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RESUMO 
 

Os dados podem ser definidos como uma simplificação do mundo real, de 
forma que sua visualização funcione como uma abstração da realidade, permitindo 
compreender relações e padrões que de outra forma permaneceriam ocultos. A 
conexão entre eles e a representação real é essencial para dar significado à parte 
visual da análise, sendo responsabilidade do pesquisador assegurar essa 
correspondência. Diante da crescente disponibilidade e complexidade de dados, a 
capacidade de apresentá-los de modo acessível e inteligível torna-se uma habilidade 
essencial no mundo contemporâneo. Com isso, esse trabalho tem como objetivo 
evidenciar a importância de uma análise de dados bem fundamentada e estruturada, 
fundamental em um mundo cada vez mais imerso na cultura data-driven. Para 
elaborar um storytelling é necessário ter atenção a três conceitos principais: quem é 
o público ao qual será apresentado, o quê está sendo comunicado e como será 
realizada a análise. Além disso, é fundamental que o orador demonstre domínio dos 
dados que está apresentando, articulando sua narrativa de forma clara, objetiva e 
concisa, de modo a garantir que a mensagem seja realmente compreendida e cause 
impacto. A evolução da tecnologia permitiu o avanço de pesquisas no tema de 
visualização de dados, mas também traz desafios, como a grande variedade de dados 
provenientes do Big Data. Com isso, fica clara a necessidade de compreensão dos 
dados e dos métodos para analisá-los. 

 
Palavras-chave: Narrativa de dados; análise de dados, visualização de dados; 

orientação por dados; dados 
 
 



 
 

ABSTRACT 
 

Data can be defined as a simplification of the real world, in such a way that 
their visualization functions as an abstraction of reality, allowing the identification of 
relationships and patterns that would otherwise remain hidden. The connection 
between data and their real-world representation is essential to give meaning to the 
visual aspect of the analysis, and it is the researcher’s responsibility to ensure this 
correspondence. Given the growing availability and complexity of data, the ability to 
present them in an accessible and intelligible manner has become an essential skill in 
the contemporary world.In this context, this study aims to highlight the importance of a 
well-founded and structured data analysis, which is fundamental in a world increasingly 
immersed in a data-driven culture. To construct effective storytelling, it is necessary to 
pay attention to three main concepts: who the target audience is, what is being 
communicated, and how the analysis will be conducted. Furthermore, it is crucial that 
the presenter demonstrates mastery of the data being presented, articulating their 
narrative clearly, objectively, and concisely, so as to ensure that the message is truly 
understood and creates impact. Technological evolution has enabled advances in 
research on data visualization but also poses challenges, such as the wide variety of 
data originating from Big Data. Therefore, the need to understand data and the 
methods used to analyze them becomes evident. 

 
Keywords: Storytelling; data analysis; data visualization; data-driven; data 
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1 PARECER TÉCNICO 

 

Nathan Yau (2013), em Data Points, define os dados como uma simplificação 

do mundo real, de forma que sua visualização funcione como uma abstração da 

realidade. Ele defende que essa visualização não atua de forma negativa, mas permite 

que o foco seja afastado dos dados individuais, uma vez que a forma como um dado 

específico se relaciona com o conjunto é muito importante em uma análise.  

Esse trabalho tem como objetivo evidenciar a importância de uma análise de 

dados bem fundamentada, com storytelling estruturado e apresentação criada 

corretamente de acordo com o público alvo da análise. Seu tema é fundamental em 

um ambiente corporativo cada vez mais voltado para dados, e com cultura data-driven.  

Houve um tempo em que a Ciência da Informação focava suas preocupações 

em como coletar, organizar, armazenar e recuperar dados, no entanto atualmente, a 

visualização desses dados é um importante tema, com foco em proporcionar novas 

interpretações e significados (Rodrigues; Dias, 2017). A utilização das técnicas de 

visualização de dados é considerada uma estratégia emergente e de inovação e tem 

recebido cada vez mais atenção em pesquisas (Cairo, 2012; Manovich, 2011; Dur, 

2014 citados por Rodrigues; Dias, 2017). 

Silva (2021) aborda o avanço da Tecnologia da Informação como possibilitador 

da cultura visual e representação gráfica de dados. Ele defende que a visualização de 

dados é em geral compreendida como um "equivalente moderno da comunicação 

visual" (Silva, 2021, p. 207), com objetivo de transmitir informações com clareza e 

eficiência através de gráficos e tabelas, auxiliando na análise e raciocínio sobre os 

dados. O autor também diferencia os conceitos de infografia e visualização de dados. 

Enquanto a visualização de dados conta com facilidade de manipulação, que pode ser 

realizada com a instalação de softwares (Sato, 2017), a infografia é estática.  

 A conexão entre os dados e a representação real é fundamental e 

responsabilidade do pesquisador (Yau, 2013), ela é importante para dar significado à 

parte visual da análise, e fundamental para uma análise de dados reflexiva. A 

capacidade de contar histórias com dados é uma habilidade importante no mundo 

atual, de grande volume de dados. Uma visualização de dados eficaz pode decidir o 

sucesso ou fracasso na comunicação de um estudo (Knaflic, 2019). 
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 Cole Knaflic (2019) faz uma interessante abordagem do tema, quando ao definir 

o que de fato deve ser o foco em uma análise de dados, difere análise exploratória e 

análise explanatória. De acordo com a autora, o passo de analisar de forma 

exploratória faz com que o analista compreenda os dados e defina quais deles levarão 

à uma análise que transforme dados em informação. Enquanto a  

explanatória é responsável por passar ao público uma história dos dados específicos 

selecionados anteriormente. Ela defende que uma análise deve começar pelo 

entendimento de três conceitos: quem, o quê e como. 

 O conceito de quem é referente ao público da análise. Deve-se entendê-lo e 

também assimilar como ele o interpreta. É importante ser o mais específico possível 

ao definir o público, para fazer uma comunicação eficiente.  

Quanto ao o quê, deve-se dar relevância ao que está comunicando. Ela orienta 

que o analista tome uma postura confiante ao apresentar a análise, uma vez que tem 

conhecimento sobre os dados os quais está apresentando. É importante também 

definir o mecanismo de comunicação com o público, que delimita como a informação 

será transmitida ao público e por qual canal.  

O conceito de como diz respeito a quais dados estão disponíveis e ajudarão na 

apresentação da ideia. Além disso, quais são as ferramentas utilizadas para 

apresentar os dados visualmente. 

 É crucial ao orador transmitir ao público da análise que possui o domínio dos 

dados do estudo. Knaflic cita Nancy Duarte (2020) ao falar sobre o conceito de ‘A 

Grande Ideia’, que corrobora com a necessidade de articular sua história de forma 

clara e concisa. São três componentes que definem a Grande Ideia: articular o ponto 

de vista único, transmitir o que é de interesse e formar uma frase completa. Abordando 

ainda a necessidade de conhecer efetivamente o material do estudo, Knaflic também 

define o conceito de ‘História de 3 minutos’, em que deve-se pensar formas de 

sintetizar suas ideias principais, a fim de garantir que o analista seja claro e consiga 

articular a história que quer contar. 

A visualização de dados torna-se cada vez mais um tema importante, com mais 

atenção em pesquisas e tendo a evolução da tecnologia como um possibilitador desse 

avanço (Silva, 2021). Ela tem como objetivo transmitir informações de forma clara e 

eficiente, através de gráficos e tabelas, de forma a auxiliar análises sobre os dados 

(Silva, 2021). No entanto, é imprescindível que haja conexão entre os dados e a 

representação real, para que a análise tenha significado (Yau, 2013), uma vez que a 
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eficiência da visualização de dados é fundamental para o sucesso de um estudo 

(Knaflic, 2019). É crucial também, ao realizar uma análise, ter um público alvo bem 

definido, a fim de criar uma comunicação eficiente (Knaflic, 2019). O avanço da 

tecnologia também traz desafios para o tema, uma vez que com o Big Data, existe 

uma grande velocidade e variedade de dados, aumentando a dificuldade em garantir 

a qualidade e segurança deles. Diante do exposto, pode-se concluir que esses 

desafios corroboram com a necessidade de compreensão dos dados e dos 

metadados e também de quais métodos vão ser utilizados para tratá-los e analisá-los. 
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APÊNDICE A -  INTRODUÇÃO À INTELIGÊNCIA  

 

A – ENUNCIADO 
 

1 ChatGPT  
a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado. 
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas 

em sala. Explique o porquê. 
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio 

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências. 
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 

abordagens vistas em sala. Explique o porquê. 
 

2 Busca Heurística 
 

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a 

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo 

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha reta, 

que pode ser observada na tabela abaixo. 

 

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde 

que seja digitalizada (foto) e convertida para PDF. 

 

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi 
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um 
formato em blocos, planilha, ou qualquer outra representação. 

 

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.  
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3 Lógica  
 

Verificar se o argumento lógico é válido. 

 

Se as uvas caem, então a raposa as come 

Se a raposa as come, então estão maduras 

As uvas estão verdes ou caem 

 

Logo 

 

A raposa come as uvas se e somente se as uvas caem 

 

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas 

práticas. 

 

 

Dicas:  

 

1. Transformar as afirmações para lógica: 

 

p: as uvas caem 

q: a raposa come as uvas  

r: as uvas estão maduras 

 

2. Transformar as três primeiras sentenças para formar a base de conhecimento 

 

R1:   

R2:    

R3:   

 

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com 

essas três primeiras sentenças devemos derivar . Cuidado com a ordem em que as fórmulas 

são geradas. 
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Equivalência Implicação: (  → ) equivale a (¬   ) 

 

Silogismo Hipotético:   → ,  →    →  

 

Conjunção: ,      

 

Equivalência Bicondicional: (   ) equivale a (  → )  (  → ) 

 

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato 
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão descritas 
acima e no material. 

 

4 Redes Neurais Artificiais  
 

Seja a RNA da figura abaixo. 

 

 
 

Os neurônios N1, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação 

tangente hiperbólica (pesquise a fórmula e aplique). 

 

Dada a entrada x1=-3, x2=1, dê: 

 

a) (6,25 pontos) Valor de saída do neurônio N1 
b) (6,25 pontos) Valor de saída do neurônio N2 
c) (6,25 pontos) Valor de saída do neurônio N3 
d) (6,25 pontos) Valor de saída da rede como um todo 
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B – RESOLUÇÃO 
 

1a.  

Inteligência Artificial (IA) é um campo da ciência da computação que se 

concentra no desenvolvimento de sistemas e algoritmos que podem realizar tarefas 

que normalmente exigiriam inteligência humana. Isso inclui habilidades como 

aprendizado, raciocínio, resolução de problemas, reconhecimento de padrões, 

compreensão de linguagem natural e tomada de decisões.  

Os sistemas de IA são projetados para processar grandes quantidades de 

dados, identificar padrões e tomar decisões ou realizar ações com base nesses 

padrões. Eles podem usar uma variedade de técnicas, incluindo aprendizado de 

máquina, redes neurais, lógica simbólica, algoritmos de otimização e muito mais.  

A IA tem aplicações em uma ampla gama de áreas, incluindo reconhecimento 

de fala, visão computacional, processamento de linguagem natural, diagnóstico 

médico, automação industrial, finanças, jogos, entretenimento e muito mais. Nos 

últimos anos, tem havido avanços significativos na IA, impulsionados pelo aumento 

da capacidade computacional, melhores algoritmos e grandes conjuntos de dados 

disponíveis para treinamento de modelos de IA. 

 

1b. 

 Pensar como humanos: Com base na resposta fornecida pelo ChatGPT, a partir 

das IAs são implementados sistemas que visam realizar tarefas que exigem 

inteligência humana: "(...) podem realizar tarefas que normalmente exigiriam 

inteligência humana. Isso inclui habilidades como aprendizado, raciocínio, resolução 

de problemas, reconhecimento de padrões, compreensão de linguagem natural e 

tomada de decisões.". A ideia de implementar uma inteligência humana pode implicar 

em pensar como humanos.  

Agir racionalmente: Na resposta é mencionado que IAs são projetadas para 

processar grandes volumes de dados e a partir deles tomar decisões ou realizar 

ações: "Os sistemas de IA são projetados para processar grandes quantidades de 

dados, identificar padrões e tomar decisões ou realizar ações com base nesses 

padrões.". Portanto, uma IA vai dar um resultado conforme os dados que foram 

utilizados para análise e aprendizado, sendo adaptável conforme a situação.  
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Pensar racionalmente: Na resposta do ChatGPT, é citada a possibilidade de 

aplicação em diversas áreas e como os avanços obtidos nos últimos anos vão de 

encontro a melhores algoritmos e aumento da capacidade computacional, pode-se 

relacionar à abordagem de pensar racionalmente. Nessa abordagem, a IA busca 

modelar o processo de raciocínio correto e depende de poder computacional, 

premissas corretas e algoritmos que consigam resolver os problemas para um 

resultado logicamente certo.  

Agir como humanos: Apesar de o ChatGPT falar em uso de inteligência 

humana nas IAs, levando à abordagem de pensar como humanos “(...) podem realizar 

tarefas que normalmente exigiriam inteligência humana”, para que uma IA pense 

como humano, todo o processo de pensamento deve ser mapeado: introspecção, 

experimentos psicológicos, imagens cerebrais e ainda o fator pessoal. Quando todo 

esse processo for determinado, então poderemos ter IAs com pensamento humano. 

Com isso, podemos dizer que as IAs existentes, por mais que consigam realizar 

tarefas humanas, não pensam como humanos, e sim imitam seu comportamento. 

 

1c.  

 ChatGPT é um aplicativo desenvolvido pela OpenAI. Usando os modelos de 

linguagem GPT, ele pode responder suas perguntas, escrever textos, redigir e-mails, 

manter uma conversa, explicar código em diferentes linguagens de programação, 

traduzir linguagem natural em código e muito mais - ou pelo menos tentar - tudo 

baseado na linguagem natural em que você o alimenta.  

ChatGPT usa aprendizado profundo, um subconjunto de aprendizado de 

máquina, para produzir texto semelhante ao humano por meio de redes neurais 

transformadoras. O transformador prevê o texto – incluindo a próxima palavra, frase 

ou parágrafo – com base na sequência típica de seus dados de treinamento. O 

treinamento começa com dados genéricos e depois passa para dados mais 

personalizados para uma tarefa específica. O ChatGPT foi treinado com texto online 

para aprender a linguagem humana e, em seguida, usou transcrições para aprender 

o básico das conversas.  

O ChatGPT é ajustado a partir do GPT-3.5, um modelo de linguagem treinado 

para produzir texto. Foi otimizado para diálogo usando Aprendizado por Reforço com 

Feedback Humano (RLHF) – um método que usa demonstrações humanas e 
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comparações de preferências para orientar o modelo em direção ao comportamento 

desejado.  

Os treinadores humanos fornecem conversas e classificam as respostas. 

Esses modelos de recompensa ajudam a determinar as melhores respostas. Para 

continuar treinando o chatbot, os usuários podem votar positivamente ou 

negativamente em sua resposta clicando nos ícones de polegar para cima ou polegar 

para baixo ao lado da resposta. Os usuários também podem fornecer feedback 

adicional por escrito para melhorar e ajustar o diálogo futuro.  

 

Referências:  

GUINNESS, Harris. How does ChatGPT work?. 2023. Disponível em 

https://zapier.com/blog/how-does-chatgpt-work/ 

HETLER, Amanda. Definition: ChatGPT. 2023. Disponível em 

https://www.techtarget.com/whatis/definition/ChatGPT 

OPENAI. What is ChatGPT?. 2024. Disponível em 

https://help.openai.com/en/articles/6783457-what-is-chatgpt 

 

1d.  

Agir como Humanos: Essa abordagem se enquadra com a forma como o 

ChatGPT funciona, pois o objetivo não é definir o que é pensamento nem implementar 

algum processo cognitivo, já que não é necessário verificar respostas corretas, basta 

que ele consiga imitar o comportamento humano, além de utilizar habilidades como 

aprendizado, raciocínio e linguagem natural, sendo esta última a principal utilizada por 

ele gerando respostas plausíveis e que podem facilmente serem identificadas como 

"escritas por um ser humano".  

Agir racionalmente: O ChatGPT também pode ser classificado dentro dessa 

abordagem, pois tem como objetivo implementar agentes que respondem a situações 

e buscam o melhor resultado possível, isso pode ser demonstrado na representação 

do conhecimento e raciocínio para que tome boas decisões além das habilidades 

descritas como resoluções de problemas, reconhecimento de padrões e tomada de 

decisões. O ChatGPT, sendo um sistema treinado com uma base de dados, consegue 

utilizar esse arcabouço de informações para gerar respostas, na grande maioria das 

vezes, corretas. 
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2a.  

 Abaixo está a melhor rota escolhida pelo algoritmo de busca heurística 

aplicando o algoritmo A*, representada em azul. 

 

 

FIGURA 1 - Rota escolhida pelo algoritmo  

 

FONTE: A autora (2025). 

 

3a. 

Legenda: 
p: Uvas caem 
q: Raposa come as uvas 
r: Uvas estão maduras 
 
Base de Conhecimento (BC): 
R1: p → q   (Se as uvas caem, então a raposa as come) 
R2: q → r   (Se a raposa as come, então estão maduras) 
R3: ¬r  p  (As uvas estão verdes ou as uvas caem) 
R4: r → p                  COND, R3 
R5: q → p                  SH, R2, R4 
R6: (q → p)  (p → q)      CONJ, R5, R1 
R7: q ↔ p                  BICOND, R6 
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Logo, q ↔ p  (A raposa come as uvas se e somente se as uvas caem) pode ser 
derivado a partir da base de conhecimento (BC).  BC  q ↔ p 
 
4. 

Dada a entrada x1 = - 3,  x2 = 1, dê: 
 

a. Σ  +  = − 3 * 0.2 + 1 * 0.8 + 1 * 0.1 = 0.3  
u = 0.3  
linear(u) = u = 0.3 
Saída N1 = 0.3 

 
b. Σ  +  = − 3 * 0.1 + 1 * 0.2 + 1 * 0.4 = 0.3  

u = 0.3  
linear(u) = u = 0.3  
Saída N2 = 0.3 

 
c. Σ  +  = − 3 * 0.9 + 1 * 0.5 + 1 * 0.2 = − 2  

u = − 2  
linear(u) = u = − 2  
Saída N3 = − 2  
 

d. Σ  +  = 0. 3 * 0. 9 + 0. 3 * 0. 3 + (− 2) * 0. 3 + 1 * 0. 1 = − 0. 14  
u = − 0. 14  
tan(u) =   =  = 
− 0. 1391 
Saída N4 = − 0. 1391 
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APÊNDICE B -  LINGUAGEM DE PROGRAMAÇÃO APLICADA 

A – ENUNCIADO 
 

Nome da base de dados do exercício: precos_carros_brasil.csv 

Informações sobre a base de dados:  
Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021, 

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A base 

original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser 

utilizada no presente exercício. 

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna 

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores 

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém todos 

os dados originais da tabela FIPE. 

  
Metadados: 
 

Nome do campo Descrição 

year_of_reference O preço médio corresponde a um 

mês de ano de referência 

month_of_reference O preço médio corresponde a um 

mês de referência, ou seja, a FIPE atualiza 

sua tabela mensalmente 

fipe_code Código único da FIPE 

authentication Código de autenticação único para 

consulta no site da FIPE 

brand Marca do carro 

model Modelo do carro 

fuel Tipo de combustível do carro 

gear Tipo de engrenagem do carro 

engine_size Tamanho do motor em centímetros 

cúbicos 
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year_model Ano do modelo do carro. Pode não 

corresponder ao ano de fabricação 

avg_price Preço médio do carro, em reais 

 
Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato 

que será considerado correto na resolução do exercício. 
 

1 Análise Exploratória dos dados 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 

a. Carregue a base de dados media_precos_carros_brasil.csv 
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o 

problema de valores faltantes 
c. Verifique se há dados duplicados nos dados 
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de 

informações das variáveis numéricas e categóricas (estatística descritiva dos dados) 
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand) 
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados 

na Análise Exploratória dos dados 
 

2 Visualização dos dados 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 

a. Gere um gráfico da distribuição da quantidade de carros por marca 
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro 
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 

(variável de tempo no eixo X) 
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem 
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d 
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível 
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f 

 

 

3 Aplicação de modelos de machine learning para prever o preço médio dos carros 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis 
independentes do modelo.A variável target é avg_price. Observação: caso julgue necessário, 
faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo. 
Indique quais variáveis foram transformadas e como foram transformadas 

b. Crie partições contendo 75% dos dados para treino e 25% para teste 
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca 

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário, 
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram 
inputados e indique o treinamento de cada modelo 

d. Grave os valores preditos em variáveis criadas 
e. Realize a análise de importância das variáveis para estimar a variável target, para cada 

modelo treinado 
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f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na 
análise de importância de variáveis 

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R² 
h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor 

resultado e a métrica de avaliação utilizada 
 

B - RESOLUÇÃO 
 

1a. 
import pandas as pd  
import matplotlib.pyplot as mpb  
import seaborn as sns  
#lendo o arquivo com dados carros  
pd.read_csv('/content/drive/MyDrive/IAA_UFPR/IntroducaoPyt
hon/dados.csv’) 

 

1b.  
#conferindo a existência de dados faltantes  
carros.isna().sum() 
 

QUADRO 1 - Quantidade de dados faltantes por variável 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FONTE: A Autora (2025). 

 

Variável Quantidade 

year_of_reference 65245 

month_of_reference 65245 

fipe_code 65245 

authentication 65245 

brand 65245 

model 65245 

fuel 65245 

gear 65245 

engine_size 65245 

year_model 65245 

avg_price_brl 65245 
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Observou-se que em 24% das linhas (65245) dos dados originais, todas as 

variáveis estavam vazias. Como nesses casos nenhuma informação foi preenchida, 

o mais prudente é a exclusão dessas linhas. 

 

1c.  
#verificando a existência de dados duplicados  
carros2.duplicated().sum() 
#vamos olhar quais são as linhas duplicadas  
linhas_duplicadas = 
carros2[carros2.duplicated(keep=False)] 
linhas_duplicadas.head() 
 

Foram encontradas 2 linhas duplicadas, cada uma com uma gêmea, e como 

a base refere-se ao cadastro de modelos de carros, a duplicidade não faz sentido e 

por isso foi excluída.  

 

1d.  
#estatisticas descritivas 
carros2[colunas_numericas].describe() 
carros2[colunas_categoricas].describe()  

 

QUADRO 2 - Estatísticas descritivas de dados numéricos 

 year_of_reference engine_size avg_price_brl 

count 202295 202295 202295 

mean 2021,56 1,82 52756,77 

std 0,57 0,73 51628,91 

min 2021 1,00 6647 

25% 2021 1,40 22855 

50% 2022 1,60 38027 

75% 2022 2,00 64064 

max 2023 6,20 979358 

FONTE: A autora (2025). 
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QUADRO 3 - Estatísticas descritivas de dados categóricos 

 month 
fipe_cod

e 

authentic
ation brand model fuel gear 

count 202295 202295 202295 202295 202295 202295 202295 

unique 12 2091 202295 6 2112 3 2 

top January 003281-6 

cfzlctzfwr

qp Fiat 

Palio 

Week. 

Adv/Adv 

TRYON 

1.8 mpi 

Flex Gasoline manual 

freq 24260 425 1 44962 425 168684 161883 

FONTE: A autora (2025). 

 

1e.  
  carros2['model'].value_counts(normalize=True)  

 

FIGURA 2 - Contagem por marca e modelo dos automóveis 

 

FONTE: A autora (2025). 

 

1f.  
 carros2['fuel'].value_counts(normalize=True)  

carros2['gear'].value_counts(normalize=True)  
 

Através da análise exploratória, observou-se que a base de dados analisada é 

composta por 2112 modelos de carros distintos, com ano de fabricação entre 2000 e 

2023. A mediana do preço médio dos carros foi de R$38 mil reais, e o modelo mais 

barato e mais caro custavam respectivamente, R$6,6 mil e R$979 mil. A marca mais 
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frequente dos carros cadastrados foi Fiat, 83% dos automóveis são movidos à 

gasolina e 80% do tipo manual.  

 

2a.  
qtd_marcas = carros2['brand'].value_counts()  
grafico1 = mpb.bar(qtd_marcas.index,qtd_marcas.values)  
mpb.xticks(rotation=90) mpb.bar_label(grafico1, size =8)  
mpb.title('Quantidade de carros por marca')  
mpb.ylabel('Quantidade de carros', size =9) 
 

GRÁFICO 1 - Quantidade de carros por marca

 
FONTE: A autora (2025). 

 

 

2b. 
tipo_engrenagem = carros2['gear'].value_counts()  
grafico2 = 
mpb.bar(tipo_engrenagem.index,tipo_engrenagem.values) 
mpb.bar_label(grafico2, size =8)  
mpb.title('Quantidade de carros por tipo de engrenagem')  
mpb.ylabel('Quantidade de carros', size =9) 
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GRÁFICO 2 - Quantidade de carros por tipo de embreagem 

 
FONTE: A autora (2025). 

 

2c. 
grafico3 = 
mpb.plot(media_preco_mes.index,media_preco_mes.values) 
mpb.ylim(0,60000)  
for x, y, text in zip(media_preco_mes.index, 
media_preco_mes.values, media_preco_mes) 
mpb.text(x, y, text,size=6)  
mpb.title('Média de preço por mês - ano 2022')  
mpb.ylabel('Média preço $', size =9) 

 

 

GRÁFICO 3 - Média de preço por mês (2022) 

 
FONTE: A autora (2025). 
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2d. 
grafico4 = sns.barplot(x='brand', y='PrecoMedio', 
hue='gear', data=media_preco_marca_engrenagem)  
mpb.xticks(rotation=45)  
 

GRÁFICO 4 - Média de preço por fabricante e tipo de embreagem

 
FONTE: A autora (2025). 

 

2e.  

Veículos com transmissão manual são, em média, mais baratos que os 

veículos com transmissão automática. Porém, há uma exceção nos veículos da marca 

Renault, que o valor médio dos veículos com transmissão automática são menores, 

isso pode ser explicado pelo fato de serem carros mais antigos, conforme foi 

observado quando a mediana do ano dos carros foi consultada. Observou-se também 

que a média de preço dos carros manuais da Fiat é mais baixa do que das demais 

marcas, seguidos pelos carros manuais da VW.   

 

2f. 
grafico5 = 
sns.barplot(x='brand',y='PrecoMedio',hue='fuel', 
data=media_preco_marca_combustivel) 
mpb.xticks(rotation=45)  
mpb.title('Média de preço por marca e combustível')  
mpb.ylabel('Média preço $', size =9) 
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GRÁFICO 5 - Média de preço por fabricante e tipo de combustível 

  
FONTE: A autora (2025). 

 

2g. 

Veículos a diesel são, em média, mais caros. Isso pode estar associado ao fato 

de que esses veículos são geralmente de grande porte e que são, intrinsecamente, 

mais caros. Também observa-se que algumas marcas não possuem veículos movidos 

exclusivamente a álcool, e isso pode ser pelo fato de que esse tipo de veículo é mais 

antigo e que veículos flex na FIPE são contabilizados como movidos a gasolina. 

 

3a. 
dados_num=carros_modelo[['year_of_reference','year_model'
,'avg_price_brl','engine_size]] 
sns.heatmap(dados_num.corr("pearson"), annot = True)  
mpb.title("Mapa de Correlação das Variáveis Numéricas", 
fontsize = 10)  
mpb.show() 
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FIGURA 3 - Mapa de Correlação das Variáveis Numéricas 

 
FONTE: A Autora(2025). 

 
mpb.scatter(dados_num['engine_size'],dados_num['avg_price
_brl']) mpb.title('Dispersão entre tamanho do motor e 
preço médio') 
 

GRÁFICO 6 - Dispersão entre tamanho do motor e preço médio 

 
FONTE: A Autora(2025). 

 
mpb.scatter(dados_num['year_model'],dados_num['avg_price_
brl']) mpb.title('Dispersão entre ano do modelo e preço 
médio') 
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GRÁFICO 7 - Dispersão entre ano do modelo e preço médio 

 
FONTE: A Autora(2025). 

 

Foi feita a matriz de correlação entre as variáveis numéricas e observada 

correlação de 0,56 entre ano do modelo do carro e preço médio do veículo, indicando 

correlação direta e moderada. Também foi identificada correlação positiva, porém 

fraca, phi = 0,46 entre preço médio e tamanho do motor. A correlação entre ano de 

referência e preço médio do veículo foi muito próxima de 0, não demonstrando haver 

correlação entre essas duas variáveis, e por isso não será utilizada no modelo. 

Também não será considerada a variável mês de referência, uma vez que o ano de 

referência não entra no modelo. Para as variáveis categóricas, foi feita a análise 

gráfica através dos gráficos da parte 2 e dos boxplots da variável resposta x variável 

independente para a seleção.  

 

3b.  
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, 

test_size=0.25, random_state=123) 

 

3c. 
#Random Forest Sem Parâmetros 
RF_semParametros=RandomForestRegressor() 
RF_semParametros.fit(X_train,Y_train) 
 

 
#Random Forest Com Parâmetros 
RF_comParametros=RandomForestRegressor(min_samples_leaf=3
0, min_samples_split=30, n_estimators=100, 
random_state=856 
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RF_comParametros.fit(X_train,Y_train) 
 
#XGBost 
 XGBoost_semParametro = XGBRegressor() 
XGBoost_semParametro.fit(X_train,Y_train) 

 

3d. 
Yhat_RF_semParametros = RF_semParametros.predict(X_test)  
Yhat_RF_comParametros = RF_comParametros.predict(X_test) 
Yhat_XG = XGBoost_semParametro.predict(X_test) 

 

3e. 
#Random Forest Sem Parâmetros 
feature_importances_md1=pd.DataFrame(RF_semParametros.fea
ture_importance_, index = X_train.columns, 
columns=['importance’]) 
feature_importances_md1 
 
#Random Forest Com Parâmetros 
feature_importances_md2 = 
pd.DataFrame(RF_comParametros.feature_importances_, index 
= X_train.columns, columns=['importance’] 
feature_importances_md2 
 
#XGBost 
feature_importances_md3=pd.DataFrame(XGBoost_semParametro
.feature_importances_, index = X_train.columns, 
columns=['importance'])  
feature_importances_md3 
 

3f. 

 Nos três modelos a variável engine_size teve maior importância (sempre maior 

que 0,4). Nos modelos de Random Forest, duas variáveis, engine_size e year_model 

eram as responsáveis por quase 90% desse índice em cada ajuste. Apenas no 

XGBoost year_model não assumiu a segunda posição quanto à importância, 

perdendo para a variável fuel.  

  

3g. 
#Random Forest sem parametros 
mse_md1 = mean_squared_error(Y_test, 
Yhat_RF_semParametros)  
mae_md1 = mean_absolute_error(Y_test, 
Yhat_RF_semParametros) 
r2_score(Y_test, Yhat_RF_semParametros) 
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#Random Forest com parametro 
mse_md2 = mean_squared_error(Y_test, 
Yhat_RF_comParametros) 
mae_md2 = mean_absolute_error(Y_test, 
Yhat_RF_comParametros) 
r2_score(Y_test, Yhat_RF_comParametros)  
 
#XGBost 
mse_m3 = mean_squared_error(Y_test, Yhat_XG)  
mae_md3 = mean_absolute_error(Y_test,Yhat_XG) 
r2_score(Y_test,Yhat_XG) 

 

 

QUADRO 4 - Comparação entre modelos 

Modelo Configuração MSE MAE R² 
Variáveis 

Importantes 

RF Sem parâmetros 53.923.315,28 4.194,11 0,98 

engine_size 

(0,46), 

year_model 

(0,40) 

RF 

min nó folha: 30, min 

abertura nó: 30, máx 

árvores: 100, 

semente bootstrap 134.879.179,34 5.197,45 0,95 

engine_size 

(0,47), 

year_model 

(0,42) 

XGBoost Sem parâmetros 69.512.526,98 4.867,86 0,97 

engine_size 

(0,44), fuel 

(0,20), 

year_model 

(0,17) 

FONTE: A autora (2025) 

 

Foram ajustados três modelos para comparação: random forest sem 

parâmetros, random forest com parâmetros e XGBost sem parâmetros. Os três 

modelos tiveram bom ajuste aos dados, com R2 sempre superior a 0,9. No entanto, a 

Random Forest sem parâmetros pré definidos, apresentou MSE e MAE menores do 

que os demais modelos, e teve o melhor valor de R2, 0,98. Com isso, esse modelo, 
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que teve como variáveis importantes engine_size (tamanho do motor) e year_model 

(ano do modelo) foi escolhido como o melhor. 

 

3h.  

 Os três modelos tiveram bom ajuste aos dados, com R2 sempre superior a 0,9. 

No entanto, a Random Forest sem parâmetros pré-definidos, apresentou MSE e MAE 

menores do que os demais modelos, e teve o melhor valor de R2, 0,98. Com isso, 

esse modelo, que teve como variáveis importantes engine_size (tamanho do motor) e 

year_model (ano do modelo) foi escolhido como o melhor. 
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APÊNDICE C -  LINGUAGEM R 

 

A – ENUNCIADO 
 
1 Pesquisa com Dados de Satélite (Satellite) 

 

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma 

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é 

prever esta classificação, dados os valores multiespectrais. 

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) consiste 

em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na 

região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e 

duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a 

preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém 

2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo 

de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3 

completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro 

bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número 

indicando o rótulo de classificação do pixel central. 

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de 

vegetação, solo cinza muito úmido. 

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você 

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro 

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores 

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, 

com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro 

valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode 

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma 

vizinhança 3x3 atravessa um limite. 

O banco de dados se encontra no pacote mlbench e é completo (não possui dados faltantes). 

Tarefas: 

1. Carregue a base de dados Satellite 
2. Crie partições contendo 80% para treino e 20% para teste 
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.  
4. Escolha o melhor modelo com base em suas matrizes de confusão.  
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada 
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2 Estimativa de Volumes de Árvores 
 

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal 

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário 

abatê-las. 

O processo é feito pela coleta de dados (dados observados) através do abate de algumas 

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes 

dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população. 

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em 

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo 

de Spurr é dado por: 

 

Volume = b0 + b1 * dap2 * Ht 
 

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários modelos 

alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão 

envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma 

equação que pode ser usada para prever o volume de outras árvores. 

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de 

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação. 

 

Tarefas 

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv) 
2. Eliminar a coluna NR, que só apresenta um número sequencial 
3. Criar partição de dados: treinamento 80%, teste 20% 
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes 

Neurais (neuralnet) e o modelo alométrico de SPURR 
 

 O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht 
 

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5)) 
 

5. Efetue as predições nos dados de teste 
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados 

observados 
 

 Coeficiente de determinação: R2 
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onde  é o valor observado,  é o valor predito e  é a média dos valores  observados. 

Quanto mais perto de 1 melhor é o modelo; 

 

 Erro padrão da estimativa: Syx 

 
 esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo; 

 

 Syx% 

 
 

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo; 

 

7. Escolha o melhor modelo. 
 

 

B – RESOLUÇÃO 
 

1.1. 
mirror <- "cran-r.c3sl.ufpr.br" options(repos = mirror)  
# Instale o pacote mlbench se ainda não o tiver instalado 
install.packages("mlbench")  
# Carregue o pacote  
library(mlbench) 
data(Satellite) 

 

1.2 
  set.seed(123) 
 particao <- createDataPartition(Satellite$classes, p = 0.8, 
list = FALSE) 
 
1.3 

# 3.1 Treinamento do modelo Random Forest  
modelo_rf <- randomForest(classes ~ ., data = dados_treino)  
# 3.2 Treinamento do modelo SVM  
modelo_svm <- svm(classes ~ ., data = dados_treino)  
# 3.3 Treinamento do modelo RNA  
modelo_rna <- neuralnet(classes ~ ., data = dados_treino, 
hidden = c(5, 2), linear.output =FALSE) 
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1.4 
library(caret)  
# Função para calcular métricas de desempenho  
calcular_metricas <- function(matriz_confusao) {  
# Precisão (precision)  
precisao <- diag(matriz_confusao) / 
colSums(matriz_confusao)  
# Recall  
recall <- diag(matriz_confusao) / rowSums(matriz_confusao)  
# F1-score  
f1_score <- 2 * (precisao * recall) / (precisao + recall)  
# Retornar as métricas  
return(data.frame(precisao = precisao, recall = recall, 
f1_score = f1_score)) }  
# Função para imprimir as métricas  
imprimir_metricas <- function(nome_modelo, 
matriz_confusao) { 
cat("\nModelo:", nome_modelo, "\n")  
print(calcular_metricas(matriz_confusao)) }  
# Função para plotar a matriz de confusão  
plotar_matriz_confusao <- function(nome_modelo, 
matriz_confusao) { confusionMatrix(matriz_confusao, main = 
nome_modelo) } 

 

 

QUADRO 5 - Métricas  modelo Random Forest 

 

 

 

 

 

 

 

 

 

FONTE: A Autora(2025). 

 

 

 

 

 

      precisao recall f1_score 

red soil 0,993 0,971 0,982 

cotton crop 0,986 0,986 0,986 

grey soil 0,967 0,906 0,935 

damp grey soil 0,72 0,818 0,766 

vegetation stubble 0,851 0,96 0,902 

very damp grey soil 0,917 0,899 0,908 
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QUADRO 6 - Métricas modelo SVM 

 

 

 

 

 

 

 

 

 

FONTE: A Autora(2025). 

 

QUADRO 7 - Métricas modelo RNA 

 

 

 

 

 

 

 

 

 

FONTE: A Autora(2025). 

 

1e. 

Na atividade, foram treinados três modelos: Random Forest, SVM (Support 

Vector Machine) e RNA (Rede Neural Artificial), utilizando os dados de treinamento. 

Cada modelo foi treinado para prever as classes com base nas características 

fornecidas pelo conjunto de dados. Em seguida, avaliamos o desempenho de cada 

modelo utilizando os dados de teste. Calculamos métricas como precisão, recall e F1-

Score. A precisão representa a proporção de exemplos previstos como positivos que 

são verdadeiramente positivos, o recall é a proporção de exemplos positivos 

corretamente identificados pelo modelo, e o F1-Score é a média harmônica entre 

 precisao recall f1_score 

red soil 0,993 0,959 0,976 

cotton crop 0,979 0,978 0,979 

grey soil 0,967 0,87 0,916 

damp grey soil 0,632 0,712 0,669 

vegetation stubble 0,808 0,95 0,874 

very damp grey soil 0,87 0,888 0,879 

 precisao recall f1_score 

red soil 0 NaN NaN 

cotton crop 0 NaN NaN 

grey soil 0 NaN NaN 

damp grey soil 1 0,097 0,177 

vegetation stubble 0 NaN NaN 

very damp grey soil 0 NaN NaN 
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precisão e recall, fornecendo uma medida geral do desempenho do modelo. 

Posteriormente, calculamos os valores de F1-Score para cada modelo e identificamos 

aquele com o maior valor como o melhor modelo para esta tarefa. O modelo SVM 

obteve o maior F1-Score, seguido pelo modelo Random Forest. Optamos pelo modelo 

SVM como o melhor devido ao seu alto F1-Score, indicando um bom equilíbrio entre 

precisão e recall. O SVM obteve um F1-Score superior ao do Random Forest, o que 

confirma sua capacidade na classificação das classes com base nos dados de satélite. 

Assim, considerando as métricas de desempenho, selecionamos o SVM como o 

modelo mais adequado para esta tarefa. 

 

2. 

2.1 
#01 Carregar o arquivo Volumes.csv 
url_dataset <- 
"http://www.razer.net.br/datasets/Volumes.csv" 
 # Carregando a base de dados (ex 1) 
log(paste("Carregando base de dados de volumes de árvores. 
URL:", url_dataset)) 
 dataset <- read.csv2(url_dataset, header = TRUE,  
sep = ";" 
  

2.2 
 dataset <- dataset[, !names(dataset) %in% "NR"] 
 

2.3 
# Setando uma semente de aleatoriedade 
 set.seed(123) 
 # Criando índices para o treino 
 log("Particionando dados em treino e teste") 
 indices <- createDataPartition(dataset$VOL, p = 0.8, list 
= FALSE) 
 # Separando dados em treino e teste 
 dados_treino <- dataset[indices, ] 
 dados_teste <- dataset[-indices, ] 

 

2.4 
log("Treinando modelo Random Forest") 
 rf <- train(VOL ~ ., data = dados_treino, method = "rf") 
 log("Treinando modelo SVM") 
 svm <- train(VOL ~ ., data = dados_treino, method = 
"svmRadial") 
 log("Treinando modelo Neural Network") 
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 rna <- train(VOL ~ ., data = dados_treino, method = 
"neuralnet") 
 log("Treinando modelo Alométrico de SPURR") 
 alom <- nls(VOL ~ b0 + b1 * (DAP ^ 2) * HT, data = 
dados_treino, start = list(b0 = 0.5, b1 

 

2.5 
log("Realizando predições") 
 predicoes_rf <- predict(rf, dados_teste) 
 predicoes_svm <- predict(svm, dados_teste) 
 predicoes_rna <- predict(rna, dados_teste) 
 predicoes_alom <- predict(alom, dados_teste) 

 

2.6 
# Função para cálculo do coeficiente de determinação R2 
calcular_coef_r2 <- function(observacoes, predicoes) { 
  return(1 - sum((observacoes - predicoes) ^ 2) / 
sum((observacoes - mean(observacoes)) ^ 2)) 
} 
 
# Função para erro padrão de estimativ: Syx 
calcular_erro_syx <- function(observacoes, predicoes) { 
  return(sqrt(sum((observacoes - predicoes) ^ 2) / 
(length(observacoes) - 2))) 
} 
 
# Função para o calculo da porcentagem de erro Syx 
calcular_erro_syx_percent <- function(observacoes, 
predicoes) { 
  return((calcular_erro_syx(observacoes, predicoes) / 
mean(observacoes)) * 100) 
} 
 
# Função para calcular um score com base no valor de R2 e 
Syx 
calcular_score <- function(r2, syx) { 
  return((r2 + (1 - syx)) / 2) 
} 
 
# Função para retornar as metricas de avaliação 
calcular_metricas <- function(observacoes, predicoes, 
nome_modelo) { 
  r2 <- calcular_coef_r2(observacoes, predicoes) 
  syx <- calcular_erro_syx(observacoes, predicoes) 
  syx_percent <- calcular_erro_syx_percent(observacoes, 
predicoes) 
  score <- calcular_score(r2, syx_percent / 100) 
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  return(data.frame(model = nome_modelo, r2 = r2, syx = 
syx, syxPercentage = syx_percent, score = score)) 
} 
 

2.7 

 Na atividade foram treinados quatro modelos: Random Forest, SVM, Redes 

Neurais e modelo alométrico de SPURR. Após os modelos terem sido treinados, foram 

realizadas as predições com os dados para teste e comparado com os valores 

observados. Com esses resultados, foram calculadas três métricas:  

- Coeficiente de determinação (R2)  

- Erro padrão da estimativa (Syx)  

- Porcentagem do erro padrão da estimativa (Syx%)  

Para o primeiro valor, quanto mais perto de 1, melhor. Já para o segundo, 

quanto mais perto de 0, melhor. A terceira métrica é derivada da segunda. Por fim foi 

calculado um score que considera o valor de R 2 e o Syx% (considerando o range de 

valores entre 0 e 1) com a seguinte fórmula:  

score = ( 2 + (1 − )) / 2  

Com esse score foi possível definir qual dos quatro modelos performou melhor, 

sendo que o resultado foi o seguinte (já ordenados do melhor para o pior):  

 

QUADRO 8 - Comparação entre modelos 

 

FONTE: A autora (2025). 

 

Portanto, pode-se concluir que o melhor modelo nesse caso é o modelo de 

Redes Neurais. 

 

Modelo R² Sₓᵧ Sₓᵧ % Score 

RNA 0,88679 0,13545 10,06305 0,89308 

Alométrico 0,86944 0,14546 10,80670 0,88069 

Random 

Forest 0,84867 0,15660 11,63489 0,86616 

SVM 0,79008 0,18444 13,70321 0,82652 
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APÊNDICE D -  ESTATÍSTICA APLICADA I 

 

A – ENUNCIADO 
 

1) Gráficos e tabelas 
 

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados 

(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e “husage” 

(idade do marido) e comparar os resultados 

 

2) Medidas de posição e dispersão 
 

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados 

(15 pontos) Calcular a variância,  desvio padrão e coeficiente de variação das variáveis “age” 

(idade da esposa) e “husage” (idade do marido) e comparar os resultados 

 

3) Testes paramétricos ou não paramétricos 
 

(40 pontos) Testar se as médias (se você escolher o teste paramétrico)  ou as medianas (se 

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do 

marido) são iguais, construir os intervalos de confiança e comparar os resultados. 

Obs:  

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você 

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique sua 

resposta sobre a escolha. 

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes 

citados no item 1 acima.  

 

B – RESOLUÇÃO 
 

1.  
ggplot(dados, aes(age)) + 
geom_histogram(binwidth = 0.5) + 
labs(title = "Histograma idade esposas") 
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GRÁFICO 8 - Histograma de idade das esposas 

 
FONTE: A autora (2025). 

 
ggplot(dados, aes(husage)) + 
geom_histogram(binwidth = 0.5) + 
labs(title = "Histograma idade maridos") 

 

GRÁFICO 9 - Histograma de idade dos maridos

 
FONTE: A autora (2025). 

 
ggplot(dados_teste, aes(idade, fill = gender)) + 
geom_histogram(binwidth = 0.5) + 
labs(title = "Histograma idade esposas x Histograma idade 
maridos") 
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GRÁFICO 10 - Histograma de idades dos maridos e das esposas 

  
FONTE: A autora (2025). 

 
ggplot(dados_teste) + 
geom_boxplot(aes(colour = gender, y = idade)) + 
labs(title = "Boxplot idade esposas x Boxplot idade 
maridos") 
 

GRÁFICO 11 - Boxplot de idade dos maridos e das esposas 

 
FONTE: A autora (2025). 

 

Observamos que a distribuição das idades das esposas está concentrada entre 

30 e 50 anos, com idade máxima de 59 anos. Já para as idades dos maridos, 

observamos nos gráficos, que essa medida atinge valores mais altos, mesmo que 

tenha concentração também em torno de 30 e 50 anos e que homens e mulheres 
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tenham mediana de idade similar, observamos que existem maridos com idade 

superior a 70 anos, que aparecem como outliers no gráfico. 

 
prop.table(table(dados$age)) 
prop.table(table(dados$husage))  

 

QUADRO 9 - Tabela de frequência de idade das esposas 

Age Frequencia Relativa Acumulada 

18 12 0,0021 0,0021 

19 18 0,0032 0,0053 

20 31 0,0055 0,0108 
21 47 0,0083 0,0192 

22 47 0,0083 0,0275 

23 67 0,0119 0,0394 

24 84 0,0149 0,0543 

25 114 0,0202 0,0745 

26 114 0,0202 0,0948 
27 174 0,0309 0,1257 

28 161 0,0286 0,1542 

29 170 0,0302 0,1844 

30 184 0,0327 0,2171 

31 191 0,0339 0,251 

32 187 0,0332 0,2842 
33 180 0,0319 0,3161 

34 204 0,0362 0,3523 

35 187 0,0332 0,3855 

36 205 0,0364 0,4219 

37 217 0,0385 0,4604 

38 202 0,0359 0,4963 
39 171 0,0304 0,5266 

40 181 0,0321 0,5588 

41 158 0,028 0,5868 

42 172 0,0305 0,6173 

43 185 0,0328 0,6502 
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44 185 0,0328 0,683 

45 140 0,0248 0,7078 

46 164 0,0291 0,737 
47 128 0,0227 0,7597 

48 131 0,0233 0,7829 

49 125 0,0222 0,8051 

50 133 0,0236 0,8287 

51 117 0,0208 0,8495 

52 138 0,0245 0,874 
53 103 0,0183 0,8923 

54 109 0,0193 0,9116 

55 104 0,0185 0,9301 

56 91 0,0162 0,9462 

57 104 0,0185 0,9647 

58 104 0,0185 0,9831 
59 95 0,0169 1 

FONTE: A autora (2025). 

 

QUADRO 10 - Tabela de frequência de idade dos maridos 

Husage Frequencia Relativa Acumulada 

19 5 0,0009 0,0009 

20 6 0,0011 0,002 

21 25 0,0044 0,0064 

22 31 0,0055 0,0119 

23 35 0,0062 0,0181 

24 71 0,0126 0,0307 

25 59 0,0105 0,0412 

26 115 0,0204 0,0616 

27 113 0,0201 0,0816 
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28 108 0,0192 0,1008 

29 137 0,0243 0,1251 

30 157 0,0279 0,153 

31 172 0,0305 0,1835 

32 174 0,0309 0,2144 

33 169 0,03 0,2444 

34 196 0,0348 0,2792 

35 161 0,0286 0,3078 

36 174 0,0309 0,3387 

37 195 0,0346 0,3733 

38 169 0,03 0,4033 

39 200 0,0355 0,4388 

40 175 0,0311 0,4698 

41 192 0,0341 0,5039 

42 172 0,0305 0,5344 

43 178 0,0316 0,566 

44 201 0,0357 0,6017 

45 149 0,0264 0,6282 

46 149 0,0264 0,6546 

47 130 0,0231 0,6777 

48 147 0,0261 0,7038 

49 135 0,024 0,7277 
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50 127 0,0225 0,7503 

51 112 0,0199 0,7701 

52 128 0,0227 0,7929 

53 102 0,0181 0,811 

54 104 0,0185 0,8294 

55 126 0,0224 0,8518 

56 103 0,0183 0,8701 

57 106 0,0188 0,8889 

58 86 0,0153 0,9042 

59 91 0,0162 0,9203 

60 81 0,0144 0,9347 

61 74 0,0131 0,9478 

62 62 0,011 0,9588 

63 45 0,008 0,9668 

64 45 0,008 0,9748 

65 30 0,0053 0,9801 

66 18 0,0032 0,9833 

67 14 0,0025 0,9858 

68 14 0,0025 0,9883 

69 13 0,0023 0,9906 

70 8 0,0014 0,992 

71 7 0,0012 0,9933 
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72 9 0,0016 0,9949 

73 6 0,0011 0,9959 

74 2 0,0004 0,9963 

75 7 0,0012 0,9975 

76 4 0,0007 0,9982 

77 2 0,0004 0,9986 

78 2 0,0004 0,9989 

79 2 0,0004 0,9993 

80 1 0,0002 0,9995 

81 1 0,0002 0,9996 

85 1 0,0002 0,9998 

86 1 0,0002 1 

 
FONTE: A autora (2025). 

 

As tabelas de frequência podem ser analisadas como um complemento aos 

gráficos anteriores, a partir delas, observamos que a idade mínima das esposas é 18 

anos (0,2% das mulheres), enquanto a idade mínima dos maridos é de 19 anos (0,09% 

dos homens). As esposas com mais idade na base analisada tinham 59 anos (95 

mulheres, que correspondem a 1,7% da base), enquanto o marido mais velho 86 anos, 

representando 0,01% da base. 

 

2. 
summary(dados$age) 
moda <- sort(table(dados$age), decreasing = T)[1] 
moda 
summary(dados$husage) 
modah <- sort(table(dados$husage), decreasing = T)[1] 
modah 
var(dados$age) 
sd(dados$age) 
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sd(dados$age)/mean(dados$age)*100 
var(dados$husage) 
sd(dados$husage) 
sd(dados$husage)/mean(dados$husage)*100 

 

QUADRO 11 - Tabela de medidas de dispersão e posição - Idades de maridos e esposas 

 Esposas Maridos 

Média 39,4 42,4 

Mediana 39 41 

Moda 37 44 

Variância 99,75 126,07 

Desvio Padrão 9,99 11,23 

Coef. de Variação 25,33 26,45 

 FONTE: A autora (2025). 

 

Observamos que o desvio padrão da idade das mulheres é inferior ao desvio 

padrão das idades dos homens, 9,9 e 11,2 respectivamente, assim como o desvio 

padrão, 25,3% e 26,4% para mulheres e homens respectivamente. 

 

3. 
ks.test(dados$age, "pnorm", mean(dados$age), 
sd(dados$age)) 
ks.test(dados$husage, "pnorm", mean(dados$husage), 
sd(dados$husage)) 
 

QUADRO 12 - Tabela de Teste de Normalidade - Teste de Kolmogorov 

 

  

 

 

 

 

 

FONTE: A autora (2025). 

 

Parâmetro/Vari

ável Age Husage 

D 0,058909 0,059662 

p-valor < 2.2e-16 < 2.2e-16 
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Analisando o teste de kolmogorov para normalidade dos dados, observamos p-

valor abaixo do nível de significância de 5%, então rejeitamos a hipótese nula de 

normalidade dos dados para as variáveis age e husage. Como as variáveis age e 

husage não têm distribuição normal, vamos precisar usar um teste não paramétrico. 

O teste apropriado para testar as medianas de duas amostras, é o teste de Mann 

Whitney. 
wilcox.test(idade~gender, data = dados_teste, exact = F, 

conf.int = T) 

 

QUADRO 13 - Tabela de Teste de Comparação de Medianas - Mann Whitney 

 

 

  

 

 

 

 

 

FONTE: A autora (2025). 

 

O p-valor do teste realizado foi inferior a 5%, com isso, rejeitamos a hipótese 

nula de que a mediana das idades de homens e mulheres são iguais. 

O intervalo de confiança da diferença entre as medianas está entre 2 e 3, com 

mediana da diferença igual a 3. 

 

Parâmetro  

W 13619912 

p-valor < 2.2e-16 

I.C inf -3 

I.C sup -2 
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APÊNDICE E -  ESTATÍSTICA APLICADA II 

 

A – ENUNCIADO 
 

Regressões Ridge, Lasso e ElasticNet 
 

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente 

“lwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados 

são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você 

deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2) e 

concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de 

confiança para os seguintes valores: 

husage = 40          (anos – idade do marido) 
husunion = 0        (marido não possui união estável) 
husearns = 600    (US$ renda do marido por semana) 
huseduc = 13       (anos de estudo do marido) 
husblck = 1           (o marido é preto) 
hushisp = 0           (o marido não é hispânico) 
hushrs = 40           (horas semanais de trabalho do marido) 
kidge6 = 1             (possui filhos maiores de 6 anos) 
age = 38                (anos – idade da esposa) 
black = 0               (a esposa não é preta) 
educ = 13              (anos de estudo da esposa) 
hispanic = 1          (a esposa é hispânica) 
union = 0              (esposa não possui união estável) 
exper = 18            (anos de experiência de trabalho da esposa) 
kidlt6 = 1              (possui filhos menores de 6 anos) 
 

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para obter 

o resultado da predição.  

 

B – RESOLUÇÃO 
 

library(carData) 
library(car) 
library(RcmdrMisc) 
library(zoo) 
library(lmtest) 
library(nortest) 
library(lmtest) 
library(sandwich) 
library(caret) 
library(glmnet) 
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# leitura dos dados 
load("C:/Users/livia/Downloads/Bases de Dados Usadas nas 
Aulas Práticas (2)/trabalhosalarios.RData") 
data_salarios <- trabalhosalarios 
data_salarios 
 
set.seed(123) 
indice_treino <- sample(1:nrow(data_salarios), 0.8 * 
nrow(data_salarios)) 
dados_treino <- data_salarios[indice_treino, ] 
dados_teste <- data_salarios[-indice_treino, ] 
 
# Padronização das variáveis numéricas 
cols = c('husage', 'husearns', 'huseduc', 'hushrs', 
'earns', 'age', 'educ', 'exper', 'lwage') 
 
# Padronizando a base de treinamento e teste 
pre_proc_val <- preProcess(dados_treino[,cols], method = 
c("center", "scale")) 
 
dados_treino[,cols] = predict(pre_proc_val, 
dados_treino[,cols]) 
dados_teste[,cols] = predict(pre_proc_val, 
dados_teste[,cols]) 
 
# Análise do Sumário das variáveis 
summary(dados_treino) 
 
summary(dados_teste) 

 
# Crear un objeto con las variables que se usarán en el 
modelo 
cols_reg <- c('husage', 'husearns', 'huseduc', 'hushrs', 
'earns', 'age',  
              'educ', 'exper', 'lwage', 'husunion', 
'husblack', 'hushisp',  
              'kidge6', 'black', 'hispanic', 'union', 
'kidlt6') 
#cols22 <- setdiff(names(data_salarios), 'lwage') 
 
# Generar variables dummies 
dummies <- dummyVars(lwage ~ husage + husearns + huseduc + 
hushrs + earns + age + educ + exper +  
                     husunion + husblack + hushisp + kidge6 + black + 
hispanic + union + kidlt6,  
                     data = data_salarios) 
 
# Transformar los datos de entrenamiento y prueba usando 
las variables dummies 
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train_dummies <- predict(dummies, newdata = 
dados_treino[,cols_reg]) 
 
test_dummies <- predict(dummies, newdata = 
dados_teste[,cols_reg]) 
 
print(dim(train_dummies)); print(dim(test_dummies)) 
 
# Vamos guardar a matriz de dados de treinamento das  
# variáveis explicativas para o modelo em um objeto  
# chamado "x" 
x = as.matrix(train_dummies) 
 
# Vamos guardar o vetor de dados de treinamento da  
# variável dependente para o modelo em um objeto  
# chamado "y_train" 
y_train = dados_treino$lwage 

 
# Vamos guardar a matriz de dados de teste das variáveis  
# explicativas para o modelo em um objeto chamado  
# "x_test" 
x_test = as.matrix(test_dummies) 
 
# Vamos guardar o vetor de dados de teste da variável  
# dependente para o modelo em um objeto chamado "y_test" 
y_test = dados_teste$lwage 
 
 
# Métricas de avaliação para os futuros modelos 
 
# Vamos calcular o R^2 dos valores verdadeiros e  
# preditos conforme a seguinte função: 
eval_results <- function(true, predicted, df) { 
  SSE <- sum((predicted - true)^2) 
  SST <- sum((true - mean(true))^2) 
  R_square <- 1 - SSE / SST 
  RMSE <- sqrt(SSE / nrow(df)) 
   
  # As métricas de performance do modelo: 
  data.frame( 
    RMSE = RMSE, 
    Rsquare = R_square 
  ) 
} 
 
# Modelo RIDGE 
# Cálculo do valor ótimo de lambda 
 
lambdas <- 10^seq(2, -3, by = -.1) 
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# Calculando o lambda por validação cruzada: 
ridge_lamb <- cv.glmnet(x, y_train, alpha = 0, lambda = 
lambdas) 
# Vamos ver qual o lambda ótimo 
best_lambda_ridge <- ridge_lamb$lambda.min 
print('O valor ótimo de lambda foi: ') 
 
best_lambda_ridge 
 
#Estimando o modelo ridge 
ridge-reg = glnnet(x, y_train, nlambda = 25, aplha = 0, 
family = ‘gaussian’, lambda = best_lambda_ridge) 
ridge_reg[[“beta”]] 
 
#predição dados treino 
prediction_train <- predict (ridge_reg, s = 
best_lambda_ridge, newx = x) 
metricas_risge_treino <- eval_results(y_train, 
predictions_train, dados_treino) 
metricas_ridge_treino 
 
#predição e avaliação nos dados de teste 
predicition_test <- predict(ridge_reg, s = 
best_lambda_ridge, newx = x_test) 
metricas_ridge_test <- eval_results(y_test, 
predictions_test, dados_teste) 
metricas_ridge_test  
 
#Modelo LASSO 
lasso_lamb <- cv.glmnet(x,y_train, alpha = 1, lambda = 
lambdas, nfolds = 10, standardize = TRUE) 
best_lambda_lasso <- lasso_lamb$lambda.min 
best_lambda_lasso  

 
#estimando o modelo 
lasso_model <- glmnet(x,y_train,alpha =1, lambda = 
best_lambda_lasso, standardize = TRUE) 
lasso_model[[“beta]] 
 
predictions_train_lasso <- predict(lasso_model, s = 
best_lambda_lasso, newx = x) 
metricas_lasso_treino <- eval_results(y_train, 
predictions_train_lasso, dados_treino) 
metricas_lasso_treino  
 
#predição dos dados teste - lasso 
predictions_test_lasso <- predict(lasso_model, s = 
best_lambda_lasso, newx = x_test) 
metricas_lasso_teste <- eval_results(y_test, 
predictions_test_lasso, dados_teste) 
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metricas_lasso_teste  
 
#Modelo ELASTICNET 
train_cont <- trainControl(method = “repeatedcv”, number = 
10, repeats = 5, search = “random”, verboseIter = FALSE) 
elastic_reg <- train(lwage ~husage + husearns + huseduc + 
hushrs + earns + age + educ + exper + husunion + husblck + 
kidge6 + black + hispanic + union + kidlt6 + data = 
dados_treino, method = “glmnet”, tuneLength = 10, trControl 
= train_cont) 
elastic_reg$bestTune 
 
#predição dados de treino (elasticnet) 
predictions_train_elastic <- predict(elastic_reg, x) 
metricas_elastic_treino <- eval_results(y_train, 
predictions_train_elastic, dados_treino) 
metricas_elastic_treino  
 
#predição dados de teste (elasticnet) 
predictions_test_elastic <- predict(elastic_reg, x_test) 
metricas_elastic_teste <- eval_results(y_test, 
predictions_test_elastic, dados_teste) 
 metricas_elastic_teste  
 
metricas_unificadas <- 
rbind.data.frame(metricas_ridge_treino, 
metricas_lasso_treino, 
metricas_elastic_treino,metricas_ridge_teste, 
metricas_lasso_teste, metricas_elastic_teste) 
row.names(metricas_unificadas) <- c(‘RIDGE - TREINO’, 
‘LASSO - TREINO’, ‘ELASTICNET - TREINO’, ‘RIDGE - TESTE’, 
‘LASSO - TESTE’, ‘ELASTICNET - TESTE’ ) 
metricas_unificadas 

 

QUADRO 14 - Métricas de qualidade dos modelos 

 

 FONTE: A autora (2025). 

 

 Treino Teste 

 RMSE R2 RMSE R2 

Ridge 0,5595395 0,6867634 0,5375854 0,7007985 

Lasso 0,5596622 0,6866261 0,5340347 0,7047378 

Elasticnet 0,5594508 0,6868627 0,5341944 0,7045612 
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QUADRO 15 - Valores preditos para caso proposto e intervalos de confiança por modelo 

 

  

 

 

 

 

 

FONTE: A autora (2025). 

Foram separados 80% dos dados para treino do modelo e 20% para teste. As 

bases de treino e teste foram as mesmas para os três modelos ajustados. 

Verificamos que os três modelos tiveram métricas muito similares, com R2 em 

torno de 69% para os dados de treino, e 70% para os dados de teste, indicando 

ausência de overfitting nos modelos. Os RMSEs calculados também foram muito 

similares em torno de 0,56 para os dados de treino e 0,53 para os dados de teste. 

Analisando os valores de R2 e RMSE, apesar de muito próximos nos três 

modelos, o Lasso tem métricas ligeiramente melhores. O valor do salário por hora 

estimado para a pessoa simulada foi de $13,25 com intervalo de confiança entre 

$12,95 e $13,55. 

 

 

  

 I.C Inf Estimado I.C Sup 

Ridge 12,687332 12,977667 13,274646 

Lasso 12,949224 13,245552 13,548661 

Elasticnet 8,610227 8,807263 9,008807 
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APÊNDICE F -  ARQUITETURA DE DADOS 

 

A – ENUNCIADO 
 
1 Construção de Características: Identificador automático de idioma 

 

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto 

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito. 

 

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções para 

calcular as diferentes características para o problema da identificação da língua do texto de entrada. 

 

Nessa atividade é para "construir características". 

 

Meta: a acurácia deverá ser maior ou igual a 70%. 

 

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o notebook 

e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos. 

 

2 Melhore uma base de dados ruim 
 

Escolha uma base de dados pública para problemas de classificação, disponível ou com origem 

na UCI Machine Learning. 

 

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base. 

 

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para 

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado. 

 

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o 

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de 

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais). 

 

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente). 
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B – RESOLUÇÃO  
 

1. 
import re 
 # Cria um bag of words e um stopwords por lingua no 
pre_padroes 
 def calcula_frequencia_no_dataset(elem_list, dataset): 
    for elem in elem_list: 
        if elem not in dataset: 
            dataset[elem] =1 
        else: 
            dataset[elem] +=1 
    return dataset 
 def bagOfWords(pre_padroes): 
    bow_por_lingua = {} 
    for texto, lingua in pre_padroes: 
        pattern_regex = re.compile('[^\w+]', re.UNICODE) # 
Regex para identificar caracteres que NÃ 
        texto = re.sub(pattern_regex,' ',texto) # Substitui 
todos os caracteres que não são alfanum 
        texto = texto.lower() 
        bow = re.findall(r'\b\w+\b', texto) # Cria lista de 
palavras 
        # Cria dataset para lingua se ele não existir 
        if lingua not in bow_por_lingua: 
            bow_por_lingua[lingua] = {} 
        bow_por_lingua[lingua] = 
calcula_frequencia_no_dataset(bow, bow_por_lingua[lingua]) 
    return bow_por_lingua 
 def stopWords(lista_de_linguas): 
    stopWords_por_lingua = {} 
    for lingua in lista_de_linguas: 
        sorted_dict = 
sorted(bow_por_lingua[lingua].items(), key=lambda x: x[1], 
reverse=True) 
        stopWords_por_lingua[lingua] = 
dict(sorted_dict[:5]) 
    return stopWords_por_lingua 
 lista_de_linguas = set(item[1] for item in pre_padroes) 
 bow_por_lingua = bagOfWords(pre_padroes) 
 stopWords_por_lingua = stopWords(lista_de_linguas) 
 print('Bag of Words') 
 for l in lista_de_linguas: 
    print(l, list(bow_por_lingua[l].keys())[:20]) 
    # print(l, bow_por_lingua[l]) 
 print('\nStop Words') 
 for l in lista_de_linguas: 
    print(l, list(stopWords_por_lingua[l].keys())) 
    # print(l, stopWords_por_lingua[l]) 
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 # a entrada é o vetor pre_padroes e a saída desse passo 
deverá ser "padrões" 
 import re 
 import numpy as np 
 import unicodedata 
 if SEED is not None: 
 np.random.seed(SEED) 
 def tamanhoMedioFrases(texto): 
 palavras = re.split("\s",texto) 
 palvras = palavras.remove('') # Remove palavras vazias 
 # print(palavras) 
 tamanhos = [len(s) for s in palavras if len(s)>0] 
 #print(tamanhos) 
 soma = 0 
 for t in tamanhos: 
 soma=soma+t 
 return soma / len(tamanhos) 
 def calcula_frequencia(elem_list): 
 contagem_elementos = {} 
    for elem in elem_list: 
        if elem not in contagem_elementos: 
            contagem_elementos[elem] =1 
        else: 
            contagem_elementos[elem] +=1 
    total = sum(contagem_elementos.values()) 
    # print(total) 
    # print(contagem_elementos) 
    frequencia_elementos = {} 
    for elem, contagem in contagem_elementos.items(): 
        frequencia_elementos[elem] = contagem / total 
    # print(frequencia_elementos) 
    return frequencia_elementos 
 def conta_ocorrencia(elem_list): 
    contagem_elementos = {} 
    for elem in elem_list: 
        if elem not in contagem_elementos: 
            contagem_elementos[elem] =1 
        else: 
            contagem_elementos[elem] +=1 
    return contagem_elementos 
 def frequenciaCaracteres(texto): 
    texto = texto.lower() 
    lista_caracteres = [c for c in texto] 
    frequencia_caracteres = 
conta_ocorrencia(lista_caracteres) 
    sorted_dict = sorted(frequencia_caracteres.items(), 
key=lambda x: x[1], reverse=True) 
    frequencia_caracteres = dict(sorted_dict[:1]) # o mais 
frequente 
    return frequencia_caracteres 
 def frequenciaBigramas(texto): 
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    texto = texto.lower() 
    texto = re.sub(r'\s+', '', texto) # Regex para remover 
todos os espaçoes do texto 
    bigramas = [] 
    for i in range(len(texto)-1): 
        bigramas.append(texto[i] + texto[i+1]) 
    # print(bigramas) 
    frequencia_bigramas = conta_ocorrencia(bigramas) 
    sorted_dict = sorted(frequencia_bigramas.items(), 
key=lambda x: x[1], reverse=True) 
    frequencia_bigramas = dict(sorted_dict[:2]) # o mais 
frequente 
    # print(frequencia_bigramas) 
    return frequencia_bigramas 
 def frequenciaTrigramas(texto): 
    texto = texto.lower() 
    texto = re.sub(r'\s+', '', texto) # Regex para remover 
todos os espaçoes do texto 
    trigramas = [] 
    for i in range(len(texto)-2): 
        trigramas.append(texto[i:i+3]) 
    # print(trigramas) 
    frequencia_trigramas = conta_ocorrencia(trigramas) 
    sorted_dict = sorted(frequencia_trigramas.items(), 
key=lambda x: x[1], reverse=True) 
    frequencia_trigramas = dict(sorted_dict[:1]) # o mais 
frequente 
    # print(frequencia_trigramas) 
    return frequencia_trigramas 
 def frequenciaAcentuacoes(texto): 
    texto = texto.lower() 
    lista_caracteres_acentuados = [] 
    for c in texto: 
        if c != unicodedata.normalize('NFKD', c): 
            lista_caracteres_acentuados.append(c) 
    # print(lista_caracteres_acentuados) 
frequencia_caracteres_acentuados = 
conta_ocorrencia(lista_caracteres_acentuados) 
 sorted_dict = 
sorted(frequencia_caracteres_acentuados.items(), 
key=lambda x: x[1], reverse=True 
 frequencia_caracteres_acentuados = dict(sorted_dict[:1]) 
# o mais frequente 
 return frequencia_caracteres_acentuados 
 def quantidadeAcentuacoes(texto): 
 texto = texto.lower() 
 qnt = 0 
 for c in texto: 
 if c != unicodedata.normalize('NFKD', c): 
 qnt += 1 
 return qnt 
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 # def bagOfWords(texto, lingua): 
 #     texto = texto.lower() 
 #     palavras = re.findall(r'\b\w+\b', texto) 
 #     qnt = 0 
 #     for p in palavras: 
 #         if p in list(bow_por_lingua[lingua].keys()): 
 #             qnt += 1 
 #     return {f'bw_{lingua}': qnt} 
 # def stopWords(texto,lingua): 
 #     texto = texto.lower() 
 #     palavras = re.findall(r'\b\w+\b', texto) 
 #     qnt = 0 
 #     for p in palavras: 
 #         if p in 
list(stopWords_por_lingua[lingua].keys()): 
 #             qnt += 1 
 #     return {f'sw_{lingua}': qnt} 
 def extraiCaracteristicas(frase): 
 # frase é um vetor [ 'texto', 'lingua' ] 
 texto, lingua = frase 
 pattern_regex = re.compile('[^\w+]', re.UNICODE) # Regex 
para identificar caracteres que NÃO sã 
 texto = re.sub(pattern_regex,' ',texto) # Substitui todos 
os caracteres que não são alfanuméric 
 #print(texto) 
 caracteristica1=tamanhoMedioFrases(texto) 
 caracteristica2=frequenciaCaracteres(texto) 
 caracteristica3=frequenciaBigramas(texto) 
 caracteristica4=frequenciaTrigramas(texto) 
 caracteristica5=frequenciaAcentuacoes(texto) 
 caracteristica6=quantidadeAcentuacoes(texto) 
 # caracteristicaBagOfWords=bagOfWords(texto,lingua) 
 # caracteristicaStopWords=stopWords(texto,lingua) 
 # acrescente as suas funcoes no vetor padrao 
 padrao = { 
 'tamanhoMedioFrases': caracteristica1, 
 **caracteristica2, # O ** é um operador "Spread" de 
dicionários. ele retorna todos os itens  
**caracteristica3, 
 **caracteristica4, 
 **caracteristica5, 
 'qntAcentuacoes': caracteristica6, 
 # **caracteristicaBagOfWords, 
 # **caracteristicaStopWords, 
 'lingua': frase[1] 
 } 
 return padrao 
 def geraPadroes(frases): 
 padroes = [] 
 for frase in frases: 
 padrao = extraiCaracteristicas(frase) 
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        padroes.append(padrao) 
    return padroes 
 # converte o formato [frase classe] em 
 # [caracteristica_1, caracteristica_2,... caracteristica 
n, classe] 
 padroes = geraPadroes(pre_padroes) 
 # 
 # apenas para visualizacao 
 # print(padroes) 
 dados = pd.DataFrame(padroes) 
 dados.fillna(0, inplace=True) # Substitui o que esta com 
NaN para 0 
 dados.drop(' ', axis=1, inplace=True) # Remove algum 
espaço que tenha ficado 
 # print(dict(dados.iloc[0])) 
 print(dados.shape) 
 dados 
from sklearn.model_selection import train_test_split 
 if SEED is not None: # Reseta o seed para evitar que de 
algum valor diferente durante os testes 
    np.random.seed(SEED) 
 #from sklearn.metrics import confusion_matrix 
 # vet = np.array(padroes) 
 classes = np.array(dados['lingua']) #vet[:,-1]         # 
classes = [p[-1] for p in padroes] 
 # print(len(classes), classes) 
 padroes_sem_classe =  np.array(dados.drop('lingua', 
axis=1)) #vet[:,0:-1] 
 #print(padroes_sem_classe) 
 X_train, X_test, y_train, y_test = 
train_test_split(padroes_sem_classe, classes, 
test_size=0.25, st 
 print(X_train.shape, X_test.shape, y_train.shape, 
y_test.shape) 
from sklearn import svm 
 from sklearn.metrics import confusion_matrix 
 from sklearn.metrics import classification_report 
 treinador = svm.SVC()  #algoritmo escolhido 
 modelo = treinador.fit(X_train, y_train) 
 # 
 # score com os dados de treinamento 
 acuracia = modelo.score(X_train, y_train) 
 print("Acurácia nos dados de treinamento: 
{:.2f}%".format(acuracia * 100)) 
 # 
 # melhor avaliar com a matriz de confusão 
 y_pred = modelo.predict(X_train) 
 cm = confusion_matrix(y_train, y_pred) 
 print(cm) 
 print(classification_report(y_train, y_pred)) 
 # 
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 # com dados de teste que não foram usados no treinamento 
 print('métricas mais confiáveis') 
 y_pred2 = modelo.predict(X_test) 
 cm = confusion_matrix(y_test, y_pred2) 
 print(cm) 
 print(classification_report(y_test, y_pred2)) 

 

 Com os extratores de features implementados, conseguimos 82,61% de 

acurácia no treinamento com a SEED fixa em 42. Com outros valores de SEED a 

acurácia varia de 75% a 85%. Cremos que cumprimos com a meta do trabalho de 

obter um resultado acima de 70%. 

Observamos também que a acurácia no conjunto de teste foi 

consideravelmente menor, de 57%, sugerindo que o modelo pode estar com overfitting 

devido à pequena base de dados. Também, a precisão, recall e f1-score variam 

significativamente entre as classes, especialmente para o espanhol, onde o recall foi 

mais baixo no conjunto de teste, demonstrando que o modelo pode vir a ter 

dificuldades identificando espanhol. Por outro lado, o desempenho para inglês foi 

relativamente melhor, com uma precisão e recall mais equilibrados. Para testar isso 

criamos um pequeno set de validação (na célula acima), para podermos colocar dados 

totalmente diferentes do dataset inicial e ter uma validação a mais. 

Uma solução para esses problemas de acurácia, e iseria usar uma base de 

dados maior, ou reimplementar o código utilizando a nossa proposta de ter um 

stopwords a bag of words dinâmico. 

2.  

 import requests, zipfile, io 
 from io import BytesIO 
 import numpy as np 
 import pandas as pd 
 from scipy.io import arff 
 import os 
 r = 
requests.get('https://archive.ics.uci.edu/static/public/5
45/rice+cammeo+and+osmancik.zip') 
 z = zipfile.ZipFile(io.BytesIO(r.content)) 
 zip_file_contents = z.namelist() 
 if 'Rice_Cammeo_Osmancik.arff' in zip_file_contents: 
 # File found, proceed with extraction 
 z.extract('Rice_Cammeo_Osmancik.arff') 
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 os.chdir(os.getcwd())  # Change to the directory 
containing the extracted file 
 dadosfp = arff.loadarff('Rice_Cammeo_Osmancik.arff') 
 dados = pd.DataFrame(dadosfp[0]) 
 print(dados.head()) 
 print(dados.describe()) 
from sklearn.preprocessing import StandardScaler 
 # Salva o dataframe para testar depois 
 Y_orig = np.array(dados['Class']) 
 X_orig =  np.array(dados.drop('Class', axis=1)) 
 scaler = StandardScaler() 
 dados_normalizados = scaler.fit_transform(dados) 
 dados = pd.DataFrame(dados_normalizados, 
columns=dados.columns) 
 dados['Class'] = Y_orig # Evita de normalizar o class 
 # Exibir os dados normalizados 
 dados.describe().loc[['mean', 'std']].round(6) # Para 
facilitar na hora de debugar. O mean deve ser 
from sklearn.utils import resample 
 dados_cammeo = dados[dados['Class'] == 0] 
 dados_osmancik = dados[dados['Class'] == 1] 
 # Subamostragem da classe mais prevalente 
 dados_osmancik_subamostrados = resample(dados_osmancik, 
                                        replace=False,  # 
Evita amostras duplicadas 
                                        
n_samples=len(dados_cammeo),  # Numero de amostras da class 
                                        random_state=42) 
 # Concatenação dos dados 
 dados_subamostrados = 
pd.concat([dados_osmancik_subamostrados, dados_cammeo]) 
 dados = dados_subamostrados # Aplica prevalencia 
 dados_subamostrados.groupby('Class').count() 
 from sklearn.model_selection import train_test_split 
 import numpy as np 
 Y = np.array(dados['Class']) 
 X =  np.array(dados.drop('Class', axis=1)) #vet[:,0:-1] 
 # com os dados originais 
 X_oring_train, X_orig_test, y_orig_train, y_orig_test = 
train_test_split(X_orig, 
                      Y_orig, test_size=0.25, 
stratify=Y_orig,random_state=10) 
 # com os dados tratados 
 X_train, X_test, y_train, y_test = train_test_split(X, Y, 
test_size=0.25, 
                                                    
stratify=Y,random_state=10) 
from sklearn import svm 
 from sklearn.metrics import confusion_matrix 
 from sklearn.metrics import classification_report 
 treinador = svm.SVC()  #algoritmo escolhido 
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 modelo_orig = treinador.fit(X_oring_train, y_orig_train) 
 # predição com os mesmos dados usados para treinar 
 y_orig_pred = modelo_orig.predict(X_oring_train) 
 cm_orig_train = confusion_matrix(y_orig_train, 
y_orig_pred) 
 print('Matriz de confusão - com os dados ORIGINAIS usados 
no TREINAMENTO') 
 print(cm_orig_train) 
 print(classification_report(y_orig_train, y_orig_pred)) 
 # predição com os mesmos dados usados para testar 
 print('Matriz de confusão - com os dados ORIGINAIS usados 
para TESTES') 
 y2_orig_pred = modelo_orig.predict(X_orig_test) 
 cm_orig_test = confusion_matrix(y_orig_test, 
y2_orig_pred) 
from sklearn import svm 
 from sklearn.metrics import confusion_matrix 
 from sklearn.metrics import classification_report 
 treinador = svm.SVC()  #algoritmo escolhido 
 modelo = treinador.fit(X_train, y_train) 
 # predição com os mesmos dados usados para treinar 
 y_pred = modelo.predict(X_train) 
 cm_train = confusion_matrix(y_train, y_pred) 
 print('Matriz de confusão - com os dados TRATADOS usados 
no TREINAMENTO') 
 print(cm_train) 
 print(classification_report(y_train, y_pred)) 
 # predição com os mesmos dados usados para testar 
 print('Matriz de confusão - com os dados ORIGINAIS usados 
para TESTES') 
 y2_pred = modelo.predict(X_test) 
 cm_test = confusion_matrix(y_test, y2_pred) 
 print(cm_test) 
 print(classification_report(y_test, y2_pred)) 

 

Selecionamos a base de dados "Rice (Cammeo and Osmancik)" da UCI 

Machine Learning por que ela era indicada para problemas de classificação e tinha 

grandes chances de poder ser aprimorada utilizando as técnicas de pré-

processamento vistas nas aulas. Na parte da correção de prevalência, utilizamos a 

técnica da subamostragem para remover os dados extra da classe mais prevalente e 

manter as classes equilibradas. Por mais que a subamostragem reduza um pouco a 

acurácia, temos um modelo mais generalista e equilibrado nas predições. 

Utilizamos um modelo SVM para fazer o treinamento e testes na base de 

dados. A acurácia do modelo de SVM aplicado sobre os dados originais foi de 88%. 
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Com os tratamentos realizados, observou-se melhora de 6% nessa medida de 

qualidade, chegando à uma acurácia de 93%. Com isso chegamos ao objetivo deste 

trabalho que era obter de 2% a 5% de acréscimo de acurácia a uma base de dados 

desbalanceada. 
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APÊNDICE G -  APRENDIZADO DE MÁQUINA 

 

A – ENUNCIADO 
 
Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo, 

Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher 

os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento. 

 

B – RESOLUÇÃO 
 

# 1.a veículos (classificação) - Random Forest Hold Out 
install.packages("e1071") 
install.packages("caret") 
library("caret") 
setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-
aprendizado-maquina/bases-de-dados/06- 

 
data <- read.csv("6-veiculos.csv") 
View(data) 
data$a <- NULL 
any(is.na(data)) 
# FALSE 
preproc_center_scale <- preProcess(data, method = 
c("center", "scale")) 
normalized_data <- predict(preproc_center_scale, data) 
# Dados normalizados com média centralizada em 0 
View(normalized_data) 
set.seed(202493) 
ind <- createDataPartition(normalized_data$tipo, p = 0.8, 
list = F) 
train <- normalized_data[ind,] 
test <- normalized_data[-ind,] 
# --- Hold out --- 
set.seed(202493) 
rf <- train(tipo ~ ., data = normalized_data, method = "rf") 
rf 
# mtry = 2 
predict.rf <- predict(rf, test) 
confusionMatrix(predict.rf, as.factor(test$tipo)) 
# Accuracy: 1 
# --- Novos casos (usando Hold out) ---- 
new_data <- read.csv("6-veiculos-novos-dados.csv") 
View(new_data) 
new_data$a <- NULL 
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any(is.na(new_data)) 
# FALSE 
preproc_center_scale <- preProcess(new_data, method = 
c("center", "scale")) 
normalized_new_data <- predict(preproc_center_scale, 
new_data) 
# Dados normalizados com média centralizada em 0 
View(normalized_new_data) 
predict.rf_new_data <- predict(rf, normalized_new_data) 
# van bus opel 
# Levels: bus opel saab van 
new_data$tipo <- NULL 
result <- cbind(new_data, predict.rf_new_data) 
names(result)[names(result) == "predict.rf_new_data"] <- 
"tipo" 
View(result) 
# Visualização do DF com os novos dados e a predição 

 
 

QUADRO 16 - Comparação de modelos - base de veículos 

Técnica Parâmetro Acurácia Matriz de Confusão 

RF – Hold-out mtry=2 100% (1) 

bus: 43, 0, 0, 0 

opel: 0, 42, 0, 0 

saab: 0, 0, 43, 0 

van: 0, 0, 0, 39 

RNA – Hold-out size=5 decay=0.1 85% (0,8503) 

bus: 41, 0, 1, 2 

opel: 0, 30, 7, 1 

saab: 1, 9, 35, 0 

van: 1, 3, 0, 36 

SVM – Hold-out C=1 Sigma=0.07189928 85% (0,8502) 

bus: 43, 0, 0, 1 

opel: 0, 26, 7, 0 

saab: 0, 12, 35, 0 

van: 0, 4, 1, 38 

SVM – CV C=100 Sigma=0.015 84% (0,8443) 

bus: 40, 0, 0, 1 

opel: 1, 34, 12, 2 

saab: 0, 8, 31, 0 

van: 2, 0, 0, 36 
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RNA – CV size=11 decay=0.4 81% (0,8084) 

bus: 39, 0, 1, 1 

opel: 0, 27, 9, 1 

saab: 1, 11, 32, 0 

van: 3, 4, 1, 37 

RF – CV mtry=10 74% (0,7365) 

bus: 42, 0, 1, 0 

opel: 0, 18, 13, 2 

saab: 0, 21, 27, 1 

van: 1 ,3, 2, 36 

KNN k=1 68% (0,6766) 

bus: 39, 1, 1, 3 

opel: 1, 17, 16, 1 

saab: 1, 20, 22, 0 

van: 2, 4, 4, 35 

 
FONTE: A Autora(2025). 

 

QUADRO 17 - Novos casos - base de veículos 
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FONTE: A Autora(2025). 
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# 1.b diabetes (classificação) - Random Forest – Hold Out 
install.packages("e1071") 
install.packages("caret") 
library("caret") 
setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-
aprendizado-maquina/bases-de-dados/10- 
diabetes") 
data <- read.csv("10-diabetes.csv") 
View(data) 
data$num <- NULL 
any(is.na(data)) 
# FALSE 
preproc_center_scale <- preProcess(data, 
method=c("center", "scale")) 
normalized_data <- predict(preproc_center_scale, data) 
# Dados normalizados com média centralizada em 0 
View(normalized_data) 
set.seed(202493) 
ind <- createDataPartition(normalized_data$diabetes, p = 
0.8, list = FALSE) 
train <- normalized_data[ind,] 
test <- normalized_data[-ind,] 
# --- Hold out --- 
set.seed(202493) 
rf <- train(diabetes ~ ., data = normalized_data, method = 
"rf") 
rf 
# mtry = 2 
predict.rf <- predict(rf, test) 
confusionMatrix(predict.rf, as.factor(test$diabetes)) 
# Accuracy: 1 
# --- Novos casos (usando Hold out) ---- 
new_data <- read.csv("10-diabetes-novos-dados.csv") 
View(new_data) 
new_data$num <- NULL 
any(is.na(new_data)) 
# FALSE 
preproc_center_scale <- preProcess(new_data, method = 
c("center", "scale")) 
normalized_new_data <- predict(preproc_center_scale, 
new_data) 
# Dados normalizados com média centralizada em 0 
View(normalized_new_data) 
predict.rf_new_data <- predict(rf, normalized_new_data) 
predict.rf_new_data 
# pos neg neg 
# Levels: neg pos 
new_data$diabetes <- NULL 
result <- cbind(new_data, predict.rf_new_data) 
names(result)[names(result) == "predict.rf_new_data"] <- 
"diabetes" 
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View(result) 
# Visualização do DF com os novos dados e a predição 

 

QUADRO 18 - Comparação de modelos - base de diabetes 

Técnica Parâmetro Acurácia 

Matriz de 
Confusão 

RF – Hold-

out mtry=2 100% (1) 

neg: 100, 0 

pos: 0, 53 

SVM – Hold-

out 

C=0,25 

Sigma=0,12584

32 

78% 

(0,7843) 

neg: 93, 26 

pos: 7, 27 

RNA – Hold-

out 

size=1 

decay=0,1 

78% 

(0,7778) 

neg: 90, 24 

pos: 10, 29 

RF – CV mtry=2 

77% 

(0,7712) 

neg: 89, 24 

pos: 11, 29 

SVM – CV 

C=2 

Sigma=0,015 

76% 

(0,7582) 

neg: 92, 29 

pos: 8, 24 

RNA – CV 

size=3 

decay=0,1 

76% 

(0,7581) 

neg: 88, 25 

pos: 12, 28 

KNN k=9 

73% 

(0,7255) 

neg: 84, 26 

pos: 16, 27 

FONTE: A Autora(2025). 

 

QUADRO 19 - Novos casos - base de diabetes 

num pregont 
glucos

e 

pressu
re triceps insulin mass 

pedigr
ee age 

diabet
es 

1 2 182 97 52 88 44 2001 48 pos 

2 8 99 114 24 249 28 1588 31 neg 

3 14 48 68 87 659 21 1263 61 neg 

FONTE: A Autora(2025). 

 



 

 

72

# 2.a admissão (regressão) - Random Forest – Hold Out 
install.packages("e1071") 
install.packages("kernlab") 
install.packages("caret") 
install.packages("mice") 
library("caret") 
library(Metrics) 
library(stats) 
library(mice) 
setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-
maquina/bases-de-dados/09- 

 
data <- read.csv("9-admissao.csv") 
View(data) 
data$num <- NULL 
any(is.na(data)) 
# FALSE 
target_data <- data[["ChanceOfAdmit"]] 
predictors <- data[, colnames(data) != "ChanceOfAdmit"] 
preproc_center_scale <- preProcess(predictors, 
method=c("center", "scale")) 
normalized_predictors <- predict(preproc_center_scale, 
predictors) 
normalized_data <- cbind(normalized_predictors, target_data) 
names(normalized_data)[names(normalized_data) == "target_data"] 
<- "ChanceOfAdmit" 
View(normalized_data) 
set.seed(202493) 
ind <- createDataPartition(normalized_data$ChanceOfAdmit, p = 
0.8, list = FALSE) 
train <- normalized_data[ind,] 
test <- normalized_data[-ind,] 
# --- Hold out --- 
set.seed(202493) 
rf_ho <- train(ChanceOfAdmit ~ ., data = normalized_data, method 
= "rf") 
rf_ho 
# mtry = 2 
predict.rf_ho <- predict(rf_ho, test) 
r2 <- function(predicted, observed) { 
return (1 - (sum((predicted - observed) ^ 2) / sum((observed - 
mean(observed)) ^ 2))) 
} 
syx <- function(predicted, observed) { 
n <- length(observed) 
syx <- sqrt(sum((observed - predicted)^2) / (n - 2)) 
return(syx) 
} 
rmse(test$ChanceOfAdmit, predict.rf_ho) 
# 0.0333386 
r2(predict.rf_ho, test$ChanceOfAdmit) 
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# 0.9458273 
syx(predict.rf_ho, test$ChanceOfAdmit) 
# 0.03368409 
cor(test$ChanceOfAdmit, predict.rf_ho) # Pearson (library stats) 
# 0.9746234 
mae(test$ChanceOfAdmit, predict.rf_ho) 
# 0.02295854 
# --- Novos casos (usando Hold out) ---- 
new_data <- read.csv("9-admissao-novos-dados.csv") 
View(new_data) 
new_data$num <- NULL 
any(is.na(new_data)) 
# FALSE 
new_target_data <- new_data[["ChanceOfAdmit"]] 
new_predictors <- new_data[, colnames(new_data) != 
"ChanceOfAdmit"] 
preproc_center_scale <- preProcess(new_predictors, 
method=c("center", "scale")) 
normalized_new_predictors <- predict(preproc_center_scale, 
new_predictors) 
normalized_new_data <- cbind(normalized_new_predictors, 
new_target_data) 
names(normalized_new_data)[names(normalized_new_data) == 
"new_target_data"] <- 
"ChanceOfAdmit" 
# Dados normalizados com média centralizada em 0 
View(normalized_new_data) 
predict.rf_ho_new_data <- predict(rf_ho, normalized_new_data) 
predict.rf_ho_new_data 
# 1 2 3 
# 0.6088426 0.7209769 0.7601318 
new_data$ChanceOfAdmit <- NULL 
result <- cbind(new_data, predict.rf_ho_new_data) 
names(result)[names(result) == "predict.rf_ho_new_data"] <- 
"ChanceOfAdmit" 
View(result) 
# Visualização do DF com os novos dados e a predição 
# --- Geração do Gráfico de Resíduos com RF Hold Out e Dados de 
teste --- 
test_residuals <- ((test$ChanceOfAdmit - predict.rf_ho) / 
test$ChanceOfAdmit) * 100 
plot( 
predict.rf_ho, 
test_residuals, 
col = "blue", 
pch = 20, 
main = "Resíduos (%) - RF Hold Out (Dados teste)", 
xlab = "ChanceOfAdmit (estimado)", 
ylab = "Resíduo (%)", 
ylim=c(-100, 100) 
) 
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abline(h = 0, col = "gray") 
grid() 
 

QUADRO 20 - Comparação de modelos - base de admissão 

Técnica Parâmetro R² Syx Pearson Rmse MAE 

RF – Hold-

out mtry=2 0,9458 0,03368 0,97462 0,03334 0,02296 

RNA – 

Hold-out 

size=41 

decay=0,1 0,8341 0,05895 0,91351 0,058348 0,044075 

RNA – CV 

size=16 

decay=0,1 0,8218 0,06110 0,90938 0,060474 0,048163 

SVM – CV 

C=50 

Sigma=0,015 0,8209 0,61251 0,90913 0,60622 0,04388 

RF – CV mtry=2 0,8046 0,06398 0,89732 0,06332 0,04513 

SVM – 

Hold-out 

C=0,5 

Sigma=0,176

9097 0,8026 0,0643 0,89797 0,063643 0,045819 

KNN k=9 0,7883 0,06659 0,89068 0,065908 0,04751 

FONTE: A Autora(2025). 

 

QUADRO 21 - Novos casos - base de admissão 

num 

GRE 
Score 

TOEFL 
Score 

Univers
ity 

Rating SOP LOR CGPA 

Resear
ch 

Chance
OfAdmi

t 

1 299 114 3 4 2 8,4 1 

0,60884

26 

2 318 103 2 5 3 8,8 0 

0,72097

69 

3 327 98 5 1 3 8,9 1 

0,76013

18 

FONTE: A Autora(2025). 
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GRÁFICO 12 - Resíduos (%) 

 

FONTE: A Autora(2025). 
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APÊNDICE H -  DEEP LEARNING 

A – ENUNCIADO 
 
1 Classificação de Imagens (CNN) 

 

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a 

arquitetura CNN vista no curso. 

 

2 Detector de SPAM (RNN) 
 

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e 

arquitetura de RNN vista no curso. 

 

3 Gerador de Dígitos Fake (GAN) 
 

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista 

no curso. 

 

4 Tradutor de Textos (Transformer) 
 

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a 

arquitetura Transformer vista no curso. 

 

B – RESOLUÇÃO 
 

1. 
K = len(set(y_train)) 
i = Input(shape = x_train[0].shape) 
x = Conv2D(32, (3,3), strides = 2, activation = 'relu')(i) 
x = Conv2D(64, (3,3), strides = 2, activation = 'relu')(x) 
x = Conv2D(128, (3,3), strides = 2, activation = 'relu')(x) 
x = Flatten()(x) 
x = Dropout(0.5)(x) 
x = Dense(1024, activation = 'relu')(x) 
x = Dropout(0.2)(x) 
x = Dense(K, activation = 'softmax')(x) 
model = Model(i, x) 
model.compile(optimizer = 'adam', loss = 
'sparse_categorical_crossentropy', metrics = ['accuracy']) 
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r = model.fit(x_train, y_train, validation_data = (x_test, 
y_test), epochs = 15) 
plt.plot(r.history['loss'], label = 'loss') 
plt.plot(r.history['val_loss'], label = 'val_loss') 
plt.legend() 
plt.show() 
 
plt.plot(r.history['accuracy'], label = 'acc') 
plt.plot(r.history['val_accuracy'], label = 'val_acc') 
plt.legend() 
plt.show() 
y_pred = model.predict(x_test).argmax(axis = 1) 
cm = confusion_matrix(y_test, y_pred) 
plot_confusion_matrix(conf_mat = cm, figsize = (12,8), 
show_normed= True) 

 

GRÁFICO 13 - Perda por época modelo CNN 

 
FONTE: A Autora (2025). 

 

GRÁFICO 14 - Acurácia por época modelo CNN 

 
FONTE: A Autora (2025). 
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FIGURA 4 - Matriz de confusão modelo CNN 

 

FONTE: A Autora(2025). 

 

FIGURA 5 - Teste do modelo gerado - CNN 

 
FONTE: A Autora(2025). 
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2.  
 

!wget http://www.razer.net.br/datasets/spam.csv 
df = pd.read_csv('spam.csv', encoding='ISO-8859-1') 
df.head() 
df = df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], 
axis=1) 
df.columns = ['labels', 'data'] 
df["b_labels"] = df["labels"].map({"ham": 0, "spam": 1}) 
y = df['b_labels'].values 
 
x_train, x_test, y_train, y_test = 
train_test_split(df['data'], y, test_size=0.33, 
random_state=42) 
num_words = 20000 
tokenizer = Tokenizer(num_words=num_words) 
tokenizer.fit_on_texts(x_train) 
sequences_train = tokenizer.texts_to_sequences(x_train) 
sequences_test = tokenizer.texts_to_sequences(x_test) 
word2index = tokenizer.word_index 
V = len(word2index) 
print('%s tokens' % V) 
 
data_train = pad_sequences(sequences_train) 
T = data_train.shape[1] 
data_test = pad_sequences(sequences_test, maxlen=T) 
 
print('data_train.shape = ',data_train.shape) 
print('data_test.shape = ',data_test.shape) 
D = 20 
M = 5 
i = Input(shape=(T,)) 
x = Embedding(V + 1, D)(i) 
x = LSTM(M)(x) 
x = Dense(1, activation='sigmoid')(x) 
model = Model(i, x) 
model.compile(loss = 'binary_crossentropy', optimizer = 
'adam', metrics = ['accuracy']) 
epochs = 5 
r = model.fit(data_train, y_train, epochs=epochs, 
validation_data=(data_test, y_test)) 
plt.plot(r.history['loss'],label = 'loss') 
plt.plot(r.history['val_loss'],label = 'val_loss') 
plt.xlabel('épocas') 
plt.ylabel('perda') 
plt.xticks(np.arange(0, epochs, step = 1), labels = 
range(1, epochs +1)) 
plt.legend() 
plt.show() 
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plt.plot(r.history['accuracy'],label = 'acc') 
plt.plot(r.history['val_accuracy'],label = 'val_acc') 
plt.xlabel('épocas') 
plt.ylabel('acc') 
plt.xticks(np.arange(0, epochs, step = 1), labels = 
range(1, epochs +1)) 
plt.legend() 
plt.show() 

GRÁFICO 15 - Perda por época 

  
FONTE: A Autora(2025). 

 

 

GRÁFICO 16 - Acurácia por época 

 
FONTE: A Autora(2025). 
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3.  
!pip install imageio 
!pip install git+https://github.com/tensorflow/docs 
(train_imagens, train_labels), (_,_) = 
tf.keras.datasets.mnist.load_data() 
train_images = 
train_imagens.reshape(train_imagens.shape[0], 28, 28, 
1).astype('float32') 
train_images = (train_images - 127.5) / 127.5 
#normalizando 
 
BUFFER_SIZE = 60000 
BATCH_SIZE = 256 
 
train_dataset = 
tf.data.Dataset.from_tensor_slices(train_images).shuffle(B
UFFER_SIZE).batch(BATCH_SIZE) 
 
def make_generator_model(): 
  model = tf.keras.Sequential() 
  model.add(layers.Dense(7*7*256, use_bias=False, 
input_shape=(100,))) 
  model.add(layers.BatchNormalization()) 
  model.add(layers.LeakyReLU()) 
  model.add(layers.Reshape((7, 7, 256))) 
  assert model.output_shape == (None, 7, 7, 256) 
  model.add(layers.Conv2DTranspose(128, (5, 5), strides= 
1, padding='same', use_bias=False)) 
  assert model.output_shape == (None, 7, 7, 128) 
  model.add(layers.BatchNormalization()) 
  model.add(layers.LeakyReLU()) 
  model.add(layers.Conv2DTranspose(64, (5, 5), strides= 
(2,2), padding='same', use_bias=False)) 
  assert model.output_shape == (None, 14, 14, 64) 
  model.add(layers.BatchNormalization()) 
  model.add(layers.LeakyReLU()) 
  model.add(layers.Conv2DTranspose(1, (5, 5), strides= 
(2,2), padding='same', use_bias=False, activation='tanh')) 
  assert model.output_shape == (None, 28, 28, 1) 
  return model 
 
generator = make_generator_model() 
noisse = tf.random.normal([1, 100]) 
generated_image = generator(noisse, training=False) 
 
plt.imshow(generated_image[0, :, :, 0], cmap='gray') 
 
def make_discriminator_model(): 
  model = tf.keras.Sequential() 
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  model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), 
padding='same', input_shape=[28, 28, 1])) 
  model.add(layers.LeakyReLU()) 
  model.add(layers.Dropout(0.3)) 
  model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), 
padding='same')) 
  model.add(layers.LeakyReLU()) 
  model.add(layers.Dropout(0.3)) 
  model.add(layers.Flatten()) 
  model.add(layers.Dense(1)) 
  return model 
 
discriminator = make_discriminator_model() 
decision = discriminator(generated_image) 
print(decision) 
cross_entropy = 
tf.keras.losses.BinaryCrossentropy(from_logits=True) 
 
def discriminator_loss(real_output, fake_output): 
  real_loss = cross_entropy(tf.ones_like(real_output), 
real_output) 
  fake_loss = cross_entropy(tf.zeros_like(fake_output), 
fake_output) 
  total_loss = real_loss + fake_loss 
  return total_loss 
 
 
def generator_loss(fake_output): 
  return cross_entropy(tf.ones_like(fake_output), 
fake_output) 
 
generator_optimizer = tf.keras.optimizers.Adam(1e-4) 
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) 
checkpoint_dir = './training_checkpoints' 
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") 
checkpoint = 
tf.train.Checkpoint(generator_optimizer=generator_optimize
r, 
                                 
discriminator_optimizer=discriminator_optimizer, 
                                 generator=generator, 
                                 
discriminator=discriminator) 
EPOCHS = 100 
noise_dim = 100 
num_examples_to_generate = 16 
 
seed = tf.random.normal([num_examples_to_generate, 
noise_dim]) 
#treinamento 
@tf.function 
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def train_step(images): 
  noise = tf.random.normal([BATCH_SIZE, noise_dim]) 
  with tf.GradientTape() as gen_tape, tf.GradientTape() as 
disc_tape: 
    generated_images = generator(noise, training=True) 
    real_output = discriminator(images, training=True) 
    fake_output = discriminator(generated_images, 
training=True) 
    gen_loss = generator_loss(fake_output) 
    disc_loss = discriminator_loss(real_output, 
fake_output) 
    gradients_of_generator = gen_tape.gradient(gen_loss, 
generator.trainable_variables) 
    gradients_of_discriminator = 
disc_tape.gradient(disc_loss, 
discriminator.trainable_variables) 
    
generator_optimizer.apply_gradients(zip(gradients_of_gener
ator, generator.trainable_variables)) 
    
discriminator_optimizer.apply_gradients(zip(gradients_of_d
iscriminator, discriminator.trainable_variables)) 
def train(dataset, epochs): 
  for epoch in range(epochs): 
    start = time.time() 
    for image_batch in dataset: 
      train_step(image_batch) 
    display.clear_output(wait=True) 
    generate_and_save_images(generator, epoch+1, seed) 
 
    if (epoch+1)%15 == 0: 
      checkpoint.save(file_prefix = checkpoint_prefix) 
 
    print('Time for epoch {} is {} sec'.format(epoch+1, 
time.time()-start)) 
 
  display.clear_output(wait=True) 
  generate_and_save_images(generator, epochs, seed) 
 
def generate_and_save_images(model,epoch,test_input): 
  predictions = model(test_input, training=False) 
  fig = plt.figure(figsize=(4, 4)) 
 
  for i in range(predictions.shape[0]): 
    plt.subplot(4, 4, i+1) 
    plt.imshow(predictions[i, :, :, 0]*127.5 + 127.5, 
cmap='gray') 
    plt.axis('off') 
 
  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 
train(train_dataset, EPOCHS) 
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checkpoint.restore(tf.train.latest_checkpoint(checkpoint_d
ir)) 
def display_image(epoch_no): 
  return 
PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no
)) 
 
display_image(EPOCHS) 
anim_file = 'dcgan.gif' 
 
with imageio.get_writer(anim_file,model="I") as writer: 
  filenames = glob.glob('image*.png') 
  filenames = sorted(filenames) 
  for filename in filenames: 
    image = imageio.imread(filename) 
    writer.append_data(image) 
    image = imageio.imread(filename) 
    writer.append_data(image) 
 
import tensorflow_docs.vis.embed as embed 
embed.embed_file(anim_file) 

 

4. 
examples, metadata = tfds.load( 
    'ted_hrlr_translate/pt_to_en', 
    with_info=True, 
    as_supervised=True 
) 
train_examples, val_examples = examples['train'], 
examples['validation'] 
 
for pt_examples, en_examples in 
train_examples.batch(3).take(1): 
  for pt in pt_examples.numpy(): 
    print(pt.decode('utf-8')) 
 
  print() 
 
  for en in en_examples.numpy(): 
    print(en.decode('utf-8')) 
 
model_name = "ted_hrlr_translate_pt_en_converter" 
 
tf.keras.utils.get_file( 
    f"{model_name}.zip", 
    
f"https://storage.googleapis.com/download.tensorflow.org/m
odels/{model_name}.zip", 
    cache_dir='.', 
    cache_subdir='', 
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    extract=True 
) 
 
tokenizers = tf.saved_model.load(model_name) 
 
def tokenize_pairs(pt, en): 
  pt = tokenizers.pt.tokenize(pt) 
  pt = pt.to_tensor() 
 
  en = tokenizers.en.tokenize(en) 
  en = en.to_tensor() 
  return pt, en 
 
BUFFER_SIZE = 20000 
BATCH_SIZE = 64 
 
def make_batches(ds): 
  return ( 
      ds 
      .cache() 
      .shuffle(BUFFER_SIZE) 
      .batch(BATCH_SIZE) 
      .map(tokenize_pairs, 
num_parallel_calls=tf.data.AUTOTUNE) 
      .prefetch(tf.data.AUTOTUNE) 
  ) 
 
train_batches = make_batches(train_examples) 
val_batches = make_batches(val_examples) 
 
def get_angles(pos, i, d_model): 
  angle_rates = 1 / np.power(10000, (2 * (i//2)) / 
np.float32(d_model)) 
  return pos * angle_rates 
 
def positional_encoding(position, d_model): 
  angle_rads = get_angles( 
      np.arange(position)[:, np.newaxis], 
      np.arange(d_model)[np.newaxis, :], 
      d_model 
  ) 
  angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) 
  angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) 
 
  pos_encoding = angle_rads[np.newaxis, ...] 
  return tf.cast(pos_encoding, dtype=tf.float32) 
 
n, d = 2048, 512 
pos_encoding = positional_encoding(n, d) 
print(pos_encoding.shape) 
pos_encoding = pos_encoding[0] 
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pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2)) 
pos_encoding = tf.transpose(pos_encoding, (2, 1, 0)) 
pos_encoding = tf.reshape(pos_encoding, (d, n)) 
 
# o plot a seguir não é necessário 
# plt.pcolormesh(pos_encoding, cmap='RdBu') 
# plt.ylabel('Depth') 
# plt.xlabel('Position') 
# plt.colorbar() 
# plt.show() 
 
def create_padding_mask(seq): 
  seq = tf.cast(tf.math.equal(seq, 0), tf.float32) 
  return seq[:, tf.newaxis, tf.newaxis, :] 
 
def create_look_ahead_mask(size): 
  mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -
1, 0) 
  return mask 
 
def scaled_dot_product_attention(q, k, v, mask): 
  # Q * K ^ T 
  matmul_qk = tf.matmul(q, k, transpose_b=True) 
  dk = tf.cast(tf.shape(k)[-1], tf.float32) 
 
  # / por sqrt(dk) 
  scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) 
 
  if mask is not None: 
    scaled_attention_logits += (mask * -1e9) 
 
  attention_weights = 
tf.nn.softmax(scaled_attention_logits, axis=-1) 
  output = tf.matmul(attention_weights, v) 
  return output, attention_weights 
 
# Atenção Multi-cabeças 
class MultiHeadAttention(tf.keras.layers.Layer): 
  def __init__(self, d_model, num_heads): 
    super().__init__() 
    self.num_heads = num_heads 
    self.d_model = d_model 
 
    assert d_model % self.num_heads == 0 
 
    self.depth = d_model // self.num_heads 
 
    self.wq = tf.keras.layers.Dense(d_model) 
    self.wk = tf.keras.layers.Dense(d_model) 
    self.wv = tf.keras.layers.Dense(d_model) 
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    self.dense = tf.keras.layers.Dense(d_model) 
 
  def split_heads(self, x, batch_size): 
    x = tf.reshape(x, (batch_size, -1, self.num_heads, 
self.depth)) 
    return tf.transpose(x, perm=[0, 2, 1, 3]) 
 
  def call(self, v, k, q, mask): 
    batch_size = tf.shape(q)[0] 
 
    q = self.wq(q) 
    k = self.wk(k) 
    v = self.wv(v) 
 
    q = self.split_heads(q, batch_size) 
    k = self.split_heads(k, batch_size) 
    v = self.split_heads(v, batch_size) 
 
    scaled_attention, attention_weights = 
scaled_dot_product_attention(q, k, v, mask) 
    scaled_attention = tf.transpose(scaled_attention, 
perm=[0, 2, 1, 3]) 
    concat_attention = tf.reshape(scaled_attention, 
(batch_size, -1, self.d_model)) 
 
    output = self.dense(concat_attention) 
 
    return output, attention_weights 
 
def point_wise_feed_forward_network(d_model, dff): 
  return tf.keras.Sequential([ 
      tf.keras.layers.Dense(dff, activation='relu'), 
      tf.keras.layers.Dense(d_model) 
  ]) 
 
class EncoderLayer(tf.keras.layers.Layer): 
  def __init__(self, d_model, num_heads, dff, rate = 0.1): 
    super().__init__() 
 
    self.mha = MultiHeadAttention(d_model, num_heads) 
    self.ffn = point_wise_feed_forward_network(d_model, 
dff) 
 
    self.layernorm1 = 
tf.keras.layers.LayerNormalization(epsilon = 1e-6) 
    self.layernorm2 = 
tf.keras.layers.LayerNormalization(epsilon = 1e-6) 
 
    self.dropout1 = tf.keras.layers.Dropout(rate) 
    self.dropout2 = tf.keras.layers.Dropout(rate) 
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  def call(self, x, training, mask): 
    attn_output, _ = self.mha(x, x, x, mask) 
    attn_output = self.dropout1(attn_output, training = 
training) 
    out1 = self.layernorm1(x + attn_output) 
 
    ffn_output = self.ffn(out1) 
    ffn_output = self.dropout2(ffn_output, training = 
training) 
    out2 = self.layernorm2(out1 + ffn_output) 
 
    return out2 
 
class DecoderLayer(tf.keras.layers.Layer): 
  def __init__(self, d_model, num_heads, dff, rate = 0.1): 
    super().__init__() 
 
    self.mha1 = MultiHeadAttention(d_model, num_heads) 
    self.mha2 = MultiHeadAttention(d_model, num_heads) 
 
    self.ffn = point_wise_feed_forward_network(d_model, 
dff) 
 
    self.layernorm1 = 
tf.keras.layers.LayerNormalization(epsilon = 1e-6) 
    self.layernorm2 = 
tf.keras.layers.LayerNormalization(epsilon = 1e-6) 
    self.layernorm3 = 
tf.keras.layers.LayerNormalization(epsilon = 1e-6) 
 
    self.dropout1 = tf.keras.layers.Dropout(rate) 
    self.dropout2 = tf.keras.layers.Dropout(rate) 
    self.dropout3 = tf.keras.layers.Dropout(rate) 
 
  def call(self, x, enc_output, training, look_ahead_mask, 
padding_mask): 
    attn1, attn_weights_block1 = self.mha1(x, x, x, 
look_ahead_mask) 
    attn1 = self.dropout1(attn1, training = training) 
    out1 = self.layernorm1(attn1 + x) 
 
    attn2, attn_weights_block2 = self.mha2(enc_output, 
enc_output, out1, padding_mask) 
    attn2 = self.dropout2(attn2, training = training) 
    out2 = self.layernorm2(attn2 + out1) 
 
    ffn_output = self.ffn(out2) 
    ffn_output = self.dropout3(ffn_output, training = 
training) 
    out3 = self.layernorm3(ffn_output + out2) 
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    return out3, attn_weights_block1, attn_weights_block2 
 
class Encoder(tf.keras.layers.Layer): 
  def __init__( 
      self, 
      num_layers, 
      d_model, 
      num_heads, 
      dff, 
      input_vocab_size, 
      maximum_position_encoding, 
      rate = 0.1 
  ): 
    super().__init__() 
 
    self.d_model = d_model 
    self.num_layers = num_layers 
    self.embedding = 
tf.keras.layers.Embedding(input_vocab_size, d_model) 
    self.pos_encoding = 
positional_encoding(maximum_position_encoding, 
self.d_model) 
    self.enc_layers = [ 
        EncoderLayer(d_model, num_heads, dff, rate) for _ 
in range(num_layers) 
    ] 
    self.dropout = tf.keras.layers.Dropout(rate) 
 
  def call(self, x, training, mask): 
    seq_len = tf.shape(x)[1] 
    x = self.embedding(x) 
    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 
    x += self.pos_encoding[:, :seq_len, :] 
    x = self.dropout(x, training=training) 
    for i in range(self.num_layers): 
      x = self.enc_layers[i](x, training, mask) 
    return x 
class Decoder(tf.keras.layers.Layer): 
  def __init__( 
      self, 
      num_layers, 
      d_model, 
      num_heads, 
      dff, 
      target_vocab_size, 
      maximum_position_encoding, 
      rate = 0.1): 
    super().__init__() 
    self.d_model = d_model 
    self.num_layers = num_layers 
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    self.embedding = 
tf.keras.layers.Embedding(target_vocab_size, d_model) 
    self.pos_encoding = 
positional_encoding(maximum_position_encoding, d_model) 
    self.dec_layers = [ 
        DecoderLayer(d_model, num_heads, dff, rate) for _ 
in range(num_layers) 
    ] 
    self.dropout = tf.keras.layers.Dropout(rate) 
 
  def call(self, x, enc_output, training, look_ahead_mask, 
padding_mask): 
    seq_len = tf.shape(x)[1] 
    attention_weights = {} 
 
    x = self.embedding(x) 
    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 
    x += self.pos_encoding[:, :seq_len, :] 
 
    x = self.dropout(x, training=training) 
    for i in range(self.num_layers): 
      x, block1, block2 = self.dec_layers[i]( 
          x, 
          enc_output, 
          training, 
          look_ahead_mask, 
          padding_mask 
      ) 
      attention_weights[f'decoder_layer{i+1}_block1'] = 
block1 
      attention_weights[f'decoder_layer{i+1}_block2'] = 
block2 
 
    return x, attention_weights 
 
class Transformer(tf.keras.Model): 
  def __init__( 
      self, 
      num_layers, 
      d_model, 
      num_heads, 
      dff, 
      input_vocab_size, 
      target_vocab_size, 
      pe_input, 
      pe_target, 
      rate = 0.1 
  ): 
    super().__init__() 
    self.encoder = Encoder( 
        num_layers, 
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        d_model, 
        num_heads, 
        dff, 
        input_vocab_size, 
        pe_input, 
        rate 
    ) 
    self.decoder = Decoder( 
        num_layers, 
        d_model, 
        num_heads, 
        dff, 
        target_vocab_size, 
        pe_target, 
        rate 
    ) 
    self.final_layer = 
tf.keras.layers.Dense(target_vocab_size) 
 
  def call(self, inputs, training): 
    print('inputs:', inputs) 
    print('training:', training) 
    inp, tar = inputs 
    enc_padding_mask, look_ahead_mask, dec_padding_mask = 
self.create_masks(inp, tar) 
    enc_output = self.encoder(inp, training, 
enc_padding_mask) 
    dec_output, attention_weights = self.decoder( 
        tar, 
        enc_output, 
        training, 
        look_ahead_mask, 
        dec_padding_mask 
    ) 
    final_output = self.final_layer(dec_output) 
 
    return final_output, attention_weights 
 
  def create_masks(self, inp, tar): 
    enc_padding_mask = create_padding_mask(inp) 
    dec_padding_mask = create_padding_mask(inp) 
    look_ahead_mask = 
create_look_ahead_mask(tf.shape(tar)[1]) 
    dec_target_padding_mask = create_padding_mask(tar) 
    look_ahead_mask = tf.maximum(dec_target_padding_mask, 
look_ahead_mask) 
 
    return enc_padding_mask, look_ahead_mask, 
dec_padding_mask 
 
num_layers = 4 
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d_model = 128 
dff = 512 
num_heads = 8 
dropout_rate = 0.1 
 
class 
CustomSchedule(tf.keras.optimizers.schedules.LearningRateS
chedule): 
  def __init__(self, d_model, warmup_steps = 4000): 
    super().__init__() 
    self.d_model = d_model 
    self.d_model = tf.cast(self.d_model, tf.float32) 
    self.warmup_steps = warmup_steps 
 
  def __call__(self, step): 
    step = tf.cast(step, tf.float32) 
    arg1 = tf.math.rsqrt(step) 
    arg2 = step * (self.warmup_steps ** -1.5) 
 
    return tf.math.rsqrt(self.d_model) * 
tf.math.minimum(arg1, arg2) 
 
learning_rate = CustomSchedule(d_model) 
optimizer = tf.keras.optimizers.Adam( 
    learning_rate, 
    beta_1 = 0.9, 
    beta_2 = 0.98, 
    epsilon = 1e-9 
) 
 
loss_object = 
tf.keras.losses.SparseCategoricalCrossentropy( 
    from_logits = True, 
    reduction = 'none' 
) 
 
def loss_function(real, pred): 
  mask = tf.math.logical_not(tf.math.equal(real, 0)) 
  loss_ = loss_object(real, pred) 
  mask = tf.cast(mask, dtype = loss_.dtype) 
  loss_ *= mask 
 
  return tf.reduce_sum(loss_) / tf.reduce_sum(mask) 
 
def accuracy_function(real, pred): 
  accuracies = tf.equal(real, tf.argmax(pred, axis = 2)) 
  mask = tf.math.logical_not(tf.math.equal(real, 0)) 
  accuracies = tf.math.logical_and(mask, accuracies) 
  accuracies = tf.cast(accuracies, dtype = tf.float32) 
  mask = tf.cast(mask, dtype = tf.float32) 
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  return tf.reduce_sum(accuracies) / tf.reduce_sum(mask) 
 
train_loss = tf.keras.metrics.Mean(name = 'train_loss') 
train_accuracy = tf.keras.metrics.Mean(name = 
'train_accuracy') 
 
transformer = Transformer( 
    num_layers = num_layers, 
    d_model = d_model, 
    num_heads = num_heads, 
    dff = dff, 
    input_vocab_size = 
tokenizers.pt.get_vocab_size().numpy(), 
    target_vocab_size = 
tokenizers.en.get_vocab_size().numpy(), 
    pe_input = 1000, 
    pe_target = 1000, 
    rate = dropout_rate 
) 
 
checkpoint_path = "./checkpoints/train" 
ckpt = tf.train.Checkpoint(transformer = transformer, 
optimizer = optimizer) 
ckpt_manager = tf.train.CheckpointManager(ckpt, 
checkpoint_path, max_to_keep = 5) 
 
if ckpt_manager.latest_checkpoint: 
  ckpt.restore(ckpt_manager.latest_checkpoint) 
  print('Latest checkpoint restored!') 
 
EPOCHS = 25 
train_step_signature = [ 
    tf.TensorSpec(shape = (None, None), dtype = tf.int64), 
    tf.TensorSpec(shape = (None, None), dtype=tf.int64) 
] 
 
@tf.function(input_signature = train_step_signature) 
def train_step(inp, tar): 
  tar_inp = tar[:, :-1] 
  tar_real = tar[:, 1:] 
 
  with tf.GradientTape() as tape: 
    predictions, _ = transformer([inp, tar_inp], training 
= True) 
    loss = loss_function(tar_real, predictions) 
  gradients = tape.gradient(loss, 
transformer.trainable_variables) 
  optimizer.apply_gradients(zip(gradients, 
transformer.trainable_variables)) 
  train_loss(loss) 
  train_accuracy(accuracy_function(tar_real, predictions)) 
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for epoch in range(EPOCHS): 
  start = time.time() 
  train_loss.reset_state() 
  train_accuracy.reset_state() 
  epoch_count = epoch + 1 
 
  for (batch, (inp, tar)) in enumerate(train_batches): 
    train_step(inp, tar) 
 
    if batch % 50 == 0: 
      print(f"Epoch {epoch + 1} Batch {batch} Loss 
{train_loss.result():.4f} Accuracy 
{train_accuracy.result():.4f}") 
 
  if epoch_count % 5 == 0: 
    ckpt_save_path = ckpt_manager.save() 
    print(f"Saving checkpoint for epoch {epoch_count} at 
{ckpt_save_path}") 
 
  print(f"Epoch {epoch_count} Loss 
{train_loss.result():.4f} Accuracy 
{train_accuracy.result():.4f}") 
  print(f"Time taken for epoch {epoch_count}: {time.time() 
- start:.2f} secs\n") 
 
class Translator(tf.Module): 
  def __init__(self, tokenizers, transformer): 
    self.tokenizers = tokenizers 
    self.transformer = transformer 
 
  def __call__(self, sentence, max_length = 20): 
    assert isinstance(sentence, tf.Tensor) 
    if len(sentence.shape) == 0: 
      sentence = sentence[tf.newaxis] 
    sentence = 
self.tokenizers.pt.tokenize(sentence).to_tensor() 
    encoder_input = sentence 
 
    start_end = self.tokenizers.en.tokenize([''])[0] 
    start = start_end[0][tf.newaxis] 
    end = start_end[1][tf.newaxis] 
 
    output_array = tf.TensorArray(dtype = tf.int64, size = 
0, dynamic_size = True) 
    output_array = output_array.write(0, start) 
 
    for i in tf.range(max_length): 
 
      output = tf.transpose(output_array.stack()) 
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      predictions, _ = self.transformer([encoder_input, 
output], training=False) 
      predictions = predictions[:, -1:, :] 
      predicted_id = tf.argmax(predictions, axis = -1) 
      output_array = output_array.write(i + 1, 
predicted_id[0]) 
 
      if predicted_id == end: 
        break 
 
    output = tf.transpose(output_array.stack()) 
    text = tokenizers.en.detokenize(output)[0] 
    tokens = tokenizers.en.lookup(output)[0] 
    _, attention_weights = 
self.transformer([encoder_input, output[:, :-1]], training 
= False) 
 
    return text, tokens, attention_weights 
 
translator = Translator(tokenizers, transformer) 
 
sentence = "vamos testar o tradutor." 
 
translated_text, translated_tokens, attention_weights = 
translator( 
    tf.constant(sentence) 
) 
 
print(f"{'Original':15s} {sentence}") 
print(f"{'Prediction':15s} {translated_text}") 
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APÊNDICE I -  BIG DATA 

A – ENUNCIADO 
 

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de 

uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL). 

Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de 

dados empregados. 

 
B – RESOLUÇÃO 

 

RESUMO 

A crescente geração e complexidade dos dados impulsionam a necessidade 

de novas abordagens para o gerenciamento de Big Data. Este trabalho explora a 

implementação de uma aplicação de e-commerce utilizando tecnologias NoSQL e 

NewSQL para otimizar o armazenamento e processamento de grandes volumes de 

dados. O estudo de caso apresenta o uso de MongoDB para dados semi-estruturados 

e logs, Cassandra para dados de transações e CockroachDB para dados estruturados 

e transações ACID. A análise destaca as características de cada tecnologia, a 

modelagem necessária e a eficácia em diferentes cenários de dados. A combinação 

dessas ferramentas permite uma solução robusta, escalável e eficiente, adequando-

se às necessidades específicas da aplicação de e-commerce. 

Palavras-chave: Big Data. NoSQL. NewSQL. MongoDB. Modelagem de Dados. 

2.1 ABSTRACT 

The growing generation and complexity of data drive the need for new 

approaches to Big Data management. This paper explores the implementation of an 

e-commerce application using NoSQL and NewSQL technologies to optimize the 

storage and processing of large data volumes. The case study presents the use of 

MongoDB for semi-structured data and logs, Cassandra for transaction data, and 

CockroachDB for structured data and ACID transactions. The analysis highlights the 

characteristics of each technology, the necessary modeling, and effectiveness in 



 

 

97

different data scenarios. The combination of these tools enables a robust, scalable, 

and efficient solution, tailored to the specific needs of the e-commerce application. 

Keywords: Big Data. NoSQL. NewSQL. MongoDB. Data Modeling. 

1 INTRODUÇÃO 

Com o crescimento exponencial dos dados gerados por empresas e usuários, 

as soluções tradicionais de banco de dados relacional se tornaram insuficientes para 

atender às demandas de escalabilidade, desempenho e flexibilidade. Este documento 

explora a implementação de uma aplicação de Big Data, focando em como 

ferramentas NoSQL e NewSQL podem ser usadas para gerenciar grandes volumes 

de dados. O estudo de caso apresentado envolve uma plataforma de e-commerce que 

utiliza essas tecnologias para melhorar sua eficiência e experiência do usuário. 

2 CARACTERIZAÇÃO DOS DADOS 

Na aplicação de e-commerce, os dados são variados e incluem: 

● Dados de Transações: Informações sobre compras, pagamentos e devoluções. 

Dados de Usuários: Perfis de clientes, histórico de navegação e preferências. 

Dados de Produtos: Detalhes dos produtos, categorias e avaliações. 

Dados de Logs: Registros de atividades dos usuários e do sistema. 

Esses dados têm diferentes características e exigem modelos de 

armazenamento e processamento específicos. Por exemplo, os dados de transações 

são estruturados e frequentemente consultados, enquanto os dados de logs são 

semiestruturados e precisam ser processados rapidamente para análise em tempo 

real. 

3 FERRAMENTAS UTILIZADAS 

1. NoSQL 

1.1. MongoDB 

● Modelo de Dados: Documentos JSON. 
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● Características: Alta escalabilidade e flexibilidade. Ideal para dados 

semiestruturados e não-estruturados, como logs de atividades e perfis de 

usuários. 

● Modelagem: Os dados de usuários e produtos são armazenados em coleções 

de documentos. Isso permite consultas rápidas e escalabilidade horizontal. 

1.2. Cassandra 

● Modelo de Dados: Colunas. 

● Características: Alta disponibilidade e desempenho para grandes volumes de 

dados. Adequado para dados de transações e logs, onde a escrita e leitura 

rápida são essenciais. 

● Modelagem: Os dados de transações são modelados como linhas em uma 

tabela de colunas, permitindo consultas rápidas e eficientes. 

2. NewSQL 

2.1. CockroachDB 

● Modelo de Dados: Relacional com suporte a SQL. 

● Características: Combina a escalabilidade horizontal dos bancos NoSQL com 

a consistência e a robustez dos bancos de dados relacionais. 

● Modelagem: Os dados de produtos e transações são armazenados em tabelas 

relacionais, garantindo consistência e integridade referencial, enquanto 

suportam grandes volumes e alta concorrência. 

4 MODELAGEM DE DADOS 

Para a implementação da aplicação, a modelagem de dados foi adaptada 

conforme o modelo de banco de dados escolhido: 

1. NoSQL (MongoDB e Cassandra): 

● Modelagem de Documentos (MongoDB): Os dados são armazenados em 

documentos JSON, permitindo a inclusão de campos aninhados e flexíveis, o 

que é ideal para perfis de usuários e logs de atividades. 

● Modelagem de Colunas (Cassandra): As tabelas são desenhadas para suportar 

grandes volumes de dados com alta taxa de escrita, como as transações de e-
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commerce. 

 

2. NewSQL (CockroachDB): 

● Modelagem Relacional: Dados estruturados são armazenados em tabelas com 

esquemas fixos, proporcionando consistência e suporte a transações ACID. 

Isso é ideal para dados críticos de produtos e transações financeiras. 

2.2 5 CONSIDERAÇÕES FINAIS 

A escolha entre NoSQL e NewSQL depende das necessidades específicas da 

aplicação. NoSQL é excelente para flexibilidade e escalabilidade em dados 

semiestruturados e não-estruturados, enquanto NewSQL oferece o melhor dos dois 

mundos com escalabilidade e consistência para dados estruturados. A combinação 

dessas tecnologias pode proporcionar uma solução robusta e eficiente para 

aplicações de Big Data. 

2.3 REFERÊNCIAS 

Documentação oficial do MongoDB, Cassandra e CockroachDB. 

Artigos e estudos de caso sobre implementações de Big Data com NoSQL e NewSQL. 
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APÊNDICE J -  VISÃO COMPUTACIONAL 

 

A – ENUNCIADO 
 

1) Extração de Características  
  

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno-

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas 

em diretórios.  O objetivo é classificar as imagens nas categorias correspondentes. Uma base de 

imagens será utilizada para o treinamento e outra para o teste do treino.  

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging) 

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão 

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada. 

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não 
utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de 
treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última 

camada de classificação e armazene os valores da penúltima camada como um vetor de 

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.  

  

Tarefas:  

a) Carregue a base de dados de Treino.  
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).  
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada 

extrator).  
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.  
e) Carregue a base de Teste e execute a tarefa 3 nesta base.  
f) Aplique os modelos treinados nos dados de treino  
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.  
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada  
  

2) Redes Neurais  
  

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais 

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully 

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data 

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem 

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será 

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation 
cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.  
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Tarefas:  

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício 
anterior  

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation  
c) Aplique os modelos treinados nas imagens da base de Teste  
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.  
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada  

  

 

 

B – RESOLUÇÃO 
 

1a.  
 
#lendo bases de treino 
path = '/content/drive/MyDrive/Pós IAA - 
UFPR/IAA_VISAO_COMPUTACIONAL/base_treino/' 
 
# Criar um dicionário para armazenar imagens por paciente e 
suas classes 
dados_pacientes = {} 
 
# Percorrer cada diretório (classe) 
for classe in os.listdir(path): 
    classe_path = os.path.join(path, classe) 
 
    if os.path.isdir(classe_path):  # Verificar se é um 
diretório 
        for img in os.listdir(classe_path): 
            if img.endswith('.png'): 
                paciente = img.split('_')[0]  # XX é o número 
do paciente 
 
                if paciente not in dados_pacientes: 
                    dados_pacientes[paciente] = {"classe": 
classe, "imagens": []} 
 
                dados_pacientes[paciente]["imagens"].append(os
.path.join(classe_path, img)) 
 
print("Total de pacientes carregados:", len(dados_pacientes)) 
 

1b.  
 
# Criar listas de pacientes e suas respectivas classes 
pacientes = list(dados_pacientes.keys()) 
classes = [dados_pacientes[p]["classe"] for p in pacientes]  # 
Pegamos a classe de cada paciente 
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# Dividir os pacientes garantindo que todas as classes 
apareçam nos dois conjuntos 
pacientes_treino, pacientes_validacao = train_test_split( 
    pacientes, test_size=0.2, stratify=classes, 
random_state=42 
) 
 
# Criar os conjuntos de treino e validação 
dados_treino = {p: dados_pacientes[p] for p in 
pacientes_treino} 
dados_validacao = {p: dados_pacientes[p] for p in 
pacientes_validacao} 
 
print("Pacientes no treino:", len(dados_treino)) 
print("Pacientes na validação:", len(dados_validacao)) 
 

1c.  
 
#extração de características com lbp 
 
# Parâmetros do LBP 
P = 8  # Número de vizinhos 
R = 1  # Raio 
 
def extrair_lbp(image_path): 
    img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) 
    lbp = local_binary_pattern(img, P, R, method="uniform") 
 
    # Criar histograma 
    hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, 
P+3), range=(0, P+2)) 
    hist = hist.astype("float") 
    hist /= (hist.sum() + 1e-6)  # Normalização 
 
    return hist 
 
# Criar CSV de características LBP 
dados_lbp = [] 
 
for paciente, info in dados_treino.items(): 
    for img_path in info["imagens"]: 
        hist_lbp = extrair_lbp(img_path) 
        classe = info["classe"] 
        dados_lbp.append([paciente] + hist_lbp.tolist() + 
[classe]) 
 
# Salvar CSV no Google Drive 
df_lbp = pd.DataFrame(dados_lbp) 
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df_lbp.to_csv('/content/drive/MyDrive/LBP_features.csv', 
index=False) 
 
print("Extração de LBP concluída e salva em CSV.") 
 

#extração de características com vgg16 
 
# Carregar a VGG16 sem a última camada 
base_model = VGG16(weights="imagenet", include_top=False, 
pooling="avg") 
model = Model(inputs=base_model.input, 
outputs=base_model.output) 
 
def extrair_vgg16(image_path): 
    img = image.load_img(image_path, target_size=(224, 224)) 
    img_array = image.img_to_array(img) 
    img_array = np.expand_dims(img_array, axis=0) 
    img_array = preprocess_input(img_array) 
 
    features = model.predict(img_array) 
    return features.flatten() 
 
# Criar CSV de características VGG16 
dados_vgg16 = [] 
 
for paciente, info in dados_treino.items(): 
    for img_path in info["imagens"]: 
        features_vgg16 = extrair_vgg16(img_path) 
        classe = info["classe"] 
        dados_vgg16.append([paciente] + 
features_vgg16.tolist() + [classe]) 
 
# Salvar CSV no Google Drive 
df_vgg16 = pd.DataFrame(dados_vgg16) 
df_vgg16.to_csv('/content/drive/MyDrive/VGG16_features.csv', 
index=False) 
 
print("Extração de VGG16 concluída e salva em CSV.") 
 

1d.  
 
#treinamento dos modelos 
 
# Carregar as features extraídas do CSV 
df_lbp = 
pd.read_csv('/content/drive/MyDrive/LBP_features.csv') 
df_vgg16 = 
pd.read_csv('/content/drive/MyDrive/VGG16_features.csv') 
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# Separar features e labels 
X_lbp = df_lbp.iloc[:, 1:-1].values  # Pega todas as colunas 
exceto paciente e classe 
y_lbp = df_lbp.iloc[:, -1].values  # Última coluna é a classe 
 
X_vgg16 = df_vgg16.iloc[:, 1:-1].values 
y_vgg16 = df_vgg16.iloc[:, -1].values 
 
# Codificar as labels 
encoder = LabelEncoder() 
y_lbp = encoder.fit_transform(y_lbp) 
y_vgg16 = encoder.transform(y_vgg16) 
 
# Dividir entre treino e validação (80/20) 
X_treino_lbp, X_validacao_lbp, y_treino_lbp, y_validacao_lbp = 
train_test_split( 
    X_lbp, y_lbp, test_size=0.2, random_state=42, 
stratify=y_lbp 
) 
 
X_treino_vgg16, X_validacao_vgg16, y_treino_vgg16, 
y_validacao_vgg16 = train_test_split( 
    X_vgg16, y_vgg16, test_size=0.2, random_state=42, 
stratify=y_vgg16 
) 
 
# Função para treinar os modelos 
def treinar_modelos(X_train, y_train): 
    rf = RandomForestClassifier(n_estimators=100, 
random_state=42) 
    svm = SVC(kernel="linear", probability=True, 
random_state=42) 
    rna = MLPClassifier(hidden_layer_sizes=(100,), 
max_iter=500, random_state=42) 
 
    rf.fit(X_train, y_train) 
    svm.fit(X_train, y_train) 
    rna.fit(X_train, y_train) 
 
    return rf, svm, rna 
 
# Treinar modelos 
rf_lbp, svm_lbp, rna_lbp = treinar_modelos(X_treino_lbp, 
y_treino_lbp) 
rf_vgg16, svm_vgg16, rna_vgg16 = 
treinar_modelos(X_treino_vgg16, y_treino_vgg16) 
 
print("Treinamento concluído.") 
 

#avaliação de métricas dos modelos 
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def avaliar_modelo(modelo, X_test, y_test, nome_modelo): 
    y_pred = modelo.predict(X_test) 
    matriz_confusao = confusion_matrix(y_test, y_pred) 
    relatorio = classification_report(y_test, y_pred) 
 
    print(f"  Modelo: {nome_modelo}") 
    print("Matriz de Confusão:\n", matriz_confusao) 
    print("Relatório de Classificação:\n", relatorio) 
    print("-" * 50) 
 
# Avaliar os modelos treinados 
avaliar_modelo(rf_lbp, X_validacao_lbp, y_validacao_lbp, 
"Random Forest (LBP)") 
avaliar_modelo(svm_lbp, X_validacao_lbp, y_validacao_lbp, "SVM 
(LBP)") 
avaliar_modelo(rna_lbp, X_validacao_lbp, y_validacao_lbp, "RNA 
(LBP)") 
 
avaliar_modelo(rf_vgg16, X_validacao_vgg16, y_validacao_vgg16, 
"Random Forest (VGG16)") 
avaliar_modelo(svm_vgg16, X_validacao_vgg16, 
y_validacao_vgg16, "SVM (VGG16)") 
avaliar_modelo(rna_vgg16, X_validacao_vgg16, 
y_validacao_vgg16, "RNA (VGG16)") 
 

# Comparar o desempenho 
modelos = ["RF (LBP)", "SVM (LBP)", "RNA (LBP)", "RF (VGG16)", 
"SVM (VGG16)", "RNA (VGG16)"] 
acuracias = [ 
    rf_lbp.score(X_validacao_lbp, y_validacao_lbp), 
    svm_lbp.score(X_validacao_lbp, y_validacao_lbp), 
    rna_lbp.score(X_validacao_lbp, y_validacao_lbp), 
    rf_vgg16.score(X_validacao_vgg16, y_validacao_vgg16), 
    svm_vgg16.score(X_validacao_vgg16, y_validacao_vgg16), 
    rna_vgg16.score(X_validacao_vgg16, y_validacao_vgg16) 
] 
 
for modelo, acc in zip(modelos, acuracias): 
    print(f"{modelo}: {acc:.4f}") 
 

RF (LBP): 0,8421 
SVM (LBP): 0,4000 
RNA (LBP): 0,5158 
RF (VGG16): 0,9579 
SVM (VGG16): 0,9789 
RNA (VGG16): 0,9895 
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1e.  
 
import os 
 
# Caminho para a base de teste 
path_teste = '/content/drive/MyDrive/Pós IAA - 
UFPR/IAA_VISAO_COMPUTACIONAL/base_teste/' 
 
# Listas para armazenar caminhos das imagens e seus 
respectivos labels 
imagens_teste = [] 
labels_teste = [] 
 

for class_dir in os.listdir(path_teste): 
    class_path = os.path.join(path_teste, class_dir) 
 
    if os.path.isdir(class_path):  # Verifica se é um 
diretório 
        for img_name in os.listdir(class_path): 
            if img_name.endswith('.png'): 
                img_path = os.path.join(class_path, img_name) 
 
                # Adiciona a imagem e seu label correspondente 
                imagens_teste.append(img_path) 
                labels_teste.append(class_dir) 
 
print("Total de imagens de teste carregadas:", 
len(imagens_teste)) 
print("Total de labels carregadas:", len(labels_teste)) 
print("Exemplo de mapeamento imagem-label:", 
list(zip(imagens_teste[:5], labels_teste[:5]))) 
 

import os 
import cv2 
import numpy as np 
import pandas as pd 
from skimage.feature import local_binary_pattern 
 
# Parâmetros do LBP 
P = 8  # Número de vizinhos 
R = 1  # Raio 
 
def extrair_lbp(image_path): 
    img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) 
    lbp = local_binary_pattern(img, P, R, method="uniform") 
 
    # Criar histograma 
    hist, _ = np.histogram(lbp.ravel(), bins=np.arange(0, P + 
3), range=(0, P + 2)) 
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    hist = hist.astype("float") 
    hist /= (hist.sum() + 1e-6)  # Normalização 
 
    return hist 
 
# Lista para armazenar os dados LBP do teste 
dados_lbp_teste = [] 
 
# Loop pelas imagens e labels carregados anteriormente 
for img_path, classe in zip(imagens_teste, labels_teste): 
    hist_lbp = extrair_lbp(img_path) 
    nome_img = os.path.basename(img_path) 
    dados_lbp_teste.append([nome_img] + hist_lbp.tolist() + 
[classe]) 
 
# Criar DataFrame e salvar em CSV 
df_lbp_teste = pd.DataFrame(dados_lbp_teste) 
 
# Cria nomes de colunas (ex: 'LBP_0', 'LBP_1', ...) 
colunas = ['imagem'] + [f'LBP_{i}' for i in 
range(len(df_lbp_teste.columns) - 2)] + ['classe'] 
df_lbp_teste.columns = colunas 
 
# Salvar no Google Drive 
df_lbp_teste.to_csv('/content/drive/MyDrive/LBP_features_teste
.csv', index=False) 
 
print("Extração de LBP concluída e salva em CSV para os dados 
de teste.") 
print("Total de imagens processadas:", len(df_lbp_teste)) 
 

import os 
import numpy as np 
import pandas as pd 
import cv2 
from keras.applications.vgg16 import VGG16, preprocess_input 
from keras.models import Model 
from keras.preprocessing import image 
 
# Carregar a VGG16 sem a última camada (extração de features) 
base_model = VGG16(weights="imagenet", include_top=False, 
pooling="avg") 
model = Model(inputs=base_model.input, 
outputs=base_model.output) 
 
def extrair_vgg16(image_path): 
    """Extrai o vetor de características da VGG16 para uma 
imagem.""" 
    img = image.load_img(image_path, target_size=(224, 224)) 
    img_array = image.img_to_array(img) 
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    img_array = np.expand_dims(img_array, axis=0) 
    img_array = preprocess_input(img_array) 
 
    features = model.predict(img_array, verbose=0) 
    return features.flatten() 
 
# Lista para armazenar os dados VGG16 do teste 
dados_vgg16_teste = [] 
 
# Loop pelas imagens e labels carregados anteriormente 
for img_path, classe in zip(imagens_teste, labels_teste): 
    features_vgg16 = extrair_vgg16(img_path) 
    nome_img = os.path.basename(img_path) 
    dados_vgg16_teste.append([nome_img] + 
features_vgg16.tolist() + [classe]) 
 
# Criar DataFrame 
df_vgg16_teste = pd.DataFrame(dados_vgg16_teste) 
 
# Nomear as colunas (ex: VGG16_0 ... VGG16_n) 
colunas = ['imagem'] + [f'VGG16_{i}' for i in 
range(len(df_vgg16_teste.columns) - 2)] + ['classe'] 
df_vgg16_teste.columns = colunas 
 
# Salvar CSV no Google Drive 
df_vgg16_teste.to_csv('/content/drive/MyDrive/VGG16_features_t
este.csv', index=False) 
 
print("Extração de VGG16 concluída e salva em CSV para os 
dados de teste.") 
print("Total de imagens processadas:", len(df_vgg16_teste)) 
 
import os 
import numpy as np 
import pandas as pd 
from sklearn.metrics import classification_report, 
confusion_matrix 
 
# Caminho dos arquivos CSV 
caminho_saida = "/content/drive/MyDrive/" 
csv_teste_lbp = os.path.join(caminho_saida, 
"LBP_features_teste.csv") 
csv_teste_vgg16 = os.path.join(caminho_saida, 
"VGG16_features_teste.csv") 
 
# Carregar os CSVs 
df_teste_lbp = pd.read_csv(csv_teste_lbp) 
df_teste_vgg16 = pd.read_csv(csv_teste_vgg16) 
 
# Separar labels e features 
y_teste = df_teste_lbp["classe"].values  # rótulos 
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X_teste_lbp = df_teste_lbp.drop(columns=["imagem", 
"classe"]).values 
X_teste_vgg16 = df_teste_vgg16.drop(columns=["imagem", 
"classe"]).values 
 
# Codificar labels usando o mesmo encoder dos dados de treino 
y_teste_encoded = encoder.transform(y_teste) 
 
# ---- Aplicar os modelos treinados nos dados de teste ---- 
 
# LBP 
y_pred_rf_lbp = rf_lbp.predict(X_teste_lbp) 
y_pred_svm_lbp = svm_lbp.predict(X_teste_lbp) 
y_pred_rna_lbp = rna_lbp.predict(X_teste_lbp) 
 
# VGG16 
y_pred_rf_vgg16 = rf_vgg16.predict(X_teste_vgg16) 
y_pred_svm_vgg16 = svm_vgg16.predict(X_teste_vgg16) 
y_pred_rna_vgg16 = rna_vgg16.predict(X_teste_vgg16) 
 
# ---- Função para avaliação dos modelos ---- 
def avaliar_modelo(y_teste, y_pred, nome_modelo): 
    print(f"\n  Avaliação do Modelo: {nome_modelo}") 
    print("Matriz de Confusão:") 
    print(confusion_matrix(y_teste, y_pred)) 
    print("Relatório de Classificação:") 
    print(classification_report(y_teste, y_pred)) 
    print("-" * 50) 
 
# Avaliar os modelos 
avaliar_modelo(y_teste_encoded, y_pred_rf_lbp, "Random Forest 
LBP") 
avaliar_modelo(y_teste_encoded, y_pred_svm_lbp, "SVM LBP") 
avaliar_modelo(y_teste_encoded, y_pred_rna_lbp, "RNA LBP") 
 
avaliar_modelo(y_teste_encoded, y_pred_rf_vgg16, "Random 
Forest VGG16") 
avaliar_modelo(y_teste_encoded, y_pred_svm_vgg16, "SVM VGG16") 
avaliar_modelo(y_teste_encoded, y_pred_rna_vgg16, "RNA VGG16") 
 

1h.  
 

Utilizando a métrica de acurácia para comparação, o modelo que apresenta 
melhor resultado é o RNA VGG16.  
 
2a.  
 
import os 
import numpy as np 
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from tensorflow.keras.preprocessing.image import 
ImageDataGenerator, load_img, img_to_array 
from sklearn.preprocessing import LabelEncoder 
from tensorflow.keras.utils import to_categorical 
from sklearn.model_selection import train_test_split 
 
# Função para carregar as imagens e rótulos 
def carregar_imagens(dados_pacientes): 
    imagens = [] 
    rotulos = [] 
 
    for paciente, dados in dados_pacientes.items(): 
        for img_path in dados["imagens"]: 
            img = load_img(img_path, target_size=(224, 
224))  # Redimensionar para 224x224 
            img_array = img_to_array(img)  # Converter imagem 
para array numpy 
            imagens.append(img_array) 
            rotulos.append(dados["classe"])  # Armazenar o 
rótulo (classe) 
 
    imagens = np.array(imagens)  # Converter a lista de 
imagens para um array numpy 
    rotulos = np.array(rotulos)  # Converter os rótulos para 
um array numpy 
 
    return imagens, rotulos 
 
# Carregar imagens e rótulos para treino e validação 
X_treino, y_treino = carregar_imagens(dados_treino) 
X_validacao, y_validacao = carregar_imagens(dados_validacao) 
 
# Normalizar as imagens (dividir por 255 para ficar entre 0 e 
1) 
X_treino = X_treino / 255.0 
X_validacao = X_validacao / 255.0 
 
# Codificar as classes com LabelEncoder e converter para one-
hot encoding 
label_encoder = LabelEncoder() 
y_treino_encoded = label_encoder.fit_transform(y_treino) 
y_validacao_encoded = label_encoder.transform(y_validacao) 
 
y_treino_one_hot = to_categorical(y_treino_encoded, 
num_classes=4)  # Assumindo 4 classes 
y_validacao_one_hot = to_categorical(y_validacao_encoded, 
num_classes=4) 
 
print("Formato de X_treino:", X_treino.shape) 
print("Formato de X_validacao:", X_validacao.shape) 
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from tensorflow.keras.preprocessing.image import 
ImageDataGenerator 
from tensorflow.keras.applications.vgg16 import 
preprocess_input 
 
# Definindo o Data Augmentation para o treino 
datagen = ImageDataGenerator( 
    preprocessing_function=preprocess_input,  #adiciona o pré-
processamento da VGG16 
    rotation_range=30, 
    width_shift_range=0.2, 
    height_shift_range=0.2, 
    shear_range=0.2, 
    # zoom_range=0.2,  
    horizontal_flip=True, 
    fill_mode='nearest' 
) 
 
# Geradores de treino e validação 
train_generator = datagen.flow(X_treino, y_treino_one_hot, 
batch_size=32) 
val_generator = datagen.flow(X_validacao, y_validacao_one_hot, 
batch_size=32) 
 

2b. 
 
from tensorflow.keras.applications import VGG16 
from tensorflow.keras.models import Model 
from tensorflow.keras.layers import Dense, 
GlobalAveragePooling2D 
from tensorflow.keras.optimizers import Adam 
 
# Carregar o modelo VGG16 com pesos pré-treinados, sem as 
camadas superiores 
base_model_vgg = VGG16(weights='imagenet', include_top=False, 
input_shape=(224, 224, 3)) 
 
# Congelar as camadas do modelo pré-treinado 
for layer in base_model_vgg.layers: 
    layer.trainable = False 
 
# Adicionar novas camadas totalmente conectadas para a 
classificação de 4 classes 
x = GlobalAveragePooling2D()(base_model_vgg.output) 
x = Dense(1024, activation='relu')(x) 
x = Dense(4, activation='softmax')(x)  # 4 classes 
 
# Criar o modelo final 
model_vgg = Model(inputs=base_model_vgg.input, outputs=x) 
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model_vgg.compile(optimizer=Adam(), 
loss='categorical_crossentropy', metrics=['accuracy']) 
 
# Treinar o modelo VGG16 
history_vgg = model_vgg.fit( 
    train_generator, 
    epochs=10, 
    validation_data=val_generator 
) 
 
 

from tensorflow.keras.applications import ResNet50 
 
# Carregar o modelo ResNet50 com pesos pré-treinados, sem as 
camadas superiores 
base_model_resnet = ResNet50(weights='imagenet', 
include_top=False, input_shape=(224, 224, 3)) 
 
# Congelar as camadas do modelo pré-treinado 
for layer in base_model_resnet.layers: 
    layer.trainable = False 
 
# Adicionar novas camadas totalmente conectadas para a 
classificação de 4 classes 
x = GlobalAveragePooling2D()(base_model_resnet.output) 
x = Dense(1024, activation='relu')(x) 
x = Dense(4, activation='softmax')(x)  # 4 classes 
 
# Criar o modelo final 
model_resnet = Model(inputs=base_model_resnet.input, 
outputs=x) 
model_resnet.compile(optimizer=Adam(), 
loss='categorical_crossentropy', metrics=['accuracy']) 
 
# Treinar o modelo ResNet50 
history_resnet = model_resnet.fit( 
    train_generator, 
    epochs=10, 
    validation_data=val_generator 
) 
 

2c. 
 
from sklearn.metrics import confusion_matrix, 
classification_report 
 
# Fazer previsões no conjunto de validação 
y_pred_vgg = model_vgg.predict(X_validacao) 
y_pred_resnet = model_resnet.predict(X_validacao) 
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# Converter previsões para rótulos (classe com maior 
probabilidade) 
y_pred_vgg_classes = np.argmax(y_pred_vgg, axis=1) 
y_pred_resnet_classes = np.argmax(y_pred_resnet, axis=1) 
 
# Converter os rótulos verdadeiros para valores numéricos 
y_true_classes = np.argmax(y_validacao_one_hot, axis=1) 
 

# Matriz de confusão para VGG16 
conf_matrix_vgg = confusion_matrix(y_true_classes, 
y_pred_vgg_classes) 
print("Matriz de Confusão - VGG16:\n", conf_matrix_vgg) 
 
# Matriz de confusão para ResNet50 
conf_matrix_resnet = confusion_matrix(y_true_classes, 
y_pred_resnet_classes) 
print("Matriz de Confusão - ResNet50:\n", conf_matrix_resnet) 
 

2d. 
 
from sklearn.metrics import recall_score, precision_score, 
f1_score 
 
def calcular_metricas(y_true, y_pred, modelo_nome): 
    recall = recall_score(y_true, y_pred, average=None)  # 
Sensibilidade por classe 
    specificity = []  # Lista para armazenar a especificidade 
por classe 
 
    conf_matrix = confusion_matrix(y_true, y_pred) 
    for i in range(len(conf_matrix)): 
        TN = np.sum(conf_matrix) - (conf_matrix[i, :].sum() + 
conf_matrix[:, i].sum() - conf_matrix[i, i]) 
        FP = conf_matrix[:, i].sum() - conf_matrix[i, i] 
        FN = conf_matrix[i, :].sum() - conf_matrix[i, i] 
        specificity.append(TN / (TN + FP))  # Especificidade 
por classe 
 
    f1 = f1_score(y_true, y_pred, average=None)  # F1-Score 
por classe 
 
    print(f"\n--- Métricas para {modelo_nome} ---") 
    for i in range(len(recall)): 
        print(f"Classe {i}: Sensibilidade = {recall[i]:.4f}, 
Especificidade = {specificity[i]:.4f}, F1-Score = 
{f1[i]:.4f}") 
 
    # Média das métricas para avaliar o desempenho geral 



 

 

114

    print(f"Média: Sensibilidade = {np.mean(recall):.4f}, 
Especificidade = {np.mean(specificity):.4f}, F1-Score = 
{np.mean(f1):.4f}") 
 
# Calcular métricas para VGG16 
calcular_metricas(y_true_classes, y_pred_vgg_classes, "VGG16") 
 
# Calcular métricas para ResNet50 
calcular_metricas(y_true_classes, y_pred_resnet_classes, 
"ResNet50") 
 

2e. 
 
Como o modelo com VGG16 apresenta especificidade e sensibilidade maior do que 
o resnet, ele é o melhor modelo a ser escolhido. 
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APÊNDICE K -  ASPECTOS FILOSÓFICOS E ÉTICOS DA IA 

 

A – ENUNCIADO 
 
Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT" 

 

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06) 

integrantes. 

 

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e 

propor soluções responsáveis para lidar com esses dilemas. 

Parâmetros para elaboração do Trabalho: 

 

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da 

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas 

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como usuários, 

desenvolvedores e a sociedade em geral. 

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do 

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a 

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso, 

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade. 

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções 

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas, 

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. Eles 

devem considerar como essas soluções podem equilibrar os interesses de diferentes partes 

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade. 

4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os 

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões 

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como 

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais 

aprendidos ao analisar um caso concreto. 

5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500 

e 3000 palavras. 

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução, 

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas, 

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento. 
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7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o 

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em 

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise. 

8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições 

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir 

suas mensagens de maneira sucinta.  

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com 

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve-

se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp- 

content/uploads/2022/03/template-artigo-de-periodico.docx 

 

B – RESOLUÇÃO 
 

RESUMO 

Este estudo investiga as implicações éticas do uso do ChatGPT em 

aconselhamento psicológico online. Abordamos questões como privacidade dos 

dados, qualidade do aconselhamento, viés algorítmico e responsabilidade ética. 

Propomos diretrizes para um uso responsável da IA em contextos sensíveis. 

Palavras-chave: ChatGPT. Aconselhamento psicológico. Ética. Inteligência Artificial. 

Privacidade. 

This study examines the ethical implications of using ChatGPT in online 

psychological counseling. We address issues such as data privacy, counseling quality, 

algorithmic bias, and ethical responsibility. We propose guidelines for the responsible 

use of AI in sensitive contexts. 

Keywords: ChatGPT. Psychological counseling. Ethics. Artificial intelligence. Privacy. 

1 INTRODUÇÃO 

Com o avanço da inteligência artificial (IA), assistentes virtuais como o 

ChatGPT têm sido cada vez mais integrados em diferentes setores, incluindo o campo 

do aconselhamento psicológico online. Esta aplicação levanta questões profundas 

sobre ética, especialmente relacionadas à privacidade dos dados dos usuários, 

qualidade do aconselhamento oferecido, viés algorítmico e responsabilidade ética. 
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Este estudo de caso explora essas implicações éticas específicas, oferecendo uma 

análise crítica do uso do ChatGPT em um contexto sensível como o suporte emocional 

e aconselhamento psicológico online. 

2 PRIVACIDADE E CONFIDENCIALIDADE 

A privacidade e a confidencialidade são preocupações centrais no uso de 

assistentes virtuais como o ChatGPT para aconselhamento psicológico. A natureza 

sensível das informações compartilhadas pelos usuários exige medidas rigorosas 

para proteger seus dados pessoais contra acesso não autorizado e violações de 

privacidade. Floridi (2020) discute que a proteção de dados é essencial para manter 

a confiança dos usuários e garantir o cumprimento de regulamentações de 

privacidade, como o GDPR. 

Plataformas que implementam ChatGPT devem adotar políticas claras de 

privacidade e segurança de dados, incluindo criptografia robusta, armazenamento 

seguro e protocolos de acesso restrito. É fundamental que os usuários sejam 

informados de maneira transparente sobre como seus dados serão usados e 

protegidos ao interagir com o assistente virtual. 

3 QUALIDADE DO ACONSELHAMENTO E RESPONSABILIDADE 

Um aspecto crítico do uso do ChatGPT em aconselhamento psicológico é a 

avaliação da qualidade do serviço oferecido em comparação com o fornecido por 

profissionais humanos. Bostrom e Yudkowsky (2014) destacam a importância de 

avaliar a competência da IA em lidar com questões complexas e sensíveis, como as 

encontradas na psicologia clínica. 

Embora o ChatGPT possa oferecer respostas rápidas e acessíveis, há 

limitações significativas em sua capacidade de compreender nuances emocionais, 

contexto individual e dinâmicas interativas que são essenciais para o aconselhamento 

eficaz. Isso levanta questões sobre a responsabilidade ética das plataformas que 

oferecem serviços de aconselhamento baseados em IA. 
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Os desenvolvedores e os provedores de serviços devem estabelecer diretrizes 

claras para o uso responsável do ChatGPT em contextos terapêuticos, garantindo que 

o bem-estar dos usuários seja priorizado acima de considerações comerciais. 

4 VIÉS ALGORÍTMICO E DISCRIMINAÇÃO 

A questão do viés algorítmico é um desafio significativo em qualquer aplicação 

de IA, incluindo o aconselhamento psicológico. Mittelstadt et al. (2016) discutem como 

algoritmos de IA podem inadvertidamente perpetuar vieses culturais, raciais ou de 

gênero, impactando negativamente certos grupos demográficos. 

No contexto do ChatGPT, é fundamental implementar técnicas avançadas de 

mitigação de viés algorítmico, como a diversificação dos conjuntos de dados de 

treinamento, a revisão humana de interações críticas e o monitoramento contínuo das 

respostas geradas pelo assistente virtual. 

Além disso, políticas de inclusão e diversidade devem orientar o 

desenvolvimento e a implementação de algoritmos para evitar discriminações injustas 

ou prejudiciais. 

5 TOMADA DE DECISÃO ÉTICA 

A tomada de decisão ética envolve determinar quando e como o ChatGPT pode 

ser utilizado de maneira ética no aconselhamento psicológico. Jobin et al. (2019) 

destacam a importância de diretrizes éticas robustas que orientem o uso responsável 

da IA em contextos sensíveis, como saúde mental. 

É essencial que as plataformas que oferecem aconselhamento baseado em 

ChatGPT forneçam transparência aos usuários sobre os limites e as capacidades do 

assistente virtual. Isso inclui educar os usuários sobre a natureza da IA, seus 

propósitos e as expectativas realistas quanto ao tipo de suporte emocional que pode 

ser oferecido. 

Além disso, é necessário estabelecer procedimentos claros para encaminhar 

usuários para serviços profissionais de saúde mental sempre que necessário, 

garantindo uma abordagem integrada e ética ao cuidado psicológico. 
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6 PROPOSTA E SOLUÇÕES RESPONSÁVEIS 

Para enfrentar esses desafios éticos, é fundamental implementar soluções 

responsáveis que promovam o uso ético do ChatGPT no aconselhamento psicológico 

online: 

1. Políticas Claras de Privacidade e Segurança de Dados: Desenvolver e aplicar 

políticas robustas de privacidade que garantam a proteção adequada dos 

dados dos usuários. 

 

2. Diretrizes Éticas Específicas: Estabelecer diretrizes éticas específicas para o 

uso de IA em aconselhamento psicológico, com ênfase na transparência, 

responsabilidade e respeito aos direitos dos usuários. 

 

3. Mitigação de Viés Algorítmico: Implementar medidas eficazes para identificar 

e mitigar vieses algorítmicos, incluindo revisão humana e diversificação dos 

conjuntos de dados de treinamento. 

 

4. Educação e Conscientização dos Usuários: Educar os usuários sobre as 

capacidades e limitações do ChatGPT, promovendo uma compreensão 

informada do uso de IA no suporte emocional. 

 

5. Integração de Supervisão Humana: Integrar supervisão humana qualificada 

para monitorar e revisar interações críticas, garantindo uma abordagem ética 

ao aconselhamento psicológico. 

 

7 CONSIDERAÇÕES FINAIS 

Em resumo, o uso do ChatGPT em aconselhamento psicológico online 

apresenta benefícios potenciais significativos, como a expansão do acesso a serviços 

de suporte emocional. No entanto, também levanta desafios éticos complexos que 

exigem uma abordagem cuidadosa e responsável. 
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Ao enfrentar questões de privacidade dos dados, qualidade do serviço, viés 

algorítmico e tomada de decisão ética, é possível desenvolver práticas que promovam 

o uso ético da IA no cuidado psicológico. 

As propostas de soluções responsáveis destacadas neste estudo de caso são 

essenciais para orientar o desenvolvimento e a implementação de sistemas de IA que 

respeitem os princípios éticos fundamentais, protegendo o bem-estar dos usuários e 

promovendo uma sociedade digital mais justa e inclusiva. 
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APÊNDICE L -  GESTÃO DE PROJETOS DE IA 

 

A – ENUNCIADO 
 

1 Objetivo 
 

Individualmente, ler e resumir – seguindo  o template fornecido – um dos artigos abaixo: 

 

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements 

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied 

Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421 

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems: 

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207. 

2024. DOI https://doi.org/10.1016/j.jss.2023.111860  

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for 

machine learning – Adoption, effects, and team assessment. The Journal of Systems & 

Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907  

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development 

of artificial intelligence models – Current state of research and practice. The Journal of 

Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss.2023.111615  

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML? 

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on 

Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI 

https://doi.org/10.1145/3411764.3445306  

 
2 Orientações adicionais 

 

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para 

entender o conteúdo dos artigos – caso precise, mas escreva o resumo em língua portuguesa e nas 

suas palavras.  

 

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo 

escolhido. 

 

No template, você deverá responder às seguintes questões: 

 Qual o objetivo do estudo descrito pelo artigo? 
 Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo? 
 Qual a metodologia que os autores usaram para obter e analisar as informações do estudo? 
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 Quais os principais resultados obtidos pelo estudo? 
 

Responda cada questão utilizando o espaço fornecido no template, sem alteração do tamanho 

da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0). 

 

Não altere as questões do template. 

 

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o 

trabalho em PDF. 

 

 

B – RESOLUÇÃO 
 

O estudo tem como objetivo identificar desafios de design de arquitetura de 

software, melhores práticas e decisões para sistemas habilitados para Machine 

Learning. O objetivo é detalhado através dos seguintes tópicos:  

• Desafios de design de arquitetura de software mais comuns para sistemas 

habilitados para Machine Learning  

• Melhores práticas na arquitetura de sistemas habilitados para Machine 

Learning  

• Principais decisões de design de arquitetura de software para sistemas 

habilitados 

 Apesar de especialistas pesquisarem sobre as melhores práticas de design 

para sistemas de ML, faltam estudos que analisem a percepção e a usabilidade dos 

designs de ML na arquitetura de sistemas e aplicativos de ML pelos profissionais. 

Foi utilizado um misto de métodos para extrair os resultados do estudo, através 

da revisão de literatura e de entrevistas com especialistas e profissionais do tema. 

Esse método misto foi utilizado para compensar limitações de método único.  

A etapa de entrevistas foi realizada através de questionário com quinze 

perguntas abertas, a fim de que os profissionais aprofundassem seus relatos.  

A etapa de revisão de literatura teve um sistema para seleção, partindo de uma 

busca automática por literatura revisada por pares, com critérios de seleção, também 

foi feita a complementação de busca utilizando técnicas sugeridas em outros estudos.  

Observou-se que a arquitetura de quatro visualizações da Siemens é usada 

para melhor separação de preocupações, enquanto a arquitetura de microsserviços 
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ajuda na manutenção e coesão, através da decomposição de sistema, promovendo 

flexibilidade.  

É relatado que o manuseio de dados é desafiador em diversos aspectos, entre 

eles, gerenciamento, visualização e privacidade. Muitos desses desafios, carecem de 

melhores práticas de design.  

A escolha de modelos adequados também é dado como um desafio, e as 

melhores práticas e decisões de design sugerem deixar que os requisitos e o tipo de 

domínio conduzam a seleção dos modelos. 
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APÊNDICE M -  FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL 

 

A – ENUNCIADO 
 
1 Classificação (RNA) 

 

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a 

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação. 

Além disso, fazer uma breve explicação dos seguintes resultados:  

- Gráficos de perda e de acurácia; 
-  Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula 

prática. 
Informações: 

● Base de dados: Fashion MNIST Dataset  
● Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de vestuário. 

É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de dígitos. 
● Tamanho: 70.000 amostras, 784 features (28x28 pixels). 
● Importação do dataset: Copiar código abaixo. 

 

data = tf.keras.datasets.fashion_mnist  
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() 
 

2 Regressão (RNA) 
 

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a arquitetura 

RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão. Além disso, 

fazer uma breve explicação dos seguintes resultados:  

● Gráficos de avaliação do modelo (loss); 
● Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R²). 

Informações: 

● Base de dados: Wine Quality 
● Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas 

características químicas. A variável target (y) neste exemplo será o score de qualidade do 
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade) 

● Tamanho: 1599 amostras, 12 features. 
● Importação: Copiar código abaixo. 

 

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-
quality/winequality-red.csv" 

data = pd.read_csv(url, delimiter=';') 
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Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para 
português, dessa forma: 

 
data.columns = [ 
    'acidez_fixa',            # fixed acidity 
    'acidez_volatil',         # volatile acidity 
    'acido_citrico',          # citric acid 
    'acucar_residual',        # residual sugar 
    'cloretos',               # chlorides 
    'dioxido_de_enxofre_livre', # free sulfur dioxide 
    'dioxido_de_enxofre_total', # total sulfur dioxide 
    'densidade',              # density 
    'pH',                     # pH 
    'sulfatos',               # sulphates 
    'alcool',                 # alcohol 
    'score_qualidade_vinho'               # quality 
] 
 
Dica 2. Separe os dados (x e y) de tal forma que a última coluna (índice 

-1), chamada score_qualidade_vinho, seja a variável target (y) 
 

3 Sistemas de Recomendação 
 

Implementar o exemplo de Sistemas de Recomendação usando a base de dados 

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de Sistemas 
de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados: 

● Gráficos de avaliação do modelo (loss); 
● Exemplo de recomendação de livro para determinado Usuário. 

Informações: 

● Base de dados: Base_livros.csv 
● Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas), 

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario) 
● Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros 

(formato .csv). 

 

4 Deepdream 
 

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de um 

felino  - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - Prática 
Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:  

● Imagem onírica obtida por Main Loop; 
● Imagem onírica obtida ao levar o modelo até uma oitava; 
● Diferenças entre imagens oníricas obtidas com  Main Loop e levando o modelo até a oitava. 
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Informações: 

● Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg 
● Importação da imagem: Copiar código abaixo. 

 

url = 
"https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-
cat_on_snow.jpg" 

 
Dica: Para exibir a imagem utilizando display (display.html) use o link 

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg 
 

 
B – RESOLUÇÃO 
 

1. 
### 1 Classificação (RNA) 
 
import tensorflow as tf 
import matplotlib.pyplot as plt 
import numpy as np 
 
# Carregar a base de dados Fashion MNIST 
data = tf.keras.datasets.fashion_mnist 
(x_train, y_train), (x_test, y_test) = data.load_data() 
 
# Normalizar as imagens de 0-255 para 0-1 
x_train, x_test = x_train / 255.0, x_test / 255.0 
 
# Definir o modelo da rede neural 
model = tf.keras.Sequential([ 
    tf.keras.layers.Flatten(input_shape=(28, 28)),  # Flatten a 
imagem 28x28 para um vetor 1D 
    tf.keras.layers.Dense(128, activation='relu'),  # Camada 
densa com 128 neurônios e ReLU 
    tf.keras.layers.Dropout(0.2),  # Dropout para evitar 
overfitting 
    tf.keras.layers.Dense(10, activation='softmax')  # Camada de 
saída com 10 classes (uma para cada categoria) 
]) 
 
# Compilar o modelo 
model.compile(optimizer='adam', 
              
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits
=True), 
              metrics=['accuracy']) 
 
# Treinar o modelo 
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history = model.fit(x_train, y_train, epochs=10, 
validation_data=(x_test, y_test)) 
 
# Avaliar o modelo no conjunto de teste 
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2) 
print('\nTest accuracy:', test_acc) 
 
# Gráficos de perda e acurácia durante o treinamento 
# Plotando a acurácia de treino e validação 
plt.figure(figsize=(12, 6)) 
 
plt.subplot(1, 2, 1) 
plt.plot(history.history['accuracy'], label='Treinamento') 
plt.plot(history.history['val_accuracy'], label='Validação') 
plt.title('Acurácia durante o treinamento') 
plt.xlabel('Épocas') 
plt.ylabel('Acurácia') 
plt.legend() 
 
# Plotando a perda de treino e validação 
plt.subplot(1, 2, 2) 
plt.plot(history.history['loss'], label='Treinamento') 
plt.plot(history.history['val_loss'], label='Validação') 
plt.title('Perda durante o treinamento') 
plt.xlabel('Épocas') 
plt.ylabel('Perda') 
plt.legend() 
 
plt.show() 
 
# Mostrar algumas classificações erradas 
predictions = model.predict(x_test) 
incorrect_indices = np.where(np.argmax(predictions, axis=1) != 
y_test)[0] 
 
# Exibir 5 classificações erradas 
for i in range(5): 
    index = incorrect_indices[i] 
    plt.imshow(x_test[index], cmap=plt.cm.binary) 
    plt.title(f"Predição: {np.argmax(predictions[index])}, 
Verdadeiro: {y_test[index]}") 
    plt.show() 
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FIGURA 5 - Gráficos de acurácia e perda por épocas 

FONTE: A Autora (2025). 

 
Com base nos gráficos de acurácia e função de perda é possível verificar que 

o treinamento trouxe bons resultados para o modelo, sendo que a acurácia ficou em 

torno de 88% e a função de perda foi reduzida para um valor em torno de 0,34. 

Observando o gráfico da função de perda, é possível ver que a queda no valor de 

perda dos dados de validação começa a reduzir, o que pode significar que, se o treino 

fosse realizado com mais épocas, possivelmente teríamos um cenário de overfitting. 

Por fim, visto que o modelo, apesar de ter uma acurácia alta, ainda assim pode 

cometer erros, como é o caso das imagens que foram preditas erradas e estão sendo 

exibidas na última seção do caderno, no qual tem a classe que foi predita e a classe 

real da imagem. 

 

2.  
import tensorflow as tf 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error, r2_score 
from math import sqrt 
 
#importação dos dados 
 
url = “https://archive.ics.uci.edu/ml/machine-learning-
databases/wine-quality/winequality-red.csv” 
data = pd.read_csv(url, delimiter=’;’) 
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data.head() 
 
#mudando nome das colunas 
data.columns = [ 
‘acidez_fixa’, # fixed acidity 
‘acidez_volatil’, # volatile acidity 
‘acido_citrico’, # citric acid 
‘acucar_residual’, # residual sugar 
‘cloretos’, # chlorides 
‘dioxido_de_enxofre_livre’, # free 130all-b dioxide 
‘dioxido_de_enxofre_total’, # total 130all-b dioxide 
‘densidade’, # density 
‘pH’, # pH 
‘sulfatos’, # 130all-bac 
‘alcool’, # alcohol 
‘score_qualidade_vinho’ # quality 
] 
 
data.head() 
 
#separa variáveis explicativas da variável resposta 
x = data[[‘acidez_fixa’, 
‘acidez_volatil’, 
‘acido_citrico’, 
‘acucar_residual’, 
‘cloretos’, 
‘dioxido_de_enxofre_livre’, 
‘dioxido_de_enxofre_total’, 
‘densidade’, 
‘pH’, 
‘sulfatos’, 
‘alcool’]].values.astype(float) 
 
y = data[‘score_qualidade_vinho’].values.astype(float) 
 
#verificando dados faltantes ou infinito 
 
print(np.isnan(x).any(),np.isnan(y).any()) 
print(np.isinf(x).any(),np.isinf(y).any()) 
 
#normalização dos dados 
from sklearn.preprocessing import StandardScaler 
 
scaler_x = StandardScaler() 
x = scaler_x.fit_transform(x) 
 
scaler_y = StandardScaler() 
y = scaler_y.fit_transform(y.reshape(-1, 1))  # Para regressão 
 
#separando base de treino e teste 



 

 

131

 
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, 
test_size=0.3, 131all-b_state=308) 
 
 
#criação do modelo 
i = tf.keras.layers.Input(shape=(11,)) 
m = tf.keras.layers.Dense(70, activation=’relu’)(i) 
m = tf.keras.layers.Dense(1)(m) 
 
modelo_1 = tf.keras.models.Model(inputs=i, outputs=m) 
 
from keras import backend 
 
#funções para r2 e rmse 
def rmse(y_true, y_pred): 
    return 
tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.s
quare(y_pred – y_true))) 
 
def r2(y_true, y_pred): 
    media = tf.keras.backend.mean(y_true) 
    ss_res = 
tf.keras.backend.sum(tf.keras.backend.square(y_true – y_pred)) 
    ss_tot = 
tf.keras.backend.sum(tf.keras.backend.square(y_true – media)) 
    return (1-ss_res/(ss_tot)) 
 
#ajuste do modelo 
 
optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) 
 
modelo_1.compile(optimizer=optimizer, loss=’mse’, 
metrics=[rmse,r2]) 
 
#stops para 131all-b 
 
early_stops = 
tf.keras.callbacks.EarlyStopping(monitor=’val_loss’, 
patience=50, restore_best_weights=True) 
 
#treinamento do modelo 
treino_modelo = 
modelo_1.fit(x_treino,y_treino,epochs=1000,validation_data=(x_
teste,y_teste),131all-backs = [early_stops]) 
 
#avaliação do modelo 
plt.plot(modelo_1.history.history[‘loss’], label=’loss’) 
plt.plot(modelo_1.history.history[‘val_loss’], 
label=’val_loss’) 
plt.legend() 
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#rmse 
plt.plot(modelo_1.history.history[‘rmse’], label=’rmse’) 
plt.plot(modelo_1.history.history[‘val_rmse’], 
label=’val_rmse’) 
plt.legend() 
#plotando r2 
plt.plot(modelo_1.history.history[‘r2’], label=’r2’) 
plt.plot(modelo_1.history.history[‘val_r2’], label=’val_r2’) 
plt.legend() 
mse = mean_squared_error(y_teste,y_hat) 
rmse = sqrt(mse) 
r2 = r2_score(y_teste,y_hat) 
print(f’MSE: {mse}’) 
print(f’RMSE: {rmse}’) 
print(f’R2: {r2}’) 
 

GRÁFICO 17 – Evoluções da Função de Perda 

 

 

 

 

 

 

 

FONTE: A Autora (2025) 

 

 

Fonte: A autora (2025). 

 

GRÁFICO 18 - Evolução do RMSE 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2025). 
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GRÁFICO 19 - Evolução do R² 

 

 

 

 

 

 

 

 

FONTE: A Autora (2025) 

 

Fonte: A autora (2025). 

 

O gráfico acima representa a evolução da função de perda conforme o número 

de épocas aumenta. Observamos queda na função de perda conforme aumenta o 

número de épocas, o que é esperado, indicando que o modelo está aprendendo a 

minimizar o erro. 

O RMSE, também uma medida de erro, diminui a medida que a quantidade de 

épocas aumenta. 

O R2 é uma medida de acurácia do modelo, e quanto mais próximo de 1 

melhor. Nas primeiras épocas ela é bem baixa e vai aumentando conforme a 

quantidades de épocas aumenta. 

Utilizando os dados de teste, observamos um R2, técnica de acurácia, de 39%, 

próximo aos valores analisados no gráfico de R2 versus épocas para os valores 

preditos no ajuste do modelo. Tentamos ajustar um modelo com métricas de 

desempenho melhores, através do aumento de neurônios, mudança da função de 

ativação para linear, mudança no parâmetro de patience na técnica de early stopping, 

no entanto não obtivemos melhores resultados. 

 

3. 

 
# 1. Importação das bibliotecas 
import tensorflow as tf 
from tensorflow.keras.layers import Input, Dense, Embedding, 
Flatten, Concatenate 
from tensorflow.keras.models import Model 
from tensorflow.keras.optimizers import SGD, Adam 
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from sklearn.utils import shuffle 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
 
!head '/content/Base_livros.csv' 
 
# 2.1 Carregamento dos dados no dataframe 
df = pd.read_csv(csv_path) 
df.head() 
 
from google.colab import drive 
drive.mount('/content/drive') 
 
# 2.2 Visualização básica dos dados 
print(df.dtypes) 
print('-----') 
print('Menor nota: ', df.Notas.min()) 
print('Maior nota: ', df.Notas.max()) 
print('-----') 
print('Shape: ', df.shape) 
print('-----') 
print('Distribuição por Nota:') 
print(df['Notas'].value_counts().sort_index()) 
 
#df.head() 
 
# 2.3 Verificação para ver qual coluna usar em conjunto com o 
user id 
df['Titulo'].value_counts() 
 
# 2.3 Selecionamos para o treinamento somente os usuarios que 
tiveram mais de 20 livros avaliados 
mais_avaliados = 
df['ID_usuario'].value_counts()[df['ID_usuario'].value_counts(
) > 19].index 
mais_avaliados = df[df['ID_usuario'].isin(mais_avaliados)] 
 
df = mais_avaliados 
df['ID_usuario'].value_counts() 
 
df.shape 
 
# 2.4 Verificação da distribuição do dataset 
plt.figure(figsize=(16, 6)) 
 
plt.subplot(1, 2, 1) 
score_counts = df['Notas'].value_counts().sort_index() 
score_counts.plot() 
plt.xlabel('Notas') 
plt.ylabel('Frequência') 
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plt.xticks(rotation=0) 
 
plt.subplot(1, 2, 2) 
score_counts.plot(kind='bar') 
plt.xlabel('Notas') 
plt.ylabel('Frequência') 
plt.xticks(rotation=0) 
 
plt.show() 
 
# 3.1 Conversão de tipos de valores para embeddings 
# Converter o Titulo e o ID_usuario para valores categóricos 
(Embeddings) 
 
df.Titulo = pd.Categorical(df.Titulo) 
df['titulo_cat_codes'] = df.Titulo.cat.codes 
 
df.ID_usuario = pd.Categorical(df.ID_usuario) 
df['id_usuario_cat_codes'] = df.ID_usuario.cat.codes 
 
df.Notas = df.Notas.astype(np.float32) 
 
print(df.dtypes) 
 
# 3.2 Conversão de dimensões 
# Obter tamanho das listas de Titulos e ID_usuario únicos 
 
N = len(set(df.id_usuario_cat_codes)) 
M = len(set(df.titulo_cat_codes)) 
 
print(f"Número de usuários únicos: {N}") 
print(f"Número de livros únicos: {M}") 
K = 50 
 
# 4.1 Criação de camadas referentes ao usuario 
 
u = Input(shape=(1, )) 
u_emb = Embedding(input_dim=N, output_dim=K)(u) 
u_emb = Flatten()(u_emb) 
 
# 4.2 Criação das camadas referentes ao Titulo 
i = Input(shape=(1, )) 
i_emb = Embedding(input_dim=M, output_dim=K)(i) 
i_emb = Flatten()(i_emb) 
 
# Junção dos conjuntos de camadas 
 
x = Concatenate()([u_emb, i_emb]) 
x = Dense(256, activation='relu')(x) 
x = Dense(1)(x) 
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model = Model(inputs=[u, i], outputs=x) 
 
# 5.1 Compilar o modelo 
# model.compile( 
#     loss='mse', 
#     optimizer=SGD(learning_rate=0.08, momentum=0.9) 
# ) 
 
model.compile(optimizer=Adam(learning_rate=0.01), loss='mse') 
 
# 5.2 Sumário do modelo 
model.summary() 
 
from sklearn.model_selection import train_test_split 
 
train, test = train_test_split(df, test_size=0.2, 
random_state=42) 
print(train.shape) 
print(test.shape) 
 
# Verificação das notas de um usuário (id 64) 
print(df.loc[df['id_usuario_cat_codes'] == 64, ['Titulo', 
'ID_usuario', 'Notas']]) 
 
# 7. Treinar o modelo 
# Normalização 
avg_notas = df.Notas.mean() 
train_notas = train.Notas - avg_notas 
test_notas = test.Notas - avg_notas 
 
# Treinamento 
r = model.fit( 
    x=[train.id_usuario_cat_codes,  train.titulo_cat_codes], 
    y= train_notas, 
    epochs=25, 
    batch_size=256, 
    verbose=2, 
    validation_data=([test.id_usuario_cat_codes, 
test.titulo_cat_codes], test_notas) 
) 
# 8. Plotar a função de perda 
plt.plot(r.history['loss'], label='Loss') 
plt.plot(r.history['val_loss'], label='Validation Loss') 
plt.legend() 
plt.show() 
# 9.1 Gerar um array com usuário único 
input_usuario = np.repeat(a=64, repeats=M) # 7346 -> 1120 
books = np.array(list(set(df.titulo_cat_codes))) 
print("input_usuario: ", input_usuario) 
print("books: ", books) 
print("len input_user: ", len(input_usuario)) 
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print("len books: ", len(books)) 
# 9.2 Realiza a predição 
preds = model.predict([input_usuario, books]) 
# 9.3 Tratamento da predição 
notas_finais = preds.flatten() + avg_notas 
max_idx = np.argmax(notas_finais) 
result = df[df.titulo_cat_codes == books[max_idx]] 
print(f"Recomendação: {result.Titulo.values[0]} por 
{result.Autor.values[0]}. Nota: {round(notas_finais[max_idx], 
1)} ") 
 

Gráfico 20 - Evolução da Função de Perda 

           

Fonte: A Autora(2025) 

 

Com base no gráfico de perda, aparentemente pode estar ocorrendo overfitting 

(por volta da epoch 10, quando a função de perda dos dados de treino começa a cair, 

enquanto a função de perda dos dados de validação começa a subir). Foram 

realizados testes alterando diversos parâmetros, como o tamanho do embedding, 

batch size, learning rate, momentum, função de ativação e atributo utilizado para o 

treino (título do livro em vez de ISBN). Em geral, o mesmo comportamento foi 

observado, sendo que, em alguns casos, foi necessário mais epochs para notar uma 

redução significativa na função de perda. 

O melhor resultado que obtivemos foi utilizando o otimizador Adam e fazendo 

uma filtragem dos dados para utilizarmos somente os usuários que tivessem feito pelo 

menos 20 avaliações. Isso melhorou um pouco a acurácia do modelo, mas, devido ao 

tamanho do dataset, não foi possível conseguir uma melhoria significativa. 
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4. 

 
## 1. Importação das bibliotecas 
import tensorflow as tf 
import numpy as np 
import matplotlib as mpl 
import IPython.display as display 
import PIL.Image 
 
## 2. Importação da imagem 
url= 
'https://commons.wikimedia.org/wiki/Special:FilePath/Felis_cat
us-cat_on_snow.jpg' 
 
# Download da imagem e gravação em array Numpy 
def download(url, max_dim=None): 
  name = url.split('/')[-1] 
  image_path = tf.keras.utils.get_file(name, origin=url) 
  img = PIL.Image.open(image_path) 
  if max_dim: 
    img.thumbnail((max_dim, max_dim)) 
  return np.array(img) 
 
# Normalização da imagem 
def deprocess(img): 
  img = 255*(img + 1.0)/2.0 
  return tf.cast(img, tf.uint8) 
 
# Mostra a imagem 
def show(img): 
  display.display(PIL.Image.fromarray(np.array(img))) 
 
 
# Redução do tamanho da imagem para facilitar o trabalho da RNN 
original_img = download(url, max_dim=500) 
show(original_img) 
display.display(display.HTML('Image cc-by: <a 
"href=https://commons.wikimedia.org/wiki/File:Felis_catus-
cat_on_snow.jpg">Von.grzanka</a>')) 
 
## 3. Preparar o modelo de extração de recursos 
base_model = 
tf.keras.applications.InceptionV3(include_top=False, 
weights='imagenet') 
 
# Maximizando as ativações das camadas 
names = ['mixed6', 'mixed8'] 
layers = [base_model.get_layer(name).output for name in names] 
 
# Criação do modelo 
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dream_model = tf.keras.Model(inputs=base_model.input, 
outputs=layers) 
 
## 4. Cálculo da perda (loss) 
def calc_loss(img, model): 
  # Passe a imagem pelo modelo para recuperar as ativações. 
  # Converte a imagem em um batch de tamanho 1. 
  img_batch = tf.expand_dims(img, axis=0) 
  layer_activations = model(img_batch) 
  if len(layer_activations) == 1: 
    layer_activations = [layer_activations] 
 
  losses = [] 
  for act in layer_activations: 
    loss = tf.math.reduce_mean(act) 
    losses.append(loss) 
 
  return  tf.reduce_sum(losses) 
 
## 5. Subida de gradiente (Gradient ascent) 
class DeepDream(tf.Module): 
  def __init__(self, model): 
    self.model = model 
 
  @tf.function( 
      input_signature=( 
        tf.TensorSpec(shape=[None,None,3], dtype=tf.float32), 
        tf.TensorSpec(shape=[], dtype=tf.int32), 
        tf.TensorSpec(shape=[], dtype=tf.float32),) 
  ) 
  def __call__(self, img, steps, step_size): 
      print("Tracing") 
      loss = tf.constant(0.0) 
 
      for n in tf.range(steps): 
        with tf.GradientTape() as tape: 
          # Gradientes relativos a img 
          tape.watch(img) 
          loss = calc_loss(img, self.model) 
 
        # Calculo do gradiente da perda em relação aos pixels da 
imagem de entrada. 
        gradients = tape.gradient(loss, img) 
        # Normalizacao dos gradintes 
        gradients /= tf.math.reduce_std(gradients) + 1e-8 
 
        # Na subida gradiente, a "perda" é maximizada. 
        # Você pode atualizar a imagem adicionando diretamente 
os gradientes (porque eles têm o mesmo formato!) 
        img = img + gradients*step_size 
        img = tf.clip_by_value(img, -1, 1) 
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      return loss, img 
 
## 6. Circuito princial (Main Loop) 
def run_deep_dream_simple(img, steps=100, step_size=0.01): 
 
  img = 
tf.keras.applications.inception_v3.preprocess_input(img) 
  img = tf.convert_to_tensor(img) 
  step_size = tf.convert_to_tensor(step_size) 
  steps_remaining = steps 
  step = 0 
  while steps_remaining: 
    if steps_remaining>100: 
      run_steps = tf.constant(100) 
    else: 
      run_steps = tf.constant(steps_remaining) 
    steps_remaining -= run_steps 
    step += run_steps 
 
    loss, img = deepdream(img, run_steps, 
tf.constant(step_size)) 
 
    display.clear_output(wait=True) 
    show(deprocess(img)) 
    print ("Step {}, loss {}".format(step, loss)) 
 
 
  result = deprocess(img) 
  display.clear_output(wait=True) 
  show(result) 
 
  return result 
 
dream_img = run_deep_dream_simple(img=original_img, steps=100, 
step_size=0.01) 
 
## 7. Levando o modelo até um oitava 
import time 
start = time.time() 
 
OCTAVE_SCALE = 1.30 
 
img = tf.constant(np.array(original_img)) 
base_shape = tf.shape(img)[:-1] 
float_base_shape = tf.cast(base_shape, tf.float32) 
 
for n in range(-2, 3): 
  new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), 
tf.int32) 
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  img = tf.image.resize(img, new_shape).numpy() 
 
  img = run_deep_dream_simple(img=img, steps=50, 
step_size=0.01) 
 
display.clear_output(wait=True) 
img = tf.image.resize(img, base_shape) 
img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8) 
show(img) 
 
end = time.time() 
end-start 

FIGURA 6 - Primeira imagem gerada 

 

FONTE: A Autora(2025) 

 

FIGURA 7 - Última imagem gerada 

 

FONTE: A Autora(2025) 
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Imagem onírica obtida por Main Loop; 
Após o processamento pelo Main Loop com camadas Mixed6 e Mixed8, que 

são partes da rede neural Inception (usada no treinamento de visão computacional), 

padrões visuais abstratos e psicodélicos surgem sobre a imagem. Esses padrões 

geralmente lembram estruturas orgânicas como olhos, espirais ou texturas 

semelhantes a folhas e animais. 

A técnica funciona "exagerando" características que a rede neural detecta, 

criando esse efeito de sonho surrealista, como se a máquina estivesse projetando sua 

própria interpretação da imagem. 

 

Imagem onírica obtida ao levar o modelo até uma oitava; 
Após o processamento com a técnica de oitavas, como resultado a imagem 

original do felino em um cenário de neve foi transformada em uma versão onírica com 

padrões ainda mais visíveis e elaborados. Nessa versão, há a impressão de múltiplas 

texturas e formas, como olhos e detalhes geométricos, espalhados de maneira fractal 

sobre a pelagem do animal e o ambiente ao redor. 

Esse efeito mais refinado e detalhado é característico do uso das oitavas, pois 

ele permite que a rede neural detecte e realce padrões tanto em níveis macro (grandes 

formas) quanto micro (detalhes finos), gerando uma aparência mais complexa e 

psicodélica. 

 

Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo 
até a oitava. 

Main Loop: Foca no processamento direto da imagem em uma única etapa ou 

em camadas específicas da rede neural (ex. Mixed6, Mixed8). Os padrões visuais 

oníricos surgem de forma mais sutil e menos detalhada. As formas, como olhos, 

espirais ou texturas, aparecem mais uniformemente distribuídas pela imagem, mas 

com menos refinamento em pequenas escalas. 

Levando o modelo até a oitava: A imagem é processada em múltiplas 

resoluções (oitavas), começando em baixa resolução e refinando progressivamente 

até atingir a imagem completa. O resultado é mais detalhado e complexo, com 

padrões em múltiplas escalas (macro e micro), criando uma aparência mais fractal e 

elaborada. Formas como olhos e texturas são mais visíveis, sobrepostas e 

densamente distribuídas, dando um aspecto mais psicodélico. 
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Resumo: A técnica de oitavas gera imagens mais detalhadas e refinadas ao 

realçar padrões em várias escalas, enquanto o Main Loop tende a produzir um efeito 

mais sutil e homogêneo. 
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APÊNDICE N -  VISUALIZAÇÃO DE DADOS E STORYTELLING 

 

A – ENUNCIADO 
 

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que 

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e 

com a ferramenta de sua escolha) 

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os 

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu 

possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam, 
quais possíveis ações podem ser feitas com base neles.  

Entregue em um PDF: 

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que possa 

ser melhorada); 

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que será 

desenvolvido; 

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de 

sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos) 

B – RESOLUÇÃO 
 

Os Registros Hospitalares de Câncer são fontes de informações, instalados 

em hospitais gerais ou oncológicos, públicos, privados, filantrópicos ou universitários, 

de forma padronizada para todo o país e seguindo padrões internacionais para 

identificar características pessoais dos pacientes com câncer e de seus tumores. É 

uma ferramenta utilizada para auxiliar a equipe de saúde e oferecer dados estatísticos 

sobre o resultado dos tratamentos aplicados.  

Através de iniciativas do Instituto Nacional de Câncer, em 1980 as primeiras 

ações para instalação de um Registro Hospitalar de Câncer foram tomadas, seguindo 

orientações padronizadas a nível nacional.  
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Os dados utilizados são dos Registros Hospitalares de Câncer, do ano de 

2019, referentes aos pacientes com primeira consulta na unidade hospitalar referente 

nesse ano.  

A fim de dar foco aos tipos de câncer que mais atingem a população brasileira, 

foram escolhidos para análise os dez tipos de câncer mais frequentes na base 

utilizada.  

O público alvo dessa análise são pesquisadores da área de saúde e gestão 

pública, a fim de possibilitar melhorias no sistema de saúde. 

Foram analisados 220 mil casos de câncer atendidos em unidades hospitalares 

brasileiras no ano de 2019. Sendo esses, casos de câncer de pele, mama, próstata, 

colo do útero, brônquio e pulmão, cólon, sistema hematopoético, estômago, reto e 

tireóide, que foram os 10 tipos mais incidentes na base analisada, de acordo com o 

CID presente na base de dados. A idade mediana dos pacientes, de forma geral, foi 

de 64 anos, 55% da base é composta de mulheres e dentre os pacientes com 

declaração de cor, 49% são brancos e 45% são pardos. Observa-se uma maior 

concentração de casos nas regiões Sudeste e Sul. 

Em conformidade com o que é observado nas estatísticas oficiais, o tipo de 

câncer mais frequente nos casos analisados, foi o câncer de pele, com 59 mil 

pacientes. Esse representa 27% dos casos observados a nível nacional, mas são 

observadas diferenças dessas frequências quando analisados por unidade da 

federação. Os estados de São Paulo, Paraná, Pernambuco e Rio Grande do Norte 

apresentam percentuais acima de 30% de atendimento de casos de câncer de pele, 

enquanto em outros estados, como por exemplo na Bahia, esse percentual é bem 

inferior aos 27% da representação nacional. Ao analisar o perfil social dos pacientes 

acometidos com câncer de pele, a mediana de idade era de 70 anos, e 64% dos 

pacientes com declaração de cor, eram brancos. 

Observa-se também que os cânceres de mama e próstata são, após o câncer 

de pele, os mais frequentes na base analisada (representando 21% e 16% dos casos 

respectivamente). De acordo com as projeções calculadas pelo INCA para o triênio 

2020-2022, os cânceres mais incidentes no período seriam melanoma, mama e 

próstata. Ao analisar isoladamente os casos de câncer de mama e próstata, observa-

se uma diferença etária desses pacientes. Nos dados analisados, o câncer de mama 
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acomete em sua maioria mulheres mais jovens do que o câncer de próstata em 

relação aos homens. A mediana de idade dos pacientes com câncer de mama, é de 

57 anos, enquanto a mediana de idade dos homens com câncer de próstata na base, 

é de 70 anos. Em relação à distribuição da cor dos pacientes, dos que tiveram a cor 

declarada, os casos de câncer de próstata destoam da distribuição geral. Enquanto a 

nível geral, 50% eram pretos e pardos, nos casos de câncer de próstata esse 

percentual é de 60%. 

Uma realidade que chama atenção na análise é o percentual exacerbado de 

casos de câncer de colo de útero na região Norte. Enquanto esse representa apenas 

8% dos casos nacionais de câncer, nos estados da região Norte presentes na análise 

(não há ocorrências do estado de Roraima na base utilizada), eles atingem 22% dos 

casos de câncer. O câncer de colo de útero está diretamente associado ao HPV (Vírus 

do Papiloma Humano), e os estados da região são os que apresentam historicamente 

as mais baixas taxas de cobertura vacinal contra essa doença, de acordo com 

reportagem da Folha de São Paulo. Dos estados da região Norte, o Amazonas tem 

destaque ainda maior, por ter 38% dos seus atendimentos para casos de câncer de 

colo do útero, quase 5 vezes o percentual nacional. 

Um fator que pode contribuir com isso, relatado em algumas reportagens e 

materiais informativos, é a dificuldade de acesso das mulheres à atendimentos de 

saúde, por ser um estado de grandes proporções e com comunidades muito 

afastadas. Além da dificuldade de acesso a exames e consultas para prevenção e 

detecção da doença, de acordo com reportagem do programa Profissão Repórter, o 

estado do Amazonas tem um único hospital oncológico, em Manaus, para atender os 

pacientes de todas as cidades do estado. Ainda sobre as altas taxas de câncer de 

colo do útero no Amazonas, alguns outros fatores, além da dificuldade de acesso à 

atendimentos de saúde, podem colaborar para esse fenômeno, como a iniciação 

precoce de atividades sexuais e os hábitos de prevenção à doenças sexualmente 

transmissíveis. De acordo com a Pense 2019, o Amazonas apresentou o maior 

percentual de escolares de 13 a 17 anos que já tiveram relação sexual (45,8%), e a 

“precocidade da iniciação sexual pode estar relacionada com práticas sexuais não 

seguras e, consequentemente, a exposição aos riscos de contrair infecções 

sexualmente transmissíveis”. 
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2.3.1 Referências 

● Folha de São Paulo – Câncer de colo de útero é mais frequente no Norte 

enquanto Sul e Sudeste concentram casos no gástricos 

● Divulgação de resultados Pense IBGE 2019 (Agência de Notícias IBGE) 

● Globo Repórter 

● INCA - Integrador RHC 

FIGURA 8 - Visualização dos dados

 
FONTE: A Autora(2025). 
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APÊNDICE O -  TÓPICOS EM INTELIGÊNCIA ARTIFICIAL 

 

A – ENUNCIADO 
 
1) Algoritmo Genético 

 

Problema do Caixeiro Viajante 

 

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab, 

ou em C ou em Java. 

 

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita 

simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida). 

 

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades 

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso 

de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem. 

 

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas 

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado 

de 100 por 100 pixels. 

 

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na 

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações. 

Gere as imagens em 2d dos pontos (cidades) e do caminho. 

 

Sugestão:  

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida 
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas posições 
de 1 a 99 deverão ser definidas pelo algoritmo genético. 

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos). 
(3) Utilize no mínimo uma população com 100 indivíduos; 
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação; 
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento (crossover-

ox); 
(6) Preserve sempre a melhor solução de uma geração para outra. 

 

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”. 
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2) Compare a representação de dois modelos vetoriais 
 

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que 

poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de 

palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão 

produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e 

objetiva. 

 

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após 

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a 

PCA. 

 

O PDF deverá conter o código-fonte e as imagens obtidas. 

 

B – RESOLUÇÃO 
 
1. 

 
import numpy as np 
import matplotlib.pyplot as plt 
import random 
from itertools import permutations 
from sklearn.decomposition import PCA 
# Definição dos parâmetros do problema 
NUM_CIDADES = 100 
ESPACO_LIMITE = 100 
POPULACAO_SIZE = 100 
GERACOES = 1000 
MUTACAO_RATE = 0.01 
CROSSOVER_RATE = 0.9 
# Gerar coordenadas aleatórias para as cidades 
cidades = np.random.rand(NUM_CIDADES, 2) * ESPACO_LIMITE 
# Função de cálculo da distância euclidiana 
def calcular_distancia(percurso): 
 distancia = 0 
 for i in range(len(percurso) - 1): 
 distancia += np.linalg.norm(cidades[percurso[i]] - 
cidades[percurso[i + 1]]) 
 distancia += np.linalg.norm(cidades[percurso[-1]] - 
cidades[percurso[0]]) # Retorno à cidade inicial 
 return distancia 
 
# Inicializar população aleatória 
def inicializar_populacao(): 
 populacao = [] 
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 for _ in range(POPULACAO_SIZE): 
 percurso = list(range(NUM_CIDADES)) 
 random.shuffle(percurso) 
 populacao.append(percurso) 
 return populacao 
# Função de seleção por torneio 
def selecao(populacao): 
 candidatos = random.sample(populacao, 5) 
 return min(candidatos, key=calcular_distancia) 
# Operador de crossover OX (Order Crossover) 
def crossover(pai1, pai2): 
 tamanho = len(pai1) 
 inicio, fim = sorted(random.sample(range(tamanho), 2)) 
 filho = [-1] * tamanho 
 filho[inicio:fim] = pai1[inicio:fim] 
 ptr = fim 
 for gene in pai2: 
 if gene not in filho: 
 if ptr >= tamanho: 
 ptr = 0 
 filho[ptr] = gene 
 ptr += 1 
 return filho 
# Operador de mutação (swap entre duas cidades) 
def mutacao(percurso): 
 if random.random() < MUTACAO_RATE: 
 i, j = random.sample(range(len(percurso)), 2) 
 percurso[i], percurso[j] = percurso[j], percurso[i] 
 return percurso 
# Algoritmo Genético 
def algoritmo_genetico(): 
 populacao = inicializar_populacao() 
 melhor_percurso = min(populacao, key=calcular_distancia) 
 melhor_distancia = calcular_distancia(melhor_percurso) 
 
 for _ in range(GERACOES): 
 nova_populacao = [] 
 for _ in range(int(POPULACAO_SIZE * CROSSOVER_RATE)): 
 pai1, pai2 = selecao(populacao), selecao(populacao) 
 
filho = crossover(pai1, pai2) 
 filho = mutacao(filho) 
 nova_populacao.append(filho) 
 while len(nova_populacao) < POPULACAO_SIZE: 
 nova_populacao.append(selecao(populacao)) 
 
 populacao = nova_populacao 
 melhor_atual = min(populacao, key=calcular_distancia) 
 melhor_atual_distancia = calcular_distancia(melhor_atual) 
 
 if melhor_atual_distancia < melhor_distancia: 
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 melhor_percurso, melhor_distancia = melhor_atual, 
melhor_atual_distancia 
 
 return melhor_percurso, melhor_distancia 
# Executar o algoritmo 
def plotar_percurso(percurso, titulo): 
 plt.figure(figsize=(8, 8)) 
 caminho = cidades[percurso + [percurso[0]]] 
 plt.plot(caminho[:, 0], caminho[:, 1], 'bo-') 
 plt.title(titulo) 
 plt.show() 
# Primeira solução aleatória 
populacao = inicializar_populacao() 
solucao_inicial = populacao[0] 
distancia_inicial = calcular_distancia(solucao_inicial) 
plotar_percurso(solucao_inicial, f'Solução Inicial - Distância: 
{distancia_inicial:.2f}') 
# Melhor solução após evolução 
melhor_percurso, melhor_distancia = algoritmo_genetico() 
plotar_percurso(melhor_percurso, f'Melhor Solução - Distância: 
{melhor_distancia:.2f}') 
# Aplicação da PCA em modelos vetoriais de um texto 
def aplicar_pca(modelo1, modelo2): 
 dados = np.vstack((modelo1, modelo2)) 
 pca = PCA(n_components=2) 
 resultado_pca = pca.fit_transform(dados) 
 
 plt.figure(figsize=(8, 6)) 
 plt.scatter(resultado_pca[:len(modelo1), 0], 
resultado_pca[:len(modelo1), 1], label='Modelo 1', alpha=0.7) 
 plt.scatter(resultado_pca[len(modelo1):, 0], 
resultado_pca[len(modelo1):, 1], label='Modelo 2', alpha=0.7) 
 plt.legend() 
 plt.title("Visualização com PCA") 
 plt.show() 
 
# Exemplo de uso 
modelo1 = np.random.rand(50, 300) # Exemplo de embeddings de 
palavras 
modelo2 = np.random.rand(50, 300) 
aplicar_pca(modelo1, modelo2) 
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FIGURA 9 - Solução inicial e Melhor solução - Caixeiro viajante 

 
FONTE: A Autora(2025) 

 

 

GRÁFICO 21 - Visualização com PCA 

 

 

 

 

 

 

 

 

FONTE: A Autora(2025) 

 

 
2. 

 

import matplotlib.pyplot as plt 
from sklearn.decomposition import PCA 
from sklearn.feature_extraction.text import TfidfVectorizer 
# Aplicação da PCA em representações vetoriais de textos 
textos = [ 
 "O cachorro correu pelo parque e brincou com a bola.", 
 "O gato dormiu no sofá durante a tarde inteira.", 
 "As crianças brincaram no parque e correram felizes.", 
 "O leão é um animal selvagem que vive na savana.", 
 "O cachorro e o gato dormiram juntos na cama.", 
 "O parque estava cheio de crianças brincando e correndo." 
] 
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# Converter textos para vetores usando TF-IDF 
vectorizer = TfidfVectorizer() 
vetores_texto = vectorizer.fit_transform(textos).toarray() 
# Aplicar PCA 
pca = PCA(n_components=2) 
resultado_pca = pca.fit_transform(vetores_texto) 
# Plotar os vetores projetados 
plt.figure(figsize=(8, 6)) 
plt.scatter(resultado_pca[:, 0], resultado_pca[:, 1], 
color='blue', alpha=0.7) 
for i, txt in enumerate(textos): 
 plt.annotate(f'T{i+1}', (resultado_pca[i, 0], 
resultado_pca[i, 1])) 
plt.title("Visualização com PCA de Representações Textuais") 
plt.xlabel("Componente Principal 1") 
plt.ylabel("Componente Principal 2") 
plt.show() 
 

GRÁFICO 22 - Visualização com PCA de representações textuais 

 
FONTE: A Autora(2025) 

 

 

 


