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RESUMO 
 

O crescimento da produção e do consumo de dados nos últimos anos trouxe 
consigo o desafio de transformar grandes volumes de informações em ações 
estratégicas. A visualização, quando bem construída, permite traduzir dados 
complexos em modelos acessíveis e de rápida compreensão, mas seu impacto 
depende de uma narrativa coerente que contextualize e dê sentido às informações. 
O storytelling, portanto, não apenas organiza dados, mas os conecta a ideias 
centrais e contextos reais, sendo capaz de engajar e influenciar a tomada de 
decisão. A introdução da Inteligência Artificial (IA) nesse processo amplia as 
possibilidades, ao automatizar tarefas e identificar padrões, mas também impõe 
riscos relacionados à transparência e à ética. Dessa forma, o storytelling se mostra 
uma ferramenta importante para tornar claros os resultados gerados pela tecnologia, 
traduzindo-os em mensagens compreensíveis, relevantes e contextualizadas. 
Conclui-se que a integração entre visualização de dados, storytelling e IA deve ser 
entendida não apenas como uma questão técnica, mas como a junção de 
tecnologia, comunicação e ética. 
 
Palavras-chave: Visualização de dados; storytelling; inteligência artificial; 

tecnologia;  contextualização. 
 
 



 
 

ABSTRACT 
 

The exponential growth in data production and consumption in recent years 
has brought forth the challenge of transforming vast volumes of information into 
strategic actions. When properly constructed, data visualization enables the 
translation of complex data into accessible and easily interpretable models; however, 
its effectiveness depends on the presence of a coherent narrative that contextualizes 
and provides meaning to the information. Storytelling, therefore, not only organizes 
data but also connects it to central ideas and real contexts, thereby engaging and 
influencing decision-making processes. The introduction of Artificial Intelligence (AI) 
into this context expands possibilities by automating tasks and identifying patterns, 
yet it also introduces risks related to transparency and ethics. In this sense, 
storytelling emerges as an essential tool for clarifying the results generated by 
technology, transforming them into comprehensible, relevant, and contextualized 
messages. It is concluded that the integration of data visualization, storytelling, and 
AI should be understood not merely as a technical matter, but as the convergence of 
technology, communication, and ethics. 

 
Keywords: Data visualization; storytelling; artificial intelligence; technology; 

contextualization. 
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1 PARECER TÉCNICO 
 

Nos últimos anos, a proporção de dados produzidos e consumidos 

diariamente cresceu abruptamente. Embora o grande número de informações seja 

de extrema valia, o excesso de dados brutos pode atrapalhar a passagem de 

informações importantes ao usuário final. Não basta acumular números, tabelas ou 

gráficos; é necessário interpretá-los, contextualizá-los e comunicá-los de forma 

clara. Nesse contexto, a visualização de dados e o storytelling surgem como 

ferramentas importantes, sobretudo quando utilizados com a inteligência artificial 

(IA), que tem modificado a forma como os dados são explorados e apresentados. 

Para  Ribeiro (2009, p. 71), a visualização de dados “utiliza tecnologias 

computacionais para transformar dados abstratos em modelos visuais. É a tradução 

criativa dos dados”. Quando mal construída, pode implicar em análises que não 

transmitem a mensagem devida ao receptor e que não agregam valor estratégico. 

Entretanto, quando bem estruturada, permite que informações complexas 

sejam compreendidas com mais rapidez, como por exemplo, a FIGURA 1, a qual 

podemos verificar a média de notas entre os alunos de uma classe. 

 

FIGURA 1 – VISUALIZAÇÃO DE DADOS BEM CONSTRUÍDA. 

 

FONTE: O autor (2025). 
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Todavia, um gráfico pode ser sofisticado esteticamente, mas, se não houver 

uma narrativa conexa e coerente, há o risco de não apresentar impacto real na 

tomada de decisão. 

É justamente nesse ponto que o storytelling se torna uma parte crucial da 

equação. Para Knaflic (2019), “A visualização de dados e a comunicação com dados 

em geral situa-se na interseção entre a ciência e a arte”. Contar histórias com base 

em dados não é apenas juntar uma sequência de informações e colocar em ordem, 

é dar sentido ao que está sendo mostrado, é ligar números e fatos a um contexto 

real e a uma ideia principal. Gallo (2019, p.5-6) evidencia que “aqueles que dominam 

a habilidade do storytelling podem ter influência desproporcional sobre os demais. A 

arte do storytelling é sua mais poderosa arma na guerra das ideias”. 

Quando existe uma narrativa bem montada, a mensagem deixa de ser 

apenas informativa e passa a ser engajante a ponto de prender o público a 

mensagem que está sendo passada, apoiando na tomada de decisões estratégicas 

que podem ser feitas a partir deste momento. Segundo Xavier (2005, p. 20), há a 

necessidade de se desenvolver uma narrativa “que mantenha a atenção, emocione, 

estabeleça conexões profundas com o público e una todos os elementos em uma 

narrativa compreensível". 

Por outro lado, quando adicionamos a inteligência artificial (IA) a este 

contexto, novas variáveis surgem, sejam de complexidade ou oportunidades. (Motta; 

Lorena, 2023) A IA tem capacidade de processar e analisar um vasto número de 

dados em instantes, ajudando a identificar padrões que podem escapar ao olho 

humano e também, cada vez mais, auxiliar no processo de desenvolvimento dessas 

visualizações. Nos dias atuais, estamos presenciando a emersão de sistemas 

modernos que já conseguem, por exemplo, recomendar automaticamente os tipos 

de gráficos mais adequados a determinadas circunstâncias, como por exemplo, a 

FIGURA 2, no qual um prompt,  em uma Inteligência Artificial, para geração de uma 

visualização de dados foi feito. Isso significa que o profissional pode se concentrar 

menos em tarefas operacionais e mais na parte estratégica do que está sendo 

apresentado. 
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           FIGURA 2 – VISUALIZAÇÃO DE DADOS GERADA POR INTELIGÊNCIA ARTIFICIAL 

 

                      FONTE: GERADA POR COPILOT EM 24 DE SETEMBRO DE 2025. 

 

Por outro lado, essa automatização também impõe riscos. Para Thomas 

Mitchell (2025), IA é uma black box, ou seja, possui completa falta de transparência. 

Mesmo que uma narrativa desenvolvida com apoio da IA tenda a ser teoricamente 

perfeita, há a possibilidade da falta de clareza quanto à forma como as conclusões 

foram alcançadas. Nesse sentido, o storytelling se torna ainda mais crucial, visto 

que, é por meio dele que se pode tornar compreensível aquilo que a tecnologia 

entrega de forma vaga. Contar a história não é apenas mostrar os resultados, mas 

também explicar o caminho percorrido para tal conclusão. 

Além da questão da transparência, evidencia-se uma preocupação adicional, 

a ética (Nahmias; Perel, 2020), a IA processa dados, mas não compreende 

contextos sociais, culturais ou emocionais da mesma maneira que nós. Esse limite 

pode levar a decisões desumanizadas, sobretudo quando não há clareza sobre os 

critérios utilizados. Assim, o problema ético está no risco de delegar escolhas a 

sistemas que carecem de valores humanos. A narrativa, portanto, funciona como a 

conexão entre a objetividade e a subjetividade. É nesse momento que se encontra a 

importância do storytelling para a inteligência artificial, ele aplica sentido ao que, de 
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outra forma, seria apenas uma informação vaga e distante da realidade de quem 

precisa tomar decisões. 

É de extrema evidência que, para os profissionais que atuam nesta área, é 

preciso desenvolver também competências narrativas e comunicacionais capazes 

de traduzir resultados em mensagens claras e relevantes. Em uma criação de uma 

análise de dados, por exemplo, o diferencial pode estar menos no algoritmo utilizado 

e mais na forma como os resultados são comunicados e mostrados aos diferentes 

públicos. A mesma informação pode ser apresentada de maneiras distintas e cabe 

ao storytelling a adequação do contexto ideal. 

Em suma, a conexão entre storytelling, visualização de dados e inteligência 

artificial não deve ser entendida apenas como um algo técnico, mas como uma 

junção que envolve tecnologia, comunicação e, até mesmo, ética. A IA aparece 

como um desenvolvedor de novas oportunidades, facilitando no processo de criação 

da análise de dados. A visualização traduz uma variedade de números e fatos brutos 

em formas mais acessíveis ao usuário final. Mas é o storytelling que dá conexão a 

tudo isso, alinhando os elementos em uma narrativa que conecta dados aos 

usuários, tornando-os compreensíveis. No mundo atual, onde a informação é 

abundante e o tempo para compreendê-la é escasso, contar boas histórias com 

dados pode ser não apenas uma habilidade diferenciada, mas uma condição 

essencial para transformar informação em ação. 

   

 

 

 

 

 

 

 

 

   

 

 

 
 

 



11 
 

  REFERÊNCIAS 
 

 
GALLO, Carmine. Storytelling: aprenda a contar histórias com Steve Jobs, Papa 
Francisco, Churchill e outras lendas da liderança. Rio de Janeiro: Alta Books, 2019. 
 
KNAFLIC, Cole Nussbaumer. Storytelling com dados: um guia sobre visualização 
de dados para profissionais de negócios. Rio de Janeiro: Alta Books, 2019. 
 
MITCHELL, Thomas. Trust and Transparency in Artificial Intelligence. Philosophy 
& Technology, v. 38, article number 87, 2025. Disponível em: 
https://link.springer.com/article/10.1007/s13347-025-00916-2 
. Acesso em: 19 set. 2025. 
 
MOTTA, Lorena Oliveira dos Santos. O impacto da inteligência artificial nos 
processos de negócios, e como as empresas estão se adaptando para 
aproveitar essa tecnologia. 2023. Trabalho de Conclusão de Curso (Graduação 
em Administração) – Pontifícia Universidade Católica de Minas Gerais, Instituto de 
Ciências Econômicas e Gerenciais, Belo Horizonte, 2023. 
 
NAHMIAS, Y.; PEREL, M. The oversight of content moderation by AI: impact 
assessments and their limitations. Harvard Journal on Legislation, Forthcoming, 
2020. 
 
RIBEIRO, Daniel Melo. Visualização de dados na Internet. 2009. 132 f. 
Dissertação (Mestrado em Tecnologias da Inteligência e Design Digital) – Pontifícia 
Universidade Católica de São Paulo, São Paulo, 2009. Disponível em: 
http://www.danielmelo.net/wp-content/uploads/2009/03/dissertacao_final.pdf 
. Acesso em: 19 set. 2025. 
 
XAVIER, Adilson. Storytelling: histórias que deixam marcas. 1. ed. Rio de Janeiro: 
BestSeller, 2015. 
 
 

 

 



12 
 

  APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 
 

A – ENUNCIADO 
 

1 ChatGPT  
a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado. 
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas 

em sala. Explique o porquê. 
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio 

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências. 
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 

abordagens vistas em sala. Explique o porquê. 
 

2 Busca Heurística 
 

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a 

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo 

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha 

reta, que pode ser observada na tabela abaixo. 

 

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde 

que seja digitalizada (foto) e convertida para PDF. 

 

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi 
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um 
formato em blocos, planilha, ou qualquer outra representação. 

 

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.  
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3 Lógica  

 

Verificar se o argumento lógico é válido. 

 

Se as uvas caem, então a raposa as come 

Se a raposa as come, então estão maduras 

As uvas estão verdes ou caem 

 

Logo 

 

A raposa come as uvas se e somente se as uvas caem 

 

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas 

práticas. 

 

 

Dicas:  

 

1. Transformar as afirmações para lógica: 

 

p: as uvas caem 

q: a raposa come as uvas  

r: as uvas estão maduras 

 

2. Transformar as três primeiras sentenças para formar a base de conhecimento 

 

R1:   ՘→ՙ
R2:    ՙ → ՚
R3:   ¬՚ ∨ ՘

 

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com 

essas três primeiras sentenças devemos derivar . Cuidado com a ordem em que as fórmulas ՙ ↔ ՘
são geradas. 
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Equivalência Implicação: (ս → վ) equivale a (¬ս ∨ վ) 

 

Silogismo Hipotético:  ս → վ, վ → տ ⊢ ս → տ 

 

Conjunção: ս, վ ⊢ ս ⋀ վ 

 

Equivalência Bicondicional: (ս ⟷ վ) equivale a (ս → վ) ⋀ (վ → ս) 

 

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato 
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão 
descritas acima e no material. 

 

4 Redes Neurais Artificiais  
 

Seja a RNA da figura abaixo. 

 

 

 

Os neurônios N1, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação 

tangente hiperbólica (pesquise a fórmula e aplique). 

 

Dada a entrada x1=-3, x2=1, dê: 

 

a) (6,25 pontos) Valor de saída do neurônio N1 
b) (6,25 pontos) Valor de saída do neurônio N2 
c) (6,25 pontos) Valor de saída do neurônio N3 
d) (6,25 pontos) Valor de saída da rede como um todo 
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B – RESOLUÇÃO 
 
1  
a) Inteligência Artificial (IA) refere-se à capacidade de sistemas computacionais de realizar tarefas 

que, normalmente, requerem inteligência humana. Isso inclui atividades como aprendizado, 

raciocínio, percepção, resolução de problemas, tomada de decisões e até mesmo reconhecimento de 

padrões e fala. O objetivo da IA é criar máquinas ou softwares capazes de realizar essas tarefas de 

forma autônoma ou com interação mínima com seres humanos. A IA pode ser dividida em duas 

grandes categorias: IA Fraca (ou IA Narrow): Refere-se a sistemas que são projetados para realizar 

tarefas específicas, como assistentes virtuais (Siri, Alexa), sistemas de recomendação (Netflix, 

YouTube) ou programas de jogos de xadrez. Esses sistemas não possuem consciência ou 

capacidade de raciocínio além de suas funções específicas. IA Forte: Refere-se a sistemas com 

capacidades cognitivas semelhantes às humanas, ou seja, com a habilidade de compreender, 

aprender, raciocinar e tomar decisões de forma geral. Essa IA ainda é um conceito mais teórico e está 

em desenvolvimento. Além disso, a IA pode ser implementada por meio de várias técnicas, como 

aprendizado de máquina (machine learning), redes neurais, algoritmos genéticos, processamento de 

linguagem natural (PNL), entre outros. 

 

b) Na abordagem de Agentes Racionais, o GPT pode ser considerado um tipo de agente que 

responde de maneira otimizada aos prompts que recebe. Embora não tenha objetivos próprios, ele 

tenta gerar respostas que pareçam racionais e úteis com base nos dados que foram pré-carregados 

durante seu treinamento. No entanto, ao contrário de agentes racionais clássicos, que têm um 

comportamento orientado por metas e uma forma explícita de otimização, o GPT não toma decisões 

por si mesmo, mas sim gera respostas baseadas em probabilidades derivadas de um grande volume 

de dados. Na abordagem baseada em conhecimento, o GPT se encaixa de maneira parcial. O 

modelo não segue um conjunto fixo de regras ou possui um banco de dados explícito de 

conhecimento, como em sistemas tradicionais baseados em regras. No entanto, ele é treinado com 

uma enorme quantidade de textos de diversas fontes e, com isso, adquire um tipo de “conhecimento 

implícito” sobre padrões de linguagem, o que lhe permite gerar respostas relevantes para os usuários. 

Embora isso se aproxime de um sistema baseado em conhecimento, o GPT não possui um 

entendimento real ou consciente do conteúdo que gera. A abordagem empírica é onde o GPT se 

encaixa com mais clareza. Como um modelo treinado por meio de aprendizado de máquina (machine 

learning), ele aprende diretamente com grandes volumes de dados, identificando padrões e 

probabilidades para gerar respostas. Esse processo é empírico porque, ao invés de ser programado 

com regras fixas, o GPT se baseia na experiência de interagir com imensos conjuntos de dados para 

aprimorar sua capacidade de gerar textos. Sua aprendizagem vem da observação de dados e da 

modelagem dessas informações para realizar tarefas específicas de linguagem. Finalmente, na 

abordagem naturalista, o GPT se destaca como uma tentativa de imitar a comunicação humana. Ele 
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utiliza técnicas de processamento de linguagem natural (PNL) para gerar respostas que são, em 

muitos casos, indistinguíveis das produções humanas, em termos de fluidez e coerência. No entanto, 

o GPT não possui uma compreensão real ou semântica do que está gerando, o que diferencia sua 

“habilidade” de linguagem de um verdadeiro entendimento humano. Mesmo assim, ele representa 

uma aproximação interessante do comportamento humano em interações de linguagem, algo que é 

uma das principais propostas dessa abordagem. 

 

c) O Chat GPT, desenvolvido pela OpenAI, é uma inteligência artificial avançada baseada na 

arquitetura GPT (Generative Pre-trained Transformer), utilizando algoritmos de aprendizado profundo 

para compreender e gerar texto de forma mais natural e coerente em comparação com tecnologias 

anteriores (CUSTÓDIO, 2023).  

Esse modelo se destaca por sua capacidade de realizar uma variedade de tarefas, como responder 

perguntas, redigir textos, traduzir idiomas, entre outras funções. Ao ser integrado a diversas 

plataformas, o Chat GPT tem se mostrado uma ferramenta poderosa para facilitar a interação 

humana com a tecnologia. Esse modelo de linguagem faz parte de um grupo de tecnologias 

conhecidas como Large Language Models, sendo especificamente um modelo GPT. Seu principal 

objetivo é a geração de texto por meio de interações com o usuário, que insere prompts (perguntas, 

instruções, ordens, comandos, etc.) de forma sucessiva. Como apontam Silva e Vicentin (2023), o 

funcionamento do ChatGPT pode gerar a impressão de que o “robô” possui um bom entendimento 

semântico e uma capacidade de escrita que se aproxima da humana. Isso ocorre graças à enorme 

base de dados com a qual o modelo foi pré-treinado, permitindo que ele gere respostas com alta 

coerência e fluidez.  

Por ser um modelo de Processamento de Linguagem Natural (PNL), o Chat GPT “aprende” a definir 

padrões e probabilidades de ocorrência das palavras de forma coerente com a comunicação humana. 

Contudo, como ressaltam Foletto, Bentes e Maia (2023), apesar de sua aparência convincente e 

verossímil, o modelo não entende o significado real do que está gerando, o que representa um dos 

aspectos sensíveis de seu uso. Essa falta de compreensão semântica do Chat GPT levanta questões 

sobre sua aplicabilidade em contextos que exigem um entendimento profundo do conteúdo gerado.  

Além disso, os modelos de inteligência artificial, como o Chat GPT, frequentemente apresentam 

vieses devido à maneira como são treinados. Esses vieses surgem a partir das escolhas feitas 

durante o processo de criação, como a seleção dos dados utilizados para o treinamento e as 

decisões tomadas pelos desenvolvedores e trabalhadores responsáveis. Sampaio et al. (2023) 

apontam que muitas empresas se justificam pela proteção de segredos comerciais, alegando que não 

podem revelar os detalhes dos modelos para não prejudicar sua competitividade no mercado. No 

entanto, essa falta de transparência sobre os algoritmos e as decisões tomadas levanta sérias 

questões, já que os processos envolvidos muitas vezes são obscuros e difíceis de entender.  

Em conclusão, embora o Chat GPT e outras IAs similares representem avanços significativos no 

campo da tecnologia e do processamento de linguagem natural, é essencial abordar as questões 

éticas e técnicas envolvidas no seu uso. A transparência nos processos de treinamento, a mitigação 

de vieses e a compreensão dos limites do modelo são pontos fundamentais para garantir que essas 
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ferramentas possam ser utilizadas de maneira eficaz e responsável, sem comprometer a integridade 

dos dados e dos resultados gerados. 

 

d) Na abordagem de Agentes Racionais, o Chat GPT pode ser visto como um agente que busca 

otimizar suas respostas com base nos dados que recebe. Ele não possui objetivos próprios, mas 

responde aos prompts de forma a gerar respostas que pareçam racionais e coerentes, dependendo 

das informações fornecidas. No entanto, ao contrário de agentes racionais tradicionais, o Chat GPT 

não tem uma percepção do mundo real nem objetivos de longo prazo, o que limita sua aplicação 

como um agente totalmente racional.  

Na abordagem baseada em conhecimento, o Chat GPT pode ser considerado uma ferramenta que, 

embora não possua um banco de dados explícito como em sistemas baseados em regras, é treinado 

com uma enorme quantidade de dados. Isso permite que o modelo gere respostas coerentes e 

plausíveis em muitas situações, baseando-se nos padrões e probabilidades de ocorrência das 

palavras, adquiridos durante o treinamento. Porém, o modelo não possui um conhecimento explícito 

estruturado ou uma base de regras que ele siga conscientemente, o que diferencia essa abordagem 

das tradicionais em sistemas baseados em conhecimento. 

A abordagem empírica se aplica bem ao Chat GPT, pois ele é treinado com grandes quantidades de 

dados reais, usando aprendizado de máquina para melhorar suas respostas. Ao invés de seguir 

regras predefinidas ou lógicas abstratas, o modelo aprende a partir de exemplos e experiência direta 

com dados. Dessa forma, ele gera respostas mais precisas conforme recebe mais interações e mais 

dados, o que é típico de sistemas empíricos que dependem da observação e análise de grandes 

volumes de informações para realizar inferências e gerar respostas. Por fim, na abordagem 

naturalista, o Chat GPT é um exemplo de tentativa de simulação da comunicação humana natural. 

Ele se baseia no processamento de linguagem natural para gerar respostas que imitam a interação 

humana, com uma fluidez e coerência que, em muitos casos, são difíceis de distinguir das produções 

humanas. Contudo, apesar de sua capacidade de gerar textos plausíveis, o modelo não possui uma 

compreensão real do conteúdo, o que destaca a diferença entre a inteligência artificial e a inteligência 

humana, um ponto que caracteriza a crítica dentro dessa abordagem. 

2  
 

        

3 
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a) raposa come as uvas se e somente se as uvas caem 
: as uvas caem 
: a raposa come as uvas : 

as uvas estão maduras 
Esperado:  ↔  
R1:  →  
R3: ¬  ∨  
R4: r → p EI, R3 
R5: q → p SI, R2, R4 
R6: (q → p) ^ (p →q) CONJ, R5, R1 
R7: (q ↔ p) BICOND, R6 
 
O argumento lógico é válido.  
 
4  
 
a) Valor de saída do neurônio N1 – R: 0,3 
N1 - = 1 x 0,4 + (-3) x 0,2 + 1 x 0,8 
N1 = 0,3 
 
b) Valor de saída do neurônio N2 – R: 0,3 
N2 = 1 x 0,4 + (-3) x 0,1 + 1 x 0,2 
N2 = 0,3 
 
c) Valor de saída do neurônio N3 – R: -2 
N3 = 1 x 0,2 + (-3) x 0,9 + 1 x 0,5 
N3 = -2 
 
d) Valor de saída da rede como um todo – R: -0,1391 
N4 = 1 x 0,1 + 0,3 x 0,9 + 0,3 x 0,3 + (-2) x 0,3 
N4 = -0,14 
Tanh (u) = -0,1391 
F(a)(u) = -0,13909 
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  APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA 
 

A – ENUNCIADO 
 

Nome da base de dados do exercício: precos_carros_brasil.csv 

Informações sobre a base de dados:  
Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021, 

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A 

base original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser 

utilizada no presente exercício. 

Observação: As variáveis fuel  , gear e engine_size foram extraídas dos valores da coluna 

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores 

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém 

todos os dados originais da tabela FIPE. 

  
Metadados: 
 

Nome do campo Descrição 

year_of_reference O preço médio corresponde a um 

mês de ano de referência 

month_of_reference O preço médio corresponde a um 

mês de referência, ou seja, a FIPE atualiza 

sua tabela mensalmente 

fipe_code Código único da FIPE 

authentication Código de autenticação único para 

consulta no site da FIPE 

brand Marca do carro 

model Modelo do carro 

fuel Tipo de combustível do carro 

gear Tipo de engrenagem do carro 

engine_size Tamanho do motor em centímetros 

cúbicos 
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year_model Ano do modelo do carro. Pode não 

corresponder ao ano de fabricação 

avg_price Preço médio do carro, em reais 

 
Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato 

que será considerado correto na resolução do exercício. 
 

1 Análise Exploratória dos dados 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 

a. Carregue a base de dados media_precos_carros_brasil.csv 
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o 

problema de valores faltantes 
c. Verifique se há dados duplicados nos dados 
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de 

informações das variáveis numéricas e categóricas (estatística descritiva dos dados) 
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand) 
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados 

encontrados na Análise Exploratória dos dados 
 

2 Visualização dos dados 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 

a. Gere um gráfico da distribuição da quantidade de carros por marca 
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro 
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 

(variável de tempo no eixo X) 
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de 

engrenagem 
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d 
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de 

combustível 
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f 

 

 

3 Aplicação de modelos de machine learning para prever o preço médio dos carros 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis 
independentes do modelo.A variável target é avg_price. Observação: caso julgue 
necessário, faça a transformação de variáveis categóricas em variáveis numéricas para 
inputar no modelo. Indique quais variáveis foram transformadas e como foram 
transformadas 

b. Crie partições contendo 75% dos dados para treino e 25% para teste 
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca 

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário, 
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram 
inputados e indique o treinamento de cada modelo 

d. Grave os valores preditos em variáveis criadas 
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e. Realize a análise de importância das variáveis para estimar a variável target, para cada 
modelo treinado 

f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na 
análise de importância de variáveis 

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R² 
h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor 

resultado e a métrica de avaliação utilizada 
 

B - RESOLUÇÃO 
 

1 
import pandas as pd  

import matplotlib.pyplot as plt  

import seaborn as sns  

import warnings  

warnings.filterwarnings('ignore')  

from sklearn.model_selection import train_test_split  

from sklearn.ensemble import RandomForestRegressor  

from sklearn.preprocessing import LabelEncoder  

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score  

from xgboost import XGBRegressor  

 

dados_df = pd.read_csv('media_precos_carros_brasil.csv') 

print(dados_df.shape) 

 

(267542, 11) 

 

print(dados_df.dtypes) 

 

year_of_reference     float64 

month_of_reference     object 

fipe_code              object 

authentication         object 

brand                  object 

model                  object 

fuel                   object 

gear                   object 

engine_size            object 

year_model            float64 

avg_price_brl         float64 

dtype: object 

dados_df.dropna(axis=0, how='all', inplace=True) 

dados_df.duplicated().sum() 
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2 

 

dados_df.drop_duplicates(inplace=True) 

 

num_cols = [col for col in dados_df.columns if dados_df[col].dtype != 

'object']  

categ_cols = [col for col in dados_df.columns if dados_df[col].dtype == 

'object']  

dados_df[num_cols].describe()  

dados_df[categ_cols].describe()  

dados_df['model'].value_counts()  

 

Palio Week. Adv/Adv TRYON 1.8 mpi Flex    425 

Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p     425 

Focus 2.0 16V/SE/SE Plus Flex 5p Aut.     400 

Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V      400 

Corvette 5.7/ 6.0, 6.2 Targa/Stingray     375 

                                         ...  

STEPWAY Zen Flex 1.0 12V Mec.               2 

Saveiro Robust 1.6 Total Flex 16V CD        2 

Saveiro Robust 1.6 Total Flex 16V           2 

Gol Last Edition 1.0 Flex 12V 5p            2 

Polo Track 1.0 Flex 12V 5p                  2 

Name: model, Length: 2112, dtype: int64 

 

dados_df['brand'].value_counts()  

 

Fiat               44962 

VW - VolksWagen    44312 

GM - Chevrolet     38590 

Ford               33150 

Renault            29191 

Nissan             12090 

Name: brand, dtype: int64 

 

      A base de dados, que possui 267.542 registros e 11 colunas, apresenta no final 65.245 linhas 

vazias, provavelmente devido ao processo de exportação para o formato CSV. Após a eliminação 

dessas linhas, não há valores faltantes. Foram encontradas duas linhas duplicadas na base. Entre as 

11 colunas, 3 são numéricas e 8 categóricas. As informações estão distribuídas por 5 marcas de 

veículos, com uma grande quantidade de modelos diferentes. 
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2 

 
plt.figure(figsize=(20,10)) 

marca_plt = sns.countplot(x="brand", data=dados_df, 

order=dados_df['brand'].value_counts().index) 

marca_plt.set_xlabel('Marca') 

marca_plt.set_ylabel('Total de Carros') 

marca_plt.bar_label(marca_plt.containers[0], size=12, padding=3) 

marca_plt.set_title('Distribuição da Qtde de Carros por Marca') 

 

Text(0.5, 1.0, 'Distribuição da Qtde de Carros por Marca') 

 

 

 
plt.figure(figsize=(20,10)) 

marca_plt = sns.countplot(x="gear", data=dados_df, 

order=dados_df['gear'].value_counts().index) 

marca_plt.set_xlabel('Tipo de Engrenagem') 

marca_plt.set_ylabel('Total de Carros') 

marca_plt.bar_label(marca_plt.containers[0], size=12, padding=3) 

marca_plt.set_title('Distribuição da Qtde de Carros por Tipo de Engrenagem') 

 

Text(0.5, 1.0, 'Distribuição da Qtde de Carros por Tipo de Engrenagem') 
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plt.figure(figsize=(20,10)) 

marca_plt = sns.barplot(x="month_of_reference", y='avg_price_brl', \ 

                        data=dados_df[dados_df['year_of_reference'] == 

2022].groupby('month_of_reference')['avg_price_brl'].mean().round(2).reset_in

dex(), \ 

                        order=dados_df[dados_df['year_of_reference'] == 

2022]['month_of_reference'].unique()) 

marca_plt.set_xlabel('Mês') 

marca_plt.set_ylabel('Valor Médio') 

marca_plt.bar_label(marca_plt.containers[0], size=12, padding=3) 

marca_plt.set_title('Evolução da média de preço dos carros por mês em 2022') 

 

Text(0.5, 1.0, 'Evolução da média de preço dos carros por mês em 2022') 
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plt.figure(figsize=(20,10)) 

marca_plt = sns.barplot(x='brand', y='avg_price_brl', hue='gear', \ 

                        data=dados_df.groupby(['brand', 

'gear'])['avg_price_brl'].mean().round(2).reset_index(), \ 

                        hue_order=dados_df['gear'].unique()) 

marca_plt.set_xlabel('Marca') 

marca_plt.set_ylabel('Valor Médio') 

for container in marca_plt.containers: 

    marca_plt.bar_label(container, size=12, padding=3) 

 

marca_plt.set_title('Distribuição da média do preço dos carros por marca e 

tipo de engrenagem') 

 

Text(0.5, 1.0, 'Distribuição da média do preço dos carros por marca e tipo de 

engrenagem') 
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      Em quase todas as marcas, observa-se uma grande disparidade entre o preço médio dos carros 

automáticos e dos manuais. No entanto, a Renault foge dessa regra, pois, além dos preços serem 

bem próximos, o valor médio dos carros manuais é ligeiramente superior ao dos automáticos. A 

Volkswagen é a marca com o maior preço médio para os modelos automáticos, seguida pela Fiat e 

Nissan, respectivamente. 

 
plt.figure(figsize=(20,10)) 

marca_plt = sns.barplot(x='brand', y='avg_price_brl', hue='fuel', \ 

                        data=dados_df.groupby(['brand', 

'fuel'])['avg_price_brl'].mean().round(2).reset_index(), \ 

                        hue_order=dados_df['fuel'].unique().sort()) 

marca_plt.set_xlabel('Marca') 

marca_plt.set_ylabel('Valor Médio') 

for container in marca_plt.containers: 

    marca_plt.bar_label(container, size=12, padding=3) 

 

marca_plt.set_title('Distribuição da média do preço dos carros por marca e 

tipo de combustível') 

 

Text(0.5, 1.0, 'Distribuição da média do preço dos carros por marca e tipo de 

combustível') 
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       Em todas as marcas, os carros movidos a Diesel apresentam um valor médio significativamente 

superior aos de outros combustíveis, seguidos pelos modelos a Gasolina, que têm preços médios 

maiores do que os carros a Álcool. Vale ressaltar que a Renault e a Nissan não possuem nenhum 

veículo movido a Álcool em sua base de dados, logo, não há valores médios para esse combustível 

nas respectivas marcas.  

 

3 
 
dados_df['year_model'] = dados_df['year_model'].astype(int)  

dados_df.head()  

dados_df['fuel_num'] = LabelEncoder().fit_transform(dados_df['fuel'])   

dados_df.head()  

dados_df['gear_num'] = LabelEncoder().fit_transform(dados_df['gear'])   

dados_df.head() 

dados_df['engine_size_num'] = dados_df['engine_size'].str.replace(',', 

'.').astype(float)  

dados_df.head()  

dados_num_df = dados_df[[col for col in dados_df.columns if 

dados_df[col].dtype != 'object']]  

dados_num_df.drop('year_of_reference', axis=1, inplace=True)  

dados_num_df.head() 

sns.heatmap(dados_num_df.corr("spearman"), annot = True) 

plt.title("Mapa de Correlação das Variáveis Numéricas\n", fontsize = 15) 

plt.show() 
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X = dados_num_df.drop('avg_price_brl',axis = 1) 

Y = dados_num_df['avg_price_brl'] 

Y.head() 

 

0     9162.0 

1     8832.0 

2     8388.0 

3     8453.0 

4    12525.0 

Name: avg_price_brl, dtype: float64 

 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25, 

random_state = 42) 

print(X_train.shape) 

X_train.head(1) 

 

(151721, 4) 

 

print(X_test.shape) 

X_test.head(1) 

 

(50574, 4) 

 

model_rf = RandomForestRegressor() 
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model_rf.fit(X_train, Y_train) 

 

RandomForestRegressor() 

 

model_xgboost = XGBRegressor() 

model_xgboost.fit(X_train, Y_train) 

 

XGBRegressor(base_score=None, booster=None, callbacks=None, 

             colsample_bylevel=None, colsample_bynode=None, 

             colsample_bytree=None, device=None, early_stopping_rounds=None, 

             enable_categorical=False, eval_metric=None, feature_types=None, 

             gamma=None, grow_policy=None, importance_type=None, 

             interaction_constraints=None, learning_rate=None, max_bin=None, 

             max_cat_threshold=None, max_cat_to_onehot=None, 

             max_delta_step=None, max_depth=None, max_leaves=None, 

             min_child_weight=None, missing=nan, monotone_constraints=None, 

             multi_strategy=None, n_estimators=None, n_jobs=None, 

             num_parallel_tree=None, random_state=None, ...) 

 

valores_preditos_rf = model_rf.predict(X_test)  

valores_preditos_xgboost = model_xgboost.predict(X_test)  

model_rf.feature_importances_  

feature_importances_RF = pd.DataFrame(model_rf.feature_importances_, index = 

X_train.columns,  

columns=['importance']).sort_values('importance', ascending = False)  

feature_importances_RF  

model_xgboost.feature_importances_  

feature_importances_XB = pd.DataFrame(model_xgboost.feature_importances_, 

index = X_train.columns,  

columns=['importance']).sort_values('importance', ascending = False)  

feature_importances_XB  

mse_RF = mean_squared_error(Y_test, valores_preditos_rf)  

mae_RF = mean_absolute_error(Y_test, valores_preditos_rf)  

r2_RF = r2_score(Y_test, valores_preditos_rf)  

print(mse_RF)  

print(mae_RF)  

print(r2_RF) 

 

191532975.81806594 

7820.921055193546 
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0.9288314149027983 

 

mse_XG = mean_squared_error(Y_test, valores_preditos_xgboost) 

mae_XG = mean_absolute_error(Y_test, valores_preditos_xgboost) 

r2_XG = r2_score(Y_test, valores_preditos_xgboost) 

print(mse_XG) 

print(mae_XG) 

print(r2_XG) 

 

191424816.71144438 

7819.671020396782 

0.928871603964503 
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APÊNDICE 3 – LINGUAGEM R 
 

A – ENUNCIADO 
 
1 Pesquisa com Dados de Satélite (Satellite) 

 

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma 

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é 

prever esta classificação, dados os valores multiespectrais. 

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) 

consiste em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas 

estão na região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro 

visível) e duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 

correspondendo a preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. 

Cada imagem contém 2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de 

uma cena, consistindo de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança 

quadrada de pixels 3x3 completamente contida dentro da subárea 82x100. Cada linha contém os 

valores de pixel nas quatro bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na 

vizinhança de 3x3 e um número indicando o rótulo de classificação do pixel central. 

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de 

vegetação, solo cinza muito úmido. 

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você 

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro 

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores 

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, 

com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro 

valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode 

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando 

uma vizinhança 3x3 atravessa um limite. 

O banco de dados se encontra no pacote mlbench e é completo (não possui dados 

faltantes). 

Tarefas: 

1. Carregue a base de dados Satellite 
2. Crie partições contendo 80% para treino e 20% para teste 
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.  
4. Escolha o melhor modelo com base em suas matrizes de confusão.  
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada 
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2 Estimativa de Volumes de Árvores 
 

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal 

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser 

necessário abatê-las. 

O processo é feito pela coleta de dados (dados observados) através do abate de algumas 

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com 

estes dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população. 

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em 

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o 

modelo de Spurr é dado por: 

 

Volume = b0 + b1 * dap2 * Ht 
 

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários 

modelos alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de 

regressão envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando 

assim uma equação que pode ser usada para prever o volume de outras árvores. 

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de 

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação. 

 

Tarefas 

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv) 
2. Eliminar a coluna NR, que só apresenta um número sequencial 
3. Criar partição de dados: treinamento 80%, teste 20% 
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes 

Neurais (neuralnet) e o modelo alométrico de SPURR 
 

▪ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht 
 

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5)) 
 

5. Efetue as predições nos dados de teste 
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados 

observados 
 

▪ Coeficiente de determinação: R2 
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onde  é o valor observado,  é o valor predito e  é a média dos valores  observados. աՑ աՑ^ ա աՑ
Quanto mais perto de 1 melhor é o modelo; 

 

▪ Erro padrão da estimativa: Syx 

 

 esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo; 

 

▪ Syx% 

 

 

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo; 

 

7. Escolha o melhor modelo. 
 

 

B – RESOLUÇÃO 
 

1 

 

 

A acurácia deste foi 0.8411215 (84,11%).  
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A acurácia deste foi 0.8660436 (86,60%).  

 

 

 

A acurácia deste foi 0.7764798 (77,64%).  

 

       Baseado nos resultados obtidos, o que resultou no maior índice de acurácia foi o modelo SVM. 

Portanto, o melhor modelo para este exercício é o SVM.  

 
install.packages("e1071")  

install.packages('knitr')  

install.packages("randomForest")  

install.packages("kernlab")  

install.packages('caret')  

install.packages("mlbench")  

library('knitr')  

library('mlbench')  

library('caret')  

seed <- 4  

set.seed(seed)  

data(Satellite)  

database <- Satellite  

indexes <- createDataPartition(database$classes, p=0.80, list=F)  

train <- database[indexes,]  

test <- database[-indexes,]  

formula <- (classes ~ x.17 + x.18 + x.19 + x.20)  

rf <- train(formula, data=train, method='rf')  

svm <- train(formula, data=train, method='svmRadial')  

 

rna <- train(formula, data=train, method='nnet', trace=F)  

predict.rf <- predict(rf, test)  

predict.svm <- predict(svm, test)  

predict.rna <- predict(rna, test)  

generatePresentation <- function (predicted, testData, modelName, fileName) {  

cm <- confusionMatrix(predicted, testData$classes)  
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matrixTable <- paste(knitr::kable(cm$table, 'pipe'), collapse='\n')  

overall <- paste(knitr::kable(as.data.frame(cm$overall), 'pipe', 

col.names=c('Propriedade', 'Valor')),  

collapse='\n')  

text <- paste(c("# ", toupper(modelName), "\n\n## Matriz de Confusão\n\n", 

matrixTable, "\n\n##  

Resultados\n\n", overall), collapse= ')  

write.table(text, fileName, quote=F, row.names=F, col.names=F)  

}  

generatePresentation(predict.rf, test, 'random forest', 

'IAA003RandomForest.md')  

generatePresentation(predict.svm, test, 'svm', 'IAA003SVM.md')  

generatePresentation(predict.rna, test, 'rna', 'IAA003RNA.md')  

 
2 
 

 

 

        Baseado nos resultados apresentados na Tabela 4, o melhor modelo para este exercício, devido 

ao índice R² mais próximo de 1 e erro padrão de estimativa e percentual de erro padrão de estimativa 

mais próximos de 0, é o Modo Alométrico de SPURR.  

 
install.packages("e1071")  

install.packages('knitr')  

install.packages("randomForest")  

install.packages("kernlab")  

install.packages('caret')  

library('knitr')  

library('caret')  

seed <- 8  

set.seed(seed)  

dataset <- read.csv2('http://www.razer.net.br/datasets/Volumes.csv', 

header=T, dec=',', sep=';')  

dataset$NR <- NULL  

indexes <- createDataPartition(y=dataset$VOL, p=0.80, list=F)  
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train <- dataset[indexes,]  

test <- dataset[-indexes,]  

rf <- caret::train(VOL ~ DAP * DAP * HT, data=train, method='rf')  

svm <- caret::train(VOL~ DAP * DAP * HT, data=train, method='svmRadial')  

rna <- caret::train(VOL~ DAP * DAP * HT, data=train, method='nnet')  

spurr <- nls(VOL ~ b0 + b1 * DAP * DAP * HT, train, start=list(b0=0.5, 

b1=0.5))  

predict.rf <- predict(rf, test)  

predict.svm <- predict(svm, test)  

predict.rna <- predict(rna, test)  

predict.spurr <- predict(spurr, test)  

r2 <- function(yr, yp) {  

return ( 1 - ( sum( (yr - yp) ^ 2 ) / sum( (yr - mean(yr)) ^ 2 ) ) )  

}  

erroPadraoEstimativa <- function(yr, yp) {  

n <- length(yr)  

return ( sqrt( sum( (yr - yp) ^ 2 ) / (n - 2) ) )  

}  

erroPadraoEstimativaPerc <- function(yr, yp) {  

return ( (erroPadraoEstimativa(yr, yp) / mean(yr)) * 100 )  

}  

yr <- test$VOL  

results <- data.frame(  

'Random Forest'=c(r2(yr, predict.rf), erroPadraoEstimativa(yr,  predict.rf), 

erroPadraoEstimativaPerc(yr, predict.rf)),  

'SVM'=c(r2(yr, predict.svm), erroPadraoEstimativa(yr,  predict.svm), 

erroPadraoEstimativaPerc(yr, predict.svm)),  

'RNA'=c(r2(yr, predict.rna), erroPadraoEstimativa(yr,  predict.rna), 

erroPadraoEstimativaPerc(yr, predict.rna)),  

'Modelo Alométrico de SPURR'=c(r2(yr, predict.spurr), 

erroPadraoEstimativa(yr,  predict.spurr), 

erroPadraoEstimativaPerc(yr, predict.spurr)),  

row.names = c('R²', 'Erro Padrão da Estimativa', 'Percentual de Erro Padrão 

da Estimativa')  

)  

table <- knitr::kable(results, 'pipe')  

write.table(table, 'IAA003EX2.md', quote=F, row.names=F, col.names=F) 
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APÊNDICE 4 – ESTATÍSTICA APLICADA I 
 

A – ENUNCIADO 
 

1) Gráficos e tabelas 
 

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) 

e “husage” (idade do marido) e comparar os resultados 

(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados 

 

2) Medidas de posição e dispersão 
 

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados 

(15 pontos) Calcular a variância,  desvio padrão e coeficiente de variação das variáveis “age” 

(idade da esposa) e “husage” (idade do marido) e comparar os resultados 

 

3) Testes paramétricos ou não paramétricos 
 

(40 pontos) Testar se as médias (se você escolher o teste paramétrico)  ou as medianas (se 

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do 

marido) são iguais, construir os intervalos de confiança e comparar os resultados. 

Obs:  

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você 

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique 

sua resposta sobre a escolha. 

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes 

citados no item 1 acima.  

 

B – RESOLUÇÃO 
 

1 

 

Código:  
library(rcompanion)  

library(car)  

library(fdth)  

library(nortest)  
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library(DescTools)  

options(scipen=999)  

load('salarios.RData')  

idades <- data.frame(  

conjuge = rep(c("Marido", "Esposa"), each = 5634),  

idade = c(salarios$husage,  salarios$age)  

)  

 

ggboxplot(idades, x = "conjuge", y = "idade",   

color = "conjuge", palette=c("#00AFBB", "#E7B800"),  

ylab = "Idade", xlab = "conjuge")  

 

 

  
plotNormalHistogram(idades$idade[idades$conjuge=="Marido"], prob = FALSE,   

main = "Distribuição Normal x Idade dos Maridos",   

length = 1000 )  
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plotNormalHistogram(idades$idade[idades$conjuge=="Esposa"], prob = FALSE,   

main = "Distribuição Normal x Idade das Esposas",   

length = 1000 )  
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         A análise dos boxplots revela que a idade das esposas varia entre 18 e 59 anos, enquanto a 

dos maridos vai de 19 até 86 anos. A mediana das idades, representada pela linha central da caixa, é 

de 39 anos para as esposas e 41 anos para os maridos. Esse valor corresponde ao segundo quartil, 

ou seja, o ponto que separa a metade inferior da superior dos dados. Embora o tamanho das caixas 

— que representa o intervalo interquartil — seja semelhante para ambos, a distribuição etária dos 

maridos mostra maior dispersão, inclusive com presença de outliers, o que não ocorre entre as 

esposas.  

           Nos histogramas, observa-se que a maior concentração de idades das esposas está entre 25 e 

65 anos, enquanto a dos maridos se concentra de forma mais expressiva entre 25 e 60 anos. No 

entanto, as distribuições seguem padrões diferentes: a curva referente aos maridos é mais estreita e 

elevada (leptocúrtica), com assimetria voltada para a esquerda, enquanto a das esposas é mais 

achatada (platicúrtica) e tende a se assimetria à direita. 
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Código:  

 
with(idades,  

 range(idade[conjuge=="Marido"])  

) 

 [1] 19 86  

 

with(idades,  

     range(idade[conjuge=="Esposa"]) 

 )  

 

[1] 18 59  

ft_marido <- with(idades,  

                  fdt(idade[conjuge=="Marido"],  

                      start = 15, end = 90, h = 5  

                      ) 

                   )  

ft_marido  

Class limits  f      rf    rf(%)    cf       cf(%)   

      [15,20)   5   0.00  0.09    5        0.09   

      [20,25) 168 0.03  2.98    173    3.07   

      [25,30) 532 0.09  9.44    705    12.51 

      [30,35) 868 0.15  15.41  1573  27.92   

      [35,40) 899 0.16  15.96  2472  43.88   

      [40,45) 918 0.16  16.29  3390  60.17   

      [45,50) 710 0.13  12.60  4100  72.77   

      [50,55) 573 0.10  10.17  4673  82.94   

      [55,60) 512 0.09  9.09    5185  92.03   

      [60,65) 307 0.05  5.45    5492  97.48   

      [65,70)  89  0.02  1.58    5581  99.06   

      [70,75)  32  0.01  0.57    5613  99.63  

      [75,80)  17  0.00  0.30    5630  99.93  

      [80,85)   2   0.00  0.04    5632  99.96 

      [85,90)   2   0.00  0.04    5634  100.00 

 

 

 

 

ft_esposa <- with(idades,  

                  fdt(idade[conjuge=="Esposa"],  
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                      start = 15, end = 60, h = 5  

                  )  

)  

ft_esposa  

  

Class limits   f      rf     rf(%)   cf       cf(%)   

      [15,20)  30    0.01  0.53    30      0.53   

      [20,25)  276  0.05  4.90    306    5.43   

      [25,30)  733  0.13  13.01  1039  18.44   

      [30,35)  946  0.17  16.79  1985  35.23   

      [35,40)  982  0.17  17.43  2967  52.66   

      [40,45)  881  0.16  15.64  3848  68.30   

      [45,50)  688  0.12  12.21  4536  80.51   

      [50,55)  600  0.11  10.65  5136  91.16   

      [55,60)  498  0.09  8.84    5634  100.00  

 

Com base nos dados apresentados nas Tabelas 1 e 2, observa-se que a maioria das esposas tem 

entre 25 e 55 anos, enquanto a faixa etária predominante entre os maridos está entre 20 e 60 anos. 

Analisando a frequência acumulada, nota-se que 18,44% das esposas estão na faixa de 25 a 30 

anos, e esse percentual sobe para 91,16% até a faixa de 50 a 55 anos. Já entre os maridos, 12,51% 

têm entre 25 e 30 anos, e a frequência acumulada atinge 99,06% até a faixa de 65 a 70 anos.Em 

relação à frequência relativa, a faixa etária mais representativa entre as esposas é a de 35 a 40 anos, 

com 17,43% dos casos (982 mulheres). Para os maridos, o maior percentual está na faixa de 40 a 45 

anos, que concentra 16,29% dos dados (918 homens). 

 

 

 
 

conjuge   count  mean   median  var       sd      c.var    IQR     

Esposa    5634   39.4        39     99.8     9.99    25.3      16   

Marido     5634   42.5        41     126.    11.2     26.4      16 

 

with(idades, 

subset(table(idade[conjuge=="Esposa"]),  

table(idade[conjuge=="Esposa"])==max(table(idade[conjuge=="Esposa"]))  

)  

)  
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37   

217  

with(idades,  

subset(table(idade[conjuge=="Marido"]),   

table(idade[conjuge=="Marido"])==max(table(idade[conjuge=="Marido"]))  

)  

)  

44   

201  

dif_media <- ((42.5/39.4)-1)*100  

dif_media  

[1] 7.86802  

dif_mediana <- ((41/39)-1)*100  

dif_mediana  

[1] 5.128205  

dif_moda <- ((44/37)-1)*100  

dif_moda  

[1] 18.91892  

         Na amostra analisada, a idade média dos maridos é de 42,5 anos, o que representa um valor 

7,87% superior à média das esposas, que é de 39,4 anos. A mediana também apresenta essa 

diferença: os maridos têm uma mediana de 41 anos, enquanto entre as esposas esse valor é de 39 

anos — uma diferença de 5,13%. Já em relação à moda, observa-se a maior disparidade: a idade 

mais frequente entre os maridos é 44 anos (com 201 registros), o que equivale a um aumento de 

18,92% em comparação com a moda das esposas, que é de 37 anos (registrada por 217 mulheres).  

 

Código:  
group_by(idades, conjuge) %>%   

summarise(  

count = n(),  

mean = mean(idade, na.rm = TRUE),  

median = median(idade, na.rm = TRUE),  

var = var(idade, na.rm = TRUE),  

sd = sd(idade, na.rm = TRUE),  

c.var = sd(idade, na.rm = TRUE)/mean(idade, na.rm = TRUE)*100,  

IQR = IQR(idade, na.rm = TRUE)  

)  

conjuge   count  mean   median  var       sd     c.var     IQR      

Esposa    5634   39.4        39     99.8     9.99    25.3      16   

Marido     5634   42.5        41     126.    11.2     26.4      16  

 

dif_VAR <- ((126/99.8)-1)*100  
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dif_VAR  

[1] 26.25251  

dif_DP <- ((11.2/9.99)-1)*100  

dif_DP  

[1] 12.11211  

 

         Entre os grupos analisados, a variância da idade dos maridos foi de 126 anos², valor 26,25% 

superior à variância observada entre as esposas, que foi de 99,8 anos². O desvio padrão também 

seguiu essa tendência: os maridos apresentaram um desvio padrão de 11,2 anos, o que representa 

uma diferença de 12,11% em relação ao das esposas, que ficou em 9,99 anos. No que diz respeito ao 

coeficiente de variação, os maridos novamente apresentaram maior dispersão relativa, com um índice 

de 26,4%, frente aos 25,3% registrados entre as esposas. 

 

3 
 
Código:  
with(idades,  

JarqueBeraTest(idade[conjuge=="Esposa"],  

robust = TRUE  

)  

)  

Robust Jarque Bera Test  

data:  idade[conjuge == "Esposa"]   

X-squared = 158.49, df = 2, p-value < 0.00000000000000022  

with(idades,  

JarqueBeraTest(idade[conjuge=="Marido"],  

robust = TRUE  

)  

)  

Robust Jarque Bera Test  

data:  idade[conjuge == "Marido"]   

X-squared = 153.12, df = 2, p-value < 0.00000000000000022  

 

         Como o p-valor obtido para ambos os grupos foi inferior a 0,05, conclui-se que as amostras não 

seguem uma distribuição normal. Diante disso, a aplicação de um teste paramétrico não é apropriada. 

Portanto, opta-se por um teste não paramétrico. Considerando que as amostras são independentes, o 

teste indicado é o Mann-Whitney U. Testando se a mediana da idade dos maridos e esposas são 

estatisticamente iguais:  

 
group_by(idades, conjuge) %>%   

summarise(  
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count = n(),  

mean = mean(idade, na.rm = TRUE),  

median = median(idade, na.rm = TRUE),  

var = var(idade, na.rm = TRUE),  

sd = sd(idade, na.rm = TRUE),  

c.var = sd(idade, na.rm = TRUE)/mean(idade, na.rm = TRUE)*100,  

IQR = IQR(idade, na.rm = TRUE)  

)  

conjuge   count  mean   median  var        sd     c.var     IQR      

Esposa     5634   39.4       39      99.8     9.99    25.3      16   

Marido     5634   42.5         41     126.    11.2     26.4      16  

 

ggboxplot(idades, x = "conjuge", y = "idade",   

color = "conjuge", palette=c("#00AFBB", "#E7B800"),  

ylab = "Idade", xlab = "conjuge") 

 

 

 

Hipóteses do teste Mann-Whitney U:  

H₀: A mediana das idades dos maridos é estatisticamente igual à mediana das idades das esposas.  

Hₐ: A mediana das idades dos maridos é estatisticamente diferente da mediana das idades das 

esposas.  

 
wilcox.test(idade ~ conjuge, data = idades,   

exact = FALSE,   

conf.int=TRUE)  
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Wilcoxon rank sum test with continuity correction   

data:  idade by conjuge   

W = 13619912, p-value < 0.00000000000000022   

alternative hypothesis: true location shift is not equal to 0   

95 percent confidence interval: -3.000024 -2.000033   

sample estimates:   

difference in location  -2.999966  

 

     Como o p-valor obtido foi menor que 0,05, rejeita-se a H₀, indicando que há diferença 

estatisticamente significativa entre as medianas das idades dos maridos e das esposas.  

         O intervalo de confiança para a diferença entre as medianas está aproximadamente entre -3 e 

-2, com uma mediana estimada da diferença em torno de -3. Isso sugere que, em média, a idade das 

esposas é de 2 a 3 anos inferior à dos maridos.  

 

Teste unilateral para comparar as medianas das idades  

Hipóteses:  

H₀: A mediana da idade das esposas não é menor que a mediana da idade dos maridos (ou seja, é 

igual ou maior).  

Hₐ: A mediana da idade das esposas é menor que a mediana da idade dos maridos.  
 

wilcox.test(idade ~ conjuge, data = idades,   

exact = FALSE,   

alternative='less',  

conf.int=TRUE)  

 

Wilcoxon rank sum test with continuity correction   

data:  idade by conjuge   

W = 13619912, p-value < 0.00000000000000022   

alternative hypothesis: true location shift is less than 0   

95 percent confidence interval: -Inf -2.000046   

sample estimates:   

difference in location  -2.999966  

  

         Como o p-valor foi inferior a 0,05, rejeita-se a hipótese nula (H₀). Isso confirma que há evidência 

estatística suficiente para afirmar que a mediana da idade das esposas é menor que a mediana da 

idade dos maridos.  

    O intervalo de confiança para a diferença entre as medianas encontra-se abaixo de 

aproximadamente -2, com uma estimativa central em torno de -3. Isso indica que, em média, a idade 

das esposas é de 2 a 3 anos inferior à dos maridos, com um alto grau de confiança estatística.  

Teste unilateral para comparar as medianas das idades  

Hipóteses:  
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H₀: A mediana da idade das esposas não é maior que a mediana da idade dos maridos (ou seja, é 

igual ou  

menor).  

Hₐ: A mediana da idade das esposas é maior que a mediana da idade dos maridos.  

 
wilcox.test(idade ~ conjuge, data = idades,   

exact = FALSE,   

alternative='greater',  

conf.int=TRUE)  

 

Wilcoxon rank sum test with continuity correction   

data:  idade by conjuge   

W = 13619912, p-value = 1   

alternative hypothesis: true location shift is greater than 0   

95 percent confidence interval: -3.000034    Inf   

sample estimates:   

difference in location  -2.999966  

Como o p-valor foi maior que 0,05, não há evidência suficiente para rejeitar a hipótese nula 

(H₀). Dessa forma, não se pode afirmar que a mediana da idade das esposas seja maior que a 

mediana da idade dos maridos. Além disso, o intervalo de confiança para a diferença entre as 

medianas apresenta valores acima de aproximadamente -3, com uma mediana estimada em torno de 

-3, indicando que a diferença entre as medianas não apoia a ideia de que a mediana das esposas 

seja superior à dos maridos.  

Neste caso, foi necessário verificar as premissas para definir se seria adequado aplicar um 

teste paramétrico ou não paramétrico. Após confirmar que as amostras são independentes, 

realizou-se o teste de normalidade por meio do teste de Jarque-Bera. Os resultados indicaram que os 

dados não seguem uma distribuição normal, o que levou à escolha de um teste não paramétrico.  

 Dado que os grupos são independentes e não pareados, o teste mais apropriado foi o 

Mann-Whitney U. Os resultados desse teste confirmaram que há, de fato, uma diferença 

estatisticamente significativa entre as medianas das idades, sendo a mediana das esposas inferior à 

dos maridos. 
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APÊNDICE 5 – ESTATÍSTICA APLICADA II 
 

A – ENUNCIADO 
 

Regressões Ridge, Lasso e ElasticNet 
 

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente 

“lwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de 

dados são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No 

pdf você deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e 

R2) e concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de 

confiança para os seguintes valores: 

husage = 40          (anos – idade do marido) 

husunion = 0        (marido não possui união estável) 

husearns = 600    (US$ renda do marido por semana) 

huseduc = 13       (anos de estudo do marido) 

husblck = 1           (o marido é preto) 

hushisp = 0           (o marido não é hispânico) 

hushrs = 40           (horas semanais de trabalho do marido) 

kidge6 = 1             (possui filhos maiores de 6 anos) 

age = 38                (anos – idade da esposa) 

black = 0               (a esposa não é preta) 

educ = 13              (anos de estudo da esposa) 

hispanic = 1          (a esposa é hispânica) 

union = 0              (esposa não possui união estável) 

exper = 18            (anos de experiência de trabalho da esposa) 

kidlt6 = 1              (possui filhos menores de 6 anos) 

 

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para 

obter o resultado da predição.  

 

B – RESOLUÇÃO 
1. Carregando os pacotes 

# Para Regressão Ridge/Lasso/Elastic-Net 

library(glmnet)  
require(dplyr) 
library(tidyverse) 
library(caret) 
library(car) 
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library(lmtest) 
library(olsrr) 

Nessa primeira parte carregou os pacotes necessários para a análise dos modelos de 

regressão Ridge, Lasso e Elastic-Net. 

 
2. Buscando o conjunto de dados 

 
load("C:/Users/pamar/MODELOS REGRESSAO/trabalhosalarios.RData") 
attach(trabalhosalarios) 
 
# Lendo as 6 primeiras linhas dos dados 
head(trabalhosalarios) 

   husage husunion husearns huseduc husblck hushisp hushrs kidge6 earns age 
3      56        0     1500      14       0       0     40      1   100  49 
13     31        0      800      17       0       0     40      0   480  29 
20     33        0      950      13       0       0     60      0   455  30 
21     34        0     1000      14       0       0     50      1   102  31 
22     42        0      730      14       0       0     40      1   300  41 
25     45        0     1154      16       0       0     38      1   425  45 
   black educ hispanic union exper kidlt6    lwage 
3      0   12        0     0    31      0 1.897120 
13     0   14        0     0     9      0 2.484907 
20     0   12        0     0    12      1 2.431418 
21     0   12        0     0    13      0 1.629241 
22     0   12        0     0    23      0 2.302585 
25     0   18        0     0    21      0 2.496741 

# Estrutura dos dados 
str(trabalhosalarios) 

'data.frame':   2574 obs. of  17 variables: 
 $ husage  : num  56 31 33 34 42 45 33 31 31 44 ... 
 $ husunion: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ husearns: num  1500 800 950 1000 730 ... 
 $ huseduc : num  14 17 13 14 14 16 16 18 12 12 ... 
 $ husblck : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushisp : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushrs  : num  40 40 60 50 40 38 40 55 40 40 ... 
 $ kidge6  : num  1 0 0 1 1 1 0 0 0 1 ... 
 $ earns   : num  100 480 455 102 300 425 770 125 245 539 ... 
 $ age     : num  49 29 30 31 41 45 32 27 30 42 ... 
 $ black   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ educ    : num  12 14 12 12 12 18 12 14 15 12 ... 
 $ hispanic: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ union   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ exper   : num  31 9 12 13 23 21 14 7 9 24 ... 
 $ kidlt6  : num  0 0 1 0 0 0 0 1 1 0 ... 
 $ lwage   : num  1.9 2.48 2.43 1.63 2.3 ... 
 - attr(*, "na.action")= 'omit' Named int [1:3060] 1 2 4 5 6 7 8 9 10 11 ... 
  ..- attr(*, "names")= chr [1:3060] "1" "2" "4" "5" ... 

##Selecionando os dados de treino e teste 
amostra<- sample(c(TRUE,FALSE), nrow(trabalhosalarios),   
                 replace=TRUE, prob=c(0.8,0.2))  
dados.treino<-trabalhosalarios[amostra, ]  
 
dados.teste<-trabalhosalarios[!amostra, ]  
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# Estrutura dos dados 
str(dados.treino) 

'data.frame':   2065 obs. of  17 variables: 
 $ husage  : num  56 31 33 34 42 45 33 31 45 22 ... 
 $ husunion: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ husearns: num  1500 800 950 1000 730 ... 
 $ huseduc : num  14 17 13 14 14 16 16 12 12 12 ... 
 $ husblck : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushisp : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushrs  : num  40 40 60 50 40 38 40 40 50 40 ... 
 $ kidge6  : num  1 0 0 1 1 1 0 0 0 0 ... 
 $ earns   : num  100 480 455 102 300 425 770 245 300 299 ... 
 $ age     : num  49 29 30 31 41 45 32 30 42 23 ... 
 $ black   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ educ    : num  12 14 12 12 12 18 12 15 12 13 ... 
 $ hispanic: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ union   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ exper   : num  31 9 12 13 23 21 14 9 24 4 ... 
 $ kidlt6  : num  0 0 1 0 0 0 0 1 0 0 ... 
 $ lwage   : num  1.9 2.48 2.43 1.63 2.3 ... 
 - attr(*, "na.action")= 'omit' Named int [1:3060] 1 2 4 5 6 7 8 9 10 11 ... 
  ..- attr(*, "names")= chr [1:3060] "1" "2" "4" "5" ... 

str(dados.teste) 

'data.frame':   509 obs. of  17 variables: 
 $ husage  : num  31 44 66 26 38 25 24 46 42 46 ... 
 $ husunion: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ husearns: num  769 750 500 520 1500 350 390 1000 1250 800 ... 
 $ huseduc : num  18 12 16 14 16 11 12 12 18 18 ... 
 $ husblck : num  0 0 0 0 0 1 1 0 0 0 ... 
 $ hushisp : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushrs  : num  55 40 40 36 40 40 0 24 50 40 ... 
 $ kidge6  : num  0 1 0 0 0 0 0 0 1 0 ... 
 $ earns   : num  125 539 500 345 550 141 205 992 769 400 ... 
 $ age     : num  27 42 55 27 38 33 22 33 42 44 ... 
 $ black   : num  0 0 0 0 0 1 1 0 0 0 ... 
 $ educ    : num  14 12 12 14 16 10 12 12 16 18 ... 
 $ hispanic: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ union   : num  0 0 0 0 0 0 0 1 0 0 ... 
 $ exper   : num  7 24 37 7 16 17 4 15 20 20 ... 
 $ kidlt6  : num  1 0 0 0 1 0 1 0 0 1 ... 
 $ lwage   : num  1.78 2.6 2.53 2.15 2.62 ... 
 - attr(*, "na.action")= 'omit' Named int [1:3060] 1 2 4 5 6 7 8 9 10 11 ... 
  ..- attr(*, "names")= chr [1:3060] "1" "2" "4" "5" ... 

# Buscando preditores (x e y - Iwage) no conjunto de treino e teste  
x_treino <- dados.treino %>% select(-lwage) %>% as.matrix() 
y_treino <- dados.treino  %>% select(lwage) %>%  as.matrix() 
 
x_teste <- dados.teste %>% select(-lwage) %>% as.matrix() 
y_teste <- dados.teste %>% select(lwage) %>% as.matrix() 

 
Na segunda parte buscou os dados no programa R, fez-se a leitura das primeiras seis linhas 

dos dados, a separação em dados de treino (80% dos dados) e teste (20% dos dados) e a definição 

dos da variável resposta (dependente) e as variáveis independentes. Na seção 3 tem a análise dos 

modelos de regressão Ridge, Lasso e Elastic-Net. 
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3. Modelos de Regressão Ridge, Lasso e Elastic-Net 

a) Regressão Ridge 
# Validação cruzada para obter melhor valor de lambda para Regressão Ridge  
(alpha = 0) 
cv_best_lambda <-  cv.glmnet(x_treino, y_treino, family = "gaussian", alpha = 
0, type.measure = "mse") 
print(cv_best_lambda) 

 
Call:  cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family = 
"gaussian",      alpha = 0)  
 
Measure: Mean-Squared Error  
 
     Lambda Index Measure       SE Nonzero 
min 0.04162   100 0.07837 0.002879      16 
1se 0.09615    91 0.08099 0.002414      16 

best_lambda <-cv_best_lambda$lambda.min 
 
# Modelo Regressão Ridge  
ridge = glmnet(x_treino, y_treino, family = "gaussian",alpha = 0, lambda = 
best_lambda) 
 
# Desempenho dos dados de treino na Regressão Ridge 
treino_preditos <- ridge %>% predict(x_treino) 
data.frame( R2 = R2(treino_preditos, y_treino), 
            RMSE = RMSE(treino_preditos, y_treino)) 

             s0      RMSE 
lwage 0.7041207 0.2766061 

# Desempenho dos dados de teste na Regressão Ridge 
teste_preditos <- ridge %>% predict(x_teste) 
data.frame( R2 = R2(teste_preditos, y_teste), 
            RMSE = RMSE(teste_preditos, y_teste)) 

             s0      RMSE 
lwage 0.6485221 0.3518183 

# Validação cruzada Regressão Ridge 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 
3) 
 
# Modelo final Regressão Ridge 
Ridge_modelo_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet", 
trControl = train.control, tuneGrid = expand.grid(alpha = 0, lambda = 
best_lambda)) 
 
# Resultados Modelo final Regressão Ridge 
print(Ridge_modelo_cv) 

glmnet  
 
2574 samples 
  16 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
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Resampling results: 
 
  RMSE       Rsquared   MAE       
  0.2903418  0.7019108  0.1888077 
 
Tuning parameter 'alpha' was held constant at a value of 0 
Tuning 
 parameter 'lambda' was held constant at a value of 0.04162196 

Em média, o Modelo de Regressão Ridge apresentou um R2 de 70,19% sendo que do total da 

variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Ridge e o 

RMSE para o modelo é 0,2903418. 

b) Regressão Lasso 

# Validação cruzada para obter melhor valor de lambda para Regressão Lasso  
(alpha = 1) 
cv_best_lambda <-  cv.glmnet(x_treino, y_treino, family = "gaussian", alpha = 
1, type.measure = "mse") 
print(cv_best_lambda) 

 
Call:  cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family = 
"gaussian",      alpha = 1)  
 
Measure: Mean-Squared Error  
 
     Lambda Index Measure       SE Nonzero 
min 0.00172    60 0.07786 0.007279      15 
1se 0.05900    22 0.08437 0.006790       3 

best_lambda = cv_best_lambda$lambda.min 
# Modelo de regressão Lasso 
lasso = glmnet(x_treino, y_treino, family = "gaussian", alpha = 1, lambda = 
best_lambda) 
 
# Desempenho dos dados de treino na Regressão Lasso 
treino_preditos <- lasso %>% predict(x_treino) 
data.frame(R2 = R2(treino_preditos, y_treino), 
           RMSE = RMSE(treino_preditos, y_treino)) 

             s0      RMSE 
lwage 0.7050773 0.2750101 

# Desempenho dos dados de teste na Regressão Lasso 
teste_preditos <- lasso %>% predict(x_teste) 
data.frame( R2 = R2(teste_preditos, y_teste), 
            RMSE = RMSE(teste_preditos, y_teste)) 

             s0      RMSE 
lwage 0.6507244 0.3469033 

# # Validação cruzada Regressão Lasso 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 
3) 
 
# Modelo final Regressão Lasso 
Lasso_model_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet", 
trControl = train.control, tuneGrid = expand.grid(alpha = 1, lambda = 
best_lambda)) 
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# Resultados Modelo final Regressão Lasso 
print(Lasso_model_cv) 

glmnet  
 
2574 samples 
  16 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared  MAE       
  0.2888847  0.703819  0.1831222 
 
Tuning parameter 'alpha' was held constant at a value of 1 
Tuning 
 parameter 'lambda' was held constant at a value of 0.001719824 

Em média, o Modelo de Regressão Lasso apresentou um R2 de 70,38% sendo que do total 

da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Lasso e 

o RMSE para o modelo é 0,2888847. 

c) Regressão Elastic-Net 

# Validação cruzada para Regressão Elastic Net 
 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 3 
, search = "random") 
 
# Modelo de Regressão Elastic Net 
cv_for_best_value <- train(lwage ~ ., data = dados.treino, method="glmnet", 
trControl = train.control) 
 
 
# Obtendo melhor valor de alpha e lambda 
cv_for_best_value$bestTune 

      alpha      lambda 
1 0.4089769 0.001472246 

# Modelo Elastic Net 
enet <- glmnet(x_treino, y_treino, alpha = 0.4089769, lambda = 0.001472246 
,family = "gaussian") 
 
# Desempenho dos dados de treino na Regressão Elastic Net 
treino_preditos <- enet %>% predict(x_treino) 
data.frame( R2 = R2(treino_preditos, y_treino), 
            RMSE = RMSE(treino_preditos, y_treino)) 

             s0      RMSE 
lwage 0.7051887 0.2749518 

# Desempenho dos dados de teste na Regressão Elastic Net 
teste_preditos <- enet %>% predict(x_teste) 
data.frame( R2 = R2(teste_preditos, y_teste), 
            RMSE = RMSE(teste_preditos, y_teste)) 
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             s0     RMSE 
lwage 0.6506062 0.346834 

# Validação cruzada para Regressão Elastic Net 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 
3) 
 
# Modelo final Regressão Elastic Net 
Elasticnet_modelo_cv <- train(lwage ~ ., data = trabalhosalarios, 
method="glmnet", trControl = train.control, tuneGrid = expand.grid(alpha = 
0.4089769, lambda = 0.001472246)) 
 
# Resultados Modelo final Regressão Elastic Net 
print(Elasticnet_modelo_cv) 

glmnet  
 
2574 samples 
  16 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared   MAE       
  0.2890305  0.7034141  0.1833517 
 
Tuning parameter 'alpha' was held constant at a value of 0.4089769 
 
Tuning parameter 'lambda' was held constant at a value of 0.001472246 

Em média, o Modelo de Regressão Elastic-Net apresentou um R2 de 70,34% sendo que do 

total da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo 

Elastic-Net e o RMSE para o modelo é 0,2890305. 

4. Comparação dos diferentes modelos (Ridge, Lasso e Elastic-Net) 

print(Ridge_modelo_cv) 

glmnet  
 
2574 samples 
  16 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared   MAE       
  0.2903418  0.7019108  0.1888077 
 
Tuning parameter 'alpha' was held constant at a value of 0 
Tuning 
 parameter 'lambda' was held constant at a value of 0.04162196 

print(Lasso_model_cv) 
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glmnet  
 
2574 samples 
  16 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared  MAE       
  0.2888847  0.703819  0.1831222 
 
 

Tuning parameter 'alpha' was held constant at a value of 1 

 
Tuning 
 parameter 'lambda' was held constant at a value of 0.001719824 

print(Elasticnet_modelo_cv) 

glmnet  
 
2574 samples 
  16 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared   MAE       
  0.2890305  0.7034141  0.1833517 
 
Tuning parameter 'alpha' was held constant at a value of 0.4089769 
 
Tuning parameter 'lambda' was held constant at a value of 0.001472246 

# Resultados dos modelos 
resultados <- data.frame(Metodo = c("Ridge", "Lasso", "Elastic Net"), 
                      RMSE = c(0.2903418,0.2888847,0.2890305), 
                      R2 = c(0.7019108, 0.703819, 0.7034141)) 
 
knitr::kable(resultados, align = "c", caption = "Métricas dos modelos") 

Métricas dos modelos 

Método RMSE R2 
Ridge 0,2903418 0.7019108 
Lasso 0,2888847 0,703819 
Elastic-Net 0,2890305 0,7034141 

 
 
 Dos três modelos avaliados o Modelo de Regressão Lasso captura 70,38% da variabilidade 

do salário-hora da esposa em logaritmo neperiano e o RMSE para o modelo é 0,2888847, sendo o 
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modelo escolhido por apresentar menor valor de RMSE e maior valor R2 (coeficiente de determinação 

do modelo) em relação a Regressão Ridge e o modelo de Regressão Elastic-Net. 
5. Obtendo melhor modelo 

# Coeficientes do modelo de Regressão Lasso 
lasso_coefficients<-lasso$beta 
lasso_coefficients 

16 x 1 sparse Matrix of class "dgCMatrix" 
                    s0 
husage    0.0009141029 
husunion  0.0124011174 
husearns  0.0001232746 
huseduc   0.0004232420 
husblck  -0.0173725642 
hushisp  -0.0211190175 
hushrs   -0.0011798022 
kidge6    0.0062343995 
earns     0.0015600008 
age       0.0005880356 
black    -0.0295717695 
educ      0.0250478068 
hispanic -0.0244298369 
union     0.0535280183 
exper     .            
kidlt6    0.0465055001 

# Identificando coeficientes significativos 
significant_indices <- which(lasso_coefficients != 0) 
significant_predictors <- rownames(lasso_coefficients)[significant_indices] 
print(significant_predictors) 

 [1] "husage"   "husunion" "husearns" "huseduc"  "husblck"  "hushisp"  
 [7] "hushrs"   "kidge6"   "earns"    "age"      "black"    "educ"     
[13] "hispanic" "union"    "kidlt6"   

Na Seção 5 têm os coeficientes do Modelo de Regressão Lasso e a seguir tem a predição e o 

intervalo de confiança (Seção 6). 

6. Predição e intervalo de confiança 

O resultado da predição com intervalos de confiança para os seguintes valores: 

husage = 40 (anos – idade do marido) 

husunion = 0 (marido não possui união estável) 

husearns = 600 (US$ renda do marido por semana) 

huseduc = 13 (anos de estudo do marido) 

husblck = 1 (o marido é preto) 

hushisp = 0 (o marido não é hispânico) 

hushrs = 40 (horas semanais de trabalho do marido) 

kidge6 = 1 (possui filhos maiores de 6 anos) 

age = 38 (anos – idade da esposa) 

black = 0 (a esposa não é preta) 

educ = 13 (anos de estudo da esposa) 

hispanic = 1 (a esposa é hispânica) 
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union = 0 (esposa não possui união estável) 

exper = 18 (anos de experiência de trabalho da esposa) 

kidlt6 = 1 (possui filhos menores de 6 anos) 

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto você não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para 

obter o resultado da predição. 

 
#Valores para predição 
dadospredicao = matrix(c(40,0,600,13,1,0,40,1,0,38,0,13,1,0,18,1), nrow=1, 
ncol=16)  
 
#Valor predito pelo modelo 
valorpreditoIwage<-predict(lasso, s = best_lambda, newx = dadospredicao) 
valorpreditoIwage 

           s1 
[1,] 1.602809 

exp(valorpreditoIwage) 

           s1 
[1,] 4.966963 

# Erro padrão 
se <- sqrt(cv_best_lambda$cvm[cv_best_lambda$lambda == 
cv_best_lambda$lambda.min]) 
se 

[1] 0.2790276 

#Intervalo de confiança 
alpha <- 0.05 # 95% confidence interval 
 
# Construindo intervalo de confiança 
lower_bound <- exp(valorpreditoIwage) - qt(1 - alpha / 2, lasso$df) * se 
upper_bound <- exp(valorpreditoIwage) + qt(1 - alpha / 2,lasso$df) * se 
 
# Resultado intervalo de confiança 
cat("IC inferior:", lower_bound, "\n") 

IC inferior: 4.372229  

cat("IC superior:", upper_bound, "\n") 

IC superior: 5.561696  

7. Buscando o conjunto de dados sem a variável earns 
 
##Retirar a varíavel earns do conjunto de dados 
trabalhosalarios<-trabalhosalarios[,-c(9)] 
 
##Selecionando os dados de treino e teste 
amostra<- sample(c(TRUE,FALSE), nrow(trabalhosalarios),   
                 replace=TRUE, prob=c(0.8,0.2))  
dados.treino<-trabalhosalarios[amostra, ]  
 
dados.teste<-trabalhosalarios[!amostra, ]  
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# Estrutura dos dados 
str(dados.treino) 

'data.frame':   2047 obs. of  16 variables: 
 $ husage  : num  56 34 42 33 31 31 44 22 66 43 ... 
 $ husunion: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ husearns: num  1500 1000 730 1350 769 340 750 249 500 400 ... 
 $ huseduc : num  14 14 14 16 18 12 12 12 16 12 ... 
 $ husblck : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushisp : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushrs  : num  40 50 40 40 55 40 40 40 40 50 ... 
 $ kidge6  : num  1 1 1 0 0 0 1 0 0 1 ... 
 $ age     : num  49 31 41 32 27 30 42 23 55 31 ... 
 $ black   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ educ    : num  12 12 12 12 14 15 12 13 12 12 ... 
 $ hispanic: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ union   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ exper   : num  31 13 23 14 7 9 24 4 37 13 ... 
 $ kidlt6  : num  0 0 0 0 1 1 0 0 0 0 ... 
 $ lwage   : num  1.9 1.63 2.3 2.96 1.78 ... 

str(dados.teste) 

'data.frame':   527 obs. of  16 variables: 
 $ husage  : num  31 33 45 45 26 37 35 44 33 39 ... 
 $ husunion: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ husearns: num  800 950 1154 1200 520 ... 
 $ huseduc : num  17 13 16 12 14 12 16 18 12 12 ... 
 $ husblck : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushisp : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ hushrs  : num  40 60 38 50 36 50 42 40 35 50 ... 
 $ kidge6  : num  0 0 1 0 0 0 0 1 1 0 ... 
 $ age     : num  29 30 45 42 27 32 31 45 31 28 ... 
 $ black   : num  0 0 0 0 0 0 0 0 0 0 ... 
 $ educ    : num  14 12 18 12 14 17 12 18 12 12 ... 
 $ hispanic: num  0 0 0 0 0 0 0 0 0 0 ... 
 $ union   : num  0 0 0 0 0 1 0 0 0 0 ... 
 $ exper   : num  9 12 21 24 7 9 13 21 13 10 ... 
 $ kidlt6  : num  0 1 0 0 0 1 0 0 0 0 ... 
 $ lwage   : num  2.48 2.43 2.5 2.01 2.15 ... 

# Buscando preditores (x e y - Iwage) no conjunto de treino e teste  
x_treino <- dados.treino %>% select(-lwage) %>% as.matrix() 
y_treino <- dados.treino  %>% select(lwage) %>%  as.matrix() 
 
x_teste <- dados.teste %>% select(-lwage) %>% as.matrix() 
y_teste <- dados.teste %>% select(lwage) %>% as.matrix() 

 
Nessa seção retirou a variável earns do conjunto de dados, a separação em dados de treino 

(80% dos dados) e teste (20% dos dados) e a definição dos da variável resposta (dependente) e as 

variáveis independentes. Na Seção 8 tem a análise dos modelos de regressão Ridge, Lasso e 

Elastic-Net sem a variável earns do conjunto de dados 

 
8. Modelos de Regressão Ridge, Lasso e Elastic-Net sem a variável earns do conjunto de 

dados 
 
a) Regressão Ridge 
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# Validação cruzada para obter melhor valor de lambda para Regressão Ridge  
(alpha = 0) 
cv_best_lambda <-  cv.glmnet(x_treino, y_treino, family = "gaussian", alpha = 
0, type.measure = "mse") 
print(cv_best_lambda) 

 
Call:  cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family = 
"gaussian",      alpha = 0)  
 
Measure: Mean-Squared Error  
 
    Lambda Index Measure       SE Nonzero 
min 0.0228   100  0.1823 0.007804      15 
1se 0.3714    70  0.1899 0.007429      15 

best_lambda <-  cv_best_lambda$lambda.min 
 
# Modelo Regressão Ridge  
ridge = glmnet(x_treino, y_treino, family = "gaussian",alpha = 0, lambda = 
best_lambda) 
 
# Desempenho dos dados de treino na Regressão Ridge 
treino_preditos <- ridge %>% predict(x_treino) 
data.frame( R2 = R2(treino_preditos, y_treino), 
            RMSE = RMSE(treino_preditos, y_treino)) 

             s0      RMSE 
lwage 0.2933104 0.4232941 

# Desempenho dos dados de teste na Regressão Ridge 
teste_preditos <- ridge %>% predict(x_teste) 
data.frame( R2 = R2(teste_preditos, y_teste), 
            RMSE = RMSE(teste_preditos, y_teste)) 

             s0      RMSE 
lwage 0.2637242 0.5083858 

# Validação cruzada Regressão Ridge 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 
3) 
 
# Modelo final Regressão Ridge 
Ridge_modelo_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet", 
trControl = train.control, tuneGrid = expand.grid(alpha = 0, lambda = 
best_lambda)) 
 
# Resultados Modelo final Regressão Ridge 
print(Ridge_modelo_cv) 

glmnet  
 
2574 samples 
  15 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared   MAE       
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  0.4417246  0.2839737  0.3310697 
 
Tuning parameter 'alpha' was held constant at a value of 0 
Tuning 
 parameter 'lambda' was held constant at a value of 0.02279055 

Em média, o Modelo de Regressão Ridge apresentou um R2 de 28,39% sendo que do total da 

variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Ridge e o 

RMSE para o modelo é 0,4417246. 

b) Regressão Lasso 

 
# Validação cruzada para obter melhor valor de lambda para Regressão Lasso  
(alpha = 1) 
cv_best_lambda <-  cv.glmnet(x_treino, y_treino, family = "gaussian", alpha = 
1, type.measure = "mse") 
print(cv_best_lambda) 

 
Call:  cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family = 
"gaussian",      alpha = 1)  
 
Measure: Mean-Squared Error  
 
     Lambda Index Measure       SE Nonzero 
min 0.00417    44  0.1813 0.007497      10 
1se 0.04271    19  0.1881 0.008248       3 

best_lambda = cv_best_lambda$lambda.min 
# Modelo de regressão Lasso 
lasso = glmnet(x_treino, y_treino, family = "gaussian", alpha = 1, lambda = 
best_lambda) 
 
# Desempenho dos dados de treino na Regressão Lasso 
treino_preditos <- lasso %>% predict(x_treino) 
data.frame(R2 = R2(treino_preditos, y_treino), 
           RMSE = RMSE(treino_preditos, y_treino)) 

             s0      RMSE 
lwage 0.2920455 0.4236468 

# Desempenho dos dados de teste na Regressão Lasso 
teste_preditos <- lasso %>% predict(x_teste) 
data.frame( R2 = R2(teste_preditos, y_teste), 
            RMSE = RMSE(teste_preditos, y_teste)) 

             s0      RMSE 
lwage 0.2647143 0.5080806 

# # Validação cruzada Regressão Lasso 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 
3) 
 
# Modelo final Regressão Lasso 
Lasso_model_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet", 
trControl = train.control, tuneGrid = expand.grid(alpha = 1, lambda = 
best_lambda)) 
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# Resultados Modelo final Regressão Lasso 
print(Lasso_model_cv) 

glmnet  
 
2574 samples 
  15 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared  MAE       
  0.4415596  0.284645  0.3307113 
 
Tuning parameter 'alpha' was held constant at a value of 1 
Tuning 
 parameter 'lambda' was held constant at a value of 0.004172353 

Em média, o Modelo de Regressão Lasso apresentou um R2 de 28,46% sendo que do total 

da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Lasso e 

o RMSE para o modelo é 0,4415596. 

 

c) Regressão Elastic-Net 

 
# Validação cruzada para Regressão Elastic Net 
 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 3 
, search = "random") 
 
# Modelo de Regressão Elastic Net 
cv_for_best_value <- train(lwage ~ ., data = dados.treino, method="glmnet", 
trControl = train.control) 
 
 
# Obtendo melhor valor de alpha e lambda 
cv_for_best_value$bestTune 

      alpha      lambda 
1 0.4089769 0.001472246 

# Modelo Elastic Net 
enet <- glmnet(x_treino, y_treino, alpha = 0.4089769, lambda = 0.001472246 
,family = "gaussian") 
 
# Desempenho dos dados de treino na Regressão Elastic Net 
treino_preditos <- enet %>% predict(x_treino) 
data.frame( R2 = R2(treino_preditos, y_treino), 
            RMSE = RMSE(treino_preditos, y_treino)) 

             s0      RMSE 
lwage 0.2936312 0.4231086 

# Desempenho dos dados de teste na Regressão Elastic Net 
teste_preditos <- enet %>% predict(x_teste) 
data.frame( R2 = R2(teste_preditos, y_teste), 
            RMSE = RMSE(teste_preditos, y_teste)) 
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             s0     RMSE 
lwage 0.2612618 0.508639 

# Validação cruzada para Regressão Elastic Net 
set.seed(123) 
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 
3) 
 
# Modelo final Regressão Elastic Net 
Elasticnet_modelo_cv <- train(lwage ~ ., data = trabalhosalarios, 
method="glmnet", trControl = train.control, tuneGrid = expand.grid(alpha = 
0.4089769, lambda = 0.001472246)) 
 
# Resultados Modelo final Regressão Elastic Net 
print(Elasticnet_modelo_cv) 

glmnet  
 
2574 samples 
  15 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE      Rsquared   MAE       
  0.441855  0.2835998  0.3309394 
 
Tuning parameter 'alpha' was held constant at a value of 0.4089769 
 
Tuning parameter 'lambda' was held constant at a value of 0.001472246 

Em média, o Modelo de Regressão Elastic-Net apresentou um R2 de 28,36% sendo que do 

total da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo 

Elastic-Net e o RMSE para o modelo é 0,441855. 

9. Comparação dos diferentes modelos (Ridge, Lasso e Elastic-Net) sem a variável earns 
do conjunto de dados 
 

print(Ridge_modelo_cv) 

glmnet  
 
2574 samples 
  15 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared   MAE       
  0.4417246  0.2839737  0.3310697 
 
Tuning parameter 'alpha' was held constant at a value of 0 
Tuning 
 parameter 'lambda' was held constant at a value of 0.02279055 

print(Lasso_model_cv) 
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glmnet  
 
2574 samples 
  15 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE       Rsquared  MAE       
  0.4415596  0.284645  0.3307113 
 
Tuning parameter 'alpha' was held constant at a value of 1 
Tuning 
 parameter 'lambda' was held constant at a value of 0.004172353 

print(Elasticnet_modelo_cv) 

glmnet  
 
2574 samples 
  15 predictor 
 
No pre-processing 
Resampling: Cross-Validated (10 fold, repeated 3 times)  
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...  
Resampling results: 
 
  RMSE      Rsquared   MAE       
  0.441855  0.2835998  0.3309394 
 
Tuning parameter 'alpha' was held constant at a value of 0.4089769 
 
Tuning parameter 'lambda' was held constant at a value of 0.001472246 

# Resultados dos modelos 
resultados <- data.frame(Metodo = c("Ridge", "Lasso", "Elastic Net"), 
                      RMSE = c(0.4417298,0.441568,0.441855), 
                      R2 = c(0.2839878, 0.284641, 0.2835998)) 
 
knitr::kable(resultados, align = "c", caption = "Métricas dos modelos") 

Métricas dos modelos 

Método RMSE R² 
Ridge 0,4417298 0,2839878 
Lasso 0,4415680 0,2846410 
Elastic-Net 0,4418550 0,2835998 

 
Dos três modelos avaliados sem a variável earns o Modelo de Regressão Lasso captura 

28,46% da variabilidade do salário-hora da esposa em logaritmo neperiano e o RMSE para o modelo 

é 0,4415680, sendo o modelo escolhido por apresentar menor valor de RMSE e maior valor R2 

(coeficiente de determinação do modelo) em relação a Regressão Ridge e o modelo de Regressão 

Elastic-Net. 

 

10. Obtendo melhor modelo sem a variável earns no conjunto de dados 
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# Coeficientes do modelo de Regressão Lasso 
lasso_coefficients<-lasso$beta 
lasso_coefficients 

15 x 1 sparse Matrix of class "dgCMatrix" 
                    s0 
husage    .            
husunion  .            
husearns  0.0003533008 
huseduc   0.0061869358 
husblck   .            
hushisp   0.0450670456 
hushrs   -0.0026212237 
kidge6   -0.0507666466 
age       0.0027096414 
black    -0.0044682028 
educ      0.0728893438 
hispanic  .            
union     0.1664592340 
exper     .            
kidlt6   -0.0226263904 

# Identificando coeficientes significativos 
significant_indices <- which(lasso_coefficients != 0) 
significant_predictors <- rownames(lasso_coefficients)[significant_indices] 
print(significant_predictors) 

 [1] "husearns" "huseduc"  "hushisp"  "hushrs"   "kidge6"   "age"      
 [7] "black"    "educ"     "union"    "kidlt6"   

Na Seção 10 têm os coeficientes do Modelo de Regressão Lasso e a seguir tem a predição e 

o intervalo de confiança (Seção 11). 

11. Predição e intervalo de confiança sem a variável earns no conjunto de dados 

O resultado da predição com intervalos de confiança para os seguintes valores: 

husage = 40 (anos – idade do marido) 

husunion = 0 (marido não possui união estável) 

husearns = 600 (US$ renda do marido por semana) 

huseduc = 13 (anos de estudo do marido) 

husblck = 1 (o marido é preto) 

hushisp = 0 (o marido não é hispânico) 

hushrs = 40 (horas semanais de trabalho do marido) 

kidge6 = 1 (possui filhos maiores de 6 anos) 

age = 38 (anos – idade da esposa) 

black = 0 (a esposa não é preta) 

educ = 13 (anos de estudo da esposa) 

hispanic = 1 (a esposa é hispânica) 

union = 0 (esposa não possui união estável) 

exper = 18 (anos de experiência de trabalho da esposa) 

kidlt6 = 1 (possui filhos menores de 6 anos) 
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obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para 

obter o resultado da predição. 

 
dadospredicao = matrix(c(40,0,600,13,1,0,40,1,38,0,13,1,0,18,1), nrow=1, 
ncol=15)  
 
#Valor predito pelo modelo 
valorpreditoIwage<-predict(lasso, s = best_lambda, newx = dadospredicao) 
valorpreditoIwage 

           s0 
[1,] 2.100205 

exp(valorpreditoIwage) 

           s0 
[1,] 8.167844 

# Erro padrão 
se <- sqrt(cv_best_lambda$cvm[cv_best_lambda$lambda == 
cv_best_lambda$lambda.min]) 
se 

[1] 0.4258416 

#Intervalo de confiança 
alpha <- 0.05  # 95% confidence interval 
 
# Construindo intervalo de confiança 
lower_bound <- exp(valorpreditoIwage) - qt(1 - alpha / 2, lasso$df) * se 
upper_bound <- exp(valorpreditoIwage) + qt(1 - alpha / 2,lasso$df) * se 
 
# Resultado intervalo de confiança 
cat("IC inferior:", lower_bound, "\n") 

IC inferior: 7.21901  

cat("IC superior:", upper_bound, "\n") 

IC superior: 9.11667 

 

12. Conclusão  
 
Foram ajustados três métodos de Regressão Ridge, Lasso e Elastic-Net. O melhor modelo de 

regressão ajustado foi o Lasso para a variável dependente “lwage” que estava em logaritmo 

neperiano e fez a volta aplicando a exponencial no valor ajustado na qual obteve uma estimativa de 

4,97 com um intervalo de confiança de 95%variando de 4,37 a 5,56. Também fez o ajuste sem a 

variável earns e o melhor modelo também foi o com regressão Lasso com um valor ajustado com 

estimativa de 8,17 com um intervalo de confiança de 95%variando de 7,22 a 9,12. Quando retirou a 

variável earns o ajuste piorou em termos de R² e RMSE, sendo que sem a variável foi 28,46% o R² e 

o RMSE 0,4415680, enquanto com a variável earns no modelos os valores de R2 e RMSE foram 
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70,38% e 0,2888847, respectivamente, sendo o modelo Lasso com um melhor ajuste quando a 

variável earns estava presente no conjunto de dados. 
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  APÊNDICE 6 – ARQUITETURA DE DADOS 
 
A – ENUNCIADO 
 
1 Construção de Características: Identificador automático de idioma 

 

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto 

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito. 

 

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções 

para calcular as diferentes características para o problema da identificação da língua do texto de 

entrada. 

 

Nessa atividade é para "construir características". 

 

Meta: a acurácia deverá ser maior ou igual a 70%. 

 

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o 

notebook e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos. 

 

2 Melhore uma base de dados ruim 
 

Escolha uma base de dados pública para problemas de classificação, disponível ou com 

origem na UCI Machine Learning. 

 

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base. 

 

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para 

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado. 

 

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o 

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de 

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais). 

 

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente). 

 

B – RESOLUÇÃO  
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1  
ingles = [ 

"Hello, how are you?", 

"I love to read books.", 

"The weather is nice today.", 

"Where is the nearest restaurant?", 

"What time is it?", 

"I enjoy playing soccer.", 

"Can you help me with this?", 

"I'm going to the movies tonight.", 

"This is a beautiful place.", 

"I like listening to music.", 

"Do you speak English?", 

"What is your favorite color?", 

"I'm learning to play the guitar.", 

"Have a great day!", 

"I need to buy some groceries.", 

"Let's go for a walk.", 

"How was your weekend?", 

"I'm excited for the concert.", 

"Could you pass me the salt, please?", 

"I have a meeting at 2 PM.", 

"I'm planning a vacation.", 

"She sings beautifully.", 

"The cat is sleeping.", 

"I want to learn French.", 

"I enjoy going to the beach.", 

"Where can I find a taxi?", 

"I'm sorry for the inconvenience.", 

"I'm studying for my exams.", 

"I like to cook dinner at home.", 

"Do you have any recommendations for restaurants?", 

] 

 

espanhol = [ 

"Hola, ¿cómo estás?", 

"Me encanta leer libros.", 

"El clima está agradable hoy.", 

"¿Dónde está el restaurante más cercano?", 

"¿Qué hora es?", 

"Voy al parque todos los días.", 
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"¿Puedes ayudarme con esto?", 

"Me gustaría ir de vacaciones.", 

"Este es mi libro favorito.", 

"Me gusta bailar salsa.", 

"¿Hablas español?", 

"¿Cuál es tu comida favorita?", 

"Estoy aprendiendo a tocar el piano.", 

"¡Que tengas un buen día!", 

"Necesito comprar algunas frutas.", 

"Vamos a dar un paseo.", 

"¿Cómo estuvo tu fin de semana?", 

"Estoy emocionado por el concierto.", 

"¿Me pasas la sal, por favor?", 

"Tengo una reunión a las 2 PM.", 

"Estoy planeando unas vacaciones.", 

"Ella canta hermosamente.", 

"El perro está jugando.", 

"Quiero aprender italiano.", 

"Disfruto ir a la playa.", 

"¿Dónde puedo encontrar un taxi?", 

"Lamento las molestias.", 

"Estoy estudiando para mis exámenes.", 

"Me gusta cocinar la cena en casa.", 

"¿Tienes alguna recomendación de restaurantes?", 

] 

 

portugues = [ 

"Estou indo para o trabalho agora.", 

"Adoro passar tempo com minha família.", 

"Preciso comprar leite e pão.", 

"Vamos ao cinema no sábado.", 

"Gosto de praticar esportes ao ar livre.", 

"O trânsito está terrível hoje.", 

"A comida estava deliciosa!", 

"Você já visitou o Rio de Janeiro?", 

"Tenho uma reunião importante amanhã.", 

"A festa começa às 20h.", 

"Estou cansado depois de um longo dia de trabalho.", 

"Vamos fazer um churrasco no final de semana.", 

"O livro que estou lendo é muito interessante.", 

"Estou aprendendo a cozinhar pratos novos.", 
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"Preciso fazer exercícios físicos regularmente.", 

"Vou viajar para o exterior nas férias.", 

"Você gosta de dançar?", 

"Hoje é meu aniversário!", 

"Gosto de ouvir música clássica.", 

"Estou estudando para o vestibular.", 

"Meu time de futebol favorito ganhou o jogo.", 

"Quero aprender a tocar violão.", 

"Vamos fazer uma viagem de carro.", 

"O parque fica cheio aos finais de semana.", 

"O filme que assisti ontem foi ótimo.", 

"Preciso resolver esse problema o mais rápido possível.", 

"Adoro explorar novos lugares.", 

"Vou visitar meus avós no domingo.", 

"Estou ansioso para as férias de verão.", 

"Gosto de fazer caminhadas na natureza.", 

"O restaurante tem uma vista incrível.", 

"Vamos sair para jantar no sábado.", 

] 

 

import random 

 

pre_padroes = [] 

for frase in ingles: 

  pre_padroes.append( [frase, 'inglês']) 

 

for frase in espanhol: 

  pre_padroes.append( [frase, 'espanhol']) 

 

for frase in portugues: 

  pre_padroes.append( [frase, 'português']) 

 

random.shuffle(pre_padroes) 

print(pre_padroes) 

 

[['Preciso fazer exercícios físicos regularmente.', 'português'], ['El perro 

está jugando.', 'espanhol'], ['Voy al parque todos los días.', 'espanhol'], 

['O restaurante tem uma vista incrível.', 'português'], ['O trânsito está 

terrível hoje.', 'português'], ['Estou ansioso para as férias de verão.', 

'português'], ['Tengo una reunión a las 2 PM.', 'espanhol'], ['Estoy 

aprendiendo a tocar el piano.', 'espanhol'], ['Hello, how are you?', 
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'inglês'], ['The weather is nice today.', 'inglês'], ['What time is it?', 

'inglês'], ['Tenho uma reunião importante amanhã.', 'português'], ['A festa 

começa às 20h.', 'português'], ['Meu time de futebol favorito ganhou o 

jogo.', 'português'], ['Este es mi libro favorito.', 'espanhol'], ['Hoje é 

meu aniversário!', 'português'], ["I'm sorry for the inconvenience.", 

'inglês'], ['¿Hablas español?', 'espanhol'], ['Vamos sair para jantar no 

sábado.', 'português'], ['Where can I find a taxi?', 'inglês'], ['Quero 

aprender a tocar violão.', 'português'], ['Have a great day!', 'inglês'], 

['Me gusta cocinar la cena en casa.', 'espanhol'], ['Do you speak English?', 

'inglês'], ['Vou visitar meus avós no domingo.', 'português'], ['Can you help 

me with this?', 'inglês'], ['Could you pass me the salt, please?', 'inglês'], 

["I'm planning a vacation.", 'inglês'], ['She sings beautifully.', 'inglês'], 

['Lamento las molestias.', 'espanhol'], ['Estou cansado depois de um longo 

dia de trabalho.', 'português'], ['Me encanta leer libros.', 'espanhol'], 

['Você gosta de dançar?', 'português'], ['What is your favorite color?', 

'inglês'], ['¿Qué hora es?', 'espanhol'], ['Estou estudando para o 

vestibular.', 'português'], ['O livro que estou lendo é muito interessante.', 

'português'], ['Ella canta hermosamente.', 'espanhol'], ['Gosto de praticar 

esportes ao ar livre.', 'português'], ['Necesito comprar algunas frutas.', 

'espanhol'], ['I love to read books.', 'inglês'], ['¡Que tengas un buen 

día!', 'espanhol'], ['Gosto de ouvir música clássica.', 'português'], ['El 

clima está agradable hoy.', 'espanhol'], ['A comida estava deliciosa!', 

'português'], ['Vou viajar para o exterior nas férias.', 'português'], 

['Quiero aprender italiano.', 'espanhol'], ['Disfruto ir a la playa.', 

'espanhol'], ['I need to buy some groceries.', 'inglês'], ['Vamos a dar un 

paseo.', 'espanhol'], ['¿Tienes alguna recomendación de restaurantes?', 

'espanhol'], ['Preciso comprar leite e pão.', 'português'], ['¿Cómo estuvo tu 

fin de semana?', 'espanhol'], ['Estou aprendendo a cozinhar pratos novos.', 

'português'], ["I'm excited for the concert.", 'inglês'], ['Estoy emocionado 

por el concierto.', 'espanhol'], ['¿Dónde puedo encontrar un taxi?', 

'espanhol'], ['I enjoy playing soccer.', 'inglês'], ['I enjoy going to the 

beach.', 'inglês'], ['I like listening to music.', 'inglês'], ['Vamos fazer 

uma viagem de carro.', 'português'], ['I like to cook dinner at home.', 

'inglês'], ['Estou indo para o trabalho agora.', 'português'], ['Preciso 

resolver esse problema o mais rápido possível.', 'português'], ['I have a 

meeting at 2 PM.', 'inglês'], ['Estoy planeando unas vacaciones.', 

'espanhol'], ['Vamos fazer um churrasco no final de semana.', 'português'], 

['Me gusta bailar salsa.', 'espanhol'], ['I want to learn French.', 

'inglês'], ['¿Me pasas la sal, por favor?', 'espanhol'], ['¿Cuál es tu comida 

favorita?', 'espanhol'], ['Adoro passar tempo com minha família.', 

'português'], ['Me gustaría ir de vacaciones.', 'espanhol'], ['Where is the 
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nearest restaurant?', 'inglês'], ['O parque fica cheio aos finais de 

semana.', 'português'], ['This is a beautiful place.', 'inglês'], ['Do you 

have any recommendations for restaurants?', 'inglês'], ["I'm learning to play 

the guitar.", 'inglês'], ['¿Puedes ayudarme con esto?', 'espanhol'], ['Gosto 

de fazer caminhadas na natureza.', 'português'], ['Você já visitou o Rio de 

Janeiro?', 'português'], ['Hola, ¿cómo estás?', 'espanhol'], ['¿Dónde está el 

restaurante más cercano?', 'espanhol'], ['Adoro explorar novos lugares.', 

'português'], ['Estoy estudiando para mis exámenes.', 'espanhol'], ['Vamos ao 

cinema no sábado.', 'português'], ["I'm going to the movies tonight.", 

'inglês'], ["I'm studying for my exams.", 'inglês'], ['How was your 

weekend?', 'inglês'], ["Let's go for a walk.", 'inglês'], ['The cat is 

sleeping.', 'inglês'], ['O filme que assisti ontem foi ótimo.', 'português']] 

 

import pandas as pd 

dados = pd.DataFrame(pre_padroes) 

dados 

 

import re 

 

def tamanhoMedioFrases(texto): 

    palavras = re.split("\s", texto) 

    tamanhos = [len(s) for s in palavras if len(s) > 0] 

    return sum(tamanhos) / len(tamanhos) 

 

def contarCaracteresEspecificos(texto): 

    contar_ñ = texto.lower().count('ñ') 

    contar_caracteres_esp = sum(texto.lower().count(char) for char in 

'çàáéíóú') 

    return contar_ñ,  contar_caracteres_esp 

 

def contarPontuacao(texto): 

    contar_pont = re.findall(r'[.,;!?]', texto) 

    return len(contar_pont) 

 

def contarDigitos(texto): 

    digitos = sum(char.isdigit() for char in texto) 

    return digitos 

 

def contarPalavrasComuns(texto): 

    palavras_comum_es = ['estoy', 'gusta', 'soy', 'quiero', 'hola', 'tengo', 

'hoy', 'dónde', 'playa','las', 'la', 'alguna', 'soy', 'pero', 'mucho'] 
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    palavras_comum_en = ['the', 'and', 'is', 'to', 'it', 'in', 'of', 'that', 

'as', 'was', 'love', 'you', 'where', 'what', 'have', 'my', 'are'] 

    palavras_comum_pt = ['hoje', 'você', 'estou', 'vou',  'praia', 'tenho', 

'gosto', 'agora', 'ontem', 'novos', 'muito' , 'sou', 'quero', 'mas'] 

    contar_en = sum(texto.lower().count(word) for word in palavras_comum_en) 

    contar_es = sum(texto.lower().count(word) for word in palavras_comum_es) 

    contar_pt = sum(texto.lower().count(word) for word in palavras_comum_pt) 

    return contar_en, contar_es, contar_pt 

 

def extraiCaracteristicas(frase): 

    texto = frase[0] 

    pattern_regex = re.compile('[^\w+]', re.UNICODE) 

    texto = re.sub(pattern_regex, ' ', texto) 

    caracteristica1 = tamanhoMedioFrases(texto) 

    caracteristica2, caracteristica3 = contarCaracteresEspecificos(texto) 

    caracteristica4 = contarPontuacao(texto) 

    caracteristica5 = contarDigitos(texto) 

    caracteristica6, caracteristica7, caracteristica8 = 

contarPalavrasComuns(texto) 

    padrao = [caracteristica1, caracteristica2, caracteristica3, 

caracteristica4, caracteristica5, caracteristica6, caracteristica7, 

caracteristica8, frase[1]] 

    return padrao 

 

 

def geraPadroes(frases): 

  padroes = [] 

  for frase in frases: 

    padrao = extraiCaracteristicas(frase) 

    padroes.append(padrao) 

  return padroes 

 

padroes = geraPadroes(pre_padroes) 

 

print(padroes) 

 

dados = pd.DataFrame(padroes) 

dados 

 

[[8.2, 0, 2, 0, 0, 1, 1, 0, 'português'], [4.5, 0, 1, 0, 0, 1, 0, 0, 

'espanhol'], [3.8333333333333335, 0, 1, 0, 0, 2, 0, 0, 'espanhol'], 
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[5.166666666666667, 0, 1, 0, 0, 2, 0, 0, 'português'], [5.0, 0, 2, 0, 0, 2, 

0, 1, 'português'], [4.428571428571429, 0, 1, 0, 0, 3, 0, 1, 'português'], 

[3.142857142857143, 0, 1, 0, 1, 1, 3, 0, 'espanhol'], [4.833333333333333, 0, 

0, 0, 0, 2, 1, 0, 'espanhol'], [3.5, 0, 0, 0, 0, 2, 0, 0, 'inglês'], [4.2, 0, 

0, 0, 0, 4, 0, 0, 'inglês'], [3.0, 0, 0, 0, 0, 3, 0, 0, 'inglês'], [6.2, 0, 

0, 0, 0, 0, 0, 1, 'português'], [3.4, 0, 2, 0, 2, 0, 0, 0, 'português'], 

[4.375, 0, 0, 0, 0, 2, 0, 0, 'português'], [4.2, 0, 0, 0, 0, 2, 0, 0, 

'espanhol'], [4.75, 0, 2, 0, 0, 0, 0, 1, 'português'], [4.333333333333333, 0, 

0, 0, 0, 2, 0, 0, 'inglês'], [6.5, 1, 0, 0, 0, 1, 2, 0, 'espanhol'], [4.5, 0, 

1, 0, 0, 0, 0, 0, 'português'], [3.0, 0, 0, 0, 0, 2, 0, 0, 'inglês'], [5.0, 

0, 0, 0, 0, 1, 0, 1, 'português'], [3.25, 0, 0, 0, 0, 1, 0, 0, 'inglês'], 

[3.7142857142857144, 0, 0, 0, 0, 2, 2, 0, 'espanhol'], [4.25, 0, 0, 0, 0, 2, 

0, 0, 'inglês'], [4.5, 0, 1, 0, 0, 3, 0, 1, 'português'], 

[3.3333333333333335, 0, 0, 0, 0, 3, 0, 0, 'inglês'], [3.857142857142857, 0, 

0, 0, 0, 4, 0, 0, 'inglês'], [3.8, 0, 0, 0, 0, 1, 1, 0, 'inglês'], 

[6.333333333333333, 0, 0, 0, 0, 1, 0, 0, 'inglês'], [6.333333333333333, 0, 0, 

0, 0, 3, 3, 0, 'espanhol'], [4.444444444444445, 0, 0, 0, 0, 2, 0, 1, 

'português'], [4.75, 0, 0, 0, 0, 0, 0, 0, 'espanhol'], [4.25, 0, 1, 0, 0, 0, 

0, 1, 'português'], [4.6, 0, 0, 0, 0, 4, 0, 0, 'inglês'], [3.0, 0, 1, 0, 0, 

0, 0, 0, 'espanhol'], [5.8, 0, 0, 0, 0, 2, 1, 1, 'português'], [4.625, 0, 1, 

0, 0, 4, 0, 2, 'português'], [7.0, 0, 0, 0, 0, 0, 1, 0, 'espanhol'], 

[4.571428571428571, 0, 0, 0, 0, 1, 0, 1, 'português'], [7.0, 0, 0, 0, 0, 4, 

1, 0, 'espanhol'], [3.2, 0, 0, 0, 0, 2, 0, 0, 'inglês'], [3.6, 0, 1, 0, 0, 1, 

0, 0, 'espanhol'], [5.2, 0, 2, 0, 0, 1, 0, 1, 'português'], [4.6, 0, 1, 0, 0, 

0, 1, 0, 'espanhol'], [5.5, 0, 0, 0, 0, 0, 0, 0, 'português'], 

[4.428571428571429, 0, 1, 0, 0, 2, 0, 1, 'português'], [7.333333333333333, 0, 

0, 0, 0, 1, 1, 0, 'espanhol'], [3.6, 0, 0, 0, 0, 2, 3, 0, 'espanhol'], 

[3.8333333333333335, 0, 0, 0, 0, 1, 0, 0, 'inglês'], [3.2, 0, 0, 0, 0, 1, 0, 

0, 'espanhol'], [7.8, 0, 1, 0, 0, 0, 1, 0, 'espanhol'], [4.6, 0, 0, 0, 0, 2, 

0, 0, 'português'], [3.8333333333333335, 0, 1, 0, 0, 1, 0, 0, 'espanhol'], 

[5.833333333333333, 0, 0, 0, 0, 3, 0, 2, 'português'], [3.6666666666666665, 

0, 0, 0, 0, 2, 0, 0, 'inglês'], [5.8, 0, 0, 0, 0, 2, 1, 0, 'espanhol'], [5.0, 

0, 1, 0, 0, 0, 1, 0, 'espanhol'], [4.75, 0, 0, 0, 0, 1, 1, 0, 'inglês'], 

[3.5, 0, 0, 0, 0, 3, 0, 0, 'inglês'], [4.2, 0, 0, 0, 0, 3, 0, 0, 'inglês'], 

[4.333333333333333, 0, 0, 0, 0, 0, 0, 0, 'português'], [3.2857142857142856, 

0, 0, 0, 0, 2, 0, 0, 'inglês'], [4.5, 0, 0, 0, 0, 2, 0, 2, 'português'], 

[5.75, 0, 2, 0, 0, 2, 0, 0, 'português'], [2.5714285714285716, 0, 0, 0, 1, 2, 

0, 0, 'inglês'], [7.0, 0, 0, 0, 0, 3, 2, 0, 'espanhol'], [4.5, 0, 0, 0, 0, 2, 

0, 0, 'português'], [4.5, 0, 0, 0, 0, 0, 2, 0, 'espanhol'], [3.6, 0, 0, 0, 0, 

1, 0, 0, 'inglês'], [3.3333333333333335, 0, 0, 0, 0, 2, 1, 0, 'espanhol'], 

[4.4, 0, 1, 0, 0, 1, 0, 0, 'espanhol'], [5.166666666666667, 0, 1, 0, 0, 2, 0, 
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0, 'português'], [4.8, 0, 1, 0, 0, 0, 1, 0, 'espanhol'], [5.4, 0, 0, 0, 0, 4, 

0, 0, 'inglês'], [4.125, 0, 0, 0, 0, 2, 0, 0, 'português'], [4.2, 0, 0, 0, 0, 

2, 1, 0, 'inglês'], [5.857142857142857, 0, 0, 0, 0, 2, 0, 0, 'inglês'], 

[3.5714285714285716, 0, 0, 0, 0, 4, 1, 0, 'inglês'], [5.25, 0, 0, 0, 0, 1, 0, 

0, 'espanhol'], [5.333333333333333, 0, 0, 0, 0, 3, 0, 1, 'português'], 

[3.7142857142857144, 0, 1, 0, 0, 3, 0, 1, 'português'], [4.333333333333333, 

0, 2, 0, 0, 0, 2, 0, 'espanhol'], [5.333333333333333, 0, 3, 0, 0, 0, 1, 0, 

'espanhol'], [6.25, 0, 0, 0, 0, 1, 0, 1, 'português'], [6.0, 0, 1, 0, 0, 3, 

1, 0, 'espanhol'], [4.2, 0, 1, 0, 0, 1, 0, 0, 'português'], 

[3.5714285714285716, 0, 0, 0, 0, 4, 0, 0, 'inglês'], [3.3333333333333335, 0, 

0, 0, 0, 2, 0, 0, 'inglês'], [4.25, 0, 0, 0, 0, 3, 0, 0, 'inglês'], 

[2.3333333333333335, 0, 0, 0, 0, 0, 0, 0, 'inglês'], [4.0, 0, 0, 0, 0, 3, 0, 

0, 'inglês'], [4.142857142857143, 0, 1, 0, 0, 2, 0, 1, 'português']] 

 

from sklearn.model_selection import train_test_split 

import numpy as np 

 

vet = np.array(padroes) 

classes = vet[:,-1]         # classes = [p[-1] for p in padroes] 

 

padroes_sem_classe = vet[:,0:-1] 

 

X_train, X_test, y_train, y_test = train_test_split(padroes_sem_classe, 

classes, test_size=0.25, stratify=classes) 

 

from sklearn import svm 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

treinador = svm.SVC()  #algoritmo escolhido 

modelo = treinador.fit(X_train, y_train) 

 

acuracia = modelo.score(X_train, y_train) 

print("Acurácia nos dados de treinamento: {:.2f}%".format(acuracia * 100)) 

 

y_pred = modelo.predict(X_train) 

cm = confusion_matrix(y_train, y_pred) 

print(cm) 

print(classification_report(y_train, y_pred)) 

 

print('métricas mais confiáveis') 
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y_pred2 = modelo.predict(X_test) 

cm = confusion_matrix(y_test, y_pred2) 

print(cm) 

print(classification_report(y_test, y_pred2)) 

 

Acurácia nos dados de treinamento: 78.26% 

[[18  4  1] 

 [ 2 19  1] 

 [ 3  4 17]] 

 

                          precision    recall    f1-score   support 

espanhol               0.78          0.78       0.78         23 

inglês                    0.70          0.86       0.78         22 

português             0.89          0.71       0.79         24 

 

accuracy                                              0.78        69 

macro avg            0.79         0.78        0.78        69 

weighted avg       0.80          0.78        0.78        69 

 

métricas mais confiáveis 

[[5 0 2] 

 [0 7 1] 

 [3 0 5]] 

 

                          precision    recall  f1-score   support 

 

espanhol              0.62         0.71       0.67         7 

inglês                   1.00         0.88       0.93         8 

português             0.62        0.62       0.62         8 

 

accuracy                                           0.74        23 

macro avg            0.75      0.74        0.74        23 

weighted avg       0.76      0.74         0.74        23 

 

2 
 

import numpy as np 

import pandas as pd 

 

https://archive.ics.uci.edu/dataset/915/differentiated+thyroid+cancer+recurre

nce 
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thyro_colunas = ['Age','Gender','Smoking','Hx Smoking','Hx 

Radiothreapy','Thyroid Function','Physical 

Examination','Adenopathy','Pathology','Focality','Risk','T','N','M','Stage','

Response','Recurred'] 

 

thyro = pd.read_csv('Thyroid_Diff.csv',header=0, 

                     names=thyro_colunas, lineterminator='\n', na_values='?') 

 

print(thyro.head()) 

 

thyro['Recurred'].value_counts(dropna=False) 

 

    Age Gender Smoking  Hx Smoking    Hx Radiothreapy   Thyroid Function  \ 

0   27      F         No                 No                      No          

Euthyroid    

1   34      F         No                Yes                      No          

Euthyroid    

2   30      F         No                 No                      No          

Euthyroid    

3   62      F         No                 No                      No          

Euthyroid    

4   62      F         No                 No                      No          

Euthyroid    

 

                     Physical                   Examination      Adenopathy         

Pathology     Focality Risk  \ 

0       Single nodular goiter-left              No           Micropapillary        

Uni-Focal           Low    

1          Multinodular goiter                    No           Micropapillary        

Uni-Focal           Low    

2      Single nodular goiter-right            No           Micropapillary        

Uni-Focal           Low    

3      Single nodular goiter-right            No           Micropapillary        

Uni-Focal           Low    

4          Multinodular goiter                    No          Micropapillary        

Multi-Focal         Low    

 

     T      N    M   Stage       Response      Recurred   

0  T1a  N0  M0     I         Indeterminate        No   

1  T1a  N0  M0     I            Excellent            No   

2  T1a  N0  M0     I            Excellent            No   
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3  T1a  N0  M0     I            Excellent            No   

4  T1a  N0  M0     I            Excellent            No 

 

No     275 

Yes    108 

Name: Recurred, dtype: int64 

 

from sklearn.preprocessing import LabelEncoder 

num_cols = ['Age'] 

cat_cols = ['Gender','Smoking','Hx Smoking','Hx Radiothreapy','Thyroid 

Function','Physical 

Examination','Adenopathy','Pathology','Focality','Risk','T','N','M','Stage','

Response'] 

tgt_cols = ['Recurred'] 

 

num_cols_data = thyro[num_cols] 

cat_cols_data = thyro[cat_cols] 

tgt_cols_data = thyro[tgt_cols] 

 

cat_cols_num_data = cat_cols_data.apply(LabelEncoder().fit_transform) 

 

ori_num_data = pd.concat([num_cols_data, cat_cols_num_data, tgt_cols_data], 

axis=1) 

print(ori_num_data.head()) 

 

    Age  Gender  Smoking  Hx Smoking  Hx Radiothreapy  Thyroid Function  \ 

0   27       0             0                 0                         0          

2    

1   34       0             0                 1                         0          

2    

2   30       0             0                 0                         0          

2    

3   62       0             0                 0                         0          

2    

4   62       0             0                 0                         0          

2    

 

   Physical Examination  Adenopathy  Pathology  Focality  Risk  T  N  M  \ 

0                     3                       3                  2          

1         2     0  0  0    
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1                     1                       3                  2          

1         2     0  0  0    

2                     4                       3                  2          

1         2     0  0  0    

3                     4                       3                  2          

1         2     0  0  0    

4                     1                       3                  2          

0         2     0  0  0    

 

   Stage  Response Recurred   

0      0         2             No   

1      0         1             No   

2      0         1             No   

3      0         1             No   

4      0         1             No 

 

X = ori_num_data.iloc[:,:16] 

cols = ori_num_data[:16] 

print(X.head()) 

Y = ori_num_data['Recurred'] 

Y_orig = ori_num_data['Recurred'] 

print(Y.unique()) 

 

    Age  Gender  Smoking  Hx Smoking  Hx Radiothreapy  Thyroid Function  \ 

0   27       0             0                 0                        0          

2    

1   34       0             0                 1                        0          

2    

2   30       0             0                 0                        0          

2    

3   62       0             0                 0                        0          

2    

4   62       0             0                 0                        0          

2    

 

   Physical Examination  Adenopathy  Pathology  Focality  Risk  T  N  M  \ 

0                     3                      3                   2          

1          2     0  0  0    

1                     1                      3                   2          

1          2     0  0  0    
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2                     4                      3                   2          

1          2     0  0  0    

3                     4                      3                   2          

1          2     0  0  0    

4                     1                      3                   2          

0          2     0  0  0    

 

   Stage  Response   

0      0         2   

1      0         1   

2      0         1   

3      0         1   

4      0         1   

['No' 'Yes'] 

 

from sklearn.preprocessing import scale 

from sklearn.preprocessing import minmax_scale 

import pandas as pd 

 

X_orig =  X.copy() 

print(Y_orig.unique() ) 

print(X_orig['M'].unique()) 

X['Age'] = minmax_scale(X['Age']) 

X.drop(columns=['M'], axis=1, inplace=True) 

 

print(X_orig.head() 

print(X.head()) 

 

 

['No' 'Yes'] 

[0 1] 

Age  Gender  Smoking  Hx Smoking  Hx Radiothreapy  Thyroid Function  \ 

0   27       0             0                0                        0          

2   1   34       0             0                1                        0          

2    
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2   30       0             0                0                        0          

2    

3   62       0             0                0                        0          

2    

4   62       0             0                0                        0          

2    

 

   Physical Examination  Adenopathy  Pathology  Focality  Risk  T  N  M  \ 

0                     3                       3                  2          

1          2     0  0  0    

1                     1                       3                  2          

1          2     0  0  0    

2                     4                       3                  2          

1          2     0  0  0    

3                     4                       3                  2          

1          2     0  0  0    

4                     1                       3                  2          

0          2     0  0  0    

 

   Stage  Response   

0      0         2   

1      0         1   

2      0         1   

3      0         1   

4      0         1   

 

from sklearn.model_selection import train_test_split 

import numpy as np 

 

X_oring_train, X_orig_test, y_orig_train, y_orig_test = 

train_test_split(X_orig, 

                      Y_orig, test_size=0.25, 

stratify=Y_orig,random_state=10) 

 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, 

                      stratify=Y,random_state=10) 

from sklearn import svm 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

treinador = svm.SVC()  #algoritmo escolhido 

 



83 
 

modelo_orig = treinador.fit(X_oring_train, y_orig_train) 

 

y_orig_pred = modelo_orig.predict(X_oring_train) 

cm_orig_train = confusion_matrix(y_orig_train, y_orig_pred) 

 

print('Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO') 

print(cm_orig_train) 

print(classification_report(y_orig_train, y_orig_pred)) 

print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES') 

 

y2_orig_pred = modelo_orig.predict(X_orig_test) 

cm_orig_test = confusion_matrix(y_orig_test, y2_orig_pred) 

print(cm_orig_test) 

print(classification_report(y_orig_test, y2_orig_pred)) 

 

Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO 

 

[[204   2] 

[ 61  20]] 

                       precision    recall  f1-score   support 

 

 No                       0.77      0.99      0.87       206 

 Yes                      0.91      0.25      0.39        81 

accuracy                                      0.78       287 

macro avg            0.84     0.62     0.63       287 

weighted avg       0.81      0.78     0.73       287 

 

Matriz de confusão - com os dados ORIGINAIS usados para TESTES 

[[67  2] 

[18  9]] 
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                    precision    recall  f1-score   support 

 

No                     0.79      0.97      0.87        69 

Yes                    0.82      0.33      0.47        27 

 

accuracy                                      0.79        96 

macro avg          0.80      0.65     0.67        96 

weighted avg     0.80      0.79      0.76        96 

 

from sklearn import svm 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

treinador = svm.SVC()  #algoritmo escolhido 

 

modelo = treinador.fit(X_train, y_train) 

 

y_pred = modelo.predict(X_train) 

cm_train = confusion_matrix(y_train, y_pred) 

print('Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO') 

print(cm_train) 

print(classification_report(y_train, y_pred)) 

 

print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES') 

y2_pred = modelo.predict(X_test) 

cm_test = confusion_matrix(y_test, y2_pred) 

print(cm_test) 

print(classification_report(y_test, y2_pred)) 

 

Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO 

[[204   2] 

 [ 13  68]] 

                 precision    recall  f1-score   support 

 

No                  0.94      0.99      0.96       206 

Yes                 0.97      0.84      0.90        81 

 

accuracy                                   0.95       287 

macro avg       0.96     0.91      0.93       287 

weighted avg  0.95      0.95      0.95       287 

 

 



85 
 

 

Matriz de confusão - com os dados ORIGINAIS usados para TESTES 

[[67  2] 

 [ 5 22]] 

 

                 precision    recall  f1-score   support 

 

No                  0.93      0.97      0.95        69 

Yes                 0.92      0.81      0.86        27 

 

accuracy                                   0.93        96 

macro avg      0.92      0.89      0.91        96 

weighted avg  0.93      0.93      0.93        96 
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APÊNDICE 7 – APRENDIZADO DE MÁQUINA 
 
A – ENUNCIADO 
 
Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo, 

Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher 

os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento. 

 

B – RESOLUÇÃO 
 

Seed: 202485 

CLASSIFICAÇÃO 
 

Veículo 

Técnica Parâmetro Acurácia Matriz de Confusão 

SVM – CV 
Com grid C=100 Sigma= 0.015 0.8482896 0.8323 

RNA – CV 
Com grid size=21 decay=0.1 0.8395732 0.7904 

SVM – CV 
Sem grid C=1 Sigma= 0.06437798 0.7703150 0.7425 

RF – CV 
Com grid mtry=18 0.7615115 0.7425 

SVM – Hold-out C=1 Sigma= 0.06437798 0.7586751 0.7425 
RF – CV 
Sem grid mtry=10 0.7556298 0.7365 

RF – Hold-out mtry=10 0.7379643 0.7725 

KNN k=1 0.6390135 0.6176 
RNA – CV 
Sem grid size=3 decay=0.1 0.6227787 0.4671 

RNA – Hold-out size=5 decay=0.1 0.5659535 0.6527 
 
 
Técnica com melhor desempenho: SVM – CV, acurácia: 0,8482896 

 

Predição de novos casos: 

 

Comandos emitidos no RStudio: 
library("caret") 
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setwd("C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/06 - 

Veículos") 

 

dados <- read.csv("6 - Veiculos - Dados.csv") 

dados_novos <- read.csv("6 - Veiculos - Dados - Novos.csv") 

 

dados$a <- NULL 

dados_novos$a <- NULL 

 

View(dados) 

View(dados_novos) 

 

KNN 
 

set.seed(202485) 

ran <- sample(1:nrow(dados), 0.8 * nrow(dados)) 

treino <- dados[ran,] 

teste <- dados[-ran,] 

 

tuneGrid <- expand.grid(k = c(1,3,5,7,9)) 

 

set.seed(202485) 

knn <- train(tipo~., data = treino, method = "knn", tuneGrid=tuneGrid) 

knn 

 

predict.knn <- predict(knn, teste) 

confusionMatrix(predict.knn, as.factor(teste$tipo)) 

 

RNA 
 

set.seed(202485) 

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE) 

treino <- dados[indices,]  

teste <- dados[-indices,] 

 

set.seed(202485) 

rna <- train(tipo~., data=treino, method="nnet", trace=FALSE)  

rna 

 

predict.rna <- predict(rna, teste) 

confusionMatrix(predict.rna, as.factor(teste$tipo)) 
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ctrl <- trainControl(method = "cv", number = 10) 

set.seed(202485) 

rna <- train(tipo~., data=treino, method="nnet", trace=FALSE, trControl=ctrl) 

rna 

 

predict.rna <- predict(rna, teste) 

confusionMatrix(predict.rna, as.factor(teste$tipo)) 

 

grid <- expand.grid(size = seq(from = 1, to = 35, by = 10), decay = seq(from 

= 0.1, to = 0.6, by = 0.3)) 

set.seed(202485) 

rna <- train(form = tipo~., data = treino, method = "nnet", tuneGrid = grid, 

trControl = ctrl, maxit = 2000, trace=FALSE)  

rna 

 

predict.rna <- predict(rna, teste) 

confusionMatrix(predict.rna, as.factor(teste$tipo)) 

 

SVM 
 

set.seed(202485) 

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE) 

treino <- dados[indices,] 

teste <- dados[-indices,] 

 

set.seed(202485) 

svm <- train(tipo~., data=treino, method="svmRadial")  

svm 

 

predict.svm <- predict(svm, teste) 

confusionMatrix(predict.svm, as.factor(teste$tipo)) 

 

ctrl <- trainControl(method = "cv", number = 10) 

set.seed(202485) 

svm <- train(tipo~., data=treino, method="svmRadial", trControl=ctrl) 

svm 

 

predict.svm <- predict(svm, teste) 

confusionMatrix(predict.svm, as.factor(teste$tipo)) 

grid <- expand.grid(C = c(1, 2, 10, 50, 100), sigma = c(0.01, 0.015, 0.2)) 
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set.seed(202485) 

svm <- train(form = tipo~., data = treino, method = "svmRadial", trControl = 

ctrl, tuneGrid = grid) 

svm 

 

predict.svm <- predict(svm, teste) 

confusionMatrix(predict.svm, as.factor(teste$tipo)) 

 

 

Random Forest 
 

set.seed(202485) 

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE) 

treino <- dados[indices,] 

teste <- dados[-indices,] 

 

set.seed(202485) 

rf <- train(tipo~., data=treino, method="rf")  

rf 

 

predict.rf <- predict(rf, teste) 

confusionMatrix(predict.rf, as.factor(teste$tipo)) 

 

ctrl <- trainControl(method = "cv", number = 10) 

set.seed(202485) 

rf <- train(tipo~., data=treino, method="rf", trControl=ctrl) 

rf 

 

predict.rf <- predict(rf, teste) 

confusionMatrix(predict.rf, as.factor(teste$tipo)) 

 

grid <- expand.grid(mtry = c(2, 3, 6, 9, 12, 15, 18)) 

set.seed(202485) 

rf <- train(form = tipo~., data = treino, method = "rf", trControl = ctrl, 

tuneGrid = grid) 

rf 

 

predict.rf <- predict(rf, teste) 

confusionMatrix(predict.rf, as.factor(teste$tipo)) 

 

predict.svm <- predict(svm, dados_novos) 
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resultado <- cbind(dados_novos, predict.svm) 

View(resultado) 

 

 

Diabetes 

Técnica Parâmetro Acurácia Matriz de Confusão 

SVM – CV 
Com grid 

C=1 
Sigma=0.01 

0.7934162 0.7255 

SVM – CV 
Sem grid 

C=0.25 
Sigma=0.1129486 

0.7787150 0.7255 

RF – CV 
Com grid 

mtry=2 0.7770756 0.7059 

SVM – Hold-out C=0.25 Sigma=0.1129486 0.7696365 0.7255 

RF – CV 
Sem grid 

mtry=2 0.7689847 0.7255 

RF – Hold-out mtry=2 0.7637726 0.7059 

RNA – CV 
Com grid 

size=21 
decay=0.1 

0.7609201 0.7386 

RNA – CV 
Sem grid 

size=3 
decay=0.1 

0.7479905 0.6863 

KNN k=9 0.7125222 0.7208 

RNA – Hold-out size=3 decay=0.1 0.6794497 0.634 

 

Técnica com melhor desempenho: SVM -CV, acurácia: 0,7934162 

 

Predição de novos casos:  

 
 
 
Comandos emitidos no RStudio: 
 

library("caret") 

setwd("C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/10 - 

Diabetes") 

 

dados <- read.csv("10 - Diabetes - Dados.csv") 

dados_novos <- read.csv("10 - Diabetes - Dados - Novos.csv") 

 

dados$num <- NULL 

dados_novos$num <- NULL 
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View(dados) 

View(dados_novos) 

 

KNN 
 

set.seed(202485) 

ran <- sample(1:nrow(dados), 0.8 * nrow(dados)) 

treino <- dados[ran,] 

teste <- dados[-ran,] 

 

tuneGrid <- expand.grid(k = c(1,3,5,7,9)) 

 

set.seed(202485) 

knn <- train(diabetes~., data = treino, method = "knn", tuneGrid=tuneGrid) 

knn 

 

predict.knn <- predict(knn, teste) 

confusionMatrix(predict.knn, as.factor(teste$diabetes)) 

 

RNA 
 

set.seed(202485) 

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE) 

treino <- dados[indices,]  

teste <- dados[-indices,] 

 

set.seed(202485) 

rna <- train(diabetes~., data=treino, method="nnet", trace=FALSE)  

rna 

 

predict.rna <- predict(rna, teste) 

confusionMatrix(predict.rna, as.factor(teste$diabetes)) 

 

ctrl <- trainControl(method = "cv", number = 10) 

set.seed(202485) 

rna <- train(diabetes~., data=treino, method="nnet", trace=FALSE, 

trControl=ctrl) 

rna 

 

predict.rna <- predict(rna, teste) 

confusionMatrix(predict.rna, as.factor(teste$diabetes)) 

 



92 
 

 

grid <- expand.grid(size = seq(from = 1, to = 35, by = 10), decay = seq(from 

= 0.1, to = 0.6, by = 0.3)) 

set.seed(202485) 

rna <- train(form = diabetes~., data = treino, method = "nnet", tuneGrid = 

grid, trControl = ctrl, maxit = 2000, trace=FALSE)  

rna 

 

predict.rna <- predict(rna, teste) 

confusionMatrix(predict.rna, as.factor(teste$diabetes)) 

 

SVM 
 

set.seed(202485) 

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE) 

treino <- dados[indices,] 

teste <- dados[-indices,] 

 

set.seed(202485) 

svm <- train(diabetes~., data=treino, method="svmRadial")  

svm 

 

predict.svm <- predict(svm, teste) 

confusionMatrix(predict.svm, as.factor(teste$diabetes)) 

 

ctrl <- trainControl(method = "cv", number = 10) 

set.seed(202485) 

svm <- train(diabetes~., data=treino, method="svmRadial", trControl=ctrl) 

svm 

 

predict.svm <- predict(svm, teste) 

confusionMatrix(predict.svm, as.factor(teste$diabetes)) 

 

grid <- expand.grid(C = c(1, 2, 10, 50, 100), sigma = c(0.01, 0.015, 0.2)) 

set.seed(202485) 

svm <- train(form = diabetes~. , data = treino, method = "svmRadial", 

trControl = ctrl, tuneGrid = grid) 

svm 

 

predict.svm <- predict(svm, teste) 

confusionMatrix(predict.svm, as.factor(teste$diabetes)) 
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Random Forest 
 
set.seed(202485) 

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE) 

treino <- dados[indices,] 

teste <- dados[-indices,] 

 

set.seed(202485) 

rf <- train(diabetes~., data=treino, method="rf")  

rf 

 

predict.rf <- predict(rf, teste) 

confusionMatrix(predict.rf, as.factor(teste$diabetes)) 

 

ctrl <- trainControl(method = "cv", number = 10) 

set.seed(202485) 

rf <- train(diabetes~., data=treino, method="rf", trControl=ctrl) 

rf 

 

predict.rf <- predict(rf, teste) 

confusionMatrix(predict.rf, as.factor(teste$diabetes)) 

 

grid <- expand.grid(mtry = c(2, 4, 6, 8)) 

set.seed(202485) 

rf <- train(form = diabetes~. , data = treino, method = "rf", trControl = 

ctrl, tuneGrid = grid) 

rf 

 

predict.rf <- predict(rf, teste) 

confusionMatrix(predict.rf, as.factor(teste$diabetes)) 

 

predict.svm <- predict(svm, dados_novos) 

resultado <- cbind(dados_novos, predict.svm) 

View(resultado) 
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REGRESSÃO 
 

Admissão 

Técnica Parâmetro R² Syx Pearson RMSE MAE 
SVM – CV 
Com grid 

C = 10 
sigma = 0.01 

0.789376 0.059158 0.923379 0.058551 0.038229 

SVM – Hold-out 
Com grid 

C = 2 
sigma = 0.01 

0.781435 0.059204 0.924785 0.058597 0.038832 

RF – CV 
Com grid 

mtry = 2 0.758387 0.062267 0.911964 0.061629 0.041319 

RF – Hold-out 
Sem grid 

mtry = 2 0.756269 0.062346 0.911978 0.061707 0.041387 

SVM – CV 
Sem grid 

C = 1 
sigma = 0.2074478 

0.755719 0.061922 0.916669 0.061287 0.041750 

RF – CV 
Sem grid 

mtry = 2 0.755678 0.062506 0.911280 0.061865 0.041780 

RF – Hold-out 
Com grid 

mtry = 2 0.754565 0.062347 0.912288 0.061708 0.041125 

RNA – Hold-out 
Com grid 

size = 9 
decay = 0.1 

0.743898 0.062546 0.912788 0.061905 0.045973 

RNA – CV 
Sem grid 

size = 5 
decay = 0.1 

0.734980 0.063313 0.910600 0.062664 0.046591 

SVM – Hold-out 
Sem grid 

C = 0.5 
sigma = 0.2074478 

0.734136 0.062447 0.918901 0.061807 0.042691 

RNA – Hold-out 
Sem grid 

size = 5 
decay = 0.1 

0.709483 0.065351 0.904786 0.064681 0.048558 

RNA – CV 
Com grid 

size = 9 
decay = 0.1 

0.684974 0.066554 0.902630 0.065871 0.050512 

KNN K = 9 0.633991 0.074328 0.869567 0.073566 0.054662 
 
 
Técnica com melhor desempenho: SVM – CV com grid, R²: 0,789376 

 

Predição de novos casos: 

 
 
 
Gráfico de Resíduos: 
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Comandos emitidos no RStudio: 
 

r2 <- function(observados, estimados) { 

  ret <- (1 - (sum((observados-estimados)^2) 

               /sum((observados-mean(observados))^2))) 

  return(ret) 

} 

 

trabRegressao <- function(seed, filepath, filename, filenewcases, 

fileheader=T, 

                          colX, metodo, separacao="ho", usaGrid=F){ 

   

  if(metodo == "knn"){ 

    library(caret) 

    library(Metrics) 

    library(Fgmutils)  

  } else if(metodo == "nnet") { 

    library(mlbench) 

    library(caret) 

    library(mice) 

    library(Metrics) 

    library(Fgmutils)  

  } else if( (metodo == "svmRadial") || (metodo == "rf") ) { 
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    library(e1071) 

    library(kernlab) 

    library(caret) 

    library(Metrics) 

    library(Fgmutils)  

  } 

   

  setwd(filepath) 

  dados <- read.csv(filename, header=fileheader) 

  dados$num <- NULL 

   

  set.seed(seed) 

  ind <- createDataPartition(dados[,ncol(dados)], p=0.80, list=F) 

  treino_df <- dados[ind,] 

  teste_df <- dados[-ind,] 

   

  if(metodo == "knn") {  

    tng <- expand.grid(k = c(1,3,5,7,9)) 

    set.seed(seed) 

    modelo <- train(colX, data = treino_df, method = metodo, tuneGrid = tng) 

  } else {  

    if(separacao == "cv"){  

      ctrl <- trainControl(method = "cv", number = 10) 

      if(usaGrid){  

        if(metodo == "nnet"){ 

          tng <- expand.grid(size = seq(from = 1, to = 10, by = 1), 

                             decay = seq(from = 0.1, to = 0.9, by = 0.3)) 

        } else if(metodo == "svmRadial") { 

          tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2)) 

        } else if(metodo == "rf") { 

          tng <- expand.grid(mtry=c(2, 4, 6, 8)) 

        } 

        if(metodo == "nnet"){ 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl, tuneGrid = tng, 

                          linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl, tuneGrid = tng) 
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        } 

      } else {  

        if(metodo == "nnet") { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl, linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl) 

        } 

      } 

    } else {  

      if(usaGrid){  

        if(metodo == "nnet"){ 

          tng <- expand.grid(size = seq(from = 1, to = 10, by = 1), 

                             decay = seq(from = 0.1, to = 0.9, by = 0.3)) 

        } else if(metodo == "svmRadial") { 

          tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2)) 

        } else if(metodo == "rf") { 

          tng <- expand.grid(mtry=c(2, 4, 6, 8)) 

        } 

        if(metodo == "nnet"){ 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          tuneGrid = tng, linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          tuneGrid = tng) 

        } 

      } else {  

        if(metodo == "nnet") { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo) 

        } 

      } 
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    } 

  } 

   

  pred <- predict(modelo, teste_df) 

   

  r2 <- r2(pred, teste_df[,ncol(dados)]) 

  syx <- syx(teste_df[,ncol(dados)], pred, n=nrow(teste_df), p=1) 

  pearson <- cor(teste_df[,ncol(dados)], pred, method = "pearson") 

  rmse <- rmse(teste_df[,ncol(dados)], pred) 

  mae <- mae(teste_df[,ncol(dados)], pred) 

   

  novos_casos <- read.csv(filenewcases, header=fileheader) 

  novos_casos$num <- NULL 

   

  pred_novos <- predict(modelo, novos_casos) 

  novos_casos[,ncol(dados)] <- NULL 

  result_pred <- cbind(novos_casos, pred_novos) 

   

  return(list(model=modelo, R2=r2, Syx=syx, Pearson=pearson, RMSE=rmse, 

MAE=mae, 

              dfPredicao=result_pred)) 

} 

 

filepath <- "C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/09 - 

Admissão" 

filename <- "9 - Admissao - Dados.csv" 

filenewcases <- "9 - Admissao - NovosCasos.csv" 

fileheader <- TRUE 

colX <- eval(ChanceOfAdmit~.)  

seed <- 202485  

 

source("Funcoes_Trabalho.R") 

setwd(filepath) 

 

KNN 
metodo <- "knn" 

 

separacao <- "ho"  

usaGrid <- FALSE  

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 
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                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### KNN ###") 

print("..HOLDOUT - SEM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### KNN ###") 

print("..HOLDOUT - COM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

RNA 
metodo <- "nnet" 

 

separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 
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                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### RNA ###") 

print("..HOLDOUT - SEM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                    usaGrid=usaGrid) 

print(" ") 

print("..HOLDOUT - COM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 
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print("..CROSS VALIDATION - SEM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - COM GRID") 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

SVM 
metodo <- "svmRadial" 

## HoldOut - Sem Grid ## 

separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### SVM ###") 

print("..HOLDOUT - SEM GRID") 
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print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..HOLDOUT - COM GRID") 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - SEM GRID") 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 
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View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - COM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

RANDOM FOREST 

metodo <- "rf" 

 

separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### RANDOM FOREST ###") 

print("..HOLDOUT - SEM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 
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usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..HOLDOUT - COM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - SEM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 
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print(" ") 

print("..CROSS VALIDATION - COM GRID") 

 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 
Biomassa 

Técnica Parâmetro R² Syx Pearson Rmse MAE 
RF – Hold out 
Sem grid 

mtry=2 0.984068 157.786610 0.992201 155.134545 63.856373 

RF – CV 
Com grid 

mtry=2 0.976586 181.697563 0.990147 178.643604 72.972522 

RF – CV 
Sem grid 

mtry=2 0.973855 190.189821 0.989462 186.993126 74.669903 

RF – Hold out 
Com grid 

mtry=2 0.965333 212.818902 0.987972 209.241859 79.451578 

RNA – Hold out 
Com grid 

Size=2 
Decay =0.7 

0.963713 255.742350 0.983519 251.443853 148.422506 

SVM – CV 
Com grid 

C=100 
Sigma = 0.01 

0.916314 303.006088 0.980208 297.913186 115.408387 

SVM – Hold 
out 
Com grid 

C=100 
Sigma=0.01 

0.916314 303.006088 0.980208 297.913186 115.408387 

KNN K =3 0.713939 484.145732 0.948596 476.008249 135.896425 
RNA – CV 
Com grid 

Size=6 
Decay =0.4 

0.217431 707.588618 0.849904 695.695526 237.414720 

RNA – CV 
Sem grid 

Size=5  
Decay =0.1 

0.197787 689.456434 0.875019 677.868106 173.054202 

SVM – Hold 
out 
Sem grid 

C=1 
Sigma=1.027848 

-3.391228 1054.157347 0.559121 1036.439155 238.325013 

SVM – CV 
Sem grid 

C=1 
Sigma =1.027848 

-3.391228 1054.157347 0.559121 1036.439155 238.325013 

RNA – Hold out 
Sem grid 

Size=5 
Decay=0.1 

-714789053
1188040.0 

1247.907676 0.054192 1226.932944 497.813797 

 

 

Técnica com melhor desempenho: RF – Hold out sem grid, R²: 0,984068 

 

Predição de novos casos: 
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Gráfico de Resíduos: 

 

 
 
Comandos emitidos no RStudio: 
 

r2 <- function(observados, estimados) { 

  ret <- (1 - (sum((observados-estimados)^2) 

               /sum((observados-mean(observados))^2))) 

  return(ret) 

} 

 

trabRegressao <- function(seed, filepath, filename, filenewcases, 

fileheader=T, 

                          colX, metodo, separacao="ho", usaGrid=F){ 

   

  if(metodo == "knn"){ 

    library(caret) 

    library(Metrics) 

    library(Fgmutils)  
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  } else if(metodo == "nnet") { 

    library(mlbench) 

    library(caret) 

    library(mice) 

    library(Metrics) 

    library(Fgmutils)  

  } else if( (metodo == "svmRadial") || (metodo == "rf") ) { 

    library(e1071) 

    library(kernlab) 

    library(caret) 

    library(Metrics) 

    library(Fgmutils)  

  } 

   

  setwd(filepath) 

  dados <- read.csv(filename, header=fileheader) 

  dados$num <- NULL 

 

  set.seed(seed) 

  ind <- createDataPartition(dados[,ncol(dados)], p=0.80, list=F) 

  treino_df <- dados[ind,] 

  teste_df <- dados[-ind,] 

 

  if(metodo == "knn") { 

    tng <- expand.grid(k = c(1,3,5,7,9)) 

    set.seed(seed) 

    modelo <- train(colX, data = treino_df, method = metodo, tuneGrid = tng) 

  } else {  

    if(separacao == "cv"){  

      # controlador para Cross Validation usando 10 divisões 

      ctrl <- trainControl(method = "cv", number = 10) 

      if(usaGrid){ 

        if(metodo == "nnet"){ 

          tng <- expand.grid(size = seq(from = 1, to = 10, by = 1), 

                             decay = seq(from = 0.1, to = 0.9, by = 0.3)) 

        } else if(metodo == "svmRadial") { 

          tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2)) 

        } else if(metodo == "rf") { 

          tng <- expand.grid(mtry=c(2, 4, 6, 8)) 

        } 

        if(metodo == "nnet"){ 
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          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl, tuneGrid = tng, 

                          linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl, tuneGrid = tng) 

        } 

      } else {  

        if(metodo == "nnet") { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl, linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          trControl = ctrl) 

        } 

      } 

    } else { 

      if(usaGrid){ 

        if(metodo == "nnet"){ 

          tng <- expand.grid(size = seq(from = 1, to = 10, by = 1), 

                             decay = seq(from = 0.1, to = 0.9, by = 0.3)) 

        } else if(metodo == "svmRadial") { 

          tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2)) 

        } else if(metodo == "rf") { 

          tng <- expand.grid(mtry=c(2, 4, 6, 8)) 

        } 

        if(metodo == "nnet"){ 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          tuneGrid = tng, linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          tuneGrid = tng) 

        } 

      } else { 

        if(metodo == "nnet") { 
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          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo, 

                          linout = T, trace = F) 

        } else { 

          set.seed(seed) 

          modelo <- train(colX, data = treino_df, method = metodo) 

        } 

      } 

    } 

  } 

  pred <- predict(modelo, teste_df) 

   

 

  r2 <- r2(pred, teste_df[,ncol(dados)]) 

  syx <- syx(teste_df[,ncol(dados)], pred, n=nrow(teste_df), p=1) 

  pearson <- cor(teste_df[,ncol(dados)], pred, method = "pearson") 

  rmse <- rmse(teste_df[,ncol(dados)], pred) 

  mae <- mae(teste_df[,ncol(dados)], pred) 

   

  novos_casos <- read.csv(filenewcases, header=fileheader) 

  novos_casos$num <- NULL 

   

  pred_novos <- predict(modelo, novos_casos) 

  novos_casos[,ncol(dados)] <- NULL 

  result_pred <- cbind(novos_casos, pred_novos) 

 

  return(list(model=modelo, R2=r2, Syx=syx, Pearson=pearson, RMSE=rmse, 

MAE=mae, 

              dfPredicao=result_pred)) 

} 

 

filepath <- "C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/05 - 

Biomassa" 

filename <- "5 - Biomassa - Dados.csv" 

filenewcases <- "5 - Biomassa - Dados - Novos.csv" 

fileheader <- TRUE 

colX <- eval(biomassa~.) # Critério da coluna de predição. Tem que usar eval! 

seed <- 202485 #para setar o seed do experimento 

 

source("Funcoes_Trabalho.R") 

setwd(filepath) 
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KNN 
metodo <- "knn" 

 

separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### KNN ###") 

print("..HOLDOUT - SEM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### KNN ###") 

print("..HOLDOUT - COM GRID") 

print(vRet$model) 

 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 
RNA 
metodo <- "nnet" 
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separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### RNA ###") 

print("..HOLDOUT - SEM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..HOLDOUT - COM GRID") 

 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 
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print("..CROSS VALIDATION - SEM GRID") 

 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - COM GRID") 

 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

SVM 
metodo <- "svmRadial" 

## HoldOut - Sem Grid ## 

separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### SVM ###") 

print("..HOLDOUT - SEM GRID") 

 

print(vRet$model) 
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sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..HOLDOUT - COM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - SEM GRID") 

 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 
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usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - COM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

RANDOM FOREST 
metodo <- "rf" 

separacao <- "ho" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("### RANDOM FOREST ###") 

print("..HOLDOUT - SEM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "ho" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 
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print("..HOLDOUT - COM GRID") 

 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

separacao <- "cv" 

usaGrid <- FALSE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - SEM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

View(vRet$dfPredicao) 

 

separacao <- "cv" 

usaGrid <- TRUE 

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename, 

                      filenewcases=filenewcases, fileheader=fileheader, 

                      colX=colX, metodo=metodo, separacao=separacao, 

                      usaGrid=usaGrid) 

print(" ") 

print("..CROSS VALIDATION - COM GRID") 

print(vRet$model) 

sprintf("R2     : %.6f", vRet$R2) 

sprintf("Syx    : %.6f", vRet$Syx) 

sprintf("Pearson: %.6f", vRet$Pearson) 

sprintf("RMSE   : %.6f", vRet$RMSE) 

sprintf("MAE    : %.6f", vRet$MAE) 

 



116 
 

View(vRet$dfPredicao) 

 

AGRUPAMENTO 

Veículo 

 

 

Comandos emitidos no RStudio: 
library(klaR) 

setwd("C:/base/ ") 

dados <- read.csv("veiculos.csv") 

View(dados) 

 
dados$a <- NULL 

 

resultado <- cbind(dados, cluster.res$cluster) 

resultado 

 

REGRAS DE ASSOCIAÇÃO 
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Musculação 

 

 

 

Regras geradas com uma configuração de Suporte e Confiança. 

 

 

Comandos emitidos no RStudio: 
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setwd("C:/Users/pamar/Downloads") 

dados <- read.transactions(file="2 - Musculacao - 

Dados.csv",format="basket",sep=";") 

inspect(dados[1:4]) 

 

 

 
set.seed(202485) 

itemFrequencyPlot(dados, topN=10, type='absolute') 

 

 

 

 
rules <- apriori(dados, parameter = list(supp = 0.3, conf = 0.8, target = 

"rules")) summary(rules) 

inspect(rules) 
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  APÊNDICE 8 – DEEP LEARNING 
 
A – ENUNCIADO 
 
1 Classificação de Imagens (CNN) 

 

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a 

arquitetura CNN vista no curso. 

 

2 Detector de SPAM (RNN) 
 

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e 

arquitetura de RNN vista no curso. 

 

3 Gerador de Dígitos Fake (GAN) 
 

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN 

vista no curso. 

 

4 Tradutor de Textos (Transformer) 
 

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a 

arquitetura Transformer vista no curso. 

 

B – RESOLUÇÃO 
 
1 
import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout 

from tensorflow.keras.models import Model 

from mlxtend.plotting import plot_confusion_matrix 

from sklearn.metrics import confusion_matrix 

 

cifar10 = tf.keras.datasets.cifar10 

(x_train, y_train), (x_test, y_test) = cifar10.load_data() 

 

x_train, x_test = x_train / 255.0, x_test / 255.0 
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y_train, y_test = y_train.flatten(), y_test.flatten() 

 

print("x_train.shape: ", x_train.shape) 

print("y_train.shape: ", y_train.shape) 

print("x_test.shape: ", x_test.shape) 

print("y_test.shape: ", y_test.shape) 

 

x_train.shape:  (50000, 32, 32, 3) 

y_train.shape:  (50000,) 

x_test.shape:  (10000, 32, 32, 3) 

y_test.shape:  (10000,) 

 

K = len(set(y_train)) 

print("Número de classes: ", K) 

 

i = Input(shape=x_train[0].shape) 

x = Conv2D(32, (3, 3), strides=2, activation="relu")(i) 

x = Conv2D(64, (3, 3), strides=2, activation="relu")(x) 

x = Conv2D(128, (3, 3), strides=2, activation="relu")(x) 

 

x = Flatten()(x) 

 

x = Dropout(0.5)(x) 

x = Dense(1024, activation="relu")(x) 

x = Dropout(0.2)(x) 

x = Dense(K, activation="softmax")(x) 

 

model = Model(i, x) 

 

Número de classes:  10 

 

model.summary() 

 

Model: "functional" 
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Total params: 1,284,170 (4.90 MB) 

Trainable params: 1,284,170 (4.90 MB) 

Non-trainable params: 0 (0.00 B) 

 

model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", 

metrics=["accuracy"]) 

 

r = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=15) 

 

Epoch 1/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 17s 7ms/step - accuracy: 0.3518 - 

loss: 1.7613 - val_accuracy: 0.5229 - val_loss: 1.3085 

Epoch 2/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 10s 3ms/step - accuracy: 0.5243 - 

loss: 1.3063 - val_accuracy: 0.5861 - val_loss: 1.1708 

Epoch 3/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 10s 3ms/step - accuracy: 0.5832 - 

loss: 1.1618 - val_accuracy: 0.6222 - val_loss: 1.0755 

Epoch 4/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.6192 - 

loss: 1.0688 - val_accuracy: 0.6523 - val_loss: 0.9890 

Epoch 5/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.6510 - 

loss: 0.9825 - val_accuracy: 0.6773 - val_loss: 0.9348 

Epoch 6/15 
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1563/1563 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.6717 - 

loss: 0.9248 - val_accuracy: 0.6958 - val_loss: 0.8965 

Epoch 7/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.6939 - 

loss: 0.8651 - val_accuracy: 0.6927 - val_loss: 0.8837 

Epoch 8/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.7133 - 

loss: 0.8044 - val_accuracy: 0.6938 - val_loss: 0.8788 

Epoch 9/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.7229 - 

loss: 0.7807 - val_accuracy: 0.7084 - val_loss: 0.8367 

Epoch 10/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.7324 - 

loss: 0.7475 - val_accuracy: 0.7095 - val_loss: 0.8563 

Epoch 11/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.7427 - 

loss: 0.7178 - val_accuracy: 0.7067 - val_loss: 0.8509 

Epoch 12/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 9s 3ms/step - accuracy: 0.7580 - 

loss: 0.6788 - val_accuracy: 0.7129 - val_loss: 0.8265 

Epoch 13/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.7654 - 

loss: 0.6619 - val_accuracy: 0.7207 - val_loss: 0.8161 

Epoch 14/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 4ms/step - accuracy: 0.7753 - 

loss: 0.6369 - val_accuracy: 0.7208 - val_loss: 0.8079 

Epoch 15/15 

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 9s 3ms/step - accuracy: 0.7823 - 

loss: 0.6083 - val_accuracy: 0.7229 - val_loss: 0.8202 

 

plt.plot(r.history["loss"], label="loss") 

plt.plot(r.history["val_loss"], label="val_loss") 

plt.legend() 

plt.show() 

 

plt.plot(r.history["accuracy"], label="acc") 

plt.plot(r.history["val_accuracy"], label="val_acc") 

plt.legend() 
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plt.show() 

 

 

 

 

 

 
y_pred = model.predict(x_test).argmax(axis=1) 
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# Mostrar a matriz de confusão 

cm = confusion_matrix(y_test, y_pred) 

plot_confusion_matrix(conf_mat=cm, figsize=(7, 7), show_normed=True) 

 

 

 
 

labels= ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", 

"horse", "ship", "truck"] 

  misclassified = np.where(y_pred != y_test)[0] 

   

i = np.random.choice(misclassified) 

   

plt.imshow(x_test[i], cmap="gray") 
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plt.title("True label: %s Predicted: %s" % (labels[y_test[i]], 

labels[y_pred[i]])) 

 

Text(0.5, 1.0, 'True label: bird Predicted: deer') 

 

 

 

2 
 
import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.layers import Input, Embedding, LSTM, Dense 

from tensorflow.keras.layers import GlobalMaxPooling1D 

from tensorflow.keras.models import Model 

from tensorflow.keras.preprocessing.sequence import pad_sequences 

from tensorflow.keras.preprocessing.text import Tokenizer 

!wget http://www.razer.net.br/datasets/spam.csv 

   

df = pd.read_csv("spam.csv", encoding="ISO-8859-1") 

df.head() 

df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1) 

df.columns = ["labels", "data"] 
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df["b_labels"] = df["labels"].map({ "ham": 0, "spam": 1}) 

y = df["b_labels"].values 

 

--2025-08-10 20:08:33-- http://www.razer.net.br/datasets/spam.csv 

Resolving www.razer.net.br (www.razer.net.br)... 178.128.150.229 

Connecting to www.razer.net.br (www.razer.net.br)|178.128.150.229|:80... 

connected. 

HTTP request sent, awaiting response... 200 OK 

Length: 503663 (492K) [application/octet-stream] 

Saving to: ‘spam.csv’ 

 

spam.csv 100%[===================>] 491.86K --.-KB/s in 0.1s  

2025-08-10 20:08:34 (3.56 MB/s) - ‘spam.csv’ saved [503663/503663] 

 

x_train, x_test, y_train, y_test = train_test_split(df["data"], y, 

test_size=0.33) 

   

  num_words = 20000 

   

  tokenizer = Tokenizer(num_words=num_words) 

  tokenizer.fit_on_texts(x_train) 

  sequences_train = tokenizer.texts_to_sequences(x_train) 

  sequences_test = tokenizer.texts_to_sequences(x_test) 

  word2index = tokenizer.word_index 

   

  V = len(word2index) 

  print("%s tokens" % V) 

  7197 tokens 

  data_train = pad_sequences(sequences_train) 

  T = data_train.shape[1] 

  data_test = pad_sequences(sequences_test, maxlen=T) 

  print("data_train.shape: ", data_train.shape) 

  print("data_test.shape: ", data_test.shape) 

  data_train.shape: (3733, 189) 

  data_test.shape: (1839, 189) 

   

  D = 20 

  M = 5 

  i = Input(shape=(T,)) 

  x = Embedding(V+1, D)(i) 

  x = LSTM(M)(x) 
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  x = Dense(1, activation="sigmoid")(x) 

  model = Model(i, x) 

  model.summary() 

  Model: "functional" 

   

 

 

Total params: 144,486 (564.40 KB) 
Trainable params: 144,486 (564.40 KB) 
Non-trainable params: 0 (0 00 B) 
model.compile(loss="binary_crossentropy", 
optimizer="adam",metrics=["accuracy"]) 
 

epochs = 5 
r = model.fit(data_train, y_train, epochs=epochs, 
validation_data=(data_test,y_test)) 
 

Epoch 1/5 
117/117 ━━━━━━━━━━━━━━━━━━━━ 6s 19ms/step - accuracy: 0.8707 
- loss: 0.5696 - val_accuracy: 0.9288 - val_loss: 0.3345 
Epoch 2/5 
117/117 ━━━━━━━━━━━━━━━━━━━━ 2s 12ms/step - accuracy: 0.9606 
- loss: 0.2757 - val_accuracy: 0.9701 - val_loss: 0.1877 
Epoch 3/5 
117/117 ━━━━━━━━━━━━━━━━━━━━ 3s 12ms/step - accuracy: 0.9814 
- loss: 0.1530 - val_accuracy: 0.9810 - val_loss: 0.1307 
Epoch 4/5 
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  117/117 ━━━━━━━━━━━━━━━━━━━━ 1s 12ms/step - accuracy: 0.9899 

- loss: 0.1086 - val_accuracy: 0.9826 - val_loss: 0.1042 

  Epoch 5/5 

  117/117 ━━━━━━━━━━━━━━━━━━━━ 1s 12ms/step - accuracy: 0.9943 

- loss: 0.0784 - val_accuracy: 0.9875 - val_loss: 0.0833 

   

  plt.plot(r.history["loss"], label="loss") 

  plt.plot(r.history["val_loss"], label="val_loss") 

  plt.xlabel("Épocas") 

  plt.ylabel("loss") 

  plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs+1)) 

  plt.legend() 

  plt.show() 

  plt.plot(r.history["accuracy"], label="accuracy") 

  plt.plot(r.history["val_accuracy"], label="val_accuracy") 

  plt.xlabel("Épocas") 

  plt.ylabel("Acurácia") 

  plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs+1)) 

  plt.legend() 

  plt.show() 
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texto = "Is your car dirty? Discover our new product. Free for all. Click 
the link." 
seq_texto = tokenizer.texts_to_sequences([texto]) 
data_texto = pad_sequences(seq_texto, maxlen=T) 
pred = model.predict(data_texto) 
print(pred) 
print ("SPAM" if pred >= 0.5 else "OK") 
 

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 136ms/step 
[[0.7058363]] 
SPAM 
 

3 
 

import tensorflow as tf 
  import glob 
  import imageio 
  import matplotlib.pyplot as plt 
  import numpy as np 
  import os 
  import PIL 
  from tensorflow.keras import layers 
  import time 
  from IPython import display 

 

(train_images, train_labels), (_,_) = tf.keras.datasets.mnist.load_data() 
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  train_images = train_images.reshape(train_images.shape[0], 28, 28, 
1).astype('float32') 

  train_images = (train_images - 127.5) / 127.5 # [-1 , 1] 
   
  BUFFER_SIZE = 60000 
  BATCH_SIZE = 256 
   
  train_dataset = 

tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).bat
ch(BATCH_SIZE) 
 

generator = make_generator_model() 
   
  noise = tf.random.normal([1, 100]) 
  generated_image = generator(noise, training=False) 
   
  plt.imshow(generated_image[0, :, :, 0], cmap='gray') 

 

 

 

. 
def make_discriminator_model(): 

    model = tf.keras.Sequential() 
    model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', 

input_shape=[28, 28, 1])) 
    model.add(layers.LeakyReLU()) 
    model.add(layers.Dropout(0.3)) 
   
    model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) 
    model.add(layers.LeakyReLU()) 
    model.add(layers.Dropout(0.3)) 
    model.add(layers.Flatten()) 
    model.add(layers.Dense(1)) #camada densa com somente 1 neurônio 
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    return model 

 

discriminator = make_discriminator_model() 
  decision = discriminator(generated_image) 
  print(decision) 

 

tf.Tensor([[-0.00400878]], shape=(1, 1), dtype=float32) 
 

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) 
   
  def discriminator_loss(real_output, fake_output): 
    real_loss = cross_entropy(tf.ones_like(real_output), real_output) 
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) 
    total_loss = real_loss + fake_loss 
    return total_loss 
   
  def generator_loss(fake_output): 
    return cross_entropy(tf.ones_like(fake_output), fake_output) 
   

generator_optimizer = tf.keras.optimizers.Adam(1e-4) 
  discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) 

 

checkpoint_dir = './training_checkpoints' 
  checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") 
  checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, 
                                   

discriminator_optimizer=discriminator_optimizer, 
                                   generator=generator, 
                                   discriminator=discriminator) 
   

EPOCHS = 100 
  noise_dim = 100 
  num_examples_to_generate = 16 
   
  seed = tf.random.normal([num_examples_to_generate, noise_dim]) 

 

@tf.function 
  def train_step(images): 
    noise = tf.random.normal([BATCH_SIZE, noise_dim]) 
   
    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: 
      generated_images = generator(noise, training=True) 
      real_output = discriminator(images, training=True) 
      fake_output = discriminator(generated_images, training=True) 
   
      gen_loss = generator_loss(fake_output) 
      disc_loss = discriminator_loss(real_output, fake_output) 
   
    gradients_of_generator = gen_tape.gradient(gen_loss, 

generator.trainable_variables) 
    gradients_of_discriminator = disc_tape.gradient(disc_loss, 

discriminator.trainable_variables) 
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    generator_optimizer.apply_gradients(zip(gradients_of_generator, 

generator.trainable_variables)) 
 

    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, 
discriminator.trainable_variables)) 
 

 
  def generate_and_save_images(model, epoch, test_input): 
    predictions = model(test_input, training=False) 
    fig = plt.figure(figsize=[4,4]) 
   
    for i in range(predictions.shape[0]): 
      plt.subplot(4, 4, i+1) 
      plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') 
      plt.axis('off') 
   
    plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 
    plt.show 

 

def train(dataset, epochs): 
    for epoch in range(epochs): 
      start = time.time() 
   
      for image_batch in dataset: 
        train_step(image_batch) 
   
      display.clear_output(wait=True) 
      generate_and_save_images(generator, epoch + 1, seed) 
   
      if (epoch + 1) % 15 == 0: 
        checkpoint.save(file_prefix = checkpoint_prefix) 
   
        print ('Time for epoch {} is {} sec'.format(epoch + 1, 

time.time()-start)) 
    display.clear_output(wait=True) 
    generate_and_save_images(generator, epochs, seed) 

 

def display_image(epoch_no): 
    return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no)) 
   
  display_image(EPOCHS) 
   
  anim_file = 'dcgan.gif' 
   
  with imageio.get_writer(anim_file, mode='I') as writer: 
    filenames = glob.glob('image*.png') 
    filenames = sorted(filenames) 
    last = -1 
    for i,filename in enumerate(filenames): 
      frame = 2*(i**0.5) 
      if round(frame) > round(last): 
        last = frame 

 



133 
 

      else: 
        continue 
        image = imageio.imread(filename) 
        writer.append_data(image) 
    image = imageio.imread(filename) 
    writer.append_data(image) 
   
  import tensorflow_docs.vis.embed as embed 
  embed.embed_file(anim_file) 
   

 

 

4 
 

import collections 
  import logging 
  import os 
  import pathlib 
  import re 
  import string 
  import sys 
  import time 
  import numpy as np 
  import matplotlib.pyplot as plt 

import tensorflow_datasets as tfds 
  import tensorflow_text as text 
  import tensorflow as tf 

 

logging.getLogger('tensorflow').setLevel(logging.ERROR) 
examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en', 
with_info=True, as_supervised=True) 

  train_examples, val_examples = examples['train'], examples['validation'] 
 

for pt_examples, en_examples in train_examples.batch(3).take(1): 
    for pt in pt_examples.numpy(): 
      print(pt.decode( 'utf-8')) 
    print() 
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    for en in en_examples.numpy(): 
      print(en.decode('utf-8')) 

 

e quando melhoramos a procura , tiramos a única vantagem da impressão , 
que é a serendipidade . 

  mas e se estes fatores fossem ativos ? 
  mas eles não tinham a curiosidade de me testar . 
   
  and when you improve searchability , you actually take away the one 

advantage of print , which is serendipity . 
  but what if it were active ? 
  but they did n't test for curiosity . 

 

model_name = "ted_hrlr_translate_pt_en_converter" 
  tf.keras.utils.get_file(f"{model_name}.zip", 
  f"https://storage.googleapis.com/download.tensorflow.org/models/{model_na

me}.zip", cache_dir='.', cache_subdir='', extract=True) 
  tokenizers = tf.saved_model.load(model_name) 

 

def tokenize_pairs(pt, en): 
    pt = tokenizers.pt.tokenize(pt) 
    pt = pt.to_tensor() 
   
    en = tokenizers.en.tokenize(en) 
    en = en.to_tensor() 
    return pt, en 

 

BUFFER_SIZE = 20000 
  BATCH_SIZE = 64 
   
  def make_batches(ds): 
    return( 
      ds.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).map(tokenize_pairs, 

num_parallel_calls=tf.data.AUTOTUNE).prefetch(tf.data.AUTOTUNE)) 
   
  train_batches = make_batches(train_examples) 
  val_batches = make_batches(val_examples) 

 

def get_angles(pos, i, d_model): 
    angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) 
    return pos * angle_rates 
   
  def positional_encoding(position, d_model): 
    angle_rads = get_angles(np.arange(position)[: , np.newaxis], 

np.arange(d_model)[np.newaxis, :], d_model) 
    angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) 
    angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) 
   
    pos_encoding = angle_rads[np.newaxis, ...] 
    return tf.cast(pos_encoding, dtype=tf.float32) 

 

n, d = 2048, 512 
  pos_encoding = positional_encoding(n, d) 
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  print(pos_encoding.shape) 
  pos_encoding = pos_encoding[0] 
   
  pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2)) 
  pos_encoding = tf.transpose(pos_encoding, (2, 1, 0)) 
  pos_encoding = tf.reshape(pos_encoding, (d, n)) 
   
  plt.pcolormesh(pos_encoding, cmap='RdBu') 
  plt.ylabel('Depth') 
  plt.xlabel('Position') 
  plt.colorbar() 
  plt.show() 

 

 

 

def create_padding_mask(seq): 
    seq = tf.cast(tf.math.equal(seq, 0), tf.float32) 
    return seq[:, tf.newaxis, tf.newaxis, :] 
   
  def create_look_ahead_mask(size): 
    mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) 
    return mask 

 

def scaled_dot_product_attention(q, k, v, mask): 
   
    matmul_qk = tf.matmul(q, k, transpose_b=True) 
    dk = tf.cast(tf.shape(k)[-1], tf.float32) 
   
    scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) 
    if mask is not None: 
      scaled_attention_logits += (mask * -1e9) 
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    attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) 
    output = tf.matmul(attention_weights, v) 
    return output, attention_weights 

 

class MultiHeadAttention(tf.keras.layers.Layer): 
    def __init__(self, d_model, num_heads): 
      super(MultiHeadAttention, self).__init__() 
      self.num_heads = num_heads 
      self.d_model = d_model 
      assert d_model % self.num_heads == 0 
      self.depth = d_model // self.num_heads 
   
      self.wq = tf.keras.layers.Dense(d_model) 
      self.wk = tf.keras.layers.Dense(d_model) 
      self.wv = tf.keras.layers.Dense(d_model) 
   
      self.dense = tf.keras.layers.Dense(d_model) 
   
    def split_heads(self, x, batch_size): 
      x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) 
      return tf.transpose(x, perm=[0, 2, 1, 3]) 
   
    def call(self, v, k, q, mask): 
      batch_size = tf.shape(q)[0] 
      q = self.wq(q) 
      q = self.split_heads(q, batch_size) 
      k = self.wq(k) 
      k = self.split_heads(k, batch_size) 
      v = self.wq(v) 
      v = self.split_heads(v, batch_size) 
   
      scaled_attention, attention_weights = scaled_dot_product_attention(q, 

k, v, mask) 
   
      scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) 
      concat_attention = tf.reshape(scaled_attention, (batch_size, -1, 

self.d_model)) 
      output = self.dense(concat_attention) 
      return output, attention_weights 

 

def point_wise_feed_forward_network(d_model, dff): 
    return tf.keras.Sequential([ 
      tf.keras.layers.Dense(dff, activation='relu'), 
      tf.keras.layers.Dense(d_model) 
    ]) 

 

class EncoderLayer(tf.keras.layers.Layer): 
    def __init__(self, d_model, num_heads, dff, rate=0.1): 
      super(EncoderLayer, self).__init__() 
   
      self.mha = MultiHeadAttention(d_model, num_heads) 
      self.ffn = point_wise_feed_forward_network(d_model, dff) 
   

 



137 
 

      self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
      self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
   
      self.dropout1 = tf.keras.layers.Dropout(rate) 
      self.dropout2 = tf.keras.layers.Dropout(rate) 
    def call(self, x, training, mask): 
      attn_output, _ = self.mha(x, x, x, mask) 
      attn_output = self.dropout1(attn_output, training=training) 
      out1 = self.layernorm1(x + attn_output) 
      ffn_output = self.ffn(out1) 
      ffn_output = self.dropout2(ffn_output, training=training) 
      out2 = self.layernorm2(out1 + ffn_output) 
   
      return out2 

 

class DecoderLayer(tf.keras.layers.Layer): 
    def __init__(self, d_model, num_heads, dff, rate=0.1): 
      super(DecoderLayer, self).__init__() 
      self.mha1 = MultiHeadAttention(d_model, num_heads) 
      self.mha2 = MultiHeadAttention(d_model, num_heads) 
      self.ffn = point_wise_feed_forward_network(d_model, dff) 
      self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
      self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
      self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6) 
      self.dropout1 = tf.keras.layers.Dropout(rate) 
      self.dropout2 = tf.keras.layers.Dropout(rate) 
      self.dropout3 = tf.keras.layers.Dropout(rate) 
    def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 
   
      attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) 
      attn1 = self.dropout1(attn1, training=training) 
      out1 = self.layernorm1(attn1 + x) 
   
      attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1, 

padding_mask) 
      attn2 = self.dropout2(attn2, training=training) 
      out2 = self.layernorm2(attn2 + out1) 
   
      ffn_output = self.ffn(out2) 
      ffn_output = self.dropout3(ffn_output, training=training) 
      out3 = self.layernorm3(ffn_output + out2) 
   
      return out3, attn_weights_block1, attn_weights_block2 

 

class Encoder(tf.keras.layers.Layer): 
    def __init__(self, num_layers, d_model, num_heads, dff, 

input_vocab_size, maximum_position_encoding, rate=0.1): 
      super(Encoder, self).__init__() 
      self.d_model = d_model 
      self.num_layers = num_layers 
      self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) 
      self.pos_encoding = positional_encoding(maximum_position_encoding, 

self.d_model) 
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      self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ 
in range(num_layers)] 

      self.dropout = tf.keras.layers.Dropout(rate) 
    def call(self, x, training, mask): 
      seq_len = tf.shape(x)[1] 
      x = self.embedding(x) 
      x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 
      x += self.pos_encoding[:, :seq_len, :] 
      x = self.dropout(x, training=training) 
      for i in range(self.num_layers): 
        x = self.enc_layers[i](x, training, mask) 
      return x 

 

class Decoder(tf.keras.layers.Layer): 
    def __init__(self, num_layers, d_model, num_heads, dff, 

target_vocab_size, maximum_position_encoding, rate=0.1): 
      super(Decoder, self).__init__() 
      self.d_model = d_model 
      self.num_layers = num_layers 
      self.embedding = tf.keras.layers.Embedding(target_vocab_size, 

d_model) 
      self.pos_encoding = positional_encoding(maximum_position_encoding, 

d_model) 
      self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _ 

in range(num_layers)] 
      self.dropout = tf.keras.layers.Dropout(rate) 
    def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 
      seq_len = tf.shape(x)[1] 
      attention_weights = {} 
      x = self.embedding(x) 
      x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 
      x += self.pos_encoding[:, :seq_len, :] 
      x = self.dropout(x, training=training) 
      for i in range(self.num_layers): 
        x, block1, block2 = self.dec_layers[i](x, enc_output, training, 

look_ahead_mask, padding_mask) 
        attention_weights[f'decoder_layer{i+1}_block1'] = block1 
        attention_weights[f'decoder_layer{i+1}_block2'] = block2 
      return x, attention_weights 

 

class Transformer(tf.keras.Model): 
    def __init__(self, num_layers, d_model, num_heads, dff, 

input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1): 
      super().__init__() 
      self.encoder = Encoder(num_layers, d_model, num_heads, dff, 

input_vocab_size, pe_input, rate) 
      self.decoder = Decoder(num_layers, d_model, num_heads, dff, 

target_vocab_size, pe_target, rate) 
      self.final_layer = tf.keras.layers.Dense(target_vocab_size) 
   
    def call(self, inputs, training): 
      inp, tar = inputs 
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      enc_padding_mask, look_ahead_mask, dec_padding_mask = 
self.create_masks(inp, tar) 

      enc_output = self.encoder(inp, training, enc_padding_mask) 
      dec_output, attention_weights = self.decoder(tar, enc_output, 

training, look_ahead_mask, dec_padding_mask) 
      final_output = self.final_layer(dec_output) 
      return final_output, attention_weights 
   
    def create_masks(self, inp, tar): 
      enc_padding_mask = create_padding_mask(inp) 
      dec_padding_mask = create_padding_mask(inp) 
      look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) 
      dec_target_padding_mask = create_padding_mask(tar) 
      look_ahead_mask = tf.maximum(dec_target_padding_mask, 

look_ahead_mask) 
      return enc_padding_mask, look_ahead_mask, dec_padding_mask 

 

num_layers = 4 
  d_model = 128 
  dff = 512 
  num_heads = 8 
  dropout_rate = 0.1 

 

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): 
    def __init__(self, d_model, warmup_steps=4000): 
      super(CustomSchedule, self).__init__() 
      self.d_model = d_model 
      self.d_model = tf.cast(self.d_model, tf.float32) 
      self.warmup_steps = warmup_steps 
    def __call__(self, step): 
      step = tf.cast(step, tf.float32) 
      arg1 = tf.math.rsqrt(step) 
      arg2 = step * (self.warmup_steps ** -1.5) 
      return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) 
   
  learning_rate = CustomSchedule(d_model) 
  optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, 

beta_2=0.98, epsilon=1e-9) 
 

loss_object = 
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, 
reduction='none') 

  def loss_function(real, pred): 
    mask = tf.math.logical_not(tf.math.equal(real, 0)) 
    loss_ = loss_object(real, pred) 
    mask = tf.cast(mask, dtype=loss_.dtype) 
    loss_ *= mask 
    return tf.reduce_sum(loss_)/tf.reduce_sum(mask) 
   
  def accuracy_function(real, pred): 
    accuracies = tf.equal(real, tf.argmax(pred, axis=2)) 
    mask = tf.math.logical_not(tf.math.equal(real, 0)) 
    accuracies = tf.math.logical_and(mask, accuracies) 
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    accuracies = tf.cast(accuracies, dtype=tf.float32) 
    mask = tf.cast(mask, dtype=tf.float32) 
    return tf.reduce_sum(accuracies)/tf.reduce_sum(mask) 
   
  train_loss = tf.keras.metrics.Mean(name='train_loss') 
  train_accuracy = tf.keras.metrics.Mean(name='train_accuracy') 

 

transformer = Transformer(num_layers=num_layers, 
                            d_model=d_model, 
                            num_heads=num_heads, 
                            dff=dff, 
                            

input_vocab_size=tokenizers.pt.get_vocab_size().numpy(), 
                            

target_vocab_size=tokenizers.en.get_vocab_size().numpy(), 
                            pe_input=1000, 
                            pe_target=1000, 
                            rate=dropout_rate) 

 

checkpoint_path = "./checkpoints/train" 
   
  ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer) 
   
  ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, 

max_to_keep=5) 
   
  if ckpt_manager.latest_checkpoint: 
    ckpt.restore(ckpt_manager.latest_checkpoint) 
    print('Latest checkpoint restored!!') 

 

EPOCHS = 20 
   
  train_step_signature = [ 
      tf.TensorSpec(shape=(None, None), dtype=tf.int64), 
      tf.TensorSpec(shape=(None, None), dtype=tf.int64), 
  ] 
  @tf.function(input_signature=train_step_signature) 
  def train_step(inp, tar): 
    tar_inp = tar[:, :-1] 
    tar_real = tar[:, 1:] 
    with tf.GradientTape() as tape: 
      predictions, _ = transformer([inp, tar_inp], training=True) 
      loss = loss_function(tar_real, predictions) 
   
    gradients = tape.gradient(loss, transformer.trainable_variables) 
    optimizer.apply_gradients(zip(gradients, 

transformer.trainable_variables)) 
   
    train_loss(loss) 
    train_accuracy(accuracy_function(tar_real, predictions)) 

 

for epoch in range(EPOCHS): 
    start = time.time() 
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    train_loss.reset_state() 
    train_accuracy.reset_state() 
    for (batch, (inp, tar)) in enumerate(train_batches): 
      train_step(inp, tar) 
      if batch % 50 == 0: 
        print(f'Epoch {epoch + 1} Batch {batch} Loss 

{train_loss.result():.4f} Accuracy {train_accuracy.result():.4f}') 
    if (epoch + 1) % 5 == 0: 
      ckpt_save_path = ckpt_manager.save() 
   

class Translator(tf.Module): 
    def __init__(self, tokenizers, transformer): 
      self.tokenizers = tokenizers 
      self.transformer = transformer 
    def __call__(self, sentence, max_length=20): 
      assert isinstance(sentence, tf.Tensor) 
      if len(sentence.shape) == 0: 
        sentence = sentence[tf.newaxis] 
      sentence = self.tokenizers.pt.tokenize(sentence).to_tensor() 
      encoder_input = sentence 
      start_end = self.tokenizers.en.tokenize([''])[0] 
      start = start_end[0][tf.newaxis] 
      end = start_end[1][tf.newaxis] 
      output_array = tf.TensorArray(dtype=tf.int64, size=0, 

dynamic_size=True) 
      output_array = output_array.write(0, start) 
      for i in tf.range(max_length): 
        output = tf.transpose(output_array.stack()) 
        predictions, _ = self.transformer([encoder_input, output], 

training=False) 
        predictions = predictions[:, -1:, :] 
        predicted_id = tf.argmax(predictions, axis=-1) 
        output_array = output_array.write(i+1, predicted_id[0]) 
        if predicted_id == end: 
          break 
      output = tf.transpose(output_array.stack()) 
      text = tokenizers.en.detokenize(output)[0] 
      tokens = tokenizers.en.lookup(output)[0] 
      _, attention_weights = self.transformer([encoder_input, 

output[:,:-1]], training=False) 
      return text, tokens, attention_weights 

 

translator = Translator(tokenizers, transformer) 
   
  sentence = "Eu li sobre triceratops na enciclopédia." 
   
  translated_text, translated_tokens, attention_weights = 

translator(tf.constant(sentence)) 
   

  print(f'{"Prediction":15s}: {translated_text}') 
Prediction     : b'i read about telatolciss and in the concover .' 
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  APÊNDICE 9 – BIG DATA 
 

A – ENUNCIADO 
 

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de 

uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL). 

Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de 

dados empregados. 

 
B – RESOLUÇÃO 

 

No ambiente digital interconectado, a área de entretenimento, especialmente a Netflix, 

destaca-se por oferecer uma experiência de streaming abrangente. Lançado em 2010 e disponível 

em mais de 190 países e 30 idiomas, a empresa é uma líder nesse segmento, oferecendo filmes, 

documentários, séries e jogos através de uma plataforma acessível em diversos dispositivos, desde 

streaming sticks até smart TVs. A inovação tecnológica da Netflix vai além do seu vasto catálogo, 

empregando soluções avançadas para garantir uma experiência de usuário sem interrupções. 

Em 2019, a Netflix apresentou um estudo de caso no Kafka Summit sobre o "Netflix Trivia", 

um sistema interativo de perguntas e respostas para o processamento de dados em tempo real. Essa 

apresentação evidenciou a capacidade da empresa em integrar tecnologias avançadas e forneceu 

insights valiosos sobre como gerenciar grandes volumes de dados e proporcionar uma experiência de 

usuário fluida e responsiva. A base do Netflix Trivia é composta pelo Apache Kafka e pelo Apache 

Flink, plataformas de streaming dirigidas a eventos que permitem a ingestão e o processamento de 

dados em tempo real. A escolha do Kafka foi estratégica devido à sua capacidade de lidar com 

grandes volumes de dados e sua arquitetura distribuída, que oferece alta disponibilidade e resiliência. 

Isso também possibilitou à Netflix um melhor gerenciamento dos custos de criação e investimento em 

novos projetos, equilibrando a relação entre produção e custos. 

A comunicação dirigida por requisições, como o modelo síncrono, pode levar ao caos e 

atrasos devido à complexidade dos fluxos de trabalho, necessidade de rastreabilidade e 

inconsistência em todo o sistema, além de gerar retrabalho. Em contraste, uma comunicação 

centrada em eventos, como a implementada com Kafka e Flink, é mais eficiente. Esse modelo 

proporciona um fluxo canônico de fatos, desacoplamento dos componentes, e melhoria na gestão de 

dados e triggers. Além disso, oferece uma rastreabilidade eficiente através de logs. 

No ecossistema Kafka da Netflix, a transição de uma comunicação complexa baseada 

em requisições síncronas para uma abordagem centrada em eventos é facilitada pela arquitetura de 

processamento de dados em tempo real oferecida por Kafka e Flink. Essas ferramentas permitem um 

processamento de streams eficiente, com alta tolerância a falhas, observabilidade nativa e facilidade 

na inicialização de listeners de eventos. 
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 No contexto de uma empresa que utiliza a suíte Kafka, o tratamento de dados é dividido em 

três etapas principais: input (entrada), process (processamento) e output (saída). 

Na etapa de entrada, ferramentas como o Kafka são usadas para coletar e armazenar dados 

de várias fontes de forma desordenada, garantindo alta disponibilidade e escalabilidade. 

Durante a fase de processamento, o Apache Flink é frequentemente empregado. O Flink, 

com sua arquitetura robusta, realiza computações complexas sobre fluxos de dados contínuos com 

baixa latência, garantindo consistência de estado e possibilitando operações como junções e 

agregações. Finalmente, na etapa de saída, um stream Kafka ordenado e chaveado é utilizado para 

garantir que os dados processados sejam entregues de forma organizada e associados a chaves 

específicas. Um índice de busca pode ser empregado para permitir consultas rápidas e eficientes aos 

dados processados. Esse pipeline de dados robusto é essencial para empresas que precisam 

processar grandes volumes de dados em tempo real, mantendo a competitividade no mercado. A 

integração dessas ferramentas proporciona uma solução poderosa para a gestão de dados em 

ambientes corporativos, onde a velocidade e a precisão na entrega de informações são cruciais. 

No controle do processo de produção de conteúdo da Netflix, as aplicações nas áreas de 

produção, cronograma, contas a pagar, tesouraria e custos são desenvolvidos como microserviços. 

Esses microserviços comunicam-se e recebem eventos através de tópicos do Kafka. No Flink, os 

eventos são recebidos na ordem em que chegam, vinculados ao ID do produto e passam por um 

processamento detalhado que inclui materialização com atraso para correção de dados, filtragem, 

agrupamento por janelas de tempo, ordenação cronológica, particionamento através de Partition Key, 

enriquecimento com dados de outros microserviços, transformação e disponibilização final em tópicos 

do Kafka. Esse nível de desacoplamento e o uso do Flink garantem a manutenção do estado correto 

dos eventos, possibilitando a recuperação e a atualização de dados sem afetar as aplicações 

envolvidas. 

A conclusão do estudo de caso destaca como o Big Data pode transformar uma empresa e 

aprimorar a experiência do usuário. A Netflix aplica os "5 V’s" do Big Data – Volume, Velocidade, 

Variedade, Veracidade e Valor – para otimizar seus serviços e oferecer uma experiência 

personalizada aos seus assinantes. 

 Volume: A Netflix gerencia um imenso volume de dados diariamente. Cada clique, 

visualização e interação dos usuários geram uma quantidade significativa de informações. Esse 

volume colossal de dados é essencial para entender melhor os hábitos e preferências dos assinantes. 

Velocidade: A agilidade no processamento dos dados é fundamental para a Netflix. A 

plataforma realiza análises em tempo real para oferecer recomendações instantâneas e ajustar a 

qualidade do streaming conforme necessário. Esse processamento rápido garante uma experiência 

de visualização contínua e sem interrupções. 

Variedade: A Netflix coleta uma ampla gama de dados, desde informações estruturadas, 

como classificações e histórico de visualização, até dados não estruturados, como comentários e 

interações nas redes sociais. Essa diversidade permite uma análise mais abrangente e detalhada do 

comportamento dos usuários. 
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Veracidade: A qualidade e a confiabilidade dos dados são vitais para a Netflix. A empresa 

implementa rigorosos processos de verificação para garantir a precisão e a utilidade dos dados. Esse 

compromisso com a veracidade é essencial para fornecer recomendações relevantes e tomar 

decisões estratégicas bem-informadas. 

Valor: O verdadeiro valor do Big Data para a Netflix está na capacidade de transformar essas 

informações em insights acionáveis. Através da análise de dados, a Netflix personaliza a experiência 

de cada usuário, sugerindo filmes e séries que correspondem aos seus interesses individuais. Isso 

não só aumenta a satisfação dos clientes, mas também contribui para a retenção e lealdade dos 

assinantes. 
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  APÊNDICE 10 – VISÃO COMPUTACIONAL 
 

A – ENUNCIADO 
 

1) Extração de Características  
  

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de 

imuno-histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão 

divididas em diretórios.  O objetivo é classificar as imagens nas categorias correspondentes. Uma 

base de imagens será utilizada para o treinamento e outra para o teste do treino.  

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging) 

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão 

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada. 

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não 
utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de 
treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última 

camada de classificação e armazene os valores da penúltima camada como um vetor de 

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.  

  

Tarefas:  

a) Carregue a base de dados de Treino.  
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).  
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada 

extrator).  
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.  
e) Carregue a base de Teste e execute a tarefa 3 nesta base.  
f) Aplique os modelos treinados nos dados de treino  
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.  
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada  
  

2) Redes Neurais  
  

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais 

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully 

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data 

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem 

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será 

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation 
cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.  

  

Tarefas:  
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a) Utilize a base de dados de Treino já separadas em treino e validação do exercício 
anterior  

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation  
c) Aplique os modelos treinados nas imagens da base de Teste  
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.  
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada  

  

 

 

B – RESOLUÇÃO 
 
METODOLOGIA UTILIZADA 

A base de imagens de treino original, contida no arquivo Train_Warwick.zip, foi dividida 

manualmente em bases de treino e validação, conforme orientação do enunciado do 

exercício, ou seja, 80% das imagens para treino e 20% para validação, segregando os 

pacientes, fazendo com que não houvesse imagens de um mesmo paciente 

simultaneamente em ambas. Desta forma, a divisão apresentou imagens de 16 

(dezesseis) pacientes na base de treino (pacientes 1, 4, 6, 9, 11, 15, 16, 24, 25, 29, 32, 

46 e 57) e de 4 (quatro) pacientes na base de validação (pacientes 14, 18, 22 e 36). 

 Para controlar o processo de leitura dos arquivos de imagem de forma correta para 

cada tipo de base (treinamento, validação e teste), foram criados 3 (três arquivos) texto: 

Test.txt, Valid.txt e Test.txt, contendo respectivamente os caminhos relativos dos 

arquivos de imagem das bases de treino, validação e teste. Esses arquivos são 

compactados no arquivo FilePaths.tar, de forma que possam ser descompactados no 

local correto, através de código no notebook, quando da sua execução. Para que o 

código execute corretamente, previamente a sua execução, as imagens devem estar 

divididas em pastas de forma idêntica ao que está apontado nesses arquivos texto. 

Para o desenvolvimento e treinamento dos modelos de classificação propostos, foi 

utilizada a biblioteca Python scikit-learn. Para o desenvolvimento e treinamento dos 

modelos de redes neurais convolucionais profundas, foi utilizada a biblioteca 

Tensorflow. 

 

COMPARAÇÃO DOS MODELOS E MÉTRICAS UTILIZADAS 

A análise comparativa entre os modelos Random Forest, SVM e RNA para predição 

dos dados extraídos, revelou diferenças significativas no desempenho e na influência 

de cada tipo de técnica sobre os resultados obtidos. Além disso, pode-se observar 

diferenças significativas nos resultados de cada uma das técnicas, dependendo do tipo 

de features submetidas a elas como insumo para o treinamento: features geradas pelo 

processo de LBP ou features geradas pela rede neural convolucional VGG16 carregada 
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com os pesos pré-treinados com a base imagenet. 

 

 Utilizando as features LBP, a especificidade das classificações está relativamente 

equilibrada entre os algoritmos, com o SVM e o Random Forest apresentando 

desempenho próximo em todas as métricas e a RNA pior em relação a ambas. 

 

 Com as features VGG16, as métricas produzidas pelos três modelos distintos de 

classificação ficam muito próximas umas das outras, com vantagem para um modelo 

ou outro dependendo da métrica observada. 

Observa-se também que houve uma melhora significativa nas métricas em relação aos 

modelos treinados com as features geradas pelo processo LBP. 

Como o problema em questão envolve a detecção de câncer de mama, deve-se dar 

especial ênfase às predições falso negativas, já que o risco para o paciente é menor de 

receber um diagnóstico falso positivo do que ser diagnosticado como negativo, quando 

na verdade existe a doença. Desta forma, a principal métrica utilizada na avaliação 

deve ser a Sensibilidade, o que leva a classificar como o melhor modelo, o RNA treinado 

com as features VGG16, já que ele apresentou a maior sensibilidade: 76,22%, mesmo 

tendo o segundo melhor índice de acurácia. 

 

Código 
 

BATCH_SIZE = 32 

WORK_FOLDER = '.'  

BASES_FOLDER = WORK_FOLDER + '/Bases'  

FEATURES_FOLDER = WORK_FOLDER + '/Features'  

TRAINING_TXTFILE_PATH = WORK_FOLDER + '/Train.txt'  

VALIDATION_TXTFILE_PATH = WORK_FOLDER + '/Valid.txt'  

TEST_TXTFILE_PATH = WORK_FOLDER + '/Test.txt'  

TRAINING_BASE_PATH = BASES_FOLDER + '/Train'  

VALIDATION_BASE_PATH = BASES_FOLDER + '/Valid'  

TEST_BASE_PATH = BASES_FOLDER + '/Test' 

LBP_RADIUS = 1 
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LBP_NUM_POINTS = 8 

import os 

import numpy as np 

import cv2 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from skimage.feature import local_binary_pattern 

from sklearn import svm 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.neural_network import MLPClassifier 

from sklearn.metrics import accuracy_score, f1_score, precision_score, 

recall_score, classification_report, confusion_matrix 

from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from keras.layers import Flatten, Dense 

from keras.models import Model 

 

import tensorflow as tf 

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) 

 

Num GPUs Available: 1 

 

!tar -xvf ./Bases.tar -C ./ 

!tar -xvf ./FilePaths.tar -C ./ 

 

x Bases/ 

x Bases/Test/ 

x Bases/Test/0/ 

x Bases/Test/0/66_HER2_10094.png 

. 

. 

. 

x Bases/Valid/3/22_HER2_18855.png 

x Bases/Valid/3/22_HER2_19575.png 

x Bases/Valid/3/22_HER2_9790.png 

x Valid.txt 

x Test.txt 

x Train.txt 
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os.makedirs(FEATURES_FOLDER, exist_ok=True) 

def lbp_riu(img, n_points:int, radius:int): 

n_points *= radius # adjust # of neighbours according to radius # Define a 

função para 

cálculo do LBP 

lbp = local_binary_pattern(img, n_points, radius, method='uniform') 

#Array de zeros com P+2 posições +1 para o lable feature_array = 

np.zeros(n_points+2, dtype=int) rows = img.shape[0] 

cols = img.shape[1] 

for r in range (0, rows): 

for c in range (0, cols): 

feature_array[int(lbp[r][c])] += 1 

return feature_array, lbp 

 

def calc_features(arq): 

img_path = open(arq, 'r') 

for line in img_path: 

label = line.rstrip('\n').split('/')[-2] 

ftype = line.rstrip('\n').split('/')[-3] 

nome_arq = 

f'{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_{ftype}.csv' 

img = cv2.imread(line.strip(),0) 

if img is None: 

print(f"Erro ao carregar a imagem: {line.strip()}") 

continue 

if len(img.shape) > 2: 

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

features, lbp = lbp_riu(img, LBP_NUM_POINTS, LBP_RADIUS) 

features_str = '%s' % (label) 

for P in features: 

features_str += ",%d" % (P) 

features_str += '\n' 

arquivo = open(nome_arq, 'a') 

arquivo.write(features_str) 

arquivo.close() 

img_path.close() 

 

print('Gerando Features da base de Treino...') 

calc_features(TRAINING_TXTFILE_PATH) 

print('Features de Treino geradas!') 

print('Gerando Features da base de Validação...') 
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calc_features(VALIDATION_TXTFILE_PATH) 

print('Features de Validação geradas!') 

print('Gerando Features da base de Teste...') 

calc_features(TEST_TXTFILE_PATH) 

print('Features de Teste geradas!') 

 

Gerando Features da base de Treino... 

Features de Treino geradas! 

Gerando Features da base de Validação... 

Features de Validação geradas! 

Gerando Features da base de Teste... 

Features de Teste geradas! 

 

vgg_0 = VGG16(input_shape=(224,224,3), 

weights='imagenet', 

include_top=False) 

flatten = Flatten()(vgg_0.output) 

vgg = Model(inputs=vgg_0.input, outputs=flatten) 

for l in vgg_0.layers: 

l.trainable = False 

vgg.summary() 

 

Model: "model" 

Layer (type) Output Shape Param # 

================================================================= 

input_1 (InputLayer) [(None, 224, 224, 3)] 0 

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 

Layer (type) Output Shape Param # 

================================================================= 

input_1 (InputLayer) [(None, 224, 224, 3)] 0 

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 
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block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 

flatten (Flatten) (None, 25088) 0 

================================================================= 

Total params: 14,714,688 

Trainable params: 0 

Non-trainable params: 14,714,688 

================================================================= 

 

train_generator = ImageDataGenerator(preprocessing_function=preprocess_input) 

valid_generator = ImageDataGenerator(preprocessing_function=preprocess_input) 

test_generator = ImageDataGenerator(preprocessing_function=preprocess_input) 

traingen = train_generator.flow_from_directory(TRAINING_BASE_PATH, 

target_size=(224, 224), 

batch_size=BATCH_SIZE, 

class_mode='categorical', 

classes=['0','1','2','3'], 

shuffle=False, 

seed=42) 

validgen = valid_generator.flow_from_directory(VALIDATION_BASE_PATH, 

target_size=(224, 224), 

batch_size=BATCH_SIZE, 

class_mode=None, 

classes=['0','1','2','3'], 

shuffle=False, 

seed=42) 

testgen = test_generator.flow_from_directory(TEST_BASE_PATH, 

target_size=(224, 224), 

batch_size=BATCH_SIZE, 

class_mode=None, 

classes=['0','1','2','3'], 

shuffle=False, 

seed=42) 

 

Found 478 images belonging to 4 classes. 
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Found 115 images belonging to 4 classes. 

Found 371 images belonging to 4 classes. 

 

print('Gerando Features da base de Treino...') 

features_vgg_train = vgg.predict(traingen) 

print('Features de Treino Geradas!') 

 

print('-------------------------------------- ') 

print('Gerando Features da base de Validação. . ') 

features_vgg_valid = vgg.predict(validgen) 

print('Features de Validação Geradas!') 

 

print('-------------------------------------- ') 

print('Gerando Features da base de Teste. . ') 

features_vgg_test = vgg.predict(testgen) 

print('Features de Teste Geradas!') 

 

Gerando Features da base de Treino... 

15/15 [==============================] - 48s 2s/step 

Features de Treino Geradas! 

Gerando Features da base de Validação... 

4/4 [==============================] - 17s 5s/step 

Features de Validação Geradas! 

Gerando Features da base de Teste... 

12/12 [==============================] - 6s 540ms/step 

Features de Teste Geradas! 

 

def extrai_features_vgg(tipo_base:str): 

if tipo_base == 'Train': 

generator = traingen 

features = features_vgg_train 

elif tipo_base == 'Valid': 

generator = validgen 

features = features_vgg_valid 

elif tipo_base == 'Test': 

generator = testgen 

features = features_vgg_test 

else: 

raise ValueError('Valor de parâmetro inválido para tipo-base') 

nome_arq = f'{FEATURES_FOLDER}/vgg16_{tipo_base}.csv' 

for i in range(0, len(generator.labels)): 
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features_str = '%d' % (generator.labels[i]) 

for ft in features[i]: 

if ft == 0: 

features_str += ",%d" % (ft) 

else: 

features_str += ",%f" % (ft) 

features_str += '\n' 

arquivo = open(nome_arq, 'a') 

arquivo.write(features_str) 

arquivo.close() 

print("Salvando features da base de Treino...") 

extrai_features_vgg('Train') 

print("Salvando features da base de Validação...") 

extrai_features_vgg('Valid') 

print("Salvando features da base de Teste...") 

extrai_features_vgg('Test') 

print("fim") 

 

Salvando features da base de Treino... 

Salvando features da base de Validação... 

Salvando features da base de Teste... 

fim 

 

print ("Carregando features LBP...") 

dados_train = 

pd.read_csv(f"{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_Train.c

sv", header=None) 

dados_valid = 

pd.read_csv(f"{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_Valid.c

sv", header=None) 

X_train_lbp = dados_train.iloc[:, 1:] 

y_train_lbp = dados_train.iloc[:, 0] 

X_valid_lbp = dados_valid.iloc[:, 1:] 

y_valid_lbp = dados_valid.iloc[:, 0] 

print("Features LBP Carregadas") 

print("Carregando features VGG16...") 

dados_train_vgg = pd.read_csv(f"{FEATURES_FOLDER}/vgg16_Train.csv", 

header=None) 

dados_valid_vgg = pd.read_csv(f"{FEATURES_FOLDER}/vgg16_Valid.csv", 

header=None) 

X_train_vgg = dados_train_vgg.iloc[:, 1:] 
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y_train_vgg = dados_train_vgg.iloc[:, 0] 

X_valid_vgg = dados_valid_vgg.iloc[:, 1:] 

y_valid_vgg = dados_valid_vgg.iloc[:, 0] 

print("Features VGG16 Carregadas") 

 

Carregando features LBP... 

Features LBP Carregadas 

Carregando features VGG16... 

Features VGG16 Carregadas 

 

model_svm_lbp = svm.SVC(kernel='linear') 

print ("Treinando Modelo...") 

 

model_svm_lbp.fit(X_train_lbp, y_train_lbp) 

print (f"Treinamento finalizado - kernel:{model_svm_lbp.kernel}") 

print ("Efetuando Predições com a base de validação para validar o 

modelo...") 

predicted_svm = model_svm_lbp.predict(X_valid_lbp) 

print ("Predições Efetuadas!") 

print(f"Classification report para predições com a base de validação. 

Classificador {model_svm_lbp}:\n" 

f"{classification_report(y_valid_lbp, predicted_svm)}") 

 

Treinando Modelo... 

Treinamento finalizado - kernel:linear 

Efetuando Predições com a base de validação para validar o modelo... 

Predições Efetuadas! 

Classification report para predições com a base de validação. Classificador 

SVC(kernel='linear'): 

 

                       precision recall f1-score support 

0                         0.78      0.75     0.76       28 

1                         0.50      0.07     0.13       27 

2                         0.52      0.90     0.66       30 

3                         0.88      0.93     0.90       30 

accuracy                                     0.68       115 

macro avg          0.67      0.66     0.61       115 

weighted avg     0.67      0.68     0.62        115 

 

model_svm_vgg = svm.SVC(kernel='rbf') 

print ("Treinando Modelo...") 
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model_svm_vgg.fit(X_train_vgg, y_train_vgg) 

print (f"Treinamento finalizado - kernel:{model_svm_vgg.kernel}") 

print ("Efetuando Predições com a base de validação para validar o 

modelo...") 

predicted_svm = model_svm_vgg.predict(X_valid_vgg) 

print ("Predições Efetuadas!") 

print(f"Classification report para predições com a base de validação. 

Classificador {model_svm_vgg}:\n" 

f"{classification_report(y_valid_vgg, predicted_svm)}") 

 

Treinando Modelo... 

Treinamento finalizado - kernel:rbf 

Efetuando Predições com a base de validação para validar o modelo... 

Predições Efetuadas! 

Classification report para predições com a base de validação. Classificador 

SVC(): 

                        precision recall f1-score support 

0                           0.62    1.00      0.77       28 

1                           1.00    0.30      0.46       27 

2                           0.92    0.77      0.84       30 

3                           0.81    1.00      0.90       30 

accuracy                                       0.77      115 

macro avg            0.84     0.77      0.74      115 

weighted avg       0.84      0.77      0.75      115 

 

model_rf_lbp = RandomForestClassifier() 

print ("Treinando Modelo...") 

model_rf_lbp.fit(X_train_lbp, y_train_lbp) 

print (f"Treinamento finalizado.") 

print ("Efetuando Predições com a base de validação para validar o 

modelo...") 

predicted_rf = model_rf_lbp.predict(X_valid_lbp) 

print ("Predições Efetuadas!") 

print(f"Classification report para predições com a base de validação. 

Classificador {model_rf_lbp}:\n" 

f"{classification_report(y_valid_lbp, predicted_rf)}") 

 

Treinando Modelo... 

Treinamento finalizado. 

Efetuando Predições com a base de validação para validar o modelo... 

Predições Efetuadas! 
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Classification report para predições com a base de validação. Classificador 

RandomForestClassifier(): 

 

                        precision recall f1-score support 

0                          0.72     0.75      0.74      28 

1                          0.71     0.37      0.49      27 

2                          0.65     0.87      0.74      30 

3                          0.91     0.97      0.94      30 

accuracy                                       0.75     115 

macro avg           0.75     0.74      0.73      115 

weighted avg       0.75     0.75      0.73      115 

 

model_rf_vgg = RandomForestClassifier() 

print ("Treinando Modelo...") 

model_rf_vgg.fit(X_train_vgg, y_train_vgg) 

print (f"Treinamento finalizado.") 

print ("Efetuando Predições com a base de validação para validar o 

modelo...") 

predicted_rf = model_rf_vgg.predict(X_valid_vgg) 

print ("Predições Efetuadas!") 

print(f"Classification report para predições com a base de validação. 

Classificador {model_rf_vgg}:\n" 

f"{classification_report(y_valid_vgg, predicted_rf)}") 

 

Treinando Modelo... 

Treinamento finalizado. 

Efetuando Predições com a base de validação para validar o modelo... 

Predições Efetuadas! 

Classification report para predições com a base de validação. Classificador 

RandomForestClassifier(): 

                              precision recall f1-score support 

0                                0.59     0.96      0.73       28 

1                                0.67     0.15      0.24       27 

2                                0.85     0.73      0.79       30 

3                                0.81     1.00      0.90       30 

accuracy                                             0.72      115 

macro avg                 0.73      0.71     0.66       115 

weighted avg             0.73      0.72     0.67       115 

 

model_mlp_lbp = MLPClassifier(random_state=1, max_iter=300, 

learning_rate='adaptive') 
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print ("Treinando Modelo...") 

model_mlp_lbp.fit(X_train_lbp, y_train_lbp) 

print (f"Treinamento finalizado.") 

print ("Efetuando Predições com a base de validação para validar o 

modelo...") 

predicted_mlp = model_mlp_lbp.predict(X_valid_lbp) 

print ("Predições Efetuadas!") 

print(f"Classification report para predições com a base de validação. 

Classificador {model_mlp_lbp}:\n" 

f"{classification_report(y_valid_lbp, predicted_mlp)}") 

 

Treinando Modelo... 

Treinamento finalizado. 

Efetuando Predições com a base de validação para validar o modelo... 

Predições Efetuadas! 

Classification report para predições com a base de validação. Classificador 

MLPClassifier(learning_rate='adaptive', max_iter=30 

0, random_state=1): 

                         precision recall f1-score support 

0                           0.50     0.57      0.53       28 

1                           0.00     0.00      0.00       27 

2                           0.38     0.63      0.47       30 

3                           0.61     0.67      0.63       30 

accuracy                                        0.48      115 

macro avg            0.37     0.47       0.41      115 

weighted avg        0.38     0.48       0.42      115 

 

model_mlp_vgg = MLPClassifier(random_state=1, max_iter=300, 

learning_rate='adaptive') 

print ("Treinando Modelo...") 

model_mlp_vgg.fit(X_train_vgg, y_train_vgg) 

print (f"Treinamento finalizado.") 

print ("Efetuando Predições com a base de validação para validar o 

modelo...") 

predicted_mlp = model_mlp_vgg.predict(X_valid_vgg) 

print ("Predições Efetuadas!") 

print(f"Classification report para predições com a base de validação. 

Classificador {model_mlp_vgg}:\n" 

f"{classification_report(y_valid_vgg, predicted_mlp)}") 

 

Treinando Modelo... 
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Treinamento finalizado. 

Efetuando Predições com a base de validação para validar o modelo... 

Predições Efetuadas! 

Classification report para predições com a base de validação. Classificador 

MLPClassifier(learning_rate='adaptive', max_iter=30 

0, random_state=1): 

                           precision recall f1-score support 

0                             0.85     0.82      0.84      28 

1                             0.72     0.48      0.58      27 

2                             0.79     0.50      0.61      30 

3                             0.59     1.00      0.74      30 

accuracy                                          0.70     115 

macro avg              0.74     0.70      0.69      115 

weighted avg          0.74     0.70      0.69      115 

 

print ("Carregando features LBP...") 

dados_test_lbp = 

pd.read_csv(f"{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_Test.cs

v", header=None) 

X_test_lbp = dados_test_lbp.iloc[:, 1:] 

y_test_lbp = dados_test_lbp.iloc[:, 0] 

print("Features LBP Carregadas") 

print("Carregando features VGG16...") 

dados_test_vgg = pd.read_csv(f"{FEATURES_FOLDER}/vgg16_Test.csv", 

header=None) 

X_test_vgg = dados_test_vgg.iloc[:, 1:] 

y_test_vgg = dados_test_vgg.iloc[:, 0] 

print("Features VGG16 Carregadas") 

 

Carregando features LBP... 

Features LBP Carregadas 

Carregando features VGG16... 

Features VGG16 Carregadas 

 

print ("Efetuando Predições...") 

final_predict_svm_lbp = model_svm_lbp.predict(X_test_lbp) 

final_predict_svm_vgg = model_svm_vgg.predict(X_test_vgg) 

final_predict_rf_lbp = model_rf_lbp.predict(X_test_lbp) 

final_predict_rf_vgg = model_rf_vgg.predict(X_test_vgg) 

final_predict_mlp_lbp = model_mlp_lbp.predict(X_test_lbp) 

final_predict_mlp_vgg = model_mlp_vgg.predict(X_test_vgg) 
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print ("Predições Efetuadas!") 

 

Efetuando Predições... 

Predições Efetuadas! 

 

def imprime_metricas_modelo(true_classes, pred_classes, nome_modelo): 

def especificidade(true_classes, pred_classes): # Define uma função para 

calcular a especificidade que não existe no sklear 

cm = confusion_matrix(true_classes, pred_classes) 

specificities = [] 

for i in range(len(cm)): 

tn = np.sum(np.delete(np.delete(cm, i, axis=0), i, axis=1)) 

fp = np.sum(np.delete(cm, i, axis=0)[:, i]) 

specificity = tn / (tn + fp) if (tn + fp) > 0 else 0 

specificities.append(specificity) 

return np.mean(specificities) 

acuracia = accuracy_score(true_classes, pred_classes) 

sensibilidade = recall_score(true_classes, pred_classes, average='macro') 

especificidade = especificidade(true_classes, pred_classes) 

f1 = f1_score(true_classes, pred_classes, average='macro') 

print("-------------------------------------------------- ") 

print(f"Acurácia Modelo {nome_modelo}: {(acuracia * 100):.2f}%") 

print(f"Sensibilidade Modelo {nome_modelo}: {(sensibilidade * 100):.2f}%") 

print(f"Especificidade Modelo {nome_modelo}: {(especificidade * 100):.2f}%") 

print(f"F1 Modelo {nome_modelo}: {(f1 * 100):.2f}%") 

 

class_names = ['0','1','2','3'] 

def plot_heatmap(y_true, y_pred, class_names, ax, title): 

cm = confusion_matrix(y_true, y_pred) 

sns.heatmap( 

cm, 

annot=True, 

square=True, 

xticklabels=class_names, 

yticklabels=class_names, 

fmt='d', 

cmap=plt.cm.Blues, 

cbar=False, 

ax=ax 

) 

ax.set_title(title, fontsize=16) 
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ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right") 

ax.set_ylabel('True Label', fontsize=12) 

ax.set_xlabel('Predicted Label', fontsize=12) 

fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, figsize=(10, 

10)) 

plot_heatmap(y_test_lbp, final_predict_svm_lbp, class_names, ax1, title="SVM 

com LBP") 

plot_heatmap(y_test_lbp, final_predict_rf_lbp, class_names, ax2, title="RF 

com LBP") 

plot_heatmap(y_test_lbp, final_predict_mlp_lbp, class_names, ax3, title="RNA 

com LBP") 

plot_heatmap(y_test_vgg, final_predict_svm_vgg, class_names, ax4, title="SVM 

com VGG16") 

plot_heatmap(y_test_vgg, final_predict_rf_vgg, class_names, ax5, title="RF 

com VGG16") 

plot_heatmap(y_test_vgg, final_predict_mlp_vgg, class_names, ax6, title="RNA 

com VGG16") 

fig.suptitle("Comparação das Matrizes de Confusão", fontsize=24) 

fig.tight_layout() 

fig.subplots_adjust(top=1) 

plt.show() 

imprime_metricas_modelo(y_test_lbp, final_predict_svm_lbp, "SVM com LBP") 

imprime_metricas_modelo(y_test_vgg, final_predict_svm_vgg, "SVM com VGG16") 

imprime_metricas_modelo(y_test_lbp, final_predict_rf_lbp, "RF com LBP") 

imprime_metricas_modelo(y_test_vgg, final_predict_rf_vgg, "RF com VGG16") 

imprime_metricas_modelo(y_test_lbp, final_predict_mlp_lbp, "RNA com LBP") 

imprime_metricas_modelo(y_test_vgg, final_predict_mlp_vgg, "RNA com VGG16") 
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Acurácia Modelo SVM com LBP: 66.85% 

Sensibilidade Modelo SVM com LBP: 

67.26% Especificidade Modelo SVM 

com LBP: 88.96% F1 Modelo SVM com 

LBP: 67.19% 

Acurácia Modelo SVM com VGG16: 76.82% 

Sensibilidade Modelo SVM com VGG16: 

76.14% Especificidade Modelo SVM com 

VGG16: 92.27% F1 Modelo SVM com 

VGG16: 72.29% 

Acurácia Modelo RF com LBP: 69.81% 

Sensibilidade Modelo RF com LBP: 

70.55% Especificidade Modelo RF com 

LBP: 89.96% F1 Modelo RF com LBP: 

69.40% 

Acurácia Modelo RF com VGG16: 75.74% 

Sensibilidade Modelo RF com VGG16: 
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75.24% Especificidade Modelo RF com 

VGG16: 91.90% F1 Modelo RF com VGG16: 

72.24% 

Acurácia Modelo RNA com LBP: 56.87% 

Sensibilidade Modelo RNA com LBP: 

56.52% Especificidade Modelo RNA 

com LBP: 85.55% F1 Modelo RNA com 

LBP: 52.88% 

Acurácia Modelo RNA com VGG16: 76.01% 

Sensibilidade Modelo RNA com VGG16: 

76.22% Especificidade Modelo RNA com 

VGG16: 92.07% F1 Modelo RNA com 

VGG16: 75.64% 

 

2 

 

COMPARAÇÃO DOS MODELOS E MÉTRICAS UTILIZADAS 

 

A análise comparativa entre os modelos ResNet50 e VGG16, com e sem Data 

Augmentation, revelou diferenças claras no desempenho e na influência dessa técnica 

sobre os resultados. 

 

 O modelo ResNet50 com a camada TOP adaptada treinada sem Data Augmentation, 

apresentou as melhores métricas, em relação ao modelo treinado utilizando Data 

Augmentation. Esses valores indicam que o modelo conseguiu generalizar 

adequadamente os padrões do conjunto de teste, mostrando um desempenho 

consistente sem a necessidade de técnicas adicionais para manipulação de dados. A 

ausência de Data Augmentation não comprometeu a sua capacidade de lidar com os 

dados de teste. 

 Observa-se que a utilização do Data Augmentation no treinamento da camada TOP da 

Resnet50 adaptada ao problema de quatro classes produziu métricas relativamente 

piores. Esta diminuição sugere que o aumento artificial da variabilidade dos dados não 

contribuiu significativamente para o treinamento do modelo, o que pode ter sido 

causado pela variabilidade de brilho introduzida, que pode ter gerado distorções de cor 
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importantes nos exemplos de algumas classes submetidos à rede. 

 

 O modelo VGG16 com a camada TOP adaptada, apresentou desempenho geral inferior 

ao ResNet50. Sem Data Augmentation, o VGG16 demonstra uma boa capacidade de 

generalização, embora significativamente inferior em comparação ao ResNet50. Com 

a aplicação de Data Augmentation, o VGG16 também sofreu uma queda nas métricas, 

porém menos significativa. Esses resultados indicam que a técnica não apenas não 

ajudou os modelos, mas também prejudicou seu desempenho, possivelmente ao 

aumentar a dificuldade do treinamento sem um benefício proporcional. 

Em suma, os resultados mostram que o ResNet50 sem Data Augmentation foi o 

modelo com o melhor desempenho em todas as métricas, inclusive na Sensibilidade, 

já comentada no primeiro exercício, como a melhor para a avaliação deste tipo de 

problema (detecção de câncer de mama). 

 

Código 
 

resnet_train_generator_da = 

ImageDataGenerator( rotation_range=90, 

brightness_range=[0.1, 0.7], 

width_shift_range=0.5, 

height_shift_range=0.5 

, 

horizontal_flip=True, 

vertical_flip=True, 

validation_split=0, 

preprocessing_function=resnet_preprocess_input 

) 

vgg16_train_generator_da = 

ImageDataGenerator( rotation_range=90, 

brightness_range=[0.1, 0.7], 

width_shift_range=0.5, 

height_shift_range=0.5 

, 

horizontal_flip=True, 

vertical_flip=True, 

validation_split=0, 

preprocessing_function=vgg16_preprocess_input 
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) 

resnet_valid_generator = 

ImageDataGenerator(preprocessing_function=resnet_preprocess_input) 

vgg16_valid_generator = 

ImageDataGenerator(preprocessing_function=vgg16_preprocess_input) 

 

resnet_traingen = resnet_train_generator_da.flow_from_directory( 

    TRAINING_BASE_PATH, 

    target_size=(224, 224), 

    batch_size=BATCH_SIZE, 

    class_mode='categorical', 

    classes=['0','1','2','3'], 

    subset='training', 

    shuffle=True, 

    seed=42 

) 

 

vgg16_traingen = vgg16_train_generator_da.flow_from_directory( 

    TRAINING_BASE_PATH, 

    target_size=(224, 224), 

    batch_size=BATCH_SIZE, 

    class_mode='categorical', 

    classes=['0','1','2','3'], 

    subset='validation', 

    shuffle=True, 

    seed=42 

) 

 

resnet_validgen = resnet_valid_generator.flow_from_directory( 

    VALIDATION_BASE_PATH, 

    target_size=(224, 224), 

    batch_size=BATCH_SIZE, 

    class_mode='categorical', 

    classes=['0','1','2','3'], 

    shuffle=True, 

    seed=42 

) 

 

vgg16_validgen = vgg16_valid_generator.flow_from_directory( 

    VALIDATION_BASE_PATH, 

    target_size=(224, 224), 
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    batch_size=BATCH_SIZE, 

    class_mode='categorical', 

    classes=['0','1','2','3'], 

    shuffle=True, 

    seed=42 

) 

Found 478 images belonging to 4 classes. 

Found 478 images belonging to 4 classes. 

Found 115 images belonging to 4 classes. 

Found 115 images belonging to 4 classes. 

 

def monta_camada_top(model_base): 

x = model_base.output 

x = AveragePooling2D(pool_size=(7, 7))(x) 

x = Flatten()(x) 

x = Dense(1024, activation='relu')(x) 

x = Dropout(0.2)(x) 

x = Dense(512, activation='relu')(x) 

prediction = Dense(4, activation='softmax')(x) 

final_model = Model(inputs=model_base.input, outputs=prediction) 

for i in range(0, len(final_model.layers)): 

if i >= len(model_base.layers): 

final_model.layers[i].trainable = True 

else: 

final_model.layers[i].trainable = False 

return final_model 

 

resnet = ResNet50( 

input_shape=(224,224,3) 

, weights='imagenet', 

include_top=False 

) 

resnet.trainable = False 

 

model_resnet_da = monta_camada_top(resnet) 

 

model_resnet_da.summary() 

 

Model: "model" 

Layer (type) Output Shape Param # Connected to 
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=============================================================================

================================== 

input_1 (InputLayer) [(None, 224, 224, 3)] 0 [] 

conv1_pad (ZeroPadding2D) (None, 230, 230, 3) 0 ['input_1[0][0]'] 

conv1_conv (Conv2D) (None, 112, 112, 64) 9472 ['conv1_pad[0][0]'] 

. 

. 

. 

dropout (Dropout) (None, 1024) 0 ['dense[0][0]'] 

dense_1 (Dense) (None, 512) 524800 ['dropout[0][0]'] 

dense_2 (Dense) (None, 4) 2052 ['dense_1[0][0]'] 

=============================================================================

===================================== 

Total params: 26,212,740 

Trainable params: 2,625,028 

Non-trainable params: 23,587,712 

 

steps_per_epoch = resnet_traingen.samples // BATCH_SIZE 

val_steps = resnet_validgen.samples // BATCH_SIZE 

 

optimizer = RMSprop(learning_rate=0.0001) 

 

model_resnet_da.compile(loss='categorical_crossentropy',  

                        optimizer=optimizer, metrics=['accuracy']) 

 

checkpoint = ModelCheckpoint(filepath=BEST_WEIGHTS_RESNET_DA_PATH, 

                             verbose=1, 

                             save_best_only=True) 

 

history_resnet_da = model_resnet_da.fit(resnet_traingen, 

                                        steps_per_epoch=steps_per_epoch, 

                                        epochs=NUM_EPOCHS, 

                                        steps_per_epoch=steps_per_epoch, 

                                        validation_data=resnet_validgen, 

                                        validation_steps=val_steps, 

                                        callbacks=[checkpointer, 

PlotLossesKeras()], verbose=True) 
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accuracy 

training (min: 0.610, max: 0.901, cur: 0.901) 

validation (min: 0.667, max: 0.802, cur: 0.750) 

Loss 

training (min: 0.252, max: 0.967, cur: 0.252) 

validation (min: 0.439, max: 0.869, cur: 0.686) 

14/14 [==============================] - 18s 1s/step - loss: 0.2524 - 

accuracy: 0.9013 - val_loss: 0.6861 - 

val_accuracy: 0.7500 

CPU times: total: 4min 12s 

Wall time: 3min 4s 

CPU times: total: 4min 12s 

Wall time: 3min 4s 

 

del history_resnet_da 

del model_resnet_da 

gc.collect() 

 

64773 

 

vgg = VGG16( 

    input_shape=(224,224,3), 
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    weights='imagenet', 

    include_top=False 

) 

vgg.trainable = False 

 

model_vgg_da = monta_camada_top(vgg) 

model_vgg_da.summary() 

 

Model: "model_1" 

Layer (type) Output Shape Param # 

=============================================================================

========== 

input_2 (InputLayer) [(None, 224, 224, 3)] 0 

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 

. 

. 

. 

dropout_1 (Dropout) (None, 1024) 0 

dense_4 (Dense) (None, 512) 524800 

dense_5 (Dense) (None, 4) 2052 

=============================================================================

========== 

Total params: 15,766,852 

Trainable params: 1,052,164 

Non-trainable params: 14,714,688 

 

steps_per_epoch = vgg16_traingen.samples // BATCH_SIZE 

val_steps = vgg16_valldgen.samples // BATCH_SIZE 

 

optimizer = RMSprop(learning_rate=0.0001) 

# optimizer = Adam(learning_rate=0.0001) 

 

model_vgg_da.compile(loss='categorical_crossentropy', optimizer=optimizer, 

metrics=['accuracy']) 

 

checkpoint = ModelCheckpoint(filepath=BEST_WEIGHTS_VGG16_DA_PATH, 

                             verbose=1, 

                             save_best_only=True) 

 

history_vgg_da = model_vgg_da.fit(vgg16_traingen, 
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                                  epochs=30, 

                                  steps_per_epoch=steps_per_epoch, 

                                  validation_data=vgg16_valldgen, 

                                  validation_steps=val_steps, 

                                  callbacks=[checkpointer, 

PlotLossesKeras()], 

                                  verbose=True) 

 

 

 

accuracy 

training (min: 0.509, max: 0.832, cur: 0.827) 

validation (min: 0.625, max: 0.854, cur: 0.844) 

Loss 

training (min: 0.368, max: 1.096, cur: 0.368) 

validation (min: 0.375, max: 0.945, cur: 0.375) 

14/14 [==============================] - 19s 1s/step - loss: 0.3681 - 

accuracy: 0.8274 - val_loss: 0.3746 - 

val_accuracy: 0.8438 

CPU times: total: 4min 55s 

Wall time: 3min 31s 

CPU times: total: 4min 55s 

Wall time: 3min 31s 

 

del history_vgg_da 
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del model_vgg_da 

gc.collect() 

 

84448 

 

resnet_train_generator = ImageDataGenerator( 

    validation_split=0, 

    preprocessing_function=resnet_preprocess_input 

) 

 

vgg16_train_generator = ImageDataGenerator( 

    validation_split=0, 

    preprocessing_function=vgg16_preprocess_input 

) 

 

resnet_traingen = resnet_train_generator.flow_from_directory( 

TRAINING_BASE_PATH, 

target_size=(224, 224), 

batch_size=BATCH_SIZE, 

class_mode='categorical', 

classes=['0','1','2','3'], 

shuffle=True, 

subset='training', 

seed=42 

) 

vgg16_traingen = vgg16_train_generator.flow_from_directory( 

TRAINING_BASE_PATH, 

target_size=(224, 224), 

batch_size=BATCH_SIZE, 

class_mode='categorical', 

classes=['0','1','2','3'], 

shuffle=True, 

subset='training', 

seed=42 

) 

 

Found 478 images belonging to 4 classes. 

Found 478 images belonging to 4 classes. 

 

model_resnet = monta_camada_top(resnet) 
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steps_per_epoch = resnet_traingen.samples // 

BATCH_SIZE val_steps = resnet_validgen.samples // 

BATCH_SIZE 

optimizer = RMSprop(learning_rate=0.0001) 

 

model_resnet.compile(loss='categorical_crossentropy', optimizer=optimizer, 

metrics=['accuracy']) 

 

checkpointer = ModelCheckpoint(filepath=BEST_WEIGHTS_RESNET_PATH, 

 

verbose=1, 

save_best_only=True) 

 

history_resnet = model_resnet.fit(resnet_traingen, 

epochs=NUM_EPOCHS, 

steps_per_epoch=steps_per_epoc 

h, 

validation_data=resnet_validge 

n, validation_steps=val_steps, 

callbacks=[checkpointer, 

PlotLossesKeras()], 

verbose=True) 
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accuracy 

training (min: 0.747, max: 1.000, cur: 1.000) 

validation (min: 0.771, max: 0.938, cur: 0.885) 

Loss 

training (min: 0.009, max: 0.625, cur: 0.009) 

validation (min: 0.131, max: 0.459, cur: 0.248) 

14/14 [==============================] - 10s 743ms/step - loss: 0.0089 - 

accuracy: 1.0000 - val_loss: 0.2478 - 

val_accuracy: 0.8854 

CPU times: total: 2min 37s 

Wall time: 1min 52s 

 

del history_resnet 

del model_resnet 

gc.collect() 

 

32050 

 

model_vgg = monta_camada_top(vgg) 

 

steps_per_epoch = VGG16_traingen.samples // BATCH_SIZE 

val_steps = vgg16_validgen.samples // BATCH_SIZE 

 

optimizer = RMSprop(learning_rate=0.0001) 

 

model_vgg.compile(loss='categorical_crossentropy', optimizer=optimizer, 

metrics=['accuracy']) 

 

checkpoint = ModelCheckpoint(filepath=BEST_WEIGHTS_VGG16_PATH, 

                             verbose=1, 

                             save_best_only=True) 

 

history_VGG = model_vgg.fit(vgg16_traingen, 

                            epochs=NUM_EPOCHS, 

                            steps_per_epoch=steps_per_epoch, 

                            validation_data=vgg16_validgen, 

                            validation_steps=val_steps, 

                            callbacks=[checkpointer, 

                            PlotLossesKeras()], 
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                            verbose=True) 

 

 

accuracy 

training (min: 0.664, max: 0.993, cur: 0.989) 

validation (min: 0.719, max: 0.812, cur: 0.781) 

Loss 

training (min: 0.032, max: 0.839, cur: 0.032) 

validation (min: 0.491, max: 0.982, cur: 0.749) 

14/14 [==============================] - 12s 823ms/step - loss: 0.0323 - 

accuracy: 0.9888 - val_loss: 0.7490 - 

val_accuracy: 0.7812 

CPU times: total: 2min 45s 

Wall time: 2min 

 

del history_vgg_da 

del model_vgg_da 

gc.collect() 

 

82010 

 

resnet_test_generator = 

ImageDataGenerator(preprocessing_function=resnet_preprocess_input) 

vgg16_test_generator = 

ImageDataGenerator(preprocessing_function=vgg16_preprocess_input) 
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resnet_testgen = resnet_test_generator.flow_from_directory( 

    TEST_BASE_PATH, 

    target_size=(224, 224), 

    batch_size=BATCH_SIZE, 

    class_mode='categorical', 

    classes=['0','1','2','3'], 

    shuffle=False, 

    seed=42 

) 

 

vgg16_testgen = vgg16_test_generator.flow_from_directory( 

    TEST_BASE_PATH, 

    target_size=(224, 224), 

    batch_size=BATCH_SIZE, 

    class_mode='categorical', 

    classes=['0','1','2','3'], 

    shuffle=False, 

    seed=42 

) 

 

Found 371 images belonging to 4 classes. 

Found 371 images belonging to 4 classes. 

 

model_resnet_pred = monta_camada_top(resnet) 

model_vgg_pred = monta_camada_top(vgg) 

 

model_resnet_pred.load_weights(BEST_WEIGHTS_RESNET_DA_PATH) 

model_vgg_pred.load_weights(BEST_WEIGHTS_VGG16_DA_PATH) 

predicted_resnet_da = model_resnet_pred.predict(resnet_testgen) 

predicted_classes_resnet_da = np.argmax(predicted_resnet_da, axis=1) 

predicted_vgg_da = model_vgg_pred.predict(vgg16_testgen) 

predicted_classes_vgg_da = np.argmax(predicted_vgg_da, axis=1) 

 

12/12 [==============================] - 12s 980ms/step 

12/12 [==============================] - 19s 2s/step 

 

model_resnet_pred.load_weights(BEST_WEIGHTS_RESNET_PATH) 

model_vgg_pred.load_weights(BEST_WEIGHTS_VGG16_PATH) 

predicted_resnet = model_resnet_pred.predict(resnet_testgen) 

predicted_classes_resnet = np.argmax(predicted_resnet, axis=1) 
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predicted_vgg = model_vgg_pred.predict(vgg16_testgen) 

predicted_classes_vgg = np.argmax(predicted_vgg, axis=1) 

 

12/12 [==============================] - 6s 509ms/step 

12/12 [==============================] - 6s 541ms/step 

 

def imprime_metricas_modelo(true_classes, pred_classes, nome_modelo): 

def especificidade(true_classes, pred_classes): # Define uma função para 

calcular a especificidade que não 

existe no skle 

cm = confusion_matrix(true_classes, 

pred_classes) specificities = [] 

for i in range(len(cm)): 

 

tn = np.sum(np.delete(np.delete(cm, i, axis=0), i, 

axis=1)) fp = np.sum(np.delete(cm, i, axis=0)[:, i]) 

specificity = tn / (tn + fp) if (tn + fp) > 0 else 0 

specificities.append(specificity) 

return np.mean(specificities) 

 

acuracia = accuracy_score(true_classes, pred_classes) 

sensibilidade = recall_score(true_classes, pred_classes, average='macro') 

especificidade = especificidade(true_classes, pred_classes) 

f1 = f1_score(true_classes, pred_classes, average='macro') 

print("------------------------------------------------ ") 

print(f"Acurácia Modelo {nome_modelo}: {(acuracia * 100):.2f}%") 

print(f"Sensibilidade Modelo {nome_modelo}: {(sensibilidade * 100):.2f}%") 

print(f"Especificidade Modelo {nome_modelo}: {(especificidade * 100):.2f}%") 

print(f"F1 Modelo {nome_modelo}: {(f1 * 100):.2f}%") 

 

resnet_true_classes = resnet_testgen.classes 

vgg16_true_classes = vgg16_testgen.classes 

resnet_class_names = resnet_testgen.class_indices.keys() 

vgg16_class_names = vgg16_testgen.class_indices.keys() 

def plot_heatmap(y_true, y_pred, class_names, ax, title): 

cm = confusion_matrix(y_true, y_pred) 

sns.heatmap( 

cm, 

annot=True, 

square=True, 

xticklabels=class_names, 

 



176 
 

yticklabels=class_names, 

fmt='d', 

cmap=plt.cm.Blues, 

cbar=False, 

ax=ax 

) 

ax.set_title(title, fontsize=16) 

ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right") 

ax.set_ylabel('True Label', fontsize=12) 

ax.set_xlabel('Predicted Label', fontsize=12) 

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 8)) 

plot_heatmap(resnet_true_classes, predicted_classes_resnet_da, 

resnet_class_names, ax1, title="Resnet50 com Data 

Aug") 

plot_heatmap(resnet_true_classes, predicted_classes_resnet, 

resnet_class_names, ax2, title="Resnet50 sem Data 

Aug") 

plot_heatmap(vgg16_true_classes, predicted_classes_vgg_da, vgg16_class_names, 

ax3, title="VGG16 com Data Aug") 

plot_heatmap(vgg16_true_classes, predicted_classes_vgg, vgg16_class_names, 

ax4, title="VGG16 sem Data Aug") 

fig.suptitle("Comparação das Matrizes de Confusão", fontsize=24) 

fig.tight_layout() 

fig.subplots_adjust(top=0.85) 

plt.show() 

imprime_metricas_modelo(resnet_true_classes, predicted_classes_resnet_da, 

"Resnet50 com Data Aug") 

imprime_metricas_modelo(resnet_true_classes, predicted_classes_resnet, 

"Resnet50 sem Data Aug") 

imprime_metricas_modelo(vgg16_true_classes, predicted_classes_vgg_da, "VGG16 

com Data Aug") 

imprime_metricas_modelo(vgg16_true_classes, predicted_classes_vgg, "VGG16 sem 

Data Aug") 
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Acurácia Modelo Resnet50 com Data Aug: 81.67% 

Sensibilidade Modelo Resnet50 com Data Aug: 81.11% 

Especificidade Modelo Resnet50 com Data Aug: 93.88% F1 

Modelo Resnet50 com Data Aug: 78.86% 

Acurácia Modelo Resnet50 sem Data Aug: 93.53% 

Sensibilidade Modelo Resnet50 sem Data Aug: 93.79% 

Especificidade Modelo Resnet50 sem Data Aug: 97.86% F1 

Modelo Resnet50 sem Data Aug: 93.58% 

Acurácia Modelo VGG16 com Data Aug: 81.13% 

Sensibilidade Modelo VGG16 com Data Aug: 80.59% 

Especificidade Modelo VGG16 com Data Aug: 93.74% F1 

Modelo VGG16 com Data Aug: 79.01% 

Acurácia Modelo VGG16 sem Data Aug: 81.67% 

Sensibilidade Modelo VGG16 sem Data Aug: 81.53% 

Especificidade Modelo VGG16 sem Data Aug: 93.94% F1 

Modelo VGG16 sem Data Aug: 81.00% 
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  APÊNDICE 11 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA 
 

A – ENUNCIADO 
 
Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT" 

 

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06) 

integrantes. 

 

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e 

propor soluções responsáveis para lidar com esses dilemas. 

Parâmetros para elaboração do Trabalho: 

 

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da 

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas 

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como 

usuários, desenvolvedores e a sociedade em geral. 

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do 

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a 

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso, 

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade. 

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções 

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas, 

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. 

Eles devem considerar como essas soluções podem equilibrar os interesses de diferentes partes 

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade. 

4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os 

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões 

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como 

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais 

aprendidos ao analisar um caso concreto. 

5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500 

e 3000 palavras. 

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução, 

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas, 

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento. 

7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o 

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em 

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise. 
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8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições 

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir 

suas mensagens de maneira sucinta.  

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com 

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. 

Deve-se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp- 

content/uploads/2022/03/template-artigo-de-periodico.docx 

 

B – RESOLUÇÃO 
 
1. Introdução 

O avanço da Inteligência Artificial (IA) e, mais recentemente, de chatbots como o ChatGPT, 

lançado em novembro de 2022 pela empresa OpenAI, tem transformado diversos setores, desde a 

comunicação até a saúde, passando pela educação e o entretenimento. Verdadeiras revoluções 

estão em andamento e por vir. 

No entanto, essa transformação tecnológica traz consigo uma série de dilemas éticos que 

precisam ser avaliados com cautela, para garantir que os benefícios sejam maximizados e os riscos 

minimizados. Este artigo tem como objetivo explorar as principais implicações éticas associadas ao 

uso do ChatGPT em diferentes contextos, abordando questões importantes como privacidade e 

segurança de dados, fake news e discriminação, autonomia na tomada de decisão e transparência. 

Além disso, propomos soluções responsáveis para enfrentar esses dilemas éticos, 

destacando a necessidade de uma abordagem globalizada e colaborativa que envolva governos, 

empresas, academia e sociedade civil. Ao adotar práticas éticas e responsáveis, podemos promover 

um uso mais seguro, justo e benéfico da IA, contribuindo para o desenvolvimento sustentável e 

igualitário da sociedade. 

 

2. Relevância Ética 

Floridi e Chiriatii (2020) descrevem GPT (Generative Pre-trained Transformer) como um 

modelo de linguagem projetado para gerar sequências de palavras, códigos ou qualquer outro dado a 

partir de uma fonte de entrada de informação do usuário, usando um banco de dados composto de 

textos de sites da internet como Wikipedia, por exemplo. Contudo, o uso de chatbots como o 

ChatGPT, trouxe relevantes e importantes discussões sobre as implicações éticas do seu uso 

tornando-se uma preocupação central devido ao impacto significativo dessa tecnologia na sociedade. 

As respostas fornecidas pela IA são baseadas em dados até o ano em que foi construída, podendo 

estar desatualizadas ou conter informações falsas. Além disso, existe a possibilidade de que o 

ChatGPT gere respostas racistas ou discriminatórias, devido aos vieses presentes nos dados de 

treinamento. 

 

Atualmente, existem muitos casos de sucesso no uso do ChatGPT, mas, como qualquer 

tecnologia, ele também pode ser usado para propósitos nocivos. Um exemplo é o caso de um 
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advogado nos Estados Unidos que usou o chatbot para criar falsos precedentes em uma ação 

judicial, resultando em sua punição e multa. 

Esse incidente levanta questões éticas e morais, além de destacar a necessidade de uma 

política de governança que garanta a transparência no uso da ferramenta. O uso inadequado do 

ChatGPT pode ter consequências perigosas, levantando preocupações no campo do Direito, 

especialmente em relação à proteção de informações pessoais e direitos autorais. 

Um caso emblemático de mau uso do ChatGPT ocorreu na China, onde um homem foi preso 

e pode pegar até 10 anos de prisão por espalhar falsas notícias sobre um acidente de trem. A notícia 

falsa, criada com o auxílio do ChatGPT, dizia que nove pessoas haviam morrido. O homem usou uma 

VPN para acessar o chatbot, que não é acessível na China, e contornou vários sistemas de 

segurança para disseminar a falsa notícia. 

Outro caso envolve o Bing GPT, o chatbot da Microsoft. Em uma conversa no Reddit, o 

chatbot gerou conteúdo prejudicial ao discutir antissemitismo. Embora inicialmente tenha alertado 

sobre o perigo de exaltar figuras históricas responsáveis por atos horríveis, o chatbot Bing acabou 

gerando respostas automáticas prejudiciais, como uma saudação nazista. 

O ChatGPT é acessado por cerca de 1,8 bilhões de pessoas por mês. Desses, 15% dos 

acessos diários vêm dos Estados Unidos, 6,32% da Índia e 4,01% do Japão. O Japão notificou a 

OpenAI sobre falhas na coleta de dados dos usuários, alegando que a plataforma estava coletando 

informações confidenciais sem permissão. A OpenAI se comprometeu a reduzir esse tipo de coleta. 

Para superar esses desafios, empresas estão trabalhando para integrar o ChatGPT a outros sistemas 

e mecanismos de controle, garantindo que as respostas da IA sejam precisas e seguras. 

A adoção do ChatGPT também levanta preocupações sobre o futuro dos empregos. Alguns 

especialistas acreditam que a IA pode levar ao desaparecimento de empregos, enquanto outros veem 

a criação de novas oportunidades. De qualquer 

forma, o ChatGPT é uma tecnologia promissora que pode transformar a interação com as empresas. 

Chatbots como o ChatGPT apresentam dilemas éticos significativos, sendo o viés um dos 

principais. Treinados em grandes conjuntos de dados de texto, eles podem refletir os vieses 

presentes nesses dados, resultando em respostas discriminatórias ou prejudiciais. O uso indevido 

também é uma preocupação. 

Chatbots podem ser usados para espalhar desinformação, propaganda ou para fins 

maliciosos. É essencial garantir o uso responsável e ético dos chatbots. Deepfakes, por exemplo, 

podem ser criados com chatbots, manipulando vídeos ou áudios para parecer que alguém disse ou 

fez algo que não fez, espalhando desinformação ou prejudicando reputações. 

O impacto psicológico do uso de chatbots também merece atenção. Algumas pessoas podem 

se tornar dependentes dessas tecnologias, levando a problemas de saúde mental, como depressão 

ou ansiedade. Por exemplo, uma pessoa solitária pode se tornar dependente de um chatbot para 

companhia, resultando em problemas de saúde mental. 

 

3. Análise Crítica 
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Há vários desafios éticos que podem ser identificados na interação dos usuários com os 

modelos LLM (Large Language Model), como o ChatGPT. Partindo do ponto de vista da capacidade 

de processamento necessária para se treinar esses modelos de aprendizado de máquina com a 

grande quantidade de informações (no caso, textos), em um tempo viável para se disponibilizar a 

aplicação para uso, pode-se inferir que o hardware necessário possui um custo muito elevado. Isso 

limita a sua implantação a poucas empresas que possuam essa capacidade de investimento, bem 

como universidades e institutos de pesquisa públicos ou privados. 

As implicações disso é que há uma superconcentração desses modelos nessa minoria de 

empresas privadas, praticamente sem concorrência. Além disso, dificulta enormemente os testes e 

análises e, consequentemente, a implementação de algum tipo de governança por parte da 

sociedade civil. 

Soma-se a isso o fato de que os modelos LLM utilizados podem incorporar toda uma sorte de 

vieses algorítmicos, vindo tanto da parte dos programadores do modelo em si, como dos dados 

utilizados no seu treinamento. A implementação desses algoritmos sem os devidos cuidados e 

verificações pode acabar por reforçar, ou mesmo incorporar, estereótipos étnico-raciais, 

socioeconômicos e reproduzir comportamentos sectários e segregacionistas. Um exemplo que ilustra 

bem, ainda que tenha sido com IA generativa para produção de imagens e não texto, foi o que 

ocorreu com a deputada estadual Renata Souza (PSOL-RJ), que ao utilizar uma ferramenta de IA 

para geração de imagem em forma semelhante aos posters dos filmes de animação da empresa 

Disney, solicitou que fosse gerada um poster “de uma mulher negra, de cabelos afro, com roupas de 

estampa africana num cenário de favela” e a IA gerou uma imagem de uma mulher negra com uma 

arma na mão. 

Além dos possíveis vieses incorporados no desenvolvimento, a forma como os modelos 

interagem com os usuários, se não for protegida com as devidas salvaguardas, também pode fazer 

com que os modelos incorporem, inadvertidamente, esses mesmos vieses e passem a reproduzi-los. 

Um bom exemplo desta possibilidade foi o que ocorreu com o chatbot da Microsoft chamado Tay, que 

foi concebido para interagir com jovens entre 18 e 24 anos através de uma conta no Twitter (atual X) 

como se fosse um deles. Em menos de um dia de interação na rede social, a IA passou a responder e 

incorporar comportamentos xenófobos, racistas e genocidas, e foi então retirada do ar. 

Outro caso conhecido foi o da ferramenta de chat do buscador Bing, também da Microsoft, 

que durante o seu período de testes, em sessões prolongadas de interação com o mesmo usuário 

enviando um número maior de perguntas, passava a respondê-las incorretamente e, às vezes, com 

linguagem considerada rude e grosseira. 

Para além da questão dos vieses, outros desafios éticos também se apresentam. Entre eles, 

pode-se mencionar a eventual propriedade intelectual dos dados utilizados para treinar tanto modelos 

generativos de texto quanto de imagem. Se os textos e imagens utilizados no treinamento dos 

modelos não forem de domínio público, mas originalmente criados por autores humanos, na hipótese 

da empresa criadora da IA fazer uso comercial dela, poderá levar eventualmente a contestação 

judicial da propriedade intelectual desses dados de treinamento (textos e imagens). 
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Outro ponto importante diz respeito à segurança dos dados que são enviados pelos usuários 

através dos prompts, que podem receber eventualmente algum tipo de dado privado dos mesmos e, 

posteriormente, ser difícil a sua anonimização, ou mesmo, eliminação, uma vez incorporados às 

bases de treinamento dos modelos. É necessário que as regras de tratamento e a governança dos 

dados imputados nos prompts, inclusive do ponto de vista do algoritmo da aplicação, sejam muito 

claras, para que se possa fazer um uso consciente das ferramentas. Isso muitas vezes é 

especialmente difícil para usuários finais, pessoas físicas que não detêm o conhecimento técnico e 

legal para avaliar plenamente a melhor e mais correta forma 

de utilizá-las. 

Além de todas as discussões anteriores, como os modelos GPT mais modernos incorporam 

cada vez mais dados advindos diretamente da internet, não se poderia deixar de mencionar a 

questão da possível propagação de notícias falsas (fake news) que por ventura possam estar sendo 

veiculadas de forma indiscriminada através de páginas ou redes sociais. Caso não haja um 

tratamento adequado nos algoritmos, ou a incorporação de algum tipo de filtro ou “fact checking” na 

incorporação dessas informações nas bases de treinamento, essa desinformação pode acabar 

influenciando as respostas dos modelos, sendo propagadas por eles. 

 

4. Soluções Responsáveis 

Com o surgimento contínuo de novas aplicações de Inteligência Artificial, questões éticas e 

filosóficas surgem, exigindo análise profunda e cuidadosa para a busca constante por soluções 

responsáveis. A filosofia desempenha um papel fundamental na compreensão desses desafios e na 

definição dessas soluções. 

Princípios e diretrizes baseados nos aspectos filosóficos e éticos devem ser seguidos ao 

projetar, desenvolver e implementar sistemas de Inteligência Artificial. 

Alguns desses princípios para que tenhamos soluções responsáveis no desenvolvimento das 

aplicações em Inteligência Artificial incluem a transparência, equidade, privacidade, segurança e 

responsabilidade. 

A transparência na IA envolve tornar os processos de tomada de decisão compreensíveis 

para os usuários e partes interessadas. Isso significa explicar como os algoritmos funcionam, quais 

dados são usados e como as decisões são tomadas. 

A transparência é fundamental para construir confiança e permitir que as pessoas entendam 

o impacto das decisões automatizadas. 

A equidade refere-se a evitar vieses e discriminação na IA. Os algoritmos podem herdar 

preconceitos dos dados de treinamento, resultando em decisões injustas. Garantir a equidade 

significa ajustar os modelos para tratar todos os grupos de maneira justa, independentemente de 

raça, gênero, origem étnica ou outras características. 

A privacidade é crucial na era da IA. Proteger os dados pessoais dos usuários é essencial. 

Isso envolve anonimização, consentimento informado e conformidade com regulamentações de 

privacidade, como o GDPR (Regulamento Geral de Proteção de Dados). 
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A segurança da IA diz respeito à robustez dos sistemas. Desenvolvedores devem criar 

algoritmos que resistem a ataques maliciosos, sejam resilientes a falhas e não causem danos físicos 

ou financeiros. Testes rigorosos e monitoramento contínuo são essenciais. 

A responsabilidade envolve assumir a responsabilidade pelas ações da IA. Isso inclui 

considerar os impactos sociais, legais e éticos. Os criadores de IA devem estar cientes das 

consequências e garantir que seus sistemas sejam usados de maneira responsável. 

 

5. Conclusão 

O crescimento da Inteligência Artificial (IA), especialmente dos modelos de linguagem como o 

ChatGPT, está revolucionando diversos setores, incluindo comunicação, saúde, educação e 

entretenimento. No entanto, essa transformação tecnológica traz uma série de questões éticas que 

precisam ser cuidadosamente avaliadas para elevar ao máximo os benefícios e minimizar os riscos. 

Este artigo analisou as principais implicações éticas associadas ao uso do ChatGPT, abordando 

questões relevantes como privacidade e segurança de dados, disseminação de fake news, 

discriminação, autonomia na tomada de decisão e transparência. 

Os desafios éticos identificados compreendem a possibilidade de respostas desatualizadas 

ou falsas, uso indevido para criar desinformação, vieses algorítmicos discriminatórios e possíveis 

impactos psicológicos danosos. Casos representativos de mau uso, como a criação de falsos 

precedentes legais e a disseminação de notícias falsas, ilustram a necessidade urgente de políticas 

de governança e transparência. Além disso, a concentração de poder em poucas empresas capazes 

de investir em IA e a dificuldade de implementação de governança pela sociedade civil são de grande 

preocupação. 

Para enfrentar esses problemas, é essencial adotar uma abordagem globalizada e 

colaborativa que envolva governos, empresas, academia e sociedade civil. Princípios éticos como 

transparência, equidade, privacidade, segurança e responsabilidade devem guiar o desenvolvimento 

e a implementação de sistemas de IA. A transparência ajuda a construir confiança, a equidade evita 

discriminação, a privacidade protege dados pessoais, a segurança garante força contra ataques e 

falhas, e a responsabilidade assegura que os impactos sociais, legais e éticos sejam considerados. 

Avanços já estão ocorrendo para minimizar o impacto negativo da IA, como a 

regulamentação criada pela EU (União Européia), a nova lei além da aplicação de novas normas e 

categorias de risco, incluindo requisitos mínimos para sistemas usarem IA considerada de alto risco, 

fixa o que é terminantemente proibido, como uso de inteligência artificial para manipular 

comportamentos humanos que possam causar riscos ao próprio usuário ou a outras pessoas. 

Ao estabelecer práticas éticas e responsáveis, podemos promover um uso mais seguro, justo 

e benéfico da IA contribuindo para o desenvolvimento sustentável e igualitário da sociedade. A 

filosofia e a ética desempenham papéis fundamentais na definição dessas diretrizes, garantindo que a 

IA seja um impulso positivo para o futuro. 
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  APÊNDICE 12 – GESTÃO DE PROJETOS DE IA 
 

A – ENUNCIADO 
 

1 Objetivo 
 

Individualmente, ler e resumir – seguindo  o template fornecido – um dos artigos abaixo: 

 

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements 

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied 

Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421 

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems: 

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207. 

2024. DOI https://doi.org/10.1016/j.jss.2023.111860  

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for 

machine learning – Adoption, effects, and team assessment. The Journal of Systems & 

Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907  

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development 

of artificial intelligence models – Current state of research and practice. The Journal of 

Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss.2023.111615  

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML? 

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on 

Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI 

https://doi.org/10.1145/3411764.3445306  

 
2 Orientações adicionais 

 

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para 

entender o conteúdo dos artigos – caso precise, mas escreva o resumo em língua portuguesa e nas 

suas palavras.  

 

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo 

escolhido. 

 

No template, você deverá responder às seguintes questões: 

● Qual o objetivo do estudo descrito pelo artigo? 
● Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo? 
● Qual a metodologia que os autores usaram para obter e analisar as informações do estudo? 
● Quais os principais resultados obtidos pelo estudo? 
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Responda cada questão utilizando o espaço fornecido no template, sem alteração do 

tamanho da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0). 

 

Não altere as questões do template. 

 

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o 

trabalho em PDF. 

 

 

B – RESOLUÇÃO 
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  APÊNDICE 13 – FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL 
 
A – ENUNCIADO 
 
1 Classificação (RNA) 

 

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a 

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação. 

Além disso, fazer uma breve explicação dos seguintes resultados:  

- Gráficos de perda e de acurácia; 
-  Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula 

prática. 
Informações: 

● Base de dados: Fashion MNIST Dataset  
● Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de 

vestuário. É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de 
dígitos. 

● Tamanho: 70.000 amostras, 784 features (28x28 pixels). 
● Importação do dataset: Copiar código abaixo. 

 

data = tf.keras.datasets.fashion_mnist  

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() 

 

2 Regressão (RNA) 
 

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a 

arquitetura RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão. 

Além disso, fazer uma breve explicação dos seguintes resultados:  

● Gráficos de avaliação do modelo (loss); 
● Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R²). 

Informações: 

● Base de dados: Wine Quality 
● Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas 

características químicas. A variável target (y) neste exemplo será o score de qualidade do 
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade) 

● Tamanho: 1599 amostras, 12 features. 
● Importação: Copiar código abaixo. 

 

url = 

"https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/win

equality-red.csv" 

data = pd.read_csv(url, delimiter=';') 
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Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para 

português, dessa forma: 

 

data.columns = [ 

    'acidez_fixa',            # fixed acidity 

    'acidez_volatil',         # volatile acidity 

    'acido_citrico',          # citric acid 

    'acucar_residual',        # residual sugar 

    'cloretos',               # chlorides 

    'dioxido_de_enxofre_livre', # free sulfur dioxide 

    'dioxido_de_enxofre_total', # total sulfur dioxide 

    'densidade',              # density 

    'pH',                     # pH 

    'sulfatos',               # sulphates 

    'alcool',                 # alcohol 

    'score_qualidade_vinho'               # quality 

] 

 

Dica 2. Separe os dados (x e y) de tal forma que a última coluna 

(índice -1), chamada score_qualidade_vinho, seja a variável target (y) 

 

3 Sistemas de Recomendação 
 

Implementar o exemplo de Sistemas de Recomendação usando a base de dados 

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de 
Sistemas de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados: 

● Gráficos de avaliação do modelo (loss); 
● Exemplo de recomendação de livro para determinado Usuário. 

Informações: 

● Base de dados: Base_livros.csv 
● Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas), 

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario) 
● Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros 

(formato .csv). 
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4 Deepdream 
 

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de 

um felino  - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - 
Prática Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:  

● Imagem onírica obtida por Main Loop; 
● Imagem onírica obtida ao levar o modelo até uma oitava; 
● Diferenças entre imagens oníricas obtidas com  Main Loop e levando o modelo até a oitava. 

Informações: 

● Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg 
● Importação da imagem: Copiar código abaixo. 

 

url = 

"https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_sno

w.jpg" 

 

Dica: Para exibir a imagem utilizando display (display.html) use o 

link https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg 

 

 
B – RESOLUÇÃO 
 
1 

 

Comentários/Explicações: 

1. Gráficos de perda e acurácia: 

Observa-se nos gráficos que com o passar das épocas de treinamento, a perda decresce e a 

acurácia aumenta gradualmente para os dados de treino, até a época 10. O mesmo ocorre para os 

dados de validação, porém não na mesma proporção, demonstrando valores de perda maiores e 

acurácia menores nesses dados do que o apresentado para os dados de treino. Mesmo assim, o 

valor da acurácia nos dados de validação ainda pode ser considerado bom, já que fica próxima a 88% 

na época 10. Talvez aumentar o número de épocas de treino surtisse algum efeito de melhora nesses 

valores. 

 

2. Imagem gerada na seção “Mostrar algumas classificações erradas”: 

É selecionado aleatoriamente um caso entre as predições que foram efetuadas e que não 

previram a categoria corretamente. Conforme pode-se observar no exemplo selecionado, o modelo 

previu para a imagem a categoria 4 (coat – casaco) quando o correto seria 3 (dress – vestido). É 

interessante poder visualizar a imagem, pois nota-se que, a olho nu, a mesma pode ser considerada 
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semelhante a ambas as categorias, o que sugere que se poderia tentar trabalhar a configuração do 

modelo de predição para melhorar a sua eficácia com amostras desse tipo. 
 

data = tf.keras.datasets.fashion_mnist 

(x_train, y_train), (x_test, y_test) = data.load_data() 

 

Downloading data from 

https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1

-ubyte.gz 

29515/29515 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step 

Downloading data from 

https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3

-ubyte.gz 

26421880/26421880 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step 

Downloading data from 

https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-

ubyte.gz 

5148/5148 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step 

Downloading data from 

https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-

ubyte.gz 

4422102/4422102 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step 

 

print("x_train.shape: ", x_train.shape) 

print("y_train.shape: ", y_train.shape) 

print("x_test.shape: ", x_test.shape) 

print("y_test.shape: ", y_test.shape) 

 

x_train.shape:  (60000, 28, 28) 

y_train.shape:  (60000,) 

x_test.shape:  (10000, 28, 28) 

y_test.shape:  (10000,) 

 

display(x_train) 

 

array([[[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 
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        [0, 0, 0, ..., 0, 0, 0]], 

 

       [[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0]], 

 

       [[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0]], 

 

       ..., 

 

       [[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0]], 

 

       [[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0]], 

 

       [[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 
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        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8) 

 

display(y_train) 

 

array([9, 0, 0, ..., 3, 0, 5], dtype=uint8) 

 

x_train, x_test = x_train/255.0, x_test/255.0 

 

i = tf.keras.layers.Input(shape=(28, 28)) 

x = tf.keras.layers.Flatten()(i) 

x = tf.keras.layers.Dense(128, activation="relu")(x) 

x = tf.keras.layers.Dropout(0.2)(x) 

x = tf.keras.layers.Dense(10, activation="softmax")(x) 

 

model = tf.keras.models.Model(i, x) 

 

model.compile(optimizer='adam', 

              loss='sparse_categorical_crossentropy', 

              metrics=['accuracy']) 

 

r = model.fit(x_train, 

              y_train, 

              validation_data=(x_test, y_test), 

              epochs=10) 

 

Epoch 1/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 6s 2ms/step - accuracy: 0.7615 - 

loss: 0.6722 - val_accuracy: 0.8509 - val_loss: 0.4239 

Epoch 2/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8473 - 

loss: 0.4126 - val_accuracy: 0.8564 - val_loss: 0.4036 

Epoch 3/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8666 - 

loss: 0.3683 - val_accuracy: 0.8636 - val_loss: 0.3802 

Epoch 4/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.8709 - 

loss: 0.3492 - val_accuracy: 0.8662 - val_loss: 0.3679 

Epoch 5/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8765 - 

loss: 0.3294 - val_accuracy: 0.8766 - val_loss: 0.3531 
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Epoch 6/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - accuracy: 0.8829 - 

loss: 0.3152 - val_accuracy: 0.8708 - val_loss: 0.3564 

Epoch 7/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8872 - 

loss: 0.3029 - val_accuracy: 0.8750 - val_loss: 0.3488 

Epoch 8/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.8914 - 

loss: 0.2930 - val_accuracy: 0.8795 - val_loss: 0.3450 

Epoch 9/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8931 - 

loss: 0.2901 - val_accuracy: 0.8734 - val_loss: 0.3609 

Epoch 10/10 

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - accuracy: 0.8940 - 

loss: 0.2835 - val_accuracy: 0.8816 - val_loss: 0.3418 

 

plt.plot(r.history["loss"], label="loss") 

plt.plot(r.history["val_loss"], label="val_loss") 

plt.legend() 

 

 

 

plt.plot(r.history["accuracy"], label="acc") 

plt.plot(r.history["val_accuracy"], label="val_acc") 

plt.legend() 
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print( model.evaluate(x_test, y_test) ) 

 

313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.8839 - 

loss: 0.3343 

[0.3418148458003998, 0.881600022315979] 

 

y_pred = model.predict(x_test).argmax(axis=1) 

print(y_pred) 

 

313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step 

[9 2 1 ... 8 1 5] 

 

cm = confusion_matrix(y_test, y_pred) 

plot_confusion_matrix(conf_mat=cm, figsize=(7, 7), 

                      show_normed=True) 
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misclassified = np.where(y_pred != y_test)[0] 

 

i = np.random.choice(misclassified) 

 

Text(0.5, 1.0, 'True label: 3 Predicted: 4') 
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2 

 

Comentários/Explicações: 

1. Gráficos de avaliação do modelo (loss): 

Devido à utilização da configuração de “early stop” no treinamento do modelo, o processo de 

treinamento utilizou somente 87 épocas das 1500 que foram definidas na sua parametrização. O 

porquê disso pode ser observado tanto no gráfico de perda, quanto no de erro. A partir da época 20, 

os valores praticamente se estabilizam e o gráfico vira quase uma reta. Isso indica que poderiam ser 

utilizadas menos épocas de treinamento para o modelo, de 20 a 30 por exemplo, que, ainda assim, 

seria atingido o mesmo desempenho nas predições. 

 

2. Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R2): 

Apesar dos valores apresentados nas métricas de erro serem pequenos, analisando se o 

coeficiente de determinação R2 das predições, verifica-se que o modelo apresentou uma 

performance muito pobre, com um resultado em torno de 22% de acurácia. Faz-se necessário buscar 

a melhoria da performance através de mudanças na parametrização do modelo, tais como: utilização 

de um gradiente de descida diferente, com “learning rates” diferentes, ou até mesmo o ajuste do 

dataset, verificando-se a correlação entre as features para que se possa desconsiderar aquelas que 

possuem baixa ou nenhuma correlação com o valor target. 
 

url = 
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"https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/wineq

uality-red.csv" 

data = pd.read_csv(url, delimiter=';') 

 

data.columns = [ 

'acidez_fixa',     # fixed acidity 

'acidez_volatil',  # volatile acidity 

'acido_citrico',   # citric acid 

'acucar_residual', # residual sugar 

'cloretos',        # chlorides 

'dioxido_de_enxofre_livre', # free sulfur dioxide 

'dioxido_de_enxofre_total', # total sulfur dioxide 

'densidade',       # density 

'pH',              # pH 

'sulfatos',        # sulphates 

'alcool',          # alcohol 

'score_qualidade_vinho' # quality 

] 

 

data.head() 

 

 

data.shape 

(1599, 12) 

 

X = data.iloc[:,0:10].astype(float) 

y = data.iloc[:,11].astype(float) 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

                                                    test_size=0.25) 

 

i = tf.keras.layers.Input(shape=(10,)) 

x = tf.keras.layers.Dense(50, activation="relu")(i) 

x = tf.keras.layers.Dense(1)(x) 

 

model = tf.keras.models.Model(i, x) 

 

def rmse(y_true, y_pred): 
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  return backend.sqrt(backend.mean( backend.square(y_pred - y_true), axis=-1) 

) 

 

def r2(y_true, y_pred): 

  media = backend.mean(y_true) 

  num   = backend.sum (backend.square(y_true - y_pred)) 

  den   = backend.sum (backend.square(y_true - media)) 

  return (1.0 - num/den) 

 

optimizer=tf.keras.optimizers.Adam(learning_rate=0.05) 

 

model.compile(optimizer=optimizer, 

              loss=tf.keras.losses.mse, 

              metrics=[rmse, r2]) 

 

early_stop = tf.keras.callbacks.EarlyStopping( 

                            monitor='val_loss', 

                            patience=20, 

                            restore_best_weights=True) 

 

r = model.fit(X_train, y_train, 

              epochs=1500, 

              validation_data=(X_test, y_test), 

              callbacks=[early_stop]) 

 

Epoch 1/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 7s 56ms/step - loss: 77.3655 - r2: 

-114.3765 - rmse: 6.0767 - val_loss: 1.9195 - val_r2: -2.2794 - val_rmse: 

1.0737 

Epoch 2/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 2.2471 - r2: 

-2.8260 - rmse: 1.1428 - val_loss: 1.2225 - val_r2: -1.0808 - val_rmse: 

0.8756 

Epoch 3/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 1.1147 - r2: 

-0.8799 - rmse: 0.8419 - val_loss: 0.9557 - val_r2: -0.6054 - val_rmse: 

0.7652 

Epoch 4/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.9284 - r2: 

-0.6026 - rmse: 0.7516 - val_loss: 0.8254 - val_r2: -0.3956 - val_rmse: 

0.7223 
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Epoch 5/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.7919 - r2: 

-0.2572 - rmse: 0.6976 - val_loss: 0.8008 - val_r2: -0.3269 - val_rmse: 

0.7006 

. 

. 

. 

Epoch 83/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.5307 - r2: 

0.2058 - rmse: 0.5748 - val_loss: 0.5257 - val_r2: 0.1395 - val_rmse: 0.5822 

Epoch 84/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.5557 - r2: 

0.1184 - rmse: 0.5868 - val_loss: 0.5025 - val_r2: 0.1633 - val_rmse: 0.5538 

Epoch 85/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.5572 - r2: 

0.1371 - rmse: 0.5764 - val_loss: 0.5563 - val_r2: 0.0689 - val_rmse: 0.6082 

Epoch 86/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.4785 - r2: 

0.1995 - rmse: 0.5467 - val_loss: 0.5073 - val_r2: 0.1434 - val_rmse: 0.5728 

Epoch 87/1500 

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.5137 - r2: 

0.1786 - rmse: 0.5671 - val_loss: 0.5076 - val_r2: 0.1564 - val_rmse: 0.5806 

 

plt.plot( r.history["loss"], label="loss" ) 

plt.plot( r.history["val_loss"], label="val_loss" ) 

plt.legend() 
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plt.plot( r.history["rmse"], label="rmse" ) 

plt.plot( r.history["val_rmse"], label="val_rmse" ) 

plt.legend() 

 

 

 

plt.plot( r.history["r2"], label="r2" ) 

 



200 
 

plt.plot( r.history["val_r2"], label="val_r2" ) 

plt.legend() 

 

 

 

y_pred = model.predict(X_test).flatten() 

13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step 

 

mse  = mean_squared_error(y_test, y_pred) 

rmse = sqrt(mse) 

r2   = r2_score(y_test, y_pred) 

print("mse     = ", mse) 

print("rmse    = ", rmse) 

print("r2      = ", r2) 

 

mse     =  0.4866209823398623 

rmse    =  0.6975822405565255 

r2      =  0.21903228640689731 

 

3 

 

Comentários/Explicações: 

1. Gráficos de avaliação do modelo (loss): 

 



201 
 

Observando-se o gráfico, verifica-se que há uma queda gradual através das épocas no valor 

de perda para os dados de treino. No entanto, a partir da época 15, esse valor se estabiliza, indicando 

que poderiam ser utilizadas apenas em torno de 15 

épocas para o treinamento, garantindo os mesmos resultados. No entanto, para os dados de 

validação, o valor da perda estabiliza a partir da época 10 e permanece alto, indicando que a 

performance do modelo não foi boa. Isso pode ser devido a pouca quantidade de dados de validação, 

desbalanceamento entre as classes de livro + usuário, e/ou necessidade de revisão da configuração 

da estrutura da rede neural (camadas e profundidade, por exemplo). 

 

2. Exemplo de recomendação de livro para determinado Usuário: 

Foi testada a recomendação de livro para o usuário com ID 278851, onde o modelo seleciona 

os livros semelhantes aos que ele já havia lido e é então exibida a opção dentre estas que apresenta 

o maior rating. 
 

df = pd.read_csv('Base_livros.csv') 

df.head() 

 

 

df.ID_usuario = pd.Categorical(df.ID_usuario) 

df['new_ID_usuario'] = df.ID_usuario.cat.codes 

 

df.ISBN = pd.Categorical(df.ISBN) 

df['new_ISBN'] = df.ISBN.cat.codes 

 

N = len(set(df.new_ID_usuario)) 

M = len(set(df.new_ISBN)) 

 

K = 10 

 

u = Input(shape=(1,)) 

u_emb = Embedding(N, K)(u) # saída : num_samples, 1, K 

u_emb = Flatten()(u_emb)   # saída : num_samples, K 

 

i = Input(shape=(1,)) 

i_emb = Embedding(M, K)(i)  # saída : num_samples, 1, K 

i_emb = Flatten()(i_emb)    # saída : num_samples, K 
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x = Concatenate()([u_emb, i_emb]) 

 

x = Dense(1024, activation="relu")(x) 

x = Dense(1)(x) 

 

model = Model(inputs=[u, i], outputs=x) 

 

model.compile( 

    loss="mse", 

    optimizer=SGD(learning_rate=0.08, momentum=0.9) 

) 

 

user_ids, isbn_ids, ratings = shuffle(df.new_ID_usuario, df.new_ISBN, 

df.Notas) 

 

Ntrain = int(0.8 * len(ratings)) 

 

train_user = user_ids[:Ntrain] 

train_isbn = isbn_ids[:Ntrain] 

train_ratings = ratings[:Ntrain] 

test_user = user_ids[Ntrain:] 

test_isbn = isbn_ids[Ntrain:] 

test_ratings = ratings[Ntrain:] 

 

avg_rating = train_ratings.mean() 

train_ratings = train_ratings - avg_rating 

test_ratings = test_ratings - avg_rating 

 

epochs = 40 

r = model.fit( 

    x=[train_user, train_isbn], 

    y=train_ratings, 

    epochs=epochs, 

    batch_size=1024, 

    verbose=2, 

    validation_data=([test_user, test_isbn], test_ratings) 

) 

 

Epoch 1/40 

101/101 - 3s - 26ms/step - loss: 10.0087 - val_loss: 9.9241 
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Epoch 2/40 

101/101 - 0s - 3ms/step - loss: 10.0002 - val_loss: 9.9236 

Epoch 3/40 

101/101 - 0s - 3ms/step - loss: 9.9887 - val_loss: 10.0067 

Epoch 4/40 

101/101 - 0s - 4ms/step - loss: 9.6719 - val_loss: 10.3250 

. 

. 

. 

Epoch 37/40 

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5325 

Epoch 38/40 

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5323 

Epoch 39/40 

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5324 

Epoch 40/40 

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5322 

 

plt.plot(r.history["loss"], label="loss") 

plt.plot(r.history["val_loss"], label="val_loss") 

plt.legend() 

plt.show() 
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input_usuario = np.repeat(a=278851, repeats=M) 

Livro = np.array(list(set(isbn_ids))) 

 

preds = model.predict( [input_usuario, Livro] ) 

 

rat = preds.flatten() + avg_rating 

 

idx = np.argmax(rat) 

 

print("Recomendação: Livro - ", Livro[idx], " / ", rat[idx] , "*") 

print('Nome do Livro: ', df.loc[df['new_ISBN'] == Livro[idx], 

'Titulo'].iloc[0]) 

 

4028/4028 ━━━━━━━━━━━━━━━━━━━━ 7s 2ms/step 

Recomendação: Livro -  39793  /  10.507515 * 

Nome do Livro:  Der Sturm / The Perfect Storm 

 

4 

 

Comentários/Explicações: 

1. Imagem onírica obtida por Main Loop: 

Este resultado mostra a amplificação de padrões locais pela rede neural, onde pequenos 

detalhes são intensificados e aparecem texturas e formas abstratas na imagem. O Main Loop foca em 

uma única escala. 

 

2. Imagem onírica obtida ao levar o modelo até uma oitava: 

A adição de oitavas permite que o modelo processe a imagem em múltiplas escalas, 

amplificando padrões em níveis de detalhe maiores e menores. O resultado apresenta padrões mais 

amplos e complexos que interagem de forma mais integrada. 

 

3. Diferenças entre as imagens: 

No Main Loop, as alterações são mais localizadas e detalhadas, gerando uma textura onírica 

intensa em pequenas áreas. Usando oitavas, o modelo cria padrões que se espalham e interagem em 

diferentes escalas, resultando em uma imagem mais surreal e globalmente modificada. 
 

url = 

'https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.

jpg' 

 

def download(url, max_dim=None): 
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  name = url.split('/')[-1] 

  image_path = tf.keras.utils.get_file(name, origin=url) 

  img = PIL.Image.open(image_path) 

  if max_dim: 

    img.thumbnail((max_dim, max_dim)) 

  return np.array(img) 

 

def deprocess(img): 

  img = 255*(img + 1.0)/2.0 

  return tf.cast(img, tf.uint8) 

 

def show(img): 

  display.display(PIL.Image.fromarray(np.array(img))) 

 

original_img = download(url, max_dim=500) 

show(original_img) 

display.display(display.HTML('Image cc-by: <a 

"href=https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg">Vo

n.grzanka</a>')) 

 

 

 

base_model = tf.keras.applications.InceptionV3(include_top=False, 

weights='imagenet') 

Downloading data from 

https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inc

eption_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 
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87910968/87910968 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step 

 

names = ['mixed3', 'mixed5'] 

layers = [base_model.get_layer(name).output for name in names] 

 

dream_model = tf.keras.Model(inputs=base_model.input, outputs=layers) 

 

def calc_loss(img, model): 

  img_batch = tf.expand_dims(img, axis=0) 

  layer_activations = model(img_batch) 

  if len(layer_activations) == 1: 

    layer_activations = [layer_activations] 

 

  losses = [] 

  for act in layer_activations: 

    loss = tf.math.reduce_mean(act) 

    losses.append(loss) 

 

  return  tf.reduce_sum(losses) 

 

class DeepDream(tf.Module): 

  def __init__(self, model): 

    self.model = model 

 

  @tf.function( 

      input_signature=( 

        tf.TensorSpec(shape=[None,None,3], dtype=tf.float32), 

        tf.TensorSpec(shape=[], dtype=tf.int32), 

        tf.TensorSpec(shape=[], dtype=tf.float32),) 

  ) 

  def __call__(self, img, steps, step_size): 

      print("Tracing") 

      loss = tf.constant(0.0) 

 

      for n in tf.range(steps): 

        with tf.GradientTape() as tape: 

          tape.watch(img) 

          loss = calc_loss(img, self.model) 

 

        gradients = tape.gradient(loss, img) 
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        gradients /= tf.math.reduce_std(gradients) + 1e-8 

        img = img + gradients*step_size 

        img = tf.clip_by_value(img, -1, 1) 

 

      return loss, img 

 

deepdream = DeepDream(dream_model) 

 

def run_deep_dream_simple(img, steps=100, step_size=0.01): 

 

  img = tf.keras.applications.inception_v3.preprocess_input(img) 

  img = tf.convert_to_tensor(img) 

  step_size = tf.convert_to_tensor(step_size) 

  steps_remaining = steps 

  step = 0 

  while steps_remaining: 

    if steps_remaining>100: 

      run_steps = tf.constant(100) 

    else: 

      run_steps = tf.constant(steps_remaining) 

    steps_remaining -= run_steps 

    step += run_steps 

 

    loss, img = deepdream(img, run_steps, tf.constant(step_size)) 

 

    display.clear_output(wait=True) 

    show(deprocess(img)) 

    print ("Step {}, loss {}".format(step, loss)) 

 

 

  result = deprocess(img) 

  display.clear_output(wait=True) 

  show(result) 

 

  return result 

 

dream_img = run_deep_dream_simple(img=original_img, 

                                  steps=100, step_size=0.01) 
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import time 

start = time.time() 

 

OCTAVE_SCALE = 1.30 

 

img = tf.constant(np.array(original_img)) 

base_shape = tf.shape(img)[:-1] 

float_base_shape = tf.cast(base_shape, tf.float32) 

 

for n in range(-2, 3): 

  new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.int32) 

 

  img = tf.image.resize(img, new_shape).numpy() 

 

  img = run_deep_dream_simple(img=img, steps=50, step_size=0.01) 

 

display.clear_output(wait=True) 

img = tf.image.resize(img, base_shape) 

img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8) 

show(img) 

 

end = time.time() 

end-start 
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15.100679159164429 
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  APÊNDICE 14 – VISUALIZAÇÃO DE DADOS E STORYTELLING 
 
A – ENUNCIADO 
 

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que 

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e 

com a ferramenta de sua escolha) 

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os 

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu 

possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam, 
quais possíveis ações podem ser feitas com base neles.  

Entregue em um PDF: 

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que 

possa ser melhorada); 

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que 

será desenvolvido; 

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de 

sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos) 

B – RESOLUÇÃO 
 

O conjunto de dados utilizado para a visualização é uma tabela que mostra a porcentagem de 

consumo de maconha, cocaína e crack por faixa etária, com foco nos últimos 12 meses. Esses 

dados representam um panorama do uso de substâncias ilícitas entre jovens e adultos, fornecendo 

uma análise detalhada da prevalência de consumo de cada substância em diferentes idades. 

 

 



211 
 

 

 

 

Esses dados foram coletados de uma pesquisa nacional sobre o uso de drogas entre jovens 

e adultos. O foco é observar a evolução do consumo de maconha, cocaína e crack conforme a idade 

dos participantes. 

 

Contexto e Público-Alvo 

O objetivo dessa visualização de dados é entender como o consumo de substâncias ilícitas 

varia de acordo com a idade, especialmente em adolescentes e jovens adultos, que são as faixas 

etárias mais vulneráveis ao uso dessas substâncias. Ao analisar essas mudanças, podemos 

identificar os períodos críticos de maior consumo e, assim, direcionar melhor as políticas públicas e 

ações preventivas. 

O público-alvo para essa visualização são os profissionais de saúde e educadores. Eles 

podem usar a visualização para adaptar programas de prevenção e reabilitação, focando 

principalmente nas idades mais vulneráveis. 

 

A Visualização de Dados 

A visualização foi criada utilizando o Power BI, uma plataforma que permite a criação de 

gráficos dinâmicos. A ferramenta foi escolhida devido à sua capacidade de gerar gráficos de fácil 

leitura, personalizáveis e interativos, o que permite que o público explore os dados de forma 

detalhada. 

Para mostrar a comparação entre as substâncias e as faixas etárias, foi utilizado um gráfico 

de barras horizontais. Esse tipo de gráfico foi escolhido porque ele facilita a leitura das porcentagens 
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de cada substância, permitindo uma comparação clara entre as substâncias em cada faixa etária. O 

gráfico de barras horizontais é ideal para este tipo de dado, pois oferece uma visualização clara das 

diferenças percentuais entre as substâncias e facilita a comparação visual de diferentes faixas 

etárias, permitindo uma leitura mais intuitiva. 

As cores escolhidas para cada substância são: 

- Maconha: Verde (associada à cor da droga). 

- Cocaína: Azul escuro (cor que transmite a ideia de impacto significativo). 

- Crack: Vermelho escuro (associado ao perigo e à natureza altamente viciante e destrutiva 

do crack). 

Essas cores foram escolhidas com base em psicologia das cores para transmitir as 

características e os impactos de cada substância de maneira intuitiva. 

 

Descrição da Narrativa/Storytelling 

A narrativa criada a partir dessa visualização busca contextualizar os dados e explicar os 

padrões observados no gráfico. A história começa com a análise do consumo de maconha, que 

começa de forma modesta aos 12 anos (1,1%) e aumenta de forma constante até atingir seu pico aos 

20 anos (34%). Esse pico inicial sugere que a maconha é uma droga de iniciação, consumida 

principalmente durante a adolescência e o início da idade adulta. 

 

 

 

Após os 20 anos, observa-se uma queda gradual no consumo, indicando que muitas pessoas 

deixam de consumir maconha após a juventude. 
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A cocaína mostra um padrão diferente. Embora o consumo também tenha um pequeno 

aumento até os 20 anos, ele permanece em níveis baixos e estáveis após essa faixa etária, com um 

pico de 0,6% aos 20 anos. Isso sugere que, embora a cocaína seja consumida por uma parcela da 

população jovem, seu uso não se espalha de forma tão prevalente quanto o da maconha. 

 

 

 

O crack, por sua vez, apresenta um padrão semelhante ao da maconha, com uma rápida 

ascensão no consumo até os 20 anos (4,9%), o que indica o impacto devastador dessa substância 

nas faixas etárias mais jovens. 

 

 

 

O consumo de crack, assim como o de maconha, diminui após os 20 anos, mas permanece 

presente em níveis baixos em faixas etárias mais velhas, refletindo a natureza altamente viciante e 
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prejudicial dessa droga. 

 

 

 

Esses dados trazem importantes insights sobre o comportamento de consumo ao longo da 

vida. A visualização sugere que as políticas de prevenção devem se concentrar principalmente nas 

faixas etárias de 12 a 20 anos, quando o consumo de drogas, especialmente maconha e crack, está 

em seu auge. Além disso, a constância do consumo de cocaína e crack em faixas etárias mais velhas 

indica a necessidade de programas contínuos de reabilitação e tratamento. 

 

 

 

A visualização também pode ser usada para aumentar a conscientização sobre os riscos do 

consumo precoce de substâncias, servindo como um alerta para adolescentes e jovens adultos 

sobre os perigos das drogas. 
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  APÊNDICE 15 – TÓPICOS EM  INTELIGÊNCIA ARTIFICIAL 
 
A – ENUNCIADO 
 
1) Algoritmo Genético 

 

Problema do Caixeiro Viajante 

 

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab, 

ou em C ou em Java. 

 

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita 

simplesmente para tornar o problema intratável. A solução ótima para este problema não é 

conhecida). 

 

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades 

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o 

percurso de menor distância que passe uma única vez por todas as cidades e retorne à cidade de 

origem. 

 

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas 

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado 

de 100 por 100 pixels. 

 

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na 

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações. 

Gere as imagens em 2d dos pontos (cidades) e do caminho. 

 

Sugestão:  

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida 
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas 
posições de 1 a 99 deverão ser definidas pelo algoritmo genético. 

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos). 
(3) Utilize no mínimo uma população com 100 indivíduos; 
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação; 
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento 

(crossover-ox); 
(6) Preserve sempre a melhor solução de uma geração para outra. 

 

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”. 

 

2) Compare a representação de dois modelos vetoriais 
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Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, 

que poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a 

quantidade de palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que 

deverão produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização 

fique clara e objetiva. 

 

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após 

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a 

PCA. 

 

O PDF deverá conter o código-fonte e as imagens obtidas. 

 

B – RESOLUÇÃO 
 

import matplotlib.pyplot as plt 

import numpy as np 

import random as rd 

 

def plotaGrafico(individuo : list, coordenadas : list, numGeracao : int, 

numCidades : int, distancia : 

float): 

x_caminho = [] 

y_caminho = [] 

for c in individuo: 

x, y = coordenadas[c] 

x_caminho.append(x) 

y_caminho.append(y) 

 

fig, ax = plt.subplots() 

ax.plot(x_caminho, y_caminho,'--go', mfc='r', mec='r', label='Melhor Rota', 

linewidth=2) 

plt.legend() 

plt.title(label='Caixeiro Viajante: Melhor Rota usando 

GA',fontsize=12,color='k') 

txtParams = 'Diatância Total: '+str(round(distancia,3)) + '\n' + 

'Núm.Gerações: '+ str(numGeracao) 

+ '\n' + 'Qtde.Cidades: '+ str(numCidades) 

plt.suptitle(txtParams, fontsize=10, y=1) 

for i in individuo: 
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ax.annotate(str(i) if i!=100 else 0, (coordenadas[i][0], coordenadas[i][1]), 

fontweight='bold' if 

i==0 else 'normal', fontsize=10 if i==0 else 8, color='#000000' if i==0 else 

'#999999') 

 

fig.set_size_inches(16,10) 

plt.grid(color='#888888', linestyle='dotted') 

plt.savefig('solucao_ger'+str(numGeracao)+'.png') 

plt.show() 

 

def criaCoordenadas(qtdeCidades : int, xMax : int, yMax : int) -> list: 

ret = [] 

while len(ret) < qtdeCidades: 

cidade = (rd.randint(1, xMax), rd.randint(1, yMax)) 

while cidade in ret: 

cidade = (rd.randint(0, xMax), rd.randint(0, yMax)) 

ret.append(cidade) 

ret.append(ret[0]) 

return ret 

 

def distanciaEuclidiana(pontoA : tuple, pontoB : tuple) -> float: 

return ( np.sqrt(np.sum((np.array(pontoA) - np.array(pontoB))**2)) ) 

 

def distanciaTotal(individuo : list, coordenadas: list) -> float: 

coordInd = [ coordenadas[c] for c in individuo ] 

 

return sum([ distanciaEuclidiana(c1, c2) for c1, c2 in 

list(zip(coordInd[:-1],coordInd[1:])) ]) 

 

def criaPopulacaoInicial(qtdeIndividuos : int, qtdeCidades : int) -> list: 

from math import factorial 

 

ret = [] 

individuo = list(range(1, qtdeCidades)) 

ret.append([0]+individuo+[qtdeCidades]) 

if qtdeIndividuos > factorial(qtdeCidades-1): 

qtdeIndividuos = factorial(qtdeCidades-1) 

print(f'Quantidade de indivíduos maior que a permnutação possível! População 

Inicial ajustada 

para {qtdeIndividuos} indivíduos') 
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while len(ret) < qtdeIndividuos: 

 

rd.shuffle(individuo) 

while (individuo in ret): # previne permutações repetidas 

rd.shuffle(individuo) 

ret.append([0]+individuo+[qtdeCidades]) 

 

return ret 

def avaliaSolucao(populacao : list, coordenadas : list, xMax : int, yMax : 

int) -> list: 

ret=[] 

 

maiorDistancia = distanciaEuclidiana((1, 1), (xMax, yMax)) 

for individuo in populacao: 

coordInd = [coordenadas[c] for c in individuo] 

ret.append( sum([maiorDistancia/distanciaEuclidiana(c1, c2) for c1, c2 in 

list(zip(coordInd[:-1],coordInd[1:]))]) ) 

 

return ret 

 

def ranqueiaPopulacao(populacao : list, coordenadas : list, xMax : int, yMax 

: int) -> list: 

return np.argsort(avaliaSolucao(populacao, coordenadas, xMax , yMax))[::-1] 

 

def selecionaMelhores(nMelhores : int, populacao : list, coordenadas : list, 

xMax : int, yMax : int) -> 

list: 

ret = [ populacao[i] for i in np.argsort(avaliaSolucao(populacao, 

coordenadas, xMax , yMax))[::-1] 

][:nMelhores] 

return ret 

 

def cruzamento(populacaoOrigem : list, populacaoDestino : list, qtde : int = 

1) -> list: 

ret = [] 

while len(ret) < qtde: 

 

posicaoA = rd.randrange(0, len(populacaoOrigem)) 

posicaoB = posicaoA 

while posicaoA == posicaoB: 

posicaoB = rd.randrange(0, len(populacaoOrigem)) 

 



219 
 

individuoA = populacaoOrigem[posicaoA] 

individuoB = populacaoOrigem[posicaoB] 

indA = populacaoOrigem[posicaoA][1:len(populacaoOrigem[posicaoA])-1] 

 

indB = populacaoOrigem[posicaoB][1:len(populacaoOrigem[posicaoB])-1] 

corte = rd.randrange( round(len(indA)/2), len(indA) ) 

novoIndA = indA[:corte] 

for gene in indB[corte:]: 

if gene in novoIndA: 

novoIndA.append(list(set(indB[:corte]) - set(novoIndA))[0]) 

else: 

novoIndA.append(gene) 

novoIndB = indB[:corte] 

for gene in indA[corte:]: 

if gene in novoIndB: 

novoIndB.append(list(set(indA[:corte]) - set(novoIndB))[0]) 

else: 

novoIndB.append(gene) 

novoIndividuoA = [individuoA[0]] + novoIndA + [individuoA[len(individuoA)-1]] 

novoIndividuoB = [individuoB[0]] + novoIndB + [individuoB[len(individuoB)-1]] 

if novoIndividuoA not in populacaoDestino: # valida se o novo individuo já 

existe 

ret.append(novoIndividuoA) 

if (len(ret) < qtde) and (novoIndividuoB not in populacaoDestino): 

ret.append(novoIndividuoB) 

 

return ret 

 

def mutacao(populacaoOrigem : list, populacaoDestino : list, qtde : int = 1) 

-> list: 

ret = [] 

while len(ret) < qtde: 

posicao = rd.randrange(0, len(populacaoOrigem)) 

individuo = populacaoOrigem[posicao] 

gene1 = rd.randrange( 1, round(len(individuo)/2) ) 

gene2 = rd.randrange( round(len(individuo)/2)+1, len(individuo)-1 ) 

if gene2 != len(individuo)-1: 

individuo = individuo[:gene1] + [individuo[gene2]] + individuo[gene1+1:gene2] 

+ 

[individuo[gene1]] + individuo[gene2+1:] 

else: 
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individuo = individuo[:gene1] + [individuo[gene2]] + individuo[gene1+1:gene2] 

+ 

[individuo[gene1]] 

if individuo not in populacaoDestino: # valida se o novo individuo já existe 

ret.append(individuo) 

 

return ret 

 

qtdeIndividuos = 300 

qtdeCidades = 100 

xTamMax = 100 

yTamMax = 100 

percMuta = 0.02 

percCruza = 0.9 

totalGeracoes = 4000 

 

populacaoInicial = criaPopulacaoInicial(qtdeIndividuos, qtdeCidades) 

coordenadas = criaCoordenadas(qtdeCidades, xTamMax, yTamMax) 

print("Coordenadas das Cidades: ",end='') 

print(coordenadas) 

 

qtdeCruza = round(percCruza*qtdeIndividuos) 

qtdeMuta = round(percMuta*qtdeIndividuos) 

qtdeMelhores = qtdeIndividuos - qtdeCruza - qtdeMuta 

 

numGeracao = 1 

 

melhorIndividuo = selecionaMelhores(len(populacaoInicial), populacaoInicial, 

coordenadas, 

xTamMax, yTamMax)[0] 

menorDistancia = distanciaTotal(melhorIndividuo, coordenadas) 

 

print( f'Geracao {numGeracao}: {menorDistancia}\nMelhor solucao: 

{melhorIndividuo}') 

plotaGrafico(melhorIndividuo, coordenadas, numGeracao, qtdeCidades, 

menorDistancia) 

 

geracaoAtual = populacaoInicial 

while numGeracao <= totalGeracoes-1: 

proximaGeracao = [] 
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proximaGeracao.extend( selecionaMelhores(qtdeMelhores, geracaoAtual, 

coordenadas, 

xTamMax, yTamMax) ) 

 

proximaGeracao.extend( cruzamento(geracaoAtual, proximaGeracao, qtdeCruza) ) 

 

proximaGeracao.extend( mutacao(geracaoAtual, proximaGeracao, qtdeMuta) ) 

 

geracaoAtual = selecionaMelhores(len(proximaGeracao), proximaGeracao, 

coordenadas, 

xTamMax, yTamMax) 

numGeracao += 1 

print('.',end='') 

 

if numGeracao%50 == 0: 

melhorIndividuo = geracaoAtual[0] 

menorDistancia = distanciaTotal(melhorIndividuo, coordenadas) 

print( f'\nGeracao {numGeracao}: {menorDistancia}') 

 

print( f'Geracao {numGeracao}: {menorDistancia}') 

 

print(f'Melhor solucao: {melhorIndividuo} com {menorDistancia} unidades') 

plotaGrafico(melhorIndividuo, coordenadas, numGeracao, qtdeCidades, 

menorDistancia) 
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Log de Resultados: 
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Coordenadas das Cidades: [(87, 1), (13, 51), (42, 38), (57, 56), (64, 59), 

(99, 30), (12, 20), (20, 44), 

(50, 20), (71, 98), (4, 92), (89, 51), (3, 75), (6, 5), (98, 22), (40, 38), 

(7, 24), (33, 74), (47, 10), (60, 

53), (24, 44), (68, 19), (58, 58), (87, 72), (13, 19), (84, 89), (74, 35), 

(90, 29), (59, 100), (63, 42), (21, 

29), (82, 85), (67, 59), (55, 62), (90, 97), (50, 46), (65, 15), (10, 80), 

(24, 67), (38, 86), (37, 2), (27, 

60), (53, 19), (34, 14), (34, 42), (97, 89), (21, 7), (77, 86), (70, 38), 

(51, 12), (36, 38), (66, 36), (4, 

83), (63, 75), (70, 89), (87, 35), (32, 33), (68, 97), (98, 96), (7, 66), 

(56, 35), (86, 14), (12, 67), (18, 

14), (93, 43), (79, 34), (89, 43), (98, 91), (83, 30), (20, 51), (9, 33), 

(97, 85), (16, 97), (15, 92), (12, 

84), (93, 25), (92, 81), (84, 66), (68, 24), (44, 66), (12, 87), (28, 27), 

(58, 28), (72, 100), (7, 93), (7, 

7), (64, 17), (94, 50), (5, 48), (18, 35), (29, 97), (61, 82), (73, 63), (52, 

43), (8, 13), (77, 37), (23, 8), 

(94, 35), (19, 47), (49, 68), (87, 1)] 

Geracao 1: 5389.91580805757 

Melhor solucao: [0, 87, 69, 80, 81, 4, 36, 10, 91, 62, 88, 20, 12, 66, 29, 

52, 77, 16, 31, 73, 83, 71, 33, 

49, 97, 5, 75, 37, 17, 85, 30, 48, 65, 41, 61, 13, 22, 3, 90, 11, 63, 9, 96, 

46, 14, 45, 23, 56, 94, 99, 35, 

19, 8, 74, 60, 57, 76, 58, 21, 68, 32, 26, 59, 25, 50, 42, 27, 93, 89, 43, 

79, 53, 2, 67, 40, 18, 72, 86, 

55, 92, 82, 44, 64, 39, 6, 24, 34, 98, 28, 95, 84, 7, 47, 70, 15, 78, 38, 51, 

54, 1, 100] 

................................................. 

 

Geracao 50: 4822.430448503724 

.................................................. 

Geracao 100: 4497.947104483611 

.................................................. 

. 

. 

. 

Geracao 3950: 2513.966382801496 

.................................................. 

Geracao 4000: 2513.966382801496 

Geracao 4000: 2513.966382801496 
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Melhor solucao: [0, 87, 14, 61, 19, 4, 32, 53, 91, 33, 88, 52, 12, 66, 64, 

34, 25, 47, 31, 1, 41, 71, 76, 

27, 75, 80, 74, 37, 17, 28, 29, 48, 92, 40, 85, 13, 22, 3, 90, 79, 39, 99, 

96, 46, 63, 51, 23, 77, 11, 93, 

35, 81, 56, 2, 15, 16, 6, 24, 94, 43, 18, 49, 7, 98, 69, 10, 84, 73, 72, 5, 

97, 55, 42, 8, 45, 67, 58, 70, 

89, 30, 50, 44, 20, 60, 82, 78, 21, 86, 36, 26, 95, 65, 68, 83, 9, 57, 54, 

38, 62, 59, 100] com 

2513.966382801496 unidades 

 

2) Compare a representação de dois modelos vetoriais 

Sentenças: 

1. O gato preto pulou o muro alto. 

2. O cachorro marrom correu no parque grande. 

3. O gato preto saltou sobre o muro baixo. 

4. As flores coloridas desabrocharam no jardim ensolarado. 

5. O cachorro marrom brincou no gramado amplo. 

6. As crianças felizes riram na festa animada. 

 

Vetores simplificados: 

Vetor 1: [gato, preto, pulou, muro, alto] 

Vetor 2: [cachorro, marrom, correu, parque, grande] 

Vetor 3: [gato, preto, saltou, muro, baixo] 

Vetor 4: [flores, coloridas, desabrocharam, jardim, ensolarado] 

Vetor 5: [cachorro, marrom, brincou, gramado, amplo] 

Vetor 6: [crianças, felizes, riram, festa, animada] 

 

Vetorização das Frases 

Dado o exemplo: 

- Vocabulário Total: gato, preto, pulou, muro, alto, cachorro, marrom, correu, parque, grande, saltou, 

baixo, flores, coloridas, desabrocharam, jardim, ensolarado, brincou, gramado, amplo, crianças, 

felizes, riram, festa, animada 

 

Aqui, cada vetor será uma lista binária indicando a presença (1) ou ausência (0) das palavras 

na sentença. 

Aplicação do PCA 

Após transformar as frases em vetores binários, aplicaremos o PCA para reduzir suas 

dimensões e permitir a projeção gráfica. 

 

Código para Execução 
import matplotlib.pyplot as plt 
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from sklearn.decomposition import PCA 

from sklearn.feature_extraction.text import CountVectorizer 

 

Sentenças 

sentences = [ 

"O gato preto pulou o muro alto.", 

"O cachorro marrom correu no parque grande.", 

"O gato preto saltou sobre o muro baixo.", 

"As flores coloridas desabrocharam no jardim ensolarado.", 

"O cachorro marrom brincou no gramado amplo.", 

"As crianças felizes riram na festa animada." 

] 

 

vectorizer = CountVectorizer() 

X = vectorizer.fit_transform(sentences).toarray() 

 

pca = PCA(n_components=2) 

X_pca = pca.fit_transform(X) 

 

plt.figure(figsize=(8, 6)) 

plt.title('Projeção de Vetores usando PCA') 

plt.scatter(X_pca[:, 0], X_pca[:, 1], c='r', marker='o') 

 

for i, sent in enumerate(sentences): 

 

plt.annotate(f'S{i + 1}', (X_pca[i, 0], X_pca[i, 1])) 

 

plt.xlabel('Componente Principal 1') 

plt.ylabel('Componente Principal 2') 

plt.grid(True) 

plt.show() 

Resumo 

 

Sentenças Similares: As sentenças 1 e 3, assim como, 2 e 5, são projetadas próximas umas 

das outras devido às palavras comuns. 

PCA: Facilita a visualização da relação semântica entre as frases. 

Visualização: O gráfico exibirá a dispersão das sentenças em um espaço 2D, destacando 

similaridades. 

Esse processo fornece uma visão clara das semelhanças e diferenças semânticas entre as 

frases através das projeções de PCA. 
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