to pca tfidf[:, 0], to pca tfidf[:, 1], color='blue', 

label='TF-IDF',alpha=0.7) 
for i, txt in enumerate(texts):

plt.annotate(txt, (to pca tfidf[i, 0], to pca tfidf[i, 1])) 
plt.title('TF-IDF - PCA')

# SentenceTransformer 
plt.subplot(1, 2, 2)
plt.scatter(to pca bert[:, 0], to pca bert[:, 1], color='red', 

label='SentenceTransformer',alpha=0.7) 
for i, txt in enumerate(texts):

plt.annotate(txt, (to pca bert[i, 0], to pca bert[i, 1])) 
plt.title('SentenceTransformer - PCA') 
plt.tight layout() 
plt.show()
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# Plotando 3D
# Aplicando PCA
to pca tfidf 3d = apply pca(tfidf vectors) 
to pca bert 3d = apply pca(embeddings) 
fig = plt.figure(figsize=(12, 6))

# TF-IDF
ax1 = fig.add subplot(121, projection='3d') 
ax1.scatter(to pca tfidf 3d[:, 0], to pca tfidf 3d[:, 1], 

to pca tfidf 3d[:,2], color='blue', alpha=0.7) 
for i, txt in enumerate(texts):

ax1.text(to pca tfidf 3d[i, 0], to pca tfidf 3d[i, 1], 
to pca tfidf 3d[i,2], txt, fontsize=8) 

ax1.set_title('TF-IDF - PCA (3D)')

# SentenceTransformer
ax2 = fig.add subplot(122, projection='3d')
ax2.scatter(to pca bert 3d[:, 0], to pca bert 3d[:, 1], to pca bert 3d[:,

2], color='red', alpha=0.7) 
for i, txt in enumerate(texts):

ax2.text(to pca bert 3d[i, 0], to pca bert 3d[i, 1], to pca bert 3d[i, 
2],txt, fontsize=8) 

ax2.set title('SentenceTransformer - PCA (3D)') 
plt.show()
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