
UNIVERSIDADE FEDERAL DO PARANÁ

MATEUS MAIDEL ALVES DA SILVA

MEMORIAL DE PROJETOS: A APLICAÇÃO PRÁTICA DO CICLO ÁGIL NO

DESENVOLVIMENTO FULL-STACK

CURITIBA

2025

MATEUS MAIDEL ALVES DA SILVA

MEMORIAL DE PROJETOS: A APLICAÇÃO PRÁTICA DO CICLO ÁGIL NO

DESENVOLVIMENTO FULL-STACK

Memorial de Projetos apresentado ao curso de
Desenvolvimento Ágil de Software, Setor de
Educação Profissional e Tecnológica,
Universidade Federal do Paraná, como requisito
parcial à obtenção do título de Especialista em
Desenvolvimento Ágil de Software.

Orientador: Prof. Dr. Razer Anthom Nizer Rojas
Montano

CURITIBA

2025

MINISTÉRIO DA EDUCAÇÃO

SETOR DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA

UNIVERSIDADE FEDERAL DO PARANÁ

PRÓ-REITORIA DE PÓS-GRADUAÇÃO

CURSO DE PÓS-GRADUAÇÃO DESENVOLVIMENTO ÁGIL

DE SOFTWARE - 40001016398E1

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação Desenvolvimento Ágil de Software

da Universidade Federal do Paraná foram convocados para realizar a arguição da M onografia de Especialização de MATEUS

M AIDEL A LVES DA S IL V A , in titu lada : M EM O R IA L DE PRO JE TO S: A A P L IC A Ç Ã O PR Á TIC A DO C IC LO Á G IL NO

DESENVOLVIMENTO FULL-STACK, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela

sua a p r o v a ç ã o no rito de defesa.

A outorga do título de especialista está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

Curitiba, 25 de Novembro de 2025.

Rua Doutor Alcides Vieira Arco-verde - Curitiba - Paraná - Brasil
CEP 81520-260 - Tel: (41) 98874-0472 - E-mail: jaimewo@ ufpr.br

mailto:jaimewo@ufpr.br

RESUMO

Este memorial apresenta o desenvolvimento de diferentes projetos
realizados ao longo da Pós-Graduação em Desenvolvimento Ágil de Software da
Universidade Federal do Paraná, com o objetivo de consolidar os conhecimentos
adquiridos nas disciplinas por meio da construção de soluções práticas que
abrangem desde o levantamento e análise de requisitos até a implementação de
sistemas funcionais. Durante o curso, foram desenvolvidos diversos artefatos de
apoio, como diagramas, modelos de dados, códigos e testes, aplicados em cenários
que simulam demandas reais do mercado. O documento inclui, ainda, um parecer
técnico que sintetiza a evolução dos conhecimentos e evidencia a contribuição dos
projetos desenvolvidos para a prática profissional. A metodologia adotada baseou-se
na aplicação incremental dos conteúdos, permitindo a evolução contínua dos
projetos e o fortalecimento das práticas de engenharia de software. Como resultado,
obteve-se um conjunto de entregas que demonstram a capacidade de planejar,
projetar e implementar soluções tecnológicas de forma estruturada, reforçando a
importância da integração entre teoria e prática. Conclui-se que a experiência
contribuiu significativamente para o aprimoramento profissional, ampliando a visão
sobre o desenvolvimento ágil de software e fortalecendo a habilidade de lidar com
desafios reais da área de tecnologia.

Palavras-chave: desenvolvimento ágil; engenharia de software; projetos de
software; metodologia incremental;

ABSTRACT

This memorial presents the development of different projects carried out
during the Graduate Program in Agile Software Development at the Federal
University of Paraná, aiming to consolidate the knowledge acquired in the courses
through the construction of practical solutions ranging from requirements analysis to
the implementation of functional systems. Throughout the program, several
supporting artifacts were developed, such as diagrams, data models, source code,
and tests, applied in scenarios that simulate real market demands. The document
also includes a technical report that synthesizes the evolution of knowledge and
highlights the contribution of the developed projects to professional practice. The
methodology adopted was based on the incremental application of the course
contents, allowing the continuous evolution of the projects and the strengthening of
software engineering practices. As a result, a set of deliverables was produced that
demonstrates the ability to plan, design, and implement technological solutions in a
structured manner, reinforcing the importance of integrating theory and practice. It is
concluded that this experience contributed significantly to professional improvement,
broadening the understanding of agile software development and strengthening the
ability to deal with real challenges in the field of technology.

Keywords: agile development; software engineering; software projects; incremental
methodology;

LISTA DE FIGURAS

FIGURA 1 - MAPA MENTAL (PARTE 1 DE 3)..12

FIGURA 2 - MAPA MENTAL (PARTE 2 DE 3)..13

FIGURA 3 - MAPA MENTAL (PARTE 3 DE 3)..13

FIGURA 4 - DIAGRAMA DE CASO DE USO DE NIVEL 1..14

FIGURA 5 - DIAGRAMA DE CLASSES COM ATRIBUTOS ASSOCIADOS.............. 16

FIGURA 6 - CÁLCULO DA VELOCIDADE.. 17

FIGURA 7 - RESULTADO FINAL..20

FIGURA 8 - DIAGRAMA DE FLUXO CUMULATIVO... 20

FIGURA 9 - EVIDÊNCIAS DOS TESTES QUE PASSARAM....................................... 22

FIGURA 10 - MODELO LÓGICO.. 24

FIGURA 11 - TELA DE LOGIN..30

FIGURA 12 - TELA INICIAL...30

FIGURA 13 - TELA DE PROJETOS..31

FIGURA 14 - CONTAINER EM EXCECUÇÃO... 35

FIGURA 15 - BROWSER... 36

FIGURA 16 - LOG DO COMMIT... 36

FIGURA 17 - CÓDIGO E EXECUÇÃO DO TESTE AUTOMATIZADO COM

PLAYWRIGHT..38

SUMÁRIO

1 PARECER TÉCNICO...8

2 DISCIPLINA: MADS - MÉTODOS ÁGEIS PARA DESENVOLVIMENTO DE

SOFTWARE... 10

2.1 ARTEFATOS DO PROJETO...11

3 DISCIPLINA: MAG1 E MAG2 - MODELAGEM ÁGIL DE SOFTWARE 1 E 2.......13

3.1 ARTEFATOS DO PROJETO...13

4 DISCIPLINA: GAP1 E GAP2 - GERENCIAMENTO ÀGIL DE PROJETOS DE

SOFTWARE 1 E 2... 15

4.1 ARTEFATOS DO PROJETO...15

5 DISCIPLINA: INTRO - INTRODUÇÃO À PROGRAMAÇÃO................................... 20

5.1 ARTEFATOS DO PROJETO...21

6 DISCIPLINA: BD - BANCO DE DADOS... 22

6.1 ARTEFATOS DO PROJETO...23

7 DISCIPLINA: AAP - ASPECTOS ÁGEIS DE PROGRAMAÇÃO............................ 26

7.1 ARTEFATOS DO PROJETO...27

8 DISCIPLINA: WEB1 E WEB2 - DESENVOLVIMENTO WEB 1 E 2........................29

8.1 ARTEFATOS DO PROJETO...29

9 DISCIPLINA: UX - UX NO DESENVOLVIMENTO ÁGIL DE SOFTWARE 30

9.1 ARTEFATOS DO PROJETO...31

10 DISCIPLINA: MOB1 E MOB2 - DESENVOLVIMENTO MOBILE 1 E 2 33

10.1 ARTEFATOS DO PROJETO...34

11 DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E

IMPLANTAÇÃO DE SOFTWARE (DEVOPS).. 35

11.1 ARTEFATOS DO PROJETO...36

12 DISCIPLINA: TEST - TESTES AUTOMATIZADOS.. 38

12.1 ARTEFATOS DO PROJETO.. 40

13 CONCLUSÃO...41

REFERÊNCIAS... 42

8

1 PARECER TÉCNICO

Este memorial apresenta uma análise integrada e reflexiva dos projetos

desenvolvidos ao longo da Especialização em Desenvolvimento Ágil de Software.

Mais do que apenas uma sucessão de entregas, esta trajetória evidencia um

processo de aprendizado contínuo, onde os acertos solidificaram o conhecimento e

os desafios proporcionaram as lições mais valiosas sobre a aplicação real dos

princípios ágeis.

A jornada iniciou na disciplina de Métodos Ágeis para Desenvolvimento de

Software (MADS), com a criação de um mapa mental. A entrega inicial,

reconhecidamente superficial, carecia do detalhamento necessário para tópicos

cruciais como Scrum (Schwaber; Sutherland, 2020), princípios ágeis conforme

definidos pelo Manifesto Ágil (Beck et al., 2001), Extreme Programming (XP) (Beck,

2004), Lean Software Development (Poppendieck; Poppendieck, 2003) e Entrega

Contínua (Humble; Farley, 2010). Este feedback foi fundamental, pois destacou a

importância de se aprofundar nos fundamentos teóricos que servem como alicerce

para toda a prática subsequente. Um entendimento robusto desses conceitos é

indispensável para a tomada de decisões consciente no desenvolvimento de

software.

A fase de planejamento, exercitada em Gerenciamento Ágil de Projetos

(GAP1 e GAP2), trouxe outro aprendizado crucial. A elaboração do plano de release

para um sistema de delivery expôs uma dificuldade prática comum: a criação de um

planejamento irrealista. A distribuição inadequada das histórias de usuário, onde a

soma das estimativas excedia em muito a velocidade da sprint, resultou em um

backlog impossível de ser executado no tempo previsto. Este erro, fruto de uma

execução apressada, reforçou na prática um dos pilares do ágil: a importância do

planejamento realista e baseado em dados, essencial para a transparência e

previsibilidade do projeto (Poppendieck; Poppendieck, 2003).

As disciplinas de Modelagem Ágil de Software (MAG1 e MAG2) forneceram

a ponte necessária entre a teoria e o código. A modelagem de um sistema de gestão

de condomínio, utilizando diagramas UML (Booch; Rumbaugh; Jacobson, 2005) e

histórias de usuário como instrumento de elicitação e comunicação de requisitos

(Cohn, 2004), demonstrou como uma boa documentação ágil facilita a comunicação

9

e reduz ambiguidades, preparando o terreno para um desenvolvimento mais

eficiente e agilidade.

O desenvolvimento prático começou com Introdução à Programação

(INTRO) e Banco de Dados (BD), onde a implementação de um sistema bancário

seguindo a prática de Test-Driven Development (TDD) introduziu a cultura de

qualidade desde o início do ciclo. Martin (2008) defende que o TDD é uma prática de

design que resulta em código mais limpo e confiável. Este fundamento foi essencial

para Aspectos Ágeis de Programação (AAP), onde o desafio foi a refatoração do

algoritmo Bubble Sort. O feedback recebido aqui foi revelador: a simples remoção de

comentários não era suficiente. O código precisava se autoexplicar através de

nomes significativos e métodos concisos para reduzir sua complexidade ciclomática.

Esta foi uma lição prática e inesquecível sobre os princípios de Clean Code

conforme propostos por Martin (2008), mostrando que a clareza do código é um

requisito não funcional crítico para a manutenibilidade e agilidade.

As disciplinas de Desenvolvimento Web (WEB1 e WEB2), Desenvolvimento

Mobile (MOB1 e MOB2) e Experiência do Usuário (UX) aplicaram esses conceitos

no desenvolvimento front-end e back-end, criando aplicações responsivas e

centradas no usuário. Por fim, as disciplinas de Infraestrutura para Desenvolvimento

e Implantação de Software (DevOps) e Testes Automatizados (TEST) fecharam o

ciclo, automatizando processos de integração, entrega e garantia de qualidade com

o uso de Docker para empacotamento e execução de ambientes isolados (Boettiger,

2015) e Selenium para automação de testes de interface (Selenium, 2023).

Em conclusão, os projetos realizados demonstram de forma coesa que o

desenvolvimento ágil é um sistema integrado que requer tanto competência técnica

quanto disciplinas de gestão e planejamento. Os desafios encontrados: a

necessidade de aprofundamento teórico, a importância de um planejamento realista

e a busca incessante por um código claro e legível, não foram obstáculos, mas sim

as peças centrais do aprendizado. Eles evidenciam que a verdadeira agilidade não é

sobre perfeição desde o primeiro passo, mas sobre a capacidade de iterar, aprender

com os feedbacks e melhorar continuamente, que é a essência máxima do modelo

ágil.

10

2 DISCIPLINA: MADS - MÉTODOS ÁGEIS PARA DESENVOLVIMENTO DE

SOFTWARE

O projeto da disciplina foi a criação de um mapa mental sobre métodos

ágeis. A versão entregue, desenvolvida com pouco tempo disponível, foi avaliada

como superficial, faltando detalhamento em tópicos essenciais como Scrum

(Schwaber; Sutherland, 2020), Extreme Programming (XP) (Beck, 2004), Lean

Software Development (Poppendieck; Poppendieck, 2003) e Entrega Contínua

(Humble; Farley, 2010).

Embora o mapa não tenha sido refeito, o feedback recebido foi crucial. Ele

deixou claro que a teoria é a base da prática. Essa lição foi levada para as

disciplinas seguintes, mostrando que entender os conceitos é fundamental antes de

aplicar qualquer ferramenta ou método.

11

2.1 ARTEFATOS DO PROJETO

FIGURA 1 - MAPA MENTAL (PARTE 1 DE 3)

FONTE: O AUTOR (2025)

12

FIGURA 2 - MAPA MENTAL (PARTE 2 DE 3)

Conjunto de atividades, e tapas e tarefas
q u e visam p roduzir um softw are de
qualidade

1
C ascata

Fases seqüenciais: requisitos, projeto,
implementação, testes e m anutenção

M odelos Tradicionais /Í Modelo er
Envolvim ento do tes te desde as prim eiras

n V fases

['
^ Espiral

Ciclos de desenvolvim ento com iterações e
increm entos

P ro cesso s d e Softw are
Papéis: S crum H aster, P roduct Owner,
Time d e D esenvolvimento

XP (Extreme Program m ing)

l V antagens dos M étodos Ágeis

M aior flexibilidade e adaptab ilidade a
m udanças

Entrega mais ráp ida de softw are funcional

FONTE: O AUTOR (2025)

FIGURA 3 - MAPA MENTAL (PARTE 3 DE 3)

FONTE: O AUTOR (2025)

13

3 DISCIPLINA: MAG1 E MAG2 - MODELAGEM ÁGIL DE SOFTWARE 1 E 2

Em MAG1 e MAG2, o projeto foi modelar um sistema de gestão de

condomínio. Em MAG1, focamos na visão funcional, criando diagramas de caso de

uso e histórias de usuário detalhadas. Em MAG2, evoluímos para a visão estrutural,

com diagramas de classes e diagramas de sequência, seguindo as notações

definidas na Unified Modeling Language (UML) (Booch; Rumbaugh; Jacobson,

2005).

A modelagem foi essencial para definir os requisitos de forma clara antes de

partir para o código. As histórias de usuário com critérios de aceitação bem escritos

serviram como guia para o desenvolvimento nas disciplinas de programação

(INTRO, WEB). Já os diagramas de classes (MAG2) foram a base direta para a

criação do banco de dados na disciplina de BD.

Essa é a essência do ágil: planejar e modelar de forma eficiente para

desenvolver com mais precisão e menos retrabalho.

3.1 ARTEFATOS DO PROJETO

FIGURA 4 - DIAGRAMA DE CASO DE USO DE NIVEL 1

14

Figura 5 - Diagrama de Caso de Uso de Nível 2

FIGURA 5 - DIAGRAMA DE CLASSES COM ATRIBUTOS ASSOCIADOS

Diagram aC lasses

FONTE: O AUTOR (2025)

15

Em GAP1, o projeto foi criar um plano de release para um aplicativo de

adoção de gatos. A atividade envolvia calcular a velocidade da equipe e distribuir

histórias de usuário estimadas ao longo de sprints. O feedback recebido foi crucial: a

soma das estimativas das histórias em uma sprint excedia a velocidade da equipe,

resultando em um planejamento irrealista. Essa lição prática destacou a importância

de um planejamento factível, que é a base para a transparência e previsibilidade no

ágil.

Em GAP2, o foco foi na execução e melhoria contínua do fluxo de trabalho,

utilizando uma simulação de Kanban para gerenciamento visual de tarefas

(Anderson, 2010). O objetivo era organizar o quadro de trabalho para maximizar a

eficiência e analisar os resultados por meio de um Diagrama de Fluxo Cumulativo

(Cumulative Flow Diagram), útil para observar gargalos e evolução do

processamento ao longo do tempo (Kniberg; Skarin, 2010). Esta disciplina

complementou o GAP1, mostrando na prática como visualizar e melhorar o fluxo de

valor após o planejamento inicial.

Juntas, essas disciplinas formam o ciclo de gestão ágil: planejar o que será

feito (GAP1) e otimizar continuamente como é feito (GAP2). O plano de release de

GAP1 forneceria o backlog priorizado para as disciplinas de desenvolvimento (WEB I

e II, MOB I e II), enquanto o Kanban de GAP2 gerenciaria o fluxo de tarefas dessas

mesmas disciplinas.

4.1 ARTEFATOS DO PROJETO

FIGURA 6 - CÁLCULO DA VELOCIDADE
C álculo da V elocidade:___

4 DISCIPLINA: GAP1 E GAP2 - GERENCIAMENTO ÀGIL DE PROJETOS DE

SOFTWARE 1 E 2

FONTE: O AUTOR (2025)

16

QUADRO 7 - CÁLCULO DA VELOCIDADE

17

18

interessado em
saber mais sobre a
personalidade de
um gato
Usuário que
adotou um gato e

HU023 deseja
compartilhar sua
experiência

descrições
detalhadas de
comportamento e
personalidade
Deixar um
depoimento ou
avaliação sobre o
processo e o gato
adotado

temperamento do
gato antes da
adoção

Compartilhar
experiência positiva 2
e encorajar outros a
adotarem

Sprint 4

FONTE: O AUTOR (2025)

FIGURA 8 - RESULTADO FINAL

FONTE: O AUTOR (2025)

19

FIGURA 9 - DIAGRAMA DE FLUXO CUMULATIVO

FONTE: O AUTOR (2025)

20

O projeto da disciplina foi implementar o backend de um sistema bancário

em Java, com controle de clientes, contas-correntes e investimentos. O

desenvolvimento seguiu a abordagem de Test-Driven Development (TDD), onde os

testes unitários foram escritos antes do código (Beck, 2003) (Gamma et al., 1994).

A disciplina foi fundamental para consolidar a base de programação

necessária para o desenvolvimento ágil. A prática de TDD assegurou que o código

fosse confiável desde o início, facilitando a refatoração e novas funcionalidades -

princípios essenciais para a agilidade.

Este projeto serviu de base técnica para todas as disciplinas de

desenvolvimento subsequentes. A lógica de programação e a estrutura de classes

implementadas aqui foram diretamente aplicadas em Aspectos Ágeis de

Programação (AAP), Desenvolvimento Web I e II (WEB) e Banco de Dados (BD).

5 DISCIPLINA: INTRO - INTRODUÇÃO À PROGRAMAÇÃO

21

5.1 ARTEFATOS DO PROJETO

FIGURA 10 - EVIDENCIAS DOS TESTES QUE PASSARAM

FONTE: O AUTOR (2025)

22

Na disciplina de Banco de Dados, o projeto envolveu a modelagem e

implementação de dois sistemas: um para controle de biblioteca e outro para gestão

de estoque e pedidos. A primeira parte focou na criação do modelo conceitual e

lógico, seguindo as diretrizes de modelagem de dados relacionais (Elmasri; Navathe,

2019). A segunda etapa exigiu a implementação completa em SQL, com criação de

tabelas, inserção de dados e estabelecimento de relacionamentos complexos entre

entidades (Silberschatz; Korth; Sudarshan, 2019).

Este projeto foi essencial para entender como a modelagem de dados

sustenta o desenvolvimento ágil. Um banco de dados bem estruturado é a base

sobre a qual as aplicações das disciplinas de programação (INTRO, WEB, MOB) são

construídas. Os diagramas de entidade-relacionamento criados aqui são a

materialização dos diagramas de classes desenvolvidos em MAG2, mostrando a

integração direta entre modelagem de software e modelagem de dados.

A implementação prática em SQL, com relacionamentos 1:N e N:M, forneceu

a base de dados necessária para que os sistemas desenvolvidos nas outras

disciplinas tivessem onde persistir e recuperar informações de forma eficiente.

6 DISCIPLINA: BD - BANCO DE DADOS

23

6.1 ARTEFATOS DO PROJETO

FONTE: O AUTOR (2025)

24

CÓDIGO 1 - SCRIPT DE CRIAÇÃO DAS TABELAS

CREATE TABLE IF NOT EXISTS 'm ydb '.'C a tegoria ' (
'ca te g o ria _ id ' INT NULL DEFAULT NULL AUTO_INCREMENT,
'nome' VARCHAR(255) NOT NULL,
'descricao ' TEXT NULL DEFAULT NULL,
PRIMARY KEY ('c a te g o r ia _ id ')) ;
CREATE TABLE IF NOT EXISTS 'm ydb'.'Fornecedor' (
'fo rnecedor_ id ' INT NULL DEFAULT NULL AUTO_INCREMENT,
'nome' VARCHAR(255) NOT NULL,
'nome_contato' VARCHAR(25 !) NULL DEFAULT NULL,
'endereco' TEXT NULL DEFAULT NULL,
'te le fo n e ' VARCHAR(20) NULL DEFAULT NULL,
'e m a il' VARCHAR(255) NULL DEFAULT NULL,
PRIMARY KEY ('fo rn e c e d o r_ id ')) ;
CREATE TABLE IF NOT EXISTS 'm ydb '.'P roduto ' (
'p rodu to_ id ' INT NULL DEFAULT NULL AUTO_INCREMENT,
'nome' VARCHAR(255) NOT NULL,
'descricao ' TEXT NULL DEFAULT NULL,
'ca te g o ria _ id ' INT NULL DEFAULT NULL,
'fo rnecedor_ id ' INT NULL DEFAULT NULL,
'quantidade_em_estoque' INT NULL DEFAULT 0,
'n ive l_ repos icao ' INT NULL DEFAULT 0,
'p re co _ u n ita rio ' DECIMAL(LG, 2) NULL DEFAULT NULL,
PRIMARY KEY ('p ro d u to _ id ') ,
INDEX ('ca te g o ria _ id ' ASC) VISIBLE,
INDEX ('fo rnecedor_ id ' ASC) VISIBLE,
CONSTRAINT ' '
FOREIGN KEY ('c a te g o ria _ id ')
REFERENCES 'm ydb '.'C a tegoria ' ('c a te g o r ia _ id ') ,
CONSTRAINT ' '
FOREIGN KEY ('fo rne cedo r_ id ')
REFERENCES 'm ydb'.'Fornecedor' ('fo rn e c e d o r_ id ')) ;
CREATE TABLE IF NOT EXISTS 'mydb'.'EntradaEstoque' (
'en trada_ id ' INT NULL DEFAULT NULL AUTO_INCREMENT,
'p rodu to_ id ' INT NULL DEFAULT NULL,
'quantidade' INT NOT NULL,
'data_entrada' TIMESTAMP NOT NULL DEFAULT
CURRENT_TIMESTAMP,
'fo rnecedor_ id ' INT NULL DEFAULT NULL,
'p re co _ u n ita rio ' DECIMAL(LG, 2) NULL DEFAULT NULL,
PRIMARY KEY ('e n tra d a _ id ') ,
INDEX ('p rodu to_ id ' ASC) VISIBLE,
INDEX ('fo rnecedor_ id ' ASC) VISIBLE,
CONSTRAINT ' '
FOREIGN KEY ('p ro d u to _ id ')
REFERENCES 'm ydb '.'P roduto ' ('p ro d u to _ id ') ,
CONSTRAINT ' '
FOREIGN KEY ('fo rne cedo r_ id ')
REFERENCES 'm ydb'.'Fornecedor' ('fo rn e c e d o r_ id ')) ;
CREATE TABLE IF NOT EXISTS 'mydb'.'SaidaEstoque' (
'sa id a _ id ' INT NULL DEFAULT NULL AUTO_INCREMENT,
'p rodu to_ id ' INT NULL DEFAULT NULL,
'quantidade' INT NOT NULL,
'data_saida' TIMESTAMP NOT NULL DEFAULT
CURRENT_TIMESTAMP,
PRIMARY KEY ('s a id a _ id ') ,
INDEX ('p rodu to_ id ' ASC) VISIBLE,
CONSTRAINT ' '

25

FONTE: O AUTOR (2025)

26

Esta disciplina focou na qualidade do código como pilar do desenvolvimento

ágil. O projeto de refatoração do algoritmo Bubble Sort, um algoritmo de ordenação

simples amplamente apresentado em livros introdutórios de estruturas de dados

(Cormen et al., 2012), foi um exercício prático para aplicar os princípios de Clean

Code (Martin, 2008). O desafio central foi transformar um algoritmo complexo em

código legível e autoexplicativo, reduzindo sua complexidade ciclomática por meio

da extração de métodos e da escolha de nomes significativos.

O feedback recebido foi crucial: a verdadeira refatoração vai além de

remover comentários, exigindo uma reestruturação que torne o código claro por si

só. Esta lição foi aplicada imediatamente nas disciplinas de WEB I e II e MOB I e II,

onde a manutenibilidade do código se mostrou essencial para iterações ágeis e

sustentáveis.

7 DISCIPLINA: AAP - ASPECTOS ÁGEIS DE PROGRAMAÇÃO

27

CÓDIGO 2 - CÓDIGO DO BUBBLE SORT REFATORADO

7.1 ARTEFATOS DO PROJETO

28

FONTE: O AUTOR (2025)

29

Dada minha experiência anterior com desenvolvimento web na graduação,

optei por focar nos questionários teóricos desta disciplina, uma modalidade permitida

pela coordenação. Esta escolha permitiu consolidar os conceitos de arquitetura web,

comunicação entre front-end e back-end e padrões de persistência de dados sem a

sobrecarga de repetir projetos práticos.

O conteúdo abordado, no entanto, foi fundamental para contextualizar as

práticas ágeis no desenvolvimento full-stack. Os conceitos de criação de APIs com

Spring Boot (VMware, 2023), integração com bancos de dados como o PostgreSQL

(PostgreSQL, 2023) e o desenvolvimento de interfaces responsivas reforçaram

como uma arquitetura bem planejada é crucial para permitir iterações rápidas,

entregas contínuas e a adaptabilidade que o desenvolvimento ágil exige.

8.1 ARTEFATOS DO PROJETO

8 DISCIPLINA: WEB1 E WEB2 - DESENVOLVIMENTO WEB 1 E 2

Nenhuma imagem ou projeto foi realizado para esta disciplina.

30

9 DISCIPLINA: UX - UX NO DESENVOLVIMENTO ÁGIL DE SOFTWARE

O projeto desta disciplina foi o desenvolvimento de um protótipo de alta

fidelidade no Figma para um aplicativo acadêmico, batizado de Complementa UFPR.

A proposta era inovadora: uma plataforma que funciona como um Tinder de projetos,

conectando alunos que precisam de ajuda em seus trabalhos com monitores

dispostos a auxiliar em troca de horas formativas (Figma, 2024).

O processo de design priorizou a clareza e acessibilidade, com uma paleta

de cores neutra e profissional, layout limpo inspirado em sistemas já conhecidos

pelos alunos (como o SIGA) e tipografia legível. O feedback de usuários colhido

durante o processo validou a intuição da interface, apontando-a como interessante,

prática e bem organizada, sugerindo apenas a adição de um tutorial para onboarding

(Nielsen, 1994), (Lidwell; Holden; Butler, 2010).

A professora destacou que as escolhas foram bem feitas, reforçando a

importância do design centrado no usuário. Este projeto evidenciou como a

prototipação ágil e a iteração contínua baseada em feedback são fundamentais para

criar produtos que não apenas funcionam, mas que são verdadeiramente úteis e

adotados com entusiasmo pelos usuários finais.

31

9.1 ARTEFATOS DO PROJETO

FIGURA 12 - TELA DE LOGIN

FONTE: O AUTOR (2025)

FIGURA 13 - TELA INICIAL

FONTE: O AUTOR (2025)

32

FIGURA 14 - TELA DE PROJETOS

FONTE: O AUTOR (2025)

33

As disciplinas de Desenvolvimento Mobile 1 e 2 tiveram como objetivo

central a compreensão dos princípios e desafios específicos do desenvolvimento de

software para plataformas móveis, sempre sob a ótica das metodologias ágeis.

Dada a familiaridade prévia com o tema e a modalidade alternativa de

avaliação permitida pela coordenação, a participação concentrou-se na realização

dos questionários teóricos. Este foco permitiu um estudo aprofundado de conceitos

fundamentais, como as arquiteturas MVC e MVVM, amplamente utilizadas para

organizar responsabilidades e favorecer manutenibilidade do código (Larman, 2016)

(Freeman, 2020). Também foram estudados o ciclo de vida de componentes

Android, essencial para compreender como atividades e fragments transitam entre

estados de criação, execução, pausa e finalização ao longo do uso do aplicativo

(Android, 2024), bem como o consumo eficiente de APIs RESTful, com destaque

para o uso do Retrofit, que promove comunicação segura, tipada e orientada a boas

práticas de rede (Square, 2024) (Fielding, 2000). Adicionalmente, investigaram-se as

particularidades da experiência do usuário em dispositivos móveis, considerando

limitações de tela, interação por toque e responsividade contínua.

A importância deste conhecimento para o desenvolvimento ágil é

inquestionável. A natureza iterativa do mobile, com suas frequentes atualizações e a

necessidade de feedback contínuo dos usuários finais, se alinha diretamente aos

princípios do Manifesto Ágil, que enfatiza adaptação, colaboração e entrega

contínua de valor (Beck et al., 2001). Compreender padrões de projeto voltados para

testabilidade e manutenibilidade do código é essencial para permitir rápidas

iterações dentro de ciclos de desenvolvimento curtos, reforçando a ideia de evolução

contínua.

A integração deste conhecimento com as demais disciplinas do curso é

direta. Os princípios de código limpo e responsabilidade clara entre componentes,

abordados em AAP, fundamentam a escrita de aplicações móveis sustentáveis e de

fácil evolução (Martin, 2009). A modelagem de dados, estudada em MAG1/MAG2 e

implementada em BD, é crucial para definir e estruturar as informações que o

aplicativo irá consumir e manipular. Por fim, os elementos de UX tornam-se ainda

mais críticos no contexto mobile, onde a interface, a fluidez e a experiência do

10 DISCIPLINA: MOB1 E MOB2 - DESENVOLVIMENTO MOBILE 1 E 2

34

usuário são fundamentais para o sucesso da aplicação. Dessa forma, mesmo sem o

desenvolvimento prático, o embasamento teórico obtido foi essencial para consolidar

uma visão integrada e ágil do desenvolvimento de software.

10.1 ARTEFATOS DO PROJETO

Nenhuma imagem ou projeto foi realizado para esta disciplina.

35

11 DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E

IMPLANTAÇÃO DE SOFTWARE (DEVOPS)

A disciplina de INFRA focou na prática essencial de DevOps, integrando

desenvolvimento e operações para dar agilidade ao ciclo de vida do software. O

projeto consistiu na configuração de um ambiente completo utilizando Docker,

GitLab e Git, onde foi necessário criar um container, acessar o GitLab via navegador

e executar comandos de versionamento (Docker, 2024) (GitLab, 2024) (Chacon;

Straub, 2014).

A importância deste projeto para o desenvolvimento ágil é fundamental. A

capacidade de conteinerizar ambientes com Docker garante consistência entre

desenvolvimento e produção, eliminando o problema conhecido como discrepância

entre o ambiente local e o ambiente de implantação (Merkel, 2014). O

versionamento eficiente com Git (Chacon; Straub, 2014) e a integração contínua

promovida pelo GitLab (GitLab, 2024) permitem que múltiplos desenvolvedores

trabalhem em paralelo, com entregas frequentes, rastreáveis e automatizadas.

Esses elementos reforçam princípios centrais da agilidade, como colaboração,

adaptação constante e entrega contínua de valor.

A integração com as demais disciplinas é evidente: o ambiente Docker

configurado aqui seria a base para executar os sistemas desenvolvidos em WEB I e

II e MOB I e II; os comandos Git praticados são essenciais para o trabalho

colaborativo em qualquer projeto de programação; e a cultura DevOps reforça a

importância do código limpo de AAP e dos testes automatizados de TEST.

36

11.1 ARTEFATOS DO PROJETO

FIGURA 15 - CONTAINER EM EXCECUÇAO

FONTE: O AUTOR (2025)

FIGURA 16 - BROWSER

FONTE: O AUTOR (2025)

37

FIGURA 17 - LOG DO COMMIT

FONTE: O AUTOR (2025)

38

A disciplina de Testes Automatizados aprofundou-se na aplicação de técnicas

e ferramentas para a validação contínua da qualidade do software, enfatizando a

automação como um pilar essencial do desenvolvimento ágil. O projeto prático

consistiu na criação de um teste end-to-end utilizando a ferramenta Playwright, no

qual foi automatizado o processo de acesso ao site Anotepad.com, preenchimento

de um formulário com título, nome e matrícula do aluno e a verificação do

comportamento da aplicação após a submissão dos dados (Anotepad, 2025)

(Microsoft, 2024).

O Playwright é uma ferramenta moderna de automação de testes mantida

pela Microsoft, que oferece suporte nativo a múltiplos navegadores (como

Chromium, Firefox e WebKit) e possibilita a execução de testes de interface de

forma confiável e estável (Microsoft, 2024). Um diferencial importante da ferramenta

é sua capacidade de lidar com comportamentos assíncronos e elementos dinâmicos

na página, garantindo maior precisão na simulação de cenários reais de uso

(Microsoft, 2024). Além disso, sua API de alto nível facilita a criação de scripts

legíveis, favorecendo a manutenção e evolução dos testes ao longo do ciclo de

desenvolvimento.

A relevância deste projeto para o desenvolvimento ágil é significativa. No

contexto da Entrega Contínua, cada nova funcionalidade ou alteração no código

deve ser validada rapidamente para evitar a propagação de erros para ambientes de

produção. Testes end-to-end automatizados garantem que o sistema, como um

todo, continue a funcionar conforme o esperado, preservando a experiência do

usuário final. Essa capacidade de detecção precoce de falhas reduz custos, acelera

o ciclo de feedback e aumenta a confiabilidade do software entregue (Humble;

Farley, 2011) (Fowler, 2006).

Além disso, a automação de testes se integra diretamente aos processos

configurados na disciplina de Infraestrutura e DevOps. Ao inserir os testes de

interface em um pipeline de integração contínua (CI), torna-se possível executar

validações automáticas a cada commit, merge ou deploy, garantindo uma verificação

sistemática e ininterrupta da qualidade. Isso reforça o princípio ágil de entregas

12 DISCIPLINA: TEST - TESTES AUTOMATIZADOS

39

frequentes com segurança, evitando que erros somente sejam percebidos

tardiamente em etapas finais do desenvolvimento.

A relação com outras disciplinas do curso também é evidente. Os princípios

de clareza e boas práticas de programação estudados em Aspectos Ágeis de

Programação (AAP) são fundamentais para criar códigos de teste compreensíveis e

sustentáveis. As aplicações desenvolvidas em WEB I e II e MOB I e II tornam-se

candidatos naturais para receber estes testes, assegurando que suas interfaces,

APIs e fluxos de navegação atendam corretamente às expectativas de uso. Por fim,

ao serem incorporados ao pipeline de DevOps configurado em INFRA, os testes

automatizados completam um ciclo de desenvolvimento ágil maduro, no qual

qualidade, entrega e evolução contínua formam partes integradas de um mesmo

processo.

40

FIGURA 18 - CÓDIGO E EXECUÇAO DO TESTE AUTOMATIZADO COM PLAYWRIGHT

12.1 ARTEFATOS DO PROJETO

FONTE: O AUTOR (2025)

41

13 CONCLUSÃO

Este memorial apresentou uma síntese das experiências e aprendizados

adquiridos ao longo da Especialização em Desenvolvimento Ágil de Software,

evidenciando a aplicação prática do ciclo ágil no desenvolvimento full-stack. As

disciplinas percorreram todas as etapas do processo de engenharia de software,

desde a modelagem e análise de requisitos até a implementação, testes e

implantação de sistemas, integrando teoria e prática de forma progressiva.

Os projetos desenvolvidos demonstraram a importância da adaptação

contínua, da colaboração e da entrega incremental de valor. A prática do Test Driven

Development consolidou a qualidade do código desde as fases iniciais. As

modelagens em UML e bancos de dados mostraram como o planejamento

estruturado sustenta o desenvolvimento ágil. As disciplinas de DevOps e Testes

Automatizados reforçaram a necessidade de automação e integração contínua,

enquanto os projetos de UX, Web e Mobile destacaram a relevância do foco no

usuário e da responsividade.

Durante o percurso, alguns desafios se mostraram evidentes: a dificuldade

em equilibrar velocidade e qualidade de entrega, a necessidade de planejamento

realista baseado em dados, a importância de comunicação eficaz entre equipes

multidisciplinares e a manutenção da clareza e organização do código em ciclos

curtos de desenvolvimento.

Em síntese, a experiência permitiu compreender que o desenvolvimento ágil

vai além de métodos e ferramentas, constituindo uma mentalidade voltada à

melhoria contínua, aprendizado coletivo e entrega de valor real. A especialização

consolidou não apenas o domínio técnico, mas também a maturidade profissional

necessária para aplicar o ciclo ágil de forma eficaz em projetos full-stack e em

contextos reais do mercado de tecnologia.

42

REFERÊNCIAS

ANDERSON, David J. Kanban: Successful Evolutionary Change for Your

Technology Business. Sequim: Blue Hole Press, 2010.

ANOTEPAD. Anotepad - online notepad. Disponível em: https://anotepad.com.

Acesso em: 15 out. 2025.

BECK, Kent; et al. Manifesto Ágil para Desenvolvimento de Software. 2001.

Disponível em: https://agilemanifesto.org/iso/ptbr/manifesto.html. Acesso em: 15 out.

2025.

BECK, Kent. Extreme Programming Explained: Embrace Change. 2. ed. Boston:

Addison-Wesley, 2004.

BECK, Kent. Test Driven Development: By Example. Boston: Addison-Wesley,

2003.

BOOCH, Grady; RUMBAUGH, James; JACOBSON, Ivar. UML: Guia do Usuário. 2.

ed. Porto Alegre: Bookman, 2005.

CHACON, Scott; STRAUB, Ben. Pro Git. 2. ed . Berkeley: Apress, 2014. Disponível

em: https://git-scm.com/book. Acesso em: 15 out. 2025.

COHN, Mike. User Stories Applied: For Agile Software Development. Boston:

Addison-Wesley, 2004.

CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN,

Clifford. Algoritmos: teoria e prática. 3 . ed. São Paulo: LTC, 2012.

https://anotepad.com
https://agilemanifesto.org/iso/ptbr/manifesto.html
https://git-scm.com/book

43

DOCKER. Docker documentation. Disponível em: https://docs.docker.com/. Acesso

em: 15 out. 2025.

FIGMA. Figma: collaborative interface design tool. Disponível em:

https://www.figma.com. Acesso em: 15 out. 2025.

FIELDING, Roy Thomas. Architectural Styles and the Design of Network-based

Software Architectures. 2000. Tese (Doutorado) - University of California, Irvine.

GIT. CHACON, S.; STRAUB, B. Pro Git. 2. ed. Berkeley: Apress, 2014.

Disponível em: https://git-scm.com/book/en/. Acesso em: 15 out. 2025.

GITLAB. GitLab Documentation. 2024. Disponível em: https://docs.gitlab.com.

Acesso em: 15 out. 2025.

GOOGLE. Android Developers Documentation. 2024. Disponível em:

https://developer.android.com/guide. Acesso em: 15 out. 2025.

HUMBLE, Jez; FARLEY, David. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Boston: Addison-Wesley,

2010.

KNIBERG, Henrik; SKARIN, Mattias. Kanban and Scrum: Making the Most of

Both. 1. ed. Lulu Press, 2010.

LARMAN, Craig; VODDE, Bas. Large-Scale Scrum: More with LeSS. 1. ed.

Boston: Addison-Wesley, 2016.

LIDWELL, W.; HOLDEN, K.; BUTLER, J. Universal Principles of Design. Beverly:

Rockport Publishers, 2010.

MARTIN, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship.

Upper Saddle River, NJ: Prentice Hall, 2008.

https://docs.docker.com/
https://www.figma.com
https://git-scm.com/book/en/
https://docs.gitlab.com
https://developer.android.com/guide

44

MERKEL, Dirk. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux Journal, n. 239, 2014.

MICROSOFT. Playwright Documentation. 2024. Disponível em:

https://playwright.dev/. Acesso em: 15 out. 2025.

NIELSEN, J. Usability Engineering. San Diego: Morgan Kaufmann, 1994.

POPPENDIECK, Mary; POPPENDIECK, Tom. Lean Software Development: An

Agile Toolkit. Boston: Addison-Wesley, 2003.

POSTGRESQL Global Development Group. PostgreSQL Documentation. 2024.

Disponível em: https://www.postgresql.org/docs/. Acesso em: 15 out. 2025.

SCHWABER, Ken; SUTHERLAND, Jeff. The Scrum Guide. 2020. Disponível em:

https://scrumguides.org. Acesso em: 15 out. 2025.

SELENIUM. Selenium Documentation. 2023. Disponível em:

https://www.selenium.dev/documentation/. Acesso em: 15 out. 2025.

SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Operating System

Concepts. 10. ed. Boston: Addison-Wesley, 2019.

SQUARE. Retrofit Documentation. 2024. Disponível em:

https://square.github.io/retrofit/. Acesso em: 15 out. 2025.

VMWARE. Spring Boot Reference Documentation. 2023. Disponível em:

https://docs.spring.io/spring-boot/docs/current/reference/html/. Acesso em: 15 out.

2025.

https://playwright.dev/
https://www.postgresql.org/docs/
https://scrumguides.org
https://www.selenium.dev/documentation/
https://square.github.io/retrofit/
https://docs.spring.io/spring-boot/docs/current/reference/html/

