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RESUMO

O agrupamento de dados evolutivo multiobjetivo (AEM) € uma técnica moderna de agrupamento
de dados em que os conceitos gerais de otimizacdo evolutiva de multiobjetivos sdo aplicados
no problema de agrupamento. O projeto e defini¢dao de algoritmos de agrupamento de dados
€ um problema dificil, no qual a escolha das fun¢des objetivo e definicao dos parametros de
configuracdo ainda sao desafios. Neste estudo, visando compreender esse campo, mapeamos e
analisamos as abordagens existentes e avaliamos suas principais caracteristicas. Esta andlise
demostrou que, em geral, a escolha das fun¢des objetivo considera apenas as propriedades de
agrupamento desejadas, e a maioria das abordagens AEM presentes na literatura nao considera
aspectos de otimizacdo multiobjetivo, como a direcdo de busca, em seu projeto. Visando
apoiar uma melhor escolha e definicao dos objetivos nas abordagens AEM, neste manuscrito
propomos uma andlise da admissibilidade dos critérios de agrupamento para examinar a dire¢ao
de busca e avaliar seu potencial em encontrar resultados 6timos. Para tanto, consideramos
os fundamentos associados a avaliacdo de uma funcao heuristica para analisar os critérios de
agrupamento de dados e demonstrar como eles podem influenciar a otimiza¢do. Como resultado,
apresentamos uma andlise detalhada das principais fun¢des objetivo encontradas na literatura e
avaliamos como a inicializacdo interfere na sua admissibilidade. Além disso, observamos alguns
problemas no projeto de algoritmos estabelecidos, os quais ndo consideram como a estratégia
de inicializacdo pode impactar na busca em termos das funcdes objetivo aplicadas. Podendo
limitar ou piorar os resultados encontrados na inicializagdo. Para tratar esta questao propomos o
AEMOC (Adaptive Evolutionary Multi-objective Clustering approach based on data properties).
Essa abordagem considera a propriedades das particdes base para determinar se a otimizacao
€ necessdria ou nao. Para isso, propomos uma métrica para medir o grau de separagao dos
dados, que estima a qualidade relativa da populacao inicial gerada pelo agrupamento de arvores
geradoras minimas. Além disso, esta avaliacdo permite definir uma selecao offline de fungdes
objetivas e configuracdes de parametros do algoritmo multiobjetivo. O AEMOC apresentou
resultados promissores considerando um conjunto diversificado de conjuntos de dados artificiais e
reais, considerando dois aspectos: obteve sucesso na defini¢ido da qualidade relativa das particoes
de base e forneceu melhores resultados de agrupamento do que as abordagens AEM de referéncia.

Palavras-chave: Agrupamento de dados. Otimiza¢do multiobjetivo. Agrupamento de dados
multiobjetivo.



ABSTRACT

Evolutionary multi-objective clustering (EMOC) is a modern clustering technique in which
the general concepts of evolutionary multi-objective optimization are applied to the clustering
problem. The design and definition of the clustering are difficult problems in which the choice
of the objective functions and parameter setting of the algorithms are still challenges. In our
study, aiming to understand this field, we mapped and analyzed the existing approaches and
evaluated their main characteristics. This analysis showed that many different objective functions
and initialization strategies have been applied in EMOC approaches. In general, the choice of the
objective functions only considers the desired clustering properties, and most EMOC approaches
present in the literature do not consider aspects of multi-objective optimization, such as the search
direction, in their design. Aiming to support a better choice and definition of the objectives
in the EMOC approaches, we introduce an analysis of the clustering criteria admissibility to
examine the search direction and evaluate their potential for finding optimal results. We consider
the fundamentals of the evaluation of a heuristic function to analyze the clustering criteria
and demonstrate how they can influence the optimization. As a result, this study provides a
detailed analysis of the main objective functions found in the literature and evaluates how the
initialization interferes with their admissibility. Besides that, we observed some issues in the
design of established algorithms that do not consider the impact of the initialization strategy on
the search when determined objective functions are applied. This aspect can limit the clustering
or worsen the results found in the initialization. To amend this matter, in this manuscript, we
propose the AEMOC (adaptive evolutionary multi-objective clustering approach based on data
properties). This approach considers the properties of the base partitions to determine whether
optimization is required or not. For that, we propose a metric to measure the data separation
degree that estimates the relative quality of the initial population generated by minimum spanning
tree clustering. Furthermore, this evaluation makes it possible to define an offline selection of
objective functions and parameter settings for the multi-objective algorithm. AEMOC presented
promising results considering a diverse set of artificial and real-life datasets, considering two
aspects: it succeeded in the definition of the relative quality of the base partitions, and it provided
better clustering results than reference EMOC approaches.

Keywords: Clustering. Multi-objective optimization. Multi-objective clustering.
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1 INTRODUCTION

The use of knowledge discovery techniques has become essential to analyze and understand
large volumes of data generated in different fields of application (e.g. marketing, medicine,
bioinformatics). Clustering analysis has been widely studied and adopted for several purposes,
including pattern analysis, image segmentation, data mining, and decision-making. Clustering is
a type of unsupervised learning whose goal is to find the underlying structures that compose finite
sets of data (clusters), in which the objects or observations belonging to a cluster should share
some relevant property (similarity) regarding the data domain. In other words, in clustering, there
is an absence of category information that distinguishes data clustering (unsupervised learning)
from classification (supervised learning) (Aggarwal and Reddy, 2014).

There are several clustering algorithms that have been proposed in different fields of
research. However, in spite of that, clustering remains a difficult problem. As described by Jain
(2010), this can be attributed to the inherent vagueness in the definition of a cluster, and, in
particular, the difficulty in defining an appropriate objective function.

In recent years, multi-objective evolutionary algorithms (MOEAs) have become a
popular method applied for clustering. In general, clustering studies that consider this kind of
approach are referred to as evolutionary multi-objective clustering (EMOC). They are capable
of obtaining a set of solutions that represent the trade-off between different objectives. They
use multiple criteria (e.g., compactness and connectedness) as objective functions to deal with
datasets with different types of clusters. However, the evolutionary-based clustering methods
are still under-explored in the literature, deserving more attention and investigation (Zhu et al.,
2020). In particular, the design and definition of the clustering problem are still challenges, in
which issues related to the definition of the objective functions and initialization strategy emerge
in evolutionary multi-objective optimization, in addition to other difficulties.

Some studies, such as Hruschka et al. (2009); Mukhopadhyay et al. (2015), introduced
some approaches present in the literature but were limited in listing their components and main
features. In recent studies presented by Wang et al. (2018, 2020), the authors provide analysis
regarding the generation and maintenance of diversity of solutions in EMOC approaches. Other
studies have evaluated the objective functions for evolutionary multi-objective data clustering.
Handl and Knowles (2012) present a comparison of four criteria pairs for multi-objective
clustering in datasets with different types of clusters. Barton and Kordik (2015) investigated some
clustering criteria and analyzed their correlation with the ground truth to develop an evolutionary
multi-objective clustering algorithm. However, these studies do not consider evaluating the
search direction of objective functions and the impact of the initial population on the evolutionary
optimization.

1.1 RESEARCH QUESTIONS AND GOALS

Aiming to improve the research in this field and provide insights regarding the design of EMOC,
we raised the following research questions (RQ):

RQ.1: How to evaluate the objective functions and define the best combination of the
clustering criteria applied in EMOC?

RQ.2: How does the initialization strategy affect the optimization?
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RQ.3: How to improve the design and the parameter setting of the EMOC?

These RQs guided our general studies and analysis. Regarding RQ.1 and RQ.2, they
motivated the mapping of the existing approaches to analyze the general clustering criteria
applied in the EMOC approaches. However, it demonstrated a lack of studies that analyze both
the clustering and optimization features in order to determine EMOC objective functions and
initialization strategy. In the literature, there are a variety of clustering criteria being applied
in the EMOC approaches, but most studies do not provide any analysis regarding the choice
and combination of the objective functions. Fundamentally, they are selected concerning some
desired proprieties in the data clustering. The same occurs in terms of the initialization strategy.
Many approaches make use of established clustering algorithms without a prior study of the
impact of the search. This superficial analysis, which only concerns the clustering aspects,
can promote a wrong usage of multi-objective optimization with the application of inadequate
objective functions. Thus, we rely on the fundamentals of artificial intelligence in defining
heuristic functions to evaluate the clustering criteria and determine whether a function can
lead the search to the optimal results based on the admissibility. The proposed analysis of the
inadmissibility of the clustering criteria, presented in Chapter 4, unifies the fundamentals of
clustering and optimization to promote good practices that contribute to the improvement of this
research field. Furthermore, this analysis considers the main objective functions and initialization
strategies applied in the literature. This broad view of the EMOC allows new practionaries and
students to be more observant to fundamentals and do not reproduce the same mistakes found in
some popular approaches.

Here, we characterize admissible objective functions as having the property of detecting
the “natural” ground-truth clustering, that is, the one with the optimal value. In contrast, the
inadmissibility analysis refers to evaluating the search direction to define a non-admissible
objective function, where the search does not lead to finding the ground-truth clustering. In other
words, our study introduces an investigation into the inadmissibility of the objective functions
applied to evolutionary multi-objective clustering that supports defining whether the objectives
are worth optimizing. It is important to note that we evaluate the (in)admissibility regarding the
search direction. This is different from the study presented by Fisher and Ness (1971), where the
authors consider the admissibility of the clustering algorithms by considering the evaluation of
the structure of the data essentially.

In particular, the analysis of the inadmissibility demonstrated issues regarding the design
of some established EMOC approaches. Some initialization strategies limit the search or provide
the optimal results in respect of some clustering criteria, and the optimization is inadequate
or not required in terms of the objective functions applied. In particular, approaches that use
traditional clustering algorithms (such as k-means (MacQueen, 1967), average-linkage (Sokal,
1958), among others) to generate the initial population (base partitions or candidate solutions) do
not evaluate the impact of using high-quality partitions in the initial population, or even how
they affect the optimization. However, our analysis showed that, depending on the data structure
nature and criterion applied in the initialization strategy, the optimal result can be found in the
base-partitions and the optimization is not required.

In terms of RQ.3, we verified that it is essential to distinguish the data properties
of base partitions to avoid unnecessary processing, as observed in the admissibility analysis.
Thus, we considered the general capabilities of minimal spanning tree (MST) clustering (Handl
et al., 2007) (a clustering algorithm) in detecting well-separated arbitrary shaped clusters and
proposed an evaluation method to estimate the relative quality of candidate solutions generated by
MST-clustering based on the general separation and overlap of the data. For that, a new metric to
measure the data separation degree (DSD) was introduced to evaluate the general data separation



22

considering some observed aspects of the initial population. This metric was used along with a
semi-supervised metric called the constrained-based overlap value (CBO) (Adam and Blockeel,
2017) to obtain the necessary information to explore specific configurations in the optimization.
In particular, CBO is applied to measure the overlap of the data. In Chapter 5, we present DSD
and CBO, presenting some general features that were used in the definition of the evaluation
method described in Section 6.2. The estimated quality results provide information to define
whether the optimization is required or not, avoiding unnecessary data processing.

Based on the studies regarding the RQs, we generated a new approach, AEMOC -
adaptive evolutionary multi-objective clustering approach based on data proprieties, as present
in Chapter 7. AEMOC provides a new view of the modeling of multi-objective clustering
approaches. The main idea of this approach is the use of an evaluation method to estimate the
relative quality of the base partitions and determine the objective functions and parameter settings
of the multi-objective algorithm. Here, the relative quality refers to the data proprieties in which
the initialization strategy has good (or poor) clustering performance.

This approach presented promising results considering a diverse set of artificial and
real-life datasets in two aspects: it succeeded in the definition of the relative quality of the base
partitions generated by MST-clustering and it provided better clustering results than reference
EMOC approaches. In general, as the clustering topic is studied in several research areas, we
consider that our analysis and results promote good practices that contribute to the improvement
of this research field.

1.2 CONTRIBUTIONS

The contributions of this work are described as follows:

* The introduction of the admissibility analysis in the clustering problem, which evaluates
the search direction of the objective functions. Many existing approaches only consider
clustering aspects in the choice of the objective functions, which does not observe the
influence of the other aspects, such as the initialization, in the optimization.

* A broad analysis of a variety of clustering criteria applied as objective functions in
existing EMOC approaches. We observe the general impact of the initialization in the
admissibility, including common issues found in the design of established algorithms.

* The introduction of a new EMOC approach, called AEMOC, provides new features in
the design of multi-objective clustering that estimate the relative quality of the initial
population to determine whether an optimization is required or not, and performs a
selection of objective functions and parameter setting of the multi-objective algorithm.

* The introduction of a new metric, DSD, that is applied to evaluate the separation of the
base partitions generated by MST-clustering.

* The analysis and comparison of established EMOC approaches, MOCK (Handl et al.,
2007), MOCLE (Faceli et al., 2006), and EMO-KC (Wang et al., 2018), with EAMOC
was conducted in order to illustrate and explain how our approach amends some common
issues observed in these algorithms.

The results of these studies were reported in different conferences and journals. The
first one, as co-authors of the analysis of the established EMOC approaches, in “Multi-objective
clustering: A data-driven analysis of MOCLE, MOCK and A-MOCK” published in the annals
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of ICONIP’21 (International Conference of Neural Information Processing). Furthermore, we
proposed an improvement to an objective function, and it was applied to improve the detection of
nested structures in “Detecting nested structures through evolutionary multi-objective clustering”,
published in the annals of EvoApplications’22 (International Conference on the Applications of
Evolutionary Computation). Additionally, the proposed analysis of the admissibility applied to
evaluate the objective functions was published in the journal Information Sciences (Morimoto
et al., 2022a).

Currently, we are working on two journal publications: one refers to the literature review
considering a detailed explanation of the general EMOC architecture; the other refers to the new
approach, AEMOC.

1.3 THESIS ORGANIZATION

The remainder of this manuscript is organized into six chapters. The first two chapters provide
the main concepts and features found in the EMOC literature, followed by two chapters that
introduce methods and experiments applied to generate a new EMOC approach. In particular,
this manuscript is structured as follows:

* Chapter 2 - Background presents the main concepts and theoretical background related
to clustering and multi-objective optimization problem. Furthermore, in this chapter,
we present the general architecture of EMOC, considering the general features found in
the literature and the main aspects applied to the clustering problem.

* Chapter 3 - Literature Review provides a literature revision of the EMOC approaches.
We present a profile of this field by considering an extensive mapping of the literature
to identify the main methods and concepts that have been adopted to design the EMOC
approaches.

* Chapter 4 - Analysis of the inadmissibility of the objective functions in EMOC
approaches presents the analysis of the admissibility applied to several clustering
criteria, which points out some general issues found in established EMOC approaches.

* Chapter 5 - Measuring the separation and the overlapping of the data introduces
the metrics applied to measure the separation and overlap of the data, which are used
to compose the evaluation method applied to determine the relative quality of base
partitions generated by MST-clustering.

* Chapter 6 - Proposed multi-objective clustering approach describes the proposed
approach: AEMOC - Adaptive evolutionary multi-objective clustering approach based
on data proprieties.

* Chapter 7 - Experiments presents the results regarding the relative quality estimation
of the base partitions, and the clustering results of the experiments that compare the
clustering performance of the AEMOC with other reference approaches.

* Chapter 8 - Conclusion presents a summary of the thesis and future work.



24

2 BACKGROUND

In this section, we introduce basic concepts in clustering and multi-objective optimization.
In particular, we describe the main features and concepts considered in the general EMOC
architecture, along with the main elements applied in designing EMOC algorithms found in the
literature.

2.1 PRELIMINARIES

The convention adopted in this thesis considers the terms, clustering criteria, objective functions,
fitness functions, and heuristic functions, interchangeably to represent the multi-objective
clustering problem’s goals or objectives (i.e., distinct mathematical functions):

* Clustering Criteria: A clustering criterion (function) guides the selection of features
and clustering schemes in a clustering algorithm.

* Objective Functions: The objective function refers to a criterion that should be
maximized or minimized in an optimization problem.

* Fitness Functions: A fitness function is a particular type of objective function that
quantifies the optimality of a solution. The fitness functions are used in evolutionary
approaches to guide the search towards optimal design solutions.

* Heuristic Functions: A heuristic is a term adopted in artificial intelligence (Al) that
works by guiding search, suggesting behavior, making decisions, or transforming the
problem. A heuristic function guides the decision, as a strategy or simplification, to
limit the search for solutions in large problem spaces.

In this study, instead of using the term fitness function, we rely on the general term
used in evolutionary multi-objective optimization: the objective function. However, each term is
important to facilitate the general understanding of the content of this thesis, considering that
they relate to different fields of study.

2.2 CLUSTERING AND MULTI-OBJECTIVE OPTIMIZATION

Data clustering consists of the decomposition of finite and unlabeled data into subgroups based
on similar attributes, or naturally occurring trends, patterns, or relationships in the data (Jain
and Dubes, 1988). There is not a unique and formal definition of a cluster since the clustering
methods and algorithms were proposed for researchers in different fields and applied to a variety
of problems and distinct goals. In general, some general properties for cluster analysis are
considered (Hruschka et al., 2009; Rai and Singh, 2010; Faceli et al., 2011):

(a) Well-separated clusters represent clusters where each object is closer (more similar) to
all of the objects in its cluster than to any object in another cluster;

(b) Connected or contiguous clusters refer to clusters in which each object is closer to at
least one object in its cluster than to any object in another cluster;
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(c) Compact clusters represent clusters with small intra-cluster variation, considering the
variation between same-cluster data items or between data items and clusters;

(d) Center-based clusters represent clusters in which each object is closer to the center of
its cluster than to the center of any other cluster;

(e) Density-based clusters denote clusters in which regions of high density are separated
by regions of low density.

In terms of the clustering process, in this chapter and in the literature review (Chapters 2
and 3), we consider two general types: hard and soft clustering. Our proposal and analysis, on the
other hand, are centered on hard clustering. Formally, given a set of objects X = {xy, X2, ...,X,},
an hard (exclusive) partition of X in k clusters can be defined as 7 = {cy, ¢, ..., ¢}, where
k < n, such that: ¢; # 0, for (i = 1,...,k), Ul’.‘zl ¢, =Xande;Nnej=0for (i,j=1,...,k)
and i # j. If the condition of mutual disjunction (¢; Ne¢; =0, for (i,j =1,...,k) and i # j)is
relaxed, then the corresponding data partitions are said to be of the soft (fuzzy) type (Hruschka
et al., 2009).

It is important to note that we use the term "overlap" to define overlapping areas among
categories. In the literature, some works refer to overlap clusters or overlapping clustering as soft
clustering.

Regarding the taxonomy of the algorithms, traditional clustering algorithms can be
divided into two general categories: partitional and hierarchical. Hierarchical methods produce a
nested series of partitions, while partitional methods produce only one (Jain et al., 1999). For
example, k-means (KM) (MacQueen, 1967) is a partitional algorithm; single linkage (SL) (Sneath,
1957), average linkage (AL) (Sokal, 1958), and complete linkage (CoL) (Sorensen, 1948) are
hierarchical algorithms. In general, traditional clustering algorithms optimize only one clustering
criterion and are often very effective for this purpose. However, they may not find all clusters in
the datasets with different data structures, or clusters with shapes hidden in sub-spaces of the
original feature space.
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Figure 2.1: Different data structures (objects with the same color represent a cluster in each sub-figure)

In contrast, EMOC, a modern clustering type of algorithm, considers the simultaneous
optimization of multiple objectives to solve a variety of clustering problems considering different
data properties. An EMOC that considers two criteria, compactness-based and connectedness-
based, for example, can detect all of the data structures in Fig. 2.1, whereas algorithms that use
only the compactness-based criterion, such as KM, can detect globular clusters, as shown in
Fig. 2.1(a), but KM cannot find the ring-shaped clusters in Fig. 2.1(b) and the heterogeneous
structures in Fig. 2.1(c). In contrast, a connectedness-based algorithm, such as shared nearest
neighbor (SNN) (Ertoz et al., 2002), can detect the ring shapes in Fig. 2.1(b), but SNN cannot
find the clusters in Fig. 2.1(a) and Fig. 2.1(c).
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EMOC applies the concepts of multi-objective optimization (MOO) to the clustering
problem. In MOQ, the goal is to find a vector of decision variables, 7, that satisfies the inequality
and equality constraints (g;(nr) and /;(r)) presented in Eq. 2.2, and optimizes the vector F ()
of z objective functions, Eq. (2.1) (Coello et al., 2006). In particular, identifying a solution 7
that is feasible and optimizes the objective at hand is notably challenging when restrictions and
objectives have a non-linear, non-convex, discrete, or non-differentiable nature. One common
approach to dealing with the restrictions is to treat those restrictions as objective functions. For
example, in bi-objective optimization, a constraint can be used as a second objective subjected to
multi-objective optimization for the formation of a Pareto front (PF), in which the optimization
can be focused on the main objective function.

minimize/maximize F(r) = (fi(n), fo(7), ..., f-(7)) (2.1)

subjected to g;(m) <0, i={l,...,p},and
li(m)=0, j={l,....q}

Evolutionary algorithms (EAs) are considered well-suitable to MOO because they
address both search and multi-objective decision making (while some approaches focus on
search and others on multi-criteria decision making) and can search partially ordered spaces
for several alternative trade-offs (Fonseca and Fleming, 1995). EA uses a heuristic solution-
search or optimization technique based on the principle of evolution through selection. Most
multi-objective evolutionary algorithms select solutions using the Pareto dominance relation,
in which given two candidate solutions xr; and 7, r; dominates 7; (denoted as 7; < ), if and
only if: 1) m; is strictly better than 7; in at least one of all the objectives considered, and ii) 7; is
not worse than 7; in any of the objectives considered. The goal of this process is to find the set
of all non-dominated solutions, that is, the PF. For example, Fig. 2.2 shows a Pareto set of two
objective functions that should be minimized. Points A and B are the non-dominated solutions
and hence lie on the Pareto front. Point C is dominated by points A and B, so it does not lie on
the frontier (Li et al., 2015).

(2.2)

Non-dominated solution

f2(7[) ./
\ O O 'e) o

\ O O Dominated solution

Pareto Front
@o---9 e

1769)

Figure 2.2: Pareto Dominance Relation

Due to their population-based nature, evolutionary algorithms are able to approximate
the whole PF of a given multi-objective problem in a single run. Consequently, they have been a
popular choice for the design of multi-objective data clustering techniques (Hruschka et al., 2009;
Mukhopadhyay et al., 2015). In this context, the multi-objective evolutionary algorithms (MOEA)
are applied to solve a multi-objective optimization problem (MOP) with z > 2. However, the
traditional techniques based on Pareto dominance have their effectiveness degraded (convergence
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and diversity difficulties) when applied to problems with more than three objectives, and the
computational complexity of non-dominated sorting considerably increases. Many-objective
evolutionary algorithms (MaOEA) have been proposed to deal with this scalability issue, in
which the Many Objectives Problem can be defined as a MOP with z > 4 (Li et al., 2015).

In terms of the evaluation of the EMOC results, there are two types of assessment:
one considering aspects of clustering quality, and the other considering MOO performance, as
presented in the following.

2.3 CLUSTERING VALIDATION

The clustering approaches are evaluated regarding clustering validity indices (CVIs), which define
how well a partition fits the structure underlying the data. There are three types of criteria (Brun
et al., 2007): relative, internal, and external. Relative criteria are based on comparisons of
partitions generated by the same algorithm with different parameters or different subsets of the
data. Internal criteria refer to quality measures based on calculating properties of the resulting
clusters, establishing the validity of a cluster-based exclusively on the dataset itself, for example,
how much a cluster is justified by means of the proximity matrix. External criteria lie in prior
knowledge of structures in the dataset to evaluate the given partitions generated by an algorithm
in contrast with a model partition or labeled data, denominated True Partition, provided by
specialists. In Section 2.4.2.1, we present some CVIs and their application in EMOC approaches.

2.4 A GENERAL ARCHITECTURE OF EVOLUTIONARY MULTI-OBJECTIVE CLUSTER-
ING

INITIALIZATION OPTIMIZATION SELECTION
POPULATION
INITIALIZATION [ Clustering Criteria (Objective Functions) J SOLUTIONS SELECTION
- Initial MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION i e
Population [ oan P of solutions
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X
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Figure 2.3: A general architecture of Evolutionary Multi-objective Clustering

In this section, we introduce this general architecture of EMOC to describe the main
elements applied in designing EMOC algorithms. In the literature, we did not find other
studies that provide a clear definition of the main components and their relationships in EMOC
approaches. Thus, we illustrate the general architecture of the EMOC in Fig. 2.3, considering 3
modules:
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Initialization: Given a dataset, traditional data clustering algorithms (or random
generator methods) are applied to build the partitions (individuals) that compose the
initial population. Each partition is a clustering solution with a specific encoding or
representation. In section 2.4.1, we detail the types of representations and initialization
strategies applied in EMOC.

Optimization: The initial population is taken as an input to multi-objective evolutionary
optimization, in which iteratively the objective functions are minimized (or maximized)
to generate a final population. In general, the existing EMOC algorithms rely on general-
purpose MOEAs in the optimization flow. Most approaches consider the standard
features of a particular MOEA, while using a specific set of objective functions and
different combinations of crossover and mutation operators. In section 2.4.2, we detail
the optimization phase. We present some traditional MOEAs and introduce other types
of multi-objective approaches that consider other aspects in the selection besides Pareto
dominance. Furthermore, we point out the main aspects of the objective functions and
the evolutionary operators applied in EMOC.

. Selection: MOO approaches may generate large sets of efficient solutions using Pareto

dominance. Thus, this module is applied to determine the final set of solutions to be
presented to the data experts. According to prior criteria, a suitable number of solutions,
s’, is selected from the final population in this phase. Partition selection is a specific
subject in clustering, in which it is possible to find studies focused on this subject.
Therefore, this module is not considered mandatory in the design of EMOC approaches.
In Section 2.4.3, we present some strategies applied to EMOC partition selection.

In the following, we present the main concepts and elements of each module of

evolutionary multi-objective clustering by introducing the main features of the EMOC approaches
described in Section 3.

2.4.1 Initialization Module: Representation and Initialization strategies

The solution representation or chromosome encoding denotes an individual (candidate solution)
in the evolutionary algorithm. The choice of the representation should consider the information
necessary to be manipulated by the evolutionary operators to generate new feasible solutions. In
general, the most popular types of clustering representation solutions for EMOC are (Hruschka
et al., 2009):

(a)

(b)

Label-based representation, which takes into account labels for each object in the
partition. The length of an encoding of the solution is equal to the number of objects in
the dataset, and each position denotes the cluster label of the respective object.

Prototype-based encoding is usually applied in centered-based clustering, in which
cluster prototypes, such as centroids, medoids, or modes, are used in partition represen-
tation. In the centroid-based encoding, the chromosomes are denoted by the coordinates
of the cluster centers. In medoid-based encoding, the chromosomes are represented
by the coordinates that define the smallest average dissimilarity of the cluster to all
other objects. In mode-based encoding, the chromosome can denote the frequency of
the attribute. In general, in the prototype-based representation, one can have k& chosen
centers, in which the objects at each point are associated with the closest chosen center
measure.
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(c) Locus-based adjacency graph (LAG) representation corresponds to a graph containing
a vertex for each data point, and the links between two data points represent the edges.
The linked objects represent the clusters in the solution.

In particular, some approaches use a binary representation to define the labels or
prototypes instead of using numerical values. In Sert et al. (2011, 2012), each chromosome
includes n - k bits, and each reserved k bits provides the cluster number of the corresponding
instance. In Ripon and Siddique (2009), each data point is a candidate center, and a binary
encoding is applied to define whether a data point is a center or not. Besides that, it is possible to
consider other aspects of the clustering problem in the representation. For example, in Di Nuovo
et al. (2007), Fuzzy C-Means (FCM) parameters and feature weights are applied to represent
the solution. In Zhu et al. (2012); Xia et al. (2013); Z. Zhou (2018), the authors used the center
information associated with a center weight to encode the solutions. In Dong et al. (2018) and
Zhu and Xu (2018), the fuzzy membership matrix and the center information are designed to
represent each solution. In Luo et al. (2015), the authors consider an input as a linear combination
of base elements (e.g., parameters or coefficients), which are chosen from an over-complete
dictionary to design the sparse-based representation.

Regarding the initialization, a common practice in EMOC approaches is to use random
generators to assign labels or choose the initial centers of the clusters in the partition. The
random initialization generally provides unfavorable partitions since the clusters are likely to be
mixed up to a high degree. However, this strategy is very popular because of its simplicity and
effectiveness in testing the algorithms against hard evaluation scenarios (Hruschka et al., 2009).

In contrast, some relevant EMOC algorithms use high-quality individuals in the initial
population, in which clustering algorithms are applied to generate the base partitions. For
example, KM, AL, SL, CL, MST-clustering, SNN, Spectral Clustering (SPC) (Shi and Malik,
2000) are applied in the initialization of some EMOC approaches presented in Chapter 3.

In the literature, most prototype-based encoding approaches use random generators in
the initialization. On the other hand, the label-based encoding takes advantage of not requiring
decoding of the solutions, making it possible to apply most of the traditional clustering algorithms
in the initialization. The LAG representation can rely on a graph-based method in the initialization,
such as MST-clustering, taking advantage of its data structure.

2.4.2 Optimization Module: Multi-objective Evolutionary Optimization

In general, the EMOC algorithms rely on general-purpose MOEAs in the optimization module.
The choice of the multi-objective approach should consider the number of objective functions
and the characteristics of the application, in which it is possible to explore some aspects, such as
user preference, diversity of solutions, among other features.

The most traditional category of multi-objective algorithms is Pareto-based, where
the solutions are evaluated and compared by considering the Pareto dominance. For example,
the NPGA - Niched Pareto Genetic Algorithm (Horn et al., 1994) is designed along with the
natural analogy of the evolution of distinct species exploiting different niches or resources in the
environment, in which the main strategy relies on tournament selection among a population’s
individuals and Pareto dominance. The PESA-II - Pareto Envelop-based Selection Algorithm
version 2 (Corne et al., 2000) is an elitist method (the selection considers the best one or more
solutions, called the elites, in each generation, which are inserted into the next), where the
diversity mechanism is cell-based density. The NSGA-II - Non-dominated Sorting Genetic
Algorithm version II (Deb et al., 2000) is an elitism method that employs a ranking based
on non-domination sorting associated with crowding distance. The SPEA-2 - Strength Pareto
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Evolutionary Algorithm version 2 (Zitzler et al., 2001) is also an elitism method that applies the
concept of the strength of dominators as a fitness assignment, employing a density based on the
kth nearest neighbor to preserve the diversity.

Beyond that, Li et al. (2015) defined other categories by considering other aspects
beyond the Pareto front to evaluate and compare the solutions in MOEAs/MaOEAs:

(a) Relaxed dominance-based algorithms use a variant of dominance, such as value-based
(that changes the objective values by modifying the Pareto dominance of the solutions
when comparing them) or number-based dominance (that compares a solution to another
by counting the number of objectives where it is better than, the same as, or worse than
the other);

(b) Diversity-based algorithms apply a customized diversity-based approach, for example,
the SDE (Shift-Based Density Estimation), where the diversity is taken as the first
criterion instead of the convergence; it is possible because SDE shifts the positions of
the solutions to measure the density of the neighborhood of the solution, allowing both
the distribution and the convergence information to be used in the comparison of the
solutions;

(c) Aggregation-based algorithms apply aggregation functions to evaluate the solutions,
which can be divided into two categories: aggregation of objective values and aggregation
of objective ranks.

(d) Indicator-based algorithms aim to maximize the value of a specific indicator, which
can be divided into three classes: hypervolume driven, distance-based indicator driven,
and R2 indicator driven;

(e) Preference set-based algorithms consider the user’s preferences in the optimization
process. This kind of algorithms can be divided into three classes based on the timing
of the set of preferences being used: a priori (selection before the search), interactive
(selection during the search), and a posteriori (selection after the search);

(f) Reference-based algorithms consider a set of reference solutions, which are applied
to measure the quality of the solutions and guide the search during the evolutionary
optimization process, such as in NSGA-III (Deb and Jain, 2014) and RVEA (Cheng
et al., 2016);

(g) Dimensionality reduction algorithm seeks to simplify the problem by reducing its
complexity, where the number of objectives can be reduced gradually during the search
process (online) or the dimensionality reduction is carried out after obtaining a set of
Pareto-optimal solutions (offline).

Additionally, it is possible to consider another category, a Hybrid-based, that combines two or
more approaches to overcome their particular problems, for example, the MOEA/DD - Multi-
Objective Evolutionary Algorithm based on Dominance and Decomposition approaches (Li et al.,
2015) combines two categories of strategies: Pareto dominance and aggregation.

As mentioned above, in general, MOEAs are applied to clustering problems, considering
specific objective functions (clustering criteria), and different combinations of crossover and
mutation operators. Thus, we detail them in the following sub-sections.



31

2.4.2.1 Objective Functions

In general, CVIs (see Section 2.3) that consider internal and relative criteria are used as clustering
objective functions. On the other hand, specific objective functions designed for multi-objective
clustering, such as the sparsity (SP) and reconstruction error (RE) designed for spectral clustering,
can be used in EMOC approaches (Luo et al., 2015).

In the following, we introduce objective functions categorized by criteria (cluster
properties). These objective functions denote the clustering criteria adopted in the approaches
presented in Chapter 3:

(a) Compactness criteria: average within group sum of squares (AWGSS) (Kirkland et al.,
2011), overall deviation (Dev) (Handl and Knowles, 2005a), K-Mode internal distance
(Kmjgq) (Sert et al., 2011), K-Mode weighted internal distance (Km,,;z) (Sert et al.,
2011), intra-cluster entropy (Ent) (Ripon et al., 2006a), homogeneity (H) (Dutta et al.,
2012a), intra-cluster variance (Var) (Garza-Fabre et al., 2018), and total within-cluster
variance (TWCV) (Du et al., 2005), and fuzzy compactness (J,,;,) (Bezdek, 2013), are
criteria based on intra-cluster similiarity.

(b) Connectedness criteria: connectivity index (Con) (Handl and Knowles, 2005a),
and data continuity degree (DCD) (Menéndez et al., 2013), are criteria based on
neighborhood relationship.

(c) Separation criteria: average between-group sum of squares (ABGSS) (Kirkland
et al., 2011), inter-cluster average separation (Sep4r) (Ripon and Siddique, 2009),
K-Mode external distance (Km,.q) (Sert et al., 2011), K-Mode weighted exter-
nal distance (Km,.4) (Sert et al., 2011), separation index (Sepcr) (Dutta et al.,
2012b), and graph-based separation (Sepgrqpn) (Menéndez et al., 2013), fuzzy
separation (Sep r,;;y) (Mukhopadhyay et al., 2007), and fuzzy overlap separation
(Sepnfuzzy) (Wikaisuksakul, 2014), are criteria based on inter-cluster similarity.

(d) Separation and Compactness criteria: categorical data clustering with subjective
factors (CDCS) (Zhu and Xu, 2018), Calinski-Harabasz (CH) (Zhu and Xu, 2018),
Davies-Bouldin (DB) (Zhu and Xu, 2018), Dunn (Dutta et al., 2019), modularity
(Mod) (Liu et al., 2018), silhouette (Sil) (Mukhopadhyay and Maulik, 2007), 7 (Dong
et al., 2018), addition feature weight (J444) (Xia et al., 2013), Pakhira, Bandyopadhyay
and Maulik (PBM) (Pakhira et al., 2004), Xeni-Beni (X B) (Di Nuovo et al., 2007), soft
subspace Xie-Beni (SSXB) (Zhu et al., 2012), are criteria that take into account both
intra-cluster and inter-cluster similarity.

(e) Other criteria: cluster cardinality index (CCI) (Zhu and Xu, 2018) and expected
weighted coverage density (EWCD) (Sert et al., 2011) consider the relation of the
occurrence of the objects in a categorical dataset. The similarity index (Sim) (Li et al.,
2017) is the only relative CVI that compares partitions used as the objective function,
while the other CVIs consider the data properties of each partition.

It is a common practice in the literature to apply two or more different categories of
clustering criteria as objective functions, where the approach will be able to optimize multiple
characteristics of the evolved clusters. For example, a popular pair of objective functions, (Var,
Con), consider the compactness and connectedness criteria. In Chapter 3 other combinations of
objective functions are presented. Due to the large number of clustering criteria and considering
that some objective functions may have different names in the literature, we present a detailed
description of each of these objective functions in Appendix A.
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2.4.2.2 Crossover and Mutation Operators

Evolutionary optimization relies on crossover and mutation operators to generate new solutions.
In the literature, we can find approaches using traditional evolutionary operators and clustering
designed operators. The most popular traditional operators used in EMOC approaches are:

(a) One-Point crossover: one crossover point is considered along the length of the parents’
chromosomes, and the genes following the crossover point in one parent are swapped
with the genes in the other parent (Hruschka et al., 2009).

(b) Two-Point crossover: two crossover points along the length of the chromosome of each

parent, such that the interval of genes between these two points are swapped (Hruschka
et al., 2009).

(c) Shuffle crossover: this operator is similar to one-point crossover, in which a single
crossover position is selected, and before the variables are exchanged, they are randomly
shuffled in both parents (Sert et al., 2011).

(d) Uniform crossover: for each position on the chromosome, a random decision is made
on whether the swapping of genes should be done or not (Handl and Knowles, 2007).

(e) Simulated binary crossover (SBX): this operator uses a probability density function
that simulates the One-Point Crossover in binary-coded representation (Wikaisuksakul,
2014).

(f) Polynomial mutation: a polynomial probability distribution is applied to perturb a
solution (Ripon et al., 2006b).

(g) Uniform mutation: this operator replaces the value of the chosen particular slot position
with a uniform random value selected considering a specified upper and lower bounds
for that position (Dong et al., 2018).

In terms of the clustering-designed operators, the representation and clustering criteria
are taken into consideration. For example, the perturbation or replacement of center, centroid,
or medoid is applied in the algorithms that use a prototype-based encoding to shift a randomly
selected center slightly from its current position or replace the position of the cluster prototype
according to a criterion; the exchange of the prototypes considers two parents in which there
is an exchange of centroids to generate a new solution. Also, there are operators designed to
split the objects of a cluster or merge two or more clusters to generate new solutions. Handl and
Knowles (2005a,b); Handl and Knowles (2007) presented the neighborhood-based mutation that
is applied to the graph-based representation, replacing an existing link in the graph with another
link to one of the randomly selected nearest neighbors. In Bousselmi et al. (2017) and Bechikh
et al. (2019), Cheng and Church’s (CC) algorithm was adapted to be applied as a mutation
operator. The CC algorithm considers three steps (multiple node deletion, single node deletion,
and node addition) to iteratively perform the removal and addition of rows and columns in a data
expression matrix. As a mutation operator, only row operations are performed to preserve specific
data properties. Besides that, Faceli et al. (2006) introduced the use of clustering ensembles
as a crossover operator. A clustering ensemble is a technique applied to combining multiple
different clustering results (generated by different clustering algorithms or the same algorithm
with different iterations) into a single partition (Boongoen and Iam-On, 2018). As a crossover
operator, pairs of partitions are combined with a consensus function to generate new individuals.
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2.4.3 Selection Module: Partitions Selection

The Selection module is applied to restrict the number of clustering solutions presented to the
decision-maker or data specialist. In the literature, most EMOC approaches select the final set
of solutions by applying CVIs (see Section 2.3). For example, in Tsai et al. (2012), PBM, and
D B were used to single out the optimal solution. In Menéndez et al. (2013, 2014), the solution
with the highest value of the Sepg,qp, in the Pareto front was considered the best solution
to be selected. In Xia et al. (2013), a new indicator called the projection similarity validity
index (PSVIndex) was designed to select the best solution and cluster number. In Dutta et al.
(2019), the EMOC approach uses an overall rank of nine CVIs to determine the final set of
solutions: C index (Baker and Hubert, 1976), COSEC - Compactness and Separation Measure of
Clusters (Rahman and Islam, 2014), DB, Dunn, Dev, Ent, X B, Purity (Schiitze et al., 2008)
and F-Measure (Larsen and Aone, 1999). In particular, in Luo et al. (2015), the non-dominated
solutions are used to construct a standard adjacency matrix, and the measurement Ratio Cut (Wei
and Cheng, 1991) provides a way to select a final trade-off solution.

Another way to select final solutions is by applying the knee-based approaches that are
usually applied in determining the number of clusters in a data set. For example, the knee method
presented by Handl and Knowles (2005a,b); Handl and Knowles (2007) compares the final set of
solutions and a control front. The solution corresponding to the largest distance between the
actual non-dominated front and the control fronts is chosen to be the final solution, corresponding
to the "knee" (the point of inflection) of the non-dominated front. In Wang et al. (2018) and
Du et al. (2005), the best clustering result is defined by the "elbow" method, which consists of
picking the "elbow" or "knee" of the curve in the non-dominated front.

Besides that, clustering ensemble methods are used to select the final solutions. The
non-dominated solutions are used as base partitions to generate the consensual partition by
applying a consensual function to combine the base partitions.

2.4.4 Evaluation of the EMOC algorithms

In terms of evaluating clustering results, most EMOC approaches consider an external validity
index, such as the adjusted Rand index (ARI) (Rand, 1971), to evaluate the set of final solutions.
ARI is a corrected-for-chance version of the Rand index (Hubert and Arabie, 1985), computes
the probability of two objects of two partitions belong to the same cluster or different clusters, as
defined in Equation (2.3), where n;; is the number of common objects between the clusters ¢; in
7 and ¢; in 7y, n; is the number of objects in the cluster ¢; in p,, € n; is the number of objects
in the cluster ¢; in 7, k, and k;, are the number of clusters in the partitions 7, and 7.
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Besides that, the analysis of internal criteria can also be applied to investigate specific
data structures. For example, in Ripon et al. (2006a,b), H, Sep a1, Dunn, and Dev are evaluated
to analyze the general behavior of the EMOC approaches regarding each criterion. In Dutta
et al. (2012b,c), the authors compare their approaches with other ones based on the DB, H, and
Separ-
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2.5 CHAPTER REMARKS

In this chapter, we presented the general concepts applied in our study by describing the
concepts and properties associated with clustering and multi-objective optimization. In particular,
we present an abstraction of the main components of multi-objective clustering algorithms,
introducing a general architecture of EMOC. We dealt with all the components of this architecture
to support the implementation of EMOC algorithms. Furthermore, we use this architecture to
support the identification of the main components and features of the existing EMOC studies,
presented in the next chapter.
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3 LITERATURE REVIEW

In this chapter, we present a general view of multi-objective clustering, considering an extensive
mapping of the literature to identify the main methods and concepts that have been adopted to
design the EMOC approaches.

3.1 OVERVIEW OF MULTI-OBJECTIVE CLUSTERING STUDIES

This review considers papers related to multi-objective clustering (MOC) from IEEE Xplore!,
ACM Digital Library? and Scopus3. These article repositories contain the most important journal
papers and conference proceedings, in the computer science and engineering domains. We

" "

used the terms "multi-objective”, "multiobjective”, and "many-objective" as keywords related
to optimization with multiple objectives, along with the term "clustering" to search by title for
articles about multi-objective clustering. The article mapping considered English-language
papers that were published before the year 2021. The search result is 231 papers from IEEE
Xplore, 30 papers from the ACM Digital Library, and 533 papers from Scopus, totaling 794
papers. Then, duplicated papers were removed. After that, we analyzed the main contents of the
resulting set of documents, resulting in 358 papers.
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Figure 3.1: The number of publications related to MOC from 2002 to 2020.

Fig. 3.1 shows the number of publications related to MOC that appeared in both journals
and conferences over the years. It provides information on how the MOC field is evolving,
based on the number of papers published. The first indexed article found was published in
2002 (Zwir et al., 2002), a conference paper in the Annals of the New York Academy of Sciences.
In the same way, most of the articles published between 2002 and 2008 were published at
conferences. In 2009, we observed a substantial increase in journal papers. Between 2008 and
2016, we verified a certain equilibrium in the number of articles published in conferences and
journals, except in 2012, when the number of conference papers increased abnormally, without a
specific explanation. Finally, in the last four years, the number of articles published in journals
has substantially increased. In particular, in 2019, the number of publications in journals was

lhttps://ieeexplore.ieee.org
2https://dl.acm.org/
3https://www.scopus.com
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almost three times greater than the number of papers presented at conferences. In 2020, we can
notice that the total number of papers significantly decreased compared to 2018 and 2019. One
reasonable motivation is the indexing time before the papers appear in the search, considering
that the mapping was performed in the first trimester of 2021. Another reasonable motivation
was the COVID pandemic, which motivated periods of suspension of non-essential activities and
caused some conferences worldwide to be canceled or postponed.

Regarding the optimization approach, considering the general classification of the
metaheuristics presented by Siarry (2016), we observed that most studies applied evolutionary
optimization. Fig. 3.2 presents the relationship between the number of articles and the evolutionary
optimization articles, including memetic and hybrid approaches that include other methods
associated with the evolutionary approach. In the early years, almost all MOC papers relied
on the evolutionary approach. In the middle years, the use of other optimization methods
was observed, such as Artificial Immune system-inspired (Timmis et al., 2008), Differential
Evolution-based (Eltaeib and Mahmood, 2018), Simulated Annealing-based (Bertsimas and
Tsitsiklis, 1993), and Particle swarm-based (Rana et al., 2011). In the mapped articles, the
first occurrence of these approaches was between 2007 and 2009. In recent years, the use of
a variety of other optimization methods has also been verified, such as other nature-inspired
algorithms (Siarry, 2016), among others.
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Figure 3.2: Total articles vs. evolutionary-based optimization articles.

In the following, we list the most relevant works. They were selected by considering two
general indices: h-index and Scopus-percentile. We filtered the articles by h-index greater than
10 to filter the conference papers and by Scopus-percentile greater than 50% to obtain the list of
the most relevant journal papers. These values were selected to cover the A-rank papers in the
CORE - Computing Research and Education Association of Australasia and Qualis (a Brazilian
official system to classify scientific production). These algorithms were grouped based on some
shared characteristics that highlight the main features or applications of these approaches. The
general concepts and methods applied in these EMOC approaches were introduced in Section 2.4.

3.2 GENERAL-PURPOSE EMOC ALGORITHMS

First, we present general-purpose EMOC approaches divided in: MOCK-based works, EMOC
for categorical data, EMOC for bi-clustering, EMOC for subspace clustering, ensemble-based
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EMOC, fuzzy clustering-based EMOC, spectral clustering-based EMOC, multiple distance
measures-based EMOC, multi-k-clustering-based EMOC, EMOC with specific MOEA, and
other EMOC approaches.

3.2.1 MOCK-based works

One of the most popular algorithms is MOCK - Multi-Objective Clustering with automatic k-
determination (Handl and Knowles, 2005a,b; Handl and Knowles, 2007). The MOCK algorithm
uses LAG representation, initialization with MST-clustering and KM, and two objective functions:
Dev and Con. The PESA-II was the MOEA used in this approach. The adjacency graph
representation promoted the use of specific operators for the clustering problem, such as the
neighborhood-based mutation operator, which manipulates the links over the MST, in which each
vertex can only be linked to one of its nearest neighbors. After the optimization process and the
generation of final clustering solutions, MOCK uses an automatic k-determination scheme to
choose the best clustering solution from a set of solutions with a knee-based strategy.

Other studies were derived from the analysis of MOCK, as follows. Matake et al. (2007)
provided an approach, MOCK-Scalable, to improve the final selection of solutions in large-scale
data based on a scaling filter to reduce the solutions in the Pareto front. Tsai et al. (2012)
proposed the MIE-MOCK - Multiple Information Exchange Multi-Objective Clustering with
automatic k-determination. The MIE-MOCK algorithm uses a pool of crossover and mutation
operators selected by a random method and also provides a new final selection of solutions
based on two CVIs: PM B and DB. In Handl and Knowles (2012), the authors analyzed four
pairs of objective functions for multi-objective clustering, including an analysis of the original
objective functions of MOCK. Also, Handl and Knowles (2013) presented an analysis of the use
of evidence accumulation to support the post-processing of the clustering solutions returned by
the MOCK. In Garza-Fabre et al. (2017, 2018), the authors proposed the A-MOCK, providing
a new encoding to improve the MOCK scalability and other specific modifications to improve
the convergence of the solutions. Zhu et al. (2018) provided the A-EMaOC - Evolutionary
Many-Objective Optimization Clustering, improving the general architecture of the A-MOCK
to optimize five objective functions. The A-EMaOC algorithm considers the use of MaOEAs
(SPEA-II-SDE (Li et al., 2014), NSGA-III (Yuan et al., 2016), MOEA/DD (Li et al., 2015)
and RVEA (Cheng et al., 2016)) instead of MOEA (NSGA-II). In general, these approaches
are applied to detect clusters in heterogeneous structured data, considering a continuous data
type and crisp clustering. Zhu et al. (2020) proposed the MOAC-L - locus-based multi-objective
automatic clustering. The MOAC-L algorithm applies CVIs and ensemble-clustering to improve
the encoding and the selection of solutions in the optimization process.

3.2.2 EMOC for Categorical Data

In particular, some EMOC approaches were designed for categorical data clustering, where the
data objects are defined over categorical attributes (instead of using the continuous data type
that is applied in most of the other approaches). For example, Handl and Knowles (2005c)
presented the MOCK-medoid, a MOCK extension for multi-objective clustering around medoids
for categorical data. Mukhopadhyay and Maulik (2007) also introduced a medoid-based EMOC,
the MOGA-medoid, to deal with categorical data. The MOGA-medoid algorithm uses the
NSGA-II to optimize the Sil and Dev (computed in terms of the medoid instead of the centroids),
applying the one-point crossover and a medoid-based replacement mutation designed to consider
a center-based solution encoding.
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Dutta et al. (2012b) provided a specific MOEA, the Hybrid MOGA, to optimize H and
Sep ar. The main contribution of this work relies on the use of this new MOEA with the Pairwise
Crossover (Frinti et al., 1997), the replacement (substitution) mutation, and the local searching
power of K-modes (or KM) to deal with continuous and categorical features in the dataset.

Mukhopadhyay et al. (2007) presented a multi-objective genetic fuzzy clustering
of categorical attributes (MOGA-fuzzy), considering a uniform crossover and a center-based
replacement mutation in NSGA-II to optimize the global compactness (a normalized J,,, index for
categorical data (Tsekouras et al., 2004)) and Sep 7,.,,. They applied a specific selection method
to obtain the final solution, in which the points assigned to the same cluster by at least 50% of
the clustering solutions are taken as the training set, and the remaining points are assigned a
class label using k-nearest neighbor (k-nn) classification in order to select a single solution from
the set of the non-dominated solutions. In Mukhopadhyay et al. (2009), the authors provide a
new version of the MOGA-fuzzy, MOGA-fuzzy?2, considering modifications in the evolutionary
operators, in which the One-Point Crossover and Mode replacement were applied.

Zhu and Xu (2018) introduced the MaOFcentroids, a many-objective fuzzy centroid
clustering algorithm for categorical data. MaOFcentroids algorithm uses fuzzy membership
matrix encoding (a matrix with the degree of membership of each object), and adapted operators
that consider the number of the clusters and the membership of the solutions in the NSGA-III. It
simultaneously optimizes five CVIs (CDCS, DB, CH, CCI, and X B). In terms of the selection,
this approach uses a specific clustering ensemble for categorical data, the SIVID - Sum of Internal
Validity Indices with Diversity (Zhao et al., 2017).

The most recent work of Dutta et al. (2019) introduces the MOGA-KP, an approach
with automatic k-determination applied to deal with different types of features (continuous,
categorical, and missing feature values). It considers some common aspects of the previous
works (Dutta et al., 2012b,c), while improving some aspects, such as the use of other evolutionary
operators, and the local search operators. Besides that, the MOGA-KP algorithm uses a ranking
of nine CVIs to determine the final set of solutions.

3.2.3 EMOC for Bi-Clustering

One specific line of study in EMOC is Bi-clustering, which consists of simultaneous partitioning
of the set of samples and the set of their attributes into subsets (classes). The goal of this kind
of algorithm is to find one or all (possibly overlapping) sub-matrices of a given matrix, each of
which shares a pre-defined property over the elements across all its columns (or rows). Each
such sub-matrix is called a bi-cluster. Bousselmi et al. (2017) presented the BI-MOCK, which
extends MOCK to the case of bi-clustering by adding a subset of columns (conditions) to each
chromosome in the representation. BI-MOCK algorithm uses the two-points crossover adapted
for variable-size chromosomes and the CC algorithm as a mutation operator in the PESA-II to
optimize Var, and the size of the bi-cluster. Bechikh et al. (2019) presented the MOBICK -
Multi-Objective BI-Clustering with automated k deduction, that extends Bousselmi et al. (2017)
study. MOBICK algorithm uses the A-MOCK reduced encoding, the uniform crossover adapted
for bi-clustering conditions, and the CC algorithm as the mutation operator in the PESA-II to
also optimize Var and the size of the bi-cluster.

3.2.4 EMOC for Subspace Clustering

Another line of studies considers Subspace Clustering, an extension of traditional clustering
that seeks to find clusters in different subspaces within a dataset. Zhu et al. (2012) introduced
the MOSSC - Multi-Objective evolutionary algorithm-based Soft Subspace Clustering, which
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optimizes the SSBX and J,,,, in the NSGA-II. This approach uses a center-based encoding with
weights to avoid trapping in local minima, aiming to obtain more stable clustering results. Xia
et al. (2013) presented the MOEASSC - Multi-Objective Evolutionary Approach-based Soft
Subspace Clustering, which also uses a mixed encoding (center and weight-based). MOEASSC
differs from the MOSSC in terms of the pair of objectives (J,,, and J444), and the use of a local
search operator based on the KM. Z. Zhou (2018) introduced the MOKCW - Multi-Objective
Kernel Clustering algorithm with automatic attribute Weighting. In general, MOKCW extends
MOSSC and MOEASSC by considering kernel clustering. For example, MOKCW used the
MOSSC objective functions adapted to consider kernel distance. The authors also improved the
final selection method of the MOEASSC by applying a clustering ensemble method (MCLA -
Meta Clustering Algorithm (Strehl, 2002) and HBGF - Hybrid Bipartite Graph Formulation (Fern
and Brodley, 2004)) associated with the PSVIndex.

3.2.5 Ensemble-based EMOC

Another specific approach was proposed by Faceli et al. (2006), the MOCLE - Multi-Objective
Clustering Ensemble. The main idea behind this approach is the use of clustering ensemble
methods as crossover operators to combine partitions and extract agreed patterns to generate
new solutions in the evolutionary optimization process. MOCLE is a framework that uses a
label-based representation; the initial population is generated with various clustering methods to
detect different cluster formats, such as SL, AL, KM, and SNN. The original implementation of
the MOCLE (Faceli et al., 2006) provides two MOEAs: NSGA-II and SPEA-II, to optimize the
Dev and Con; and two crossover operators: MCLA and HBGF; however, it does not use any
mutation operator.

This general concept of using clustering ensemble methods as crossover operators has
been used in other studies as well. Faceli et al. (2009) introduced the MOCLE in the context
of gene expression datasets, applying an additional objective, ConP (the connectivity index
based on the Pearson Correlation), and a new set of clustering methods to generate the initial
population (AL, CoL, KM, and SPC). Liu et al. (2012) introduced the IMOCLE - Improvement
of the Multi-Objective Clustering Ensemble algorithm, in which a relative CVI, Sim, was added
along with the three objective functions defined by Faceli et al. (2009) to improve the clustering.
In general, these approaches are also applied to detect clusters in heterogeneous structured data,
considering both continuous data type and crisp clustering.

3.2.6 Fuzzy Clustering-based EMOC

Another line of studies considers the integration of the general concepts of the existing fuzzy
clustering algorithms, such as FCM and FRC - Fuzzy Relational Clustering, with a multi-objective
evolutionary approach (NSGA-II). Di Nuovo et al. (2007), Wikaisuksakul (2014) and Dong
et al. (2018) presented fuzzy approaches integrating the NSGA-II with the FCM (Bezdek, 2013).
Di Nuovo et al. (2007) introduced the NSGA-II & FCM that optimizes the number of features
and the X B index to discover the best number of groups while pruning the features to reduce
the dimensionality of the dataset. NSGA-II & FCM algorithm uses a specific solution encoding
that considers the FCM parameters (number of the clusters k£ and FCM fuzzyfier m) and the
feature weights. Wikaisuksakul (2014) introduced the FCM-NSGA, which optimizes the J,,
and Sep, ruz;y in NSGA-II, considering SBX and polynomial mutation operators. Dong et al.
(2018) introduced the ADNSGA2-FCM that optimizes the DB and 7 indexes. ADNSGA2-FCM
uses a center-based and fuzzy membership matrix (a matrix with the degree of membership of
each object) as an encoding. In terms of the evolutionary operators, it considers the uniform



40

mutation with two new crossover operators, the Nearest Neighbor Matching Crossover Operation
(an exchange of centers in the nearest neighbor to produce solutions with the same number of
clusters) and the Truncation and Stitching Crossover Operation (an exchange of a set of center
positions is performed to produce solutions with a different number of clusters). Moreover,
they introduced an adaptive mechanism that is applied to compute the crossover and mutation
probabilities that are changed according to the fitness of the current population. On the other
hand, Paul and Shill (2018) propose the FRC-NSGA/IFRC-NSGA, hybrid methods that combine
the FRC algorithm (Skabar and Abdalgader, 2013) and the NSGA-II to optimize the J,, and

Sepnfuzzy-

3.2.7 Spectral Clustering-based EMOC

Some works use spectral clustering as a foundation for designing EMOC approaches. MOGGC -
Multi-Objective Genetic Graph-based Clustering Algorithm (Menéndez et al., 2013) considers
optimizing the computation of graph similarity features in SPC to achieve lower memory
consumption and increase the clustering quality. For that, this approach provided a new objective
function pair, the separation of clusters (Sepgrqpn) and a graph continuity metric (DCD).
MOGGC was extended by the CEMOG - CoEvolutionary Multi-Objective Genetic Graph-based
Clustering (Menéndez et al., 2014), a partitional k-adaptive spectral clustering algorithm that
uses a strategy based on island-model and a graph topology to migrate individuals from sub-
populations. This last approach does not require input of the initial number of clusters required
in the MOGGGC. In this context, Luo et al. (2015) introduced the framework SRMOSC, which
uses sparse representation for sparse spectral clustering. SRMOSC uses SP and RE as objective
functions to be optimized in the NSGA-II (or MOEA/DD) with a specific pair of operators that
consider the sparsity properties.

3.2.8 Multiple Distance Measures-based EMOC

Other approaches consider the use of different distance functions in the objective functions. Liu
et al. (2018) introduced the MOECDM - Multi-objective Evolutionary Clustering Based on
Combining Multiple Distance Measures and the MOEACDM - Multi-objective Evolutionary
Automatic Clustering based on Combining Multiple Distance Measures. Both these approaches
consider a single CVI computed with distinct distance functions to define objective functions to
be optimized. They use a label-based encoding and an NCUT pre-clustering (Shi and Malik,
2000) in the initialization, but in the MOECDM, a portion of the individuals are generated
by a random generator. They also adapted the crossover and mutation operators, in which the
probabilities are adjusted along with the generations. MOECDM was designed to detect the
desirable cluster number automatically, using Sep ¢, index computed with Euclidean distance
(Sepcr1) and Path distance (Sepcr2) as objective functions. MOEACDM was designed to detect
compact clusters, using Mod also computed with Euclidean distance (M od) and Path distance
(Mod») as objective functions.

3.2.9 Multi-k-clustering-based EMOC

Other approaches consider multi-k-clustering with the a posteriori method, where k is taken as
an objective function, differing from the automatic data clustering methods, such as MOCK, that
consider k an inner aspect of the decision variable, obtained by the optimization of clustering
criteria. For that, Du et al. (2005) introduced a specific solution representation, the linked-list
based encoding. The authors used the fellowship between the objects instead of the label-based
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relationship to define the clusters, in which each cluster has all its elements linked, similar to the
relationship of the nodes presented by Handl et al. (2007). This representation was applied in the
MOGA-LL (Du et al., 2005), an EMOC approach that optimizes the TWCYV and k as objective
functions in the NPGA, considering two particular operators: (i) an adapted one-point crossover,
which allows different clusters to exchange partial contents and may split a cluster into two; (ii)
link-replacement mutation, in which a sub-group of objects is associated with another cluster
instead of just a different node.

Wang et al. (2018) proposed the EMO-KC (Evolutionary Multi-objective k-clustering)
to demonstrate the importance of the conflict between the objective functions to obtain a diverse
set of final solutions with a different number of clusters. They showed evidence that sum of
squared distances (SSD) and k are not always conflicting between two individuals and introduced
a transformation of SSD. SSD can be denoted by (Var - n), and the adapted SSD (Var’), considers
the following transformation: (1 — exp~!"55P) — k. In Wang et al. (2020), this same pair of
objective functions was explored in a new MOEA that considers a constrained decomposition
with grids (CCDG-K). Both EMO-KC and CCDG-K define the best clustering result (the optimal
k) by the “elbow” method (Hancer and Karaboga, 2017).

3.2.10 Specific MOEA for EMOC

As previously presented, Dutta et al. (2012b,c) provided a specific MOEA, the Hybrid MOGA
designed for categorical data. Besides that, another particular approach is the VRIGGA - Variable-
length Real Jumping Genes Genetic Algorithm introduced by Ripon et al. (2006a). The VRIGGA
is an EMOC algorithm that extends the Jumping Genes Genetic Algorithm (JGGA) (Man et al.,
2004) and applies the survival selection of the NSGA-II. The JGGA considers jumping gene
operations before evolutionary operators to improve the diversity of solutions. VRIGGA uses
a centroid-based encoding associated with the modulo crossover (Srikanth et al., 1995) (an
adapted one-point crossover, where each child is a set of completely specified sub-solutions) and
the polynomial mutation, to optimize the Ent and Sep 41.. In Ripon et al. (2006b), the authors
provided new features to VRIGGA, introducing two local search methods, probabilistic cluster
merging, and splitting for clustering improvement. Ripon and Siddique (2009) also applied
the extended version of the JGGA to EMOC, introducing the EMCOC - Evolutionary Multi-
objective Clustering for detecting overlapping clusters. EMCOC introduces a new chromosome
representation and cluster-assignment method in which each data point is a candidate center and
a binary encoding is applied to define whether a data point is a center or not.

3.2.11 Other MOC approaches

Some papers consider other objective functions and provide other features in the design of the
EMOC approaches. For example, Kirkland et al. (2011) presented the Multi-Objective Clustering
algorithm (MOCA), that optimizes three objective functions, AWGSS, ABGSS, and Con in
the NSGA-II. Sert et al. (2011, 2012) presented the MOC-HCM, which uses five objective
functions: Kmjg, Kmeg, Kmyiq), Kmyeq, and EWCD. The MOC-HCM algorithm uses a binary
representation, a local search operator (k-mode-based operator) that reassigns the instances to the
closest clusters in terms of their frequencies, and a new final selection method based on a new
metric, the H-Confidence Metric (HCM).

Besides the above-mentioned works, we also found specific approaches, in which
their main features consider some particular methods, as follows. Ozyer and Alhajj (2009)
applied the divide and conquer approach in an iterative way to handle the clustering process and
improve the performance of the evolutionary algorithm. Zheng et al. (2012) extended algebraic
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operations of gene expression to propose a multi-objective gene expression programming for
clustering. Garcia-Piquer et al. (2017), focused on reducing the impact of the volume of data in
the EA by means of the stratification of the complete data set into disjoint strata and alternating
them in each cycle of the genetic algorithm. Liu et al. (2019) improved the performance of
multi-objective soft subspace clustering algorithms for clustering high-dimensional data by using
a transfer learning-assisted multi-objective evolutionary clustering framework with MOEA/D.

3.2.12 Summary of the EMOC approaches

Here, we summarize the components of the main presented EMOC algorithm. We considered
the publishing chronology to list each EMOC to make it possible to observe the variations of
components over time.

In Table 3.1, we present the main features (components) applied in the initialization
and optimization of each approach. In this table, we used acronyms and abbreviations for some
words: Ad. for Adapted, Repl. for Replacement, and Mod. for Modified, NA for not assigned,
and FM for Fuzzy membership-based.

It is possible to note that there are a variety of representations being applied in the
EMOC approaches. In particular, from the year 2017, the use of representations concerning the
reduction of the size of the chromosome has emerged. In contrast, most EMOC approaches use a
random strategy in the initialization, without introducing a relevant novelty in recent years.

Regarding the optimization phase, the NGSA-II has been the most applied MOEA over
the years. In particular, from the year 2018, the use of MaOEAs considering the optimization of
more than 3 objective functions has emerged. In terms of the objective functions, over the years,
new combinations of clustering criteria have been applied. A common practice considers at least
one compactness-based criterion associated with a connectedness-based criterion for clustering
heterogeneous structured data. In the case of the centered-based clustering optimization, it
is common to see other schemes for the objectives: (i) a compactness-based criterion and
the number of the clusters, (ii) a combination of the two compactness-based criteria, (iii) a
compactness-based criterion and a spatial separation-based criterion. In this last case, these
different configurations of objective functions are mostly related to specific classes of clustering
studies, such as bi-clustering (i), categorical data clustering (ii and iii). The same occurs with
the crossover and mutation operators, in which we can observe a diversity of combinations of
operators.

Table 3.2 summarizes the selection methods applied to each approach that provides this
component in their design. As this component is not mandatory in the EMOC design, almost
half of the presented algorithms do not provide it. The existing selection methods are, in general,
as follows: ensemble-based, which provides the best solution (consensual partition); knee-based,
which provides the best k-solution; and CVIs-based, which considers specific criteria (as ranking)
to define the best set of solutions.
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Table 3.2: EMOC algorithms: selection strategies

Year Article Final Selection
2005 MOCK (Handl and Knowles, 2005a,b;  Knee-based
Handl and Knowles, 2007)
2005 MOCK-medoid (Handl and Knowles, Knee-based
2005¢)
2007  MOCK-scalable (Matake et al., 2007) Knee-based
2007 MOGA-fuzzy (Mukhopadhyay et al., Specific approach (k-nn-based)

2007)
2009  MOGA-fuzzy2 (Mukhopadhyay et al., Specific approach (k-nn-based)
2009)
2011  MOC-HCM (Sert et al., 2011, 2012)  Ensemble-based (H-confidence)
2012  MIE-MOCK (Tsai et al., 2012) PBM and DB
2012  MOSSC (Zhu et al., 2012) Ensemble-based (HBGF)
2013  MOGGC (Menéndez et al., 2013) SePgraph
2013  MOEASSC (Xia et al., 2013) PSVIndex
2014 CEMOG (Menéndez et al., 2014) SePgraph
2016  SRMOSC (Luo et al., 2015) Ratio cut-based
2018  MOKCW (Z. Zhou, 2018) PSVIndex and ensemble-based (HBGF or MCLA)
2018  EMO-KC (Wang et al., 2018) Elbow-based and DB

2018  ADNSGA2-FCM (Dong et al., 2018)  Ensemble-based (Majority vote)

2018  MaOFcentroids (Zhu and Xu, 2018)  Ensemble-based (SIVID)

2019  MOGA-KP (Dutta et al., 2019) DB, Dev, Dunn, C, COSEC, Ent, F-Measure,
Purity and XB

3.3 MOCK, A-MOCK, MOCLE AND EMO-KC

In this section, we present more details of four approaches: MOCK, A-MOCK, MOCLE and
EMO-KC. These approaches were used in our experiments and they are compared to the proposed
approach in Chapter 7.

3.3.1 MOCK

MOCK (Multi-Objective Clustering with automatic K-determination) is a well-known algorithm
for multi-objective clustering (Handl and Knowles, 2005a; Handl et al., 2007).

To encode the solutions (partitions), MOCK uses a graph-based encoding called locus-
based adjacency representation (Handl et al., 2007): a solution is represented as a vector of genes,
and each gene g; can take an integer value between 1 and n, where n is the number of objects in
the dataset. If a value j is assigned to the ith gene, it can be interpreted as a link between the data
points i and j, i.e., i and j belong to the same cluster. Figure 3.3 illustrate a partition encoding
applied in MOCK.

In terms of the generation of the initial population, MOCK uses the partitions derived
from the Minimum Spanning Tree (MST) clustering and k-means. In particular, the MST-
clustering implemented in MOCK considers the use of a measure called degree of interestingness
(DI) to define the most relevant links that are removed to obtain the clusters. Besides that, a
link removed at position i is subsequently replaced by a link to a randomly chosen neighbor.
These procedures are applied to amend the separation of outliers (Handl et al., 2007). For
both MST-clustering and k-means, partitions with different numbers of clusters are generated
to compose the initial population. The partitions generated by k-means are converted to the
locus-based encoding by removing all MST links crossing cluster boundaries in the partitions.
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Figure 3.3: MOCK representation. Adapted from Handl and Knowles (2007)

Regarding the multi-objective algorithm, MOCK uses PESA-II (Corne et al., 2000). It
is applied to optimize two objective functions: Dev and Con. The evolutionary operators used
in this algorithm are standard uniform crossover and a neighborhood-biased mutation scheme.
In particular, links selected by random are removed and they are replaced by a link randomly
chosen neighbor, in the same way of the initialization.

At last, MOCK has a model selection applied to select the best partitions in the Pareto
Front. It considers a comparison of the shape of the curve (knee) obtained in the optimization
with a null model, produced by clustering random data.

3.3.2 A-MOCK

A-MOCK (Garza-Fabre et al., 2017) was developed to improve the scalability of MOCK (Handl
etal., 2007) considering modifications applied to: (i) the initialization and representation schemes,
(i1) the multi-objective optimization algorithm, (iii) the objective functions.

In terms of the initialization procedure, according to Garza-Fabre et al. (2017) the
use of two approaches to generate the base partitions affects the general scalability of MOCK,
specifically k-means. Thus, A-MOCK uses only one approach to generate the base partitions,
considering the one that removes the links of the MST.

Furthermore, according to (Garza-Fabre et al., 2017), one of the main limiting factors
regarding MOCK’’s scalability is the length of the genotype in the locus-based adjacency
representation, which is equal to the number 7 of objects in the dataset (see Section 3.3.1). To
address this issue, Garza-Fabre et al. (2017) introduced two alternative representations: the
A-locus and the A-binary encodings. These schemes are based on the original representation
of MOCK. However, they can significantly reduce the length of the genotype by making use
of information from the MST and DI. More specifically, based on a user-defined parameter, 6
(0 < 6 < 100), the MST links are classified either into the set of relevant links, I, or into the set
of non-relevant, fixed links, A. Only the relevant links are used in the optimization, i.e., the new
encoding has a |I'|-length genotype.

Fig. 3.4 illustrate an decode of the full-length representation to A-locus. By considering
a dataset with 12 objects and 6 = 80, A-locus encoding has a size equal to 3, while a full-encoding
has 12. In this case, only the most relevant links of the MST (linked to positions 3, 7, and 10) are
operated by the evolutionary operators in this new encoding.

On the other hand, Fig. 3.5 illustrate the decode A-locus to the full-length representation,
in which the relevant links are replaced by new links.
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Figure 3.4: Encoding the full-length representation to A-locus. In the A-locus representation, the numbers above the
encoding, in red font, represent the rank of the relevant links, and the numbers below the encoding represent the
position in the full-length encoding. Adapted from Garza-Fabre et al. (2017)
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Figure 3.5: Decoding the A-Locus to full-length representation. The numbers in red font refer to the rank of the
relevant links, and the numbers in blue font denote the modified links. Adapted from Garza-Fabre et al. (2017)

Regarding the search strategy and objective functions, A-MOCK replaces MOCK'’s
PESA-II (Corne et al., 2000) with NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb
et al., 2000) to optimize the Var and Con, in which Var was used instead of Dev to support
their pre-computation of the fixed links applied in new representation schemes.

3.3.3 MOCLE

MOCLE (Multi-Objective Clustering Ensemble) is a clustering algorithm proposed by Faceli et al.
(2006) that combines characteristics from both cluster ensemble techniques and multi-objective
clustering methods.

The ensemble clustering generates a consensual partition, 7* according to the basic
process of the cluster ensemble presented in Fig. 3.6 and explained in the following. Let
X = {x1, ..., X, } be a set of n data points, and Il = {ry, ... 7y} be a set of partitions generated
by one or more clustering algorithms, a consensus function combines these partitions to obtain
the final clustering result 7%, and to improve the quality of the clustering results (Faceli et al.,
20006).

Like in traditional ensemble clustering, starting with a diverse set of base partitions,
MOCLE employs the multi-objective evolutionary algorithm to generate an approximation of the
Pareto optimal set. It optimizes the same criteria as MOCK and uses a special crossover operator,
which combines pairs of partitions using an ensemble method. No mutation is employed.

MOCLE uses the label-based representation, in which each position denotes the cluster
label of the respective point. This representation supports the use of different clustering algorithms
in the initialization. In contrast to MOCK and A-MOCK, in which the links should be evaluated
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to determine the clusters (linked points), label-based representation does not require any extra
effort to obtain the clusters since the cluster labels is direct given in the encoding.

Finally, it is worth noting that the core ideas of MOCLE, as well as those of MOCK and A-
MOCK, are not linked to specific objective functions, crossover operators, and search algorithms.
For instance, in terms of objective functions, like MOCK, MOCLE has been mainly implemented
using Dev and Con (Faceli et al., 2006, 2009; Antunes et al., 2020). Concerning the crossover
operators, the software available at http://lasid.sor.ufscar.br/mocleproject/
implements the MCLA (Strehl, 2002) and the cluster ensemble method HBGF (Fern and Brodley,
2004). The optimization process, like in A-MOCK, has been mainly performed by using
NSGA-II (Deb et al., 2000).

3.3.4 EMO-KC

EMO-KC (multi-objective optimization-k-clustering) was introduced by Wang et al. (2018).
This algorithm uses a centroid-based representation, in which the chromosomes consist of real
numbers that represent the coordinates of the cluster centroid. To generate the initial population,
it considers a random choice of the points in the dataset to define the initial centroids, and the
clusters consist of objects in which each point is associated with the closest centroid.

EMO-KC relies on the NSGA-II with its standard operators (simulated binary crossover
and polynomial mutation) to optimize Var’ and k (number of clusters). According to the authors,
this approach was proposed to harness the implicit parallelism of EMOC, for that they introduced
the adapted SSD (Var’), to improve the conflict of any two solutions having different k values.

To select the best solution EMO-KC considers the elbow method (Hancer and Karaboga,
2017). The final population could present more than one elbow or no elbow for some datasets,
thus the D B is further considered to select the final solution.

3.4 EMOC APPROACHES DESIGNED FOR SPECIFIC APPLICATIONS

In this section, we present approaches designed for specific applications. Each algorithm
considers the particularities of problem application to define the representation of the solutions,
the objective functions, or/and the evolutionary operators. It promotes the generation of a
variety of configurations, so we will limit ourselves to listing some algorithms designed for each
following application.
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3.4.1 Association rule learning

Association rule learning is a rule-based machine learning method for discovering interesting
relations between variables in large databases. Kaya and Alhajj (2004) and Alhajj and Kaya
(2008) provided an EMOC approach for fuzzy association rules mining to automatically cluster
values of a given quantitative attribute to obtain a large number of itemsets in a short period of
time.

3.4.2 Document clustering

Document clustering is a data/text mining technique that makes use of text clustering to divide
documents according to various topics. Lee et al. (2014) proposed a method of enhancing
multi-objective genetic algorithms for document clustering with parallel programming. Wahid
et al. (2015) presented a new approach for document clustering based on SPEA-II, that explores
the concept of multiple views to generate multiple clustering solutions with diversity.

3.4.3 Gene/micro-array analysis

The Gene/Micro-array clustering analysis is applied to discover groups of correlated genes
potentially co-regulated or associated with the disease or conditions under investigation. Romero-
Zaliz et al. (2008) provided an EMOC to identify conceptual models in structured datasets that
can explain and predict phenotypes in the immune inflammatory response problem, similar to
those provided by gene expression or other genetic markers. Li et al. (2017) provided a new
ensemble operator to improve the data clustering in gene expression datasets in IMOCLE (Liu
et al., 2012). Mukhopadhyay et al. (2010) provide an approach that simultaneously selects relevant
genes and clusters the input dataset. Mukhopadhyay et al. (2013) presented an interactive approach
to multi-objective clustering of gene expression patterns considering an adapted NSGA-II, in
which inputs from the human decision-maker (DM) are taken to learn which objective functions
are more suitable for the datasets. Dutta and Saha (2017) presented an EMOC approach to
identify gene clusters from a given expression dataset; in which apart from utilizing the gene
expression values of the individual genes, the corresponding protein-protein interaction scores
are also used while clustering the set of genes.

3.4.4 Image Segmentation

Image segmentation consists of the process by which a digital image is partitioned into various
subgroups (multiple parts or regions), often based on the characteristics of the pixels in the
image. Qian et al. (2008) presented a multi-objective evolutionary ensemble algorithm to
perform texture image segmentation. Shirakawa and Nagao (2009) introduced a variation of the
MOCK (Handl and Knowles, 2007) improving its general features for its application in image
segmentation. Zhang et al. (2016) provided a multi-objective evolutionary fuzzy clustering for
image segmentation, considering the original FCM energy function to preserve image details and
a function based on local information to restrain noise, both minimized by MOEA/D. Zhao et al.
(2018, 2019) introduced the use of the concepts of intuitionistic fuzzy set (IFS) and multiple
spatial information to generate an EMOC approach to overcome the effect of noise in image
segmentation.
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3.4.5 Software module clustering

Software module clustering refers to the problem of automatically organizing software units into
modules to improve program structure. Praditwong et al. (2010) provided a multi-objective
formulation of the software module clustering problem considering a two-archive Pareto optimal
genetic algorithm. Barros (2012) provided an analysis of the effects of composite objectives in
multi-objective software module clustering.

3.4.6 Network community detection

Network community detection refers to the procedure of identifying groups of interacting vertices
in a network depending upon their structural properties to unveil the dynamic behaviors of
networks. Folino and Pizzuti (2010) provided an approach for the detection of communities with
temporal smoothness formulated as an EMOC. Attea et al. (2016) reformulate the community
detection problem as an EMOC model that can simultaneously capture the intra and inter-
community structures based on functions inspired by different types of node neighborhood
relations. Shang et al. (2017) introduced an EMOC approach based on k-nodes update policy
and a similarity matrix for mining communities in social networks. Pizzuti and Socievole (2019)
provided a framework for detecting community structure in attributed networks, introducing a
post-processing local search procedure that identifies those communities that can be merged to
provide higher quality community divisions.

3.4.7 Web recommendation

Web topic mining and web recommendation consider the problem of extracting web navigation
patterns, based on the interests of a user, to be applied in the recommender systems to guide users
during their visit to a Web site. Demir et al. (2010) presented EMOC approaches to clustering
Web user sessions in a Web page recommender system. Morik et al. (2012) investigated the
problem of finding alternative high-quality structures for (Web) navigation in a large collection of
high-dimensional data, and they provided a formulation of FTS (Frequent Terms Set) clustering
as a multi-objective optimization problem.

3.4.8 WSN - Wireless Sensor Network topology management

There are several challenges in designing WSN because the sensor nodes have limited resources
of energy, processing power, and memory. In this context, the clustering technique can organize
nodes into a set of groups based on a set of pre-defined criteria to improve their usage. Peiravi
et al. (2013) provided an EMOC approach whose goal was to obtain clustering schemes in which
the network lifetime was optimized for different delay values. Hacioglu et al. (2016) presented an
EMOC approach that can extend network lifetime while enabling high coverage and data.

3.4.9 Other applications

Wang et al. (2015) proposed an approach to solve the circuit clustering problem in field-
programmable gate array computer-aided design flow. Mukhopadhyay and Maulik (2009)
introduced a multi-objective genetic clustering approach for pixel classification in remote sensing
imagery. Wang et al. (2014) and Li et al. (2016) provided a multi-objective fuzzy clustering
approach for change detection in Synthetic Aperture Radar (SAR) images. Liu et al. (2017)
presented an approach to automatic clustering of shapes considering a multi-objective optimization
with decomposition and improvement in the shape descriptor and diffusion process (that was
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applied to transform the similarity distance matrix among total shapes of a dataset into a weighted
graph).

3.5 CHAPTER REMARKS

In this chapter, we presented a review of the EMOC studies, focused on a general architecture
of evolutionary multi-objective clustering (see Chapter 2), considering the chromosome rep-
resentation, initialization strategies, MOEAs (or MaOEAs), objective functions, evolutionary
operators (crossover and mutation), and final solution selection. Furthermore, in this manuscript,
we presented some applications of EMOC and the most relevant related papers that can be useful
to researchers that are exploring EMOC for a specific purpose.

This mapping of EMOC approaches allows us to observe some patterns and obtain
some insights regarding the evolutionary multi-objective clustering algorithms. For example, the
choice of the objective functions is one of the most critical factors in the optimization process. In
general, there is no consensus around the ideal number and the best combination of objective
functions among researchers because of the difficulty in defining appropriate clustering criteria.
In this way, more studies on the objective functions are required to improve the composition of
objective functions and provide more information on the limitations of the existing ones.

In terms of an evolutionary multi-objective approach, we can note the wide use of the
NSGA-II as MOEAs over the years. In recent years, the use of MaOEAs has been verified (Zhu
et al., 2018; Zhu and Xu, 2018), in contrast to other works (Sert et al., 2011, 2012; Liu et al.,
2012) that considered the optimization of more than three objective functions in MOEAs
(NSGA/NSGA-II).

Other multi-objective clustering works were published recently (between 2021 and
2022), but they do not provide novelty in the analysis of the EMOC approaches, as described in
this manuscript. For example, Zhu et al. (2021) proposed HT-MOC - hierarchical topology-based
MOC. HT-MOC is a MOCK-based algorithm, that uses a hierarchical topology-based cluster
representation to improve the time and memory usage. Besides that, this approach uses a
specific MOEA to optimize Con and Var, which considers an ensemble-based operation after
the crossover and mutation operations, aiming to improve the quality of the solutions. Like
in the other cited works, HT-MOC uses a clustering algorithm to generate the base partitions
(MST-clustering), but the impact of using high-quality partitions in the initialization is not
evaluated.

The literature review presented in this chapter was submitted to the journal Computer
Science Review and is still under review. A preprint is available in Morimoto et al. (2021).

In the next chapter, we introduce the admissibility analysis applied to evaluate the search
direction and the potential of finding the optimal solutions, in which we evaluate the impact of
the initial population in the optimization.
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4 ANALYSIS OF THE INADMISSIBILITY OF THE OBJECTIVE FUNCTIONS IN
EMOC APPROACHES

In this chapter, we introduce the analysis of the inadmissibility applied to the objective functions
and the influence of the initialization strategy in the optimization, in order to answer RQ.1 and
RQ.2. This chapter is divided into four sections. In the first section, we present the admissibility
and inadmissibility concept applied in the analysis of the objective functions. In sequence,
we present objective functions and the clustering algorithms applied in most of the EMOC
approaches that consider high-quality base partitions in the initialization to evaluate their impact
in the optimization. In the next two sections, we present the experimental setup and results of
experiments considering the analysis of 17 objective functions as for their inadmissibility in 24
artificial datasets. Finally, we present the general discussion and analysis of the results.

4.1 ADMISSIBILITY AND INADMISSIBILITY OF OBJECTIVE FUNCTIONS

An admissible heuristic function can be characterized as a function that does not overestimate
the cost of reaching the goal (Russell and Norvig, 2002).

In our study, we consider this general admissibility concept in evolutionary optimization.
Thus, we verified the potential of the objective functions, as heuristic functions, in finding the
optimal results based on the search direction. Here, we considered the optimal value as the
underlying structure of the data, called the true partition or ground-truth. In other words, the
true partition represents the ideal model partition. As our analysis considered artificial datasets,
the true partition was known in advance, making it possible to perform a detailed examination of
the underlying structure of the data and relate it to the clustering criteria.

In practice, our analysis consists of evaluating the inadmissibility of the objective
functions. An objective function is inadmissible if for each f(r), 7 € Il (initial population),
Af(r) > f(x*) for the maximization problem, or 3f(x) < f(n*) for a minimization problem,
where f(m) denotes an objective function result for each candidate solution 7, and 7* represent
the optimal solution.

It is important to note that our analysis does not ensure that the objective functions are
admissible or that they can reach optimal values. However, it is possible to clearly visualize
the inadmissible objective functions and the potential for optimization of the other objective
functions.

Fig. 4.1 illustrates the general case of the inadmissibility applied in our analysis,
considering the optimization (minimization) of one objective function over a period of time. In
this figure, the term “cost” refers to the best result of the objective function in each iteration,
here called “time”. In this figure, the red point represents the optimal value (optimal cost), and
the blue arrow indicates the search direction. The objective function is inadmissible in order to
find the optimal solution (3 f () < f(x*)), in which the initial cost is 7 for the solutions in the
initial population, that overestimates the optimal cost (9). Furthermore, the optimization of this
objective function worsens this aspect over time (final cost = 0.8).

Inadmissible functions are not adequate to be optimized; however, they can be
applied as restrictions to the search space (see Eq. 2.2 in Section 2.2) to define the feasible
region of solutions. In particular, the inadmissible functions can be applied as objective functions
to constrain the search in a specific direction.
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Figure 4.1: Example of an inadmissible objective function, considering the best results of the objective function
over a period of time

In the following, we present the objective functions, and the algorithms applied to
generate the base partitions used in the admissibility analysis.

4.1.1 Objective Functions

In our study, we analyzed different objective functions:

* Four compactness criteria: intra-cluster entropy (Ent), overall deviation (Dev), intra-
cluster variance (Var), and total within-cluster variance (TWCYV).

* Two connectedness criteria: connectivity (Con) and data continuity degree (DCD).

* Four separation criteria: average between-group sum of squares (ABGSS), average
separation (Sep 41), separation index (Sepcy), and graph-based separation (Sepgrapn).

* Seven compactness and separation criteria: Calinski-Harabasz index (CH), Davies-
Bouldin index (D B), Dunn index (Dunn), modularity (M od), silhouette (Sil), Pakhira-
Bandyopadhyay-Maulik (PBM), and Xeni-Beny (XB).

These objective functions were extracted from the evolutionary multi-objective clustering
approaches detailed in Section 3. We selected clustering criteria that can be applied as objective
functions to clustering continuous data and that differ in their general computation. To delimit
the number of the clustering criteria, we do not consider variations of popular indices, or specific
scope objective functions. Details of each objective function are presented in Appendix A.

4.1.2 Clustering Algorithms applied in initialization of EMOC approaches

Here, we present five clustering algorithms: k-means, average linkage, single linkage, shared near-
est neighbor-based clustering, and minimum spanning tree clustering. These clustering algorithms
provide different strategies that allow us to evaluate how they can affect the optimization.

4.1.2.1 k-means

k-means (KM) (MacQueen, 1967) is a partitional clustering algorithm applied to detect compact
clusters. Its objective is to minimize the distance between the centroid and their respective
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instances. The k-means starts by choosing a k set of centroids randomly (or based on prior
knowledge and associating each object with the nearest centroid), where k is a user-given
parameter. After that, the centroids are recomputed based on the current cluster data, followed
by a new association of each instance with the nearest centroid; this operation is successively
repeated until there is no change in the groups or the stopping criterion is met.

4.1.2.2 Average linkage and single linkage

Average linkage (AL) and single linkage (SL) are hierarchical algorithms applied to detect nested
or hierarchical data structures. Each instance starts out standing as an individual cluster in both
algorithms, and a sequence of merge operations is executed until it reaches a single cluster with
all the instances. The core difference between AL and SL is the distance measure used to compute
proximity between pairs of clusters. This measure is used to define the closest pair of sub-sets
that are merged. SL uses the minimal distance between two instances of a cluster pair, and AL
applies the average distance of all observations of the cluster pairs (Xu and Wunsch, 2005).

4.1.2.3 Shared nearest neighbor-based clustering

Shared nearest neighbor-based clustering (SNN) (Ertoz et al., 2002) is a density-based algorithm.
SNN can detect clusters of different sizes, shapes, and densities. The main idea behind this
algorithm is to use the concept of similarity based on the shared nearest neighbor. The objects are
assigned to a cluster that shares a large number of their nearest neighbors (the density-based on
the neighborhood). This algorithm begins with the computation of the similarity matrix, which
is sparsified by retaining only the k-nearest neighbors (KNN). In the following, the shared nearest
neighbor graph is constructed, in which links are created between pairs of objects that have each
other in their KNN lists. Then, SNN computes the number of shared neighbors between vertices,
considering the links coming from each point in the graph, providing the density factor. This
factor is used to identify the noise or core points based on the user-defined thresholds. Then,
noisy points are discarded, and the clusters are formed by the core points and the border points
(non-noise non-core points), considering all the connected components.

4.1.2.4 Minimum spanning tree clustering

The minimum spanning tree (MST) clustering is a graph-based algorithm that can identify
clusters of arbitrary shapes. Among a variety of versions of this algorithm, we consider here
the MST-clustering described in Handl et al. (2007). This algorithm uses the concept of degree
of interestingness (DI) and the properties of the MST to find the clusters. DI defines the
neighborhood relationship between the nodes in the MST, where a link between two nodes is
considered interesting if neither of them is a part of the other node’s set of nearest neighbors.
Thus, the clusters are generated by removing interesting links in the MST that split it into
sub-graphs in which the connected elements represent a cluster.

4.2 EXPERIMENTAL DESIGN

4.2.1 Goals of the experiments

Besides the general goals of our research, the specific goals of these experiments are to answer
the following research questions: (i) “Which evaluated objective functions are inadmissible and
which ones have potential (search space) for optimization?”, and (ii) “Are there specific features
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or optimizing scenarios that should be considered in the choice and combination of the objective
functions to obtain better clustering results?”.

4.2.2 Experimental setup

In order to answer the first research question, we evaluated the admissibility of each objective
function presented in Section 4.1.1, considering the base partitions obtained from different
initialization strategies. Therefore, we used the initialization algorithm of the MOCK and
MOCLE, both established and popular approaches, that consider different clustering criteria.
Thus, we generated five initial populations using the clustering algorithm: KM, AL, SL, SNN,
and MST-clustering. The general setting applied in the KM, AL, SL, and SNN is the same as
reported in Faceli et al. (2006). Regarding the MST-clustering, we employed the general setting
presented in Handl and Knowles (2007). Furthermore, we adjusted such algorithms to produce
partitions containing clusters in the range {2,2k*}, where k™ is the number of clusters in the true
partition representing the dataset. This setting is commonly used in MOCK/A-MOCK’s to define
the number of clusters in the partitions of the initial population. In this initial experiment, in
particular, we analyze the admissibility by comparing the individuals of the initial populations
with the optimal value (true partition) of each dataset. The results of this experiment provide us
with information about which objective function and initialization strategy could improve the
optimization. In particular, we demonstrated in MOCLE this impact in terms of ARI, in which
we consider the MOCLE general setting present in Faceli et al. (2006).

Regarding the second research question, we evaluated different combinations of objective
functions and analyzed which conditions could lead the EMOC approach to provide better results.
In particular, we analyze the clustering performance of some promising objective functions
found in the first experiment. Experiments were carried out in the new MOCK version, A-
MOCK (Garza-Fabre et al., 2018). We select this algorithm, among others, because it is a
recently established approach in which the present features (as the use of MST-clustering in the
initialization) contribute to the evaluation in terms of the search direction, demonstrating how
admissibility supports the choice of objective functions. Regarding this algorithm setting, we
employed the one reported in Garza-Fabre et al. (2018), considering the A-locus scheme with &
settled heuristic ~ 5/+/n, where n is the number of objects in the dataset.

4.2.3 Datasets

As previously stated, our analysis takes into account the use of the true partition. Thus, we selected
24 artificial datasets, in which we can analyze the relationship between their data structures or
cluster shapes and the optimization of the objective functions. Table 4.1 summarizes the main
characteristics of these datasets, in which 7 is the number of objects, d refers to the number of
attributes (dimensions), and k* is the number of clusters in the true partition. These datasets
were obtained from 4 repositories: Clustering benchmarks! and Clustering basic benchmark?,
UCI Machine Learning Repository? and Clusters Evaluation Benchmark*.

We divided these datasets into four groups (column G in Table 4.1), considering
similar data structures evaluated in our analysis. In the first group (G1), Fig. 4.2, we have 8
datasets with gaussian-like clusters and 4 datasets with hyper-spherical shaped clusters. R15,
D31, Engytime, Sizes5, Squarel, Squared, Twenty, and Fourty have gaussian-like

Thttps://github.com/deric/clustering—benchmark
2http://cs.joensuu.fi/sipu/datasets/
3https://archive.ics.uci.edu/ml/datasets.php
“http://lasid.sor.ufscar.br/clustersEvaluationBenchmark/
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G | Dataset n|d| k" G | Dataset n|d|k*
R15 600 | 2| 15 ds2c2scl3_S1 588 12| 2
D31 3.100 | 2 | 31 G2 | ds2c2scl3_S2 588 (2] 5
Engytime | 4.096 | 2| 2 ds2c2scl3_S3 5882113
Sizes5 1.000 | 2| 4 Longl 1.000 | 2| 2
Squarel 1.000 | 2| 4 G3 | Pat2 417 2| 2
Gl Square4 1.000 | 2| 4 Spiral 1.000 | 2| 2
Twenty 1.000 | 2 | 20 3MC 400 1 2| 3
Fourty 1.000 | 2 | 40 DS-850 850 | 2| 5
Sph_5_2 250121 5 G4 Aggregation 788 | 2| 7
Sph_6_2 300 (2] 6 Complex9 3030 [ 2] 9
Sph_9_2 900 2] 9 Patl 55712 3
Sph_10_2 500 [ 2|10 Spiralsquare | 2.000 | 2| 6

Table 4.1: Dataset characteristics

clusters. R15 consists of 15 identical-sized clusters with some overlapping points. D31 has
31 clusters that are slightly overlapping and distributed randomly. Engyt ime has two highly
overlapping clusters with different variances. Size5 has five clusters of varying sizes and
the same inter-cluster distance over all clusters. Squarel and Square4 consist of four
clusters of equal size and spread that vary in the degree of overlap and the relative size of
clusters. Fourty and Twenty consist of well-separated small clusters distributed into 40 and
20 clusters, respectively. Sph_5_2, Sph_6_2, Sph_9_2, Sph_10_2 have hyper-spherical
shaped clusters with different proximity between the clusters. Algorithms based on cluster
compactness, such as KM, can detect well-separated hyper-spherical shaped clusters; they can
also detect gaussian-like clusters when they contain globular (no oblong) and well-separated data
structures.

In the second group (G2), Fig. 4.3, we have the ds2c2sc1 3 dataset, which contains
three different structures: S1, S2, and S3. These structures represent three levels of structures
in a nested dataset. In this example, S1 represents two well-separated clusters, which can be
found by techniques based on optimizing connectedness or compactness; in contrast, S2 and
S3 combine distinct types of clusters that could be hard to find with techniques based only on
connectedness or compactness. Hierarchical clustering algorithms, such as SL and AL, are
usually applied to detect nested structures.

In the third group (G3), Fig 4.4, we have datasets that contain well-separated and
elongated cluster shapes that are hard to identify for algorithms based on cluster compactness:
Longl, Spiral, and Pat2.

In the last group (G4), Fig. 4.5, we have shaped datasets that combine different
types of clusters: 3MC, DS-850, Aggregation, Complex9, Patl, Spiralsquare.
Aggregation contains 6 clusters with a uniform and compact distribution, and they also have
different sizes, and two clusters are linked by a line of points. 3MC contains symmetrical shaped
clusters (e.g., ring-shape, ellipsoidal clusters, etc.). Patl and Complex9 present clusters
surrounding other ones, among other data structures. Spiralsquare combines spirals and
square shapes into clusters.

It is important to observe that the use of artificial datasets that provide the true partition
and also have well-known data structures makes it possible to analyze in detail the conditions
that can affect the optimization in our study.
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(a) Longl (b) Pat?2 (c) spiral

Figure 4.4: Datasets with elongated cluster shapes
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Figure 4.5: Datasets with distinct types of clusters

4.2.4 Performance assessment

In terms of optimization, we evaluated the objective function’s inadmissibility and analyzed the
solutions regarding the dominance of the true partition. The general concepts of both these items
(admissibility and dominance) are presented in Section 2.

Finally, as the main indicator of clustering performance, we used the ARI, Eq. 2.3 (see
Section 2.4.4).

4.3 EXPERIMENTAL RESULTS

As described in Section 4.2, for every individual in each population, we computed the objective
function presented in Appendix A and compared their results with the respective values of the
true partition to determine their inadmissibility and the potential of the optimization.

Table 4.2 and Table 4.3 present the detailed results of the inadmissibility in terms of
the initialization with MST-clustering and KM, respectively. In these tables, we point out the
objective functions that are inadmissible (X) for each dataset. Also, in terms of the potentially
admissible objective function, we consider two other classes: (i) the true partition was found in
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Table 4.2: Results of the analysis of the admissibility of the objective functions considering an initialization with
MST-clustering

the initial population, where optimization is not required (v'), and (ii) the objective function has
space to be optimized and potential to be admissible (blank cells).

Table 4.4 summarizes the results of all initialization strategies. Since the initialization
of the AL, SL, and SNN are comparable with the results of the MST-clustering and KM, we
compiled the results by counting the number of datasets in which the objective functions are
inadmissible. Column IN denotes the total number of the datasets where each objective function
is inadmissible, and column OP refers to the total number of the datasets where the optimal
solution is provided in the initial population. For example, the fields IN fulfilled with 24 mean
that a specific objective function is inadmissible for any of the analyzed datasets.

4.4 DISCUSSION

By analyzing Table 4.2, we observed that every connectedness criterion (Con and DCD)
provides results in which there is no space to be optimized since they are inadmissible, or the
optimal result was found in the initial population (cells marked with X and v'). In contrast, some
objective functions that take into account the compactness or/and separation criteria could be
used in the optimization of the datasets that include the Gaussian-like clusters and hyper-spherical
clusters that have some degree of overlap in G1, or heterogeneous data structures with close
objects between the clusters in G4 (blank cells). In general, MST-clustering fails in detecting
close or overlapping clusters, and the use of a complementary objective function that considers a
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Table 4.4: A summary of the results regarding the analysis of the admissibility of the objective functions

Type Objectives MST SNN SL AL KM
IN|OP |IN|OP |IN |OP | IN|OP|IN OP
Ent 24 -1 20 3|24 -1 23 1123 1
Compactness Dev 14 - 11 3112 - 24 -| 24 -
Var 14 - 11 3112 - 24 -| 24 -
TWCV 14 - 17 1] 15 - 24 -| 24 -
CH 7 6| 5 9] 4 8| 13 3120 4
DB 10 519 8| 14 4118 4117 4
Compactness | Dunn 16 7116 7|17 6| 16 4| 14 3
and Mod 23 1] 22 2121 1122 - 120 -
Separation Sil 7 5|/ 6 707 6| 14 3120 3
PBM 9 6 5|1 10| 7 8| 18 4| 17 4
XB 15 71 16 717 6| 15 41 14 3
ABSS 16 3113 5113 4] 21 1|23 1
. Separ 19 2113 5120 3123 11]22 1
Separation Sepct 4| - 11| 3|12| -|24 -|24] -
Sepgrapn | 14| 7] 6] 11| 13| 4| 19| 1]16| 1
Connectedness Con 17 71|17 7117 6115 4110 4
DCD 22 2124 -| 24 - 24 22 1
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Table 4.3: Results of the analysis of the admissibility of the objective functions considering an initialization with KM

search in different criteria (direction) covered in the initialization can lead the EMOC to obtain
better results.
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In terms of the results shown in Table 4.3, we observe that for most of the objective
functions, there is no space for optimization (cells marked with v'or xX) when KM is applied in
the initialization. Only the objective functions Dunn, PBM, Sepgrqpi, and Con have at least
five datasets in which it is possible to improve the results (blank cells). In particular, we observed
that Con has space to be optimized in ten datasets, including all datasets present in G3 and G4.
In this case, KM fails to detect the elongated clusters, and the use of Con could lead the EMOC
to find this kind of structure present in G3 and G4. In general, these results point out that the
initialization with KM and AL provide limitations in optimizing most of the compactness or
separation criteria for most datasets.

In the initialization with MST-clustering, SNN, and SL, the objective functions present
similar behavior. All objective functions are inadmissible, or the initial population has the
best results for datasets with well-separated clusters. Consequently, there is no space for
optimizing any evaluated criteria for these features (well-separated clusters and initialization with
MTS-clustering, SNN, and SL).

In terms of the EMOC approaches, we verified an issue in the design of the approaches
that consider the same clustering criteria in the initialization strategy and the objective functions,
in which the evolutionary optimization could not be adequate. For example, in Handl and Knowles
(2005¢), KM is applied in the initialization along with the pair of objectives (Var and Dev).
In this case, the initial population has solutions that either reach the optimal results or exceed
the boundaries of feasible search space to find compacted clusters. Therefore, optimization in
this direction would not be necessary. Furthermore, these objective functions are very similar
in their formulation, which limits the capabilities of the algorithm in generating a diverse set
of solutions. MOCLE, beyond other approaches, also presents a similar design, in which every
objective function is inadmissible for all the datasets in terms of at least one method used in the
initialization.

To demonstrate this impact in terms of ARI, Table 4.5 presents the best ARI results of
the partitions generated by each algorithm applied in the initialization of MOCLE (AL, KM, SL
and SNN), and MOCLE results. Column IIj presents the best ARI in the initial population, and
in column MOCLE, the best average ARI and its standard deviation in the results of MOCLE in
30 executions. The “optimization” of the base partition worsened the clustering results, because
the use of inadmissible objective functions can move away from the goal. In comparison with the
results of the initial population, MOCLE promoted a slight but not significant ARI improvement
in 3 datasets. On the other hand, we can observe a significant worsening of ARI in 5 datasets
without an improvement in the remaining datasets. In the case where the initial population has a
diverse set of partitions, the use of ensemble clustering methods or even selection methods may
provide better results than MOCLE. For example, according to the mean ARI (last row in Table
4.5), in the case of a selection method picking the best partitions in Il it could provide a better
mean result than MOCLE (best mean ARI found in Il equals to 0.9653 and the MOCLE mean
result equals to 0.8459).

It is important to note that, in general, EMOC approaches present in the literature do
not use restrictions as defined in Eq. 2.2 (see Section 2). They usually apply the restrictions as
objective functions to maintain good solutions found in the initialization or restrict the search in
some direction. This case is different from the above scenario, in which the initialization strategy
limits the search to all the objective functions used in the multi-objective approach.

These results, presented in Table 4.4, show that for every analyzed initialization, there is
no objective function that is admissible in all the datasets. Furthermore, we presented which
objective functions have space to be optimized and determined the inadmissible ones, answering
our first research question.
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G | Dataset AL KM SL SNN IIp MOCLE
R15 0.9893 | 0.9928 | 0.8955 | 0.9928 | 0.9928 | 0.9928 7.90E-16
D31 0.9307 | 0.9529 | 0.2124 | 0.5807 | 0.9529 | 0.9530 1.93E-04
Engytime 0.6807 | 0.8151 | 0.0000 | 0.0000 | 0.8151 | 0.8151 0.00E+00
Sizes5 0.9435 | 0.9197 | 0.0307 | 0.4067 | 0.9435 | 0.9435 3.39E-16
Squarel 0.9501 | 0.9735 | 0.0000 | 0.3285 | 0.9735 | 0.9764 1.44E-03

Gl | Squared 0.7047 | 0.8348 | 0.0000 | 0.0000 | 0.8348 | 0.8348 5.65E-16
Twenty 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00
Fourty 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00
Sph_5_2 0.8635 | 0.8688 | 0.6949 | 0.5877 | 0.8688 | 0.8688 5.65E-16
Sph_6_2 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00
Sph_9_2 0.7731 | 0.8313 | 0.0007 | 0.0001 | 0.8313 | 0.8313 5.65E-16
Sph_10_2 0.9782 | 0.9911 | 0.7968 | 0.8804 | 0.9911 | 0.9935 7.48E-03

ds2c2sc13_S1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00
G2 | ds2c2sc13_S2 | 1.0000 | 0.8752 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00
ds2c2sc13_S3 | 0.6648 | 0.6475 | 0.8724 | 1.0000 | 1.0000 | 0.7771 2.26E-16

Longl 0.0152 | 0.2907 | 0.9940 | 1.0000 | 1.0000 | 1.0000 0.00E+00
G3 | Pat2 0.2161 | 0.2446 | 1.0000 | 1.0000 | 1.0000 | 0.2446 1.41E-16
Spiral 0.0221 | 0.0518 | 1.0000 | 1.0000 | 1.0000 | 0.0518 2.12E-17
3MC 1.0000 | 0.8003 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00
DS-850 0.9657 | 0.9018 | 0.3927 | 0.7159 | 0.9657 | 0.9657 1.13E-16
G4 Aggregation 1.0000 | 0.7906 | 0.8089 | 0.8089 | 1.0000 | 1.0000 0.00E+00
Complex9 0.4954 | 0.4921 | 0.9988 | 1.0000 | 1.0000 | 0.5119 1.34E-03
Patl 0.0788 | 0.0684 | 1.0000 | 1.0000 | 1.0000 | 1.0000 0.00E+00

Spiralsquare | 0.5410 | 0.4962 | 0.9283 | 0.9971 | 0.9971 | 0.5410 3.39E-16
MEAN | 0.7422 | 0.7433 | 0.6927 | 0.7625 | 0.9653 | 0.8459

Table 4.5: MOCLE initial population vs. final population. The boldface values denote the best ARI found in I and
generated by MOCLE.

In the following sub-section, we analyzed the clustering results considering the opti-
mization of the selected objective functions, extending our analysis. We picked the objective
functions that presented the lowest results of the inadmissibility considering the initialization
with MST-clustering.

4.4.1 Analysis of the objective functions in the optimization

Aiming to answer the second research question presented at the beginning of this chapter,
we analyzed one initialization strategy, considering different scenarios of the combination of
objective functions. In particular, we analyze the behavior of the objective functions in order to
improve the detection of no well-separated clusters and close clusters in the heterogeneous data
structures in terms of the results presented in Table 4.2. Hence, we selected one objective function
per criterion that presented the lowest number of datasets in which they are inadmissible: Var,
CH, Sepcy, and Con. Moreover, as described in Section 4.2, A-MOCK was chosen because it
is a recent approach based on an established algorithm that provides features that allow us to
explore the use of MST-clustering in the initialization.

It should be noted that in this section we demonstrate how to perform the analysis of the
objective functions while considering a particular EMOC approach and specific goals. Different
scenarios, considering other initialization (or even other EMOC algorithms), can lead to different
admissibility results and different clustering performance (ARI).

Table 4.6 presents the average ARI and standard deviation of 30 runs for each dataset
generated by the A-MOCK considering different combinations of the selected objective function.
The MST column refers to the best ARI found in the partitions generated by the MST-clustering.
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The underlined results point out the objective functions in which the optimization generated
solutions that dominate the true partition.

The results point out that, in general, the use of the pairs of objective functions (Var,
Sepcr), (Ch, Sepcr), and (Var, CH) does not provide reliable results, because they lose the
relation of connectedness in the solutions when it is not applied any restriction. Besides that,
these pairs of objective functions dominate the true partition in most of the datasets.

In contrast, the pairs of the objectives (CH, Con), (Sepcr, Con) and (Var, Con)
provide the mean ARI of all datasets above 0.85, as shown in the row Mean in Table 4.6. The use
of Con as an objective function preserves the continuity property of clusters and restricts the
search to providing solutions that correspond to the trade-off between this objective and the other
objectives (CH, Var, or Sepcr). The best results are provided by the pairs (Sepcr, Con) and
(Var, Con), both with a mean ARI above 0.91.

In general, the results relating to the use of (Sepcr, Con) and (Var, Con) show that
the ARI was improved in the no well-separated clusters present in G1 and heterogeneous data
structures in G4. Besides that, most of the good solutions found in the initialization were
preserved in most datasets. However, we can observe a loss of the ARI for the datasets in G2
when compared with the initial population (MST column). As shown in Table 4.2, the objective
functions (Sepcr, Con) or (Var, Con) were inadmissible (X) or obtained the optimal result
(V') for the datasets in G2 and G3, thus the optimization is not required. In this context, the
results in Table 4.6 confirm our previous results, in which the optimization of these objective
functions could only provide a general cost, and it did not afford any improvement in the clustering
results. Moreover, the optimization of these objective functions could worsen the clustering
performance, as observed in the G2. Furthermore, the optimization of these objective functions
has another issue, the domination of the true partitions in most of the datasets in the G1 and
G2. In G1, it occurred mainly in the datasets with overlapping clusters. In this case, the size
of the neighborhood used in the computation of the Con and the distribution of the points in
the boundaries of the overlapping clusters may determine the domination of the true partition.
In particular, Con computes the continuity of the data based on the neighborhood; however,
an overlapping region might have several nearest neighbors in common, making it difficult to
determine which cluster each point in the boundaries belongs to. Regarding G2, as reported in
(Kultzak et al., 2021), the optimization of the dataset ds2c2sc13 in A-MOCK can produce
several solutions with optimal Con; as a consequence, for these solutions, the decisions around
the evolutionary multi-objective optimization will be taken essentially based on the other criteria,
in which the true partition is dominated.

In summary, we observe that the initialization strategy should be correlated with the
restrictions applied in the EMOC approaches. For example, in A-MOCK, the objective function
Con takes on this role in order to maintain the high-quality partitions found in the initialization.
Furthermore, optimizing some groups of datasets is not required because the initialization
provides the optimal result. However, in A-MOCK there are no criteria to prevent the “optimizing”
of the partitions. This general view demonstrates conditions regarding the choice of the objective
functions, and we presented a scenario where optimization is not required, answering our second
research question.

4.5 CHAPTER REMARKS

In this chapter we proposed and presented an analysis of the (in)admissibility of clustering criteria
in support of defining objective functions in evolutionary multi-objective clustering approaches.
Furthermore, we highlighted the importance of aligning the choice of the objective function and
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the initialization strategy in designing the EMOC. In general, the use of a traditional clustering
algorithm in the initialization provides solutions that reach the boundaries of the search space
in terms of some criteria. Thus, optimizing the objective functions that consider such criteria
is not required, thus other complementary criteria should be applied in the optimization. In
contrast, the criteria applied in the initialization can be taken as “restrictions”, to determine
the feasible search region. It is important to note that, in general, the EMOC approaches do
not use explicit restrictions (see Eq. 2.2 in Section 2). In many cases, the “restrictions” are
represented as objective functions without prior notice, which could lead to a mistake regarding
the understanding of which objectives are optimized. Thus, our study helps the understanding of
the concept of admissibility to support the better choice of the objective functions, considering
the different roles that the objective function can perform in the evolutionary multi-objective
optimization, answering the RQ.1 and RQ.2 (see Chapter 1).

The study and analysis presented in this chapter was published in the journal Information
Sciences, in Morimoto et al. (2022a).

In the next chapter, we present metrics applied to measure the relative quality of the
base partitions generated by MST-clustering that are applied to design a new EMOC approach.
These metrics consider the data proprieties of this initialization strategy and the criteria applied
to the objective functions, that were observed in the analysis presented in this chapter.
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S MEASURING THE SEPARATION AND OVERLAPPING OF DATA

In this chapter, we present a new metric to measure separation of data. To our knowledge, there
is not an unsupervised metric that measures the separation or the overlapping of the data. Thus,
we propose a Data Separation Degree (DSD) that considers the base partitions generated by
MST-clustering to determine the data separation.

Furthermore, we present the Constraint-Based Overlap value (CBO) (Adam and Blockeel,
2017), a semi-supervised metric that measures the overlapping of the data. In general, CBO is
applied to select algorithms that should be applied according to the data overlap.

Based on the analysis of the admissibility and the ARI results presented in the previous
Chapter, we verified that using clustering algorithms in the initialization provides high-quality
solutions or is inadmissible in the context of some objective functions. However, the existing
EMOC approaches do not have a criterion to define when the optimization should be (or should
not be) performed. Both CBO and DSD, are used in our study to deal with this issue, in which we
consider the general properties of the MST-clustering to estimate the relative quality of the base
partitions generated by this algorithm and define whether the optimization should be performed
in EMOC. Here, the relative quality refers to the data proprieties in which the initialization
strategy has good (or poor) clustering performance.

5.1 DATA SEPARATION DEGREE

Zahn (1971) introduced the general concept of MST-clustering, presenting it as a method to deal
with the problem of detecting inherent separations between subsets (clusters) of a given dataset.
Furthermore, Xu and Tian (2015) characterized MST-clustering as capable of detecting clusters
of different shapes and sizes. Thus, based on the literature and an analysis of the MST-clustering
presented by Handl and Knowles (2007), we assume that it can detect well-separated clusters with
arbitrary shapes (heterogeneous nature) but fails in detecting close or overlapping data structures.

Taking into account these characteristics, we developed a metric to estimate the degree
of separation of the partitions in the population generated by MST-clustering, denoting the general
separation of the data. In our data analysis, we observed that the initial population generated by
MST-clustering presents a pattern: the results for the separation index, Sepcr, (Liu et al., 2018)
have a high variation between the minimal, mean, and maximal results when the partitions are
generated from datasets with overlapping structures, while this variation is near to zero when
considering datasets with well-separated data structures.

In other words, we verified that the initial population generated by the MST-clustering
can provide information regarding the data separation, which is applied to compute the DSD, a
new measure to determine the separation of the data.

5.1.1 Computation of Data Separation Degree

The Data Separation Degree (DSD) considers the variation of the results of Sep¢y. for the base
partitions generated by MST-clustering to define a degree of separation of the data. In our
analysis, the relations of minimal (sepcpI1,,i,), mean (sepcrIlyean), and maximal (sepcpIlax)
results of Sepcy in the base partitions generated by MST-clustering have low variation (near to
zero) when the dataset has well-separated clusters and an inverse relation for overlapping data
structures. Thus, the relation between (sepcrIlin/sepcrmean) or (sepcrllean/sepcrIlinax)
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or (sepcrIlpin/sepcrlnay) is equal to one to well-separated data structures and near to zero
in the case of overlapping, providing the degree of separation of the data. For example,
Spiral dataset (that contains two well-separated clusters with a regular dispersion of the
objects into the spiral shape) have the same outcome for these three relations considering two
decimals, (SepCLHmin/sepCLHmean) = (SepCLHmean/sepCLHmax) = (SepCLHmin/sepCLHmax)
=0.99. However, we also verified an asymmetric distribution in terms of the number of clusters
in datasets with arbitrary shaped clusters, presenting different relations between the median and
mean values under different skewness, as illustrated in Fig. 5.1. In this case, the relation of
results of Sepcr should consider the skewed direction (positive or negative).

Median Mean Median
Median
Mean Mode Mean
Mode | 1 1 Mode
1 [
\ i ] ! /
] ] I
I
I
] I |
] i |
| ] I
1 I |
I ] I
1 1 1
Positive Skew Symmetrical Negative Skew
Distribution

Figure 5.1: Relation between mean and median under different skewness

In Algorithm 1, we present the steps applied to compute the data separation degree.
First, we compute the Sep ;. and obtain the number of the clusters (k) for each solution in the
initial population (lines 1-3). After that, it is obtained with statistics() the maximum, minimum,
mode, mean, and median values for Sepcy and k in the initial population (lines 5-6). These data
are used to define the DSD according to the skew direction in the number of clusters distribution:
(sepcrllpmin/sepcrllpeqn) for negative skew or (sepcrIlyean/sepcrllnag) for positive skew
(lines 7-11). The DSD provides results in the range of O and 1, in which 1 indicates well-separated
data and O high overlapping data. In our computation, we consider a closest integer value of
kIl,eqn and k11, 4i4n, Obtained by the function round().

5.2 CBO - CONSTRAINT-BASED OVERLAP VALUE

The CBO was proposed by Adam and Blockeel (2017). As a semi-supervised metric, the CBO
metric uses some information available about the desired solution. This information takes the
form of constraints: must-link (ML) and cannot-link (CL) constraints.

In particular, the CBO considers a short CL and two parallel constraints to measure the
degree of overlap of the clusters in a dataset. The short CL, illustrated in Fig. 5.2(a), considers
that: if two objects are close (they belong to a defined neighborhood) and have different labels, it
indicates an overlap between two clusters, in which €; indicates a maximum distance between the
object x| and the k-nearest neighbor in a particular neighborhood. In terms of the two parallel
constraints, illustrated in Fig. 5.2(b), it considers two pairs of objects, in which the objects of
each pair are close (they belong to a defined neighborhood); in this case if it is observed a ML
and CL relationship between the objects of each pair, it also implies an overlap region.
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Algorithm 1 Data Separation Degree

Input: Il
Output: DSD
1: for each r; € I1y do
2 sepvl[i] « Sepcr(m;)
3 kv[i] <« K(m;)
4: end for
50 k1L, kM pin, kM pean, kI podes kI peqian <— statistics(kv)
6: sepcrllnax, Seporlmin, sepcrllpean < statistics(sepv)
7: if (kI1,,04. >round(kIl,,eq,)) and (round(kI1,eqi0n) =round(kIl,,eq,)) then
8: DSD « sepCLHmean/sepCLHmax
9: else
10: DSD «— sepcrIlyin/sepcrllmean
11: end if
12: return DSD

A u A |
A A A - = a 4 A " ]
A A A A ™
A L} n ] — -
A ] A n
A —a u — . g =
A A | | A A n
A n [ ] A - n
A [ A [
A [ ] N -
(a) Short cannot-link pattern (b) Parallel and close must-link and cannot-link pattern

Figure 5.2: Overlapping patterns of constraints. Red links denote CL and green links denote ML patterns, in which
the objects of the same color belong to the same cluster.
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(a) Score of a single constraint for L=6 (b) Score of a pair of constraints

Figure 5.3: An illustration of the relationship between two objects and the more distant objects in their neighborhoods
with L = 6. The dashed circles point out the objects included in the neighborhoods. The black points denote the
objects whose labels or patterns are unknown.

The relationship of short (close) link between the objects consider the distance, d(, ),
between the objects. As above-mentioned the CBO considers a defined neighborhood size (L),
a user-parameter, to compute a score that indicates the relationship of closeness between the
objects. Eq. 5.1 presents the score considering two close objects.
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d(x1,X3) -
score(s) = 11 T maxteray if d(x1.%2) < max(er, &), (5.1)
0, otherwise

According with the authors, we can assume that d(x1,X2) + d(X],X}) < d(x1,X}) +
d(x},x2) without loss of generality. Thus, the parallel relationship can be scored according to
Eq. 5.2.

score(p) = score(sy) - score(sy) (5.2)

In both scores, higher scores indicate an overlap of clusters. The CBO aggregates these
scores in Eq. 5.3. This metric compares the number of short CL constraints, direct (single
pattern) or by propagation (double pattern), to the total number of constraints, both ML and CL.

Z score(s) + Z score(p)

seCL s1€CL,
sHeEML
CBO = = (5.3)
Z score(s) + Z score(p)
seCLUML s1eML,
$,eCLUML

CBO takes the interval between O and 1, in which values equal to zero indicate
well-separated data structures, while results near to 1 indicate total overlap.

5.3 EXPERIMENTAL DESIGN

To evaluate DSD we considered two experiments. The first one compares DSD with traditional
metrics applied to measure the relative quality of clusters, such as PBM, Dunn and DB. Also,
we compare our results with a recent published measure of clustering quality, AUCC - Area Under
the Curve for Clustering presented by Jaskowiak et al. (2022). The AUCC explores the features
of AUC/ROC - Area under the curve/Receiver Operating Characteristics (Spackman, 1989), a
performance measure usually applied in the supervised learning domain to the unsupervised
domain. These experiments were performed to demonstrate that general clustering metrics do
not provide the required information to support a configuration or determine whether a dataset
should be optimized or not. In the second experiment, we compare the results of DSD and CBO
with ARI, aiming to demonstrate the general features of these metrics.

Considering that MST-clustering (Handl and Knowles, 2007) has a random choice of
the neighbor node to link the nodes to other ones when the interesting link is removed, and the
initial node applied in the construction of the MST can also be chosen by random, the initial
population can have a slight variation in the number of clusters with different random seeds, that
can affect the results of the DSD. In order to amend this matter and obtain a consistent result for
DSD, in our experiments, we use the average DSD results of 10 initial populations.

Regarding the CBO setting, we applied the original neighborhood size (Lo = 10+n/20)
provided by Adam and Blockeel (2017), and three others: (Lys = Vn - 25%), (Lso = v/n - 50%)
and (L75 = v/n - 75%), in which n is the number of objects in the dataset. Furthermore, similar to
Adam and Blockeel (2017), we used 20 known short link patterns that were applied to obtain the
parallel patterns (totaling 40 objects), i.e., we considered about 200 constraints (close and parallel
must-link and cannot-link patterns), applied to compute both score(s) and score(p). The points
applied to define the short link patterns are selected at random, thus the results provided consider
the average of 30 runs.
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5.3.1 Datasets

In terms of the datasets, we used the same ones from the previous experiments, presented in
Section 4.2. For the purpose of facilitating the visualization of the correlated metrics, we ordered
the datasets considering the ARI results, in which we do not use the groups applied in Section
4.2.

5.3.2 Performance assessment

In general, the correlations between relative and external criteria are given by the Pearson
correlation coefficient (Jaskowiak et al., 2022). Thus, we consider this coefficient to evaluate
DSD and compare it with other metrics.

5.4 RESULTS

Table 5.1 presents the results of DSD, DB, Dunn, PBM, AUCC and their correlation with ARI.
The datasets in this table and the next one are not grouped by the data structures as presented
in the previous chapter. In this table, we can observe that the results of DSD have the highest
absolute correlation with ARI. Besides that, it is important to note that DB, Dunn and PBM
were computed considering the best partitions in the initialization, that requires a selection of the
best partition in the base partitions to make it possible to use these metrics. In contrast, DSD
measures the quality in terms of the initial population generated by MST-clustering.

Datasets ARI DSD DB DUNN PBM AUCC
3MC 1.0000 | 0.6807 | 0.7076 | 0.1613 49.0 | 0.9262
Fourty 1.0000 | 0.9539 | 0.3306 | 0.4943 167.5 | 1.0000
Longl 1.0000 | 0.8720 | 1.5709 | 0.0647 0.4 | 0.7036
Patl 1.0000 | 0.2696 | 2.3157 | 0.0358 | 53556.2 | 0.4450
Pat2 1.0000 | 0.6709 | 1.0907 | 0.0723 | 220488.0 | 0.6991
Sph_6_2 1.0000 | 0.7717 | 0.3555 | 0.5150 626.4 | 0.9995
Spiral 1.0000 | 0.9997 | 4.5302 | 0.1424 0.8 | 0.5204
Twenty 1.0000 | 0.9291 | 0.3236 | 0.3679 122.9 | 1.0000
ds2c2sc13_S1 | 1.0000 | 0.9015 | 0.4900 | 0.4592 0.2 | 0.9895
ds2c2scl13_52 | 1.0000 | 0.9305 | 0.7258 | 0.1520 0.2 | 0.9740
ds2c2sc13_53 | 0.9951 | 0.9461 | 1.6246 | 0.0451 0.1 | 0.9303
Complex9 0.9361 | 0.8218 | 1.8153 | 0.0351 | 20961.5 | 0.8364
Spiralsquare | 0.9287 | 0.6872 | 1.7825 | 0.0368 33.5 | 0.8320
Sph_10_2 0.8588 | 0.5547 | 0.7624 | 0.1025 177.4 | 0.9872
Aggregation | 0.8089 | 0.8239 | 0.6249 | 0.1078 195.9 | 0.9441
R15 0.7275 | 0.6049 | 0.7718 | 0.0349 247 | 0.9713
Sph_5_2 0.7127 | 0.4553 | 0.8807 | 0.0931 10.9 | 0.9309
Sizesb 0.5032 | 0.0861 | 0.8980 | 0.0121 16.4 | 0.8078
Square4 0.4694 | 0.2579 | 1.0345 | 0.0149 14.2 | 0.9468
D31 0.4568 | 0.4170 | 1.3983 | 0.0166 13.9 | 0.8049
DS-850 0.4505 | 0.5462 | 0.9474 | 0.0235 2.1 | 0.7068
Squarel 0.3797 | 0.2681 | 0.8470 | 0.0192 349 | 0.7713
Sph_9_2 0.3056 | 0.1015 | 1.5381 | 0.0241 1.1 | 0.7869
Engytime 0.0076 | 0.1552 | 1.2201 | 0.0062 3.6 | 0.5721

Person Correlation | 0.8062 | 0.0815 | 0.5058 0.2147 | 0.2569

Table 5.1: Best ARI found in the MST-clustering and CVIs relationship (average results of 10 populations generated
by MST-clustering)

Table 5.2 presents the results for CBO and DSD. In CBO, the negative correlation refers
to the inverse relation with ARI, in which the well-separated data is denoted with results near to
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zero, while the best results of ARI are near to one. The result on Table 5.2, shows that DSD has
the highest absolute correlation with ARI. However, in the datasets with an ARI near to 1, some
CBO results provided better correlation. In particular, in the case of the datasets with an ARI
greater than 0.99, CBO has an absolute correlation of 1 for L5 and 0.90 for Lsg, while the DSD
has a correlation of 0.21.

CBO

Datasets ARI Io Lo Lo Lo DSD

3MC 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6807
Fourty 1.0000 | 0.2440 | 0.0000 | 0.0000 | 0.0016 | 0.9539
Longl 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8720
Patl 1.0000 | 0.0353 | 0.0000 | 0.0000 | 0.0039 | 0.2696
Pat2 1.0000 | 0.0846 | 0.0000 | 0.0013 | 0.0164 | 0.6709
Sph_6_2 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7717
Spiral 1.0000 | 0.0507 | 0.0000 | 0.0000 | 0.0002 | 0.9997
Twenty 1.0000 | 0.0263 | 0.0000 | 0.0000 | 0.0000 | 0.9291

ds2c2scl3_S1 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9015
ds2c2scl3_S2 1.0000 | 0.0023 | 0.0000 | 0.0000 | 0.0000 | 0.9305
ds2c2scl3_S3 0.9951 | 0.1257 | 0.0004 | 0.0030 | 0.0164 | 0.9461

Complex9 0.9361 | 0.0627 | 0.0000 | 0.0065 | 0.0022 | 0.8218
Spiralsquare 0.9287 | 0.1383 | 0.0009 | 0.0027 | 0.0028 | 0.6872
Sph_10_2 0.8588 | 0.0359 | 0.0015 | 0.0131 | 0.0156 | 0.5547
Aggregation 0.8089 | 0.0221 | 0.0094 | 0.0046 | 0.0031 | 0.8239
R15 0.7275 | 0.0065 | 0.0116 | 0.0021 | 0.0134 | 0.6049
Sph_5_2 0.7127 | 0.0816 | 0.0072 | 0.0227 | 0.0282 | 0.4553
Sizes5 0.5032 | 0.0175 | 0.0126 | 0.0031 | 0.0122 | 0.0861
Square4 0.4568 | 0.0943 | 0.0656 | 0.0848 | 0.0954 | 0.1096
D31 0.4694 | 0.2194 | 0.0183 | 0.0410 | 0.0350 | 0.4170
DS-850 0.4505 | 0.0148 | 0.0019 | 0.0034 | 0.0021 | 0.5462
Squarel 0.3797 | 0.0160 | 0.0104 | 0.0140 | 0.0172 | 0.2681
Sph_9_2 0.3056 | 0.1335 | 0.0992 | 0.1038 | 0.1003 | 0.1015
Engytime 0.0076 | 0.0618 | 0.0468 | 0.0561 | 0.0451 | 0.1552

PersonCorrelation(PC) | -0.1357 | -0.6995 | -0.7062 | -0.6521 | 0.8062
PCfordatasetswithARI>0.99 | -0.3233 | -1.0000 | -0.9091 | -0.6583 | -0.2111
PCfordatasetswithARI<0.99 | -0.0828 | -0.6018 | -0.5848 | -0.5260 | 0.8056

Table 5.2: Best ARI found in the MST-clustering and the relation between CBO and DSD

5.5 CHAPTER REMARKS

In this section, we introduce a new metric, DSD, to measure the separation of the data in the
clusters present in the base partitions generated by MST-clustering. Also, we present the main
features of the CBO (Adam and Blockeel, 2017), an existing semi-supervised metric applied to
measure the data overlapping.

These metrics are analyzed in order to verify their potential in defining the relative
quality of the solutions generated by MST-clustering. Our experiments demonstrated that both
DSD and CBO have a higher correlation with ARI in comparison with other metrics.

In the next chapter, we present a new EMOC approach that considers both DSD and
CBO to support an adaptive parameter setting and choice of objective functions. As discussed in
the previous section, both CBO and DSD have features to determine the relative quality of the
base partitions generated by MST-clustering, supporting the definition of a new EMOC.
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6 PROPOSED MULTI-OBJECTIVE CLUSTERING APPROACH

In this chapter, we present the proposed EMOC approach, AEMOC - Adaptive evolutionary
multi-objective clustering approach based on data proprieties. We consider the findings described
in Chapters 4 and 5 to improve the design of the multi-objective clustering approach in comparison
to existing approaches.

Fig. 6.1 presents the general architecture of the proposed approach that is composed of
4 modules: Initialization, Evaluation, Configuration, and Optimization. The main difference
between this approach and the EMOC approaches present in the literature is the introduction
of the Evaluation and Configuration modules. The Evaluation Module verifies whether the
initialization strategy could provide optimal results in terms of the evaluated criteria. In particular,
the proposed evaluation method measures the separation and overlapping of the data to analyze
the potential of MST-clustering in detecting the clusters. Based on these data properties, the
AEMOC strategy consists of deciding whether an optimization step should be performed. In the
case where optimization is applied, the configuration module determines the parameter setting of
the multi-objective optimizer according to the results of the evaluation module. In the following,
we present details of each module.

INITIALIZATION EVALUATION MODULE\
MODULE || [[EESSEDstossssistois v e s
P e e e | Data Proprieties E O};;ﬂml?atzlon
! MST-Clustering ! 5 Evaluation ! equire
Groups:

[ G1 - well-separated
[CIGz2 - near (close)
[ G3 - overlapping

CONFIGURATION
MODULE

OPTIMIZATION MODULE
Multi-objective Evolutionary Optimization

» Objectives evaluation

v
Non-dominated Sorting

v

Parents Selection

| v

‘ Crossover

v
Mutation

1 t

Objectives evaluation || Non-dominated Sorting

‘ Survival Selection

Figure 6.1: Proposed approach: AEMOC

6.1 INITIALIZATION MODULE

According to the admissibility analysis (Chapter 4), the initialization strategy and the choice of
the objective functions should be complementary in terms of the clustering criteria adopted. We
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verified the potential of using MST-clustering, which considers a connectedness criterion to apply
other kinds of clustering criteria (such as compactness). Thus, the choice of the representation
of the solutions also follows this initialization strategy, in which we applied the LAG encoding
(locus) proposed by Handl et al. (2007). This representation considers the general structure of
the MST to denote the partitions, in which each node represents a locus (variable) manipulated
by the evolutionary operators.

Another well-known representation that makes use of the MST data structure is the
reduced LAG (called A-locus) introduced by Garza-Fabre et al. (2018). However, we do not make
use of this representation because additional experiments presented in Appendix B demonstrated
that A-locus (Garza-Fabre et al., 2018) has lower clustering performance in diverse datasets in
comparison with locus representation.

6.2 EVALUATION MODULE

The evaluation module analyzes the capabilities of the MST-clustering in detecting the clusters
based on separation and/or overlapping of the data. In other words, we measure the potential
quality (relative quality) of the base partitions in order to define whether the optimization should
(or should not) be performed. Furthermore, we use the outcome of this module to determine the
parameter setting of the optimization module.

In general, the evaluation method measures the data properties (or attributes) that
contribute (or obstruct) to the initialization strategy in detecting the clusters. As above mentioned,
MST-clustering can detect well-separated clusters, but has difficulties detecting near and
overlapping clusters; therefore, in this case, this module evaluates the relation of the separation
and overlapping of the data that is applied to define whether the initialization strategy can detect
the clusters in a dataset.

In particular, in our approach, we combined CBO and DSD, aiming to inherit their
strong points in defining separation and overlapping of the data, in which well-separated clusters
are indicated by CBO results near zero and DSD results near one, and the opposite relationship
denotes overlapping clusters.

In our method, we consider three groups related to the data properties to measure the
potential of the MST-clustering in detecting the cluster: G1, which considers well-separated data
and has a high potential for MST-clustering to detect clusters; G2, which denotes near (close)
data and has a middle potential for MST-clustering to detect clusters; and, G3, which refers to
overlapping data, where, in general MST-clustering fails in detecting clusters.

To determine these different groups, we analyzed the following datasets! to define
the range of CBO and DSD results: Long, Spiral, Twenty, Complex9, R15, Sph_5_2,
Square4, D31, and Sph_9_2. These datasets were selected because they present different
data structures with distinct data separation (or overlap), making it possible to define the ranges
of each group.

In Table 6.1, we present the CBO and DSD results for each dataset. Regarding CBO,
we show the results considering three different sizes of neighborhood: (L5 = n - 25%),
(Lso = v/n - 50%) and (L75 = \/n - 75%), where n is the number of objects in the dataset.

It is important to note that the range of well-separated data to close data is very short
in the CBO. CBO measures the degree of overlap of the data according to the intersection of
the objects between different clusters based on the neighborhood. Moreover, in the case of a
few objects being close or in the intersection, the CBO presents a result near zero, but it is still

!Datasets repository: https://github.com/deric/clustering-benchmark
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different from zero. Therefore, in our evaluation, we also consider this aspect in the definition of
the range of the groups.

CBO
Dataset DSD
arasets Lsq, Ls0q, L759,
Longl 0.0000 | 0.0000 | 0.0000 | 0.8720

Spiral 0.0000 | 0.0000 | 0.0002 | 0.9997
Twenty 0.0000 | 0.0000 | 0.0000 | 0.9291
Complex9 | 0.0000 | 0.0065 | 0.0022 | 0.8218

R15 0.0065 | 0.0021 | 0.0134 | 0.6049
Sph_5_2 ] 0.0072 | 0.0227 | 0.0282 | 0.4553
D31 0.0183 | 0.0410 | 0.0350 | 0.4170

Square4 | 0.0656 | 0.0848 | 0.0954 | 0.1096
Sph_9_2 {0.0992 | 0.1038 | 0.1003 | 0.1015

Table 6.1: Best ARI found in the MST-clustering and the relation between CBO and DSD

By analyzing the results of CBO and DSD for the datasets with well-separated clusters
(Long, Spiral, Twenty), we observe that the CBO presents results between 0 and 0.0002,
and the DSD results between 0.87 and 0.99. Based on these results, we defined a range of CBO
and DSD to describe datasets in G1: [0.00,0.001[ for CBO and [1.0, 0.85] for DSD. In terms of
the datasets with data overlap (Square4, D31, and Sph_9_2), we verified results above 0.018
for CBO and below 0.417 for DSD; therefore, we determine the following ranges for the dataset
in G3: [0.015, 1.00] for CBO and ]0.45, 0.0] for DSD. Finally, to define the datasets in G2, we
consider a range between G1 and G3: [0.001, 0.015[ for CBO and ]0.85, 0.45] for DSD.

Considering the three groups of data properties, we introduce an evaluation method
in Fig. 6.2, that takes into account the strengths of each metric (DSD and CBO). At first, this
method evaluates the CBO in order to determine the groups (G1, G2, and G3).

As can be seen in Table 6.1 the CBO results of the datasets Complex9 and Sph_5_2,
are highly dependent on the size of the neighborhood, which can lead to mistakes in the boundaries
of the groups. Therefore, the merit of this metric is evaluated by considering different sizes for
this item: Ljs, Lso, and L75. Only when the CBO provides a consensus result for the various L
are the groups determined by this metric. In the case where this metric presents a weak indication
of the group (no consensus), the DSD is applied instead of the CBO.

/ DATA PROPRIETIES EVALUATION
Groups |,
|G
Dataset, ML Consensual
_and CL patterns | , CBO ranges: results [ c=
1 i | [0.000, 0.001[ - well-separated G3
[0.001, 0.015[ - near (close)

[0.015, 1.000] - overlapping

Partitions generated
by MST-clustering ( SEPARATION EVALUATION

p|] - i

'L DSD evaluation !

DSD ranges:
[1.00, 0.85] - well-separated
Jo.85, 0.45] - near (close)
Jo.45, 0.00] - overlapping

Figure 6.2: Quality evaluation.
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6.3 CONFIGURATION AND OPTIMIZATION MODULES

The configuration module is used to define the general settings of the optimizer, including the
selection of the objective functions according to the groups defined in the evaluation method.

In terms of the MOEA, we used the NSGA-II in the Optimization Module. This is
a well-known MOEA that has been shown to be effective in the clustering problem. In the
NSGA-II, we considered the uniform crossover and neighborhood mutation (Handl et al., 2007)
with two different configurations for the number of iterations: 100 iterations (the same general
setting applied to A-MOCK (Garza-Fabre et al., 2017)) to optimize the base partitions related to
the datasets classified in G2; (ii) 250 iterations (the same used in EMO-KC (Wang et al., 2018))
to optimize base partitions related to G3.

With respect to the objective functions, we defined the use of one connectedness
associated with a compactness criterion or separation criterion. The connectedness is applied to
restrict the search space and support the maintenance of the continuous structures provided in the
initialization. The compactness (or separation) criterion is a complementary clustering criterion
to the ones applied in the initialization, that will guide the search.

Our approach considers Var as a compactness criterion, Sepcy, as a separation criterion,
and a modified connectivity index, Con’ as a connectedness criterion. In particular, for the
datasets with near data (clusters), classified in G2, we consider that Var can provide good results,
in line with the general results of other approaches that use this criterion in the optimization.

In terms of the dataset that presents overlapping data, classified in G3, we observe that
Sepc could provide better results than Var, being more promising for this kind of structure (see
experiments in Appendix B.2). Thus, we applied the Sepc;, as a separation criterion associated
with the Con’ as an objective function for optimizing this group of data. The Con’ refers to
an improved Con (Handl et al., 2007) that we introduced in Morimoto et al. (2022b), which is
detailed in the following.

6.3.1 An Improved Connectivity Index

By observation, we verified that Con does not distinguish solutions with different numbers of
clusters. Thus, different solutions could have the same outcome for this metric. For example,
in different solutions with optimal connectivity (Con = 0), the decision is taken by the other
objective function. In the case of a compactness criterion, such as Var, only the solution with
a lower Var (in general, the solution with the highest number of clusters) will be selected to
compose the next generation.

Since we aim to improve the general clustering performance, including finding solutions
with different granularities, we propose in Eq. (6.1) a slight but effective modification of the
definition of the Con (see Eq. A.10 Appendix A):

Con’(r) = Con(rm) + (L) (6.1)
n-L

where k is the number of clusters in partition 7, n is the number of objects in the dataset, and
L is the number of nearest neighbors that contribute to connectivity. This modification takes
k as a secondary criterion of connectivity that differentiates solutions with the same outcome
for Con but a different number of clusters, which can be found in nested clusters or hierarchical
data structures. The term (n - L) ensures that the number of clusters k£ will be mapped to a value
lower or equal to %, resulting in values in the interval ]0, %]. This is required to maintain the
ordinal relationship between the best and the worst connectivity results. Thus, this modification
will only affect solutions that have the same outcome for Con.
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Figure 6.3 illustrates how the term (7 - L) maintains the ordinal relationship when £ is
added to Con. In this example, we consider n = 10, and L = 5. In this figure, we can observe
that the penalties take intervals based on their position in the neighborhood (the penalty is equal
to 1 divided by the neighborhood position of the evaluated object). Thus, by dividing k£ by the
term (n - L), the k is mapped to the interval ]0, %], in which the values summed to Con do not
overtake the interval of the penalties of the connectedness. In this example, the maximum value
of the mapped k is 0.20 (or 1 + 5). This specific case occurs when we have each object standing
for an individual cluster, in which we have the maximum penalties of the connectedness for the
partition, and the addition of any value will not affect its evaluation. The general effect of not
using the term (n - L) can be observed in the following example: considering Con” = Con + k,
a partition w4 with Con = 3 and k = 6, and a partition 5 with Con = 4 and k = 5, for both
partitions, the result of the Con” is 9. In contrast, if we consider the Con’ and the data in Figure
6.3, it is obtained two different results: Con’ = 3.12 for 74 and Con’ = 4.1 for np , where the
information the connectivity is maintained, and new information about the number of clusters is
associated.

Neighborhood penalties with L = 5 Possible values to be added to the Con:
Ordered nearest neighbors: k L n K+ (nxL) k L n k+(nxl)
‘ 1 15 |10 0.02||6 |5 |10 0.12
2 5 10 0.04 7 5 10 0.14
Position: 112 13 1 4 15
B e A e SR S EEL 0.06| (8 [5 |10 0.16
enaities: . - = - =
R A e P E EC 0089 [5 [10 0.18
}V 5 5 10 0.10 10 | 5 10 0.20
*

Figure 6.3: Example of the relation of k/(n. - L) and the interval of neighborhood penalties

Fig. 6.4 illustrates the general effect of Con’ in the selection considering a Pareto front of
(Var, Con’). Fig. 6.4(a) illustrates four solutions, in which the solution with the highest outcome
for Var is discarded in the selection. This solution has the optimal connectivity result (Con = 0);
however, other solutions with a lower Var (and a higher number of clusters) dominates it. By
using Con’, we create a differentiation of the solutions with same outcome for Con and different
number of clusters, thus the solutions with this kind of relation are maintained, Fig. 6.4(b).

con ¢4 con
045 o 045 ©
020 o 020 © -
° ]
0.00 o s L R
k=3 k=2 var k=2 var
(a) Pareto Front of (Con, Var) (b) Pareto Front of (Con’, Var)

Figure 6.4: An example of the effect of the new connectivity in the Pareto Front

It is important to note that Con’ only uses the k to support the decision as a secondary
criterion, in which case the automatic k-determination prevails instead of the the multi-k-clustering
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(see Section 3.2.9). In other words, the solutions with a different number of clusters are naturally
obtained in the optimization of different clustering criteria, different from the approaches that use
k, as restrictions in the form of objective functions, to optimize clustering criteria to multiple k.

6.4 CHAPTER REMARKS

In this chapter, we present a new multi-objective clustering approach, AEMOC—Adaptive
Evolutionary Multi-Objective Clustering Approach based on data proprieties. The main feature
that differ this approach from the others is the use of the information of the data proprieties in the
initialization in order to adapt the parameter setting and the choose of the objective function.
For that, we introduced an evaluation module that was designed with the data proprieties and
features of MST-clustering in mind to define the relative quality of base partitions and devise the
optimization strategy.

Besides that, we introduce an improved connectivity index, Con’, applied as an objective
function in our approach. This index was designed to improve the selection in the Pareto front
and improve the clustering in datasets with sub-clusters (sub-sets), as presented in nested clusters,
when applied with Var or Sepcr.

In Morimoto et al. (2022b), we demonstrated that Con’ can improve the clustering in
different EMOC approaches, in particular for nested clusters, among other hierarchical data
structures. This paper is presented in Appendix C.

In the next chapter, we present the results of the experiments that demonstrate the
potential of the evaluation method to define the relative quality of the base partitions. Furthermore,
we compare the results of AEMOC with other established approaches.
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7 EXPERIMENTS

In this chapter, we evaluate the new approach. We present two different experiments: the first one
was applied to assess the evaluation method and the DSD as relative quality evaluators, followed
by experiments considering the comparison of AEMOC and other approaches: MOCK, MOCLE,
A-MOCK and EMO-KC. These approaches provide different strategies and proprieties that allow
us to analyze different aspects of multi-objective clustering.

7.1 EXPERIMENTAL DESIGN

In this section, we present the experimental setup applied to each approach considered in our
analysis. Furthermore, we present the datasets and performance assessment used in the evaluation
of the results.

7.1.1 Experimental setup

In terms of the AEMOC, we applied the general setting presented in Chapter 6. For MOCK, we
used the settings reported by Handl et al. (2007). Regarding A-MOCK, we applied the general
parameter setting presented by Garza-Fabre et al. (2017). In terms of the representation of the
A-MOCK, we applied the A-locus scheme with § defined as a function of ~ 5/+/n, where n is the
number of objects in the dataset — this function is one of the heuristics employed in Garza-Fabre
et al. (2017). Concerning the MOCLE, we used the general setting as in Faceli et al. (2006),
considering the NSGA-II as MOEA and HBGF as the crossover operator. For EMO-KC, we
applied the same general setting presented in Wang et al. (2018). Furthermore, we applied
the Euclidean distance as a distance function, and we adjusted the other parameters required
to produce partitions containing clusters in the range {2, 2k*}. Finally, as such algorithms are
non-deterministic, we executed the experiments 30 times.

We summarized the main components of each EMOC in Table 7.1, in which we applied
an acronyms: NB to denote the neighborhood-based mutation; L refers to the neighborhood-size
applied in Con, that also is applied in the initialization and mutation operator of MOCK, A-MOCK
and AEMOC; and n the number of objects in the dataset.

FEATURES MOCK MOCLE A-MOCK | EMO-KC AEMOC
Initialization MST and KM | AL, KM, SL, SNN | MST Random MST

Encoding Locus Label A-locus Centroid Locus

MOEA PESA-II NSGA-II NSGA-II NSGA-II NSGA-II

Crossover Uniform HBGF Uniform SBX Uniform

Mutation NB - NB Polynomial | NB

N. Generations | 1000 50 100 250 100 or 250
Objective (Dev, Con) (Dev, Con) (Var,Con) | (Var’, k) (Var, Con’) or
Functions (Sepcr, Con’)

i 10 5% of n 10 - 10

Table 7.1: Parameters and configuration of MOCK, MOCLE, A-MOCK and AEMOC
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7.1.2 Datasets

In the experiments, we applied a diverse set of datasets that have different data structures and
cluster sizes. Table 4.1 presents the main characteristics of these datasets, considering the
number of objects n, the number of clusters k™ in the true partition and the number of dimensions
dim. These datasets are divided into 4 groups (D). These datasets were obtained from the same
repositories listed in Section 4.2. In D1, D2 and D3, we grouped the artificial datasets. In
D1, we gathered datasets with well-separated clusters. In D2, we included datasets that present
heterogeneous data structures and/or datasets with close clusters. In D3, we have datasets with
overlapping data or/and close clusters and a high spread of data. Finally, in D4, we have the
real-life datasets.

D | Dataset n | dim | k* D | Dataset n | dim | k*
3MC 400 21 3 dsdc2sc8 485 2] 8
Patl 557 21 3 DS-850 850 21 5
Pat2 417 21 2 Flame 240 21 2
Fourty 1.000 2 | 40 Patbased 300 21 3
Sph_6_2 300 21 6 Engytime 4.096 2| 2

DI ds2c2scl3_8s1 588 210 2 D3 Squarel 1.000 2| 4
ds2c2scl3_82 588 21 5 Triangle? 1000 2| 4
ds2c2scl3_S3 588 2113 Twodiamonds 800 21 2
Aggregation 788 20 7 Glass 214 9| 2
Complex8 2551 2] 8 Iris 150 41 3
Spiralsquare_S1 | 1.500 2| 2 Libra 360 | 90 | 15
Spiralsquare_S2 | 1.500 21 6 Optdigits 5620 | 62 | 10
2d_10c_no9 3580 2110 Thyroid 215 5] 3

D2 2d_4c_no?2 1064 2 4 D4 Soybeans 47 35| 4
Sph_10_2 500 2|10 Wine 178 13| 2
Sizesbh 1.000 2| 4 700 101 171 7

Table 7.2: Datasets Information - dataset applied to analyze the performance of the proposed EMOC approach

7.1.3 Performance assessment

We used the ARI, Eq. 2.3, to evaluate the clustering performance and the definition of the
groups with regard to the data properties. In the evaluation of the groups, we verified the
correlation of the data properties along with the potential quality of the base partitions generated
by MST-clustering. We consider 3 ranges of the ARI: [1.00, 0.95], ]0.95, 0.50], and ]0.50, 0],
that are applied to evaluate G1, G2, and G3, respectively.

The ARI is one of the most popular clustering validity indexes applied to evaluate
EMOC approaches. Most of the approaches presented in Section 3 make use of this index to
evaluate the clustering results.

Furthermore, we use a non-parametric test to analyze the ARI results, the Friedman
and Bergmann-Hommel Post Hoc hypothesis test (Pohlert, 2018) with alpha=0.05. This test is
applied to compare the overall performance of the algorithms.

7.2 RESULTS OF THE EVALUATOR MODULE

Table 7.3 presents the results of the Evaluator module, in which, in the last two columns, the
cells marked with v or X denote whether CBO or DSD was taken in the definition of the relative
quality of the partitions, according to the method described in Section 6.2. In particular, v/
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denotes the groups (G1, G2, G3) correctly assigned, and X indicates that the evaluation module
defined a different class than the expected one. Furthermore, in this table, we present the best
ARI found in the initial population and the individual results of CBO and DSD.

Results Q. Groups

D Dataset ARL B0 o5 [CBO Ly, | CBO L7; | DSD | CBO | DSD
3MC 1.0000 | 0.0000 0.0000 0.0000 | 0.6807 v
Patl 1.0000 | 0.0000 0.0000 0.0039 | 0.2696 X
Pat2 1.0000 | 0.0000 0.0013 0.0164 | 0.6709 X
Fourty 1.0000 | 0.0000 0.0000 0.0016 | 0.9539 v
Sph_6_2 1.0000 | 0.0000 0.0000 0.0000 | 0.7717 v

DI ds2c2scl3_S1 1.0000 | 0.0000 0.0000 0.0000 | 0.9015 v
ds2c2scl3_S2 1.0000 | 0.0000 0.0000 0.0000 | 0.9305 v
ds2c2scl13_S3 0.9951 0.0004 0.0030 0.0164 | 0.9461 v
Aggregation 0.8089 | 0.0094 0.0046 0.0031 0.8239 v
Complex8 0.9361 | 0.0008 0.0102 0.0142 | 0.7836 v
Spiralsquare_S1 | 0.5711 | 0.0000 0.0000 0.0000 | 0.6726 X
Spiralsquare_S2 | 0.9287 | 0.0009 0.0027 0.0028 | 0.6872 v
2d_10c_no9 0.5685 | 0.0028 0.0083 0.0052 | 0.7373 v

D2 2d_4c_no2 0.7586 | 0.0035 0.0023 0.0045 0.7643 v
Sph_10_2 0.8588 | 0.0015 0.0131 0.0156 | 0.5547 v
Sizesb 0.5032 | 0.0126 0.0031 0.0122 | 0.0861 v
Triangle?2 0.4931 0.0063 0.0157 0.0047 | 0.1867 v
DS-850 0.4505 | 0.0019 0.0034 0.0021 0.5462 X
ds4c2sc8 0.4503 | 0.0525 0.0682 0.0580 | 0.1263 v
Squarel 0.3797 | 0.0104 0.0140 0.0172 | 0.2681 v
Pathbased 0.1537 | 0.0002 0.0102 0.0160 | 0.2399 v

D3 Flame 0.0328 | 0.0000 0.0096 0.0113 | 0.1977 v
Twodiamonds 0.0296 | 0.0009 0.0000 0.0025 | 0.1961 v
Engytime 0.0076 | 0.0468 0.0561 0.0451 0.1552 Vv

Table 7.3: Results of the data proprieties (CBO and DSD) evaluation considering the initial population of the
artificial datasets.

These results, which present 83% agreement with the groups defined in terms of the
ARI, point out that our method is promising to evaluate the data properties. In artificial datasets,
only 4 (of 24) of them were wrongly classified. In Spiralsquare_S1, MST-clustering fails in
detecting the clusters. However, CBO presents results that define this dataset with well-separated
clusters (CBO=0). For DS-850, the DSD defines that the dataset is in G2, while the ARI is
lower than 0.45, denoting the group G3. Also, DSD defined that Pat 1 and Pat2 should be
optimized, however these datasets present the optimal partitions in the initial population.

Furthermore, we consider that the DSD could be used as a single metric to evaluate the
data properties, in cases where the ML and CL patterns are not provided or are difficult to obtain.
DSD missed 6 classes (with 75% of agreement with the classes defined in terms of the ARI),
and CBO missed 9 (62% of agreement), 8 (66% of agreement) and 10 (58% of agreement) by
using Ljs, Lso and L75 respectively. Moreover, DSD does not require any additional information
besides the initial population.

In terms of the real-life datasets, Table 7.4 presents the ARI, CBO and DSD. In real-life
datasets, only Iris was classified wrongly by the evaluation module.
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Results Groups
Dataset | ARL -pG7 T CBO Ls, | CBO Ls | DSD | CBO | DSD
Tris 08755 | 00275 | 00640 | 0.0289 | 0.8950 | x

Optdigits | 0.5781 0.0127 0.0287 0.0375 | 0.7107 v
Soybeans | 0.9211 0.0000 0.0051 0.0026 | 0.6301 v
Z0oo 0.7123 0.0000 0.0292 0.0249 | 0.7234 v
Glass 0.4996 0.0474 0.0501 0.0521 | 04038 | V
Libras 0.3255 0.1495 0.2379 0.3292 | 0.5597 | V
Wine 0.3826 0.1826 0.2797 0.3172 | 0.6288 |
Thyroid 0.2698 0.0279 0.0612 0.0713 | 0.2285 | V

Table 7.4: Results of the data proprieties (CBO and DSD) evaluation considering the initial population of real-life
datasets

7.3 RESULTS OF DIFFERENT EMOC APPROACHES

Finally, Table 7.5 presents results of MOCK, MOCLE, A-MOCK and two versions of AEMOC,
AEMOCg, and AEMOC), for artificial datasets. AEMOC uses the complete evaluation method
(see Fig. 6.2) while AEMOC) uses only DSD to estimate the groups of data properties. The
cells with a green background indicate the datasets in which the base partitions are classified in
G1 and the optimization was not performed, because the evaluation module correctly assigned
them. In contrast, the gray background denotes the datasets in which the evaluation module or
DSD made a mistake in the definitions of the groups.

Regarding the clustering results, it is important to observe that, considering the datasets
in D1, MOCK, A-MOCK, and MOCLE have optimal solutions in the initial population, but for
some datasets, they lose them by trying to optimize base partitions. In particular, this loss occurs
because Con does not distinguish solutions with optimal connectivity (Con=0) and different
numbers of clusters, in which the setting of the neighborhood size (L) becomes an important
factor in determining this difference. In MOCLE, this factor explains the use of 5% of the number
of objects in the dataset to set L instead of L = 10 applied in MOCK and A-MOCK. However,
this configuration can highly impact the clustering results in some datasets. For example, it
caused in MOCLE the worst results in Pat 2, and the maintenance of the optimal results in
ds2c2sc13_S1 in comparison with MOCK and A-MOCK. In contrast, the general design of
AEMOC allowed the preservation of the optimal results found by MST-clustering in most of the
datasets.

In D2, a similar behavior to D1 occurs in SpiralSquare_S1, in which MOCLE
and MOCK have the high-quality partitions in the initial population (base partitions generated
by AL and KM with ARI equal to 1, and 0.96, respectively). In contrast, A-MOCK does not
have a best partition in the initial population but generates it in the optimization. Nonetheless,
MOCK and A-MOCK lose the optimal solution in the selection, because when there is more than
one solution with Con=0 the decision is taken by the other objective function. In AEMOC),
the use of Con’ ensures a distinction of solutions with the same outcome for the connectivity
with a different number of clusters, avoiding this kind of problem. In general, the results of
the EMO-KC can be attributed to centroid-based representation, which presents a limitation
in detecting heterogeneous and elongated data structures associated with the limitation of the
objective functions in detecting these kinds of clusters. In particular, in AEMOC, the evaluation
method classified SpiralSquare_S1 in G1 because this dataset had well-separated clusters,
thus the optimization was not performed. However, MST-clustering did not detect the clusters,
and the best ARI in the initial population was 0.5711.
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D | Dataset MOCK | MOCLE | A-MOCK | EMO-KC | AEMOC, | AEMOC)
3MC 1.0000 1.0000 1.0000 0.7864 1.0000 1.0000
Patl 0.9374 1.0000 1.0000 0.0841 1.0000 1.0000

D1 | Pat2 0.7355 0.2446 0.7052 0.3337 1.0000 1.0000
Fourty 0.9999 1.0000 1.0000 0.7845 1.0000 1.0000
Sph_6_2 1.0000 1.0000 1.0000 0.9224 1.0000 1.0000
ds2c2scl3_5S1 0.3860 1.0000 0.3520 1.0000 1.0000 1.0000
ds2c2scl3_S2 1.0000 1.0000 0.9518 0.8721 1.0000 1.0000
ds2c2scl3_S3 0.8703 0.7771 0.8724 0.5893 0.9951 0.9951
Aggregation 0.9925 1.0000 0.9658 0.7767 0.9941 0.9941
Complex8 0.8556 0.6614 0.9219 0.4803 0.9335 0.9335

D2 | spiralsquare_S1 0.5711 1.0000 0.5711 0.9690 0.5711 1.0000
Spiralsquare_S2 0.9978 0.5410 0.8001 0.4641 0.9986 0.9986
2d_10c_no9 0.9749 0.8484 0.9668 0.7727 0.9762 0.9762
2d_4c_no2 0.9894 0.9068 0.9557 0.8837 0.9904 0.9904
Sph_10_2 0.9805 0.9935 0.9782 0.0362 0.9798 0.9798
Sizes5 0.9624 0.9435 0.9692 0.8297 0.9692 0.9554
ds4c2sc8 0.9016 0.8267 09111 0.7878 0.9124 0.9124
DS-850 0.9982 0.9657 1.0000 0.8305 0.9985 0.9985

D3 | Flame 0.9712 0.6902 0.9568 0.5653 0.9722 0.9722
Pathbased 0.7273 0.4851 0.7236 0.4834 0.8240 0.8240
Engytime 0.8096 0.8151 0.7707 0.7687 0.8236 0.8236
Squarel 0.9777 0.9764 0.9761 0.8871 0.9748 0.9748
Triangle2 0.9878 0.9246 0.9866 0.8150 0.9865 0.9865
Twodiamonds 1.0000 1.0000 1.0000 0.9834 0.9998 0.9998

Mean D1 | 0.8661 0.8777 0.8602 0.6716 0.9994 0.9994
Mean D2 | 0.9155 0.8618 0.8911 0.6615 0.9266 0.9785
Mean D3 | 0.9216 0.8355 0.9156 0.7651 0.9365 0.9365

MEAN | 0.9011 0.8583 0.8889 0.6961 0.9542 0.9714

Table 7.5: Best average ARI of MOCK, MOCLE, A-MOCK, EMO-KC and two versions of AEMOC: AEMOCg
and AEMOC) (Average of 30 executions). AEMOC,, uses the complete evaluation method with CBO and DSD,
and AEMOCp, uses only DSD to estimate the relative quality of the initial population.

In D3, both AEMOC, and AEMOC), provided a better mean ARI for overall the group
of datasets (0.93 for both AEMOC, and AEMOC)) (see the antepenultimate row in Table 7.5).
In AEMOC, this result can be attributed to the use of Sep ;. instead of Var. The use of Var with
250 generations results in a lower ARI than the Sep¢ for these datasets (see Table B.1 in B.1).

Furthermore, in AEMOC, the mean ARI result of each group of datasets was significantly
better in the proposed approach than in all the compared approaches, and the overall mean ARI
(0.95 and 0.97 for AEMOC, and AEMOC), respectively) was significantly better than MOCK
(0.90), MOCLE (0.85), A-MOCK (0.88), and EMO-KC (0.69).

Table 7.6 presents the average ARI results of MOCK, MOCLE, A-MOCK, EMO-KC,
AEMOC, and AEMOC), for real-life datasets. In this table, the dataset in D4.1 refers to the ones
classified in G2, and the dataset in D4.2 refers to the ones defined in G3. The gray background
denotes the datasets in which DSD made a mistake in the definitions of the data properties groups.
By analyzing these results, it is possible to observe a similar behavior to the artificial datasets, in
which our approach provided the best mean results.

It is important to note that in this study, we consider the general case in which the
separation and overlapping properties define whether the base partition should not be optimized,
but the optimization of some data structures with (Var, Con’) or (Sepcr, Con’) could be
inappropriate. For example, the dataset T ris seems to be in the wrong group with DSD, however
the optimization of the base partitions of Iris in AEMOC can cause a loss of ARI, where the
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best partition found in initialization has an ARI of 0.87. In this case, not optimizing the partitions
of the Tris dataset, as defined by the DSD, results in the best ARI for AEMOC) in comparison
with the other approaches. In contrast, in AEMOC,, MOCK, A-MOCK, and EMO-KC, the
optimization of the base partitions caused the loss of the ARI. In MOCLE, the best partition
found in the initialization (ARI = 0.823) was maintained in the final population.

In terms of datasets in D4.2, AEMOC mean results were higher than the other approaches
(0.49 for both AEMOC, and AEMOC)p). However, it still requires a wide investigation of these
datasets and their properties to improve these results.

G4 | Datasets MOCK | MOCLE | A-MOCK | EMO-KC | AEMOC, | AEMOC)p
Iris 0.7700 0.8232 0.7769 0.7421 0.7611 0.8755

Ga.1 Optdigits | 0.8976 0.7461 0.8278 0.4049 0.8973 0.8973
" | Soybeans 0.9296 0.9169 0.9348 0.7035 0.9365 0.9365
Z0oo 0.8753 0.8651 0.8753 0.7522 0.8753 0.8753
Glass 0.5402 0.6468 0.5635 0.6149 0.5669 0.5669

G4 Libras 0.3927 0.3346 0.3843 0.2717 0.4013 0.3890
Wine 0.4025 0.3879 0.4025 0.3929 0.4025 0.4025
Thyroid 0.5917 0.5791 0.5836 0.4365 0.6105 0.6105

Mean G4.1 | 0.8681 0.8378 0.8537 0.6507 0.8676 0.8862

Mean G4.2 | 0.4818 0.4871 0.4834 0.4290 0.4953 0.4922
MEAN | 0.6749 0.6624 0.6685 0.5398 0.6814 0.6941

Table 7.6: Best average ARI of MOCK, MOCLE, A-MOCK, EMO-KC and two versions of AEMOC: AEMOCg
and AEMOC), in real-life datasets (Average of 30 executions).

In general, the presented results demonstrate that AEMOC is more robust than the
other approaches, and the selection of objective functions and the specific parameter setting
are promising for both artificial and real-life datasets. That is also pointed out in the Critical
Difference Diagram, Fig. 7.1, which shows the performance comparison of EMOC approaches
according to the Friedman and Bergmann-Hommel Post Hoc hypothesis test.

2 3 4 5 6
L | | | ]

AEMOC, A-MOCK

AEMOC, MOCLE

MOCK L EMO-KC

Figure 7.1: Critical Difference Diagram. The bold horizontal lines link the strategies that had statistically equivalent
performance among them at a confidence level of 95%, and the lower the rank the better performance of an approach.

In the critical difference diagram, we can observe that both AEMOC, and AEMOC)p
have no significant differences in their results. That emphasizes that the use of the DSD instead
of the complete evaluation method is promising.
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7.4 CHAPTER REMARKS

In this chapter, we present the results of the AEMOC. These results show that the use of the
evaluation module can be promising considering CBO and DSD to define the relative quality
of the base partitions generated by the MST-clustering. Also, it points out that DSD is robust
enough to be applied as a single metric to evaluate the relative quality of base partitions.

Furthermore, the clustering results show that the proposed approach is significantly
better than the MOCK, A-MOCK, MOCLE and EMO-KC. It shows that the evaluation and
analysis of objective functions regarding the base partitions proprieties is important to designing
an EMOC approach, as introduced in chapter 4.

Currently, we are working on the publication of a paper concerning the proposed
AEMOC and the results of the experiments presented in this chapter in the journal Expert Systems
and Applications.

In the next chapter, we present our final notes regarding the whole study described in
this thesis and outline the future work direction.
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8 CONCLUSION

Clustering analysis is an important research field in which emerge a variety of techniques to
improve the finding of underlying structures that compose finite sets of data (clusters), where the
use of evolutionary multi-objective approaches is still under-explored, requiring more attention
and investigation in order to improve clustering results considering the optimization features.
Thus, in this manuscript we illustrate some general issues found in established approaches
regarding the choice of the objective functions. For that, we introduced the analysis of the
admissibility of clustering criteria in support of defining objective functions in evolutionary
multi-objective clustering approaches. In particular, we demonstrated the importance of aligning
the objective function and the initialization strategy in designing the EMOC approaches.

In general, the use of a traditional clustering algorithm in the initialization provides
solutions that reach the boundaries of the search space in terms of some criteria. Thus, optimizing
the objective functions that consider such criteria is not required, thus other complementary
criteria should be applied in the optimization.

In order to amend this common issue found in the existing EMOC approaches that use
clustering algorithms in the initialization, and do not observe the search aspects in the modeling
of their multi-objective strategies, we proposed the AEMOC, a new multi-objective approach
that provides a new conceptual design of multi-objective optimization applied to a clustering
problem.

In our approach, the initial population quality is evaluated to determine the general
aspects of the optimizer. In other words, this approach introduces the analysis and the use of
the base partition features to apply an offline selection of the objective functions and parameter
settings in the multi-objective clustering algorithm.

In general, AEMOC provided promising results in comparison with established ap-
proaches, such as MOCK, MOCLE, A-MOCK and EMO-KC with a significant statistical
difference, in which we verified a general gain in the clustering performance in different quality
groups of the base partitions in the artificial and real-life datasets.

Furthermore, we introduced a new metric to measure the data separation degree. To our
knowledge, there is not an unsupervised metric that measures the separation or the overlapping
of the data. This metric was applied with the CBO, a semi-supervised metric that measures
the data overlapping, to define the general separation and overlapping degree in the data. The
combined method (CBO and DSD) presented robust results in defining the relative quality of the
base partitions generated by MST-clustering. On the other hand, DSD is robust enough to be
considered as a single metric to measure the relative quality of these partitions.

8.1 FUTURE WORKS

In terms of future work, one interesting research direction is to consider other objective functions
and parameter settings to refine the clustering according to other data proprieties or application
domain features. For example, a wide analysis of the real-life datasets in G4.2 could be applied to
verify specific data proprieties that could support the improvement in the parameter setting or in
the choice of the objective functions. Even though AEMOC provided the best average clustering
results for this group, it provided ARI values below 0.5.

Furthermore, we considered the general case of the quality of the base partitions to
determine whether the optimization should be performed or not. However, other cases of
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inadmissibility should be examined in order to avoid “optimizing” objective functions that could
worsen the clustering results. Thus, improvements in the relative quality measures to consider
other initialization strategies could raise the potential of AEMOC.

Another interesting direction of research is the definition of new objective functions that
could be widely admissible in different datasets. As demonstrated in the admissibility analysis,
there is a lack of objective functions that can be widely admissible in different datasets, making
the development of EMOC approaches for generalized clustering difficult.

Finally, the improvement of DSD or even the generation of other metrics to classify
the data quality makes it possible to make better use of the MOEAs in the clustering problem,
avoiding unnecessary data processing or providing a fine adjustment of the parameters.
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APPENDIX A - OBJECTIVE FUNCTIONS

A.1 CLUSTERING CRITERIA

In this section, we present the CVIs applied as objective functions in the literature, as introduced
in the Section 2.4.2.1. We considered a common notation in the equations, where n refers to the
number of objects in the dataset X, 7 denotes a partition, k denotes the number of clusters in 7,
¢; refers to the ith cluster that belongs to 7, X, denotes a generic object, n; denotes the number of
objects in ¢;, z; refers to the centroid of cluster ¢;, and z represents the centroid of the dataset.
Furthermore, d(., .) denotes the chosen distance function.

A.1.1 Compactness criteria

The Average Within Group Sum of Squares (AWGSS) is computed by the average of the
distance between each object in the cluster and its centroid, as present in Eq. A.1. It should be
minimized to obtain compact clusters (Kirkland et al., 2011).

k .
AWGSS(n) = ) M

i=1

(A.1)
n;

The overall Deviation (Dev) is computed as the overall summed distance between data
points and their corresponding cluster center, as defined in Eq. A.2. It should be minimized in
order to obtain compact clusters (Handl and Knowles, 2005a).

Dev(n) = Z Z d(Xg, 7;) (A.2)
C;EM X €EC;

Sert et al. (Sert et al., 2011, 2012) considered the K-Mode internal distance (Km;q)
and K-Mode weighted internal distance (Kmy;q) as objective functions. These indices are
computed in a similar way to Dev, but the mode is used instead of the centroid. Kmjg and Kmy,iq
should be minimized as objective functions.

The intra-cluster Entropy (Ent) measures the degree of similarity between each cluster
center and the data objects that belong to that cluster, as the probability of grouping all the data
objects into that particular cluster. A larger value of this index implies better clustering (Ripon
et al., 2006a,b; Ripon and Siddique, 2009). This index is defined by Eq. A.3, where g(z;) is the
average similarity between z; and the data object belong to cluster ¢;, and the cos(., .) represents
the cosine distance.

k

Ent(m) = ) [(1=h(c)g(z)]"/* . where

i=1

h(c;) = —[(g(z)log, g(z;) + (1 — g(z;)) log, (1 — g(z;))], and (A.3)
NOEEDY (0.5 R <T>)

a=1
The Homogeneity (H) index is computed by the sum of the average minimal intra-cluster
distance, according to Eq. A.4, where min(d(z;, x,)) denotes the lowest distance between the
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points X, in the cluster ¢; and the cluster mode m;. H should be maximized to obtain homogeneous
clusters (Dutta et al., 2012a).

k n; : .
Hm - Y [zazl mm(d(ml,xa»] A

s
i=1 !

The intra-cluster Variance (Var) is conceptually similar to Dev, as shown in Eq. A.5,
and it also should be minimized to obtain compact clusters (Garza-Fabre et al., 2018).

1
Var(n) = Z Z d(Xg, 7;) (A.5)
C;EM X4 EC;
The Total Within-Cluster Variance (TWCV) is also applied to identify sets of compact
clusters, as defined in Eq. A.6, where f is the size of the dimensional feature space, X, denotes
the rth feature value of the ath data point, z;, is the centroid of the ith cluster of the rth feature, and

wgai € [0, 1] and Zl].‘zl wgi = 1. The goal is to minimize 7WCYV to obtain compact clusters (Du
et al., 2005).

k n f
TWCV(n) = Z Wi Z(X“’ — z;;)%, where
i=1 a:1 }’Zl (A.6)
S WaiXar 1,if a’"object belongs to the i cluster
Zir = ——; > and wy; .
=1 Wai 0, otherwise

The Fuzzy Compactness (J/,,) represents the global fuzzy cluster variance, as defined in
Eq. A.7, where u;, is the membership degree of the ath data point to the ith cluster, and m is the
fuzzy exponent. The smaller value of J,, corresponds to more compact clusters (Bezdek, 2013).

= Z Z " d(2i,X,) (A7)

i=1 a=1

Zhu et al. introduced an adapted J,, that considers the cluster weighting subspace, the
Fuzzy weighting subspace clustering (J,,,,;,). This index is defined in Eq. A.8, where f is the
number of attributes (or vector of features), x,r denotes rth feature of the ath object, and z;,
is the centroid of the ith cluster of the rth feature. w;, is defined in Eq. A.9, where m is the
fuzziness exponent, and 7 is the fuzzy weighting index. J,,,, should be minimized to improve the
clustering (Zhu et al., 2012).

k n S
e = 3 )y ) whd (Sar ~2)? (A8)
i=1 a=1 r=1
1/7-1 - -
( a=1 lad(xar Zir)z) / _ (Z;J;l W;'rad(xar _Zir)2) i
Wir = ey Where ia = ————— 2~ 1/m-1
Z ( a=1 zad(xar er)2) ZiZI(Zrzl Wiad(xar —zir) )_ fm=

(A.9)
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A.1.2 Connectedness criteria

The Connectivity (Con) index (Handl and Knowles, 2005a) evaluates the degree to which
neighboring data points have been placed in the same cluster. This index is computed according
to Eq. (A.10), where L is the parameter that determines the number of nearest neighbors that
contribute to the connectivity, nn,;, is the bth nearest neighbor of object x,. Con as objectives
should be minimized.

n

L
Con(n) = Z Z f(Xq,nngp), where f(Xq4, nngp)

a=1 b=1

) (A.10)
0, otherwise

{%,if }]Ck L Xg,NNgp € Ck

The Data Continuity Degree (DC D) measures the connectedness of the data in terms
of the connectivity factor (the total edges sum for each minimum spanning tree) in a similarity
graph. In general, it can be computed in two steps. First, a similarity function is applied in order
to generate a similarity graph, the k;,.-Graph. In this graph, a vertex v, is connected with the
vertex vy, if v, is among the k-nearest neighbors of v,. After that, the total minimal spanning
tree edges are computed considering all nodes connected within the neighborhood of the current
node and internally — this process is repeated with each connected component due to the graph
not being fully connected. The average arithmetic value of the metric (the connectivity factor
divided by the number of clusters) is the result of this objective, which should be maximized in
the optimization (Menéndez et al., 2013).

A.1.3 Separation criteria

The Average Between-Group Sum of Squares (ABGSS) is computed as the average distance
between the clusters’ centroids and the centroid of the data, as defined in Eq. A.11. It should be
maximized to obtain well-separated clusters (Kirkland et al., 2011).

Sk n.d(z;,7)
k

The inter-cluster distance Average Separation (Sep a1 ) measures the average separation
distance between all clusters, according to Eq. A.12. Separ should be maximized to obtain
better clustering (Ripon and Siddique, 2009).

ABGSS(n) = (A.11)

1 k
Separ(m) = k=12 ; d(z;,z;), (A.12)
i#]

Sert et al. (Sert et al., 2011, 2012) introduce the use of K-Mode external distance
(Kmeq) and K-Mode weighted external distance (Kmy.g) as objective functions. These
measures are similar to Sep 41, however considering the mode instead of the centroid. Km.q and
Kmyeq should be maximized as objective functions.

The Separation Index (Sepcy) is computed by the sum of the distance between every
two tuples (data points) in different clusters, according to Eq. A.13. It should be maximized to
get well-separated clusters (Dutta et al., 2012b).

Seper(m) = D D d(Xaxs) (A.13)

CiCjEM,i# ] Xa€Ci XpEC;
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The graph-based separation index (Sepg,q,,) measures the separation between the
clusters in terms of a similarity graph. As in the DCD index, it considers the generation of a
Kiz.-Graph as the first step in computing this index. The Sepg, 4,5 is calculated as the arithmetic
average value of the edge weights between the different clusters, as defined in Eq. A.14, where ¢
is a cluster, G is the K;,.-Graph, v, is the vertex a, and w is the edge weight value from node a
to node b. Sepgrqpn should be maximized to improve cluster separation (Menéndez et al., 2013).

ZvaeG{Wablva ¢ c}
G-c¢c
The Fuzzy Separation (Sep f,.;,) index (Mukhopadhyay et al., 2007) measures the
inter-cluster fuzzy separation. This index is computed according to Eq. A.15, where the fuzzy
membership is defined by ujj, d(z;, z;) is the distance between two centroids z; and z;. To get
well-separated clusters, the Sep 7, should be maximized.

(A.14)

Sepgraph =

k o0 L/ (m=1)
(—d(z”z’)) (A.15)

k
Sep fuzzy = Z ,u?}d(zi’zj)’ where p;; =2/ Z d(z;.2))
i=1, I=1, ’

i#] l#j

The Fuzzy Overlap Separation (Sep,,r,.;y) considers the combination of the /-order
overlap and inter-cluster separation, composed of a 7-normal function T and t-conorm L to
formulate the Fuzzy Overlap Separation (Wikaisuksakul, 2014; Paul and Shill, 2018). Sep, fu;zy
is defined in Eq. A.16, where u,; is the membership degree of the ath data point to the ith cluster,
01 (u,(x,), k) is the overlapping degree that considers triplets of clusters up to a k-tuple of
clusters combinations. Sep, ,;;y index measures the isolation of clusters, which is preferred to
be large.

1 Z O L(ug(Xq), k) (A.16)

Sep,r =—
Prnfuzzy n max{ug;}
a=l =1k

A.1.4 Separation and Compactness criteria

The Categorical Data Clustering with Subjective factors (CDCS) index is computed by
the ratio of the intra-cluster cohesion and inter-cluster similarity for the categorical data
clustering. This index is defined by Eq. A.17, where A, is a set of attribute values, a,
denotes the number of attribute values for the rth attribute, P(A, = a'|¢;) is the probability
of ai for the rth attribute in cluster ¢;, S(cp, ;) denotes a similarity of two clusters, where
S(ep,eq) = Hle [> min P(A, = dlle,), P(A, = alle,) + €], and € is a small value in case
that each component is 0 (Zhu and Xu, 2018).

nt
CDCS = ’,”tm, where
inter
k S koSk S(e,, e e, Uy
. Ck I n ; . =1 24¢=12€p, Cq p Y€
intra = Z |n_| Z ?(Hl,lialx P(A, = dlle))?, inter = —L——1 7D

i=1 r=1

(A.17)
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The Calinski-Harabasz (CH) index, also known as the variance ratio criterion, is
based on the degree of dispersion between clusters. It can take values in [0, co] with higher
values indicating better clustering. CH is computed by the ratio of the sum of between-cluster
dispersion and inter-cluster dispersion for all clusters, as defined in Eq. A.18 (Zhu et al., 2018).

Sy d(z,7) (n-k)
Z,l'czl erci d(x,z;) (k—1)
The Davies-Bouldin (D B) index is computed as the ratio of the sum of within-cluster

scatter to between-cluster separation (R;), as defined in Eq. A.19. The minimum value of this

DB is zero, with lower values indicating a better clustering (Tsai et al., 2012; Zhu et al., 2018;
Dong et al., 2018; Dutta et al., 2019).

CH(n) =

(A.18)

k
1
DB(n) = z Z R;, where
i=1 (A.19)
R = S,‘+Sj 4s; = 1 Zd( )
e Ay T (] Xa, 2

Xa €C;

The Dunn index is computed as the ratio between the minimum inter-cluster distance
(6(c;, ¢j)) to the maximum cluster diameter (max;<;<x A(¢;)), as defined in Eq. (A.20). Itis
considered that compact and well-separated clusters have a small diameter and a large distance
between them. The Dunn index can take values between zero and infinity, and it should be
maximized to obtain a well-separated and compact cluster (Liu et al., 2010).

. . o(¢j,¢;)
Dunn(r) = min | min —A(c) , where
<i<k |1<j<k, | max ;
SEUSES st (A.20)
6(¢i,¢;) = min {d(x4,%p)}, and A(¢;) = max {d(x4,Xp)}
Xa€C;, XX EC;

Xp€EC)

The Modularity (Mod) was initially proposed as a measure of the strength of the
network’s module division. This index is computed as the total difference between the sum of
distances of the objects in the same cluster ¢; (that indicates how closely similar data is with
others in the same cluster) and the sum of distances considering the objects in the dataset X
(that determines how closely similar data is with others in different clusters), as defined in Eq.
A.21 (Liu et al., 2018).

k
Mod(r) = Z(cd — 0d?), where

=1 (A.21)
2oxaxpee; d(Xq, Xp) Zxa €c;,xpeX d (X4, Xp)
= , and od =
qu,xbeX d (X4, Xp) qu,xbeX d(X4,Xp)

The Silhouette (Si/) index measures how much each point in the data is similar to its
own cluster compared to other clusters, based on the relation of the mean similarity of the objects
within a cluster and the mean distance to the objects in the other clusters. Sil is defined in Eq.
A.22, in which ad, refers to the mean distance between a sample x, and all other points in the
same cluster. Moreover, bd, is the mean distance between a sample x, and the nearest cluster
that x,, is not a part of. Thus, Sil produces values between —1 and 1. A higher value corresponds
to a better clustering result (Mukhopadhyay and Maulik, 2007).

cd
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bd, — ad,
max {ad,, bd,}

n

Sil(m) = 1 Z S(x,), where S(x,) = (A.22)

n a=1

The 7 index measures separation based on the maximum distance between cluster
centers, and measures compactness based on the sum of distances between objects and their
cluster centers. This index is computed according to Eq. A.23, in which Ej stands for within
cluster scatter, Dy stands for between-cluster separation, £1 and P are correlation coeflicients,
ui, 1s the membership degree of the ath object to the ith cluster. A larger value of this index
implies better clustering. (Dong et al., 2018).

P

I = (%%Dk) , Where

. £ n (A.23)

Dy = max(z; — z;), and E = Z Z Uiq(Xy — 2;)

b=l i=1 a=1

The Addition feature weight (J4,,) index is applied to minimize both the negative

weight entropy and the separation between clusters. This index is defined in Eq. A.24, where f is

the number of attributes, and w;,- takes the value in [0, 1], which corresponds to a soft partition

of features. It is composed by Sep;, that is computed according to Eq. (A.15), o a present value

that prevents the denominator from becoming zero, and A,,; denotes the average value of the

important weights, which are more than or equal to the mean value (1/f) for the ith cluster (Xia
etal., 2013).

k f
Jada = ; % + ; wirlogw;,. |, where (A.24)
The Pakhira-Bandyopadhyay-Maulik index (PBM) is defined in Eq. A.25, where
E measures the total within-cluster scatter, Ej is the total scatter considering all the samples
belonging to one single cluster, and D is the maximum distance between cluster centers.
Furthermore, u,; denotes the membership degree of the objects in a cluster, which can take values
between 0 and 1. In our experiments, we considered a hard clustering, in which each object
either belongs to a cluster completely (uy; = 1) or not (¢g; = 0). The PBM must be maximized
as objective function.

k
1 E . _
PBM = - 5 Di where E = Z_; d(Xa,Z), Ex = Z:‘E,
a= i= (A.25)
n k X
E; = Z Hai - d(X4,¢;)%, and Dy = i,}ilﬁl?;j d(z;,z;)

—_

a=1 i=1

The Xeni-Beny (X B) index is defined as a function of the ratio of the total fuzzy cluster
variance (J,,) to the minimum separation of the clusters (Sep), as presented in Eq. A.26, where
uiq is the membership degree of the ath data point to the ith cluster, and m is the fuzzy exponent.
It should be minimized to obtain well-separated and compact clusters (Di Nuovo et al., 2007;
Zhu and Xu, 2018).
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Jm _ ZZ 1 umd(zlaxa)

XB(m) = n-sep  n- (ngtm {d(zi,2))})
i#]

(A.26)

The Soft Subspace Xie-Beni (SSX B) index was extended from the X B, and defined
as the ratio of the fuzzy weighting within-cluster compactness (J,,,;,) to the fuzzy minimum
weighting between-cluster separation (Jy,5.p). This index is computed according to Eq. A.27,
and it should be minimized as an objective function (Zhu et al., 2012).

IIM»

) f wid Xar — Zjr 2
Jwm i § ia Z’ 1vird( ) (A.27)

SSBX = =
() n- step n- mlniij{d (Zir, er)}

where d? (Zir,2jr) = (Z wl]a’(z,r z]r)2 + Z w] d(zl, zjr)z)/2 f is the number of attributes.

w;, and u,;, are deﬁned 1n Eq. A9.

A.1.5 Other criteria

Here, we present the other criteria applied as objective functions. Cluster cardinality and
expected weighted coverage density indices consider the relation between the occurrence of
objects in a categorical dataset. The similarity index is the only relative CVI used as the objective
function, while the other CVIs consider the data properties of each partition. The sparsity and
reconstruction error are two particular objective functions designed for spectral clustering.

The Cluster Cardinality Index (CC/I) considers a set of operations to describe the
property and structure of categorical data (Zhu and Xu, 2018). It is computed according to
Eq. A.28, where A;, and A;, are the set of categorical values of rth attribute within the clusters
¢; and ¢;. A larger value of CCI implies better clustering.

k .
CI(i) + CI(])
CCl =~ WTED) wh
k Z uﬁ( CI(i,1) whete

(A.28)

~

] Zfl |Air N Apy| = |Air UAy| +1
T Air N A | +1

b

1
Cl(i) =—
D=7

The intra-cluster Expected Weighted Coverage Density (EWCD) considers the
relation between the objects in a transational dataset. The transational dataset is composed of n
transactions considering the set of items I = {I;, I, ..., I,,}, where the transaction t;(1 < j < n)
is a set of items t; = {I;1,1;,...,I;;}, such that t; C I. In this context, the WCD-Weighted
Coverage Density of one cluster is defined as the sum of occurrences of all items in a cluster
divided by the number of distinct items and the total number of items in this cluster. Thus, the
EWCD of the partition 7 is defined as a average sum of the WCD in all clusters, as presented
in the Eq. A.29, where I;; is the jth item set in the cluster ¢;, occur(1;,) define the number of
occurrences of the ath item in cluster ¢;, and S; is the sum occurrences of all items in cluster
¢; (Sertetal., 2011, 2012).
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k

k n; 2
. 1 " occur(I,
EWCD(n) = EWCD:—Z[Z“—1 < (Tia) ] (A.29)
o e !

Liet al. (Li et al., 2017) introduced the Similarity (Sim) index to evaluate the similarity
of one partition to others with a similarity matrix, as defined in Eq. A.30. This index can be used
to evaluate the diversity of the solutions in an evolutionary approach. It should be minimized as
an objective (Li et al., 2017).

l n
Sim = — Z similarity(m;, 7;), (A.30)
n 4

Luo et al. (Luo et al., 2015) modeled the similarity matrix for spectral clustering into
objective functions. They assume that y = Ax is a linear equation of an under-determined system,
where A € RMV is a full-rank and over-complete matrix, which is called an over-complete
dictionary, y € R¥ is called a measurement vector, and x € R" is a sparse vector. Thus, they

use x and A to reconstruct y. For that, the SParsity (SP), Eq. A.31, and Reconstruction Error
(RE), Eq. A.32, should be minimized.

SP=Ixlly, (A.31)

where /[y norm ||.||, counts the number of nonzero values in a vector.

RE = |[Ax—A|j3, (A.32)

where ||. ||§ is the Euclidean norm on signals of a square matrix.
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APPENDIX B — ADDITIONAL EXPERIMENTS

B.1 ANALYSIS OF LOCUS END A-LOCUS ENCODING

In this section, we analyzed the impact of the increase in iterations when the locus (Handl et al.,
2007) and A-locus (Garcia-Piquer et al., 2017) representations are used in the optimization of
(Var, Con’) in the NSGA-II with neighborhood-based mutation and uniform crossover. For that,
we considered the datasets in G2 and G3 presented in Section 7, and included other datasets
(Long, Spiral, Twenty, Complex9, R15, Sph_5_2, Squared4, D31, and Sph_9_2)
presented in Section 4.2.3. We do not present the results of G1 because the MST-clustering
provides the optimal results for the datasets in this group, and the optimization is not required.

Table B.1 present the best average ARI of each dataset, in which the use of the A-locus
generated a loss of ARI in some datasets. Even with the use of 6 = 0, in which the encoding
is not reduced, there is a general loss of the ARI. By analyzing the general data structure of
the locus and A-locus with § = 0, we observed that the main difference between them is the
arrangement of the edges in the initialization. In A-locus the encoding is configured to determine
the fix and relevant edges, thus all edges are ordered considering the DI and the MST structure
is modified. Since this is the only difference between these representations, we consider that it
contributed to the loss of ARI. However, this modification was great enough to affect the ARI
results. Thus, we consider the locus representation in our approach. That allows us to analyze
the impact of using different objective functions and evolutionary operators without the inference
of the A encoding in the results.



107

"(SuONNOAXa ()] JO 93BIAAY) UOOUNJ 9ANI[qO st (,u0)) ‘4D A) PUB SUOTIEISUAT JO IOqUINU JUIRJIP ‘() =SNIO[-Y PUB GA ~=SNI0[-Y ‘SNOO0] SULIOPISUOD [V 9FeIoAL 1soq :1°g 9[qeL

1S98°0 | LS98°0 | C€98°0 | 8¥98°0 | ¥S98°0 | S+98°0 | L8S8'0 | TS8O | T988°0 | ST8Y'0 | 96L8°0 | 81,80 | €D ULIN
62560 | 1CS6°0 | 6€56°0 | L8S6°0 | I¥€6'0 | ¥7e6'0 | ¥S€6°0 | 16260 | ¥SL6'0 | SSL6'0 | LSL6°0 | 89L6°0 | TD UBIN

6866°0 | S866°0 | S866°0 | €666°0 | 0866°0 | 8L66°0 | £L66°0 | £966°0 | 0000°T | 0000°T | 0000°T | 0000°T SpuocweTpom]
6786°0 | 0£86°0 | 8¢€86°0 | 8C86'0 | S8L6°0 | 1646°0 | ¥8L6°0 | C9S6°0 | 69860 | 89860 | 12860 | 8486°0 zetbuetar
SY0L’0 | 0LOL'0 | 666970 | 96TL°0 | S¥OL0 | 0LOLO | 6669°0 | TLL90 | $€ILO | STIL0 | €9SL°0 | ¥ISLO ¢ 6 uds
€€08°0 | LP08°0 | 6L6L°0 | SE6L°0 | €€08°0 | L¥08'0 | 6L6L°0 | T€08°0 | OLI80 | L1180 | LEIB'O | 9508°0 sutlAbuyg
€690 | 9¥0L0 | ¥60L°0 | 160L°0 | OLOLO | LVPIL'0 | T¥OL0 | ¥60L°0 | 8VILO | ¥8IL0 | €ITLO | €9TL'0 peseqyied
[666°0 | 6£96°0 | 0TL6°0 | <C96°0 | €1L60 | 9¥L6°0 | LIL60 | TLL6'0 | 90S6°0 | 19560 | 01960 | ¥¥96°0 SweTd | ¢D
CS8L0 | S98L'0 | TCBLO | 989L°0 | CS8LO | S98L'0 | TTBLO | S6LLO | 6£6L°0 | 916L°0 | €06L0 | L68LO yoaenbg
16960 | S696°0 | 8960 | ¥PL6°0 | 16960 | $696°0 | S896'0 | 8896'0 | LSL6'0 | 8SL6'0 | TIL6°0 | 8SL6'0 Taoxenbg
LY66'0 | 67860 | 69860 | €666'0 | LF66'0 | 67860 | 69860 | L9L60 | 06660 | 06660 | L8660 | L8660 068-5d
9888°0 | 8¥88°0 | 9C88°0 | LEL80 | £€998°0 | 65580 | ¢SP80 | 80¥8'0 | 1¥06°0 | S906°0 | 8806°0 | £006°0 8OSZOpSP
S8IPL0 | 0SEL0 | 6€1L°0 | COCLO | 8TPL0 | 0SELO | 6ETL0 | €689°0 | 8TP8°0 | 666L°0 | STIL0 | ¥689°0 T€d
€LS6'0 | 67S6°0 | 12S6°0 | 6¥96°0 | €L56°0 | 6¥7S6°0 | 1CS6°0 | 87460 | 61960 | ¥€96°0 | 05960 | T696°0 Gso21g

LE96'0 | 0¥96°0 | S€96°0 | 0L66°0 | LE96'0 | 0¥96°0 | SE96°0 | 66S6°0 | S866°0 | 9866°0 | 9866°0 | S866'0 | S~ °renbsTeatds
0000°T | 0000°T | 0000°T | 0000'T | ¥8T8'0 | ¥8T8'0 | $8T8°0 | 9S8L°0 | 0000°T | 0000°'T | 0000°'T | 0000°'T | TS~ =xenbsTeatds

LEV6'0 | STY6'0 | T€V6°0 | €496°0 | LEV6'0 | STY6'0 | T€¥6°0 | STH6'0 | C8L6°0 | 06L6°0 | 06L6°0 | 06L6°0 2 01 uds
€L88°0 | 8C88°0 | ¥C88'0 | 6868°0 | £488°0 | 8C88°0 | ¥C88°0 | [LL8'0 | 9¥16°0 | TLI6'0 | S¥160 | 0ST6°0 ¢ G uds
L5960 | 0960 | 11960 | 0986'0 | LS960 | 0960 | [1960 | 6956°0 | ¥T66°0 | ¥T66°0 | ¥T66°0 | ¥T66°0 STd | 7O
8886°0 | 8886°0 | 8886°0 | ¥886°0 | 06860 | L8860 | 0L86'0 | 1S86'0 | 8066°0 | 8066°0 | 8066°0 | 90660 Zou oF PT
80960 | 1SS6°0 | 6096°0 | 6,560 | TLY6'0 | S¥¥6°0 | ¥I¥6°0 | SI¥6°0 | 99L6°0 | £€5L6°0 | 09L6°0 | T9L6°0 60U ©°0T PZ
06060 | 1€260 | 1€¥6°0 | 9656°0 | 06060 | 1€C6'0 | TEY6°0 | €9£6°0 | 0000°T | 0000°T | 0000°T | 0000°T exa1dwod
CI16°0 | 88060 | 12060 | 26680 | 66880 | 09680 | 65680 | 9906°0 | STC6'0 | S616°0 | 1TC6'0 | T6T6°0 gxa1duod
1¥66°0 | L2660 | 11660 | 16260 | 1¥#66°0 | L2660 | 11660 | IL86°0 | £¥66°0 | £¥66°0 | 17660 | $¥66°0 uotiebaibby
0S¢ 00¢ 0ST 00T | 0sT 00¢ 0sT 00T | 0sT 00¢ OST 001 1ed

(SN ~= 9) smoo]-y (0 = 9) sSmo[-y SO0’ wH




108

B.2 ANALYSIS OF DIFFERENT CROSSOVERS AND OBJECTIVE FUNCTIONS

In this section, we present the results of experiments considering different crossover operators
(One Point, Two Points, and Uniform), associated with the two pairs of objective functions, (Var,
Con’) or (Sepcr, Con’) to evaluate how different components of the MOEA can contribute the
optimization of low quality base partitions.

In Tables B.2 and B.3 present the best average ARI considering different crossover
operators. In these tables, OP denote the one point crossover, TP represent the two points
crossover, UN denote the Uniform crossover, and PO represent these three crossover operator in
a pool selected randomly.

(Var, Con’) Sepcr, Con’)

Datasets op T UN PO | OP TP UN PO
D31 0.8891 0.8936 0.8364 0.8894 | 0.8819 0.8895 0.8729 0.8921
ds4c2sc8 0.8908 0.8953 0.9041 09015 | 0.9101 009113 0.9148 0.9147
DS-850 1.0000 0.9997 0.9997 1.0000 | 0.9993 0.9993 0.9993 0.9994
Engytime 0.8153 0.8166 0.8148 0.8111 | 0.8141 0.8196 0.8210 0.8256
Flame 0.9495 0.9544 0.9506 0.9565 | 0.9717 0.9678 0.9697 0.9710
Pathbased 0.7119 0.7087 0.7148 0.7101 | 0.7855 0.7991 0.8227 0.8133
Sph_9_2 0.7447 0.7491 0.7630 0.7658 | 0.7347 0.7507 0.7663 0.7422
Squarel 0.9760 0.9761 0.9754 0.9767 | 0.9732 0.9748 0.9767 0.9752
Squared 0.7961 0.7956 0.7949 0.7918 | 0.7786 0.7825 0.7925 0.7832
Triangle?2 0.9874 0.9852 0.9869 0.9866 | 0.9854 0.9841 0.9864 0.9866
Twodiamonds | 1.0000 0.9995 1.0000 0.9995 | 0.9995 0.9995 1.0000 1.0000

MEAN | 0.8873 0.8885 0.8855 0.8899 | 0.8940 0.8980 0.9021 0.9003

Table B.2: Best Average ARI considering different crossovers with (Var, Con’) or (Sepcr, Con’) (Average of 10
executions).

In particular, Table B.2 present the result of the different crossover considering (Var,
Con’) and (Sepcr, Con’) as objective functions. The boldface values indicate the best ARI
results found considering each pair of objective functions. For (Var, Con’), we can observe that
the Uniform crossover provided the worst Mean result considering all the datasets. The result for
D31 contributes for this overall result. Besides that, the pool of crossover operators provided the
best mean result.

In contrast, (Sepcr, Con’) have higher mean ARI results for all the datasets, indicating
that this pair of objective functions is more adequate than (Var, Con’) for this group of datasets.
It is confirmed by the Friedman test, that point out that the (Sepcy, Con’) with the uniform
crossover is significantly better than (Var, Con”) with the pool of crossover operators.

Considering that (Sepcr, Con’) obtained the best ARI results, in Table B.3 we analyzed
this pair of objective function with of different size of the neighborhood (L) applied mutation
operator and the computation of Con’.

We can observe that using L equals to v/ - 50% instead 10 cause a increase of the ARI.
Demonstrating that, a refine of this parameter setting can impact in the results of some datasets,
such as D31. However, considering the Friedman test, for the analyzed datasets, there is not
significant difference between using v/ - 50% or 10.

In the following experiments we consider (Sepcr, Con’) for the low quality partitions.
Thus, we define the selection of different objective functions for each quality group, in which
(Var, Con’) is applied in optimizing middle quality base partitions and (Sepcr, Con’) in low
quality base partitions. Furthermore, we applied L = 10 for all the experiments of the QEMOC.
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L=10 L=+ - 25% L=+ - 50% L=+ - 75%

Datasets UN PO | UN PO | UN PO | UN PO
D31 0.8729 0.8921 | 0.8774 0.8894 | 0.8429 0.9122 | 0.8296 09119
ds4c2scs 0.9148 0.9147 | 0.9023 0.8841 | 0.9140 0.9087 | 0.9097 0.9130
DS-850 0.9993 0.9994 | 0.9987 0.9994 | 1.0000 1.0000 | 0.9965 0.9965
Engytime 0.8210 0.8256 | 0.8205 0.8043 | 0.8168 0.8237 | 0.8104 0.8186
Flame 0.9697 0.9710 | 0.9666 0.8397 | 0.9718 0.9736 | 0.9592 0.9705
Pathbased | 0.8227 0.8133 | 07716 0.6876 | 0.8217 0.8224 | 0.7088 0.7616
Sph_9_2 07663 0.7422 | 0.7484 0.7486 | 0.7707 0.7661 | 0.7917 0.7729
Squarel 09767 0.9752 | 0.9722 0.9765 | 0.9782 0.9779 | 0.9782 0.9790
Square4 0.7925 0.7832 | 0.7799 0.7871 | 0.7991 0.7965 | 0.8046 0.8015
Triangle2 | 09864 0.9866 | 0.9873 0.9868 | 0.9891 0.9900 | 0.9864 0.9855
Twodiamonds | 10000 1.0000 | 0.9998 0.9950 | 0.9975 0.9968 | 0.9978 0.9965
MEAN 0.9021 0.9003 | 0.8931 0.8726 | 0.9002 0.9062 | 0.8884 0.9007

Table B.3: Best Average ARI considering Uniform Crossover and Pool Crossovers with different size of neighborhood
(Average of 10 executions).
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APPENDIX C - IMPROVED CONNECTIVITY INDEX

In this section, we present the publication regarding the application of the improved connectivity
index: Detecting Nested Structures Through Evolutionary Multi-objective Clustering.



Detecting Nested Structures Through Evolutionary
Multi-objective Clustering *

Cristina Y. Morimoto(5)![0000-0003-4122=5698] © Ayyrora, Pozo![0000-0001-5808=3919] " 41yq Marcilio C. P.
de Souto20000—0002—7033—8325]

! Federal University of Parana, Curitiba-PR, Brazil cristina.morimoto@ufpr.br, aurora@inf.ufpr.br
2 LIFO/University of Orléans, Orléans, France
marcilio.desouto@univ-orleans.fr

Abstract. The evolutionary  multi-
objective algorithms have been widely
applied for clustering. However, in
general, the detection of heterogeneous
nested clusters remains challenging for
clustering algorithms. This paper pro-
poses an adaptation of the connectedness
criterion used as an objective function in
established Evolutionary Multi-Objective
Clustering approaches (EMOCs). This
adaptation can improve the conflict be-
tween the objective functions, and then it
promotes the detection of nested clusters.
We performed experiments with four
EMOCs (MOCK, MOCLE, A-MOCK,
and EMO-KC) that provide different
features. These different EMOCs have
different initialization —methods and
representation schemes, allowing us to
analyze how the proposed objective
function can contribute to detecting
nested clusters. Our results show that
our adapted objective function promotes
a general gain in the performance of all
these algorithms.

Keywords: Multi-objective clustering -
Nested data clustering - Evolutionary
multi-objective optimization - Clustering
methods - Data mining

1 Introduction

Complex data allow multiple data interpretations in
which multiple clustering approaches can describe
alternative aspects that characterize the data in dif-
ferent views [14]. The Evolutionary Multi-Objective
Clustering approaches (EMOCs) have been widely
applied to extract patterns and provide these mul-
tiple views, allowing to analyze alternative aspects
that characterize the data [9,6,13,8]. However, the
use of EMOCs to detect nested structures is still
under-explored in the literature, especially to de-
tect heterogeneous data structures.

* This work was partially supported by the National
Council for Scientific and Technological Development
(CNPq).

Some EMOCs were applied to detect heteroge-
neous data structures with the generation of so-
lutions with multiple partitions [9,6,8]. They used
multiple criteria (e.g., compactness and connected-
ness) as objective functions to deal with datasets
with different types of clusters. However, no studies
have widely evaluated them to detect nested data
structures and analyze how their objective functions
impact this task.

In this study, we propose a modification of
the connectedness criterion adopted for established
EMOCs to improve the detection of a different
number of clusters, especially in nested clusters.
The connectivity index used by these approaches
has limitations to detect some multi-level solu-
tions, such as nested clusters, in a single run. This
modified objective function was evaluated in four
EMOCs: MOCK [9], MOCLE [6], A-MOCK [8], and
EMO-KC [16], in which we analyze how the differ-
ent strategies adopted in these algorithms can con-
tribute (or hamper) to detect nested clusters. We
performed experiments on fifteen datasets, which
yielded promising results using the modified con-
nectivity in all these algorithms.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the main concepts
concerning MOCK, A-MOCK, MOCLE, and EMO-
KC, considering their representation, initialization
strategy, optimization strategy, objective functions,
crossover, and mutation operators. In Section 3, we
describe some general issues around the connect-
edness criterion used as an objective function in
MOCK, A-MOCK, MOCLE and introduce the pro-
posed modification in this index. Section 4 presents
the datasets used in the experiments, the spe-
cific configuration and settings of the compared
methods, and the performance assessment adopted.
Then, in Section 5, we present and discuss the re-
sults of our experimental evaluation of the use of
this modified connectivity index. Finally, Section 6
highlights our main findings and discusses future
works.
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2 Background

A nested cluster refers to a cluster that is com-
posed of sub-clusters or multi-level data structures.
Formally, given a partition @ = {cy,...,cx}, for
any c,,c, € 7 either they are non-overlapping
(ca Ncy = 0) or one of them includes the other
(ca C ¢y or ¢y C c,), which is equivalent to assert
that ¢, Ncy, € {0,¢cq,cp} [1]. For example, Fig. 1
depicts the Venn diagram of the nested data struc-
tures presented in the set X = {x1,X2, X3, X4, X5},
where m = {{x1,x%2},{x3,%4,x5}} and m =
{{x1,x2}, {x3}, {x4,x5}} represent the solutions at
different levels in the hierarchy, in which m has two
clusters and 79 has three clusters.

Fig. 1: Venn diagram of the nested data structures

Hierarchical clustering is the most traditional
nested clustering strategy applied to produce a se-
quence of clusterings in which each cluster is nested
into the next cluster in the sequence. This kind of
approach presents a hierarchical grouping of the ob-
jects, which can be viewed as finding multiple par-
titions. However, the different clustering solutions
obtained at different hierarchical levels differ only
in their granularity [11,17].

Two well-known hierarchical clustering algo-
rithms used in our analysis are the Single-Linkage
(SL) and Group Average-Linkage (AL). In both the
SL and AL algorithms, each object starts out stand-
ing as an individual cluster, and a series of merge
operations is followed until it reaches the top with
a single cluster. The main difference between these
algorithms is the distance measure used to compute
proximity between the pairs of clusters used to de-
fine the closest pair of sub-sets that are merged. SL
considers the minimal distance between two objects
of a cluster pair to define the closest sub-sets, and
AL considers the average distance of all observa-
tions of pairs of clusters [17].

In contrast to hierarchical clustering, the EMOCs
provide a diverse set of solutions considering differ-
ent aspects of the data structures. This study ana-
lyzes the capabilities of four EMOCs to provide a
diverse set of solutions that include nested clusters
by using a modified connectedness criterion. The
EMOCs analyzed are: MOCK [9], MOCLE [6], A-
MOCK [8], and EMO-KC [16].

2.1 MOCK, A-MOCK, MOCLE and
EMO-KC

MOCK (Multi-Objective Clustering with automatic
K-determination) [9] and MOCLE (Multi-Objective
Clustering Ensemble) [6] are well-known EMOCs.
A-MOCK was introduced by [8] to improve the
scalability of MOCK [9]. EMO-KC (Evolutionary
Multi-objective Optimization-k-clustering) was de-
scribed in [16], introducing an adapted sum of
squared distances (SSD) to improve the generation
of multiple solutions with a different number of clus-
ters. These approaches present different represen-
tation encodings, initialization strategies, and/or
evolutionary operators to optimize clustering cri-
teria. In Section 5, we analyze how some of these
different features can contribute to detecting dif-
ferent data structures, including nested clusters,
based on a modified connectedness criterion (Sec-
tion 3). In the following, we present more details of
these EMOCs, considering the initialization strat-
egy, representation encoding, optimization strategy,
objective function, crossover, and mutation opera-
tors. Our analysis focuses on the ability of these
algorithms to generate a set of solutions containing
high-quality partitions. Thus, we will not be con-
cerned with the selection of a final solution to be
presented to the data expert.

Initialization Strategy. The generation of the
initial population in MOCK consists of two meth-
ods: (i) Minimum Spanning Tree (MST) derived
partitions, based on a measure called degree of in-
terestingness (DI), and (ii) k-means (KM) [12] de-
rived partitions. A-MOCK only uses one method
to generate the initial population, the MST-derived
partitions. In [6], MOCLE considered partitions
generated by Single-Linkage (SL), Average-Linkage
(AL), KM, and Shared Nearest Neighbor-based
clustering (SNN) [5]. In contrast, EMO-KC consid-
ers a random choice of the points in the dataset to
define the initial centroids.

Representation. MOCK introduced the locus-
based adjacency graph representation, in which a
solution is described as a vector of genes, and each
gene ¢; can take an integer value between 1 and
n; if a value j is assigned to the ith gene, it can
be interpreted as a link between the data points ¢
and j, i.e., i and j belong to the same cluster. A-
MOCK introduced two reduced locus-based adja-
cency graph representations, A-locus and A-binary;
these schemes can significantly reduce the length of
the genotype by using the concepts of MST and DI
according to the length of the encoding defined by
a user-defined parameter (§). MOCLE uses a label-
based encoding that considers labels for each object
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in the partition. At last, EMO-KC uses a centroid-
based encoding, in which the genes represent the
coordinates of the cluster centroids.

Optimization Strategy. In terms of the op-
timization strategy, MOCK [9], MOCLE [6], A-
MOCK [8], and EMO-KC [16] use traditional multi-
objective evolutionary algorithms (MOEA) to op-
timize clustering criteria as objective functions.
MOCK relies on the Pareto envelope-based se-
lection algorithm version II (PESA-II) [3] in the
optimization; in contrast, MOCLE, A-MOCK]|S§]
and EMO-KC [16] use the Non-dominated Sort-
ing Genetic Algorithm IT (NSGA-II) [4]. Both these
MOEA, PESA-II and NSGA-II, use the Pareto
dominance relation to rank and select the solutions
in evolutionary optimization. The Pareto domi-
nance is an important concept used in our analy-
sis, that can be defined as follows: Let x; and xo
be two feasible solutions; x; is said to dominate
X (denoted as x1 < Xs), if the following two condi-
tions are satisfied [2]: (i) Vi € {1,2,...,z}: fi(x1) <
fi(x2)7 (11) Jj e {1725 . '7Z}: fj(Xl) < fj(X2)~

Objective Functions. The analyzed EMOCs use
two objective functions. MOCK and MOCLE opti-
mize the overall deviation (dev) and connectivity
index (con) as objective functions [9,6]. The dev is
computed according to (1), where 7 represents a
partition, x; denotes an object in the cluster ¢, p;,
is the centroid of cluster ci, and d(.,.) refers to the
selected distance function.

dev(m) = 3 3 dxi ), (1)
CLET X;ECk

The con is defined according to (2), where n is the
number of objects in the dataset, L is the parameter
that denotes the number of nearest neighbors that
contributes to the connectivity, a;; is the jth nearest
neighbor of the object x;, and cj, is a cluster in the

partition 7.

n L
con(m) = Z Z f(xi,ai;), where

i=1j=1 )
f(xiyai) = {;7if Fe X <

0, otherwise

A-MOCK also optimizes the con, but employs

the intra-cluster variance (var) instead of the dev
as an objective function. The var is defined accord-
ing to (3), where 7 denotes a partition, n is the
number of objects in the dataset, x; is an object in
the cluster cy, p; is the centroid of the cluster cy,
and d(.,.) is the selected distance function [8].

var(m) == 3 Y dx ) @)
CLET X;ECL

At last, EMO-KC optimizes an adapted sum of
squared distances (SSD) and the number of clus-
ters (k) as objective functions. None of the other
EMOC:s use the number of clusters as an objective
function. In terms of the SSD, it is computed in
the same way as (3) multiplied by n (the number
of objects in the dataset). The adapted SSD, here
denoted as var’, is computed according to (4) [16].

var’ = (1 — exp™ XSy _ | (4)

All these objective functions should be minimized
in the optimization.

Crossover and Mutation Operators. MOCK
and A-MOCK use the standard uniform crossover
and a neighborhood-biased mutation scheme [9)].
MOCLE uses the Hybrid Bipartite Graph Formula-
tion (HBGF) (7] as crossover operator, and no mu-
tation is employed [6]. EMO-KC relies on the stan-
dard operators of the NSGA-II: simulated binary
crossover and polynomial mutation [16].

3 An Improved Connectivity Index

In our studies, we verified that, according to the
setting of the neighborhood size parameter (L), the
connectivity index formulation could limit the de-
tection of some data structures. For example, a
dataset with well-separated nested data structures,
as ds2c2sc13 (Fig 2), can produce several solutions
with optimal con. Consequently, when EMOCs se-
lect which solutions to keep, the decision will be
taken based on the other criteria. For instance, if we
consider optimizing two objective functions, where
the var or dev is applied along with con, the parti-
tions with a lower number of clusters would be dis-
carded in the selection. The reason is that this solu-
tion is dominated by other solutions with lower var
or dev because those solutions have a higher number
of clusters. In term of the dataset ds2c2sc13, the al-
gorithms that use these pairs of objective functions,
such as [9,6,8], may not find the true partition® of
the 81 (when they use L=10), because it is domi-
nated by S2 — the true partition of the S1, Fig. 2a,
has (dev = 63.038, con = 0) or (var = 0.013,

3 The True Partition or ground truth is the labeled
data that forms the real partition, the underlying
structure of the data; and S denotes the hierarchy
level of the partitions, in which S1 represents the par-
tition with the lowest number of clusters (a high-level
partition), and a higher S refers to a partition with a
low level of hierarchy.
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con = 0); 82, Fig. 2b, has (dev = 33.457, con = 0)
or (var = 0.004, con = 0); and 83, Fig. 2¢, has
(dev = 24.075, con = 7.519) or (var = 0.002,
con = 7.519). A behavior that could also occur in
other datasets with well-separated but no compact
clusters.

It is important to note that the use of another
setting for L can lead to the detection of the S1.
However, it can generate the dominance of the other
clustering levels. Thus, in order to deal with this
problem, we propose in (5) a slight but effective
modification of the definition of the con (2):

con’ () = con(m) + (n ’X“ L) (5)

where £ is the number of clusters in partition 7,
n is the number of objects in the dataset, and L
is the number of nearest neighbors that contribute
to connectivity. The term (n x L) ensures that the
number of clusters k will be mapped to a value lower
or equal to %, taking values in the interval |0, %]
That it is required to maintain the ordinal relation-
ship between the best and the worst connectivity
results. So, this modification will only affect the so-
lutions that have the same outcome for the sum of
the penalties of connectedness (2).

Intuitively, the new term added to con to yield
con’ will produce a new dominance relation that dis-
tinguishes the partitions with the same value of con
but with a different number of clusters — a scenario
that can occur in nested clusters, as in ds2c2sc13
dataset.

In other words, con’ contains the information re-
garding the sum of the penalties of connectedness
(the primary criterion), in the same way as the orig-
inal con, added to the information about the num-
ber of clusters (the secondary criterion). The added
information will affect the dominance evaluation of
the solutions with the same outcome for the sum of
the penalties of connectedness. Since the order re-
lation regarding connectivity will only be modified
in this group of solutions.

4 Experimental Design

This section presents the methodology employed to
evaluate the adapted objective function, the used
datasets, the experimental setup of the EMOCs,
and the indicator applied for the performance as-
sessment.

4.1 Datasets

Regarding the datasets, Table 1 summarizes the
main characteristics of the fifteen datasets used in
our experiments. In this table, n is the number of

objects, d is the dimension of the dataset (number
of attributes), S is the number of true partitions,
i.e., the number of different levels of the (nested)
data structures, and k* is the number of clusters of
each data structure. S is also applied as an iden-
tifier for each true partition, where the associated
number refers to the hierarchy level of the parti-
tions, in which S1 represents the partition with the
lowest number of clusters, and S4 the partition with
the highest number of clusters. These datasets were
divided into five groups (G1, G2, G3, G4, and G5),
considering the general features evaluated in our
analysis.

G1 and G2 contain datasets with several different
properties, such as different data structures, num-
ber of observations, and distribution. G1 contains
artificial datasets (20d-60c, Aggregation, D31),
and G2 contains real datasets (Iris, Libras, UKC1).
These groups are used to verify the general impact
of the con’ in comparison with con when applied in
different datasets with a single true partition.

G3 contains artificial datasets with nested data
structures and well-separated clusters (ds2c2sc13
and Spiralsquare). In this group, besides compar-
ing the use of con and con’, we will analyze the
capabilities of the con’ in the EMOCs in relation to
the hierarchical clustering algorithms SL and AL.

G4 also contains artificial datasets with nested
clusters, but they have several different properties,
such as cluster shapes, distributions, and proxim-
ity between the clusters. In this group, we have
the Monkey dataset and three new datasets, Bear,
Glassesman and Stomata, Fig. 3. These three
datasets were used for the first time here?. In partic-
ular, Bear and Glassesman contain different types
of sub-sets, in which the lowest (hierarchy) level of
structures (S3) contains nested clusters along with
other sub-sets. For example, the overlapping clus-
ters that represent the nose and mouth in the S3 of
the dataset Glassesman are sub-sets of one general
cluster, but such clusters are not nested at this level
of data. The same occurs in the clusters that repre-
sent the eyes in the dataset Bear, they are sub-sets
in the 83, but these clusters are not nested struc-
tures.

At last, G5 contains real datasets, (Golub, Glass,
and Leukemia), that present more than one speci-
fied true partition, and may present nested data
structures. The analysis of these groups will pro-
vide a general view of how the con/ impacts the
clustering performance of the EMOCs in complex
datasets. As well, we will analyze the results of the
EMOCs with regard to the hierarchical clustering
algorithms SL and AL.

4 Available at
newdatasets.

https://github.com/cymorimoto/

114



*%
L3N

-i ) \f)""?"‘{;

Jf#

,.6".6

1

T Y

" f-
02 t‘ '.;‘-.g, -?'ﬁé“.

0.2

(a) 81, k=2

05

0.6

'-m\t» :?Wl;

o.

(b) 52, k=5

05 0.6 07 0.2 05 0.6 0.7

(c) 83, k=13

Fig. 2: True partitions of the artificial dataset ds2c2sc13

Dataset

d

S k

Description

G1

20d-60c

Aggregation

D31

4,395

788

3,100

20

60

31

20d-60c has 60 ellipsoidal clusters with arbitrary elon-
gation and orientation distributed in a 20-dimensional
space.

Aggregation consists of heterogeneous structures with
clusters of varied sizes and shapes.

D31 contains 31 equal sizes and spread clusters that are
slightly overlapping and distributed randomly in a 2-
dimensional space.

G2

Iris

Libras

UKC1

150
360

29,463

90

15

11

Iris contains 3 clusters (types of iris plant) that contain
an equal number of observations.

Libras is composed of representations of different hand
movements in the Brazilian Sign Language (LIBRAS).
UKC1 is a dataset with a very large number of objects
related to street-level crime in the U.K.

G3

ds2c2sc13

Spiralsquar

588

4,500

2,5, 13

2, 6

ds2c2sc13 contains three different structures: S1 repre-
sents two well-separated clusters; S2 and S3 combine dif-
ferent types of clusters.
Spiralsquare contains two true partitions: S1 represents
two well-separated clusters, and S2 contains 2 spirals and
4 Gaussian-like clusters.

G4

Monkey

Bear

Glassesman

Stomata

1,000

1,480

5,878

2,376

2,3,5,8

2,5, 11

3,4,5

2,8, 16

Monkey has a set of clusters with different sizes and shapes
that represent a monkey head. S1 contains two major
clusters. S2 and S3 present clusters with different granu-
larities of the S1.

Bear contains clusters with different dispersion and
distributions, considering clusters obtained from the
datasets Pathbase and ds3c3sc6.

Glassesman contains heterogeneous structures with clus-
ters of varied sizes and shapes, including clusters pre-
sented in the datasets Engytime and twoDiamonds.
Stomata was designed and inspired by the cells found
in the epidermis of leaves, named stomata. It contains
three data structures: S1 considers two internal cells sur-
rounded by the other cells, S2 represents each cell as a
cluster, S3 distinguishes the cells and their nucleus.

G5

Glass

Golub

Leukemia

214

72

327

2,5,6

3,7

Glass is a benchmark dataset, that contains glass at-
tributes used to identify the type of glass.

Golub refers to gene expression data from the leukemia
micro-array study.

Leukemia also refers to gene expression. Both Golub and
Leukemia have a small number of objects (distributed in
clusters of very different sizes), but a large number of
attributes, typical of bio-informatics data.

Table 1: Dataset

characteristics
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The datasets 20d-60c and UKC1 were introduced in [8].
ds2c2sc13, Glass, Golub, Iris, Leukemia, Libras, Monkey, and
Spiralsquare were obtained from the Clusters evaluation bench-
mark repository®. D31 and Aggregation were obtained from
the Clustering basic benchmark repositoryﬁ. Besides that, the
datasets that compose the Bear and Glassesman were obtained
from these two repositories.

4.2 Experimental Setup

We employed the same general settings as reported in [9,8] to
execute MOCK and A-MOCK. Regarding the A-MOCK rep-
resentation, in this paper, we used the A-locus scheme with §
defined as a function of ~ 5/y/n, where n is the number of
objects in the dataset — this function is one of the heuristics
employed in [8]. Concerning the MOCLE, we used the general
setting as in [6], considering the NSGA-II as MOEA and HBGF
as a crossover operator. At last, for EMO-KC, we applied the
same general setting presented in [16]. Furthermore, for every
approach, including the hierarchical algorithms SL and AL, we
applied the Euclidean distance as a distance function, and we
adjusted the other parameters required to produce partitions
containing clusters in the range {2,2k*}, in the same way as
MOCK and A-MOCK.

For the EMOCs, the L parameter applied in the con and
con’ was set L = 10 for all the experiments. Finally, as such
algorithms are non-deterministic, we executed the experiments
30 times.

4.3 Performance Assessment

In this work, we use the adjusted Rand index (ARI) [10] as the
indicator to measure the clustering performance. This indicator
measures the similarity between two partitions. Thus, ARI is
applied to compare the EMOCSs results with the true partitions.
ARI results close to 0 mean no correspondence between the par-
titions, and results close to 1 point out a high similarity between
the partitions.

Besides, we use a non-parametric test to analyze the ARI re-
sults, the Kruskal-Wallis test with the Tukey-Kramer-Nemenyi
post-hoc test [15] with significance level alpha=0.01. Such a test
is applied to analyze the behavior of each algorithm on a dif-
ferent problem (dataset). Furthermore, we applied the Friedman
and Bergmann-Hommel Post Hoc hypothesis test [15] with al-
pha=0.05. This last combination of tests is applied to compare
the overall performance of the algorithms in the datasets with
nested clusters.

5 Results and Discussion

In this section, we present the results of the performed experi-
ments considering the comparison of the con and con’ applied
along with the original compactness index (dev, var, or var’) in
the EMOCs and compare them with the results of the hierar-
chical clustering methods SL and AL. Since EMO-KC originally
did not use a connectedness index, we also performed experi-
ments with its original objective functions (var’, k) and asso-
ciated them with the connectedness criterion. As described by
[16], the var’ was designed to provide more conflict around the
number of the clusters; we consider that a general analysis of
these objective functions can provide insights about the perfor-
mance of the purpose modification of the con to produce conflict
around the compactness criterion.

Table 2 presents the ARI of the best partition found by SL
and AL, and the average ARI of the best partitions of MOCLE,
MOCK, A-MOCK, and EMO-KC found in experiments using 2
objective functions, considering their original compactness crite-
rion (dev, var, or var’) associated with con and con’, as objec-
tive functions. For EMO-KC, it also presents the results regard-
ing the original objective functions presented in [16], (var’, k).
The ARI highlighted in boldface represents the best values found
for each evolutionary multi-objective approach, considering the
comparison of the different objective functions. Furthermore, un-
derlined ARI points out the results with a significant difference

® Available at http://lasid.sor.ufscar.br/
clustersEvaluationBenchmark.
6 Available at http://cs.uef.fi/sipu/datasets.

according to the Kruskal-Wallis test. In the case of the SL and
AL results, the ARI highlighted in boldface represents the re-
sult where these algorithms found the best ARI compared to the
EMOCs.

The results point out that the con’ improves the general per-
formance of all the EMOCsSs, as shown in Table 2. The row Sig-
nificant Wins presents the number of the datasets in which one
pair of objective functions win over the other pair (as indicated
by the statistical test), considering the objective functions with
con’ or con. For instance, for MOCLE, the objective functions
(dev, con) has 2 significant wins while the pair (dev, con’) has
3 significant wins. In general, A-MOCK and MOCK are algo-
rithms that have the major significant wins with the con’, where
MOCK has 6 significant wins and A-MOCK 8 significant wins.

By analyzing each group of datasets, we obtained more details
about how the con’ impacted the results of the studied EMOCs.
For example, in general, the use of the con’ does not impact the
results in the datasets with a single true partition, as the datasets
present in G1 and G2, in which the results of all EMOCs were
very close to that present with con. Only for the dataset UKC1
(present in G2), the use of the con’ provided a significant gain
of ARI in MOCK and A-MOCK.

On the other hand, for the datasets with nested data struc-
tures and well-separated clusters, as presented in G3, we have the
greatest improvement of the clustering results by using the con’.
For example, the well-separated structures S1 in the datasets
ds2c2sc13 and SpiralSquare were detected in all studied ap-
proaches, and A-MOCK was able to detect 82 in the datasets
ds2c2sc13.

A particular case occurred in the S3 of the datasets ds2c2sc13,
where the use of the con’ caused a significant loss in the ARI
in MOCLE and MOCK, when compared with the results of con.
In this case, the parameter L is still impacting the dominance
around the true partition. However, in MOCLE, our general re-
sults for this dataset are higher than others reported in the re-
lated work, as in [6] or results provided by hierarchical methods
SL and AL.

In contrast, the results in the G4 and G5 were diverse. For
example, we obtain an ARI gain in the S1 of the dataset Leukemia
in MOCK and A-MOCK. However, the dominance of the true
partition and the influence of the L parameter are still impacting
the results in the datasets Monkey and Stomata, in which we ob-
tained gain of the ARI in some partitions and an ARI decrease in
other ones. An analysis of the Pareto front (PF) of these datasets
is presented in Section 5.1, to detail how the con’ impacts the
optimization and to explain these results. At last, for the other
datasets in these two groups (G4 and G5) there are not any sig-
nificant differences by using con or con’. Regarding the results
of the SL and AL, in general, the best results found by them for
G4 and G5 were worse or equal to the results found by MOCLE.

In general, this minor loss in MOCLE, MOCK, and A-MOCK
by using con’ is not so significant when compared to the general
ARI gain in the datasets as presented in Table 2 (Significant
Wins row). Furthermore, it promotes a significant increase in
the performance of the EMO-KC without any loss.

Furthermore, it is important to observe that the A-MOCK
provides the highest ARI for datasets with multiple true parti-
tions. That also is pointed in the Critical Difference Diagram,
Fig. 4, which shows the performance comparison of the strate-
gies according to the Friedman and Bergmann-Hommel Post Hoc
hypothesis test, in which A-MOCK has the best rank with con’.

Additionally, we also performed experiments with EMO-KC
using three objectives, (var’, con, k) and (var’, con’, k), that
produces equivalent ARI results to the pair (var’, con'). Since
there is not a significant difference between the overall perfor-
mance of the EMO-KC using two or three objective functions,
we do not display these last results. Nevertheless, it is important
to note that, based on these results, in EMO-KC, the use of the
con’ provides evidence that the conflict around the number of
clusters is improved, even though the general ARI gain is not so
robust.

5.1 The impact of the con’ in the
optimization

As above-mentioned, the use of the con’ promoted a general
gain in the ARI; however, it also caused a loss in the ARI in
some datasets. In this context, to analyze how the con’ impact
the optimization, we look over the Pareto front of the datasets
Monkey and Stomata.

Fig. 5 presents the Pareto front of the datasets Monkey gener-
ated by MOCLE, in which the red points represent each true par-
tition at different levels, as a reference for comparison. In Fig. 5b

116



(e) Glassesman-82, k =4

(f) Glassesman-S3, k = 8

»
»

s

2

5

0

s

o

;

n

0

8

.

.

.

S S T 3
(d) Glassesman-S1, k = 3
350 350
20 %0
250 250
L 4

200 200

B @ -

150

300
- @

100

100 150 200 250 300 350 100 150 200

(g) Stomata-S1, k =2

(h) Stomata-S2, k = 8

(i) Stomata-S3, k = 16

Fig.3: New artificial datasets with nested data structures

we can observe an increase of the solutions in the region of the
true partition of the 81, S2, and S3 when compared with Fig. 5a.
For the S1, we observed that the solution that ARI=0.5131 was
dominated by other solutions when con’ is applied, but it gen-
erates new solutions near the true partition, making it possible
to apply other methods (local search) to improve the results. In
particular, to detect the partition S4 in Monkey requires further
exploration of the region with smaller var in MOCLE. It is im-
portant to note that MOCLE has an inner property that reduces
the number of solutions while producing new solutions generated
by the ensemble-based crossover. It is the main reason for the
small number of solutions in the Pareto front when compared to
the other EMOCs.

Fig. 6 presents the Pareto front of this same dataset generated
by MOCK. In the sub-figures, we also observe similar behavior
to the MOCLE, in which using con’ promoted the increase of
solutions in the region of the high-level structures that are close
to the true partition. However, for the S4 in Monkey, the L pa-
rameter is still affecting the general performance of the MOCK,
in which the use of the con’ improved the convergence of the
solutions.

For the dataset Stomata, in A-MOCK con’ promote a better
distinction of the solutions around the true partition of the S2,
$3. Since the con for these structures is the same (con=9.8115),
the con’ generates more diversity of solutions in which the con-
vergence is better than in con. In this context, this distinguish-
ing of solutions improve of the ARI in the S2. For S1 it promoted
the increase of solutions in the region of the high-level structures
that are close to the true partition, as illustrated in Fig. 7. The
general loss in the ARI of the S1 and S3 using con’ occurred
because we have new solutions in the front with better conver-

gence but still need some local exploitation to get a better ARI.
It is important to note that in the A-MOCK, besides using the
con’, the initialization strategy also had an important role in
its general results. We observe that initialization strategies that
include KM, as in MOCK and MOCLE, could generate solutions
that dominate other promising solutions with nested data struc-
tures. Besides that, the reduced encoding used in A-MOCK did
not affect the clustering performance, in which A-MOCK is the
more scalable approach with good ARI results.

On the other hand, in EMO-KC, the use of the random
initialization and centroid-based representation had difficulties
in detecting concentric clusters, such as the two spirals in the
Spiralsquare, or clusters with close centroid and elongated data
structures.

In summary, by using con’ the optimization of the solutions
was improved, which promoted more diversity of the solutions,
including the regions of the high level of the nested data struc-
ture, and increased the convergence of the solution; however,
some aspects of the EMOCSs, such as initialization and represen-
tation, can impact the detection of the nested clusters.

6 Conclusion

In this study, we provide an analysis regarding the use of EMOCs
for nested data structures. Furthermore, we deal with a problem
in the definition of the connectivity index, in which several dif-
ferent partitions could present the same optimal value (con = 0)
depending on the considered neighborhood size (L). In this sce-
nario, the decision would be essentially taken based on the other
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Table 2: The ARI of the best partition found by SL and AL, and the average ARI of the best partition
found by MOCLE, MOCK, A-MOCK and EMO-KC. Average of 30 executions for the EMOCs

SL AL MOCLE MOCK A-MOCK EMO-KC

# |Datasets S — — dev, con‘dcv, con’ |dev, con‘dev, con’ |var, con‘var, con’| var, k ‘vu,r’7 con‘var/, con’
20d-60c -1 0.0007| 0.2601] 0.8989 0.8989| 0.7819 0.7810] 0.9003 0.8998] 0.5350 0.5554 0.5525
G1|Aggregation| - | 0.8089| 1.0000| 1.0000 1.0000| 0.9935 0.9908| 0.9671 0.9656| 0.7898 0.9346 0.9535
D31 -1 0.2124| 0.9307] 0.9523 0.9523| 0.9030 0.9044] 0.7456 0.7291] 0.8136 0.8274 0.8313

Iris -1 0.5681| 0.7592] 0.8284 0.8284| 0.7707 0.7891| 0.7709 0.7869| 0.7370 0.7543 0.7437
G2|Libras -1 0.0224| 0.3346] 0.3346 0.3346] 0.3942 0.3973] 0.3865 0.3886] 0.2762 0.2949 0.2933
UKC1 - | 1.0000| 0.9415] 1.0000 1.0000| 0.9985 1.0000] 0.9962 0.9995| 0.9574 0.9577 0.9498

S1| 1.0000| 1.0000f 0.6840 1.0000f 0.3810 1.0000{ 0.3520 1.0000{ 1.0000 0.6828 1.0000

ds2c2sc13  [S2] 1.0000| 1.0000] 1.0000 1.0000| 1.0000 1.0000( 0.9520 1.0000( 0.8775 0.8777 0.8841

G3 1S3] 0.8724| 0.6648| 1.0000 0.9690| 0.8710 0.8380| 0.8720 0.8720| 0.5889 0.6613 0.6622
Spiralsquare ﬂ 1.0000| 1.0000] 0.8888 1.0000f 0.5711 1.0000{ 0.5711 1.0000{ 0.9663 1.0000 1.0000

S2] 0.9283| 0.5410] 0.9971 0.9971] 0.9980 0.9973| 0.9986 0.9987| 0.4742 0.5340 0.5341

S1] 0.5122| 0.4479] 0.5131 _0.4566] 0.3377 0.5653| 0.4544 0.8654| 0.3737 0.6124 0.6076

Monkey E 0.8551| 0.2279] 0.8267 0.8551) 0.7776 0.8351| 0.7776 0.9292| 0.2881 0.4468 0.4629

S3] 0.8341| 0.5305] 0.8341 0.8341] 0.7610 0.7640| 0.7960 0.7960| 0.4272 0.5197 0.5037

1S4] 0.8708| 0.6713] 0.8707 0.8707] 0.8628 _0.8404| 0.8737 0.8719| 0.6078 0.6997 0.6622

S1] 0.0042| 0.1266] 0.2858 0.2858] 0.4252 0.4181| 0.4142 0.4135|_0.2179 0.2565 0.2431

Bear 1S2| 0.0675| 0.7194] 0.7194 0.7194] 0.7138 0.7195| 0.7220 0.7219] 0.5883 0.6752 0.7048

G4 1S3] 0.3895| 0.6842] 0.6842 0.6842| 0.8061 0.8097| 0.7798 0.7793]| 0.6349 0.6760 0.6781
S1] 0.8775| 0.8269] 0.8775 0.8775] 0.7920 0.7857| 0.7889 0.7890|_0.7909 0.8077 0.8097

Glassesman |S2| 0.5944| 0.5048| 0.9691 0.9691] 0.9271 0.9291| 0.9549 0.9529| 0.9034 0.9273 0.9228
1S3] 0.2403| 0.5048| 0.8428 0.8428| 0.8505 0.8467| 0.8791 0.8798| 0.7954 0.8155 0.8214

S1] 0.0214| 0.0382] 0.0382 0.0382] 0.5986 0.5946] 0.8635 0.8311| 0.0005 0.0124 0.0108

Stomata 1S2]| 0.7233| 0.2966] 0.7233 0.7233] 0.6987 0.7025| 0.7970 0.8368] 0.3269 0.3708 0.3574

1S3] 0.7783| 0.2620] 0.9190 0.9190] 0.7356 0.6805 0.8952 0.8573| 0.2992 0.3368 0.3455

S1] 0.0536| 0.0536] 0.6468 0.6468] 0.5418 0.5424| 0.5620 0.5663| 0.6099 0.6086 0.6077

Glass 1S2] 0.1057| 0.4918] 0.5043 0.5043] 0.4338 0.4359| 0.4605 0.4552| 0.4608 0.4951  0.4999

1S3] 0.0403| 0.2488] 0.2980 0.2980] 0.2060 0.2030| 0.2050 0.2020| 0.2205 0.2295 0.2307

G5 Golub ﬂ -0.0026{-0.0139] 0.4193 0.4193] 0.7884 0.8054| 0.5410 0.5469| 0.4630 0.7203 0.7406
S2]-0.0108| 0.6473| 0.6473 0.6473]| 0.8816 0.8714| 0.5569 0.5676| 0.5615 0.7055 0.7126

Leukemia. E -0.0037| 0.3346| 0.3295 0.3295] 0.3049 0.4133| 0.3040 0.4097| 0.2352 0.2945 0.3004

S2| 0.0224| 0.3346] 0.7589 0.7589] 0.7767 0.7767| 0.7706 0.7708| 0.5922 0.7201 0.7180

Significant Wins — — 2 3 3 6 2 8 — 0 4

objective function in evolutionary multi-objective optimization. References

To tackle this problem, we presented a modified version of the
connectivity index called con’. The results obtained with con’,
in terms of ARI and the ability to find nested cluster structures,
are promising. In particular, there is a significant increase of
the ARI in artificial datasets that present well-separate nested
structures.

Besides the meaningful advantages in the scalability described
by [8], A-MOCK demonstrated to be the best option of the stud-
ied EMOCs for nested clustering by using the con’ as an objec-
tive function. In this context, we observe that the initialization
strategy also contributes to the A-MOCK results, where other
initialization strategies, like KM, could generate partitions that
dominate other ones with nested structures.

Furthermore, we demonstrate how this modification impacts
the optimization process by presenting the plot of the Pareto
Front of the EMOCS, evidence that the con’ improves the gen-
eration of a more diverse and convergent set of solutions.

Our results also showed that there are still some open prob-
lems regarding the L parameter still impacting the optimization,
in which the true partition is dominated, deserving more studies.
For future work, we consider that an analysis of different values
of L can provide the extent of the results that depend on L.

We also introduce three new datasets (Bear, Glassesman,
Stomata) that present a great challenge for the studied EMOCs,
that could be explored in future works.
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Fig. 4: Critical Difference Diagram of the EMOCs considering the different pairs of objective functions.
The bold horizontal lines link the strategies that had statistically equivalent performance among them
at a confidence level of 95%), and the lower the rank the better performance of an approach.
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