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RESUMO

O agrupamento de dados evolutivo multiobjetivo (AEM) é uma técnica moderna de agrupamento

de dados em que os conceitos gerais de otimização evolutiva de multiobjetivos são aplicados

no problema de agrupamento. O projeto e definição de algoritmos de agrupamento de dados

é um problema difícil, no qual a escolha das funções objetivo e definição dos parâmetros de

configuração ainda são desafios. Neste estudo, visando compreender esse campo, mapeamos e

analisamos as abordagens existentes e avaliamos suas principais características. Esta análise

demostrou que, em geral, a escolha das funções objetivo considera apenas as propriedades de

agrupamento desejadas, e a maioria das abordagens AEM presentes na literatura não considera

aspectos de otimização multiobjetivo, como a direção de busca, em seu projeto. Visando

apoiar uma melhor escolha e definição dos objetivos nas abordagens AEM, neste manuscrito

propomos uma análise da admissibilidade dos critérios de agrupamento para examinar a direção

de busca e avaliar seu potencial em encontrar resultados ótimos. Para tanto, consideramos

os fundamentos associados a avaliação de uma função heurística para analisar os critérios de

agrupamento de dados e demonstrar como eles podem influenciar a otimização. Como resultado,

apresentamos uma análise detalhada das principais funções objetivo encontradas na literatura e

avaliamos como a inicialização interfere na sua admissibilidade. Além disso, observamos alguns

problemas no projeto de algoritmos estabelecidos, os quais não consideram como a estratégia

de inicialização pode impactar na busca em termos das funções objetivo aplicadas. Podendo

limitar ou piorar os resultados encontrados na inicialização. Para tratar esta questão propomos o

AEMOC (Adaptive Evolutionary Multi-objective Clustering approach based on data properties).

Essa abordagem considera a propriedades das partições base para determinar se a otimização

é necessária ou não. Para isso, propomos uma métrica para medir o grau de separação dos

dados, que estima a qualidade relativa da população inicial gerada pelo agrupamento de árvores

geradoras mínimas. Além disso, esta avaliação permite definir uma seleção offline de funções

objetivas e configurações de parâmetros do algoritmo multiobjetivo. O AEMOC apresentou

resultados promissores considerando um conjunto diversificado de conjuntos de dados artificiais e

reais, considerando dois aspectos: obteve sucesso na definição da qualidade relativa das partições

de base e forneceu melhores resultados de agrupamento do que as abordagens AEM de referência.

Palavras-chave: Agrupamento de dados. Otimização multiobjetivo. Agrupamento de dados

multiobjetivo.



ABSTRACT

Evolutionary multi-objective clustering (EMOC) is a modern clustering technique in which

the general concepts of evolutionary multi-objective optimization are applied to the clustering

problem. The design and definition of the clustering are difficult problems in which the choice

of the objective functions and parameter setting of the algorithms are still challenges. In our

study, aiming to understand this field, we mapped and analyzed the existing approaches and

evaluated their main characteristics. This analysis showed that many different objective functions

and initialization strategies have been applied in EMOC approaches. In general, the choice of the

objective functions only considers the desired clustering properties, and most EMOC approaches

present in the literature do not consider aspects of multi-objective optimization, such as the search

direction, in their design. Aiming to support a better choice and definition of the objectives

in the EMOC approaches, we introduce an analysis of the clustering criteria admissibility to

examine the search direction and evaluate their potential for finding optimal results. We consider

the fundamentals of the evaluation of a heuristic function to analyze the clustering criteria

and demonstrate how they can influence the optimization. As a result, this study provides a

detailed analysis of the main objective functions found in the literature and evaluates how the

initialization interferes with their admissibility. Besides that, we observed some issues in the

design of established algorithms that do not consider the impact of the initialization strategy on

the search when determined objective functions are applied. This aspect can limit the clustering

or worsen the results found in the initialization. To amend this matter, in this manuscript, we

propose the AEMOC (adaptive evolutionary multi-objective clustering approach based on data

properties). This approach considers the properties of the base partitions to determine whether

optimization is required or not. For that, we propose a metric to measure the data separation

degree that estimates the relative quality of the initial population generated by minimum spanning

tree clustering. Furthermore, this evaluation makes it possible to define an offline selection of

objective functions and parameter settings for the multi-objective algorithm. AEMOC presented

promising results considering a diverse set of artificial and real-life datasets, considering two

aspects: it succeeded in the definition of the relative quality of the base partitions, and it provided

better clustering results than reference EMOC approaches.

Keywords: Clustering. Multi-objective optimization. Multi-objective clustering.
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1 INTRODUCTION

The use of knowledge discovery techniques has become essential to analyze and understand

large volumes of data generated in different fields of application (e.g. marketing, medicine,

bioinformatics). Clustering analysis has been widely studied and adopted for several purposes,

including pattern analysis, image segmentation, data mining, and decision-making. Clustering is

a type of unsupervised learning whose goal is to find the underlying structures that compose finite

sets of data (clusters), in which the objects or observations belonging to a cluster should share

some relevant property (similarity) regarding the data domain. In other words, in clustering, there

is an absence of category information that distinguishes data clustering (unsupervised learning)

from classification (supervised learning) (Aggarwal and Reddy, 2014).

There are several clustering algorithms that have been proposed in different fields of

research. However, in spite of that, clustering remains a difficult problem. As described by Jain

(2010), this can be attributed to the inherent vagueness in the definition of a cluster, and, in

particular, the difficulty in defining an appropriate objective function.

In recent years, multi-objective evolutionary algorithms (MOEAs) have become a

popular method applied for clustering. In general, clustering studies that consider this kind of

approach are referred to as evolutionary multi-objective clustering (EMOC). They are capable

of obtaining a set of solutions that represent the trade-off between different objectives. They

use multiple criteria (e.g., compactness and connectedness) as objective functions to deal with

datasets with different types of clusters. However, the evolutionary-based clustering methods

are still under-explored in the literature, deserving more attention and investigation (Zhu et al.,

2020). In particular, the design and definition of the clustering problem are still challenges, in

which issues related to the definition of the objective functions and initialization strategy emerge

in evolutionary multi-objective optimization, in addition to other difficulties.

Some studies, such as Hruschka et al. (2009); Mukhopadhyay et al. (2015), introduced

some approaches present in the literature but were limited in listing their components and main

features. In recent studies presented by Wang et al. (2018, 2020), the authors provide analysis

regarding the generation and maintenance of diversity of solutions in EMOC approaches. Other

studies have evaluated the objective functions for evolutionary multi-objective data clustering.

Handl and Knowles (2012) present a comparison of four criteria pairs for multi-objective

clustering in datasets with different types of clusters. Barton and Kordík (2015) investigated some

clustering criteria and analyzed their correlation with the ground truth to develop an evolutionary

multi-objective clustering algorithm. However, these studies do not consider evaluating the

search direction of objective functions and the impact of the initial population on the evolutionary

optimization.

1.1 RESEARCH QUESTIONS AND GOALS

Aiming to improve the research in this field and provide insights regarding the design of EMOC,

we raised the following research questions (RQ):

RQ.1: How to evaluate the objective functions and define the best combination of the

clustering criteria applied in EMOC?

RQ.2: How does the initialization strategy affect the optimization?
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RQ.3: How to improve the design and the parameter setting of the EMOC?

These RQs guided our general studies and analysis. Regarding RQ.1 and RQ.2, they

motivated the mapping of the existing approaches to analyze the general clustering criteria

applied in the EMOC approaches. However, it demonstrated a lack of studies that analyze both

the clustering and optimization features in order to determine EMOC objective functions and

initialization strategy. In the literature, there are a variety of clustering criteria being applied

in the EMOC approaches, but most studies do not provide any analysis regarding the choice

and combination of the objective functions. Fundamentally, they are selected concerning some

desired proprieties in the data clustering. The same occurs in terms of the initialization strategy.

Many approaches make use of established clustering algorithms without a prior study of the

impact of the search. This superficial analysis, which only concerns the clustering aspects,

can promote a wrong usage of multi-objective optimization with the application of inadequate

objective functions. Thus, we rely on the fundamentals of artificial intelligence in defining

heuristic functions to evaluate the clustering criteria and determine whether a function can

lead the search to the optimal results based on the admissibility. The proposed analysis of the

inadmissibility of the clustering criteria, presented in Chapter 4, unifies the fundamentals of

clustering and optimization to promote good practices that contribute to the improvement of this

research field. Furthermore, this analysis considers the main objective functions and initialization

strategies applied in the literature. This broad view of the EMOC allows new practionaries and

students to be more observant to fundamentals and do not reproduce the same mistakes found in

some popular approaches.

Here, we characterize admissible objective functions as having the property of detecting

the “natural” ground-truth clustering, that is, the one with the optimal value. In contrast, the

inadmissibility analysis refers to evaluating the search direction to define a non-admissible

objective function, where the search does not lead to finding the ground-truth clustering. In other

words, our study introduces an investigation into the inadmissibility of the objective functions

applied to evolutionary multi-objective clustering that supports defining whether the objectives

are worth optimizing. It is important to note that we evaluate the (in)admissibility regarding the

search direction. This is different from the study presented by Fisher and Ness (1971), where the

authors consider the admissibility of the clustering algorithms by considering the evaluation of

the structure of the data essentially.

In particular, the analysis of the inadmissibility demonstrated issues regarding the design

of some established EMOC approaches. Some initialization strategies limit the search or provide

the optimal results in respect of some clustering criteria, and the optimization is inadequate

or not required in terms of the objective functions applied. In particular, approaches that use

traditional clustering algorithms (such as k-means (MacQueen, 1967), average-linkage (Sokal,

1958), among others) to generate the initial population (base partitions or candidate solutions) do

not evaluate the impact of using high-quality partitions in the initial population, or even how

they affect the optimization. However, our analysis showed that, depending on the data structure

nature and criterion applied in the initialization strategy, the optimal result can be found in the

base-partitions and the optimization is not required.

In terms of RQ.3, we verified that it is essential to distinguish the data properties

of base partitions to avoid unnecessary processing, as observed in the admissibility analysis.

Thus, we considered the general capabilities of minimal spanning tree (MST) clustering (Handl

et al., 2007) (a clustering algorithm) in detecting well-separated arbitrary shaped clusters and

proposed an evaluation method to estimate the relative quality of candidate solutions generated by

MST-clustering based on the general separation and overlap of the data. For that, a new metric to

measure the data separation degree (DSD) was introduced to evaluate the general data separation



22

considering some observed aspects of the initial population. This metric was used along with a

semi-supervised metric called the constrained-based overlap value (CBO) (Adam and Blockeel,

2017) to obtain the necessary information to explore specific configurations in the optimization.

In particular, CBO is applied to measure the overlap of the data. In Chapter 5, we present DSD

and CBO, presenting some general features that were used in the definition of the evaluation

method described in Section 6.2. The estimated quality results provide information to define

whether the optimization is required or not, avoiding unnecessary data processing.

Based on the studies regarding the RQs, we generated a new approach, AEMOC -

adaptive evolutionary multi-objective clustering approach based on data proprieties, as present

in Chapter 7. AEMOC provides a new view of the modeling of multi-objective clustering

approaches. The main idea of this approach is the use of an evaluation method to estimate the

relative quality of the base partitions and determine the objective functions and parameter settings

of the multi-objective algorithm. Here, the relative quality refers to the data proprieties in which

the initialization strategy has good (or poor) clustering performance.

This approach presented promising results considering a diverse set of artificial and

real-life datasets in two aspects: it succeeded in the definition of the relative quality of the base

partitions generated by MST-clustering and it provided better clustering results than reference

EMOC approaches. In general, as the clustering topic is studied in several research areas, we

consider that our analysis and results promote good practices that contribute to the improvement

of this research field.

1.2 CONTRIBUTIONS

The contributions of this work are described as follows:

• The introduction of the admissibility analysis in the clustering problem, which evaluates

the search direction of the objective functions. Many existing approaches only consider

clustering aspects in the choice of the objective functions, which does not observe the

influence of the other aspects, such as the initialization, in the optimization.

• A broad analysis of a variety of clustering criteria applied as objective functions in

existing EMOC approaches. We observe the general impact of the initialization in the

admissibility, including common issues found in the design of established algorithms.

• The introduction of a new EMOC approach, called AEMOC, provides new features in

the design of multi-objective clustering that estimate the relative quality of the initial

population to determine whether an optimization is required or not, and performs a

selection of objective functions and parameter setting of the multi-objective algorithm.

• The introduction of a new metric, DSD, that is applied to evaluate the separation of the

base partitions generated by MST-clustering.

• The analysis and comparison of established EMOC approaches, MOCK (Handl et al.,

2007), MOCLE (Faceli et al., 2006), and EMO-KC (Wang et al., 2018), with EAMOC

was conducted in order to illustrate and explain how our approach amends some common

issues observed in these algorithms.

The results of these studies were reported in different conferences and journals. The

first one, as co-authors of the analysis of the established EMOC approaches, in “Multi-objective

clustering: A data-driven analysis of MOCLE, MOCK and Δ-MOCK” published in the annals
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of ICONIP’21 (International Conference of Neural Information Processing). Furthermore, we

proposed an improvement to an objective function, and it was applied to improve the detection of

nested structures in “Detecting nested structures through evolutionary multi-objective clustering”,

published in the annals of EvoApplications’22 (International Conference on the Applications of
Evolutionary Computation). Additionally, the proposed analysis of the admissibility applied to

evaluate the objective functions was published in the journal Information Sciences (Morimoto

et al., 2022a).

Currently, we are working on two journal publications: one refers to the literature review

considering a detailed explanation of the general EMOC architecture; the other refers to the new

approach, AEMOC.

1.3 THESIS ORGANIZATION

The remainder of this manuscript is organized into six chapters. The first two chapters provide

the main concepts and features found in the EMOC literature, followed by two chapters that

introduce methods and experiments applied to generate a new EMOC approach. In particular,

this manuscript is structured as follows:

• Chapter 2 - Background presents the main concepts and theoretical background related

to clustering and multi-objective optimization problem. Furthermore, in this chapter,

we present the general architecture of EMOC, considering the general features found in

the literature and the main aspects applied to the clustering problem.

• Chapter 3 - Literature Review provides a literature revision of the EMOC approaches.

We present a profile of this field by considering an extensive mapping of the literature

to identify the main methods and concepts that have been adopted to design the EMOC

approaches.

• Chapter 4 - Analysis of the inadmissibility of the objective functions in EMOC
approaches presents the analysis of the admissibility applied to several clustering

criteria, which points out some general issues found in established EMOC approaches.

• Chapter 5 - Measuring the separation and the overlapping of the data introduces

the metrics applied to measure the separation and overlap of the data, which are used

to compose the evaluation method applied to determine the relative quality of base

partitions generated by MST-clustering.

• Chapter 6 - Proposed multi-objective clustering approach describes the proposed

approach: AEMOC - Adaptive evolutionary multi-objective clustering approach based

on data proprieties.

• Chapter 7 - Experiments presents the results regarding the relative quality estimation

of the base partitions, and the clustering results of the experiments that compare the

clustering performance of the AEMOC with other reference approaches.

• Chapter 8 - Conclusion presents a summary of the thesis and future work.
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2 BACKGROUND

In this section, we introduce basic concepts in clustering and multi-objective optimization.

In particular, we describe the main features and concepts considered in the general EMOC

architecture, along with the main elements applied in designing EMOC algorithms found in the

literature.

2.1 PRELIMINARIES

The convention adopted in this thesis considers the terms, clustering criteria, objective functions,

fitness functions, and heuristic functions, interchangeably to represent the multi-objective

clustering problem’s goals or objectives (i.e., distinct mathematical functions):

• Clustering Criteria: A clustering criterion (function) guides the selection of features

and clustering schemes in a clustering algorithm.

• Objective Functions: The objective function refers to a criterion that should be

maximized or minimized in an optimization problem.

• Fitness Functions: A fitness function is a particular type of objective function that

quantifies the optimality of a solution. The fitness functions are used in evolutionary

approaches to guide the search towards optimal design solutions.

• Heuristic Functions: A heuristic is a term adopted in artificial intelligence (AI) that

works by guiding search, suggesting behavior, making decisions, or transforming the

problem. A heuristic function guides the decision, as a strategy or simplification, to

limit the search for solutions in large problem spaces.

In this study, instead of using the term fitness function, we rely on the general term

used in evolutionary multi-objective optimization: the objective function. However, each term is

important to facilitate the general understanding of the content of this thesis, considering that

they relate to different fields of study.

2.2 CLUSTERING AND MULTI-OBJECTIVE OPTIMIZATION

Data clustering consists of the decomposition of finite and unlabeled data into subgroups based

on similar attributes, or naturally occurring trends, patterns, or relationships in the data (Jain

and Dubes, 1988). There is not a unique and formal definition of a cluster since the clustering

methods and algorithms were proposed for researchers in different fields and applied to a variety

of problems and distinct goals. In general, some general properties for cluster analysis are

considered (Hruschka et al., 2009; Rai and Singh, 2010; Faceli et al., 2011):

(a) Well-separated clusters represent clusters where each object is closer (more similar) to

all of the objects in its cluster than to any object in another cluster;

(b) Connected or contiguous clusters refer to clusters in which each object is closer to at

least one object in its cluster than to any object in another cluster;
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(c) Compact clusters represent clusters with small intra-cluster variation, considering the

variation between same-cluster data items or between data items and clusters;

(d) Center-based clusters represent clusters in which each object is closer to the center of

its cluster than to the center of any other cluster;

(e) Density-based clusters denote clusters in which regions of high density are separated

by regions of low density.

In terms of the clustering process, in this chapter and in the literature review (Chapters 2

and 3), we consider two general types: hard and soft clustering. Our proposal and analysis, on the

other hand, are centered on hard clustering. Formally, given a set of objects X = {x1, x2, . . . , x𝑛},
an hard (exclusive) partition of X in 𝑘 clusters can be defined as 𝜋 = {c1, c2, . . . , c𝑘 }, where

𝑘 < 𝑛, such that: c𝑖 ≠ ∅, for (𝑖 = 1, . . . , 𝑘), ⋃𝑘
𝑖=1 c𝑖 = X and c𝑖 ∩ c 𝑗 = ∅ for (𝑖, 𝑗 = 1, . . . , 𝑘)

and 𝑖 ≠ 𝑗 . If the condition of mutual disjunction (c𝑖 ∩ c 𝑗 = ∅, for (𝑖, 𝑗 = 1, . . . , 𝑘) and 𝑖 ≠ 𝑗) is

relaxed, then the corresponding data partitions are said to be of the soft (fuzzy) type (Hruschka

et al., 2009).

It is important to note that we use the term "overlap" to define overlapping areas among

categories. In the literature, some works refer to overlap clusters or overlapping clustering as soft

clustering.

Regarding the taxonomy of the algorithms, traditional clustering algorithms can be

divided into two general categories: partitional and hierarchical. Hierarchical methods produce a

nested series of partitions, while partitional methods produce only one (Jain et al., 1999). For

example, 𝑘-means (KM) (MacQueen, 1967) is a partitional algorithm; single linkage (SL) (Sneath,

1957), average linkage (AL) (Sokal, 1958), and complete linkage (CoL) (Sorensen, 1948) are

hierarchical algorithms. In general, traditional clustering algorithms optimize only one clustering

criterion and are often very effective for this purpose. However, they may not find all clusters in

the datasets with different data structures, or clusters with shapes hidden in sub-spaces of the

original feature space.

(a) globular clusters (b) ring shape clusters (c) heterogeneous data structure

Figure 2.1: Different data structures (objects with the same color represent a cluster in each sub-figure)

In contrast, EMOC, a modern clustering type of algorithm, considers the simultaneous

optimization of multiple objectives to solve a variety of clustering problems considering different

data properties. An EMOC that considers two criteria, compactness-based and connectedness-

based, for example, can detect all of the data structures in Fig. 2.1, whereas algorithms that use

only the compactness-based criterion, such as KM, can detect globular clusters, as shown in

Fig. 2.1(a), but KM cannot find the ring-shaped clusters in Fig. 2.1(b) and the heterogeneous

structures in Fig. 2.1(c). In contrast, a connectedness-based algorithm, such as shared nearest

neighbor (SNN) (Ertöz et al., 2002), can detect the ring shapes in Fig. 2.1(b), but SNN cannot

find the clusters in Fig. 2.1(a) and Fig. 2.1(c).
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EMOC applies the concepts of multi-objective optimization (MOO) to the clustering

problem. In MOO, the goal is to find a vector of decision variables, 𝜋, that satisfies the inequality

and equality constraints (𝑔𝑖 (𝜋) and 𝑙 𝑗 (𝜋)) presented in Eq. 2.2, and optimizes the vector F(𝜋)
of 𝑧 objective functions, Eq. (2.1) (Coello et al., 2006). In particular, identifying a solution 𝜋
that is feasible and optimizes the objective at hand is notably challenging when restrictions and

objectives have a non-linear, non-convex, discrete, or non-differentiable nature. One common

approach to dealing with the restrictions is to treat those restrictions as objective functions. For

example, in bi-objective optimization, a constraint can be used as a second objective subjected to

multi-objective optimization for the formation of a Pareto front (PF), in which the optimization

can be focused on the main objective function.

minimize/maximize F(𝜋) = ( 𝑓1(𝜋), 𝑓2(𝜋), . . . , 𝑓𝑧 (𝜋)) (2.1)

subjected to 𝑔𝑖 (𝜋) ≤ 0, 𝑖 = {1, . . . , 𝑝}, and

𝑙 𝑗 (𝜋) = 0, 𝑗 = {1, . . . , 𝑞} (2.2)

Evolutionary algorithms (EAs) are considered well-suitable to MOO because they

address both search and multi-objective decision making (while some approaches focus on

search and others on multi-criteria decision making) and can search partially ordered spaces

for several alternative trade-offs (Fonseca and Fleming, 1995). EA uses a heuristic solution-

search or optimization technique based on the principle of evolution through selection. Most

multi-objective evolutionary algorithms select solutions using the Pareto dominance relation,

in which given two candidate solutions 𝜋𝑖 and 𝜋 𝑗 , 𝜋𝑖 dominates 𝜋 𝑗 (denoted as 𝜋𝑖 ≺ 𝜋 𝑗 ), if and

only if: i) 𝜋𝑖 is strictly better than 𝜋 𝑗 in at least one of all the objectives considered, and ii) 𝜋𝑖 is

not worse than 𝜋 𝑗 in any of the objectives considered. The goal of this process is to find the set

of all non-dominated solutions, that is, the PF. For example, Fig. 2.2 shows a Pareto set of two

objective functions that should be minimized. Points A and B are the non-dominated solutions

and hence lie on the Pareto front. Point C is dominated by points A and B, so it does not lie on

the frontier (Li et al., 2015).

Figure 2.2: Pareto Dominance Relation

Due to their population-based nature, evolutionary algorithms are able to approximate

the whole PF of a given multi-objective problem in a single run. Consequently, they have been a

popular choice for the design of multi-objective data clustering techniques (Hruschka et al., 2009;

Mukhopadhyay et al., 2015). In this context, the multi-objective evolutionary algorithms (MOEA)

are applied to solve a multi-objective optimization problem (MOP) with 𝑧 ≥ 2. However, the

traditional techniques based on Pareto dominance have their effectiveness degraded (convergence
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and diversity difficulties) when applied to problems with more than three objectives, and the

computational complexity of non-dominated sorting considerably increases. Many-objective

evolutionary algorithms (MaOEA) have been proposed to deal with this scalability issue, in

which the Many Objectives Problem can be defined as a MOP with 𝑧 ≥ 4 (Li et al., 2015).

In terms of the evaluation of the EMOC results, there are two types of assessment:

one considering aspects of clustering quality, and the other considering MOO performance, as

presented in the following.

2.3 CLUSTERING VALIDATION

The clustering approaches are evaluated regarding clustering validity indices (CVIs), which define

how well a partition fits the structure underlying the data. There are three types of criteria (Brun

et al., 2007): relative, internal, and external. Relative criteria are based on comparisons of

partitions generated by the same algorithm with different parameters or different subsets of the

data. Internal criteria refer to quality measures based on calculating properties of the resulting

clusters, establishing the validity of a cluster-based exclusively on the dataset itself, for example,

how much a cluster is justified by means of the proximity matrix. External criteria lie in prior

knowledge of structures in the dataset to evaluate the given partitions generated by an algorithm

in contrast with a model partition or labeled data, denominated True Partition, provided by

specialists. In Section 2.4.2.1, we present some CVIs and their application in EMOC approaches.

2.4 A GENERAL ARCHITECTURE OF EVOLUTIONARY MULTI-OBJECTIVE CLUSTER-

ING

Figure 2.3: A general architecture of Evolutionary Multi-objective Clustering

In this section, we introduce this general architecture of EMOC to describe the main

elements applied in designing EMOC algorithms. In the literature, we did not find other

studies that provide a clear definition of the main components and their relationships in EMOC

approaches. Thus, we illustrate the general architecture of the EMOC in Fig. 2.3, considering 3

modules:
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1. Initialization: Given a dataset, traditional data clustering algorithms (or random

generator methods) are applied to build the partitions (individuals) that compose the

initial population. Each partition is a clustering solution with a specific encoding or

representation. In section 2.4.1, we detail the types of representations and initialization

strategies applied in EMOC.

2. Optimization: The initial population is taken as an input to multi-objective evolutionary

optimization, in which iteratively the objective functions are minimized (or maximized)

to generate a final population. In general, the existing EMOC algorithms rely on general-

purpose MOEAs in the optimization flow. Most approaches consider the standard

features of a particular MOEA, while using a specific set of objective functions and

different combinations of crossover and mutation operators. In section 2.4.2, we detail

the optimization phase. We present some traditional MOEAs and introduce other types

of multi-objective approaches that consider other aspects in the selection besides Pareto

dominance. Furthermore, we point out the main aspects of the objective functions and

the evolutionary operators applied in EMOC.

3. Selection: MOO approaches may generate large sets of efficient solutions using Pareto

dominance. Thus, this module is applied to determine the final set of solutions to be

presented to the data experts. According to prior criteria, a suitable number of solutions,

𝑠′, is selected from the final population in this phase. Partition selection is a specific

subject in clustering, in which it is possible to find studies focused on this subject.

Therefore, this module is not considered mandatory in the design of EMOC approaches.

In Section 2.4.3, we present some strategies applied to EMOC partition selection.

In the following, we present the main concepts and elements of each module of

evolutionary multi-objective clustering by introducing the main features of the EMOC approaches

described in Section 3.

2.4.1 Initialization Module: Representation and Initialization strategies

The solution representation or chromosome encoding denotes an individual (candidate solution)

in the evolutionary algorithm. The choice of the representation should consider the information

necessary to be manipulated by the evolutionary operators to generate new feasible solutions. In

general, the most popular types of clustering representation solutions for EMOC are (Hruschka

et al., 2009):

(a) Label-based representation, which takes into account labels for each object in the

partition. The length of an encoding of the solution is equal to the number of objects in

the dataset, and each position denotes the cluster label of the respective object.

(b) Prototype-based encoding is usually applied in centered-based clustering, in which

cluster prototypes, such as centroids, medoids, or modes, are used in partition represen-

tation. In the centroid-based encoding, the chromosomes are denoted by the coordinates

of the cluster centers. In medoid-based encoding, the chromosomes are represented

by the coordinates that define the smallest average dissimilarity of the cluster to all

other objects. In mode-based encoding, the chromosome can denote the frequency of

the attribute. In general, in the prototype-based representation, one can have 𝑘 chosen

centers, in which the objects at each point are associated with the closest chosen center

measure.
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(c) Locus-based adjacency graph (LAG) representation corresponds to a graph containing

a vertex for each data point, and the links between two data points represent the edges.

The linked objects represent the clusters in the solution.

In particular, some approaches use a binary representation to define the labels or

prototypes instead of using numerical values. In Sert et al. (2011, 2012), each chromosome

includes 𝑛 · 𝑘 bits, and each reserved 𝑘 bits provides the cluster number of the corresponding

instance. In Ripon and Siddique (2009), each data point is a candidate center, and a binary

encoding is applied to define whether a data point is a center or not. Besides that, it is possible to

consider other aspects of the clustering problem in the representation. For example, in Di Nuovo

et al. (2007), Fuzzy C-Means (FCM) parameters and feature weights are applied to represent

the solution. In Zhu et al. (2012); Xia et al. (2013); Z. Zhou (2018), the authors used the center

information associated with a center weight to encode the solutions. In Dong et al. (2018) and

Zhu and Xu (2018), the fuzzy membership matrix and the center information are designed to

represent each solution. In Luo et al. (2015), the authors consider an input as a linear combination

of base elements (e.g., parameters or coefficients), which are chosen from an over-complete

dictionary to design the sparse-based representation.

Regarding the initialization, a common practice in EMOC approaches is to use random

generators to assign labels or choose the initial centers of the clusters in the partition. The

random initialization generally provides unfavorable partitions since the clusters are likely to be

mixed up to a high degree. However, this strategy is very popular because of its simplicity and

effectiveness in testing the algorithms against hard evaluation scenarios (Hruschka et al., 2009).

In contrast, some relevant EMOC algorithms use high-quality individuals in the initial

population, in which clustering algorithms are applied to generate the base partitions. For

example, KM, AL, SL, CL, MST-clustering, SNN, Spectral Clustering (SPC) (Shi and Malik,

2000) are applied in the initialization of some EMOC approaches presented in Chapter 3.

In the literature, most prototype-based encoding approaches use random generators in

the initialization. On the other hand, the label-based encoding takes advantage of not requiring

decoding of the solutions, making it possible to apply most of the traditional clustering algorithms

in the initialization. The LAG representation can rely on a graph-based method in the initialization,

such as MST-clustering, taking advantage of its data structure.

2.4.2 Optimization Module: Multi-objective Evolutionary Optimization

In general, the EMOC algorithms rely on general-purpose MOEAs in the optimization module.

The choice of the multi-objective approach should consider the number of objective functions

and the characteristics of the application, in which it is possible to explore some aspects, such as

user preference, diversity of solutions, among other features.

The most traditional category of multi-objective algorithms is Pareto-based, where

the solutions are evaluated and compared by considering the Pareto dominance. For example,

the NPGA - Niched Pareto Genetic Algorithm (Horn et al., 1994) is designed along with the

natural analogy of the evolution of distinct species exploiting different niches or resources in the

environment, in which the main strategy relies on tournament selection among a population’s

individuals and Pareto dominance. The PESA-II - Pareto Envelop-based Selection Algorithm

version 2 (Corne et al., 2000) is an elitist method (the selection considers the best one or more

solutions, called the elites, in each generation, which are inserted into the next), where the

diversity mechanism is cell-based density. The NSGA-II - Non-dominated Sorting Genetic

Algorithm version II (Deb et al., 2000) is an elitism method that employs a ranking based

on non-domination sorting associated with crowding distance. The SPEA-2 - Strength Pareto
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Evolutionary Algorithm version 2 (Zitzler et al., 2001) is also an elitism method that applies the

concept of the strength of dominators as a fitness assignment, employing a density based on the

𝑘th nearest neighbor to preserve the diversity.

Beyond that, Li et al. (2015) defined other categories by considering other aspects

beyond the Pareto front to evaluate and compare the solutions in MOEAs/MaOEAs:

(a) Relaxed dominance-based algorithms use a variant of dominance, such as value-based

(that changes the objective values by modifying the Pareto dominance of the solutions

when comparing them) or number-based dominance (that compares a solution to another

by counting the number of objectives where it is better than, the same as, or worse than

the other);

(b) Diversity-based algorithms apply a customized diversity-based approach, for example,

the SDE (Shift-Based Density Estimation), where the diversity is taken as the first

criterion instead of the convergence; it is possible because SDE shifts the positions of

the solutions to measure the density of the neighborhood of the solution, allowing both

the distribution and the convergence information to be used in the comparison of the

solutions;

(c) Aggregation-based algorithms apply aggregation functions to evaluate the solutions,

which can be divided into two categories: aggregation of objective values and aggregation

of objective ranks.

(d) Indicator-based algorithms aim to maximize the value of a specific indicator, which

can be divided into three classes: hypervolume driven, distance-based indicator driven,

and R2 indicator driven;

(e) Preference set-based algorithms consider the user’s preferences in the optimization

process. This kind of algorithms can be divided into three classes based on the timing

of the set of preferences being used: a priori (selection before the search), interactive

(selection during the search), and a posteriori (selection after the search);

(f) Reference-based algorithms consider a set of reference solutions, which are applied

to measure the quality of the solutions and guide the search during the evolutionary

optimization process, such as in NSGA-III (Deb and Jain, 2014) and RVEA (Cheng

et al., 2016);

(g) Dimensionality reduction algorithm seeks to simplify the problem by reducing its

complexity, where the number of objectives can be reduced gradually during the search

process (online) or the dimensionality reduction is carried out after obtaining a set of

Pareto-optimal solutions (offline).

Additionally, it is possible to consider another category, a Hybrid-based, that combines two or

more approaches to overcome their particular problems, for example, the MOEA/DD - Multi-

Objective Evolutionary Algorithm based on Dominance and Decomposition approaches (Li et al.,

2015) combines two categories of strategies: Pareto dominance and aggregation.

As mentioned above, in general, MOEAs are applied to clustering problems, considering

specific objective functions (clustering criteria), and different combinations of crossover and

mutation operators. Thus, we detail them in the following sub-sections.
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2.4.2.1 Objective Functions

In general, CVIs (see Section 2.3) that consider internal and relative criteria are used as clustering

objective functions. On the other hand, specific objective functions designed for multi-objective

clustering, such as the sparsity (𝑆𝑃) and reconstruction error (𝑅𝐸) designed for spectral clustering,

can be used in EMOC approaches (Luo et al., 2015).

In the following, we introduce objective functions categorized by criteria (cluster

properties). These objective functions denote the clustering criteria adopted in the approaches

presented in Chapter 3:

(a) Compactness criteria: average within group sum of squares (𝐴𝑊𝐺𝑆𝑆) (Kirkland et al.,

2011), overall deviation (𝐷𝑒𝑣) (Handl and Knowles, 2005a), K-Mode internal distance

(𝐾𝑚𝑖𝑑) (Sert et al., 2011), K-Mode weighted internal distance (𝐾𝑚𝑤𝑖𝑑) (Sert et al.,

2011), intra-cluster entropy (𝐸𝑛𝑡) (Ripon et al., 2006a), homogeneity (𝐻) (Dutta et al.,

2012a), intra-cluster variance (𝑉𝑎𝑟) (Garza-Fabre et al., 2018), and total within-cluster

variance (𝑇𝑊𝐶𝑉) (Du et al., 2005), and fuzzy compactness (𝐽𝑚) (Bezdek, 2013), are

criteria based on intra-cluster similiarity.

(b) Connectedness criteria: connectivity index (𝐶𝑜𝑛) (Handl and Knowles, 2005a),

and data continuity degree (𝐷𝐶𝐷) (Menéndez et al., 2013), are criteria based on

neighborhood relationship.

(c) Separation criteria: average between-group sum of squares (𝐴𝐵𝐺𝑆𝑆) (Kirkland

et al., 2011), inter-cluster average separation (𝑆𝑒𝑝𝐴𝐿) (Ripon and Siddique, 2009),

K-Mode external distance (𝐾𝑚𝑒𝑑) (Sert et al., 2011), K-Mode weighted exter-

nal distance (𝐾𝑚𝑤𝑒𝑑) (Sert et al., 2011), separation index (𝑆𝑒𝑝𝐶𝐿) (Dutta et al.,

2012b), and graph-based separation (𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ) (Menéndez et al., 2013), fuzzy

separation (𝑆𝑒𝑝 𝑓 𝑢𝑧𝑧𝑦) (Mukhopadhyay et al., 2007), and fuzzy overlap separation

(𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦) (Wikaisuksakul, 2014), are criteria based on inter-cluster similarity.

(d) Separation and Compactness criteria: categorical data clustering with subjective

factors (𝐶𝐷𝐶𝑆) (Zhu and Xu, 2018), Calinski-Harabasz (𝐶𝐻) (Zhu and Xu, 2018),

Davies-Bouldin (𝐷𝐵) (Zhu and Xu, 2018), Dunn (Dutta et al., 2019), modularity

(𝑀𝑜𝑑) (Liu et al., 2018), silhouette (𝑆𝑖𝑙) (Mukhopadhyay and Maulik, 2007), I (Dong

et al., 2018), addition feature weight (𝐽𝐴𝑑𝑑) (Xia et al., 2013), Pakhira, Bandyopadhyay

and Maulik (𝑃𝐵𝑀) (Pakhira et al., 2004), Xeni-Beni (𝑋𝐵) (Di Nuovo et al., 2007), soft

subspace Xie-Beni (𝑆𝑆𝑋𝐵) (Zhu et al., 2012), are criteria that take into account both

intra-cluster and inter-cluster similarity.

(e) Other criteria: cluster cardinality index (𝐶𝐶𝐼) (Zhu and Xu, 2018) and expected

weighted coverage density (𝐸𝑊𝐶𝐷) (Sert et al., 2011) consider the relation of the

occurrence of the objects in a categorical dataset. The similarity index (𝑆𝑖𝑚) (Li et al.,

2017) is the only relative CVI that compares partitions used as the objective function,

while the other CVIs consider the data properties of each partition.

It is a common practice in the literature to apply two or more different categories of

clustering criteria as objective functions, where the approach will be able to optimize multiple

characteristics of the evolved clusters. For example, a popular pair of objective functions, (𝑉𝑎𝑟 ,
𝐶𝑜𝑛), consider the compactness and connectedness criteria. In Chapter 3 other combinations of

objective functions are presented. Due to the large number of clustering criteria and considering

that some objective functions may have different names in the literature, we present a detailed

description of each of these objective functions in Appendix A.
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2.4.2.2 Crossover and Mutation Operators

Evolutionary optimization relies on crossover and mutation operators to generate new solutions.

In the literature, we can find approaches using traditional evolutionary operators and clustering

designed operators. The most popular traditional operators used in EMOC approaches are:

(a) One-Point crossover: one crossover point is considered along the length of the parents’

chromosomes, and the genes following the crossover point in one parent are swapped

with the genes in the other parent (Hruschka et al., 2009).

(b) Two-Point crossover: two crossover points along the length of the chromosome of each

parent, such that the interval of genes between these two points are swapped (Hruschka

et al., 2009).

(c) Shuffle crossover: this operator is similar to one-point crossover, in which a single

crossover position is selected, and before the variables are exchanged, they are randomly

shuffled in both parents (Sert et al., 2011).

(d) Uniform crossover: for each position on the chromosome, a random decision is made

on whether the swapping of genes should be done or not (Handl and Knowles, 2007).

(e) Simulated binary crossover (SBX): this operator uses a probability density function

that simulates the One-Point Crossover in binary-coded representation (Wikaisuksakul,

2014).

(f) Polynomial mutation: a polynomial probability distribution is applied to perturb a

solution (Ripon et al., 2006b).

(g) Uniform mutation: this operator replaces the value of the chosen particular slot position

with a uniform random value selected considering a specified upper and lower bounds

for that position (Dong et al., 2018).

In terms of the clustering-designed operators, the representation and clustering criteria

are taken into consideration. For example, the perturbation or replacement of center, centroid,

or medoid is applied in the algorithms that use a prototype-based encoding to shift a randomly

selected center slightly from its current position or replace the position of the cluster prototype

according to a criterion; the exchange of the prototypes considers two parents in which there

is an exchange of centroids to generate a new solution. Also, there are operators designed to

split the objects of a cluster or merge two or more clusters to generate new solutions. Handl and

Knowles (2005a,b); Handl and Knowles (2007) presented the neighborhood-based mutation that

is applied to the graph-based representation, replacing an existing link in the graph with another

link to one of the randomly selected nearest neighbors. In Bousselmi et al. (2017) and Bechikh

et al. (2019), Cheng and Church’s (CC) algorithm was adapted to be applied as a mutation

operator. The CC algorithm considers three steps (multiple node deletion, single node deletion,

and node addition) to iteratively perform the removal and addition of rows and columns in a data

expression matrix. As a mutation operator, only row operations are performed to preserve specific

data properties. Besides that, Faceli et al. (2006) introduced the use of clustering ensembles

as a crossover operator. A clustering ensemble is a technique applied to combining multiple

different clustering results (generated by different clustering algorithms or the same algorithm

with different iterations) into a single partition (Boongoen and Iam-On, 2018). As a crossover

operator, pairs of partitions are combined with a consensus function to generate new individuals.
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2.4.3 Selection Module: Partitions Selection

The Selection module is applied to restrict the number of clustering solutions presented to the

decision-maker or data specialist. In the literature, most EMOC approaches select the final set

of solutions by applying CVIs (see Section 2.3). For example, in Tsai et al. (2012), 𝑃𝐵𝑀, and

𝐷𝐵 were used to single out the optimal solution. In Menéndez et al. (2013, 2014), the solution

with the highest value of the 𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ in the Pareto front was considered the best solution

to be selected. In Xia et al. (2013), a new indicator called the projection similarity validity

index (PSVIndex) was designed to select the best solution and cluster number. In Dutta et al.

(2019), the EMOC approach uses an overall rank of nine CVIs to determine the final set of

solutions: C index (Baker and Hubert, 1976), COSEC - Compactness and Separation Measure of

Clusters (Rahman and Islam, 2014), 𝐷𝐵, 𝐷𝑢𝑛𝑛, 𝐷𝑒𝑣, 𝐸𝑛𝑡, 𝑋𝐵, Purity (Schütze et al., 2008)

and F-Measure (Larsen and Aone, 1999). In particular, in Luo et al. (2015), the non-dominated

solutions are used to construct a standard adjacency matrix, and the measurement Ratio Cut (Wei

and Cheng, 1991) provides a way to select a final trade-off solution.

Another way to select final solutions is by applying the knee-based approaches that are

usually applied in determining the number of clusters in a data set. For example, the knee method

presented by Handl and Knowles (2005a,b); Handl and Knowles (2007) compares the final set of

solutions and a control front. The solution corresponding to the largest distance between the

actual non-dominated front and the control fronts is chosen to be the final solution, corresponding

to the "knee" (the point of inflection) of the non-dominated front. In Wang et al. (2018) and

Du et al. (2005), the best clustering result is defined by the "elbow" method, which consists of

picking the "elbow" or "knee" of the curve in the non-dominated front.

Besides that, clustering ensemble methods are used to select the final solutions. The

non-dominated solutions are used as base partitions to generate the consensual partition by

applying a consensual function to combine the base partitions.

2.4.4 Evaluation of the EMOC algorithms

In terms of evaluating clustering results, most EMOC approaches consider an external validity

index, such as the adjusted Rand index (ARI) (Rand, 1971), to evaluate the set of final solutions.

ARI is a corrected-for-chance version of the Rand index (Hubert and Arabie, 1985), computes

the probability of two objects of two partitions belong to the same cluster or different clusters, as

defined in Equation (2.3), where 𝑛𝑖 𝑗 is the number of common objects between the clusters c𝑖 in

𝜋𝑎 and c 𝑗 in 𝜋𝑏, 𝑛𝑖 is the number of objects in the cluster c𝑖 in 𝑝𝑎, e 𝑛 𝑗 is the number of objects

in the cluster c 𝑗 in 𝜋𝑏, 𝑘𝑎 and 𝑘𝑏 are the number of clusters in the partitions 𝜋𝑎 and 𝜋𝑏.
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Besides that, the analysis of internal criteria can also be applied to investigate specific

data structures. For example, in Ripon et al. (2006a,b), 𝐻, 𝑆𝑒𝑝𝐴𝐿 , 𝐷𝑢𝑛𝑛, and 𝐷𝑒𝑣 are evaluated

to analyze the general behavior of the EMOC approaches regarding each criterion. In Dutta

et al. (2012b,c), the authors compare their approaches with other ones based on the 𝐷𝐵, 𝐻, and

𝑆𝑒𝑝𝐴𝐿 .



34

2.5 CHAPTER REMARKS

In this chapter, we presented the general concepts applied in our study by describing the

concepts and properties associated with clustering and multi-objective optimization. In particular,

we present an abstraction of the main components of multi-objective clustering algorithms,

introducing a general architecture of EMOC. We dealt with all the components of this architecture

to support the implementation of EMOC algorithms. Furthermore, we use this architecture to

support the identification of the main components and features of the existing EMOC studies,

presented in the next chapter.
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3 LITERATURE REVIEW

In this chapter, we present a general view of multi-objective clustering, considering an extensive

mapping of the literature to identify the main methods and concepts that have been adopted to

design the EMOC approaches.

3.1 OVERVIEW OF MULTI-OBJECTIVE CLUSTERING STUDIES

This review considers papers related to multi-objective clustering (MOC) from IEEE Xplore1,

ACM Digital Library2 and Scopus3. These article repositories contain the most important journal

papers and conference proceedings, in the computer science and engineering domains. We

used the terms "multi-objective", "multiobjective", and "many-objective" as keywords related

to optimization with multiple objectives, along with the term "clustering" to search by title for

articles about multi-objective clustering. The article mapping considered English-language

papers that were published before the year 2021. The search result is 231 papers from IEEE

Xplore, 30 papers from the ACM Digital Library, and 533 papers from Scopus, totaling 794

papers. Then, duplicated papers were removed. After that, we analyzed the main contents of the

resulting set of documents, resulting in 358 papers.

Figure 3.1: The number of publications related to MOC from 2002 to 2020.

Fig. 3.1 shows the number of publications related to MOC that appeared in both journals

and conferences over the years. It provides information on how the MOC field is evolving,

based on the number of papers published. The first indexed article found was published in

2002 (Zwir et al., 2002), a conference paper in the Annals of the New York Academy of Sciences.

In the same way, most of the articles published between 2002 and 2008 were published at

conferences. In 2009, we observed a substantial increase in journal papers. Between 2008 and

2016, we verified a certain equilibrium in the number of articles published in conferences and

journals, except in 2012, when the number of conference papers increased abnormally, without a

specific explanation. Finally, in the last four years, the number of articles published in journals

has substantially increased. In particular, in 2019, the number of publications in journals was

1https://ieeexplore.ieee.org
2https://dl.acm.org/
3https://www.scopus.com
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almost three times greater than the number of papers presented at conferences. In 2020, we can

notice that the total number of papers significantly decreased compared to 2018 and 2019. One

reasonable motivation is the indexing time before the papers appear in the search, considering

that the mapping was performed in the first trimester of 2021. Another reasonable motivation

was the COVID pandemic, which motivated periods of suspension of non-essential activities and

caused some conferences worldwide to be canceled or postponed.

Regarding the optimization approach, considering the general classification of the

metaheuristics presented by Siarry (2016), we observed that most studies applied evolutionary

optimization. Fig. 3.2 presents the relationship between the number of articles and the evolutionary

optimization articles, including memetic and hybrid approaches that include other methods

associated with the evolutionary approach. In the early years, almost all MOC papers relied

on the evolutionary approach. In the middle years, the use of other optimization methods

was observed, such as Artificial Immune system-inspired (Timmis et al., 2008), Differential

Evolution-based (Eltaeib and Mahmood, 2018), Simulated Annealing-based (Bertsimas and

Tsitsiklis, 1993), and Particle swarm-based (Rana et al., 2011). In the mapped articles, the

first occurrence of these approaches was between 2007 and 2009. In recent years, the use of

a variety of other optimization methods has also been verified, such as other nature-inspired

algorithms (Siarry, 2016), among others.

Figure 3.2: Total articles vs. evolutionary-based optimization articles.

In the following, we list the most relevant works. They were selected by considering two

general indices: h-index and Scopus-percentile. We filtered the articles by h-index greater than

10 to filter the conference papers and by Scopus-percentile greater than 50% to obtain the list of

the most relevant journal papers. These values were selected to cover the A-rank papers in the

CORE - Computing Research and Education Association of Australasia and Qualis (a Brazilian

official system to classify scientific production). These algorithms were grouped based on some

shared characteristics that highlight the main features or applications of these approaches. The

general concepts and methods applied in these EMOC approaches were introduced in Section 2.4.

3.2 GENERAL-PURPOSE EMOC ALGORITHMS

First, we present general-purpose EMOC approaches divided in: MOCK-based works, EMOC

for categorical data, EMOC for bi-clustering, EMOC for subspace clustering, ensemble-based
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EMOC, fuzzy clustering-based EMOC, spectral clustering-based EMOC, multiple distance

measures-based EMOC, multi-k-clustering-based EMOC, EMOC with specific MOEA, and

other EMOC approaches.

3.2.1 MOCK-based works

One of the most popular algorithms is MOCK - Multi-Objective Clustering with automatic 𝑘-

determination (Handl and Knowles, 2005a,b; Handl and Knowles, 2007). The MOCK algorithm

uses LAG representation, initialization with MST-clustering and KM, and two objective functions:

𝐷𝑒𝑣 and 𝐶𝑜𝑛. The PESA-II was the MOEA used in this approach. The adjacency graph

representation promoted the use of specific operators for the clustering problem, such as the

neighborhood-based mutation operator, which manipulates the links over the MST, in which each

vertex can only be linked to one of its nearest neighbors. After the optimization process and the

generation of final clustering solutions, MOCK uses an automatic 𝑘-determination scheme to

choose the best clustering solution from a set of solutions with a knee-based strategy.

Other studies were derived from the analysis of MOCK, as follows. Matake et al. (2007)

provided an approach, MOCK-Scalable, to improve the final selection of solutions in large-scale

data based on a scaling filter to reduce the solutions in the Pareto front. Tsai et al. (2012)

proposed the MIE-MOCK - Multiple Information Exchange Multi-Objective Clustering with

automatic 𝑘-determination. The MIE-MOCK algorithm uses a pool of crossover and mutation

operators selected by a random method and also provides a new final selection of solutions

based on two CVIs: 𝑃𝑀𝐵 and 𝐷𝐵. In Handl and Knowles (2012), the authors analyzed four

pairs of objective functions for multi-objective clustering, including an analysis of the original

objective functions of MOCK. Also, Handl and Knowles (2013) presented an analysis of the use

of evidence accumulation to support the post-processing of the clustering solutions returned by

the MOCK. In Garza-Fabre et al. (2017, 2018), the authors proposed the Δ-MOCK, providing

a new encoding to improve the MOCK scalability and other specific modifications to improve

the convergence of the solutions. Zhu et al. (2018) provided the Δ-EMaOC - Evolutionary

Many-Objective Optimization Clustering, improving the general architecture of the Δ-MOCK

to optimize five objective functions. The Δ-EMaOC algorithm considers the use of MaOEAs

(SPEA-II-SDE (Li et al., 2014), NSGA-III (Yuan et al., 2016), MOEA/DD (Li et al., 2015)

and RVEA (Cheng et al., 2016)) instead of MOEA (NSGA-II). In general, these approaches

are applied to detect clusters in heterogeneous structured data, considering a continuous data

type and crisp clustering. Zhu et al. (2020) proposed the MOAC-L - locus-based multi-objective

automatic clustering. The MOAC-L algorithm applies CVIs and ensemble-clustering to improve

the encoding and the selection of solutions in the optimization process.

3.2.2 EMOC for Categorical Data

In particular, some EMOC approaches were designed for categorical data clustering, where the

data objects are defined over categorical attributes (instead of using the continuous data type

that is applied in most of the other approaches). For example, Handl and Knowles (2005c)

presented the MOCK-medoid, a MOCK extension for multi-objective clustering around medoids

for categorical data. Mukhopadhyay and Maulik (2007) also introduced a medoid-based EMOC,

the MOGA-medoid, to deal with categorical data. The MOGA-medoid algorithm uses the

NSGA-II to optimize the 𝑆𝑖𝑙 and 𝐷𝑒𝑣 (computed in terms of the medoid instead of the centroids),

applying the one-point crossover and a medoid-based replacement mutation designed to consider

a center-based solution encoding.
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Dutta et al. (2012b) provided a specific MOEA, the Hybrid MOGA, to optimize 𝐻 and

𝑆𝑒𝑝𝐴𝐿 . The main contribution of this work relies on the use of this new MOEA with the Pairwise

Crossover (Fränti et al., 1997), the replacement (substitution) mutation, and the local searching

power of K-modes (or KM) to deal with continuous and categorical features in the dataset.

Mukhopadhyay et al. (2007) presented a multi-objective genetic fuzzy clustering

of categorical attributes (MOGA-fuzzy), considering a uniform crossover and a center-based

replacement mutation in NSGA-II to optimize the global compactness (a normalized 𝐽𝑚 index for

categorical data (Tsekouras et al., 2004)) and 𝑆𝑒𝑝 𝑓 𝑢𝑧𝑧𝑦. They applied a specific selection method

to obtain the final solution, in which the points assigned to the same cluster by at least 50% of

the clustering solutions are taken as the training set, and the remaining points are assigned a

class label using 𝑘-nearest neighbor (𝑘-nn) classification in order to select a single solution from

the set of the non-dominated solutions. In Mukhopadhyay et al. (2009), the authors provide a

new version of the MOGA-fuzzy, MOGA-fuzzy2, considering modifications in the evolutionary

operators, in which the One-Point Crossover and Mode replacement were applied.

Zhu and Xu (2018) introduced the MaOFcentroids, a many-objective fuzzy centroid

clustering algorithm for categorical data. MaOFcentroids algorithm uses fuzzy membership

matrix encoding (a matrix with the degree of membership of each object), and adapted operators

that consider the number of the clusters and the membership of the solutions in the NSGA-III. It

simultaneously optimizes five CVIs (𝐶𝐷𝐶𝑆, 𝐷𝐵, 𝐶𝐻, 𝐶𝐶𝐼, and 𝑋𝐵). In terms of the selection,

this approach uses a specific clustering ensemble for categorical data, the SIVID - Sum of Internal

Validity Indices with Diversity (Zhao et al., 2017).

The most recent work of Dutta et al. (2019) introduces the MOGA-KP, an approach

with automatic 𝑘-determination applied to deal with different types of features (continuous,

categorical, and missing feature values). It considers some common aspects of the previous

works (Dutta et al., 2012b,c), while improving some aspects, such as the use of other evolutionary

operators, and the local search operators. Besides that, the MOGA-KP algorithm uses a ranking

of nine CVIs to determine the final set of solutions.

3.2.3 EMOC for Bi-Clustering

One specific line of study in EMOC is Bi-clustering, which consists of simultaneous partitioning

of the set of samples and the set of their attributes into subsets (classes). The goal of this kind

of algorithm is to find one or all (possibly overlapping) sub-matrices of a given matrix, each of

which shares a pre-defined property over the elements across all its columns (or rows). Each

such sub-matrix is called a bi-cluster. Bousselmi et al. (2017) presented the BI-MOCK, which

extends MOCK to the case of bi-clustering by adding a subset of columns (conditions) to each

chromosome in the representation. BI-MOCK algorithm uses the two-points crossover adapted

for variable-size chromosomes and the CC algorithm as a mutation operator in the PESA-II to

optimize 𝑉𝑎𝑟, and the size of the bi-cluster. Bechikh et al. (2019) presented the MOBICK -

Multi-Objective BI-Clustering with automated 𝑘 deduction, that extends Bousselmi et al. (2017)

study. MOBICK algorithm uses the Δ-MOCK reduced encoding, the uniform crossover adapted

for bi-clustering conditions, and the CC algorithm as the mutation operator in the PESA-II to

also optimize 𝑉𝑎𝑟 and the size of the bi-cluster.

3.2.4 EMOC for Subspace Clustering

Another line of studies considers Subspace Clustering, an extension of traditional clustering

that seeks to find clusters in different subspaces within a dataset. Zhu et al. (2012) introduced

the MOSSC - Multi-Objective evolutionary algorithm-based Soft Subspace Clustering, which
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optimizes the 𝑆𝑆𝐵𝑋 and 𝐽𝑤𝑚 in the NSGA-II. This approach uses a center-based encoding with

weights to avoid trapping in local minima, aiming to obtain more stable clustering results. Xia

et al. (2013) presented the MOEASSC - Multi-Objective Evolutionary Approach-based Soft

Subspace Clustering, which also uses a mixed encoding (center and weight-based). MOEASSC

differs from the MOSSC in terms of the pair of objectives (𝐽𝑤𝑚 and 𝐽𝐴𝑑𝑑), and the use of a local

search operator based on the KM. Z. Zhou (2018) introduced the MOKCW - Multi-Objective

Kernel Clustering algorithm with automatic attribute Weighting. In general, MOKCW extends

MOSSC and MOEASSC by considering kernel clustering. For example, MOKCW used the

MOSSC objective functions adapted to consider kernel distance. The authors also improved the

final selection method of the MOEASSC by applying a clustering ensemble method (MCLA -

Meta Clustering Algorithm (Strehl, 2002) and HBGF - Hybrid Bipartite Graph Formulation (Fern

and Brodley, 2004)) associated with the PSVIndex.

3.2.5 Ensemble-based EMOC

Another specific approach was proposed by Faceli et al. (2006), the MOCLE - Multi-Objective

Clustering Ensemble. The main idea behind this approach is the use of clustering ensemble

methods as crossover operators to combine partitions and extract agreed patterns to generate

new solutions in the evolutionary optimization process. MOCLE is a framework that uses a

label-based representation; the initial population is generated with various clustering methods to

detect different cluster formats, such as SL, AL, KM, and SNN. The original implementation of

the MOCLE (Faceli et al., 2006) provides two MOEAs: NSGA-II and SPEA-II, to optimize the

𝐷𝑒𝑣 and 𝐶𝑜𝑛; and two crossover operators: MCLA and HBGF; however, it does not use any

mutation operator.

This general concept of using clustering ensemble methods as crossover operators has

been used in other studies as well. Faceli et al. (2009) introduced the MOCLE in the context

of gene expression datasets, applying an additional objective, 𝐶𝑜𝑛𝑃 (the connectivity index

based on the Pearson Correlation), and a new set of clustering methods to generate the initial

population (AL, CoL, KM, and SPC). Liu et al. (2012) introduced the IMOCLE - Improvement

of the Multi-Objective Clustering Ensemble algorithm, in which a relative CVI, 𝑆𝑖𝑚, was added

along with the three objective functions defined by Faceli et al. (2009) to improve the clustering.

In general, these approaches are also applied to detect clusters in heterogeneous structured data,

considering both continuous data type and crisp clustering.

3.2.6 Fuzzy Clustering-based EMOC

Another line of studies considers the integration of the general concepts of the existing fuzzy

clustering algorithms, such as FCM and FRC - Fuzzy Relational Clustering, with a multi-objective

evolutionary approach (NSGA-II). Di Nuovo et al. (2007), Wikaisuksakul (2014) and Dong

et al. (2018) presented fuzzy approaches integrating the NSGA-II with the FCM (Bezdek, 2013).

Di Nuovo et al. (2007) introduced the NSGA-II & FCM that optimizes the number of features

and the 𝑋𝐵 index to discover the best number of groups while pruning the features to reduce

the dimensionality of the dataset. NSGA-II & FCM algorithm uses a specific solution encoding

that considers the FCM parameters (number of the clusters 𝑘 and FCM fuzzyfier 𝑚) and the

feature weights. Wikaisuksakul (2014) introduced the FCM-NSGA, which optimizes the 𝐽𝑚
and 𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦 in NSGA-II, considering SBX and polynomial mutation operators. Dong et al.

(2018) introduced the ADNSGA2-FCM that optimizes the 𝐷𝐵 and I indexes. ADNSGA2-FCM

uses a center-based and fuzzy membership matrix (a matrix with the degree of membership of

each object) as an encoding. In terms of the evolutionary operators, it considers the uniform
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mutation with two new crossover operators, the Nearest Neighbor Matching Crossover Operation

(an exchange of centers in the nearest neighbor to produce solutions with the same number of

clusters) and the Truncation and Stitching Crossover Operation (an exchange of a set of center

positions is performed to produce solutions with a different number of clusters). Moreover,

they introduced an adaptive mechanism that is applied to compute the crossover and mutation

probabilities that are changed according to the fitness of the current population. On the other

hand, Paul and Shill (2018) propose the FRC-NSGA/IFRC-NSGA, hybrid methods that combine

the FRC algorithm (Skabar and Abdalgader, 2013) and the NSGA-II to optimize the 𝐽𝑚 and

𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦.

3.2.7 Spectral Clustering-based EMOC

Some works use spectral clustering as a foundation for designing EMOC approaches. MOGGC -

Multi-Objective Genetic Graph-based Clustering Algorithm (Menéndez et al., 2013) considers

optimizing the computation of graph similarity features in SPC to achieve lower memory

consumption and increase the clustering quality. For that, this approach provided a new objective

function pair, the separation of clusters (𝑆𝑒𝑝𝐺𝑟𝑎𝑝ℎ) and a graph continuity metric (DCD).

MOGGC was extended by the CEMOG - CoEvolutionary Multi-Objective Genetic Graph-based

Clustering (Menéndez et al., 2014), a partitional 𝑘-adaptive spectral clustering algorithm that

uses a strategy based on island-model and a graph topology to migrate individuals from sub-

populations. This last approach does not require input of the initial number of clusters required

in the MOGGC. In this context, Luo et al. (2015) introduced the framework SRMOSC, which

uses sparse representation for sparse spectral clustering. SRMOSC uses 𝑆𝑃 and 𝑅𝐸 as objective

functions to be optimized in the NSGA-II (or MOEA/DD) with a specific pair of operators that

consider the sparsity properties.

3.2.8 Multiple Distance Measures-based EMOC

Other approaches consider the use of different distance functions in the objective functions. Liu

et al. (2018) introduced the MOECDM - Multi-objective Evolutionary Clustering Based on

Combining Multiple Distance Measures and the MOEACDM - Multi-objective Evolutionary

Automatic Clustering based on Combining Multiple Distance Measures. Both these approaches

consider a single CVI computed with distinct distance functions to define objective functions to

be optimized. They use a label-based encoding and an NCUT pre-clustering (Shi and Malik,

2000) in the initialization, but in the MOECDM, a portion of the individuals are generated

by a random generator. They also adapted the crossover and mutation operators, in which the

probabilities are adjusted along with the generations. MOECDM was designed to detect the

desirable cluster number automatically, using 𝑆𝑒𝑝𝐶𝐿 index computed with Euclidean distance

(𝑆𝑒𝑝𝐶𝐿1) and Path distance (𝑆𝑒𝑝𝐶𝐿2) as objective functions. MOEACDM was designed to detect

compact clusters, using 𝑀𝑜𝑑 also computed with Euclidean distance (𝑀𝑜𝑑1) and Path distance

(𝑀𝑜𝑑2) as objective functions.

3.2.9 Multi-k-clustering-based EMOC

Other approaches consider multi-k-clustering with the a posteriori method, where 𝑘 is taken as

an objective function, differing from the automatic data clustering methods, such as MOCK, that

consider 𝑘 an inner aspect of the decision variable, obtained by the optimization of clustering

criteria. For that, Du et al. (2005) introduced a specific solution representation, the linked-list

based encoding. The authors used the fellowship between the objects instead of the label-based
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relationship to define the clusters, in which each cluster has all its elements linked, similar to the

relationship of the nodes presented by Handl et al. (2007). This representation was applied in the

MOGA-LL (Du et al., 2005), an EMOC approach that optimizes the 𝑇𝑊𝐶𝑉 and 𝑘 as objective

functions in the NPGA, considering two particular operators: (i) an adapted one-point crossover,

which allows different clusters to exchange partial contents and may split a cluster into two; (ii)

link-replacement mutation, in which a sub-group of objects is associated with another cluster

instead of just a different node.

Wang et al. (2018) proposed the EMO-KC (Evolutionary Multi-objective 𝑘-clustering)

to demonstrate the importance of the conflict between the objective functions to obtain a diverse

set of final solutions with a different number of clusters. They showed evidence that sum of

squared distances (SSD) and 𝑘 are not always conflicting between two individuals and introduced

a transformation of SSD. SSD can be denoted by (𝑉𝑎𝑟 ·𝑛), and the adapted SSD (𝑉𝑎𝑟′), considers

the following transformation: (1 − 𝑒𝑥𝑝−1·𝑆𝑆𝐷) − 𝑘 . In Wang et al. (2020), this same pair of

objective functions was explored in a new MOEA that considers a constrained decomposition

with grids (CCDG-K). Both EMO-KC and CCDG-K define the best clustering result (the optimal

𝑘) by the “elbow” method (Hancer and Karaboga, 2017).

3.2.10 Specific MOEA for EMOC

As previously presented, Dutta et al. (2012b,c) provided a specific MOEA, the Hybrid MOGA

designed for categorical data. Besides that, another particular approach is the VRJGGA - Variable-

length Real Jumping Genes Genetic Algorithm introduced by Ripon et al. (2006a). The VRJGGA

is an EMOC algorithm that extends the Jumping Genes Genetic Algorithm (JGGA) (Man et al.,

2004) and applies the survival selection of the NSGA-II. The JGGA considers jumping gene

operations before evolutionary operators to improve the diversity of solutions. VRJGGA uses

a centroid-based encoding associated with the modulo crossover (Srikanth et al., 1995) (an

adapted one-point crossover, where each child is a set of completely specified sub-solutions) and

the polynomial mutation, to optimize the 𝐸𝑛𝑡 and 𝑆𝑒𝑝𝐴𝐿 . In Ripon et al. (2006b), the authors

provided new features to VRJGGA, introducing two local search methods, probabilistic cluster

merging, and splitting for clustering improvement. Ripon and Siddique (2009) also applied

the extended version of the JGGA to EMOC, introducing the EMCOC - Evolutionary Multi-

objective Clustering for detecting overlapping clusters. EMCOC introduces a new chromosome

representation and cluster-assignment method in which each data point is a candidate center and

a binary encoding is applied to define whether a data point is a center or not.

3.2.11 Other MOC approaches

Some papers consider other objective functions and provide other features in the design of the

EMOC approaches. For example, Kirkland et al. (2011) presented the Multi-Objective Clustering

algorithm (MOCA), that optimizes three objective functions, 𝐴𝑊𝐺𝑆𝑆, 𝐴𝐵𝐺𝑆𝑆, and 𝐶𝑜𝑛 in

the NSGA-II. Sert et al. (2011, 2012) presented the MOC-HCM, which uses five objective

functions: Kmid, Kmed, Kmwid), Kmwed, and EWCD. The MOC-HCM algorithm uses a binary

representation, a local search operator (k-mode-based operator) that reassigns the instances to the

closest clusters in terms of their frequencies, and a new final selection method based on a new

metric, the H-Confidence Metric (HCM).

Besides the above-mentioned works, we also found specific approaches, in which

their main features consider some particular methods, as follows. Özyer and Alhajj (2009)

applied the divide and conquer approach in an iterative way to handle the clustering process and

improve the performance of the evolutionary algorithm. Zheng et al. (2012) extended algebraic
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operations of gene expression to propose a multi-objective gene expression programming for

clustering. Garcia-Piquer et al. (2017), focused on reducing the impact of the volume of data in

the EA by means of the stratification of the complete data set into disjoint strata and alternating

them in each cycle of the genetic algorithm. Liu et al. (2019) improved the performance of

multi-objective soft subspace clustering algorithms for clustering high-dimensional data by using

a transfer learning-assisted multi-objective evolutionary clustering framework with MOEA/D.

3.2.12 Summary of the EMOC approaches

Here, we summarize the components of the main presented EMOC algorithm. We considered

the publishing chronology to list each EMOC to make it possible to observe the variations of

components over time.

In Table 3.1, we present the main features (components) applied in the initialization

and optimization of each approach. In this table, we used acronyms and abbreviations for some

words: Ad. for Adapted, Repl. for Replacement, and Mod. for Modified, NA for not assigned,

and FM for Fuzzy membership-based.

It is possible to note that there are a variety of representations being applied in the

EMOC approaches. In particular, from the year 2017, the use of representations concerning the

reduction of the size of the chromosome has emerged. In contrast, most EMOC approaches use a

random strategy in the initialization, without introducing a relevant novelty in recent years.

Regarding the optimization phase, the NGSA-II has been the most applied MOEA over

the years. In particular, from the year 2018, the use of MaOEAs considering the optimization of

more than 3 objective functions has emerged. In terms of the objective functions, over the years,

new combinations of clustering criteria have been applied. A common practice considers at least

one compactness-based criterion associated with a connectedness-based criterion for clustering

heterogeneous structured data. In the case of the centered-based clustering optimization, it

is common to see other schemes for the objectives: (i) a compactness-based criterion and

the number of the clusters, (ii) a combination of the two compactness-based criteria, (iii) a

compactness-based criterion and a spatial separation-based criterion. In this last case, these

different configurations of objective functions are mostly related to specific classes of clustering

studies, such as bi-clustering (i), categorical data clustering (ii and iii). The same occurs with

the crossover and mutation operators, in which we can observe a diversity of combinations of

operators.

Table 3.2 summarizes the selection methods applied to each approach that provides this

component in their design. As this component is not mandatory in the EMOC design, almost

half of the presented algorithms do not provide it. The existing selection methods are, in general,

as follows: ensemble-based, which provides the best solution (consensual partition); knee-based,

which provides the best k-solution; and CVIs-based, which considers specific criteria (as ranking)

to define the best set of solutions.
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Table 3.2: EMOC algorithms: selection strategies

Year Article Final Selection
2005 MOCK (Handl and Knowles, 2005a,b;

Handl and Knowles, 2007)

Knee-based

2005 MOCK-medoid (Handl and Knowles,

2005c)

Knee-based

2007 MOCK-scalable (Matake et al., 2007) Knee-based

2007 MOGA-fuzzy (Mukhopadhyay et al.,

2007)

Specific approach (𝑘-nn-based)

2009 MOGA-fuzzy2 (Mukhopadhyay et al.,

2009)

Specific approach (𝑘-nn-based)

2011 MOC-HCM (Sert et al., 2011, 2012) Ensemble-based (H-confidence)

2012 MIE-MOCK (Tsai et al., 2012) PBM and DB

2012 MOSSC (Zhu et al., 2012) Ensemble-based (HBGF)

2013 MOGGC (Menéndez et al., 2013) 𝑠𝑒𝑝𝑔𝑟𝑎𝑝ℎ
2013 MOEASSC (Xia et al., 2013) PSVIndex

2014 CEMOG (Menéndez et al., 2014) 𝑠𝑒𝑝𝑔𝑟𝑎𝑝ℎ
2016 SRMOSC (Luo et al., 2015) Ratio cut-based

2018 MOKCW (Z. Zhou, 2018) PSVIndex and ensemble-based (HBGF or MCLA)

2018 EMO-KC (Wang et al., 2018) Elbow-based and DB

2018 ADNSGA2-FCM (Dong et al., 2018) Ensemble-based (Majority vote)

2018 MaOFcentroids (Zhu and Xu, 2018) Ensemble-based (SIVID)

2019 MOGA-KP (Dutta et al., 2019) 𝐷𝐵, 𝐷𝑒𝑣, 𝐷𝑢𝑛𝑛, 𝐶, 𝐶𝑂𝑆𝐸𝐶, 𝐸𝑛𝑡, 𝐹-Measure,

𝑃𝑢𝑟𝑖𝑡𝑦 and 𝑋𝐵

3.3 MOCK, Δ-MOCK, MOCLE AND EMO-KC

In this section, we present more details of four approaches: MOCK, Δ-MOCK, MOCLE and

EMO-KC. These approaches were used in our experiments and they are compared to the proposed

approach in Chapter 7.

3.3.1 MOCK

MOCK (Multi-Objective Clustering with automatic K-determination) is a well-known algorithm

for multi-objective clustering (Handl and Knowles, 2005a; Handl et al., 2007).

To encode the solutions (partitions), MOCK uses a graph-based encoding called locus-

based adjacency representation (Handl et al., 2007): a solution is represented as a vector of genes,

and each gene 𝑔𝑖 can take an integer value between 1 and 𝑛, where 𝑛 is the number of objects in

the dataset. If a value 𝑗 is assigned to the 𝑖th gene, it can be interpreted as a link between the data

points 𝑖 and 𝑗 , i.e., 𝑖 and 𝑗 belong to the same cluster. Figure 3.3 illustrate a partition encoding

applied in MOCK.

In terms of the generation of the initial population, MOCK uses the partitions derived

from the Minimum Spanning Tree (MST) clustering and 𝑘-means. In particular, the MST-

clustering implemented in MOCK considers the use of a measure called degree of interestingness
(DI) to define the most relevant links that are removed to obtain the clusters. Besides that, a

link removed at position 𝑖 is subsequently replaced by a link to a randomly chosen neighbor.

These procedures are applied to amend the separation of outliers (Handl et al., 2007). For

both MST-clustering and 𝑘-means, partitions with different numbers of clusters are generated

to compose the initial population. The partitions generated by 𝑘-means are converted to the

locus-based encoding by removing all MST links crossing cluster boundaries in the partitions.
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(a) MST (b) One possible genotype (c) Clusters in the partition

Figure 3.3: MOCK representation. Adapted from Handl and Knowles (2007)

Regarding the multi-objective algorithm, MOCK uses PESA-II (Corne et al., 2000). It

is applied to optimize two objective functions: 𝐷𝑒𝑣 and 𝐶𝑜𝑛. The evolutionary operators used

in this algorithm are standard uniform crossover and a neighborhood-biased mutation scheme.

In particular, links selected by random are removed and they are replaced by a link randomly

chosen neighbor, in the same way of the initialization.

At last, MOCK has a model selection applied to select the best partitions in the Pareto

Front. It considers a comparison of the shape of the curve (knee) obtained in the optimization

with a null model, produced by clustering random data.

3.3.2 Δ-MOCK

Δ-MOCK (Garza-Fabre et al., 2017) was developed to improve the scalability of MOCK (Handl

et al., 2007) considering modifications applied to: (i) the initialization and representation schemes,

(ii) the multi-objective optimization algorithm, (iii) the objective functions.

In terms of the initialization procedure, according to Garza-Fabre et al. (2017) the

use of two approaches to generate the base partitions affects the general scalability of MOCK,

specifically 𝑘-means. Thus, Δ-MOCK uses only one approach to generate the base partitions,

considering the one that removes the links of the MST.

Furthermore, according to (Garza-Fabre et al., 2017), one of the main limiting factors

regarding MOCK’s scalability is the length of the genotype in the locus-based adjacency

representation, which is equal to the number 𝑛 of objects in the dataset (see Section 3.3.1). To

address this issue, Garza-Fabre et al. (2017) introduced two alternative representations: the

Δ-locus and the Δ-binary encodings. These schemes are based on the original representation

of MOCK. However, they can significantly reduce the length of the genotype by making use

of information from the MST and DI. More specifically, based on a user-defined parameter, 𝛿
(0 ≤ 𝛿 ≤ 100), the MST links are classified either into the set of relevant links, Γ, or into the set

of non-relevant, fixed links, Δ. Only the relevant links are used in the optimization, i.e., the new

encoding has a |Γ|-length genotype.

Fig. 3.4 illustrate an decode of the full-length representation to Δ-locus. By considering

a dataset with 12 objects and 𝛿 = 80, Δ-locus encoding has a size equal to 3, while a full-encoding

has 12. In this case, only the most relevant links of the MST (linked to positions 3, 7, and 10) are

operated by the evolutionary operators in this new encoding.

On the other hand, Fig. 3.5 illustrate the decode Δ-locus to the full-length representation,

in which the relevant links are replaced by new links.
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Figure 3.4: Encoding the full-length representation to Δ-locus. In the Δ-locus representation, the numbers above the

encoding, in red font, represent the rank of the relevant links, and the numbers below the encoding represent the

position in the full-length encoding. Adapted from Garza-Fabre et al. (2017)

Figure 3.5: Decoding the Δ-Locus to full-length representation. The numbers in red font refer to the rank of the

relevant links, and the numbers in blue font denote the modified links. Adapted from Garza-Fabre et al. (2017)

Regarding the search strategy and objective functions, Δ-MOCK replaces MOCK’s

PESA-II (Corne et al., 2000) with NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb

et al., 2000) to optimize the 𝑉𝑎𝑟 and 𝐶𝑜𝑛, in which 𝑉𝑎𝑟 was used instead of 𝐷𝑒𝑣 to support

their pre-computation of the fixed links applied in new representation schemes.

3.3.3 MOCLE

MOCLE (Multi-Objective Clustering Ensemble) is a clustering algorithm proposed by Faceli et al.

(2006) that combines characteristics from both cluster ensemble techniques and multi-objective

clustering methods.

The ensemble clustering generates a consensual partition, 𝜋∗ according to the basic

process of the cluster ensemble presented in Fig. 3.6 and explained in the following. Let

X = {x1, ..., x𝑛} be a set of 𝑛 data points, and Π = {𝜋1, . . . 𝜋𝑀} be a set of partitions generated

by one or more clustering algorithms, a consensus function combines these partitions to obtain

the final clustering result 𝜋∗, and to improve the quality of the clustering results (Faceli et al.,

2006).

Like in traditional ensemble clustering, starting with a diverse set of base partitions,

MOCLE employs the multi-objective evolutionary algorithm to generate an approximation of the

Pareto optimal set. It optimizes the same criteria as MOCK and uses a special crossover operator,

which combines pairs of partitions using an ensemble method. No mutation is employed.

MOCLE uses the label-based representation, in which each position denotes the cluster

label of the respective point. This representation supports the use of different clustering algorithms

in the initialization. In contrast to MOCK and Δ-MOCK, in which the links should be evaluated
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Figure 3.6: Ensemble Clustering.

to determine the clusters (linked points), label-based representation does not require any extra

effort to obtain the clusters since the cluster labels is direct given in the encoding.

Finally, it is worth noting that the core ideas of MOCLE, as well as those of MOCK andΔ-

MOCK, are not linked to specific objective functions, crossover operators, and search algorithms.

For instance, in terms of objective functions, like MOCK, MOCLE has been mainly implemented

using 𝐷𝑒𝑣 and 𝐶𝑜𝑛 (Faceli et al., 2006, 2009; Antunes et al., 2020). Concerning the crossover

operators, the software available at http://lasid.sor.ufscar.br/mocleproject/
implements the MCLA (Strehl, 2002) and the cluster ensemble method HBGF (Fern and Brodley,

2004). The optimization process, like in Δ-MOCK, has been mainly performed by using

NSGA-II (Deb et al., 2000).

3.3.4 EMO-KC

EMO-KC (multi-objective optimization-k-clustering) was introduced by Wang et al. (2018).

This algorithm uses a centroid-based representation, in which the chromosomes consist of real

numbers that represent the coordinates of the cluster centroid. To generate the initial population,

it considers a random choice of the points in the dataset to define the initial centroids, and the

clusters consist of objects in which each point is associated with the closest centroid.

EMO-KC relies on the NSGA-II with its standard operators (simulated binary crossover

and polynomial mutation) to optimize 𝑉𝑎𝑟′ and 𝑘 (number of clusters). According to the authors,

this approach was proposed to harness the implicit parallelism of EMOC, for that they introduced

the adapted SSD (𝑉𝑎𝑟′), to improve the conflict of any two solutions having different 𝑘 values.

To select the best solution EMO-KC considers the elbow method (Hancer and Karaboga,

2017). The final population could present more than one elbow or no elbow for some datasets,

thus the 𝐷𝐵 is further considered to select the final solution.

3.4 EMOC APPROACHES DESIGNED FOR SPECIFIC APPLICATIONS

In this section, we present approaches designed for specific applications. Each algorithm

considers the particularities of problem application to define the representation of the solutions,

the objective functions, or/and the evolutionary operators. It promotes the generation of a

variety of configurations, so we will limit ourselves to listing some algorithms designed for each

following application.
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3.4.1 Association rule learning

Association rule learning is a rule-based machine learning method for discovering interesting

relations between variables in large databases. Kaya and Alhajj (2004) and Alhajj and Kaya

(2008) provided an EMOC approach for fuzzy association rules mining to automatically cluster

values of a given quantitative attribute to obtain a large number of itemsets in a short period of

time.

3.4.2 Document clustering

Document clustering is a data/text mining technique that makes use of text clustering to divide

documents according to various topics. Lee et al. (2014) proposed a method of enhancing

multi-objective genetic algorithms for document clustering with parallel programming. Wahid

et al. (2015) presented a new approach for document clustering based on SPEA-II, that explores

the concept of multiple views to generate multiple clustering solutions with diversity.

3.4.3 Gene/micro-array analysis

The Gene/Micro-array clustering analysis is applied to discover groups of correlated genes

potentially co-regulated or associated with the disease or conditions under investigation. Romero-

Zaliz et al. (2008) provided an EMOC to identify conceptual models in structured datasets that

can explain and predict phenotypes in the immune inflammatory response problem, similar to

those provided by gene expression or other genetic markers. Li et al. (2017) provided a new

ensemble operator to improve the data clustering in gene expression datasets in IMOCLE (Liu

et al., 2012). Mukhopadhyay et al. (2010) provide an approach that simultaneously selects relevant

genes and clusters the input dataset. Mukhopadhyay et al. (2013) presented an interactive approach

to multi-objective clustering of gene expression patterns considering an adapted NSGA-II, in

which inputs from the human decision-maker (DM) are taken to learn which objective functions

are more suitable for the datasets. Dutta and Saha (2017) presented an EMOC approach to

identify gene clusters from a given expression dataset; in which apart from utilizing the gene

expression values of the individual genes, the corresponding protein-protein interaction scores

are also used while clustering the set of genes.

3.4.4 Image Segmentation

Image segmentation consists of the process by which a digital image is partitioned into various

subgroups (multiple parts or regions), often based on the characteristics of the pixels in the

image. Qian et al. (2008) presented a multi-objective evolutionary ensemble algorithm to

perform texture image segmentation. Shirakawa and Nagao (2009) introduced a variation of the

MOCK (Handl and Knowles, 2007) improving its general features for its application in image

segmentation. Zhang et al. (2016) provided a multi-objective evolutionary fuzzy clustering for

image segmentation, considering the original FCM energy function to preserve image details and

a function based on local information to restrain noise, both minimized by MOEA/D. Zhao et al.

(2018, 2019) introduced the use of the concepts of intuitionistic fuzzy set (IFS) and multiple

spatial information to generate an EMOC approach to overcome the effect of noise in image

segmentation.
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3.4.5 Software module clustering

Software module clustering refers to the problem of automatically organizing software units into

modules to improve program structure. Praditwong et al. (2010) provided a multi-objective

formulation of the software module clustering problem considering a two-archive Pareto optimal

genetic algorithm. Barros (2012) provided an analysis of the effects of composite objectives in

multi-objective software module clustering.

3.4.6 Network community detection

Network community detection refers to the procedure of identifying groups of interacting vertices

in a network depending upon their structural properties to unveil the dynamic behaviors of

networks. Folino and Pizzuti (2010) provided an approach for the detection of communities with

temporal smoothness formulated as an EMOC. Attea et al. (2016) reformulate the community

detection problem as an EMOC model that can simultaneously capture the intra and inter-

community structures based on functions inspired by different types of node neighborhood

relations. Shang et al. (2017) introduced an EMOC approach based on 𝑘-nodes update policy

and a similarity matrix for mining communities in social networks. Pizzuti and Socievole (2019)

provided a framework for detecting community structure in attributed networks, introducing a

post-processing local search procedure that identifies those communities that can be merged to

provide higher quality community divisions.

3.4.7 Web recommendation

Web topic mining and web recommendation consider the problem of extracting web navigation

patterns, based on the interests of a user, to be applied in the recommender systems to guide users

during their visit to a Web site. Demir et al. (2010) presented EMOC approaches to clustering

Web user sessions in a Web page recommender system. Morik et al. (2012) investigated the

problem of finding alternative high-quality structures for (Web) navigation in a large collection of

high-dimensional data, and they provided a formulation of FTS (Frequent Terms Set) clustering

as a multi-objective optimization problem.

3.4.8 WSN - Wireless Sensor Network topology management

There are several challenges in designing WSN because the sensor nodes have limited resources

of energy, processing power, and memory. In this context, the clustering technique can organize

nodes into a set of groups based on a set of pre-defined criteria to improve their usage. Peiravi

et al. (2013) provided an EMOC approach whose goal was to obtain clustering schemes in which

the network lifetime was optimized for different delay values. Hacioglu et al. (2016) presented an

EMOC approach that can extend network lifetime while enabling high coverage and data.

3.4.9 Other applications

Wang et al. (2015) proposed an approach to solve the circuit clustering problem in field-

programmable gate array computer-aided design flow. Mukhopadhyay and Maulik (2009)

introduced a multi-objective genetic clustering approach for pixel classification in remote sensing

imagery. Wang et al. (2014) and Li et al. (2016) provided a multi-objective fuzzy clustering

approach for change detection in Synthetic Aperture Radar (SAR) images. Liu et al. (2017)

presented an approach to automatic clustering of shapes considering a multi-objective optimization

with decomposition and improvement in the shape descriptor and diffusion process (that was
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applied to transform the similarity distance matrix among total shapes of a dataset into a weighted

graph).

3.5 CHAPTER REMARKS

In this chapter, we presented a review of the EMOC studies, focused on a general architecture

of evolutionary multi-objective clustering (see Chapter 2), considering the chromosome rep-

resentation, initialization strategies, MOEAs (or MaOEAs), objective functions, evolutionary

operators (crossover and mutation), and final solution selection. Furthermore, in this manuscript,

we presented some applications of EMOC and the most relevant related papers that can be useful

to researchers that are exploring EMOC for a specific purpose.

This mapping of EMOC approaches allows us to observe some patterns and obtain

some insights regarding the evolutionary multi-objective clustering algorithms. For example, the

choice of the objective functions is one of the most critical factors in the optimization process. In

general, there is no consensus around the ideal number and the best combination of objective

functions among researchers because of the difficulty in defining appropriate clustering criteria.

In this way, more studies on the objective functions are required to improve the composition of

objective functions and provide more information on the limitations of the existing ones.

In terms of an evolutionary multi-objective approach, we can note the wide use of the

NSGA-II as MOEAs over the years. In recent years, the use of MaOEAs has been verified (Zhu

et al., 2018; Zhu and Xu, 2018), in contrast to other works (Sert et al., 2011, 2012; Liu et al.,

2012) that considered the optimization of more than three objective functions in MOEAs

(NSGA/NSGA-II).

Other multi-objective clustering works were published recently (between 2021 and

2022), but they do not provide novelty in the analysis of the EMOC approaches, as described in

this manuscript. For example, Zhu et al. (2021) proposed HT-MOC - hierarchical topology-based

MOC. HT-MOC is a MOCK-based algorithm, that uses a hierarchical topology-based cluster

representation to improve the time and memory usage. Besides that, this approach uses a

specific MOEA to optimize 𝐶𝑜𝑛 and 𝑉𝑎𝑟, which considers an ensemble-based operation after

the crossover and mutation operations, aiming to improve the quality of the solutions. Like

in the other cited works, HT-MOC uses a clustering algorithm to generate the base partitions

(MST-clustering), but the impact of using high-quality partitions in the initialization is not

evaluated.

The literature review presented in this chapter was submitted to the journal Computer

Science Review and is still under review. A preprint is available in Morimoto et al. (2021).

In the next chapter, we introduce the admissibility analysis applied to evaluate the search

direction and the potential of finding the optimal solutions, in which we evaluate the impact of

the initial population in the optimization.
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4 ANALYSIS OF THE INADMISSIBILITY OF THE OBJECTIVE FUNCTIONS IN
EMOC APPROACHES

In this chapter, we introduce the analysis of the inadmissibility applied to the objective functions

and the influence of the initialization strategy in the optimization, in order to answer RQ.1 and

RQ.2. This chapter is divided into four sections. In the first section, we present the admissibility

and inadmissibility concept applied in the analysis of the objective functions. In sequence,

we present objective functions and the clustering algorithms applied in most of the EMOC

approaches that consider high-quality base partitions in the initialization to evaluate their impact

in the optimization. In the next two sections, we present the experimental setup and results of

experiments considering the analysis of 17 objective functions as for their inadmissibility in 24

artificial datasets. Finally, we present the general discussion and analysis of the results.

4.1 ADMISSIBILITY AND INADMISSIBILITY OF OBJECTIVE FUNCTIONS

An admissible heuristic function can be characterized as a function that does not overestimate
the cost of reaching the goal (Russell and Norvig, 2002).

In our study, we consider this general admissibility concept in evolutionary optimization.

Thus, we verified the potential of the objective functions, as heuristic functions, in finding the

optimal results based on the search direction. Here, we considered the optimal value as the

underlying structure of the data, called the true partition or ground-truth. In other words, the

true partition represents the ideal model partition. As our analysis considered artificial datasets,

the true partition was known in advance, making it possible to perform a detailed examination of

the underlying structure of the data and relate it to the clustering criteria.

In practice, our analysis consists of evaluating the inadmissibility of the objective

functions. An objective function is inadmissible if for each 𝑓 (𝜋), 𝜋 ∈ Π0 (initial population),

∃ 𝑓 (𝜋) ≥ 𝑓 (𝜋∗) for the maximization problem, or ∃ 𝑓 (𝜋) ≤ 𝑓 (𝜋∗) for a minimization problem,

where 𝑓 (𝜋) denotes an objective function result for each candidate solution 𝜋, and 𝜋∗ represent

the optimal solution.

It is important to note that our analysis does not ensure that the objective functions are

admissible or that they can reach optimal values. However, it is possible to clearly visualize

the inadmissible objective functions and the potential for optimization of the other objective

functions.

Fig. 4.1 illustrates the general case of the inadmissibility applied in our analysis,

considering the optimization (minimization) of one objective function over a period of time. In

this figure, the term “cost” refers to the best result of the objective function in each iteration,

here called “time”. In this figure, the red point represents the optimal value (optimal cost), and

the blue arrow indicates the search direction. The objective function is inadmissible in order to

find the optimal solution (∃ 𝑓 (𝜋) ≤ 𝑓 (𝜋∗)), in which the initial cost is 7 for the solutions in the

initial population, that overestimates the optimal cost (9). Furthermore, the optimization of this

objective function worsens this aspect over time (final cost = 0.8).

Inadmissible functions are not adequate to be optimized; however, they can be
applied as restrictions to the search space (see Eq. 2.2 in Section 2.2) to define the feasible

region of solutions. In particular, the inadmissible functions can be applied as objective functions

to constrain the search in a specific direction.
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Figure 4.1: Example of an inadmissible objective function, considering the best results of the objective function

over a period of time

In the following, we present the objective functions, and the algorithms applied to

generate the base partitions used in the admissibility analysis.

4.1.1 Objective Functions

In our study, we analyzed different objective functions:

• Four compactness criteria: intra-cluster entropy (𝐸𝑛𝑡), overall deviation (𝐷𝑒𝑣), intra-

cluster variance (𝑉𝑎𝑟), and total within-cluster variance (𝑇𝑊𝐶𝑉).

• Two connectedness criteria: connectivity (𝐶𝑜𝑛) and data continuity degree (𝐷𝐶𝐷).

• Four separation criteria: average between-group sum of squares (𝐴𝐵𝐺𝑆𝑆), average

separation (𝑆𝑒𝑝𝐴𝐿), separation index (𝑆𝑒𝑝𝐶𝐿), and graph-based separation (𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ).

• Seven compactness and separation criteria: Calinski-Harabasz index (𝐶𝐻), Davies-

Bouldin index (𝐷𝐵), Dunn index (𝐷𝑢𝑛𝑛), modularity (𝑀𝑜𝑑), silhouette (𝑆𝑖𝑙), Pakhira-

Bandyopadhyay-Maulik (𝑃𝐵𝑀), and Xeni-Beny (XB).

These objective functions were extracted from the evolutionary multi-objective clustering

approaches detailed in Section 3. We selected clustering criteria that can be applied as objective

functions to clustering continuous data and that differ in their general computation. To delimit

the number of the clustering criteria, we do not consider variations of popular indices, or specific

scope objective functions. Details of each objective function are presented in Appendix A.

4.1.2 Clustering Algorithms applied in initialization of EMOC approaches

Here, we present five clustering algorithms: 𝑘-means, average linkage, single linkage, shared near-

est neighbor-based clustering, and minimum spanning tree clustering. These clustering algorithms

provide different strategies that allow us to evaluate how they can affect the optimization.

4.1.2.1 𝑘-means

𝑘-means (KM) (MacQueen, 1967) is a partitional clustering algorithm applied to detect compact

clusters. Its objective is to minimize the distance between the centroid and their respective
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instances. The 𝑘-means starts by choosing a 𝑘 set of centroids randomly (or based on prior

knowledge and associating each object with the nearest centroid), where 𝑘 is a user-given

parameter. After that, the centroids are recomputed based on the current cluster data, followed

by a new association of each instance with the nearest centroid; this operation is successively

repeated until there is no change in the groups or the stopping criterion is met.

4.1.2.2 Average linkage and single linkage

Average linkage (AL) and single linkage (SL) are hierarchical algorithms applied to detect nested

or hierarchical data structures. Each instance starts out standing as an individual cluster in both

algorithms, and a sequence of merge operations is executed until it reaches a single cluster with

all the instances. The core difference between AL and SL is the distance measure used to compute

proximity between pairs of clusters. This measure is used to define the closest pair of sub-sets

that are merged. SL uses the minimal distance between two instances of a cluster pair, and AL

applies the average distance of all observations of the cluster pairs (Xu and Wunsch, 2005).

4.1.2.3 Shared nearest neighbor-based clustering

Shared nearest neighbor-based clustering (SNN) (Ertöz et al., 2002) is a density-based algorithm.

SNN can detect clusters of different sizes, shapes, and densities. The main idea behind this

algorithm is to use the concept of similarity based on the shared nearest neighbor. The objects are

assigned to a cluster that shares a large number of their nearest neighbors (the density-based on

the neighborhood). This algorithm begins with the computation of the similarity matrix, which

is sparsified by retaining only the k-nearest neighbors (KNN). In the following, the shared nearest

neighbor graph is constructed, in which links are created between pairs of objects that have each

other in their KNN lists. Then, SNN computes the number of shared neighbors between vertices,

considering the links coming from each point in the graph, providing the density factor. This

factor is used to identify the noise or core points based on the user-defined thresholds. Then,

noisy points are discarded, and the clusters are formed by the core points and the border points

(non-noise non-core points), considering all the connected components.

4.1.2.4 Minimum spanning tree clustering

The minimum spanning tree (MST) clustering is a graph-based algorithm that can identify

clusters of arbitrary shapes. Among a variety of versions of this algorithm, we consider here

the MST-clustering described in Handl et al. (2007). This algorithm uses the concept of degree
of interestingness (DI) and the properties of the MST to find the clusters. DI defines the

neighborhood relationship between the nodes in the MST, where a link between two nodes is

considered interesting if neither of them is a part of the other node’s set of nearest neighbors.

Thus, the clusters are generated by removing interesting links in the MST that split it into

sub-graphs in which the connected elements represent a cluster.

4.2 EXPERIMENTAL DESIGN

4.2.1 Goals of the experiments

Besides the general goals of our research, the specific goals of these experiments are to answer

the following research questions: (i) “Which evaluated objective functions are inadmissible and

which ones have potential (search space) for optimization?”, and (ii) “Are there specific features
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or optimizing scenarios that should be considered in the choice and combination of the objective

functions to obtain better clustering results?”.

4.2.2 Experimental setup

In order to answer the first research question, we evaluated the admissibility of each objective

function presented in Section 4.1.1, considering the base partitions obtained from different

initialization strategies. Therefore, we used the initialization algorithm of the MOCK and

MOCLE, both established and popular approaches, that consider different clustering criteria.

Thus, we generated five initial populations using the clustering algorithm: KM, AL, SL, SNN,

and MST-clustering. The general setting applied in the KM, AL, SL, and SNN is the same as

reported in Faceli et al. (2006). Regarding the MST-clustering, we employed the general setting

presented in Handl and Knowles (2007). Furthermore, we adjusted such algorithms to produce

partitions containing clusters in the range {2, 2𝑘∗}, where 𝑘∗ is the number of clusters in the true

partition representing the dataset. This setting is commonly used in MOCK/Δ-MOCK’s to define

the number of clusters in the partitions of the initial population. In this initial experiment, in

particular, we analyze the admissibility by comparing the individuals of the initial populations

with the optimal value (true partition) of each dataset. The results of this experiment provide us

with information about which objective function and initialization strategy could improve the

optimization. In particular, we demonstrated in MOCLE this impact in terms of ARI, in which

we consider the MOCLE general setting present in Faceli et al. (2006).

Regarding the second research question, we evaluated different combinations of objective

functions and analyzed which conditions could lead the EMOC approach to provide better results.

In particular, we analyze the clustering performance of some promising objective functions

found in the first experiment. Experiments were carried out in the new MOCK version, Δ-

MOCK (Garza-Fabre et al., 2018). We select this algorithm, among others, because it is a

recently established approach in which the present features (as the use of MST-clustering in the

initialization) contribute to the evaluation in terms of the search direction, demonstrating how

admissibility supports the choice of objective functions. Regarding this algorithm setting, we

employed the one reported in Garza-Fabre et al. (2018), considering the Δ-locus scheme with 𝛿
settled heuristic ∼ 5/√𝑛, where 𝑛 is the number of objects in the dataset.

4.2.3 Datasets

As previously stated, our analysis takes into account the use of the true partition. Thus, we selected

24 artificial datasets, in which we can analyze the relationship between their data structures or

cluster shapes and the optimization of the objective functions. Table 4.1 summarizes the main

characteristics of these datasets, in which 𝑛 is the number of objects, 𝑑 refers to the number of

attributes (dimensions), and 𝑘* is the number of clusters in the true partition. These datasets

were obtained from 4 repositories: Clustering benchmarks1 and Clustering basic benchmark2,

UCI Machine Learning Repository3 and Clusters Evaluation Benchmark4.

We divided these datasets into four groups (column G in Table 4.1), considering

similar data structures evaluated in our analysis. In the first group (G1), Fig. 4.2, we have 8

datasets with gaussian-like clusters and 4 datasets with hyper-spherical shaped clusters. R15,

D31, Engytime, Sizes5, Square1, Square4, Twenty, and Fourty have gaussian-like

1https://github.com/deric/clustering-benchmark
2http://cs.joensuu.fi/sipu/datasets/
3https://archive.ics.uci.edu/ml/datasets.php
4http://lasid.sor.ufscar.br/clustersEvaluationBenchmark/
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G Dataset 𝑛 𝑑 𝑘∗

G1

R15 600 2 15

D31 3.100 2 31

Engytime 4.096 2 2

Sizes5 1.000 2 4

Square1 1.000 2 4

Square4 1.000 2 4

Twenty 1.000 2 20

Fourty 1.000 2 40

Sph_5_2 250 2 5

Sph_6_2 300 2 6

Sph_9_2 900 2 9

Sph_10_2 500 2 10

G Dataset 𝑛 𝑑 𝑘∗

G2

ds2c2sc13_S1 588 2 2

ds2c2sc13_S2 588 2 5

ds2c2sc13_S3 588 2 13

G3

Long1 1.000 2 2

Pat2 417 2 2

Spiral 1.000 2 2

G4

3MC 400 2 3

DS-850 850 2 5

Aggregation 788 2 7

Complex9 3.030 2 9

Pat1 557 2 3

Spiralsquare 2.000 2 6

Table 4.1: Dataset characteristics

clusters. R15 consists of 15 identical-sized clusters with some overlapping points. D31 has

31 clusters that are slightly overlapping and distributed randomly. Engytime has two highly

overlapping clusters with different variances. Size5 has five clusters of varying sizes and

the same inter-cluster distance over all clusters. Square1 and Square4 consist of four

clusters of equal size and spread that vary in the degree of overlap and the relative size of

clusters. Fourty and Twenty consist of well-separated small clusters distributed into 40 and

20 clusters, respectively. Sph_5_2, Sph_6_2, Sph_9_2, Sph_10_2 have hyper-spherical

shaped clusters with different proximity between the clusters. Algorithms based on cluster

compactness, such as KM, can detect well-separated hyper-spherical shaped clusters; they can

also detect gaussian-like clusters when they contain globular (no oblong) and well-separated data

structures.

In the second group (G2), Fig. 4.3, we have the ds2c2sc13 dataset, which contains

three different structures: S1, S2, and S3. These structures represent three levels of structures

in a nested dataset. In this example, S1 represents two well-separated clusters, which can be

found by techniques based on optimizing connectedness or compactness; in contrast, S2 and

S3 combine distinct types of clusters that could be hard to find with techniques based only on

connectedness or compactness. Hierarchical clustering algorithms, such as SL and AL, are

usually applied to detect nested structures.

In the third group (G3), Fig 4.4, we have datasets that contain well-separated and

elongated cluster shapes that are hard to identify for algorithms based on cluster compactness:

Long1, Spiral, and Pat2.

In the last group (G4), Fig. 4.5, we have shaped datasets that combine different

types of clusters: 3MC, DS-850, Aggregation, Complex9, Pat1, Spiralsquare.

Aggregation contains 6 clusters with a uniform and compact distribution, and they also have

different sizes, and two clusters are linked by a line of points. 3MC contains symmetrical shaped

clusters (e.g., ring-shape, ellipsoidal clusters, etc.). Pat1 and Complex9 present clusters

surrounding other ones, among other data structures. Spiralsquare combines spirals and

square shapes into clusters.

It is important to observe that the use of artificial datasets that provide the true partition

and also have well-known data structures makes it possible to analyze in detail the conditions

that can affect the optimization in our study.
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(a) R15 (b) D31 (c) engytime

(d) Sizes5 (e) Square1 (f) Square4

(g) Fourty (h) Twenty (i) Sph_5_2

(j) Sph_6_2 (k) Sph_9_2 (l) Sph_10_2

Figure 4.2: Datasets with gaussian-like and hyper-spherical shaped clusters

(a) S1 (b) S2 (c) S3

Figure 4.3: ds2c2sc13 data structures
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(a) Long1 (b) Pat2 (c) spiral

Figure 4.4: Datasets with elongated cluster shapes

(a) 3MC (b) DS-850 (c) Aggregation

(d) complex9 (e) Pat1 (f) spiralsquare

Figure 4.5: Datasets with distinct types of clusters

4.2.4 Performance assessment

In terms of optimization, we evaluated the objective function’s inadmissibility and analyzed the

solutions regarding the dominance of the true partition. The general concepts of both these items

(admissibility and dominance) are presented in Section 2.

Finally, as the main indicator of clustering performance, we used the ARI, Eq. 2.3 (see

Section 2.4.4).

4.3 EXPERIMENTAL RESULTS

As described in Section 4.2, for every individual in each population, we computed the objective

function presented in Appendix A and compared their results with the respective values of the

true partition to determine their inadmissibility and the potential of the optimization.

Table 4.2 and Table 4.3 present the detailed results of the inadmissibility in terms of

the initialization with MST-clustering and KM, respectively. In these tables, we point out the

objective functions that are inadmissible (×) for each dataset. Also, in terms of the potentially

admissible objective function, we consider two other classes: (i) the true partition was found in
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G Datasets 𝐸
𝑛
𝑡

𝐷
𝑒𝑣

𝑉
𝑎
𝑟

𝑇
𝑊
𝐶
𝑉

𝐶
𝐻

D
B

𝐷
𝑢
𝑛
𝑛

𝑀
𝑜
𝑑

𝑆
𝑖𝑙

𝑃
𝐵
𝑀

𝑋
𝐵

𝐴
𝐵
𝐺
𝑆
𝑆

𝑆
𝑒
𝑝
𝐴
𝐿

𝑆
𝑒
𝑝
𝐶
𝐿

𝑆
𝑒
𝑝
𝑔
𝑟𝑎

𝑝
ℎ

𝐶
𝑜
𝑛

𝐷
𝐶
𝐷

G1

R15 × × × × × × � × ×
D31 × × × × × × × × × ×
Engytime × × × × × × × × × ×
Sizes5 × × × × ×
Square1 × × × × × ×
Square4 × × × × × × ×
Twenty × × × × � � � × � � � × × × × × ×
Fourty × × × × � � � × � � � × × × � × ×
Sph_5_2 × × × × × × × × × × × × ×
Sph_6_2 × × × × � � × × � × × × × × × � ×
Sph_9_2 × × × × × × × × ×
Sph_10_2 × × × × × × × × × × × × × ×

G2

ds2c2sc13_S1 × × × × � � � × � � � � � × � � �
ds2c2sc13_S2 × × × × × × × × � × × × × × × � ×
ds2c2sc13_S3 × × × × × × × × × × × × × × × × ×

G3

Long1 × × × × × × � � × � × � × × � � �
Pat2 × × × × � × � × × � × � × × × � ×
Spiral × × × × � × � × × � � � × × � � ×

G4

3MC × × × × × � � × � � � × � × � � ×
DS-850 × × × × ×
Aggregation × × × × × × × × ×
Complex9 × × × × × × × × × × × × × × × × ×
Pat1 × × × × × × × × × × × × × × × × ×
Spiralsquare × × × × × × × × × � × ×

Table 4.2: Results of the analysis of the admissibility of the objective functions considering an initialization with

MST-clustering

the initial population, where optimization is not required (�), and (ii) the objective function has

space to be optimized and potential to be admissible (blank cells).

Table 4.4 summarizes the results of all initialization strategies. Since the initialization

of the AL, SL, and SNN are comparable with the results of the MST-clustering and KM, we

compiled the results by counting the number of datasets in which the objective functions are

inadmissible. Column IN denotes the total number of the datasets where each objective function

is inadmissible, and column OP refers to the total number of the datasets where the optimal

solution is provided in the initial population. For example, the fields IN fulfilled with 24 mean

that a specific objective function is inadmissible for any of the analyzed datasets.

4.4 DISCUSSION

By analyzing Table 4.2, we observed that every connectedness criterion (𝐶𝑜𝑛 and 𝐷𝐶𝐷)

provides results in which there is no space to be optimized since they are inadmissible, or the

optimal result was found in the initial population (cells marked with × and �). In contrast, some

objective functions that take into account the compactness or/and separation criteria could be

used in the optimization of the datasets that include the Gaussian-like clusters and hyper-spherical

clusters that have some degree of overlap in G1, or heterogeneous data structures with close

objects between the clusters in G4 (blank cells). In general, MST-clustering fails in detecting

close or overlapping clusters, and the use of a complementary objective function that considers a
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G Datasets 𝐸
𝑛
𝑡

𝐷
𝑒𝑣

𝑉
𝑎
𝑟

𝑇
𝑊
𝐶
𝑉

𝐶
𝐻

D
B

𝐷
𝑢
𝑛
𝑛

𝑀
𝑜
𝑑

𝑆
𝑖𝑙

𝑃
𝐵
𝑀

𝑋
𝐵

𝐴
𝐵
𝐺
𝑆
𝑆

𝑆
𝑒
𝑝
𝐴
𝐿

𝑆
𝑒
𝑝
𝐶
𝐿

𝑆
𝑒
𝑝
𝑔
𝑟𝑎

𝑝
ℎ

𝐶
𝑜
𝑛

𝐷
𝐶
𝐷

G1

R15 × × × × × × × × × × × × × × × × ×
D31 × × × × × × × × × × × × × × × × ×
Engytime × × × × × × × × × × × × × × ×
Sizes5 × × × × × × × × × ×
Square1 × × × × × × × × × × × × × × × × ×
Square4 × × × × × × × × × × × × × × × × ×
Twenty × × × × � � � × � � � × × × × � ×
Fourty × × × × � � � × � � � × × × � × ×
Sph_5_2 × × × × × × × × × × × × × × × × ×
Sph_6_2 × × × × � � × × � × × × × × × � ×
Sph_9_2 × × × × × × × × × × × × × × × × ×
Sph_10_2 × × × × × × × × × × × × × × × ×

G2

ds2c2sc13_S1 � × × × � � � × � � � � � × � �
ds2c2sc13_S2 × × × × × × × × × × × × × × × � ×
ds2c2sc13_S3 × × × × × × × × × × × × × × × × ×

G3

Long1 × × × × × × × × × × × ×
Pat2 × × × × × × × × × × × × × ×
Spiral × × × × × × × × × × × ×

G4

3MC × × × × × × × × × × × × ×
DS-850 × × × × × × × × × × × ×
Aggregation × × × × × × × × × × × × × × ×
Complex9 × × × × × × × × × × × × × ×
Pat1 × × × × × × × × × × × × × × ×
Spiralsquare × × × × × × × × × × × × ×

Table 4.3: Results of the analysis of the admissibility of the objective functions considering an initialization with KM

Type Objectives MST SNN SL AL KM
IN OP IN OP IN OP IN OP IN OP

Compactness

𝐸𝑛𝑡 24 - 20 3 24 - 23 1 23 1

𝐷𝑒𝑣 14 - 11 3 12 - 24 - 24 -

𝑉𝑎𝑟 14 - 11 3 12 - 24 - 24 -

𝑇𝑊𝐶𝑉 14 - 17 1 15 - 24 - 24 -

Compactness
and
Separation

𝐶𝐻 7 6 5 9 4 8 13 3 20 4

𝐷𝐵 10 5 9 8 14 4 18 4 17 4

𝐷𝑢𝑛𝑛 16 7 16 7 17 6 16 4 14 3

𝑀𝑜𝑑 23 1 22 2 21 1 22 - 20 -

𝑆𝑖𝑙 7 5 6 7 7 6 14 3 20 3

𝑃𝐵𝑀 9 6 5 10 7 8 18 4 17 4

𝑋𝐵 15 7 16 7 17 6 15 4 14 3

Separation

𝐴𝐵𝑆𝑆 16 3 13 5 13 4 21 1 23 1

𝑆𝑒𝑝𝐴𝐿 19 2 13 5 20 3 23 1 22 1

𝑆𝑒𝑝𝐶𝐿 14 - 11 3 12 - 24 - 24 -

𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ 14 7 6 11 13 4 19 1 16 1

Connectedness 𝐶𝑜𝑛 17 7 17 7 17 6 15 4 10 4

𝐷𝐶𝐷 22 2 24 - 24 - 24 - 22 1

Table 4.4: A summary of the results regarding the analysis of the admissibility of the objective functions

search in different criteria (direction) covered in the initialization can lead the EMOC to obtain

better results.
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In terms of the results shown in Table 4.3, we observe that for most of the objective

functions, there is no space for optimization (cells marked with �or ×) when KM is applied in

the initialization. Only the objective functions 𝐷𝑢𝑛𝑛, 𝑃𝐵𝑀, 𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ, and 𝐶𝑜𝑛 have at least

five datasets in which it is possible to improve the results (blank cells). In particular, we observed

that 𝐶𝑜𝑛 has space to be optimized in ten datasets, including all datasets present in G3 and G4.

In this case, KM fails to detect the elongated clusters, and the use of 𝐶𝑜𝑛 could lead the EMOC

to find this kind of structure present in G3 and G4. In general, these results point out that the

initialization with KM and AL provide limitations in optimizing most of the compactness or

separation criteria for most datasets.

In the initialization with MST-clustering, SNN, and SL, the objective functions present

similar behavior. All objective functions are inadmissible, or the initial population has the

best results for datasets with well-separated clusters. Consequently, there is no space for

optimizing any evaluated criteria for these features (well-separated clusters and initialization with

MTS-clustering, SNN, and SL).

In terms of the EMOC approaches, we verified an issue in the design of the approaches

that consider the same clustering criteria in the initialization strategy and the objective functions,

in which the evolutionary optimization could not be adequate. For example, in Handl and Knowles

(2005c), KM is applied in the initialization along with the pair of objectives (𝑉𝑎𝑟 and 𝐷𝑒𝑣).

In this case, the initial population has solutions that either reach the optimal results or exceed

the boundaries of feasible search space to find compacted clusters. Therefore, optimization in

this direction would not be necessary. Furthermore, these objective functions are very similar

in their formulation, which limits the capabilities of the algorithm in generating a diverse set

of solutions. MOCLE, beyond other approaches, also presents a similar design, in which every

objective function is inadmissible for all the datasets in terms of at least one method used in the

initialization.

To demonstrate this impact in terms of ARI, Table 4.5 presents the best ARI results of

the partitions generated by each algorithm applied in the initialization of MOCLE (AL, KM, SL

and SNN), and MOCLE results. Column Π0 presents the best ARI in the initial population, and

in column MOCLE, the best average ARI and its standard deviation in the results of MOCLE in

30 executions. The “optimization” of the base partition worsened the clustering results, because

the use of inadmissible objective functions can move away from the goal. In comparison with the

results of the initial population, MOCLE promoted a slight but not significant ARI improvement

in 3 datasets. On the other hand, we can observe a significant worsening of ARI in 5 datasets

without an improvement in the remaining datasets. In the case where the initial population has a

diverse set of partitions, the use of ensemble clustering methods or even selection methods may

provide better results than MOCLE. For example, according to the mean ARI (last row in Table

4.5), in the case of a selection method picking the best partitions in Π0 it could provide a better

mean result than MOCLE (best mean ARI found in Π0 equals to 0.9653 and the MOCLE mean

result equals to 0.8459).

It is important to note that, in general, EMOC approaches present in the literature do

not use restrictions as defined in Eq. 2.2 (see Section 2). They usually apply the restrictions as

objective functions to maintain good solutions found in the initialization or restrict the search in

some direction. This case is different from the above scenario, in which the initialization strategy

limits the search to all the objective functions used in the multi-objective approach.

These results, presented in Table 4.4, show that for every analyzed initialization, there is

no objective function that is admissible in all the datasets. Furthermore, we presented which

objective functions have space to be optimized and determined the inadmissible ones, answering

our first research question.
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G Dataset AL KM SL SNN Π0 MOCLE

G1

R15 0.9893 0.9928 0.8955 0.9928 0.9928 0.9928 7.90E-16

D31 0.9307 0.9529 0.2124 0.5807 0.9529 0.9530 1.93E-04

Engytime 0.6807 0.8151 0.0000 0.0000 0.8151 0.8151 0.00E+00

Sizes5 0.9435 0.9197 0.0307 0.4067 0.9435 0.9435 3.39E-16

Square1 0.9501 0.9735 0.0000 0.3285 0.9735 0.9764 1.44E-03

Square4 0.7047 0.8348 0.0000 0.0000 0.8348 0.8348 5.65E-16

Twenty 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00E+00

Fourty 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00E+00

Sph_5_2 0.8635 0.8688 0.6949 0.5877 0.8688 0.8688 5.65E-16

Sph_6_2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00E+00

Sph_9_2 0.7731 0.8313 0.0007 0.0001 0.8313 0.8313 5.65E-16

Sph_10_2 0.9782 0.9911 0.7968 0.8804 0.9911 0.9935 7.48E-03

G2

ds2c2sc13_S1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00E+00

ds2c2sc13_S2 1.0000 0.8752 1.0000 1.0000 1.0000 1.0000 0.00E+00

ds2c2sc13_S3 0.6648 0.6475 0.8724 1.0000 1.0000 0.7771 2.26E-16

G3

Long1 0.0152 0.2907 0.9940 1.0000 1.0000 1.0000 0.00E+00

Pat2 0.2161 0.2446 1.0000 1.0000 1.0000 0.2446 1.41E-16

Spiral 0.0221 0.0518 1.0000 1.0000 1.0000 0.0518 2.12E-17

G4

3MC 1.0000 0.8003 1.0000 1.0000 1.0000 1.0000 0.00E+00

DS-850 0.9657 0.9018 0.3927 0.7159 0.9657 0.9657 1.13E-16

Aggregation 1.0000 0.7906 0.8089 0.8089 1.0000 1.0000 0.00E+00

Complex9 0.4954 0.4921 0.9988 1.0000 1.0000 0.5119 1.34E-03

Pat1 0.0788 0.0684 1.0000 1.0000 1.0000 1.0000 0.00E+00

Spiralsquare 0.5410 0.4962 0.9283 0.9971 0.9971 0.5410 3.39E-16

MEAN 0.7422 0.7433 0.6927 0.7625 0.9653 0.8459

Table 4.5: MOCLE initial population vs. final population. The boldface values denote the best ARI found in Π0 and

generated by MOCLE.

In the following sub-section, we analyzed the clustering results considering the opti-

mization of the selected objective functions, extending our analysis. We picked the objective

functions that presented the lowest results of the inadmissibility considering the initialization

with MST-clustering.

4.4.1 Analysis of the objective functions in the optimization

Aiming to answer the second research question presented at the beginning of this chapter,

we analyzed one initialization strategy, considering different scenarios of the combination of

objective functions. In particular, we analyze the behavior of the objective functions in order to

improve the detection of no well-separated clusters and close clusters in the heterogeneous data

structures in terms of the results presented in Table 4.2. Hence, we selected one objective function

per criterion that presented the lowest number of datasets in which they are inadmissible: 𝑉𝑎𝑟,
𝐶𝐻, 𝑆𝑒𝑝𝐶𝐿 , and 𝐶𝑜𝑛. Moreover, as described in Section 4.2, Δ-MOCK was chosen because it

is a recent approach based on an established algorithm that provides features that allow us to

explore the use of MST-clustering in the initialization.

It should be noted that in this section we demonstrate how to perform the analysis of the

objective functions while considering a particular EMOC approach and specific goals. Different

scenarios, considering other initialization (or even other EMOC algorithms), can lead to different

admissibility results and different clustering performance (ARI).

Table 4.6 presents the average ARI and standard deviation of 30 runs for each dataset

generated by the Δ-MOCK considering different combinations of the selected objective function.

The MST column refers to the best ARI found in the partitions generated by the MST-clustering.
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The underlined results point out the objective functions in which the optimization generated

solutions that dominate the true partition.

The results point out that, in general, the use of the pairs of objective functions (𝑉𝑎𝑟,
𝑆𝑒𝑝𝐶𝐿), (𝐶ℎ, 𝑆𝑒𝑝𝐶𝐿), and (𝑉𝑎𝑟, 𝐶𝐻) does not provide reliable results, because they lose the

relation of connectedness in the solutions when it is not applied any restriction. Besides that,

these pairs of objective functions dominate the true partition in most of the datasets.

In contrast, the pairs of the objectives (𝐶𝐻, 𝐶𝑜𝑛), (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛) and (𝑉𝑎𝑟, 𝐶𝑜𝑛)

provide the mean ARI of all datasets above 0.85, as shown in the row Mean in Table 4.6. The use

of 𝐶𝑜𝑛 as an objective function preserves the continuity property of clusters and restricts the

search to providing solutions that correspond to the trade-off between this objective and the other

objectives (𝐶𝐻, 𝑉𝑎𝑟, or 𝑆𝑒𝑝𝐶𝐿). The best results are provided by the pairs (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛) and

(𝑉𝑎𝑟, 𝐶𝑜𝑛), both with a mean ARI above 0.91.

In general, the results relating to the use of (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛) and (𝑉𝑎𝑟, 𝐶𝑜𝑛) show that

the ARI was improved in the no well-separated clusters present in G1 and heterogeneous data

structures in G4. Besides that, most of the good solutions found in the initialization were

preserved in most datasets. However, we can observe a loss of the ARI for the datasets in G2

when compared with the initial population (MST column). As shown in Table 4.2, the objective

functions (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛) or (𝑉𝑎𝑟, 𝐶𝑜𝑛) were inadmissible (×) or obtained the optimal result

(�) for the datasets in G2 and G3, thus the optimization is not required. In this context, the

results in Table 4.6 confirm our previous results, in which the optimization of these objective

functions could only provide a general cost, and it did not afford any improvement in the clustering

results. Moreover, the optimization of these objective functions could worsen the clustering

performance, as observed in the G2. Furthermore, the optimization of these objective functions

has another issue, the domination of the true partitions in most of the datasets in the G1 and

G2. In G1, it occurred mainly in the datasets with overlapping clusters. In this case, the size

of the neighborhood used in the computation of the 𝐶𝑜𝑛 and the distribution of the points in

the boundaries of the overlapping clusters may determine the domination of the true partition.

In particular, 𝐶𝑜𝑛 computes the continuity of the data based on the neighborhood; however,

an overlapping region might have several nearest neighbors in common, making it difficult to

determine which cluster each point in the boundaries belongs to. Regarding G2, as reported in

(Kultzak et al., 2021), the optimization of the dataset ds2c2sc13 in Δ-MOCK can produce

several solutions with optimal 𝐶𝑜𝑛; as a consequence, for these solutions, the decisions around

the evolutionary multi-objective optimization will be taken essentially based on the other criteria,

in which the true partition is dominated.

In summary, we observe that the initialization strategy should be correlated with the

restrictions applied in the EMOC approaches. For example, in Δ-MOCK, the objective function

𝐶𝑜𝑛 takes on this role in order to maintain the high-quality partitions found in the initialization.

Furthermore, optimizing some groups of datasets is not required because the initialization

provides the optimal result. However, in Δ-MOCK there are no criteria to prevent the “optimizing”

of the partitions. This general view demonstrates conditions regarding the choice of the objective

functions, and we presented a scenario where optimization is not required, answering our second

research question.

4.5 CHAPTER REMARKS

In this chapter we proposed and presented an analysis of the (in)admissibility of clustering criteria

in support of defining objective functions in evolutionary multi-objective clustering approaches.

Furthermore, we highlighted the importance of aligning the choice of the objective function and
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the initialization strategy in designing the EMOC. In general, the use of a traditional clustering

algorithm in the initialization provides solutions that reach the boundaries of the search space

in terms of some criteria. Thus, optimizing the objective functions that consider such criteria

is not required, thus other complementary criteria should be applied in the optimization. In

contrast, the criteria applied in the initialization can be taken as “restrictions”, to determine

the feasible search region. It is important to note that, in general, the EMOC approaches do

not use explicit restrictions (see Eq. 2.2 in Section 2). In many cases, the “restrictions” are

represented as objective functions without prior notice, which could lead to a mistake regarding

the understanding of which objectives are optimized. Thus, our study helps the understanding of

the concept of admissibility to support the better choice of the objective functions, considering

the different roles that the objective function can perform in the evolutionary multi-objective

optimization, answering the RQ.1 and RQ.2 (see Chapter 1).

The study and analysis presented in this chapter was published in the journal Information

Sciences, in Morimoto et al. (2022a).

In the next chapter, we present metrics applied to measure the relative quality of the

base partitions generated by MST-clustering that are applied to design a new EMOC approach.

These metrics consider the data proprieties of this initialization strategy and the criteria applied

to the objective functions, that were observed in the analysis presented in this chapter.
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5 MEASURING THE SEPARATION AND OVERLAPPING OF DATA

In this chapter, we present a new metric to measure separation of data. To our knowledge, there

is not an unsupervised metric that measures the separation or the overlapping of the data. Thus,

we propose a Data Separation Degree (DSD) that considers the base partitions generated by

MST-clustering to determine the data separation.

Furthermore, we present the Constraint-Based Overlap value (CBO) (Adam and Blockeel,

2017), a semi-supervised metric that measures the overlapping of the data. In general, CBO is

applied to select algorithms that should be applied according to the data overlap.

Based on the analysis of the admissibility and the ARI results presented in the previous

Chapter, we verified that using clustering algorithms in the initialization provides high-quality

solutions or is inadmissible in the context of some objective functions. However, the existing

EMOC approaches do not have a criterion to define when the optimization should be (or should

not be) performed. Both CBO and DSD, are used in our study to deal with this issue, in which we

consider the general properties of the MST-clustering to estimate the relative quality of the base

partitions generated by this algorithm and define whether the optimization should be performed

in EMOC. Here, the relative quality refers to the data proprieties in which the initialization

strategy has good (or poor) clustering performance.

5.1 DATA SEPARATION DEGREE

Zahn (1971) introduced the general concept of MST-clustering, presenting it as a method to deal

with the problem of detecting inherent separations between subsets (clusters) of a given dataset.

Furthermore, Xu and Tian (2015) characterized MST-clustering as capable of detecting clusters

of different shapes and sizes. Thus, based on the literature and an analysis of the MST-clustering

presented by Handl and Knowles (2007), we assume that it can detect well-separated clusters with

arbitrary shapes (heterogeneous nature) but fails in detecting close or overlapping data structures.

Taking into account these characteristics, we developed a metric to estimate the degree

of separation of the partitions in the population generated by MST-clustering, denoting the general

separation of the data. In our data analysis, we observed that the initial population generated by

MST-clustering presents a pattern: the results for the separation index, 𝑆𝑒𝑝𝐶𝐿 , (Liu et al., 2018)

have a high variation between the minimal, mean, and maximal results when the partitions are

generated from datasets with overlapping structures, while this variation is near to zero when

considering datasets with well-separated data structures.

In other words, we verified that the initial population generated by the MST-clustering

can provide information regarding the data separation, which is applied to compute the DSD, a

new measure to determine the separation of the data.

5.1.1 Computation of Data Separation Degree

The Data Separation Degree (DSD) considers the variation of the results of 𝑆𝑒𝑝𝐶𝐿 for the base

partitions generated by MST-clustering to define a degree of separation of the data. In our

analysis, the relations of minimal (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛), mean (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛), and maximal (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥)

results of 𝑆𝑒𝑝𝐶𝐿 in the base partitions generated by MST-clustering have low variation (near to

zero) when the dataset has well-separated clusters and an inverse relation for overlapping data

structures. Thus, the relation between (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛) or (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥)
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or (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥) is equal to one to well-separated data structures and near to zero

in the case of overlapping, providing the degree of separation of the data. For example,

Spiral dataset (that contains two well-separated clusters with a regular dispersion of the

objects into the spiral shape) have the same outcome for these three relations considering two

decimals, (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛) = (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥) = (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥)

= 0.99. However, we also verified an asymmetric distribution in terms of the number of clusters

in datasets with arbitrary shaped clusters, presenting different relations between the median and

mean values under different skewness, as illustrated in Fig. 5.1. In this case, the relation of

results of 𝑆𝑒𝑝𝐶𝐿 should consider the skewed direction (positive or negative).

Figure 5.1: Relation between mean and median under different skewness

In Algorithm 1, we present the steps applied to compute the data separation degree.

First, we compute the 𝑆𝑒𝑝𝐶𝐿 and obtain the number of the clusters (𝑘) for each solution in the

initial population (lines 1-3). After that, it is obtained with 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠() the maximum, minimum,

mode, mean, and median values for 𝑆𝑒𝑝𝐶𝐿 and 𝑘 in the initial population (lines 5-6). These data

are used to define the DSD according to the skew direction in the number of clusters distribution:

(𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛) for negative skew or (𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥) for positive skew

(lines 7-11). The DSD provides results in the range of 0 and 1, in which 1 indicates well-separated

data and 0 high overlapping data. In our computation, we consider a closest integer value of

𝑘Π𝑚𝑒𝑎𝑛 and 𝑘Π𝑚𝑒𝑑𝑖𝑎𝑛, obtained by the function 𝑟𝑜𝑢𝑛𝑑 ().

5.2 CBO - CONSTRAINT-BASED OVERLAP VALUE

The CBO was proposed by Adam and Blockeel (2017). As a semi-supervised metric, the CBO

metric uses some information available about the desired solution. This information takes the

form of constraints: must-link (ML) and cannot-link (CL) constraints.

In particular, the CBO considers a short CL and two parallel constraints to measure the

degree of overlap of the clusters in a dataset. The short CL, illustrated in Fig. 5.2(a), considers

that: if two objects are close (they belong to a defined neighborhood) and have different labels, it

indicates an overlap between two clusters, in which 𝜖1 indicates a maximum distance between the

object x1 and the 𝑘-nearest neighbor in a particular neighborhood. In terms of the two parallel

constraints, illustrated in Fig. 5.2(b), it considers two pairs of objects, in which the objects of

each pair are close (they belong to a defined neighborhood); in this case if it is observed a ML

and CL relationship between the objects of each pair, it also implies an overlap region.
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Algorithm 1 Data Separation Degree

Input: Π0

Output: 𝐷𝑆𝐷
1: for each 𝜋𝑖 ∈ Π0 do
2: 𝑠𝑒𝑝𝑣 [𝑖] ← 𝑆𝑒𝑝𝐶𝐿 (𝜋𝑖)
3: 𝑘𝑣 [𝑖] ← 𝐾 (𝜋𝑖)
4: end for
5: 𝑘Π𝑚𝑎𝑥, 𝑘Π𝑚𝑖𝑛, 𝑘Π𝑚𝑒𝑎𝑛, 𝑘Π𝑚𝑜𝑑𝑒, 𝑘Π𝑚𝑒𝑑𝑖𝑎𝑛 ← statistics(𝑘𝑣)
6: 𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥 , 𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛, 𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛 ← statistics(𝑠𝑒𝑝𝑣)
7: if (𝑘Π𝑚𝑜𝑑𝑒 >round(𝑘Π𝑚𝑒𝑎𝑛)) and (round(𝑘Π𝑚𝑒𝑑𝑖𝑎𝑛) ≥round(𝑘Π𝑚𝑒𝑎𝑛)) then
8: 𝐷𝑆𝐷 ← 𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑎𝑥

9: else
10: 𝐷𝑆𝐷 ← 𝑠𝑒𝑝𝐶𝐿Π𝑚𝑖𝑛/𝑠𝑒𝑝𝐶𝐿Π𝑚𝑒𝑎𝑛

11: end if
12: return DSD

(a) Short cannot-link pattern (b) Parallel and close must-link and cannot-link pattern

Figure 5.2: Overlapping patterns of constraints. Red links denote CL and green links denote ML patterns, in which

the objects of the same color belong to the same cluster.

(a) Score of a single constraint for L=6 (b) Score of a pair of constraints

Figure 5.3: An illustration of the relationship between two objects and the more distant objects in their neighborhoods

with L = 6. The dashed circles point out the objects included in the neighborhoods. The black points denote the

objects whose labels or patterns are unknown.

The relationship of short (close) link between the objects consider the distance, 𝑑 (, ),
between the objects. As above-mentioned the CBO considers a defined neighborhood size (𝐿),

a user-parameter, to compute a score that indicates the relationship of closeness between the

objects. Eq. 5.1 presents the score considering two close objects.
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𝑠𝑐𝑜𝑟𝑒(𝑠) =
{

1 − 𝑑 (x1,x2)
𝑚𝑎𝑥(𝜖1,𝜖2) , if 𝑑 (x1, x2) ≤ 𝑚𝑎𝑥(𝜖1, 𝜖2),

0, otherwise
(5.1)

According with the authors, we can assume that 𝑑 (x1, x2) + 𝑑 (x′
1
, x′

2
) ≤ 𝑑 (x1, x′2) +

𝑑 (x′
1
, x2) without loss of generality. Thus, the parallel relationship can be scored according to

Eq. 5.2.

𝑠𝑐𝑜𝑟𝑒(𝑝) = 𝑠𝑐𝑜𝑟𝑒(𝑠1) · 𝑠𝑐𝑜𝑟𝑒(𝑠2) (5.2)

In both scores, higher scores indicate an overlap of clusters. The CBO aggregates these

scores in Eq. 5.3. This metric compares the number of short CL constraints, direct (single

pattern) or by propagation (double pattern), to the total number of constraints, both ML and CL.

𝐶𝐵𝑂 =

∑
𝑠∈𝐶𝐿

𝑠𝑐𝑜𝑟𝑒(𝑠) +
∑

𝑠1∈𝐶𝐿,
𝑠2∈𝑀𝐿

𝑠𝑐𝑜𝑟𝑒(𝑝)

∑
𝑠∈𝐶𝐿∪𝑀𝐿

𝑠𝑐𝑜𝑟𝑒(𝑠) +
∑

𝑠1∈𝑀𝐿,
𝑠2∈𝐶𝐿∪𝑀𝐿

𝑠𝑐𝑜𝑟𝑒(𝑝)
(5.3)

CBO takes the interval between 0 and 1, in which values equal to zero indicate

well-separated data structures, while results near to 1 indicate total overlap.

5.3 EXPERIMENTAL DESIGN

To evaluate DSD we considered two experiments. The first one compares DSD with traditional

metrics applied to measure the relative quality of clusters, such as 𝑃𝐵𝑀 , 𝐷𝑢𝑛𝑛 and 𝐷𝐵. Also,

we compare our results with a recent published measure of clustering quality, AUCC - Area Under

the Curve for Clustering presented by Jaskowiak et al. (2022). The AUCC explores the features

of AUC/ROC - Area under the curve/Receiver Operating Characteristics (Spackman, 1989), a

performance measure usually applied in the supervised learning domain to the unsupervised

domain. These experiments were performed to demonstrate that general clustering metrics do

not provide the required information to support a configuration or determine whether a dataset

should be optimized or not. In the second experiment, we compare the results of DSD and CBO

with ARI, aiming to demonstrate the general features of these metrics.

Considering that MST-clustering (Handl and Knowles, 2007) has a random choice of

the neighbor node to link the nodes to other ones when the interesting link is removed, and the

initial node applied in the construction of the MST can also be chosen by random, the initial

population can have a slight variation in the number of clusters with different random seeds, that

can affect the results of the DSD. In order to amend this matter and obtain a consistent result for

DSD, in our experiments, we use the average DSD results of 10 initial populations.

Regarding the CBO setting, we applied the original neighborhood size (𝐿𝑂 = 10+ 𝑛/20)

provided by Adam and Blockeel (2017), and three others: (𝐿25 =
√
𝑛 · 25%), (𝐿50 =

√
𝑛 · 50%)

and (𝐿75 =
√
𝑛 · 75%), in which 𝑛 is the number of objects in the dataset. Furthermore, similar to

Adam and Blockeel (2017), we used 20 known short link patterns that were applied to obtain the

parallel patterns (totaling 40 objects), i.e., we considered about 200 constraints (close and parallel

must-link and cannot-link patterns), applied to compute both 𝑠𝑐𝑜𝑟𝑒(𝑠) and 𝑠𝑐𝑜𝑟𝑒(𝑝). The points

applied to define the short link patterns are selected at random, thus the results provided consider

the average of 30 runs.
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5.3.1 Datasets

In terms of the datasets, we used the same ones from the previous experiments, presented in

Section 4.2. For the purpose of facilitating the visualization of the correlated metrics, we ordered

the datasets considering the ARI results, in which we do not use the groups applied in Section

4.2.

5.3.2 Performance assessment

In general, the correlations between relative and external criteria are given by the Pearson

correlation coefficient (Jaskowiak et al., 2022). Thus, we consider this coefficient to evaluate

DSD and compare it with other metrics.

5.4 RESULTS

Table 5.1 presents the results of 𝐷𝑆𝐷, 𝐷𝐵, 𝐷𝑢𝑛𝑛, 𝑃𝐵𝑀 , AUCC and their correlation with ARI.

The datasets in this table and the next one are not grouped by the data structures as presented

in the previous chapter. In this table, we can observe that the results of DSD have the highest

absolute correlation with ARI. Besides that, it is important to note that 𝐷𝐵, 𝐷𝑢𝑛𝑛 and 𝑃𝐵𝑀
were computed considering the best partitions in the initialization, that requires a selection of the

best partition in the base partitions to make it possible to use these metrics. In contrast, DSD

measures the quality in terms of the initial population generated by MST-clustering.

Datasets ARI DSD DB DUNN PBM AUCC
3MC 1.0000 0.6807 0.7076 0.1613 49.0 0.9262

Fourty 1.0000 0.9539 0.3306 0.4943 167.5 1.0000

Long1 1.0000 0.8720 1.5709 0.0647 0.4 0.7036

Pat1 1.0000 0.2696 2.3157 0.0358 53556.2 0.4450

Pat2 1.0000 0.6709 1.0907 0.0723 220488.0 0.6991

Sph_6_2 1.0000 0.7717 0.3555 0.5150 626.4 0.9995

Spiral 1.0000 0.9997 4.5302 0.1424 0.8 0.5204

Twenty 1.0000 0.9291 0.3236 0.3679 122.9 1.0000

ds2c2sc13_S1 1.0000 0.9015 0.4900 0.4592 0.2 0.9895

ds2c2sc13_S2 1.0000 0.9305 0.7258 0.1520 0.2 0.9740

ds2c2sc13_S3 0.9951 0.9461 1.6246 0.0451 0.1 0.9303

Complex9 0.9361 0.8218 1.8153 0.0351 20961.5 0.8364

Spiralsquare 0.9287 0.6872 1.7825 0.0368 33.5 0.8320

Sph_10_2 0.8588 0.5547 0.7624 0.1025 177.4 0.9872

Aggregation 0.8089 0.8239 0.6249 0.1078 195.9 0.9441

R15 0.7275 0.6049 0.7718 0.0349 24.7 0.9713

Sph_5_2 0.7127 0.4553 0.8807 0.0931 10.9 0.9309

Sizes5 0.5032 0.0861 0.8980 0.0121 16.4 0.8078

Square4 0.4694 0.2579 1.0345 0.0149 14.2 0.9468

D31 0.4568 0.4170 1.3983 0.0166 13.9 0.8049

DS-850 0.4505 0.5462 0.9474 0.0235 2.1 0.7068

Square1 0.3797 0.2681 0.8470 0.0192 34.9 0.7713

Sph_9_2 0.3056 0.1015 1.5381 0.0241 1.1 0.7869

Engytime 0.0076 0.1552 1.2201 0.0062 3.6 0.5721

Person Correlation 0.8062 0.0815 0.5058 0.2147 0.2569

Table 5.1: Best ARI found in the MST-clustering and CVIs relationship (average results of 10 populations generated

by MST-clustering)

Table 5.2 presents the results for CBO and DSD. In CBO, the negative correlation refers

to the inverse relation with ARI, in which the well-separated data is denoted with results near to
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zero, while the best results of ARI are near to one. The result on Table 5.2, shows that DSD has

the highest absolute correlation with ARI. However, in the datasets with an ARI near to 1, some

CBO results provided better correlation. In particular, in the case of the datasets with an ARI

greater than 0.99, CBO has an absolute correlation of 1 for 𝐿25 and 0.90 for 𝐿50, while the DSD

has a correlation of 0.21.

Datasets ARI CBO DSD
𝐿𝑂 𝐿25% 𝐿50% 𝐿75%

3MC 1.0000 0.0000 0.0000 0.0000 0.0000 0.6807

Fourty 1.0000 0.2440 0.0000 0.0000 0.0016 0.9539

Long1 1.0000 0.0000 0.0000 0.0000 0.0000 0.8720

Pat1 1.0000 0.0353 0.0000 0.0000 0.0039 0.2696

Pat2 1.0000 0.0846 0.0000 0.0013 0.0164 0.6709

Sph_6_2 1.0000 0.0000 0.0000 0.0000 0.0000 0.7717

Spiral 1.0000 0.0507 0.0000 0.0000 0.0002 0.9997

Twenty 1.0000 0.0263 0.0000 0.0000 0.0000 0.9291

ds2c2sc13_S1 1.0000 0.0000 0.0000 0.0000 0.0000 0.9015

ds2c2sc13_S2 1.0000 0.0023 0.0000 0.0000 0.0000 0.9305

ds2c2sc13_S3 0.9951 0.1257 0.0004 0.0030 0.0164 0.9461

Complex9 0.9361 0.0627 0.0000 0.0065 0.0022 0.8218

Spiralsquare 0.9287 0.1383 0.0009 0.0027 0.0028 0.6872

Sph_10_2 0.8588 0.0359 0.0015 0.0131 0.0156 0.5547

Aggregation 0.8089 0.0221 0.0094 0.0046 0.0031 0.8239

R15 0.7275 0.0065 0.0116 0.0021 0.0134 0.6049

Sph_5_2 0.7127 0.0816 0.0072 0.0227 0.0282 0.4553

Sizes5 0.5032 0.0175 0.0126 0.0031 0.0122 0.0861

Square4 0.4568 0.0943 0.0656 0.0848 0.0954 0.1096

D31 0.4694 0.2194 0.0183 0.0410 0.0350 0.4170

DS-850 0.4505 0.0148 0.0019 0.0034 0.0021 0.5462

Square1 0.3797 0.0160 0.0104 0.0140 0.0172 0.2681

Sph_9_2 0.3056 0.1335 0.0992 0.1038 0.1003 0.1015

Engytime 0.0076 0.0618 0.0468 0.0561 0.0451 0.1552

PersonCorrelation(PC) -0.1357 -0.6995 -0.7062 -0.6521 0.8062
PCfordatasetswithARI≥0.99 -0.3233 -1.0000 -0.9091 -0.6583 -0.2111
PCfordatasetswithARI<0.99 -0.0828 -0.6018 -0.5848 -0.5260 0.8056

Table 5.2: Best ARI found in the MST-clustering and the relation between CBO and DSD

5.5 CHAPTER REMARKS

In this section, we introduce a new metric, DSD, to measure the separation of the data in the

clusters present in the base partitions generated by MST-clustering. Also, we present the main

features of the CBO (Adam and Blockeel, 2017), an existing semi-supervised metric applied to

measure the data overlapping.

These metrics are analyzed in order to verify their potential in defining the relative

quality of the solutions generated by MST-clustering. Our experiments demonstrated that both

DSD and CBO have a higher correlation with ARI in comparison with other metrics.

In the next chapter, we present a new EMOC approach that considers both DSD and

CBO to support an adaptive parameter setting and choice of objective functions. As discussed in

the previous section, both CBO and DSD have features to determine the relative quality of the

base partitions generated by MST-clustering, supporting the definition of a new EMOC.
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6 PROPOSED MULTI-OBJECTIVE CLUSTERING APPROACH

In this chapter, we present the proposed EMOC approach, AEMOC - Adaptive evolutionary

multi-objective clustering approach based on data proprieties. We consider the findings described

in Chapters 4 and 5 to improve the design of the multi-objective clustering approach in comparison

to existing approaches.

Fig. 6.1 presents the general architecture of the proposed approach that is composed of

4 modules: Initialization, Evaluation, Configuration, and Optimization. The main difference

between this approach and the EMOC approaches present in the literature is the introduction

of the Evaluation and Configuration modules. The Evaluation Module verifies whether the

initialization strategy could provide optimal results in terms of the evaluated criteria. In particular,

the proposed evaluation method measures the separation and overlapping of the data to analyze

the potential of MST-clustering in detecting the clusters. Based on these data properties, the

AEMOC strategy consists of deciding whether an optimization step should be performed. In the

case where optimization is applied, the configuration module determines the parameter setting of

the multi-objective optimizer according to the results of the evaluation module. In the following,

we present details of each module.

Figure 6.1: Proposed approach: AEMOC

6.1 INITIALIZATION MODULE

According to the admissibility analysis (Chapter 4), the initialization strategy and the choice of

the objective functions should be complementary in terms of the clustering criteria adopted. We
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verified the potential of using MST-clustering, which considers a connectedness criterion to apply

other kinds of clustering criteria (such as compactness). Thus, the choice of the representation

of the solutions also follows this initialization strategy, in which we applied the LAG encoding

(locus) proposed by Handl et al. (2007). This representation considers the general structure of

the MST to denote the partitions, in which each node represents a locus (variable) manipulated

by the evolutionary operators.

Another well-known representation that makes use of the MST data structure is the

reduced LAG (called Δ-locus) introduced by Garza-Fabre et al. (2018). However, we do not make

use of this representation because additional experiments presented in Appendix B demonstrated

that Δ-locus (Garza-Fabre et al., 2018) has lower clustering performance in diverse datasets in

comparison with locus representation.

6.2 EVALUATION MODULE

The evaluation module analyzes the capabilities of the MST-clustering in detecting the clusters

based on separation and/or overlapping of the data. In other words, we measure the potential

quality (relative quality) of the base partitions in order to define whether the optimization should

(or should not) be performed. Furthermore, we use the outcome of this module to determine the

parameter setting of the optimization module.

In general, the evaluation method measures the data properties (or attributes) that

contribute (or obstruct) to the initialization strategy in detecting the clusters. As above mentioned,

MST-clustering can detect well-separated clusters, but has difficulties detecting near and

overlapping clusters; therefore, in this case, this module evaluates the relation of the separation

and overlapping of the data that is applied to define whether the initialization strategy can detect

the clusters in a dataset.

In particular, in our approach, we combined CBO and DSD, aiming to inherit their

strong points in defining separation and overlapping of the data, in which well-separated clusters

are indicated by CBO results near zero and DSD results near one, and the opposite relationship

denotes overlapping clusters.

In our method, we consider three groups related to the data properties to measure the

potential of the MST-clustering in detecting the cluster: G1, which considers well-separated data

and has a high potential for MST-clustering to detect clusters; G2, which denotes near (close)

data and has a middle potential for MST-clustering to detect clusters; and, G3, which refers to

overlapping data, where, in general MST-clustering fails in detecting clusters.

To determine these different groups, we analyzed the following datasets1 to define

the range of CBO and DSD results: Long, Spiral, Twenty, Complex9, R15, Sph_5_2,

Square4, D31, and Sph_9_2. These datasets were selected because they present different

data structures with distinct data separation (or overlap), making it possible to define the ranges

of each group.

In Table 6.1, we present the CBO and DSD results for each dataset. Regarding CBO,

we show the results considering three different sizes of neighborhood: (𝐿25 =
√
𝑛 · 25%),

(𝐿50 =
√
𝑛 · 50%) and (𝐿75 =

√
𝑛 · 75%), where 𝑛 is the number of objects in the dataset.

It is important to note that the range of well-separated data to close data is very short

in the CBO. CBO measures the degree of overlap of the data according to the intersection of

the objects between different clusters based on the neighborhood. Moreover, in the case of a

few objects being close or in the intersection, the CBO presents a result near zero, but it is still

1Datasets repository: https://github.com/deric/clustering-benchmark
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different from zero. Therefore, in our evaluation, we also consider this aspect in the definition of

the range of the groups.

Datasets CBO DSD
𝐿25% 𝐿50% 𝐿75%

Long1 0.0000 0.0000 0.0000 0.8720

Spiral 0.0000 0.0000 0.0002 0.9997

Twenty 0.0000 0.0000 0.0000 0.9291

Complex9 0.0000 0.0065 0.0022 0.8218

R15 0.0065 0.0021 0.0134 0.6049

Sph_5_2 0.0072 0.0227 0.0282 0.4553

D31 0.0183 0.0410 0.0350 0.4170

Square4 0.0656 0.0848 0.0954 0.1096

Sph_9_2 0.0992 0.1038 0.1003 0.1015

Table 6.1: Best ARI found in the MST-clustering and the relation between CBO and DSD

By analyzing the results of CBO and DSD for the datasets with well-separated clusters

(Long, Spiral, Twenty), we observe that the CBO presents results between 0 and 0.0002,

and the DSD results between 0.87 and 0.99. Based on these results, we defined a range of CBO

and DSD to describe datasets in G1: [0.00, 0.001[ for CBO and [1.0, 0.85] for DSD. In terms of

the datasets with data overlap (Square4, D31, and Sph_9_2), we verified results above 0.018

for CBO and below 0.417 for DSD; therefore, we determine the following ranges for the dataset

in G3: [0.015, 1.00] for CBO and ]0.45, 0.0] for DSD. Finally, to define the datasets in G2, we

consider a range between G1 and G3: [0.001, 0.015[ for CBO and ]0.85, 0.45] for DSD.

Considering the three groups of data properties, we introduce an evaluation method

in Fig. 6.2, that takes into account the strengths of each metric (DSD and CBO). At first, this

method evaluates the CBO in order to determine the groups (G1, G2, and G3).

As can be seen in Table 6.1 the CBO results of the datasets Complex9 and Sph_5_2,

are highly dependent on the size of the neighborhood, which can lead to mistakes in the boundaries

of the groups. Therefore, the merit of this metric is evaluated by considering different sizes for

this item: 𝐿25, 𝐿50, and 𝐿75. Only when the CBO provides a consensus result for the various 𝐿
are the groups determined by this metric. In the case where this metric presents a weak indication

of the group (no consensus), the DSD is applied instead of the CBO.

Figure 6.2: Quality evaluation.
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6.3 CONFIGURATION AND OPTIMIZATION MODULES

The configuration module is used to define the general settings of the optimizer, including the

selection of the objective functions according to the groups defined in the evaluation method.

In terms of the MOEA, we used the NSGA-II in the Optimization Module. This is

a well-known MOEA that has been shown to be effective in the clustering problem. In the

NSGA-II, we considered the uniform crossover and neighborhood mutation (Handl et al., 2007)

with two different configurations for the number of iterations: 100 iterations (the same general

setting applied to Δ-MOCK (Garza-Fabre et al., 2017)) to optimize the base partitions related to

the datasets classified in G2; (ii) 250 iterations (the same used in EMO-KC (Wang et al., 2018))

to optimize base partitions related to G3.

With respect to the objective functions, we defined the use of one connectedness

associated with a compactness criterion or separation criterion. The connectedness is applied to

restrict the search space and support the maintenance of the continuous structures provided in the

initialization. The compactness (or separation) criterion is a complementary clustering criterion

to the ones applied in the initialization, that will guide the search.

Our approach considers𝑉𝑎𝑟 as a compactness criterion, 𝑆𝑒𝑝𝐶𝐿 as a separation criterion,

and a modified connectivity index, 𝐶𝑜𝑛′ as a connectedness criterion. In particular, for the

datasets with near data (clusters), classified in G2, we consider that 𝑉𝑎𝑟 can provide good results,

in line with the general results of other approaches that use this criterion in the optimization.

In terms of the dataset that presents overlapping data, classified in G3, we observe that

𝑆𝑒𝑝𝐶𝐿 could provide better results than 𝑉𝑎𝑟 , being more promising for this kind of structure (see

experiments in Appendix B.2). Thus, we applied the 𝑆𝑒𝑝𝐶𝐿 as a separation criterion associated

with the 𝐶𝑜𝑛′ as an objective function for optimizing this group of data. The 𝐶𝑜𝑛′ refers to

an improved 𝐶𝑜𝑛 (Handl et al., 2007) that we introduced in Morimoto et al. (2022b), which is

detailed in the following.

6.3.1 An Improved Connectivity Index

By observation, we verified that 𝐶𝑜𝑛 does not distinguish solutions with different numbers of

clusters. Thus, different solutions could have the same outcome for this metric. For example,

in different solutions with optimal connectivity (𝐶𝑜𝑛 = 0), the decision is taken by the other

objective function. In the case of a compactness criterion, such as 𝑉𝑎𝑟, only the solution with

a lower 𝑉𝑎𝑟 (in general, the solution with the highest number of clusters) will be selected to

compose the next generation.

Since we aim to improve the general clustering performance, including finding solutions

with different granularities, we propose in Eq. (6.1) a slight but effective modification of the

definition of the 𝐶𝑜𝑛 (see Eq. A.10 Appendix A):

𝐶𝑜𝑛′(𝜋) = 𝐶𝑜𝑛(𝜋) +
(

𝑘

𝑛 · 𝐿
)

(6.1)

where 𝑘 is the number of clusters in partition 𝜋, 𝑛 is the number of objects in the dataset, and

𝐿 is the number of nearest neighbors that contribute to connectivity. This modification takes

𝑘 as a secondary criterion of connectivity that differentiates solutions with the same outcome

for 𝐶𝑜𝑛 but a different number of clusters, which can be found in nested clusters or hierarchical

data structures. The term (𝑛 · 𝐿) ensures that the number of clusters 𝑘 will be mapped to a value

lower or equal to 1
𝐿 , resulting in values in the interval ]0, 1

𝐿 ]. This is required to maintain the

ordinal relationship between the best and the worst connectivity results. Thus, this modification

will only affect solutions that have the same outcome for 𝐶𝑜𝑛.
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Figure 6.3 illustrates how the term (𝑛 · 𝐿) maintains the ordinal relationship when 𝑘 is

added to 𝐶𝑜𝑛. In this example, we consider 𝑛 = 10, and 𝐿 = 5. In this figure, we can observe

that the penalties take intervals based on their position in the neighborhood (the penalty is equal

to 1 divided by the neighborhood position of the evaluated object). Thus, by dividing 𝑘 by the

term (𝑛 · 𝐿), the 𝑘 is mapped to the interval ]0, 1
𝐿 ], in which the values summed to 𝐶𝑜𝑛 do not

overtake the interval of the penalties of the connectedness. In this example, the maximum value

of the mapped 𝑘 is 0.20 (or 1 ÷ 5). This specific case occurs when we have each object standing

for an individual cluster, in which we have the maximum penalties of the connectedness for the

partition, and the addition of any value will not affect its evaluation. The general effect of not

using the term (𝑛 · 𝐿) can be observed in the following example: considering 𝐶𝑜𝑛′′ = 𝐶𝑜𝑛 + 𝑘 ,

a partition 𝜋𝐴 with 𝐶𝑜𝑛 = 3 and 𝑘 = 6, and a partition 𝜋𝐵 with 𝐶𝑜𝑛 = 4 and 𝑘 = 5, for both

partitions, the result of the 𝐶𝑜𝑛′′ is 9. In contrast, if we consider the 𝐶𝑜𝑛′ and the data in Figure

6.3, it is obtained two different results: 𝐶𝑜𝑛′ = 3.12 for 𝜋𝐴 and 𝐶𝑜𝑛′ = 4.1 for 𝜋𝐵 , where the

information the connectivity is maintained, and new information about the number of clusters is

associated.

Figure 6.3: Example of the relation of 𝑘/(𝑛. · 𝐿) and the interval of neighborhood penalties

Fig. 6.4 illustrates the general effect of𝐶𝑜𝑛′ in the selection considering a Pareto front of

(𝑉𝑎𝑟 , 𝐶𝑜𝑛′). Fig. 6.4(a) illustrates four solutions, in which the solution with the highest outcome

for 𝑉𝑎𝑟 is discarded in the selection. This solution has the optimal connectivity result (𝐶𝑜𝑛 = 0);

however, other solutions with a lower 𝑉𝑎𝑟 (and a higher number of clusters) dominates it. By

using 𝐶𝑜𝑛′, we create a differentiation of the solutions with same outcome for 𝐶𝑜𝑛 and different

number of clusters, thus the solutions with this kind of relation are maintained, Fig. 6.4(b).

(a) Pareto Front of (Con, Var) (b) Pareto Front of (Con′, Var)

Figure 6.4: An example of the effect of the new connectivity in the Pareto Front

It is important to note that 𝐶𝑜𝑛′ only uses the 𝑘 to support the decision as a secondary

criterion, in which case the automatic k-determination prevails instead of the the multi-𝑘-clustering
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(see Section 3.2.9). In other words, the solutions with a different number of clusters are naturally

obtained in the optimization of different clustering criteria, different from the approaches that use

𝑘 , as restrictions in the form of objective functions, to optimize clustering criteria to multiple 𝑘 .

6.4 CHAPTER REMARKS

In this chapter, we present a new multi-objective clustering approach, AEMOC—Adaptive

Evolutionary Multi-Objective Clustering Approach based on data proprieties. The main feature

that differ this approach from the others is the use of the information of the data proprieties in the

initialization in order to adapt the parameter setting and the choose of the objective function.

For that, we introduced an evaluation module that was designed with the data proprieties and

features of MST-clustering in mind to define the relative quality of base partitions and devise the

optimization strategy.

Besides that, we introduce an improved connectivity index, 𝐶𝑜𝑛′, applied as an objective

function in our approach. This index was designed to improve the selection in the Pareto front

and improve the clustering in datasets with sub-clusters (sub-sets), as presented in nested clusters,

when applied with 𝑉𝑎𝑟 or 𝑆𝑒𝑝𝐶𝐿 .

In Morimoto et al. (2022b), we demonstrated that 𝐶𝑜𝑛′ can improve the clustering in

different EMOC approaches, in particular for nested clusters, among other hierarchical data

structures. This paper is presented in Appendix C.

In the next chapter, we present the results of the experiments that demonstrate the

potential of the evaluation method to define the relative quality of the base partitions. Furthermore,

we compare the results of AEMOC with other established approaches.
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7 EXPERIMENTS

In this chapter, we evaluate the new approach. We present two different experiments: the first one

was applied to assess the evaluation method and the DSD as relative quality evaluators, followed

by experiments considering the comparison of AEMOC and other approaches: MOCK, MOCLE,

Δ-MOCK and EMO-KC. These approaches provide different strategies and proprieties that allow

us to analyze different aspects of multi-objective clustering.

7.1 EXPERIMENTAL DESIGN

In this section, we present the experimental setup applied to each approach considered in our

analysis. Furthermore, we present the datasets and performance assessment used in the evaluation

of the results.

7.1.1 Experimental setup

In terms of the AEMOC, we applied the general setting presented in Chapter 6. For MOCK, we

used the settings reported by Handl et al. (2007). Regarding Δ-MOCK, we applied the general

parameter setting presented by Garza-Fabre et al. (2017). In terms of the representation of the

Δ-MOCK, we applied the Δ-locus scheme with 𝛿 defined as a function of ∼ 5/√𝑛, where 𝑛 is the

number of objects in the dataset — this function is one of the heuristics employed in Garza-Fabre

et al. (2017). Concerning the MOCLE, we used the general setting as in Faceli et al. (2006),

considering the NSGA-II as MOEA and HBGF as the crossover operator. For EMO-KC, we

applied the same general setting presented in Wang et al. (2018). Furthermore, we applied

the Euclidean distance as a distance function, and we adjusted the other parameters required

to produce partitions containing clusters in the range {2, 2𝑘∗}. Finally, as such algorithms are

non-deterministic, we executed the experiments 30 times.

We summarized the main components of each EMOC in Table 7.1, in which we applied

an acronyms: NB to denote the neighborhood-based mutation; 𝐿 refers to the neighborhood-size

applied in𝐶𝑜𝑛, that also is applied in the initialization and mutation operator of MOCK,Δ-MOCK

and AEMOC; and 𝑛 the number of objects in the dataset.

FEATURES MOCK MOCLE Δ-MOCK EMO-KC AEMOC
Initialization MST and KM AL, KM, SL, SNN MST Random MST

Encoding Locus Label Δ-locus Centroid Locus

MOEA PESA-II NSGA-II NSGA-II NSGA-II NSGA-II

Crossover Uniform HBGF Uniform SBX Uniform

Mutation NB - NB Polynomial NB

N. Generations 1000 50 100 250 100 or 250

Objective
Functions

(𝐷𝑒𝑣, 𝐶𝑜𝑛) (𝐷𝑒𝑣, 𝐶𝑜𝑛) (𝑉𝑎𝑟 , Con) (𝑉𝑎𝑟 ′, 𝑘) (𝑉𝑎𝑟, 𝐶𝑜𝑛′) or

(𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′)
𝐿 10 5% of 𝑛 10 - 10

Table 7.1: Parameters and configuration of MOCK, MOCLE, Δ-MOCK and AEMOC
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7.1.2 Datasets

In the experiments, we applied a diverse set of datasets that have different data structures and

cluster sizes. Table 4.1 presents the main characteristics of these datasets, considering the

number of objects 𝑛, the number of clusters 𝑘∗ in the true partition and the number of dimensions

𝑑𝑖𝑚. These datasets are divided into 4 groups (D). These datasets were obtained from the same

repositories listed in Section 4.2. In D1, D2 and D3, we grouped the artificial datasets. In

D1, we gathered datasets with well-separated clusters. In D2, we included datasets that present

heterogeneous data structures and/or datasets with close clusters. In D3, we have datasets with

overlapping data or/and close clusters and a high spread of data. Finally, in D4, we have the

real-life datasets.

D Dataset 𝑛 𝑑𝑖𝑚 𝑘∗

D1

3MC 400 2 3

Pat1 557 2 3

Pat2 417 2 2

Fourty 1.000 2 40

Sph_6_2 300 2 6

ds2c2sc13_S1 588 2 2

ds2c2sc13_S2 588 2 5

ds2c2sc13_S3 588 2 13

D2

Aggregation 788 2 7

Complex8 2551 2 8

Spiralsquare_S1 1.500 2 2

Spiralsquare_S2 1.500 2 6

2d_10c_no9 3580 2 10

2d_4c_no2 1064 2 4

Sph_10_2 500 2 10

Sizes5 1.000 2 4

D Dataset 𝑛 𝑑𝑖𝑚 𝑘∗

D3

ds4c2sc8 485 2 8

DS-850 850 2 5

Flame 240 2 2

Patbased 300 2 3

Engytime 4.096 2 2

Square1 1.000 2 4

Triangle2 1000 2 4

Twodiamonds 800 2 2

D4

Glass 214 9 2

Iris 150 4 3

Libra 360 90 15

Optdigits 5620 62 10

Thyroid 215 5 3

Soybeans 47 35 4

Wine 178 13 2

Zoo 101 17 7

Table 7.2: Datasets Information - dataset applied to analyze the performance of the proposed EMOC approach

7.1.3 Performance assessment

We used the ARI, Eq. 2.3, to evaluate the clustering performance and the definition of the

groups with regard to the data properties. In the evaluation of the groups, we verified the

correlation of the data properties along with the potential quality of the base partitions generated

by MST-clustering. We consider 3 ranges of the ARI: [1.00, 0.95], ]0.95, 0.50], and ]0.50, 0],
that are applied to evaluate G1, G2, and G3, respectively.

The ARI is one of the most popular clustering validity indexes applied to evaluate

EMOC approaches. Most of the approaches presented in Section 3 make use of this index to

evaluate the clustering results.

Furthermore, we use a non-parametric test to analyze the ARI results, the Friedman

and Bergmann-Hommel Post Hoc hypothesis test (Pohlert, 2018) with alpha=0.05. This test is

applied to compare the overall performance of the algorithms.

7.2 RESULTS OF THE EVALUATOR MODULE

Table 7.3 presents the results of the Evaluator module, in which, in the last two columns, the

cells marked with � or × denote whether CBO or DSD was taken in the definition of the relative

quality of the partitions, according to the method described in Section 6.2. In particular, �
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denotes the groups (G1, G2, G3) correctly assigned, and × indicates that the evaluation module

defined a different class than the expected one. Furthermore, in this table, we present the best

ARI found in the initial population and the individual results of CBO and DSD.

Results Q. GroupsD Dataset ARI CBO 𝐿25 CBO 𝐿50 CBO 𝐿75 DSD CBO DSD

D1

3MC 1.0000 0.0000 0.0000 0.0000 0.6807 �
Pat1 1.0000 0.0000 0.0000 0.0039 0.2696 ×
Pat2 1.0000 0.0000 0.0013 0.0164 0.6709 ×
Fourty 1.0000 0.0000 0.0000 0.0016 0.9539 �
Sph_6_2 1.0000 0.0000 0.0000 0.0000 0.7717 �
ds2c2sc13_S1 1.0000 0.0000 0.0000 0.0000 0.9015 �
ds2c2sc13_S2 1.0000 0.0000 0.0000 0.0000 0.9305 �
ds2c2sc13_S3 0.9951 0.0004 0.0030 0.0164 0.9461 �

D2

Aggregation 0.8089 0.0094 0.0046 0.0031 0.8239 �
Complex8 0.9361 0.0008 0.0102 0.0142 0.7836 �
Spiralsquare_S1 0.5711 0.0000 0.0000 0.0000 0.6726 ×
Spiralsquare_S2 0.9287 0.0009 0.0027 0.0028 0.6872 �
2d_10c_no9 0.5685 0.0028 0.0083 0.0052 0.7373 �
2d_4c_no2 0.7586 0.0035 0.0023 0.0045 0.7643 �
Sph_10_2 0.8588 0.0015 0.0131 0.0156 0.5547 �
Sizes5 0.5032 0.0126 0.0031 0.0122 0.0861 �

D3

Triangle2 0.4931 0.0063 0.0157 0.0047 0.1867 �
DS-850 0.4505 0.0019 0.0034 0.0021 0.5462 ×
ds4c2sc8 0.4503 0.0525 0.0682 0.0580 0.1263 �
Square1 0.3797 0.0104 0.0140 0.0172 0.2681 �
Pathbased 0.1537 0.0002 0.0102 0.0160 0.2399 �
Flame 0.0328 0.0000 0.0096 0.0113 0.1977 �
Twodiamonds 0.0296 0.0009 0.0000 0.0025 0.1961 �
Engytime 0.0076 0.0468 0.0561 0.0451 0.1552 �

Table 7.3: Results of the data proprieties (CBO and DSD) evaluation considering the initial population of the

artificial datasets.

These results, which present 83% agreement with the groups defined in terms of the

ARI, point out that our method is promising to evaluate the data properties. In artificial datasets,

only 4 (of 24) of them were wrongly classified. In Spiralsquare_S1, MST-clustering fails in

detecting the clusters. However, CBO presents results that define this dataset with well-separated

clusters (CBO=0). For DS-850, the DSD defines that the dataset is in G2, while the ARI is

lower than 0.45, denoting the group G3. Also, DSD defined that Pat1 and Pat2 should be

optimized, however these datasets present the optimal partitions in the initial population.

Furthermore, we consider that the DSD could be used as a single metric to evaluate the

data properties, in cases where the ML and CL patterns are not provided or are difficult to obtain.

DSD missed 6 classes (with 75% of agreement with the classes defined in terms of the ARI),

and CBO missed 9 (62% of agreement), 8 (66% of agreement) and 10 (58% of agreement) by

using 𝐿25, 𝐿50 and 𝐿75 respectively. Moreover, DSD does not require any additional information

besides the initial population.

In terms of the real-life datasets, Table 7.4 presents the ARI, CBO and DSD. In real-life

datasets, only Iris was classified wrongly by the evaluation module.
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Results GroupsDataset ARI CBO 𝐿25 CBO 𝐿50 CBO 𝐿75 DSD CBO DSD
Iris 0.8755 0.0275 0.0640 0.0289 0.8950 ×
Optdigits 0.5781 0.0127 0.0287 0.0375 0.7107 �
Soybeans 0.9211 0.0000 0.0051 0.0026 0.6301 �
Zoo 0.7123 0.0000 0.0292 0.0249 0.7234 �
Glass 0.4996 0.0474 0.0501 0.0521 0.4038 �
Libras 0.3255 0.1495 0.2379 0.3292 0.5597 �
Wine 0.3826 0.1826 0.2797 0.3172 0.6288 �
Thyroid 0.2698 0.0279 0.0612 0.0713 0.2285 �

Table 7.4: Results of the data proprieties (CBO and DSD) evaluation considering the initial population of real-life

datasets

7.3 RESULTS OF DIFFERENT EMOC APPROACHES

Finally, Table 7.5 presents results of MOCK, MOCLE, Δ-MOCK and two versions of AEMOC,

AEMOC𝑄 , and AEMOC𝐷 , for artificial datasets. AEMOC𝑄 uses the complete evaluation method

(see Fig. 6.2) while AEMOC𝐷 uses only DSD to estimate the groups of data properties. The

cells with a green background indicate the datasets in which the base partitions are classified in

G1 and the optimization was not performed, because the evaluation module correctly assigned

them. In contrast, the gray background denotes the datasets in which the evaluation module or

DSD made a mistake in the definitions of the groups.

Regarding the clustering results, it is important to observe that, considering the datasets

in D1, MOCK, Δ-MOCK, and MOCLE have optimal solutions in the initial population, but for

some datasets, they lose them by trying to optimize base partitions. In particular, this loss occurs

because 𝐶𝑜𝑛 does not distinguish solutions with optimal connectivity (𝐶𝑜𝑛=0) and different

numbers of clusters, in which the setting of the neighborhood size (𝐿) becomes an important

factor in determining this difference. In MOCLE, this factor explains the use of 5% of the number

of objects in the dataset to set 𝐿 instead of 𝐿 = 10 applied in MOCK and Δ-MOCK. However,

this configuration can highly impact the clustering results in some datasets. For example, it

caused in MOCLE the worst results in Pat2, and the maintenance of the optimal results in

ds2c2sc13_S1 in comparison with MOCK and Δ-MOCK. In contrast, the general design of

AEMOC allowed the preservation of the optimal results found by MST-clustering in most of the

datasets.

In D2, a similar behavior to D1 occurs in SpiralSquare_S1, in which MOCLE

and MOCK have the high-quality partitions in the initial population (base partitions generated

by AL and KM with ARI equal to 1, and 0.96, respectively). In contrast, Δ-MOCK does not

have a best partition in the initial population but generates it in the optimization. Nonetheless,

MOCK and Δ-MOCK lose the optimal solution in the selection, because when there is more than

one solution with 𝐶𝑜𝑛=0 the decision is taken by the other objective function. In AEMOC𝐷 ,

the use of 𝐶𝑜𝑛′ ensures a distinction of solutions with the same outcome for the connectivity

with a different number of clusters, avoiding this kind of problem. In general, the results of

the EMO-KC can be attributed to centroid-based representation, which presents a limitation

in detecting heterogeneous and elongated data structures associated with the limitation of the

objective functions in detecting these kinds of clusters. In particular, in AEMOC𝑄 , the evaluation

method classified SpiralSquare_S1 in G1 because this dataset had well-separated clusters,

thus the optimization was not performed. However, MST-clustering did not detect the clusters,

and the best ARI in the initial population was 0.5711.
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D Dataset MOCK MOCLE Δ-MOCK EMO-KC AEMOC𝑄 AEMOC𝐷

3MC 1.0000 1.0000 1.0000 0.7864 1.0000 1.0000
Pat1 0.9374 1.0000 1.0000 0.0841 1.0000 1.0000
Pat2 0.7355 0.2446 0.7052 0.3337 1.0000 1.0000
Fourty 0.9999 1.0000 1.0000 0.7845 1.0000 1.0000
Sph_6_2 1.0000 1.0000 1.0000 0.9224 1.0000 1.0000
ds2c2sc13_S1 0.3860 1.0000 0.3520 1.0000 1.0000 1.0000
ds2c2sc13_S2 1.0000 1.0000 0.9518 0.8721 1.0000 1.0000

D1

ds2c2sc13_S3 0.8703 0.7771 0.8724 0.5893 0.9951 0.9951
Aggregation 0.9925 1.0000 0.9658 0.7767 0.9941 0.9941

Complex8 0.8556 0.6614 0.9219 0.4803 0.9335 0.9335
Spiralsquare_S1 0.5711 1.0000 0.5711 0.9690 0.5711 1.0000
Spiralsquare_S2 0.9978 0.5410 0.8001 0.4641 0.9986 0.9986
2d_10c_no9 0.9749 0.8484 0.9668 0.7727 0.9762 0.9762
2d_4c_no2 0.9894 0.9068 0.9557 0.8837 0.9904 0.9904
Sph_10_2 0.9805 0.9935 0.9782 0.0362 0.9798 0.9798

D2

Sizes5 0.9624 0.9435 0.9692 0.8297 0.9692 0.9554

ds4c2sc8 0.9016 0.8267 0.9111 0.7878 0.9124 0.9124
DS-850 0.9982 0.9657 1.0000 0.8305 0.9985 0.9985

Flame 0.9712 0.6902 0.9568 0.5653 0.9722 0.9722
Pathbased 0.7273 0.4851 0.7236 0.4834 0.8240 0.8240
Engytime 0.8096 0.8151 0.7707 0.7687 0.8236 0.8236
Square1 0.9777 0.9764 0.9761 0.8871 0.9748 0.9748

Triangle2 0.9878 0.9246 0.9866 0.8150 0.9865 0.9865

D3

Twodiamonds 1.0000 1.0000 1.0000 0.9834 0.9998 0.9998

Mean D1 0.8661 0.8777 0.8602 0.6716 0.9994 0.9994
Mean D2 0.9155 0.8618 0.8911 0.6615 0.9266 0.9785
Mean D3 0.9216 0.8355 0.9156 0.7651 0.9365 0.9365

MEAN 0.9011 0.8583 0.8889 0.6961 0.9542 0.9714

Table 7.5: Best average ARI of MOCK, MOCLE, Δ-MOCK, EMO-KC and two versions of AEMOC: AEMOC𝑄

and AEMOC𝐷 (Average of 30 executions). AEMOC𝑄 uses the complete evaluation method with CBO and DSD,

and AEMOC𝐷 uses only DSD to estimate the relative quality of the initial population.

In D3, both AEMOC𝑄 and AEMOC𝐷 provided a better mean ARI for overall the group

of datasets (0.93 for both AEMOC𝑄 and AEMOC𝐷) (see the antepenultimate row in Table 7.5).

In AEMOC, this result can be attributed to the use of 𝑆𝑒𝑝𝐶𝐿 instead of𝑉𝑎𝑟 . The use of𝑉𝑎𝑟 with

250 generations results in a lower ARI than the 𝑆𝑒𝑝𝐶𝐿 for these datasets (see Table B.1 in B.1).

Furthermore, in AEMOC, the mean ARI result of each group of datasets was significantly

better in the proposed approach than in all the compared approaches, and the overall mean ARI

(0.95 and 0.97 for AEMOC𝑄 and AEMOC𝐷 , respectively) was significantly better than MOCK

(0.90), MOCLE (0.85), Δ-MOCK (0.88), and EMO-KC (0.69).

Table 7.6 presents the average ARI results of MOCK, MOCLE, Δ-MOCK, EMO-KC,

AEMOC𝑄 and AEMOC𝐷 for real-life datasets. In this table, the dataset in D4.1 refers to the ones

classified in G2, and the dataset in D4.2 refers to the ones defined in G3. The gray background

denotes the datasets in which DSD made a mistake in the definitions of the data properties groups.

By analyzing these results, it is possible to observe a similar behavior to the artificial datasets, in

which our approach provided the best mean results.

It is important to note that in this study, we consider the general case in which the

separation and overlapping properties define whether the base partition should not be optimized,

but the optimization of some data structures with (𝑉𝑎𝑟, 𝐶𝑜𝑛′) or (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) could be

inappropriate. For example, the dataset Iris seems to be in the wrong group with DSD, however

the optimization of the base partitions of Iris in AEMOC can cause a loss of ARI, where the
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best partition found in initialization has an ARI of 0.87. In this case, not optimizing the partitions

of the Iris dataset, as defined by the DSD, results in the best ARI for AEMOC𝐷 in comparison

with the other approaches. In contrast, in AEMOC𝑄 , MOCK, Δ-MOCK, and EMO-KC, the

optimization of the base partitions caused the loss of the ARI. In MOCLE, the best partition

found in the initialization (ARI = 0.823) was maintained in the final population.

In terms of datasets in D4.2, AEMOC mean results were higher than the other approaches

(0.49 for both AEMOC𝑄 and AEMOC𝐷). However, it still requires a wide investigation of these

datasets and their properties to improve these results.

G4 Datasets MOCK MOCLE Δ-MOCK EMO-KC AEMOC𝑄 AEMOC𝐷

Iris 0.7700 0.8232 0.7769 0.7421 0.7611 0.8755
Optdigits 0.8976 0.7461 0.8278 0.4049 0.8973 0.8973

Soybeans 0.9296 0.9169 0.9348 0.7035 0.9365 0.9365G4.1

Zoo 0.8753 0.8651 0.8753 0.7522 0.8753 0.8753
Glass 0.5402 0.6468 0.5635 0.6149 0.5669 0.5669

Libras 0.3927 0.3346 0.3843 0.2717 0.4013 0.3890

Wine 0.4025 0.3879 0.4025 0.3929 0.4025 0.4025G4.2

Thyroid 0.5917 0.5791 0.5836 0.4365 0.6105 0.6105
Mean G4.1 0.8681 0.8378 0.8537 0.6507 0.8676 0.8862
Mean G4.2 0.4818 0.4871 0.4834 0.4290 0.4953 0.4922

MEAN 0.6749 0.6624 0.6685 0.5398 0.6814 0.6941

Table 7.6: Best average ARI of MOCK, MOCLE, Δ-MOCK, EMO-KC and two versions of AEMOC: AEMOC𝑄

and AEMOC𝐷 in real-life datasets (Average of 30 executions).

In general, the presented results demonstrate that AEMOC is more robust than the

other approaches, and the selection of objective functions and the specific parameter setting

are promising for both artificial and real-life datasets. That is also pointed out in the Critical

Difference Diagram, Fig. 7.1, which shows the performance comparison of EMOC approaches

according to the Friedman and Bergmann-Hommel Post Hoc hypothesis test.

Figure 7.1: Critical Difference Diagram. The bold horizontal lines link the strategies that had statistically equivalent

performance among them at a confidence level of 95%, and the lower the rank the better performance of an approach.

In the critical difference diagram, we can observe that both AEMOC𝑄 and AEMOC𝐷

have no significant differences in their results. That emphasizes that the use of the DSD instead

of the complete evaluation method is promising.
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7.4 CHAPTER REMARKS

In this chapter, we present the results of the AEMOC. These results show that the use of the

evaluation module can be promising considering CBO and DSD to define the relative quality

of the base partitions generated by the MST-clustering. Also, it points out that DSD is robust

enough to be applied as a single metric to evaluate the relative quality of base partitions.

Furthermore, the clustering results show that the proposed approach is significantly

better than the MOCK, Δ-MOCK, MOCLE and EMO-KC. It shows that the evaluation and

analysis of objective functions regarding the base partitions proprieties is important to designing

an EMOC approach, as introduced in chapter 4.

Currently, we are working on the publication of a paper concerning the proposed

AEMOC and the results of the experiments presented in this chapter in the journal Expert Systems

and Applications.

In the next chapter, we present our final notes regarding the whole study described in

this thesis and outline the future work direction.
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8 CONCLUSION

Clustering analysis is an important research field in which emerge a variety of techniques to

improve the finding of underlying structures that compose finite sets of data (clusters), where the

use of evolutionary multi-objective approaches is still under-explored, requiring more attention

and investigation in order to improve clustering results considering the optimization features.

Thus, in this manuscript we illustrate some general issues found in established approaches

regarding the choice of the objective functions. For that, we introduced the analysis of the

admissibility of clustering criteria in support of defining objective functions in evolutionary

multi-objective clustering approaches. In particular, we demonstrated the importance of aligning

the objective function and the initialization strategy in designing the EMOC approaches.

In general, the use of a traditional clustering algorithm in the initialization provides

solutions that reach the boundaries of the search space in terms of some criteria. Thus, optimizing

the objective functions that consider such criteria is not required, thus other complementary

criteria should be applied in the optimization.

In order to amend this common issue found in the existing EMOC approaches that use

clustering algorithms in the initialization, and do not observe the search aspects in the modeling

of their multi-objective strategies, we proposed the AEMOC, a new multi-objective approach

that provides a new conceptual design of multi-objective optimization applied to a clustering

problem.

In our approach, the initial population quality is evaluated to determine the general

aspects of the optimizer. In other words, this approach introduces the analysis and the use of

the base partition features to apply an offline selection of the objective functions and parameter

settings in the multi-objective clustering algorithm.

In general, AEMOC provided promising results in comparison with established ap-

proaches, such as MOCK, MOCLE, Δ-MOCK and EMO-KC with a significant statistical

difference, in which we verified a general gain in the clustering performance in different quality

groups of the base partitions in the artificial and real-life datasets.

Furthermore, we introduced a new metric to measure the data separation degree. To our

knowledge, there is not an unsupervised metric that measures the separation or the overlapping

of the data. This metric was applied with the CBO, a semi-supervised metric that measures

the data overlapping, to define the general separation and overlapping degree in the data. The

combined method (CBO and DSD) presented robust results in defining the relative quality of the

base partitions generated by MST-clustering. On the other hand, DSD is robust enough to be

considered as a single metric to measure the relative quality of these partitions.

8.1 FUTURE WORKS

In terms of future work, one interesting research direction is to consider other objective functions

and parameter settings to refine the clustering according to other data proprieties or application

domain features. For example, a wide analysis of the real-life datasets in G4.2 could be applied to

verify specific data proprieties that could support the improvement in the parameter setting or in

the choice of the objective functions. Even though AEMOC provided the best average clustering

results for this group, it provided ARI values below 0.5.

Furthermore, we considered the general case of the quality of the base partitions to

determine whether the optimization should be performed or not. However, other cases of
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inadmissibility should be examined in order to avoid “optimizing” objective functions that could

worsen the clustering results. Thus, improvements in the relative quality measures to consider

other initialization strategies could raise the potential of AEMOC.

Another interesting direction of research is the definition of new objective functions that

could be widely admissible in different datasets. As demonstrated in the admissibility analysis,

there is a lack of objective functions that can be widely admissible in different datasets, making

the development of EMOC approaches for generalized clustering difficult.

Finally, the improvement of DSD or even the generation of other metrics to classify

the data quality makes it possible to make better use of the MOEAs in the clustering problem,

avoiding unnecessary data processing or providing a fine adjustment of the parameters.
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APPENDIX A – OBJECTIVE FUNCTIONS

A.1 CLUSTERING CRITERIA

In this section, we present the CVIs applied as objective functions in the literature, as introduced

in the Section 2.4.2.1. We considered a common notation in the equations, where 𝑛 refers to the

number of objects in the dataset X, 𝜋 denotes a partition, 𝑘 denotes the number of clusters in 𝜋,

c𝑖 refers to the 𝑖th cluster that belongs to 𝜋, x𝑎 denotes a generic object, 𝑛𝑖 denotes the number of

objects in c𝑖, z𝑖 refers to the centroid of cluster c𝑖, and z represents the centroid of the dataset.

Furthermore, 𝑑 (., .) denotes the chosen distance function.

A.1.1 Compactness criteria

The Average Within Group Sum of Squares (𝐴𝑊𝐺𝑆𝑆) is computed by the average of the

distance between each object in the cluster and its centroid, as present in Eq. A.1. It should be

minimized to obtain compact clusters (Kirkland et al., 2011).

𝐴𝑊𝐺𝑆𝑆(𝜋) =
𝑘∑
𝑖=1

∑
x∈c𝑖 𝑑 (xa, z𝑖)

𝑛𝑖
(A.1)

The overall Deviation (𝐷𝑒𝑣) is computed as the overall summed distance between data

points and their corresponding cluster center, as defined in Eq. A.2. It should be minimized in

order to obtain compact clusters (Handl and Knowles, 2005a).

𝐷𝑒𝑣(𝜋) =
∑
c𝑖∈𝜋

∑
x𝑎∈c𝑖

𝑑 (x𝑎, z𝑖) (A.2)

Sert et al. (Sert et al., 2011, 2012) considered the K-Mode internal distance (Kmid)

and K-Mode weighted internal distance (Kmwid) as objective functions. These indices are

computed in a similar way to 𝐷𝑒𝑣, but the mode is used instead of the centroid. Kmid and Kmwid

should be minimized as objective functions.

The intra-cluster Entropy (𝐸𝑛𝑡) measures the degree of similarity between each cluster

center and the data objects that belong to that cluster, as the probability of grouping all the data

objects into that particular cluster. A larger value of this index implies better clustering (Ripon

et al., 2006a,b; Ripon and Siddique, 2009). This index is defined by Eq. A.3, where 𝑔(z𝑖) is the

average similarity between z𝑖 and the data object belong to cluster c𝑖, and the 𝑐𝑜𝑠(., .) represents

the cosine distance.

𝐸𝑛𝑡 (𝜋) =
𝑘∑
𝑖=1

[(1 − ℎ(𝑐𝑖))𝑔(z𝑖)]1/𝑘 , where

ℎ(𝑐𝑖) = −[(𝑔(z𝑖) log2 𝑔(z𝑖) + (1 − 𝑔(z𝑖)) log2(1 − 𝑔(z𝑖))], and

𝑔(z𝑖) = 1

𝑛𝑖

𝑛𝑖∑
𝑎=1

(
0.5 + cos(z𝑖 , x𝑎)

2

) (A.3)

The Homogeneity (𝐻) index is computed by the sum of the average minimal intra-cluster

distance, according to Eq. A.4, where min(𝑑 (z𝑖 , x𝑎)) denotes the lowest distance between the
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points x𝑎 in the cluster c𝑖 and the cluster mode m𝑖. 𝐻 should be maximized to obtain homogeneous

clusters (Dutta et al., 2012a).

𝐻 (𝜋) =
𝑘∑
𝑖=1

[∑𝑛𝑖
𝑎=1

min(𝑑 (m𝑖 , x𝑎))
𝑛𝑖

]
(A.4)

The intra-cluster Variance (𝑉𝑎𝑟) is conceptually similar to 𝐷𝑒𝑣, as shown in Eq. A.5,

and it also should be minimized to obtain compact clusters (Garza-Fabre et al., 2018).

𝑉𝑎𝑟 (𝜋) = 1

𝑛

∑
c𝑖∈𝜋

∑
x𝑎∈c𝑖

𝑑 (x𝑎, z𝑖) (A.5)

The Total Within-Cluster Variance (𝑇𝑊𝐶𝑉) is also applied to identify sets of compact

clusters, as defined in Eq. A.6, where 𝑓 is the size of the dimensional feature space, x𝑎𝑟 denotes

the 𝑟th feature value of the 𝑎th data point, z𝑖𝑟 is the centroid of the 𝑖th cluster of the 𝑟th feature, and

𝑤𝑎𝑖 ∈ [0, 1] and
∑𝑘

𝑖=1 𝑤𝑎𝑖 = 1. The goal is to minimize 𝑇𝑊𝐶𝑉 to obtain compact clusters (Du

et al., 2005).

𝑇𝑊𝐶𝑉 (𝜋) =
𝑘∑
𝑖=1

𝑛∑
𝑎=1

𝑤𝑎𝑖

𝑓∑
𝑟=1

(x𝑎𝑟 − z𝑖𝑟)2,where

z𝑖𝑟 =
∑𝑛

𝑎=1 𝑤𝑎𝑖x𝑎𝑟∑𝑛
𝑎=1 𝑤𝑎𝑖

, and 𝑤𝑎𝑖

{
1, if 𝑎𝑡ℎobject belongs to the 𝑖𝑡ℎ𝑐𝑙𝑢𝑠𝑡𝑒𝑟

0, otherwise

(A.6)

The Fuzzy Compactness (𝐽𝑚) represents the global fuzzy cluster variance, as defined in

Eq. A.7, where 𝑢𝑖𝑎 is the membership degree of the 𝑎th data point to the 𝑖th cluster, and 𝑚 is the

fuzzy exponent. The smaller value of 𝐽𝑚 corresponds to more compact clusters (Bezdek, 2013).

𝐽𝑚 =
𝑘∑
𝑖=1

𝑛∑
𝑎=1

𝑢𝑚𝑖𝑎𝑑 (z𝑖 , x𝑎) (A.7)

Zhu et al. introduced an adapted 𝐽𝑚 that considers the cluster weighting subspace, the

Fuzzy weighting subspace clustering (𝐽𝑤𝑚). This index is defined in Eq. A.8, where 𝑓 is the

number of attributes (or vector of features), x𝑎𝑟 denotes 𝑟th feature of the 𝑎th object, and z𝑖𝑟
is the centroid of the 𝑖th cluster of the 𝑟th feature. 𝑤𝑖𝑟 is defined in Eq. A.9, where 𝑚 is the

fuzziness exponent, and 𝜏 is the fuzzy weighting index. 𝐽𝑤𝑚 should be minimized to improve the

clustering (Zhu et al., 2012).

𝐽𝑤𝑚 =
𝑘∑
𝑖=1

𝑛∑
𝑎=1

𝑢𝑚𝑖𝑎

𝑓∑
𝑟=1

𝑤𝜏
𝑖𝑟𝑑 (x𝑎𝑟 − z𝑖𝑟)2 (A.8)

𝑤𝑖𝑟 =

(∑𝑛
𝑎=1 𝑢

𝑚
𝑖𝑎𝑑 (x𝑎𝑟 − z𝑖𝑟)2

)1/𝜏−1∑ 𝑓
𝑟=1

(∑𝑛
𝑎=1 𝑢

𝑚
𝑖𝑎𝑑 (x𝑎𝑟 − z𝑖𝑟)2

)1/𝜏−1
, where 𝑢𝑖𝑎 =

(∑ 𝑓
𝑟=1

𝑤𝜏
𝑖𝑎𝑑 (x𝑎𝑟 − z𝑖𝑟)2)−1/𝑚−1∑𝑘

𝑖=1(
∑ 𝑓

𝑟=1
𝑤𝜏
𝑖𝑎𝑑 (x𝑎𝑟 − z𝑖𝑟)2)−1/𝑚−1

(A.9)
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A.1.2 Connectedness criteria

The Connectivity (𝐶𝑜𝑛) index (Handl and Knowles, 2005a) evaluates the degree to which

neighboring data points have been placed in the same cluster. This index is computed according

to Eq. (A.10), where 𝐿 is the parameter that determines the number of nearest neighbors that

contribute to the connectivity, 𝑛𝑛𝑎𝑏 is the 𝑏th nearest neighbor of object x𝑎. 𝐶𝑜𝑛 as objectives

should be minimized.

𝐶𝑜𝑛(𝜋) =
𝑛∑

𝑎=1

𝐿∑
𝑏=1

𝑓 (x𝑎, 𝑛𝑛𝑎𝑏), where 𝑓 (x𝑎, 𝑛𝑛𝑎𝑏)
{

1
𝑏 , if �c𝑘 : x𝑎, 𝑛𝑛𝑎𝑏 ∈ c𝑘
0, otherwise

(A.10)

The Data Continuity Degree (𝐷𝐶𝐷) measures the connectedness of the data in terms

of the connectivity factor (the total edges sum for each minimum spanning tree) in a similarity

graph. In general, it can be computed in two steps. First, a similarity function is applied in order

to generate a similarity graph, the 𝑘𝑠𝑖𝑧𝑒-Graph. In this graph, a vertex 𝑣𝑎 is connected with the

vertex 𝑣𝑏 if 𝑣𝑏 is among the 𝑘-nearest neighbors of 𝑣𝑎. After that, the total minimal spanning

tree edges are computed considering all nodes connected within the neighborhood of the current

node and internally — this process is repeated with each connected component due to the graph

not being fully connected. The average arithmetic value of the metric (the connectivity factor

divided by the number of clusters) is the result of this objective, which should be maximized in

the optimization (Menéndez et al., 2013).

A.1.3 Separation criteria

The Average Between-Group Sum of Squares (𝐴𝐵𝐺𝑆𝑆) is computed as the average distance

between the clusters’ centroids and the centroid of the data, as defined in Eq. A.11. It should be

maximized to obtain well-separated clusters (Kirkland et al., 2011).

𝐴𝐵𝐺𝑆𝑆(𝜋) =
∑𝑘

𝑖=1 𝑛𝑖.𝑑 (z𝑖 , z)
𝑘

(A.11)

The inter-cluster distance Average Separation (𝑆𝑒𝑝AL) measures the average separation

distance between all clusters, according to Eq. A.12. 𝑆𝑒𝑝AL should be maximized to obtain

better clustering (Ripon and Siddique, 2009).

𝑆𝑒𝑝𝐴𝐿 (𝜋) = 1

𝑘 (𝑘 − 1)/2
𝑘∑
𝑖≠ 𝑗

𝑑 (z𝑖 , z 𝑗 ), (A.12)

Sert et al. (Sert et al., 2011, 2012) introduce the use of K-Mode external distance
(𝐾𝑚ed) and K-Mode weighted external distance (𝐾𝑚wed) as objective functions. These

measures are similar to 𝑆𝑒𝑝𝐴𝐿 , however considering the mode instead of the centroid. 𝐾𝑚ed and

𝐾𝑚wed should be maximized as objective functions.

The Separation Index (𝑆𝑒𝑝CL) is computed by the sum of the distance between every

two tuples (data points) in different clusters, according to Eq. A.13. It should be maximized to

get well-separated clusters (Dutta et al., 2012b).

𝑆𝑒𝑝𝐶𝐿 (𝜋) =
∑

c𝑖c 𝑗∈𝜋,𝑖≠ 𝑗

∑
x𝑎∈c𝑖 ,x𝑏∈c 𝑗

𝑑 (x𝑎, x𝑏) (A.13)
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The graph-based separation index (𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ) measures the separation between the

clusters in terms of a similarity graph. As in the 𝐷𝐶𝐷 index, it considers the generation of a

𝐾𝑠𝑖𝑧𝑒-Graph as the first step in computing this index. The 𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ is calculated as the arithmetic

average value of the edge weights between the different clusters, as defined in Eq. A.14, where c
is a cluster, G is the 𝐾𝑠𝑖𝑧𝑒-Graph, v𝑎 is the vertex 𝑎, and 𝑤𝑎𝑏 is the edge weight value from node 𝑎
to node 𝑏. 𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ should be maximized to improve cluster separation (Menéndez et al., 2013).

𝑆𝑒𝑝𝑔𝑟𝑎𝑝ℎ =

(∑
v𝑎∈G{𝑤𝑎𝑏 |v𝑎 ∉ c}

G − c

)
/c (A.14)

The Fuzzy Separation (𝑆𝑒𝑝 𝑓 𝑢𝑧𝑧𝑦) index (Mukhopadhyay et al., 2007) measures the

inter-cluster fuzzy separation. This index is computed according to Eq. A.15, where the fuzzy

membership is defined by 𝜇ĳ, 𝑑 (z 𝑗 , z𝑖) is the distance between two centroids z𝑖 and z 𝑗 . To get

well-separated clusters, the 𝑆𝑒𝑝 𝑓 𝑢𝑧𝑧𝑦 should be maximized.

𝑆𝑒𝑝 𝑓 𝑢𝑧𝑧𝑦 =
𝑘∑

𝑖, 𝑗=1,
𝑖≠ 𝑗

𝜇𝑚𝑖 𝑗 𝑑 (z𝑖 , z 𝑗 ), where 𝜇𝑖 𝑗 = 2/
�����

𝑘∑
𝑙=1,
𝑙≠ 𝑗

(
𝑑 (z 𝑗 , z𝑖)
𝑑 (z 𝑗 , z𝑙)

)1/(𝑚−1)����� (A.15)

The Fuzzy Overlap Separation (𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦) considers the combination of the 𝑙-order

overlap and inter-cluster separation, composed of a 𝑡-normal function � and t-conorm ⊥ to

formulate the Fuzzy Overlap Separation (Wikaisuksakul, 2014; Paul and Shill, 2018). 𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦
is defined in Eq. A.16, where 𝑢𝑎𝑖 is the membership degree of the 𝑎th data point to the 𝑖th cluster,

𝑂⊥(u𝑎 (x𝑎), 𝑘) is the overlapping degree that considers triplets of clusters up to a 𝑘-tuple of

clusters combinations. 𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦 index measures the isolation of clusters, which is preferred to

be large.

𝑆𝑒𝑝𝑛 𝑓 𝑢𝑧𝑧𝑦 =
1

𝑛

𝑛∑
𝑎=1

𝑂⊥(u𝑎 (x𝑎), 𝑘)
max
𝑖=1,𝑘

{𝑢𝑎𝑖} (A.16)

A.1.4 Separation and Compactness criteria

The Categorical Data Clustering with Subjective factors (𝐶𝐷𝐶𝑆) index is computed by

the ratio of the intra-cluster cohesion and inter-cluster similarity for the categorical data

clustering. This index is defined by Eq. A.17, where A𝑟 is a set of attribute values, 𝑎𝑟
denotes the number of attribute values for the 𝑟th attribute, 𝑃(A𝑟 = 𝑎𝑖𝑟 |c𝑖) is the probability

of 𝑎𝑖𝑟 for the 𝑟th attribute in cluster c𝑖, 𝑆(c𝑝, c𝑞) denotes a similarity of two clusters, where

𝑆(c𝑝, c𝑞) =
∏ 𝑓

𝑟=1

[∑𝑡𝑟
𝑖 min 𝑃(A𝑟 = 𝑎𝑖𝑟 |c𝑝), 𝑃(A𝑟 = 𝑎𝑖𝑟 |c𝑞) + 𝜀

]
, and 𝜀 is a small value in case

that each component is 0 (Zhu and Xu, 2018).

𝐶𝐷𝐶𝑆 =
𝑖𝑛𝑡𝑟𝑎

𝑖𝑛𝑡𝑒𝑟
, where

𝑖𝑛𝑡𝑟𝑎 =
𝑘∑
𝑖=1

|c𝑘 |
𝑛

𝑓∑
𝑟=1

1

𝑓
( 𝑛𝑟
max
𝑖=1

𝑃(A𝑟 = 𝑎𝑖𝑟 |c𝑖))3, 𝑖𝑛𝑡𝑒𝑟 =

∑𝑘
𝑝=1

∑𝑘
𝑞=1 𝑆(c𝑝, c𝑞)1/ 𝑓 · |c𝑝 ∪ c𝑞 |

(𝑘 − 1) · 𝑛
(A.17)
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The Calinski-Harabasz (𝐶𝐻) index, also known as the variance ratio criterion, is

based on the degree of dispersion between clusters. It can take values in [0, ∞] with higher

values indicating better clustering. 𝐶𝐻 is computed by the ratio of the sum of between-cluster

dispersion and inter-cluster dispersion for all clusters, as defined in Eq. A.18 (Zhu et al., 2018).

𝐶𝐻 (𝜋) =
∑𝑘

𝑖=1 𝑛𝑖 · 𝑑 (z𝑖 , z)∑𝑘
𝑖=1

∑
x∈c𝑖 𝑑 (x, z𝑖)

(𝑛 − 𝑘)
(𝑘 − 1) (A.18)

The Davies-Bouldin (𝐷𝐵) index is computed as the ratio of the sum of within-cluster

scatter to between-cluster separation (𝑅𝑖), as defined in Eq. A.19. The minimum value of this

𝐷𝐵 is zero, with lower values indicating a better clustering (Tsai et al., 2012; Zhu et al., 2018;

Dong et al., 2018; Dutta et al., 2019).

𝐷𝐵(𝜋) = 1

𝑘

𝑘∑
𝑖=1

𝑅𝑖, where

𝑅𝑖 = max
𝑗 , 𝑗≠𝑖

{
𝑆𝑖 + 𝑆 𝑗

𝑑 (z𝑖 , z 𝑗 )
}
, and 𝑆𝑖 =

1

|𝑛𝑖 |
∑
xa∈c𝑖

𝑑 (xa, z𝑖)
(A.19)

The Dunn index is computed as the ratio between the minimum inter-cluster distance

(𝛿(c𝑖 , c 𝑗 )) to the maximum cluster diameter (max 𝑗≤𝑖≤𝑘 Δ(c𝑖)), as defined in Eq. (A.20). It is

considered that compact and well-separated clusters have a small diameter and a large distance

between them. The Dunn index can take values between zero and infinity, and it should be

maximized to obtain a well-separated and compact cluster (Liu et al., 2010).

𝐷𝑢𝑛𝑛(𝜋) = min
1≤𝑖≤𝑘

⎧⎪⎪⎨⎪⎪⎩ min
1≤ 𝑗≤𝑘,

𝑗≠𝑖

⎧⎪⎪⎨⎪⎪⎩
𝛿(c𝑖 , c 𝑗 )

max
𝑗≤𝑖≤𝑘

Δ(c𝑖)

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ , where

𝛿(c𝑖 , c 𝑗 ) = min
x𝑎∈c𝑖 ,x𝑏∈c 𝑗

{𝑑 (x𝑎, x𝑏)} , and Δ(c𝑖) = max
x𝑎 ,x𝑏∈c𝑖

{𝑑 (x𝑎, x𝑏)}
(A.20)

The Modularity (𝑀𝑜𝑑) was initially proposed as a measure of the strength of the

network’s module division. This index is computed as the total difference between the sum of

distances of the objects in the same cluster c𝑖 (that indicates how closely similar data is with

others in the same cluster) and the sum of distances considering the objects in the dataset X
(that determines how closely similar data is with others in different clusters), as defined in Eq.

A.21 (Liu et al., 2018).

𝑀𝑜𝑑 (𝜋) =
𝑘∑
𝑖=1

(𝑐𝑑 − 𝑜𝑑2), where

𝑐𝑑 =

∑
x𝑎 ,x𝑏∈c𝑖 𝑑 (x𝑎, x𝑏)∑
x𝑎 ,x𝑏∈X 𝑑 (x𝑎, x𝑏) , and 𝑜𝑑 =

∑
x𝑎∈c𝑖 ,x𝑏∈X 𝑑 (x𝑎, x𝑏)∑

x𝑎 ,x𝑏∈X 𝑑 (x𝑎, x𝑏)

(A.21)

The Silhouette (𝑆𝑖𝑙) index measures how much each point in the data is similar to its

own cluster compared to other clusters, based on the relation of the mean similarity of the objects

within a cluster and the mean distance to the objects in the other clusters. 𝑆𝑖𝑙 is defined in Eq.

A.22, in which 𝑎𝑑𝑎 refers to the mean distance between a sample x𝑎 and all other points in the

same cluster. Moreover, 𝑏𝑑𝑎 is the mean distance between a sample x𝑎 and the nearest cluster

that x𝑎 is not a part of. Thus, 𝑆𝑖𝑙 produces values between −1 and 1. A higher value corresponds

to a better clustering result (Mukhopadhyay and Maulik, 2007).
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𝑆𝑖𝑙 (𝜋) = 1

𝑛

𝑛∑
𝑎=1

𝑆(x𝑎),where 𝑆(x𝑎) = 𝑏𝑑𝑎 − 𝑎𝑑𝑎
𝑚𝑎𝑥 {𝑎𝑑𝑎, 𝑏𝑑𝑎} (A.22)

The I index measures separation based on the maximum distance between cluster

centers, and measures compactness based on the sum of distances between objects and their

cluster centers. This index is computed according to Eq. A.23, in which 𝐸𝑘 stands for within

cluster scatter, 𝐷𝑘 stands for between-cluster separation, 𝐸1 and 𝑃 are correlation coefficients,

𝑢𝑖𝑎 is the membership degree of the 𝑎th object to the 𝑖th cluster. A larger value of this index

implies better clustering. (Dong et al., 2018).

I =

(
1

𝑘
· 𝐸1

𝐸𝑘
· 𝐷𝑘

)𝑃
, where

𝐷𝑘 =
𝑘

max
𝑖, 𝑗=1

(z𝑖 − z 𝑗 ), and 𝐸𝑘 =
𝑘∑
𝑖=1

𝑛∑
𝑎=1

𝑢𝑖𝑎 (x𝑎 − z𝑖)
(A.23)

The Addition feature weight (𝐽𝐴𝑑𝑑) index is applied to minimize both the negative

weight entropy and the separation between clusters. This index is defined in Eq. A.24, where 𝑓 is

the number of attributes, and 𝑤𝑖𝑟 takes the value in [0, 1], which corresponds to a soft partition

of features. It is composed by 𝑆𝑒𝑝𝑖, that is computed according to Eq. (A.15), 𝜎 a present value

that prevents the denominator from becoming zero, and 𝐴𝑤𝑖 denotes the average value of the

important weights, which are more than or equal to the mean value (1/ 𝑓 ) for the 𝑖th cluster (Xia

et al., 2013).

𝐽𝐴𝑑𝑑 =
𝑘∑
𝑖=1

(
𝐴𝑤𝑖

(𝑆𝑒𝑝𝑖 + 𝜎) +
𝑓∑

𝑟=1

𝑤𝑖𝑟 log𝑤𝑖𝑟

)
, where (A.24)

The Pakhira-Bandyopadhyay-Maulik index (𝑃𝐵𝑀) is defined in Eq. A.25, where

𝐸 measures the total within-cluster scatter, 𝐸0 is the total scatter considering all the samples

belonging to one single cluster, and 𝐷 is the maximum distance between cluster centers.

Furthermore, 𝜇𝑎𝑖 denotes the membership degree of the objects in a cluster, which can take values

between 0 and 1. In our experiments, we considered a hard clustering, in which each object

either belongs to a cluster completely (𝜇𝑎𝑖 = 1) or not (𝜇𝑎𝑖 = 0). The 𝑃𝐵𝑀 must be maximized

as objective function.

𝑃𝐵𝑀 =
1

𝑘
· 𝐸0

𝐸𝑘
· 𝐷𝑘 where 𝐸0 =

𝑛∑
𝑎=1

𝑑 (x𝑎, z), 𝐸𝑘 =
𝑘∑
𝑖=1

𝐸𝑖,

𝐸𝑖 =
𝑛∑

𝑎=1

𝑘∑
𝑖=1

𝜇𝑎𝑖 · 𝑑 (x𝑎, c𝑖)2, and 𝐷𝑘 =
𝑘

max
𝑖, 𝑗=1,𝑖≠ 𝑗

𝑑 (z𝑖 , z 𝑗 )
(A.25)

The Xeni-Beny (𝑋𝐵) index is defined as a function of the ratio of the total fuzzy cluster

variance (𝐽𝑚) to the minimum separation of the clusters (𝑆𝑒𝑝), as presented in Eq. A.26, where

𝑢𝑖𝑎 is the membership degree of the 𝑎th data point to the 𝑖th cluster, and 𝑚 is the fuzzy exponent.

It should be minimized to obtain well-separated and compact clusters (Di Nuovo et al., 2007;

Zhu and Xu, 2018).
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𝑋𝐵(𝜋) = 𝐽𝑚
𝑛 · 𝑠𝑒𝑝 =

∑𝑘
𝑖=1

∑𝑛
𝑎=1 𝑢

𝑚
𝑖𝑎𝑑 (z𝑖 , x𝑎)

𝑛 · (min
𝑖≠ 𝑗

{
𝑑 (z𝑖 , z 𝑗 )

}) (A.26)

The Soft Subspace Xie-Beni (𝑆𝑆𝑋𝐵) index was extended from the 𝑋𝐵, and defined

as the ratio of the fuzzy weighting within-cluster compactness (𝐽𝑤𝑚) to the fuzzy minimum

weighting between-cluster separation (𝐽𝑤𝑠𝑒𝑝). This index is computed according to Eq. A.27,

and it should be minimized as an objective function (Zhu et al., 2012).

𝑆𝑆𝐵𝑋 (𝜋) = 𝐽𝑤𝑚
𝑛 · 𝐽𝑤𝑠𝑒𝑝 =

𝑘∑
𝑖=1

𝑛∑
𝑎=1

𝑢2
𝑖𝑎

∑ 𝑓
𝑟=1

𝑤𝜏
𝑖𝑟𝑑 (x𝑎𝑟 − z𝑖𝑟)2

𝑛 · min𝑖≠ 𝑗 {𝑑2(z𝑖𝑟 , z 𝑗𝑟)}
(A.27)

where 𝑑2(z𝑖𝑟 , z 𝑗𝑟) = (
𝑓∑

𝑟=1
𝑤𝜏
𝑖 𝑗 𝑑 (z𝑖𝑟 − z 𝑗𝑟)2 +

𝑓∑
𝑟=1

𝑤𝜏
𝑖 𝑗 𝑑 (z𝑖𝑟 − z 𝑗𝑟)2)/2, 𝑓 is the number of attributes.

𝑤𝑖𝑟 and 𝑢𝑖𝑎 are defined in Eq. A.9.

A.1.5 Other criteria

Here, we present the other criteria applied as objective functions. Cluster cardinality and

expected weighted coverage density indices consider the relation between the occurrence of

objects in a categorical dataset. The similarity index is the only relative CVI used as the objective

function, while the other CVIs consider the data properties of each partition. The sparsity and

reconstruction error are two particular objective functions designed for spectral clustering.

The Cluster Cardinality Index (𝐶𝐶𝐼) considers a set of operations to describe the

property and structure of categorical data (Zhu and Xu, 2018). It is computed according to

Eq. A.28, where A𝑙𝑟 and A𝑖𝑟 are the set of categorical values of 𝑟th attribute within the clusters

c𝑖 and c𝑙 . A larger value of CCI implies better clustering.

𝐶𝐶𝐼 =
1

𝑘

𝑘∑
𝑖=1

max
𝑙,𝑖=1,𝑙≠𝑖

(
𝐶𝐼 (𝑖) + 𝐶𝐼 (𝑙)

𝐶𝐼 (𝑖, 𝑙)
)
, where

𝐶𝐼 (𝑖) = 1

𝑓

𝑓∑
𝑟=1

|A𝑖𝑟 |
c𝑖

, and 𝐶𝐼 (𝑖, 𝑙) = 1

𝑓

𝑓∑
𝑟=1

|A𝑖𝑟 ∩ A𝑙𝑟 | − |A𝑖𝑟 ∪ A𝑙𝑟 | + 1

|A𝑖𝑟 ∩ A𝑙𝑟 | + 1

(A.28)

The intra-cluster Expected Weighted Coverage Density (𝐸𝑊𝐶𝐷) considers the

relation between the objects in a transational dataset. The transational dataset is composed of 𝑛
transactions considering the set of items I = {I1, I2, . . . , I𝑚}, where the transaction t 𝑗 (1 ≤ 𝑗 ≤ 𝑛)
is a set of items t 𝑗 = {I 𝑗1, I 𝑗2, . . . , I 𝑗 𝑙}, such that t 𝑗 ⊆ I. In this context, the WCD-Weighted

Coverage Density of one cluster is defined as the sum of occurrences of all items in a cluster

divided by the number of distinct items and the total number of items in this cluster. Thus, the

EWCD of the partition 𝜋 is defined as a average sum of the WCD in all clusters, as presented

in the Eq. A.29, where I𝑖 𝑗 is the 𝑗 th item set in the cluster c𝑖, 𝑜𝑐𝑐𝑢𝑟 (I𝑖𝑎) define the number of

occurrences of the 𝑎th item in cluster c𝑖, and 𝑆𝑖 is the sum occurrences of all items in cluster

c𝑖 (Sert et al., 2011, 2012).
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𝐸𝑊𝐶𝐷 (𝜋) =
𝑘∑
𝑖=1

𝑛𝑖
𝑛
𝑊𝐶𝐷 =

1

𝑛

𝑘∑
𝑖=1

[∑𝑛𝑖
𝑎=1

𝑜𝑐𝑐𝑢𝑟 (I𝑖𝑎)2

𝑆𝑖

]
(A.29)

Li et al. (Li et al., 2017) introduced the Similarity (𝑆𝑖𝑚) index to evaluate the similarity

of one partition to others with a similarity matrix, as defined in Eq. A.30. This index can be used

to evaluate the diversity of the solutions in an evolutionary approach. It should be minimized as

an objective (Li et al., 2017).

𝑆𝑖𝑚 =
1

𝑛

𝑛∑
𝑗=1

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝜋𝑖, 𝜋 𝑗 ), (A.30)

Luo et al. (Luo et al., 2015) modeled the similarity matrix for spectral clustering into

objective functions. They assume that y = Ax is a linear equation of an under-determined system,

where A ∈ R𝑀 ·𝑁 is a full-rank and over-complete matrix, which is called an over-complete

dictionary, y ∈ R𝑀 is called a measurement vector, and x ∈ R𝑁 is a sparse vector. Thus, they

use x and A to reconstruct y. For that, the SParsity (𝑆𝑃), Eq. A.31, and Reconstruction Error
(𝑅𝐸), Eq. A.32, should be minimized.

𝑆𝑃 = ‖x‖0 , (A.31)

where 𝑙0 norm ‖.‖0 counts the number of nonzero values in a vector.

𝑅𝐸 = ‖Ax − A‖2
2 , (A.32)

where ‖.‖2
2 is the Euclidean norm on signals of a square matrix.
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APPENDIX B – ADDITIONAL EXPERIMENTS

B.1 ANALYSIS OF LOCUS END Δ-LOCUS ENCODING

In this section, we analyzed the impact of the increase in iterations when the locus (Handl et al.,

2007) and Δ-locus (Garcia-Piquer et al., 2017) representations are used in the optimization of

(𝑉𝑎𝑟 , 𝐶𝑜𝑛′) in the NSGA-II with neighborhood-based mutation and uniform crossover. For that,

we considered the datasets in G2 and G3 presented in Section 7, and included other datasets

(Long, Spiral, Twenty, Complex9, R15, Sph_5_2, Square4, D31, and Sph_9_2)

presented in Section 4.2.3. We do not present the results of G1 because the MST-clustering

provides the optimal results for the datasets in this group, and the optimization is not required.

Table B.1 present the best average ARI of each dataset, in which the use of the Δ-locus

generated a loss of ARI in some datasets. Even with the use of 𝛿 = 0, in which the encoding

is not reduced, there is a general loss of the ARI. By analyzing the general data structure of

the locus and Δ-locus with 𝛿 = 0, we observed that the main difference between them is the

arrangement of the edges in the initialization. In Δ-locus the encoding is configured to determine

the fix and relevant edges, thus all edges are ordered considering the DI and the MST structure

is modified. Since this is the only difference between these representations, we consider that it

contributed to the loss of ARI. However, this modification was great enough to affect the ARI

results. Thus, we consider the locus representation in our approach. That allows us to analyze

the impact of using different objective functions and evolutionary operators without the inference

of the Δ encoding in the results.
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B.2 ANALYSIS OF DIFFERENT CROSSOVERS AND OBJECTIVE FUNCTIONS

In this section, we present the results of experiments considering different crossover operators

(One Point, Two Points, and Uniform), associated with the two pairs of objective functions, (𝑉𝑎𝑟 ,
𝐶𝑜𝑛′) or (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) to evaluate how different components of the MOEA can contribute the

optimization of low quality base partitions.

In Tables B.2 and B.3 present the best average ARI considering different crossover

operators. In these tables, OP denote the one point crossover, TP represent the two points

crossover, UN denote the Uniform crossover, and PO represent these three crossover operator in

a pool selected randomly.

Datasets (𝑉𝑎𝑟, 𝐶𝑜𝑛′) (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′)
OP TP UN PO OP TP UN PO

D31 0.8891 0.8936 0.8364 0.8894 0.8819 0.8895 0.8729 0.8921
ds4c2sc8 0.8908 0.8953 0.9041 0.9015 0.9101 0.9113 0.9148 0.9147

DS-850 1.0000 0.9997 0.9997 1.0000 0.9993 0.9993 0.9993 0.9994
Engytime 0.8153 0.8166 0.8148 0.8111 0.8141 0.8196 0.8210 0.8256
Flame 0.9495 0.9544 0.9506 0.9565 0.9717 0.9678 0.9697 0.9710

Pathbased 0.7119 0.7087 0.7148 0.7101 0.7855 0.7991 0.8227 0.8133

Sph_9_2 0.7447 0.7491 0.7630 0.7658 0.7347 0.7507 0.7663 0.7422

Square1 0.9760 0.9761 0.9754 0.9767 0.9732 0.9748 0.9767 0.9752

Square4 0.7961 0.7956 0.7949 0.7918 0.7786 0.7825 0.7925 0.7832

Triangle2 0.9874 0.9852 0.9869 0.9866 0.9854 0.9841 0.9864 0.9866
Twodiamonds 1.0000 0.9995 1.0000 0.9995 0.9995 0.9995 1.0000 1.0000

MEAN 0.8873 0.8885 0.8855 0.8899 0.8940 0.8980 0.9021 0.9003

Table B.2: Best Average ARI considering different crossovers with (𝑉𝑎𝑟, 𝐶𝑜𝑛′) or (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) (Average of 10

executions).

In particular, Table B.2 present the result of the different crossover considering (𝑉𝑎𝑟,
𝐶𝑜𝑛′) and (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) as objective functions. The boldface values indicate the best ARI

results found considering each pair of objective functions. For (𝑉𝑎𝑟 , 𝐶𝑜𝑛′), we can observe that

the Uniform crossover provided the worst Mean result considering all the datasets. The result for

D31 contributes for this overall result. Besides that, the pool of crossover operators provided the

best mean result.

In contrast, (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) have higher mean ARI results for all the datasets, indicating

that this pair of objective functions is more adequate than (𝑉𝑎𝑟 , 𝐶𝑜𝑛′) for this group of datasets.

It is confirmed by the Friedman test, that point out that the (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) with the uniform

crossover is significantly better than (𝑉𝑎𝑟, 𝐶𝑜𝑛′) with the pool of crossover operators.

Considering that (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) obtained the best ARI results, in Table B.3 we analyzed

this pair of objective function with of different size of the neighborhood (𝐿) applied mutation

operator and the computation of 𝐶𝑜𝑛′.
We can observe that using 𝐿 equals to

√
𝑛 · 50% instead 10 cause a increase of the ARI.

Demonstrating that, a refine of this parameter setting can impact in the results of some datasets,

such as D31. However, considering the Friedman test, for the analyzed datasets, there is not

significant difference between using
√
𝑛 · 50% or 10.

In the following experiments we consider (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) for the low quality partitions.

Thus, we define the selection of different objective functions for each quality group, in which

(𝑉𝑎𝑟, 𝐶𝑜𝑛′) is applied in optimizing middle quality base partitions and (𝑆𝑒𝑝𝐶𝐿 , 𝐶𝑜𝑛′) in low

quality base partitions. Furthermore, we applied 𝐿 = 10 for all the experiments of the QEMOC.
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Datasets L=10 L=√𝑛 · 25% L=√𝑛 · 50% L=√𝑛 · 75%

UN PO UN PO UN PO UN PO
D31 0.8729 0.8921 0.8774 0.8894 0.8429 0.9122 0.8296 0.9119

ds4c2sc8 0.9148 0.9147 0.9023 0.8841 0.9140 0.9087 0.9097 0.9130

DS-850 0.9993 0.9994 0.9987 0.9994 1.0000 1.0000 0.9965 0.9965

Engytime 0.8210 0.8256 0.8205 0.8043 0.8168 0.8237 0.8104 0.8186

Flame 0.9697 0.9710 0.9666 0.8397 0.9718 0.9736 0.9592 0.9705

Pathbased 0.8227 0.8133 0.7716 0.6876 0.8217 0.8224 0.7088 0.7616

Sph_9_2 0.7663 0.7422 0.7484 0.7486 0.7707 0.7661 0.7917 0.7729
Square1 0.9767 0.9752 0.9722 0.9765 0.9782 0.9779 0.9782 0.9790
Square4 0.7925 0.7832 0.7799 0.7871 0.7991 0.7965 0.8046 0.8015

Triangle2 0.9864 0.9866 0.9873 0.9868 0.9891 0.9900 0.9864 0.9855

Twodiamonds 1.0000 1.0000 0.9998 0.9950 0.9975 0.9968 0.9978 0.9965

MEAN 0.9021 0.9003 0.8931 0.8726 0.9002 0.9062 0.8884 0.9007

Table B.3: Best Average ARI considering Uniform Crossover and Pool Crossovers with different size of neighborhood

(Average of 10 executions).
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APPENDIX C – IMPROVED CONNECTIVITY INDEX

In this section, we present the publication regarding the application of the improved connectivity

index: Detecting Nested Structures Through Evolutionary Multi-objective Clustering.
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Abstract. The evolutionary multi-
objective algorithms have been widely
applied for clustering. However, in
general, the detection of heterogeneous
nested clusters remains challenging for
clustering algorithms. This paper pro-
poses an adaptation of the connectedness
criterion used as an objective function in
established Evolutionary Multi-Objective
Clustering approaches (EMOCs). This
adaptation can improve the conflict be-
tween the objective functions, and then it
promotes the detection of nested clusters.
We performed experiments with four
EMOCs (MOCK, MOCLE, Δ-MOCK,
and EMO-KC) that provide different
features. These different EMOCs have
different initialization methods and
representation schemes, allowing us to
analyze how the proposed objective
function can contribute to detecting
nested clusters. Our results show that
our adapted objective function promotes
a general gain in the performance of all
these algorithms.

Keywords: Multi-objective clustering ·
Nested data clustering · Evolutionary
multi-objective optimization · Clustering
methods · Data mining

1 Introduction

Complex data allow multiple data interpretations in
which multiple clustering approaches can describe
alternative aspects that characterize the data in dif-
ferent views [14]. The Evolutionary Multi-Objective
Clustering approaches (EMOCs) have been widely
applied to extract patterns and provide these mul-
tiple views, allowing to analyze alternative aspects
that characterize the data [9,6,13,8]. However, the
use of EMOCs to detect nested structures is still
under-explored in the literature, especially to de-
tect heterogeneous data structures.
� This work was partially supported by the National

Council for Scientific and Technological Development
(CNPq).

Some EMOCs were applied to detect heteroge-
neous data structures with the generation of so-
lutions with multiple partitions [9,6,8]. They used
multiple criteria (e.g., compactness and connected-
ness) as objective functions to deal with datasets
with different types of clusters. However, no studies
have widely evaluated them to detect nested data
structures and analyze how their objective functions
impact this task.

In this study, we propose a modification of
the connectedness criterion adopted for established
EMOCs to improve the detection of a different
number of clusters, especially in nested clusters.
The connectivity index used by these approaches
has limitations to detect some multi-level solu-
tions, such as nested clusters, in a single run. This
modified objective function was evaluated in four
EMOCs: MOCK [9], MOCLE [6], Δ-MOCK [8], and
EMO-KC [16], in which we analyze how the differ-
ent strategies adopted in these algorithms can con-
tribute (or hamper) to detect nested clusters. We
performed experiments on fifteen datasets, which
yielded promising results using the modified con-
nectivity in all these algorithms.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the main concepts
concerning MOCK, Δ-MOCK, MOCLE, and EMO-
KC, considering their representation, initialization
strategy, optimization strategy, objective functions,
crossover, and mutation operators. In Section 3, we
describe some general issues around the connect-
edness criterion used as an objective function in
MOCK, Δ-MOCK, MOCLE and introduce the pro-
posed modification in this index. Section 4 presents
the datasets used in the experiments, the spe-
cific configuration and settings of the compared
methods, and the performance assessment adopted.
Then, in Section 5, we present and discuss the re-
sults of our experimental evaluation of the use of
this modified connectivity index. Finally, Section 6
highlights our main findings and discusses future
works.
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2 Background

A nested cluster refers to a cluster that is com-
posed of sub-clusters or multi-level data structures.
Formally, given a partition π = {c1, . . . , ck}, for
any ca, cb ∈ π either they are non-overlapping
(ca ∩ cb = ∅) or one of them includes the other
(ca ⊆ cb or cb ⊆ ca), which is equivalent to assert
that ca ∩ cb ∈ {∅, ca, cb} [1]. For example, Fig. 1
depicts the Venn diagram of the nested data struc-
tures presented in the set X = {x1,x2,x3,x4,x5},
where π1 = {{x1,x2}, {x3,x4,x5}} and π2 =
{{x1,x2}, {x3}, {x4,x5}} represent the solutions at
different levels in the hierarchy, in which π1 has two
clusters and π2 has three clusters.

Fig. 1: Venn diagram of the nested data structures

Hierarchical clustering is the most traditional
nested clustering strategy applied to produce a se-
quence of clusterings in which each cluster is nested
into the next cluster in the sequence. This kind of
approach presents a hierarchical grouping of the ob-
jects, which can be viewed as finding multiple par-
titions. However, the different clustering solutions
obtained at different hierarchical levels differ only
in their granularity [11,17].

Two well-known hierarchical clustering algo-
rithms used in our analysis are the Single-Linkage
(SL) and Group Average-Linkage (AL). In both the
SL and AL algorithms, each object starts out stand-
ing as an individual cluster, and a series of merge
operations is followed until it reaches the top with
a single cluster. The main difference between these
algorithms is the distance measure used to compute
proximity between the pairs of clusters used to de-
fine the closest pair of sub-sets that are merged. SL
considers the minimal distance between two objects
of a cluster pair to define the closest sub-sets, and
AL considers the average distance of all observa-
tions of pairs of clusters [17].

In contrast to hierarchical clustering, the EMOCs
provide a diverse set of solutions considering differ-
ent aspects of the data structures. This study ana-
lyzes the capabilities of four EMOCs to provide a
diverse set of solutions that include nested clusters
by using a modified connectedness criterion. The
EMOCs analyzed are: MOCK [9], MOCLE [6], Δ-
MOCK [8], and EMO-KC [16].

2.1 MOCK, Δ-MOCK, MOCLE and
EMO-KC

MOCK (Multi-Objective Clustering with automatic
K-determination) [9] and MOCLE (Multi-Objective
Clustering Ensemble) [6] are well-known EMOCs.
Δ-MOCK was introduced by [8] to improve the
scalability of MOCK [9]. EMO-KC (Evolutionary
Multi-objective Optimization-k-clustering) was de-
scribed in [16], introducing an adapted sum of
squared distances (SSD) to improve the generation
of multiple solutions with a different number of clus-
ters. These approaches present different represen-
tation encodings, initialization strategies, and/or
evolutionary operators to optimize clustering cri-
teria. In Section 5, we analyze how some of these
different features can contribute to detecting dif-
ferent data structures, including nested clusters,
based on a modified connectedness criterion (Sec-
tion 3). In the following, we present more details of
these EMOCs, considering the initialization strat-
egy, representation encoding, optimization strategy,
objective function, crossover, and mutation opera-
tors. Our analysis focuses on the ability of these
algorithms to generate a set of solutions containing
high-quality partitions. Thus, we will not be con-
cerned with the selection of a final solution to be
presented to the data expert.

Initialization Strategy. The generation of the
initial population in MOCK consists of two meth-
ods: (i) Minimum Spanning Tree (MST) derived
partitions, based on a measure called degree of in-
terestingness (DI), and (ii) k-means (KM) [12] de-
rived partitions. Δ-MOCK only uses one method
to generate the initial population, the MST-derived
partitions. In [6], MOCLE considered partitions
generated by Single-Linkage (SL), Average-Linkage
(AL), KM, and Shared Nearest Neighbor-based
clustering (SNN) [5]. In contrast, EMO-KC consid-
ers a random choice of the points in the dataset to
define the initial centroids.

Representation. MOCK introduced the locus-
based adjacency graph representation, in which a
solution is described as a vector of genes, and each
gene gi can take an integer value between 1 and
n; if a value j is assigned to the ith gene, it can
be interpreted as a link between the data points i
and j, i.e., i and j belong to the same cluster. Δ-
MOCK introduced two reduced locus-based adja-
cency graph representations, Δ-locus and Δ-binary;
these schemes can significantly reduce the length of
the genotype by using the concepts of MST and DI
according to the length of the encoding defined by
a user-defined parameter (δ). MOCLE uses a label-
based encoding that considers labels for each object
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in the partition. At last, EMO-KC uses a centroid-
based encoding, in which the genes represent the
coordinates of the cluster centroids.

Optimization Strategy. In terms of the op-
timization strategy, MOCK [9], MOCLE [6], Δ-
MOCK [8], and EMO-KC [16] use traditional multi-
objective evolutionary algorithms (MOEA) to op-
timize clustering criteria as objective functions.
MOCK relies on the Pareto envelope-based se-
lection algorithm version II (PESA-II) [3] in the
optimization; in contrast, MOCLE, Δ-MOCK[8]
and EMO-KC [16] use the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [4]. Both these
MOEA, PESA-II and NSGA-II, use the Pareto
dominance relation to rank and select the solutions
in evolutionary optimization. The Pareto domi-
nance is an important concept used in our analy-
sis, that can be defined as follows: Let x1 and x2

be two feasible solutions; x1 is said to dominate
x2 (denoted as x1 ≺ x2), if the following two condi-
tions are satisfied [2]: (i) ∀i ∈ {1, 2, . . . , z}: fi(x1) ≤
fi(x2), (ii) ∃j ∈ {1, 2, . . . , z}: fj(x1) < fj(x2).

Objective Functions. The analyzed EMOCs use
two objective functions. MOCK and MOCLE opti-
mize the overall deviation (dev) and connectivity
index (con) as objective functions [9,6]. The dev is
computed according to (1), where π represents a
partition, xi denotes an object in the cluster ck, μk

is the centroid of cluster ck, and d(., .) refers to the
selected distance function.

dev(π) =
∑
ck∈π

∑
xi∈ck

d(xi,μk), (1)

The con is defined according to (2), where n is the
number of objects in the dataset, L is the parameter
that denotes the number of nearest neighbors that
contributes to the connectivity, aij is the jth nearest
neighbor of the object xi, and ck is a cluster in the
partition π.

con(π) =
n∑

i=1

L∑
j=1

f(xi, aij),where

f(xi, aij) =

{
1
j , if �ck : xi, aij ∈ ck

0, otherwise

(2)

Δ-MOCK also optimizes the con, but employs
the intra-cluster variance (var) instead of the dev
as an objective function. The var is defined accord-
ing to (3), where π denotes a partition, n is the
number of objects in the dataset, xi is an object in
the cluster ck, μk is the centroid of the cluster ck,
and d(., .) is the selected distance function [8].

var(π) =
1

n

∑
ck∈π

∑
xi∈ck

d(xi,μk)
2 (3)

At last, EMO-KC optimizes an adapted sum of
squared distances (SSD) and the number of clus-
ters (k) as objective functions. None of the other
EMOCs use the number of clusters as an objective
function. In terms of the SSD, it is computed in
the same way as (3) multiplied by n (the number
of objects in the dataset). The adapted SSD, here
denoted as var′, is computed according to (4) [16].

var′ = (1− exp−1×(SSD))− k (4)

All these objective functions should be minimized
in the optimization.

Crossover and Mutation Operators. MOCK
and Δ-MOCK use the standard uniform crossover
and a neighborhood-biased mutation scheme [9].
MOCLE uses the Hybrid Bipartite Graph Formula-
tion (HBGF) [7] as crossover operator, and no mu-
tation is employed [6]. EMO-KC relies on the stan-
dard operators of the NSGA-II: simulated binary
crossover and polynomial mutation [16].

3 An Improved Connectivity Index

In our studies, we verified that, according to the
setting of the neighborhood size parameter (L), the
connectivity index formulation could limit the de-
tection of some data structures. For example, a
dataset with well-separated nested data structures,
as ds2c2sc13 (Fig 2), can produce several solutions
with optimal con. Consequently, when EMOCs se-
lect which solutions to keep, the decision will be
taken based on the other criteria. For instance, if we
consider optimizing two objective functions, where
the var or dev is applied along with con, the parti-
tions with a lower number of clusters would be dis-
carded in the selection. The reason is that this solu-
tion is dominated by other solutions with lower var
or dev because those solutions have a higher number
of clusters. In term of the dataset ds2c2sc13, the al-
gorithms that use these pairs of objective functions,
such as [9,6,8], may not find the true partition3 of
the S1 (when they use L=10), because it is domi-
nated by S2 — the true partition of the S1, Fig. 2a,
has (dev = 63.038, con = 0) or (var = 0.013,
3 The True Partition or ground truth is the labeled

data that forms the real partition, the underlying
structure of the data; and S denotes the hierarchy
level of the partitions, in which S1 represents the par-
tition with the lowest number of clusters (a high-level
partition), and a higher S refers to a partition with a
low level of hierarchy.
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con = 0); S2, Fig. 2b, has (dev = 33.457, con = 0)
or (var = 0.004, con = 0); and S3, Fig. 2c, has
(dev = 24.075, con = 7.519) or (var = 0.002,
con = 7.519). A behavior that could also occur in
other datasets with well-separated but no compact
clusters.

It is important to note that the use of another
setting for L can lead to the detection of the S1.
However, it can generate the dominance of the other
clustering levels. Thus, in order to deal with this
problem, we propose in (5) a slight but effective
modification of the definition of the con (2):

con′(π) = con(π) +

(
k

n× L

)
(5)

where k is the number of clusters in partition π,
n is the number of objects in the dataset, and L
is the number of nearest neighbors that contribute
to connectivity. The term (n× L) ensures that the
number of clusters k will be mapped to a value lower
or equal to 1

L , taking values in the interval ]0, 1
L ].

That it is required to maintain the ordinal relation-
ship between the best and the worst connectivity
results. So, this modification will only affect the so-
lutions that have the same outcome for the sum of
the penalties of connectedness (2).

Intuitively, the new term added to con to yield
con′ will produce a new dominance relation that dis-
tinguishes the partitions with the same value of con
but with a different number of clusters — a scenario
that can occur in nested clusters, as in ds2c2sc13
dataset.

In other words, con′ contains the information re-
garding the sum of the penalties of connectedness
(the primary criterion), in the same way as the orig-
inal con, added to the information about the num-
ber of clusters (the secondary criterion). The added
information will affect the dominance evaluation of
the solutions with the same outcome for the sum of
the penalties of connectedness. Since the order re-
lation regarding connectivity will only be modified
in this group of solutions.

4 Experimental Design

This section presents the methodology employed to
evaluate the adapted objective function, the used
datasets, the experimental setup of the EMOCs,
and the indicator applied for the performance as-
sessment.

4.1 Datasets

Regarding the datasets, Table 1 summarizes the
main characteristics of the fifteen datasets used in
our experiments. In this table, n is the number of

objects, d is the dimension of the dataset (number
of attributes), S is the number of true partitions,
i.e., the number of different levels of the (nested)
data structures, and k* is the number of clusters of
each data structure. S is also applied as an iden-
tifier for each true partition, where the associated
number refers to the hierarchy level of the parti-
tions, in which S1 represents the partition with the
lowest number of clusters, and S4 the partition with
the highest number of clusters. These datasets were
divided into five groups (G1, G2, G3, G4, and G5),
considering the general features evaluated in our
analysis.

G1 and G2 contain datasets with several different
properties, such as different data structures, num-
ber of observations, and distribution. G1 contains
artificial datasets (20d-60c, Aggregation, D31),
and G2 contains real datasets (Iris, Libras, UKC1).
These groups are used to verify the general impact
of the con′ in comparison with con when applied in
different datasets with a single true partition.

G3 contains artificial datasets with nested data
structures and well-separated clusters (ds2c2sc13
and Spiralsquare). In this group, besides compar-
ing the use of con and con′, we will analyze the
capabilities of the con′ in the EMOCs in relation to
the hierarchical clustering algorithms SL and AL.

G4 also contains artificial datasets with nested
clusters, but they have several different properties,
such as cluster shapes, distributions, and proxim-
ity between the clusters. In this group, we have
the Monkey dataset and three new datasets, Bear,
Glassesman and Stomata, Fig. 3. These three
datasets were used for the first time here4. In partic-
ular, Bear and Glassesman contain different types
of sub-sets, in which the lowest (hierarchy) level of
structures (S3) contains nested clusters along with
other sub-sets. For example, the overlapping clus-
ters that represent the nose and mouth in the S3 of
the dataset Glassesman are sub-sets of one general
cluster, but such clusters are not nested at this level
of data. The same occurs in the clusters that repre-
sent the eyes in the dataset Bear, they are sub-sets
in the S3, but these clusters are not nested struc-
tures.

At last, G5 contains real datasets, (Golub, Glass,
and Leukemia), that present more than one speci-
fied true partition, and may present nested data
structures. The analysis of these groups will pro-
vide a general view of how the con′ impacts the
clustering performance of the EMOCs in complex
datasets. As well, we will analyze the results of the
EMOCs with regard to the hierarchical clustering
algorithms SL and AL.

4 Available at https://github.com/cymorimoto/
newdatasets.
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(a) S1, k = 2 (b) S2, k = 5 (c) S3, k = 13

Fig. 2: True partitions of the artificial dataset ds2c2sc13

# Dataset n d S k Description

G1
20d-60c 4,395 20 1 60 20d-60c has 60 ellipsoidal clusters with arbitrary elon-

gation and orientation distributed in a 20-dimensional
space.

Aggregation788 2 1 7 Aggregation consists of heterogeneous structures with
clusters of varied sizes and shapes.

D31 3,100 2 1 31 D31 contains 31 equal sizes and spread clusters that are
slightly overlapping and distributed randomly in a 2-
dimensional space.

G2
Iris 150 4 1 3 Iris contains 3 clusters (types of iris plant) that contain

an equal number of observations.
Libras 360 90 1 15 Libras is composed of representations of different hand

movements in the Brazilian Sign Language (LIBRAS).
UKC1 29,463 2 1 11 UKC1 is a dataset with a very large number of objects

related to street-level crime in the U.K.

G3 ds2c2sc13 588 2 3 2, 5, 13 ds2c2sc13 contains three different structures: S1 repre-
sents two well-separated clusters; S2 and S3 combine dif-
ferent types of clusters.

Spiralsquare1,500 2 2 2, 6 Spiralsquare contains two true partitions: S1 represents
two well-separated clusters, and S2 contains 2 spirals and
4 Gaussian-like clusters.

G4

Monkey 4,000 2 4 2, 3, 5, 8 Monkey has a set of clusters with different sizes and shapes
that represent a monkey head. S1 contains two major
clusters. S2 and S3 present clusters with different granu-
larities of the S1.

Bear 1,480 2 3 2, 5, 11 Bear contains clusters with different dispersion and
distributions, considering clusters obtained from the
datasets Pathbase and ds3c3sc6.

Glassesman 5,878 2 3 3, 4, 5 Glassesman contains heterogeneous structures with clus-
ters of varied sizes and shapes, including clusters pre-
sented in the datasets Engytime and twoDiamonds.

Stomata 2,376 2 3 2, 8, 16 Stomata was designed and inspired by the cells found
in the epidermis of leaves, named stomata. It contains
three data structures: S1 considers two internal cells sur-
rounded by the other cells, S2 represents each cell as a
cluster, S3 distinguishes the cells and their nucleus.

G5
Glass 214 9 3 2, 5, 6 Glass is a benchmark dataset, that contains glass at-

tributes used to identify the type of glass.
Golub 72 3,5712 2, 3 Golub refers to gene expression data from the leukemia

micro-array study.
Leukemia 327 271 2 3, 7 Leukemia also refers to gene expression. Both Golub and

Leukemia have a small number of objects (distributed in
clusters of very different sizes), but a large number of
attributes, typical of bio-informatics data.

Table 1: Dataset characteristics

115



The datasets 20d-60c and UKC1 were introduced in [8].
ds2c2sc13, Glass, Golub, Iris, Leukemia, Libras, Monkey, and
Spiralsquare were obtained from the Clusters evaluation bench-
mark repository5. D31 and Aggregation were obtained from
the Clustering basic benchmark repository6. Besides that, the
datasets that compose the Bear and Glassesman were obtained
from these two repositories.

4.2 Experimental Setup

We employed the same general settings as reported in [9,8] to
execute MOCK and Δ-MOCK. Regarding the Δ-MOCK rep-
resentation, in this paper, we used the Δ-locus scheme with δ
defined as a function of ∼ 5/

√
n, where n is the number of

objects in the dataset — this function is one of the heuristics
employed in [8]. Concerning the MOCLE, we used the general
setting as in [6], considering the NSGA-II as MOEA and HBGF
as a crossover operator. At last, for EMO-KC, we applied the
same general setting presented in [16]. Furthermore, for every
approach, including the hierarchical algorithms SL and AL, we
applied the Euclidean distance as a distance function, and we
adjusted the other parameters required to produce partitions
containing clusters in the range {2, 2k∗}, in the same way as
MOCK and Δ-MOCK.

For the EMOCs, the L parameter applied in the con and
con′ was set L = 10 for all the experiments. Finally, as such
algorithms are non-deterministic, we executed the experiments
30 times.

4.3 Performance Assessment

In this work, we use the adjusted Rand index (ARI) [10] as the
indicator to measure the clustering performance. This indicator
measures the similarity between two partitions. Thus, ARI is
applied to compare the EMOCs results with the true partitions.
ARI results close to 0 mean no correspondence between the par-
titions, and results close to 1 point out a high similarity between
the partitions.

Besides, we use a non-parametric test to analyze the ARI re-
sults, the Kruskal-Wallis test with the Tukey-Kramer-Nemenyi
post-hoc test [15] with significance level alpha=0.01. Such a test
is applied to analyze the behavior of each algorithm on a dif-
ferent problem (dataset). Furthermore, we applied the Friedman
and Bergmann-Hommel Post Hoc hypothesis test [15] with al-
pha=0.05. This last combination of tests is applied to compare
the overall performance of the algorithms in the datasets with
nested clusters.

5 Results and Discussion

In this section, we present the results of the performed experi-
ments considering the comparison of the con and con′ applied
along with the original compactness index (dev, var, or var′) in
the EMOCs and compare them with the results of the hierar-
chical clustering methods SL and AL. Since EMO-KC originally
did not use a connectedness index, we also performed experi-
ments with its original objective functions (var′, k) and asso-
ciated them with the connectedness criterion. As described by
[16], the var′ was designed to provide more conflict around the
number of the clusters; we consider that a general analysis of
these objective functions can provide insights about the perfor-
mance of the purpose modification of the con to produce conflict
around the compactness criterion.

Table 2 presents the ARI of the best partition found by SL
and AL, and the average ARI of the best partitions of MOCLE,
MOCK, Δ-MOCK, and EMO-KC found in experiments using 2
objective functions, considering their original compactness crite-
rion (dev, var, or var′) associated with con and con′, as objec-
tive functions. For EMO-KC, it also presents the results regard-
ing the original objective functions presented in [16], (var′, k).
The ARI highlighted in boldface represents the best values found
for each evolutionary multi-objective approach, considering the
comparison of the different objective functions. Furthermore, un-
derlined ARI points out the results with a significant difference

5 Available at http://lasid.sor.ufscar.br/
clustersEvaluationBenchmark.

6 Available at http://cs.uef.fi/sipu/datasets.

according to the Kruskal-Wallis test. In the case of the SL and
AL results, the ARI highlighted in boldface represents the re-
sult where these algorithms found the best ARI compared to the
EMOCs.

The results point out that the con′ improves the general per-
formance of all the EMOCs, as shown in Table 2. The row Sig-
nificant Wins presents the number of the datasets in which one
pair of objective functions win over the other pair (as indicated
by the statistical test), considering the objective functions with
con′ or con. For instance, for MOCLE, the objective functions
(dev, con) has 2 significant wins while the pair (dev, con′) has
3 significant wins. In general, Δ-MOCK and MOCK are algo-
rithms that have the major significant wins with the con′, where
MOCK has 6 significant wins and Δ-MOCK 8 significant wins.

By analyzing each group of datasets, we obtained more details
about how the con′ impacted the results of the studied EMOCs.
For example, in general, the use of the con′ does not impact the
results in the datasets with a single true partition, as the datasets
present in G1 and G2, in which the results of all EMOCs were
very close to that present with con. Only for the dataset UKC1
(present in G2), the use of the con′ provided a significant gain
of ARI in MOCK and Δ-MOCK.

On the other hand, for the datasets with nested data struc-
tures and well-separated clusters, as presented in G3, we have the
greatest improvement of the clustering results by using the con′.
For example, the well-separated structures S1 in the datasets
ds2c2sc13 and SpiralSquare were detected in all studied ap-
proaches, and Δ-MOCK was able to detect S2 in the datasets
ds2c2sc13.

A particular case occurred in the S3 of the datasets ds2c2sc13,
where the use of the con′ caused a significant loss in the ARI
in MOCLE and MOCK, when compared with the results of con.
In this case, the parameter L is still impacting the dominance
around the true partition. However, in MOCLE, our general re-
sults for this dataset are higher than others reported in the re-
lated work, as in [6] or results provided by hierarchical methods
SL and AL.

In contrast, the results in the G4 and G5 were diverse. For
example, we obtain an ARI gain in the S1 of the dataset Leukemia
in MOCK and Δ-MOCK. However, the dominance of the true
partition and the influence of the L parameter are still impacting
the results in the datasets Monkey and Stomata, in which we ob-
tained gain of the ARI in some partitions and an ARI decrease in
other ones. An analysis of the Pareto front (PF) of these datasets
is presented in Section 5.1, to detail how the con′ impacts the
optimization and to explain these results. At last, for the other
datasets in these two groups (G4 and G5) there are not any sig-
nificant differences by using con or con′. Regarding the results
of the SL and AL, in general, the best results found by them for
G4 and G5 were worse or equal to the results found by MOCLE.

In general, this minor loss in MOCLE, MOCK, and Δ-MOCK
by using con′ is not so significant when compared to the general
ARI gain in the datasets as presented in Table 2 (Significant
Wins row). Furthermore, it promotes a significant increase in
the performance of the EMO-KC without any loss.

Furthermore, it is important to observe that the Δ-MOCK
provides the highest ARI for datasets with multiple true parti-
tions. That also is pointed in the Critical Difference Diagram,
Fig. 4, which shows the performance comparison of the strate-
gies according to the Friedman and Bergmann-Hommel Post Hoc
hypothesis test, in which Δ-MOCK has the best rank with con′.

Additionally, we also performed experiments with EMO-KC
using three objectives, (var′, con, k) and (var′, con′, k), that
produces equivalent ARI results to the pair (var′, con′). Since
there is not a significant difference between the overall perfor-
mance of the EMO-KC using two or three objective functions,
we do not display these last results. Nevertheless, it is important
to note that, based on these results, in EMO-KC, the use of the
con′ provides evidence that the conflict around the number of
clusters is improved, even though the general ARI gain is not so
robust.

5.1 The impact of the con′ in the
optimization

As above-mentioned, the use of the con′ promoted a general
gain in the ARI; however, it also caused a loss in the ARI in
some datasets. In this context, to analyze how the con′ impact
the optimization, we look over the Pareto front of the datasets
Monkey and Stomata.

Fig. 5 presents the Pareto front of the datasets Monkey gener-
ated by MOCLE, in which the red points represent each true par-
tition at different levels, as a reference for comparison. In Fig. 5b
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(a) Bear-S1, k = 2 (b) Bear-S2, k = 5 (c) Bear-S3, k = 11

(d) Glassesman-S1, k = 3 (e) Glassesman-S2, k = 4 (f) Glassesman-S3, k = 8

(g) Stomata-S1, k = 2 (h) Stomata-S2, k = 8 (i) Stomata-S3, k = 16

Fig. 3: New artificial datasets with nested data structures

we can observe an increase of the solutions in the region of the
true partition of the S1, S2, and S3 when compared with Fig. 5a.
For the S1, we observed that the solution that ARI=0.5131 was
dominated by other solutions when con′ is applied, but it gen-
erates new solutions near the true partition, making it possible
to apply other methods (local search) to improve the results. In
particular, to detect the partition S4 in Monkey requires further
exploration of the region with smaller var in MOCLE. It is im-
portant to note that MOCLE has an inner property that reduces
the number of solutions while producing new solutions generated
by the ensemble-based crossover. It is the main reason for the
small number of solutions in the Pareto front when compared to
the other EMOCs.

Fig. 6 presents the Pareto front of this same dataset generated
by MOCK. In the sub-figures, we also observe similar behavior
to the MOCLE, in which using con′ promoted the increase of
solutions in the region of the high-level structures that are close
to the true partition. However, for the S4 in Monkey, the L pa-
rameter is still affecting the general performance of the MOCK,
in which the use of the con′ improved the convergence of the
solutions.

For the dataset Stomata, in Δ-MOCK con′ promote a better
distinction of the solutions around the true partition of the S2,
S3. Since the con for these structures is the same (con=9.8115),
the con′ generates more diversity of solutions in which the con-
vergence is better than in con. In this context, this distinguish-
ing of solutions improve of the ARI in the S2. For S1 it promoted
the increase of solutions in the region of the high-level structures
that are close to the true partition, as illustrated in Fig. 7. The
general loss in the ARI of the S1 and S3 using con′ occurred
because we have new solutions in the front with better conver-

gence but still need some local exploitation to get a better ARI.
It is important to note that in the Δ-MOCK, besides using the
con′, the initialization strategy also had an important role in
its general results. We observe that initialization strategies that
include KM, as in MOCK and MOCLE, could generate solutions
that dominate other promising solutions with nested data struc-
tures. Besides that, the reduced encoding used in Δ-MOCK did
not affect the clustering performance, in which Δ-MOCK is the
more scalable approach with good ARI results.

On the other hand, in EMO-KC, the use of the random
initialization and centroid-based representation had difficulties
in detecting concentric clusters, such as the two spirals in the
Spiralsquare, or clusters with close centroid and elongated data
structures.

In summary, by using con′ the optimization of the solutions
was improved, which promoted more diversity of the solutions,
including the regions of the high level of the nested data struc-
ture, and increased the convergence of the solution; however,
some aspects of the EMOCs, such as initialization and represen-
tation, can impact the detection of the nested clusters.

6 Conclusion

In this study, we provide an analysis regarding the use of EMOCs
for nested data structures. Furthermore, we deal with a problem
in the definition of the connectivity index, in which several dif-
ferent partitions could present the same optimal value (con = 0)
depending on the considered neighborhood size (L). In this sce-
nario, the decision would be essentially taken based on the other
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Table 2: The ARI of the best partition found by SL and AL, and the average ARI of the best partition
found by MOCLE, MOCK, Δ-MOCK and EMO-KC. Average of 30 executions for the EMOCs

SL AL MOCLE MOCK Δ-MOCK EMO-KC
# Datasets S — — dev, con dev, con′ dev, con dev, con′ var, con var, con′ var, k var′, con var′, con′

G1
20d-60c - 0.0007 0.2601 0.8989 0.8989 0.7819 0.7810 0.9003 0.8998 0.5350 0.5554 0.5525
Aggregation - 0.8089 1.0000 1.0000 1.0000 0.9935 0.9908 0.9671 0.9656 0.7898 0.9346 0.9535
D31 - 0.2124 0.9307 0.9523 0.9523 0.9030 0.9044 0.7456 0.7291 0.8136 0.8274 0.8313

G2
Iris - 0.5681 0.7592 0.8284 0.8284 0.7707 0.7891 0.7709 0.7869 0.7370 0.7543 0.7437
Libras - 0.0224 0.3346 0.3346 0.3346 0.3942 0.3973 0.3865 0.3886 0.2762 0.2949 0.2933
UKC1 - 1.0000 0.9415 1.0000 1.0000 0.9985 1.0000 0.9962 0.9995 0.9574 0.9577 0.9498

G3
ds2c2sc13

S1 1.0000 1.0000 0.6840 1.0000 0.3810 1.0000 0.3520 1.0000 1.0000 0.6828 1.0000
S2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9520 1.0000 0.8775 0.8777 0.8841
S3 0.8724 0.6648 1.0000 0.9690 0.8710 0.8380 0.8720 0.8720 0.5889 0.6613 0.6622

Spiralsquare S1 1.0000 1.0000 0.8888 1.0000 0.5711 1.0000 0.5711 1.0000 0.9663 1.0000 1.0000
S2 0.9283 0.5410 0.9971 0.9971 0.9980 0.9973 0.9986 0.9987 0.4742 0.5340 0.5341

G4

Monkey

S1 0.5122 0.4479 0.5131 0.4566 0.3377 0.5653 0.4544 0.8654 0.3737 0.6124 0.6076
S2 0.8551 0.2279 0.8267 0.8551 0.7776 0.8351 0.7776 0.9292 0.2881 0.4468 0.4629
S3 0.8341 0.5305 0.8341 0.8341 0.7610 0.7640 0.7960 0.7960 0.4272 0.5197 0.5037
S4 0.8708 0.6713 0.8707 0.8707 0.8628 0.8404 0.8737 0.8719 0.6078 0.6997 0.6622

Bear
S1 0.0042 0.1266 0.2858 0.2858 0.4252 0.4181 0.4142 0.4135 0.2179 0.2565 0.2431
S2 0.0675 0.7194 0.7194 0.7194 0.7138 0.7195 0.7220 0.7219 0.5883 0.6752 0.7048
S3 0.3895 0.6842 0.6842 0.6842 0.8061 0.8097 0.7798 0.7793 0.6349 0.6760 0.6781

Glassesman
S1 0.8775 0.8269 0.8775 0.8775 0.7920 0.7857 0.7889 0.7890 0.7909 0.8077 0.8097
S2 0.5944 0.5048 0.9691 0.9691 0.9271 0.9291 0.9549 0.9529 0.9034 0.9273 0.9228
S3 0.2403 0.5048 0.8428 0.8428 0.8505 0.8467 0.8791 0.8798 0.7954 0.8155 0.8214

Stomata
S1 0.0214 0.0382 0.0382 0.0382 0.5986 0.5946 0.8635 0.8311 0.0005 0.0124 0.0108
S2 0.7233 0.2966 0.7233 0.7233 0.6987 0.7025 0.7970 0.8368 0.3269 0.3708 0.3574
S3 0.7783 0.2620 0.9190 0.9190 0.7356 0.6805 0.8952 0.8573 0.2992 0.3368 0.3455

G5

Glass
S1 0.0536 0.0536 0.6468 0.6468 0.5418 0.5424 0.5620 0.5663 0.6099 0.6086 0.6077
S2 0.1057 0.4918 0.5043 0.5043 0.4338 0.4359 0.4605 0.4552 0.4608 0.4951 0.4999
S3 0.0403 0.2488 0.2980 0.2980 0.2060 0.2030 0.2050 0.2020 0.2205 0.2295 0.2307

Golub S1 -0.0026 -0.0139 0.4193 0.4193 0.7884 0.8054 0.5410 0.5469 0.4630 0.7203 0.7406
S2 -0.0108 0.6473 0.6473 0.6473 0.8816 0.8714 0.5569 0.5676 0.5615 0.7055 0.7126

Leukemia S1 -0.0037 0.3346 0.3295 0.3295 0.3049 0.4133 0.3040 0.4097 0.2352 0.2945 0.3004
S2 0.0224 0.3346 0.7589 0.7589 0.7767 0.7767 0.7706 0.7708 0.5922 0.7201 0.7180

Significant Wins — — 2 3 3 6 2 8 — 0 4

objective function in evolutionary multi-objective optimization.
To tackle this problem, we presented a modified version of the
connectivity index called con′. The results obtained with con′,
in terms of ARI and the ability to find nested cluster structures,
are promising. In particular, there is a significant increase of
the ARI in artificial datasets that present well-separate nested
structures.

Besides the meaningful advantages in the scalability described
by [8], Δ-MOCK demonstrated to be the best option of the stud-
ied EMOCs for nested clustering by using the con′ as an objec-
tive function. In this context, we observe that the initialization
strategy also contributes to the Δ-MOCK results, where other
initialization strategies, like KM, could generate partitions that
dominate other ones with nested structures.

Furthermore, we demonstrate how this modification impacts
the optimization process by presenting the plot of the Pareto
Front of the EMOCs, evidence that the con′ improves the gen-
eration of a more diverse and convergent set of solutions.

Our results also showed that there are still some open prob-
lems regarding the L parameter still impacting the optimization,
in which the true partition is dominated, deserving more studies.
For future work, we consider that an analysis of different values
of L can provide the extent of the results that depend on L.

We also introduce three new datasets (Bear, Glassesman,
Stomata) that present a great challenge for the studied EMOCs,
that could be explored in future works.

References

1. Bertrand, P., Diatta, J.: Multilevel clustering mod-
els and interval convexities. Discrete Applied Math-
ematics 222, 54–66 (2017)

2. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.:
Evolutionary Algorithms for Solving Multi-
Objective Problems (Genetic and Evolutionary
Computation). Springer-Verlag, Berlin, Heidelberg
(2006)

3. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates,
M.J.: PESA-II: Region-based selection in evolution-
ary multiobjective optimization. In: Proceedings of
the 3rd Annual Conference on Genetic and Evolu-
tionary Computation. pp. 283–290. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA
(2001)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.:
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE transactions on evolutionary com-
putation 6(2), 182–197 (2002)

5. Ertoz, L., Steinbach, M., Kumar, V.: A new shared
nearest neighbor clustering algorithm and its ap-

118



Fig. 4: Critical Difference Diagram of the EMOCs considering the different pairs of objective functions.
The bold horizontal lines link the strategies that had statistically equivalent performance among them
at a confidence level of 95%, and the lower the rank the better performance of an approach.

(a) PF of the objectives (con, dev) (b) PF of the objectives (con′, dev)

Fig. 5: Front of the final population of the dataset Monkey generated by MOCLE

plications. In: Workshop on clustering high dimen-
sional data and its applications at 2nd SIAM in-
ternational conference on data mining. pp. 105–115
(2002)

6. Faceli, K., de Leon Ferreira de Carvalho,
A.C.P., de Souto, M.C.P.: Multi-objective
clustering ensemble. International Journal of
Hybrid Intelligent Systems 4(3), 145–156 (2007),
http://content.iospress.com/articles/international-
journal-of-hybrid-intelligent-systems/his00047

7. Fern, X.Z., Brodley, C.E.: Solving cluster ensemble
problems by bipartite graph partitioning. In: Pro-
ceedings of the twenty-first international conference
on Machine learning. p. 36. ACM (2004)

8. Garza-Fabre, M., Handl, J., Knowles, J.: An im-
proved and more scalable evolutionary approach
to multiobjective clustering. IEEE Transactions on
Evolutionary Computation 22(4), 515–535 (2017)

9. Handl, J., Knowles, J.: An evolutionary approach
to multiobjective clustering. IEEE Transactions on
Evolutionary Computation 11(1), 56–76 (2007)

10. Hubert, L., Arabie, P.: Comparing partitions. Jour-
nal of classification 2(1), 193–218 (1985)

11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clus-
tering: A review. ACM Comput. Surv. 31(3), 264–

323 (Sep 1999). https://doi.org/10.1145/331499.
331504, http://doi.acm.org/10.1145/331499.331504

12. MacQueen, J., et al.: Some methods for classifica-
tion and analysis of multivariate observations. In:
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability. vol. 1, pp.
281–297. Oakland, CA, USA (1967)

13. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.:
A survey of multiobjective evolutionary clustering.
ACM Computing Surveys (CSUR) 47(4), 61 (2015)

14. Muller, E., Gunnemann, S., Farber, I., Seidl, T.:
Discovering multiple clustering solutions: Grouping
objects in different views of the data. In: 2012 IEEE
28th International Conference on Data Engineering.
pp. 1207–1210. IEEE (2012)

15. Pohlert, T.: PMCMR: Calculate Pairwise Multi-
ple Comparisons of Mean Rank Sums (may 2018),
https://CRAN.R-project.org/package=PMCMR

16. Wang, R., Lai, S., Wu, G., Xing, L., Wang,
L., Ishibuchi, H.: Multi-clustering via evolution-
ary multi-objective optimization. Information Sci-
ences 450, 128–140 (2018). https://doi.org/https:
//doi.org/10.1016/j.ins.2018.03.047

17. Xu, R., Wunsch, D.: Survey of clustering algo-
rithms. IEEE Transactions on Neural Networks

119



(a) PF of the objectives (con, dev) (b) PF of the objectives (con′, dev)

Fig. 6: Front of the final population of the dataset Monkey generated by MOCK

(a) PF of the objectives (con, var) (b) PF of the objectives (con′, var)

Fig. 7: Front of the final population of the Stomata generated by Δ-MOCK

16(3), 645–678 (May 2005). https://doi.org/10.
1109/TNN.2005.845141

120


