

UNIVERSIDADE FEDERAL DO PARANÁ

LUIZ EMANOEL DE PONCE DA SILVA

MEMORIAL DE PROJETOS: ASPECTOS DO GERENCIAMENTO ÁGIL NO

DESENVOLVIMENTO DE SOFTWARE

CURITIBA

2025

LUIZ EMANOEL DE PONCE DA SILVA

MEMORIAL DE PROJETOS: ASPECTOS DO GERENCIAMENTO ÁGIL NO

DESENVOLVIMENTO DE SOFTWARE

Memorial de Projetos apresentado ao curso de
Especialização em Desenvolvimento Ágil de
Software do Setor de Educação Profissional e
Tecnológica, Universidade Federal do Paraná,
como requisito parcial à obtenção do título de
Especialista em Desenvolvimento Ágil de Software.

Orientador: Prof. Dr. Razer Anthom Nizer Rojas
Montaño

CURITIBA

2025

RESUMO

Este Memorial de Projetos apresenta um parecer técnico sobre os aspectos
do gerenciamento ágil no desenvolvimento de software, argumentando que a gestão
ágil é um sistema sociotécnico indispensável para a entrega de software com
qualidade e valor. A análise demonstra que a eficácia de frameworks de planejamento
iterativo, como o Scrum, ou de gestão de fluxo visual, como o Kanban, é indissociável
das práticas de engenharia que garantem a qualidade interna do produto. A
modelagem ágil define a estrutura, o desenvolvimento orientado a testes (TDD) valida
o comportamento, a refatoração contínua gerencia a dívida técnica e os pipelines de
Integração e Entrega Contínua (CI/CD) automatizam a entrega. O parecer conclui que
os principais desafios na adoção prática do desenvolvimento ágil residem na
interseção entre a gestão do projeto e a execução técnica, como a otimização do work
in progress (WIP), a alocação de tempo para melhorias técnicas, a adoção efetiva do
TDD como prática de design e a manutenção dos pipelines de automação. A
superação desses desafios exige uma mudança cultural em direção a um sistema
puxado, focado na auto-organização e na qualidade contínua.

Palavras-chave: gerenciamento ágil de projetos; Scrum; Kanban; desenvolvimento

ágil de software; devops.

ABSTRACT

This Project Memorial presents a technical opinion on the aspects of agile
management in software development, arguing that agile management is an
indispensable sociotechnical system for delivering software with quality and value. The
analysis demonstrates that the effectiveness of iterative planning frameworks, such as
Scrum, or visual flow management, such as Kanban, is inseparable from the
engineering practices that ensure the product's internal quality. Agile modeling defines
the structure, test-driven development (TDD) validates behavior, continuous
refactoring manages technical debt, and Continuous Integration and Delivery (CI/CD)
pipelines automate delivery. The opinion concludes that the main challenges in the
practical adoption of agile development lie at the intersection of project management
and technical execution, such as optimizing work in progress (WIP), allocating time for
technical improvements, the effective adoption of TDD as a design practice, and
maintaining automation pipelines. Overcoming these challenges requires a cultural
shift toward a pull system, focused on self-organization and continuous quality.

Keywords: agile project management; Scrum; Kanban; agile software development;

devops.

SUMÁRIO

1 PARECER TÉCNICO .. 7

2 DISCIPLINA: MADS – MÉTODOS ÁGEIS PARA DESENVOLVIMENTO DE
 SOFTWARE .. 9

2.1 ARTEFATOS DO PROJETO .. 10

3 DISCIPLINA: MAG1 E MAG2 – MODELAGEM ÁGIL DE SOFTWARE 1 E 2
 ..14

3.1 ARTEFATOS DO PROJETO .. 14

4 DISCIPLINA: GAP1 E GAP2 – GERENCIAMENTO ÁGIL DE PROJETOS DE
SOFTWARE 1 E 2 .. 19

4.1 ARTEFATOS DO PROJETO .. 20

5 DISCIPLINA: INTRO – INTRODUÇÃO À PROGRAMAÇÃO 22

5.1 ARTEFATOS DO PROJETO .. 23

6 DISCIPLINA: BD – BANCO DE DADOS .. 25

6.1 ARTEFATOS DO PROJETO .. 25

7 DISCIPLINA: AAP – ASPECTOS ÁGEIS DE PROGRAMAÇÃO 30

7.1 ARTEFATOS DO PROJETO .. 30

8 DISCIPLINA: UX – UX NO DESENVOLVIMENTO ÁGIL DE SOFTWARE 33

8.1 ARTEFATOS DO PROJETO .. 34

9 DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E
IMPLANTAÇÃO DE SOFTWARE (DEVOPS) .. 35

9.1 ARTEFATOS DO PROJETO .. 35

10 DISCIPLINA: TEST – TESTES AUTOMATIZADOS 37

10.1 ARTEFATOS DO PROJETO .. 38

11 CONCLUSÃO ... 40

REFERÊNCIAS .. 41

7

1 PARECER TÉCNICO

Este memorial tem como objetivo consolidar os projetos desenvolvidos nas

disciplinas da Especialização em Desenvolvimento Ágil de Software e apresentar um

parecer técnico que analisa a integração desses projetos sob a ótica dos aspectos do

gerenciamento ágil no desenvolvimento de software. A tese central deste parecer é

que o gerenciamento ágil de projetos, representado por frameworks como Scrum

(Sommerville, 2011) e Kanban (Anderson, 2011), não é apenas um conjunto de papéis

e cerimônias, mas um sistema sociotécnico que depende fundamentalmente da

integração com as práticas de modelagem, engenharia de software e automação para

entregar valor de forma sustentável.

A jornada do curso demonstrou como o gerenciamento ágil permeia todo o

ciclo de vida do desenvolvimento, começando pela concepção. A disciplina de

Gerenciamento Ágil de Projetos 1 (GAP1) introduziu técnicas colaborativas de

concepção, como Lean Inception e Design Sprints (Camargo; Ribas, 2019), que são

cruciais para ambientes complexos e inovadores. Essa abordagem foi

complementada pela Modelagem Ágil 1 (MAG1), onde a definição de histórias de

usuário e pela disciplina de UX no Desenvolvimento de Software (UX), onde a

prototipagem validou o escopo funcional antes do desenvolvimento. O projeto prático

de GAP1 consolidou essa fase de planejamento através da criação de um plano de

release para uma aplicação, aplicando conceitos do Scrum como estimativas em

pontos (Cohn, 2011) e o cálculo de velocidade para distribuir as histórias de usuário

em sprints.

Estabelecido o planejamento, o foco se voltou para a execução e a estrutura

técnica. As disciplinas de Modelagem Ágil 2 (MAG2) e Banco de Dados (BD)

forneceram a visão estrutural através dos Diagrama de Classes (Booch; Rumbaugh;

Jacobson, 2005) e do Modelo Entidade-Relacionamento (Elmasri; Navathe, 2011).

Esses modelos forneceram a base para a implementação do backend em

Java (Deitel, 2010) na disciplina de Introdução à Programação (INTRO). O aspecto de

gerenciamento mais relevante dessa fase foi a introdução do Desenvolvimento

Orientado a Testes (TDD), onde o progresso foi medido pela passagem dos testes

unitários, garantindo que a qualidade fosse construída desde o início, e não apenas

verificada ao final.

8

A gestão do fluxo de trabalho foi o foco de Gerenciamento Ágil de Projetos 2

(GAP2), que introduziu o Método Kanban. O projeto prático na plataforma Kanban

Board Game (Kanban, 2025) demonstrou o poder dos Limites de trabalho em

progresso como mecanismo de gestão (Anderson, 2011). Ao limitar o trabalho em

progresso, o sistema força a equipe a focar nas tarefas em andamento, expondo

gargalos que são analisados através do diagrama de fluxo cumulativo. Contudo, esse

fluxo só é sustentável se a qualidade técnica for mantida. Aqui, a disciplina de

Aspectos Ágeis de Programação (AAP) foi crucial, introduzindo a refatoração como

ferramenta para combater a dívida técnica (Fowler, 2004), um dos maiores

impedimentos ao fluxo ágil.

Finalmente, as práticas de gerenciamento de fluxo (GAP2) e qualidade técnica

(AAP, TEST) são habilitadas pela automação, o pilar do DevOps, visto na disciplina

de INFRA. O projeto de configuração de um pipeline de Integração Contínua (CI) com

GitLab (GitLab, 2024) e Jenkins (Jenkins, 2024) demonstrou como automatizar a

execução dos testes a cada commit (UFPR, 2024d). O pipeline de CI/CD é a

expressão técnica do quadro Kanban: ele automatiza o movimento das tarefas pelas

colunas, garantindo que o software em funcionamento seja a medida real de

progresso.

Portanto, os projetos do curso demonstram que os aspectos do

gerenciamento ágil não residem apenas em frameworks de planejamento (Scrum) ou

fluxo (Kanban), mas na integração sistêmica destes com as práticas de engenharia

(TDD, Refatoração) e automação (CI/CD, DevOps).

9

2 DISCIPLINA: MADS – MÉTODOS ÁGEIS PARA DESENVOLVIMENTO DE
SOFTWARE

O projeto desenvolvido na disciplina consistiu no desenvolvimento de um

mapa conceitual. Este mapa de conceito foi elaborado para trazer a representação

visual dos diversos processos existentes, além de trazer a consolidação dos conceitos

sobre cada processo.

Essa elaboração, com seu detalhamento foi fundamental para formar a base

de conhecimentos sobre processo de software ao longo das demais disciplinas,

conceituando e possibilitando a compreensão dos processos tradicionais e ágeis e

seus aspectos. Tal desenvolvimento possibilita a comparação e compreensão sobre

os divergentes processos, capacitando a escolha e entendimento das metodologias

mais adequadas a cada cenário e a motivação da elaboração de cada metodologia.

Foram trabalhados o Processo de software, os modelos tradicionais de

processo de software (Sommerville, 2011), o manifesto e princípios ágeis (Beck et al.,

2001), Lean Software Development (Poppendieck; Poppendieck, 2003), Scrum (Cohn,

2011), Extreme Programing (Beck, 2004), Kanban (Anderson, 2011) e entrega

contínua de Software (Sommerville, 2011). Com a metodologia proposta para o projeto

final, levando ao desenvolvimento dos principais aspectos de cada processo existente,

estruturando e consolidando visualmente esses conceitos.

10

2.1 ARTEFATOS DO PROJETO

FIGURA 1 – MAPA CONCEITUAL MADS, PINCÍPIOS ÁGEIS, MANIFESTO ÁGIL E

KANBAN

FONTE: O Autor (2025)

11

FIGURA 2 – MAPA CONCEITUAL MADS, LEAN E SCRUM

FONTE: O Autor (2025)

FIGURA 3 – MAPA CONCEITUAL MADS, EXTREME PROGRAMMING

FONTE: O Autor (2025)

12

FIGURA 4 – MAPA CONCEITUAL MADS, PROCESSO DE SOFTWARE,

METODOS TRADICIONAIS PARTE 1

FONTE: O Autor (2025)

13

FIGURA 5 – MAPA CONCEITUAL MADS, PROCESSO DE SOFTWARE,

METODOS TRADICIONAIS PARTE 2

FONTE: O Autor (2025)

FIGURA 6 – MAPA CONCEITUAL MADS, ENTREGA CONTÍNUA

FONTE: O Autor (2025)

14

3 DISCIPLINA: MAG1 E MAG2 – MODELAGEM ÁGIL DE SOFTWARE 1 E 2

O projeto desenvolvido na disciplina de modelagem ágil de software foi a

construção da modelagem de um sistema de gestão condominial, com o projeto da

primeira parte da disciplina sendo a construção de diagramas de caso de uso de

primeiro e segundo nível. A segunda parte, continuando o projeto de MAG1, sendo a

construção dos diagramas de classes, classes com atributos associados, tabelas do

banco de dados e diagramas de sequência (Booch; Rumbaugh; Jacobson, 2005).

A disciplina evidência, principalmente na sua prática, como a construção de

diagramas, quando necessário e em quantidade e detalhamento suficiente, pode ser

uma aliada nos processos de desenvolvimento ágil, garantindo mais clareza entre as

partes no processo de desenvolvimento e apoiando a documentação e qualidade do

software desenvolvido.

As atividades desenvolvidas durante a disciplina deram a capacidade de

construir uma visão geral do software, considerando as metodologias ágeis e se

transformando em um importante ferramental para o desenvolvimento dos projetos

das demais disciplinas e na compreensão da engenharia dos sistemas em

desenvolvimento.

3.1 ARTEFATOS DO PROJETO

FIGURA 7 – DIAGRAMA DE CASO DE USO NÍVEL 1

FONTE: O Autor (2025)

15

FIGURA 8 – DIAGRAMA DE CASO DE USO NÍVEL 2

FONTE: O Autor (2025)

16

FIGURA 9 – EXEMPLO DE HSTÓRIA DE USUÁRIO COM CRITÉRIOS DE

ACEITAÇÃO

FONTE: O Autor (2025)

17

FIGURA 10 – DIAGRAMA DE CLASSES

FONTE: O Autor (2025)

18

FIGURA 11 – TABELAS DO BANCO DE DADOS

FONTE: O Autor (2025)

FIGURA 12 – EXEMPLO DE DIAGRAMA DE SEQUÊNCIA

DESENVOLVIDO

FONTE: O Autor (2025)

19

4 DISCIPLINA: GAP1 E GAP2 – GERENCIAMENTO ÁGIL DE PROJETOS DE
SOFTWARE 1 E 2

As disciplinas de Gerenciamento Ágil de Projetos 1 e 2, apresentaram projetos

que apresentaram conceitos interdisciplinares entre as diferentes técnicas de

gerenciamento de projetos.

O projeto da primeira apresentou a elaboração de um plano de release que

consistiu na construção de um plano de desenvolvimento de um software imaginado

pelo aluno, neste caso um software de transcrição de reuniões, elaborando, de acordo

com o modelo disponibilizado, histórias de usuário por sprints, com previsões de datas

e cálculo de pontos para a estimativa de tempo, aplicando conceitos relacionados aos

métodos de planejamento e gerenciamento de backlog apresentado ao longo da

disciplina (Camargo; Ribas, 2019).

Já a segunda, trouxe a abordagem da execução da simulação de

gerenciamento em Kanban (Kanban, 2025). A Simulação consolidou a abordagem da

metodologia do Kanban (Anderson, 2011) e a noção do gerenciamento visual aplicado

a um projeto.

As disciplinas trouxeram aspectos fundamentais para o gerenciamento e

planejamento de projetos ágeis, fundamentando as demais disciplinas construindo

uma visão geral sobre os processos de gerenciamento, estabelecimento de métricas

e backlog de software e a importância de praticas como a limitação de trabalho em

andamento, que garante a qualidade no desenvolvimento evitando a sobrecarga das

equipes envolvidas e o acompanhamento visual das tarefas em andamento.

20

4.1 ARTEFATOS DO PROJETO

FIGURA 13 – PLANO DE RELEASE GAP1

FONTE: O Autor (2025)

FIGURA 14 – SIMULAÇÃO DE KANBAN GAP2 PÁGINA 1

FONTE: O Autor (2025)

21

FIGURA 15 – SIMULAÇÃO DE KANBAN GAP2 PÁGINA 2

FONTE: O Autor (2025)

22

5 DISCIPLINA: INTRO – INTRODUÇÃO À PROGRAMAÇÃO

O projeto de Introdução à Programação consistiu no desenvolvimento de um

software em Java (Deitel, 2010), orientado a objetos, com integração com banco e

uma boa cobertura de teses. Foram desenvolvidas classes básicas, simulando

operações bancárias. O entregável consistiu na entrega dos arquivos contendo as

classes desenvolvidas, além de uma imagem contendo os testes unitários fornecidos

passando em no mínimo 40 casos de testes simultaneamente.

Essa disciplina constituiu base técnica fundamental e prática no

desenvolvimento de software com Java, não perdendo de vista os aspectos

recomendáveis no desenvolvimento ágil, como a integração entre testes e

desenvolvimento.

A integração e importância fica ainda mais evidente observado o

relacionamento do projeto com as disciplinas de testes automatizados (cobertura de

testes obrigatória no entregável), banco de dados, e modelagem de software, além de

ser alicerce de outras disciplinas do programa que contaram com as noções

desenvolvidas em desenvolvimento com Java.

23

5.1 ARTEFATOS DO PROJETO

FIGURA 16 – CASOS DE TESTES ENTREGUES

FONTE: O Autor (2025)

QUADRO 1 – EXEMPLO DE CÓDIGO DE CLASSE DESENVOLVIDA
package bancorrw.conta;

import bancorrw.cliente.Cliente;

public abstract class Conta {

 private long id;

 protected double saldo;

 protected Cliente cliente;

 public Conta(long id, Cliente cliente, double saldoInicial) {

 this.id = id;

 this.cliente = cliente;

 this.saldo = saldoInicial;

 }

 public void deposita(double valor) throws Exception {

 if (valor <= 0) {

24

 throw new Exception("Valor do depósito não pode ser

negativo ou zero. Valor=" + valor);

 }

 this.saldo += valor;

 }

 public void saca(double valor) throws Exception {

 if (valor <= 0) {

 throw new Exception("Valor do saque não pode ser negativo

ou zero. Valor=" + valor);

 }

 this.saldo -= valor;

 }

 public abstract void aplicaJuros();

 public long getId() {

 return id;

 }

 public void setId(long id){

 this.id = id;

 }

 public long getNumero() {

 return getId();

 }

 public double getSaldo() {

 return saldo;

 }

 public Cliente getCliente() {

 return cliente;

 }

}

FONTE: O Autor (2025)

25

6 DISCIPLINA: BD – BANCO DE DADOS

Na disciplina de Banco de Dados o projeto desenvolvido consistiu na

elaboração de duas questões. A primeira, demandou a elaboração da modelagem de

um sistema de biblioteca, considerando entidades e relacionamentos entre

funcionários, leitores, livros, editoras e empréstimos (Elmasri; Navathe, 2011).

A segunda consistiu no desenvolvimento da modelagem de um sistema da

escolha do estudante, no meu caso foi construída a modelagem de um sistema de

estoque (Elmasri; Navathe, 2011), sendo orientada a modelagem, evidência da

cardinalidade dos relacionamentos e geração do script SQL (MySQL, 2024) do banco

desenvolvido.

O projeto consolidou as noções de modelagem e normalização de banco de

dados, tornando base fundamental na construção de banco de dados com qualidade

e padronização.

6.1 ARTEFATOS DO PROJETO

FIGURA 17 – ESQUEMA CONCEITUAL DO SISTEMA DE BIBLIOTECAS

FONTE: O Autor (2025)

26

FIGURA 18 – ESQUEMA LÓGICO DO SISTEMA DE BIBLIOTECAS

FONTE: O Autor (2025)

FIGURA 19 – ESQUEMA LÓGICO DO SISTEMA DE ESTOQUE

FONTE: O Autor (2025)

27

QUADRO 2 – SQL GERADO VIA MSQL WORKBENCH
-- MySQL Script generated by MySQL Workbench

-- Sun Aug 31 22:55:07 2025

-- Model: New Model Version: 1.0

-- MySQL Workbench Forward Engineering

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;

SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,

FOREIGN_KEY_CHECKS=0;

SET @OLD_SQL_MODE=@@SQL_MODE,

SQL_MODE='ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,

NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION';

-- ---

-- Schema mydb

-- ---

-- ---

-- Schema mydb

-- ---

CREATE SCHEMA IF NOT EXISTS `mydb` DEFAULT CHARACTER SET utf8 ;

USE `mydb` ;

-- ---

-- Table `mydb`.`Fornecedores`

-- ---

CREATE TABLE IF NOT EXISTS `mydb`.`Fornecedores` (

`id` INT NOT NULL AUTO_INCREMENT,

`nome` VARCHAR(45) NOT NULL,

PRIMARY KEY (`id`))

ENGINE = InnoDB;

-- ---

-- Table `mydb`.`Produtos`

-- ---

CREATE TABLE IF NOT EXISTS `mydb`.`Produtos` (

`id` INT NOT NULL AUTO_INCREMENT,

`nome` VARCHAR(45) NOT NULL,

`quantidade` INT NULL,

PRIMARY KEY (`id`))

ENGINE = InnoDB;

-- ---

-- Table `mydb`.`Entradas`

-- ---

CREATE TABLE IF NOT EXISTS `mydb`.`Entradas` (

28

`id` INT NOT NULL AUTO_INCREMENT,

`DataEntrada` DATE NOT NULL,

`id_fornecedor` INT NOT NULL,

PRIMARY KEY (`id`),

INDEX `id_fornecedor_idx` (`id_fornecedor` ASC) VISIBLE,

CONSTRAINT `id_fornecedor`

FOREIGN KEY (`id_fornecedor`)

REFERENCES `mydb`.`Fornecedores` (`id`)

ON DELETE NO ACTION

ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `mydb`.`ItensEntrada`

-- ---

CREATE TABLE IF NOT EXISTS `mydb`.`ItensEntrada` (

`id` INT NOT NULL AUTO_INCREMENT,

`id_entrada` INT NOT NULL,

`id_produto` INT NOT NULL,

`quantidade` INT NOT NULL,

PRIMARY KEY (`id`),

INDEX `id_entrada_idx` (`id_entrada` ASC) VISIBLE,

INDEX `id_produtos_idx` (`id_produto` ASC) VISIBLE,

CONSTRAINT `id_entrada`

FOREIGN KEY (`id_entrada`)

REFERENCES `mydb`.`Entradas` (`id`)

ON DELETE NO ACTION

ON UPDATE NO ACTION,

CONSTRAINT `id_produtos`

FOREIGN KEY (`id_produto`)

REFERENCES `mydb`.`Produtos` (`id`)

ON DELETE NO ACTION

ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- ---

-- Table `mydb`.`DetalhesPordutos`

-- ---

CREATE TABLE IF NOT EXISTS `mydb`.`DetalhesPordutos` (

`id` INT NOT NULL AUTO_INCREMENT,

`id_produto` INT NOT NULL,

`observacoes` LONGTEXT NULL,

`` VARCHAR(45) NULL,

29

PRIMARY KEY (`id`),

INDEX `id_produto_idx` (`id_produto` ASC) VISIBLE,

CONSTRAINT `id_produto`

FOREIGN KEY (`id_produto`)

REFERENCES `mydb`.`Produtos` (`id`)

ON DELETE NO ACTION

ON UPDATE NO ACTION)

ENGINE = InnoDB;

USE `mydb` ;

-- ---

-- Placeholder table for view `mydb`.`view1`

-- ---

CREATE TABLE IF NOT EXISTS `mydb`.`view1` (`id` INT);

-- ---

-- View `mydb`.`view1`

-- ---

DROP TABLE IF EXISTS `mydb`.`view1`;

USE `mydb`;

USE `mydb`;

DELIMITER $$

USE `mydb`$$

CREATE DEFINER = CURRENT_USER TRIGGER

`mydb`.`ItensEntrada_AFTER_INSERT` AFTER INSERT ON `ItensEntrada`

FOR EACH

ROW

BEGIN

UPDATE Produtos

SET quantidade = quantidade + NEW.quantidade

WHERE id = NEW.id_produto;

END$$

DELIMITER ;

SET SQL_MODE=@OLD_SQL_MODE;

SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;

SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

FONTE: O Autor (2025)

30

7 DISCIPLINA: AAP – ASPECTOS ÁGEIS DE PROGRAMAÇÃO

O projeto final da disciplina de Aspectos Ágeis de Programação (AAP)

consistiu na aplicação prática de técnicas de refatoração sobre um algoritmo de

ordenação Bubble Sort. O objetivo central foi transformar um código funcional, porém

não otimizado, em um melhor qualidade, seguindo os preceitos de Código Limpo

(Martin, 2009).

A atividade exigiu a identificação sistemática de code smells, localizando as

más práticas presentes, e a aplicação de melhorias estruturais, como a renomeação

de variáveis para aumentar a clareza, a remoção de comentários redundantes e a

extração de métodos para garantir a coesão e o princípio da responsabilidade única.

Este exercício prático reforça a noção de que a trabalhar a dívida técnica não

é uma etapa opcional, mas um processo contínuo de melhoria. A refatoração

constante é o mecanismo que permite ao desenvolvimento ágil manter seu ritmo

sustentável a longo prazo, garantindo que o código permaneça flexível a mudanças e

com qualidade (Fowler, 2004).

7.1 ARTEFATOS DO PROJETO

QUADRO 3 – ALGORITIMO BOUBLE SORT APRESENTADO
/*

* {

* estudante: "Luiz Emanoel de Ponce da Silva",

* materia: "Aspectos ageis de Programação",

* }

*

* Foram Feitas alterações com relação a utilização de nomes mais

descritivos,

* que facilitam a leitura do método, Também houve alterações a fim de

reduzir

* a assinatura do método (medindo o array dentro do próprio método)

* e houve a extração de um método, relacionado a reordenação dos

elementos

* na lista (trocaItens), além de ajustes com relação ao estilo da

formatação,

31

* ponto apenas de preferência

*/

class OrdenarLista {

 static void bubbleSort(int lista[]){

 int tamanhoDoArray = lista.length;

 int i, j;

 boolean teveTroca;

 for (i = 0; i < tamanhoDoArray - 1; i++){

 teveTroca = false;

 for (j = 0; j < tamanhoDoArray - i - 1; j++){

 if (lista[j] > lista[j + 1]) {

 trocaItens(lista, j, j+1);

 teveTroca = true;

 }

 }

 if (teveTroca == false){

 break;

 }

 }

 }

 static void trocaItens(int lista[], int posicao1, int posicao2){

 int listaTemporaria = lista[posicao1];

 lista[posicao1] = lista[posicao2];

 lista[posicao2] = listaTemporaria;

 }

 static void printArray(int lista[]){

 int tamanhoDoArray = lista.length;

32

 for (int i = 0; i < tamanhoDoArray; i++){

 System.out.print(lista[i] + " ");

 }

 System.out.println();

 }

 public static void main(String args[]){

 int lista[] = { 64, 34, 25, 12, 22, 11, 90 };

 bubbleSort(lista);

 System.out.println("Array ordenado: ");

 printArray(lista);

 }

}

FONTE: O Autor (2025)

33

8 DISCIPLINA: UX – UX NO DESENVOLVIMENTO ÁGIL DE SOFTWARE

O projeto desenvolvido nesta disciplina consistiu na concepção e

prototipagem de um aplicativo destinado ao gerenciamento de contatos em

movimentos políticos e sociais. A abordagem adotada fundamentou-se nos preceitos

do design centrado no usuário (Lowdermilk, 2013) e na metodologia Lean UX (Gothelf,

2021), priorizando a validação rápida de hipóteses de valor e a colaboração em

detrimento de documentações extensas, alinhando o desenvolvimento às

necessidades reais de engajamento do público-alvo desde a concepção.

As decisões de interface seguiram a estratégia Mobile-First (Grant, 2019),

reconhecendo a onipresença dos dispositivos móveis no contexto de uso. A

construção visual, pautada por tipografia Sans Serif e layout minimalista, buscou

otimizar a usabilidade e a disponibilidade (Norman, 2006), reduzindo a carga cognitiva

do usuário.

A etapa final do projeto consolidou a integração entre design e agilidade

através da validação com uma usuária real do domínio. Este ciclo de feedback curto

é essencial para mitigar riscos e ajustar a direção do produto de forma iterativa,

assegurando que a interface seja validada antes do início do desenvolvimento

(Gothelf, 2021).

34

8.1 ARTEFATOS DO PROJETO

FIGURA 20 – EXEMPLO DE TELA DESENVOLVIDA

FONTE: O Autor (2025)

FIGURA 21 – EXEMPLOS DAS ESCOLHAS TÉCNICAS

FONTE: O Autor (2025)

35

9 DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E
IMPLANTAÇÃO DE SOFTWARE (DEVOPS)

A disciplina de Infraestrutura abordou as práticas, ferramentas e conceitos que

unem o desenvolvimento e as operações para automatizar e otimizar o ciclo de vida

da entrega de software. O conteúdo teórico abordou pilares essenciais como o

gerenciamento de configuração, infraestrutura como código e os princípios de

integração e entrega contínuas (CI/CD) (Humble; Farley, 2010).

O projeto prático consistiu na orquestração de um ambiente local de CI/CD

utilizando a tecnologia de contêineres. Através do Docker (Docker, 2024), foi

instanciada uma imagem personalizada dfwandarti/gitlab_jenkins:3

(Wandarti, 2023) contendo os serviços do GitLab (GitLab, 2024), para controle de

versão, e Jenkins (Jenkins, 2024), para automação de pipelines.

A atividade envolveu a configuração do ambiente via linha de comando, a

execução de commits no repositório versionado e o disparo de builds automatizados.

Este laboratório proporcionou uma visão sistêmica de como a automação da

infraestrutura suporta as práticas ágeis, reduzindo o tempo de espera e garantindo a

confiabilidade do processo de deploy (Kim et al., 2016).

9.1 ARTEFATOS DO PROJETO

FIGURA 22 – AMBIENTE LOCAL EM DOCKER

FONTE: O Autor (2025)

36

FIGURA 23 – INTERFACE WEB DO GIT LAB

FONTE: O Autor (2025)

FIGURA 24 – COMMIT GIT EXECUTADO NO AMBIENTE LOCAL

FONTE: O Autor (2025)

37

10 DISCIPLINA: TEST – TESTES AUTOMATIZADOS

A disciplina de Testes Automatizados (TEST) abordou os fundamentos da

garantia da qualidade, estabelecendo a distinção teórica entre verificação, garantir

que o produto foi construído corretamente, e validação, garantir que o produto certo

está sendo construído. O conteúdo enfatizou que a automação não é apenas uma

ferramenta de execução, mas uma estratégia integrada ao ciclo de vida ágil para

fornecer feedback rápido e contínuo sobre a integridade do sistema (Universidade

Federal do Paraná, 2024).

O projeto prático consistiu na implementação de uma suíte de testes,

simulando a jornada de um usuário real utilizando o framework Playwright (Microsoft,

2024), integrado à linguagem Java (Oracle, 2023), foi configurado um ambiente de

execução que instância o navegador e automatiza a interação direta com o DOM

(Document Object Model). O script desenvolvido realizou a navegação até a aplicação

alvo (anotepad.com), efetuou a injeção de dados nos campos de entrada título e

conteúdo e validou a persistência das informações na interface, assegurando a

conformidade funcional do fluxo da aplicação.

38

10.1 ARTEFATOS DO PROJETO

FIGURA 25 – CÓDIGO DO PLAYWEIGHT

FONTE: O Autor (2025)

FIGURA 26 – NAVEGADOR DE INTERNET INVOCADO PELO SCRIPT

FONTE: O Autor (2025)

39

FIGURA 27 – CONSOLE DE EXECUÇÃO

FONTE: O Autor (2025)

40

11 CONCLUSÃO

A análise dos projetos e conceitos explorados neste trabalho demonstra que

os aspectos do gerenciamento ágil são indispensáveis para a entrega de software

com qualidade e valor na atualidade. A eficácia de frameworks de planejamento

iterativo, como o Scrum, ou de gestão de fluxo visual, como o Kanban, não existe de

forma isolada. Essas abordagens de gerenciamento são indissociáveis das práticas

de engenharia de software que garantem a qualidade interna do produto, formando,

em conjunto, um sistema sociotécnico integrado.

A modelagem ágil define a estrutura, o desenvolvimento orientado a testes

(TDD) valida o comportamento desde o início, e os pipelines de integração e entrega

Contínua (CI/CD) automatizam a entrega. É essa integração sistêmica que permite

responder às mudanças e entregar software funcional de forma contínua.

Com base na experiência prática, a adoção bem-sucedida desses aspectos

gerenciais enfrenta desafios que são, em sua maioria, pontos de atrito entre a gestão

do projeto e a execução técnica. A otimização do fluxo, por exemplo, exige a definição

e o ajuste contínuo dos limites de work in progress (WIP). A gestão da dívida técnica

requer que a refatoração seja priorizada no backlog, mesmo sob pressão por novas

funcionalidades.

O sucesso prático depende da superação da curva de aprendizado do TDD,

da manutenção da confiabilidade dos pipelines de automação e, acima de tudo, da

mudança cultural de um sistema de empurrar tarefas para um sistema puxado,

baseado na auto-organização da equipe de desenvolvimento software.

41

 REFERÊNCIAS

ANDERSON, D. J. Kanban: mudança evolucionária para seu negócio de tecnologia.
Seattle: Blue Hole Press, 2011.

BECK, K. Programação extrema explicada: acolha as mudanças. Porto Alegre:
Bookman, 2004.

BECK, K. et al. Manifesto para desenvolvimento ágil de software. 2001.
Disponível em: https://agilemanifesto.org/iso/ptbr/manifesto.html. Acesso em: 24 nov.
2025.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. UML: guia do usuário. 2. ed. Rio de
Janeiro: Campus, 2005.

CAMARGO, R.; RIBAS, T. Gestão ágil de projetos: as melhores soluções para
suas necessidades. São Paulo: Saraiva Educação, 2019.

COHN, M. Desenvolvimento de software com Scrum: aplicando métodos ágeis
com sucesso. Porto Alegre: Bookman, 2011.

DEITEL, P.; DEITEL, H. Java: como programar. 8. ed. São Paulo: Pearson
Prentice Hall, 2010.

DOCKER. Docker Documentation. 2024. Disponível em: https://docs.docker.com/.
Acesso em: 25 nov. 2025.

ELMASRI, R.; NAVATHE, S. B. Sistemas de banco de dados. 6. ed. São Paulo:
Pearson Addison Wesley, 2011.

FOWLER, M. Refatoração: aperfeiçoando o projeto de código existente. Porto
Alegre: Bookman, 2004.

GITLAB. GitLab Documentation. 2024. Disponível em: https://docs.gitlab.com/.
Acesso em: 25 nov. 2025.

GOTHELF, J.; SEIDEN, J. Lean UX: designing great products with agile teams.
3. ed. Sebastopol: O'Reilly Media, 2021.

GRANT, W. UX Design: guia definitivo com as melhores práticas de UX. São
Paulo: Novatec Editora, 2019.

HUMBLE, J.; FARLEY, D. Continuous Delivery: reliable software releases through
build, test, and deployment automation. Upper Saddle River: Addison-Wesley, 2010.

JENKINS. Jenkins User Documentation. 2024. Disponível em:
https://www.jenkins.io/doc/. Acesso em: 25 nov. 2025.

42

KANBAN BOARD GAME. Kanban Board Game. 2025. Simulação online de método
Kanban. Disponível em: http://www.kanbanboardgame.com/. Acesso em: 25 nov.
2025.

KIM, G. et al. The DevOps Handbook: how to create world-class agility, reliability,
and security in technology organizations. Portland: IT Revolution Press, 2016.

LOWDERMILK, T. Design centrado no usuário: um guia para o desenvolvimento
de aplicativos amigáveis. São Paulo: Novatec Editora, 2013.

MARTIN, R. C. Código limpo: habilidades práticas do agile software. Rio de
Janeiro: Alta Books, 2009.

MICROSOFT. Playwright for Java: Documentation. 2024. Disponível em:
https://playwright.dev/java/. Acesso em: 25 nov. 2025.

MYSQL. MySQL 8.3 Reference Manual. 2024. Disponível em:
https://dev.mysql.com/doc/refman/8.3/en/. Acesso em: 25 nov. 2025.

NORMAN, D. A. O design do dia-a-dia. Rio de Janeiro: Rocco, 2006.

ORACLE. Trail: Learning the Java Language. The Java Tutorials. 2023. Disponível
em: https://docs.oracle.com/javase/tutorial/. Acesso em: 25 nov. 2025.

POPPENDIECK, M.; POPPENDIECK, T. Lean Software Development: An Agile
Toolkit. Boston: Addison-Wesley, 2003.

SOMMERVILLE, I. Engenharia de Software. 9. ed. São Paulo: Pearson Prentice
Hall, 2011.

UNIVERSIDADE FEDERAL DO PARANÁ (UFPR). INFRA - Infraestrutura para
desenvolvimento e implantação de Software (DevOps): [Slides da disciplina].
Curitiba: UFPR/SEPT, 2024d. Material da Especialização em Desenvolvimento Ágil
de Software.

UNIVERSIDADE FEDERAL DO PARANÁ (UFPR). TEST - Testes Automatizados:
[Slides da disciplina]. Curitiba: UFPR/SEPT, 2024. Material da Especialização em
Desenvolvimento Ágil de Software.

WANDARTI, D. gitlab_jenkins. Versão 3. Docker Hub, 2023. Imagem de container.
Disponível em: https://hub.docker.com/r/dfwandarti/gitlab_jenkins. Acesso em: 25
nov. 2025.

