

UNIVERSIDADE FEDERAL DO PARANÁ

PEDRO HENRIQUE COSTA LIMA DO AMARAL

MEMORIAL DE PROJETOS: INTERFACE ENTRE VISUALIZAÇÃO DE

DADOS/STORYTELLING E A INTELIGÊNCIA ARTIFICIAL

 CURITIBA

2025

PEDRO HENRIQUE COSTA LIMA DO AMARAL

MEMORIAL DE PROJETOS: INTERFACE ENTRE VISUALIZAÇÃO DE

DADOS/STORYTELLING E A INTELIGÊNCIA ARTIFICIAL

Memorial de Projetos apresentado ao curso de
Especialização em Inteligência Artificial Aplicada,
Setor de Educação Profissional e Tecnológica,
Universidade Federal do Paraná, como requisito
parcial à obtenção do título de Especialista em
Inteligência Artificial Aplicada.

Orientadora: Profa. Dra. Rafaela Mantovani
Fontana

CURITIBA

2025

RESUMO

O crescimento da produção e do consumo de dados nos últimos anos trouxe
consigo o desafio de transformar grandes volumes de informações em ações
estratégicas. A visualização, quando bem construída, permite traduzir dados
complexos em modelos acessíveis e de rápida compreensão, mas seu impacto
depende de uma narrativa coerente que contextualize e dê sentido às informações.
O storytelling, portanto, não apenas organiza dados, mas os conecta a ideias
centrais e contextos reais, sendo capaz de engajar e influenciar a tomada de
decisão. A introdução da Inteligência Artificial (IA) nesse processo amplia as
possibilidades, ao automatizar tarefas e identificar padrões, mas também impõe
riscos relacionados à transparência e à ética. Dessa forma, o storytelling se mostra
uma ferramenta importante para tornar claros os resultados gerados pela tecnologia,
traduzindo-os em mensagens compreensíveis, relevantes e contextualizadas.
Conclui-se que a integração entre visualização de dados, storytelling e IA deve ser
entendida não apenas como uma questão técnica, mas como a junção de
tecnologia, comunicação e ética.

Palavras-chave: Visualização de dados; storytelling; inteligência artificial;

tecnologia; contextualização.

ABSTRACT

The exponential growth in data production and consumption in recent years
has brought forth the challenge of transforming vast volumes of information into
strategic actions. When properly constructed, data visualization enables the
translation of complex data into accessible and easily interpretable models; however,
its effectiveness depends on the presence of a coherent narrative that contextualizes
and provides meaning to the information. Storytelling, therefore, not only organizes
data but also connects it to central ideas and real contexts, thereby engaging and
influencing decision-making processes. The introduction of Artificial Intelligence (AI)
into this context expands possibilities by automating tasks and identifying patterns,
yet it also introduces risks related to transparency and ethics. In this sense,
storytelling emerges as an essential tool for clarifying the results generated by
technology, transforming them into comprehensible, relevant, and contextualized
messages. It is concluded that the integration of data visualization, storytelling, and
AI should be understood not merely as a technical matter, but as the convergence of
technology, communication, and ethics.

Keywords: Data visualization; storytelling; artificial intelligence; technology;

contextualization.

SUMÁRIO

1 PARECER TÉCNICO……………………………………………………………………………… 7
APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL……………………………… 12
APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA……………………………. 19
APÊNDICE 3 – LINGUAGEM R…………………………………………………………………... 31
APÊNDICE 4 – ESTATÍSTICA APLICADA I…………………………………………………….. 37
APÊNDICE 5 – ESTATÍSTICA APLICADA II……………………………………………………. 48
APÊNDICE 6 – ARQUITETURA DE DADOS…………………………………………………… 68
APÊNDICE 7 – APRENDIZADO DE MÁQUINA………………………………………………... 85
APÊNDICE 8 – DEEP LEARNING………………………………………………………………. 118
APÊNDICE 9 – BIG DATA……………………………………………………………………….. 142
APÊNDICE 10 – VISÃO COMPUTACIONAL………………………………………………….. 145
APÊNDICE 11 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA……………………………. 178
APÊNDICE 12 – GESTÃO DE PROJETOS DE IA……………………………………………. 184
APÊNDICE 13 – FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL……………………….. 186
APÊNDICE 14 – VISUALIZAÇÃO DE DADOS E STORYTELLING………………………... 210
APÊNDICE 15 – TÓPICOS EM INTELIGÊNCIA ARTIFICIAL……………………………… 215

7

1 PARECER TÉCNICO

Nos últimos anos, a proporção de dados produzidos e consumidos

diariamente cresceu abruptamente. Embora o grande número de informações seja

de extrema valia, o excesso de dados brutos pode atrapalhar a passagem de

informações importantes ao usuário final. Não basta acumular números, tabelas ou

gráficos; é necessário interpretá-los, contextualizá-los e comunicá-los de forma

clara. Nesse contexto, a visualização de dados e o storytelling surgem como

ferramentas importantes, sobretudo quando utilizados com a inteligência artificial

(IA), que tem modificado a forma como os dados são explorados e apresentados.

Para Ribeiro (2009, p. 71), a visualização de dados “utiliza tecnologias

computacionais para transformar dados abstratos em modelos visuais. É a tradução

criativa dos dados”. Quando mal construída, pode implicar em análises que não

transmitem a mensagem devida ao receptor e que não agregam valor estratégico.

Entretanto, quando bem estruturada, permite que informações complexas

sejam compreendidas com mais rapidez, como por exemplo, a FIGURA 1, a qual

podemos verificar a média de notas entre os alunos de uma classe.

FIGURA 1 – VISUALIZAÇÃO DE DADOS BEM CONSTRUÍDA.

FONTE: O autor (2025).

8

Todavia, um gráfico pode ser sofisticado esteticamente, mas, se não houver

uma narrativa conexa e coerente, há o risco de não apresentar impacto real na

tomada de decisão.

É justamente nesse ponto que o storytelling se torna uma parte crucial da

equação. Para Knaflic (2019), “A visualização de dados e a comunicação com dados

em geral situa-se na interseção entre a ciência e a arte”. Contar histórias com base

em dados não é apenas juntar uma sequência de informações e colocar em ordem,

é dar sentido ao que está sendo mostrado, é ligar números e fatos a um contexto

real e a uma ideia principal. Gallo (2019, p.5-6) evidencia que “aqueles que dominam

a habilidade do storytelling podem ter influência desproporcional sobre os demais. A

arte do storytelling é sua mais poderosa arma na guerra das ideias”.

Quando existe uma narrativa bem montada, a mensagem deixa de ser

apenas informativa e passa a ser engajante a ponto de prender o público a

mensagem que está sendo passada, apoiando na tomada de decisões estratégicas

que podem ser feitas a partir deste momento. Segundo Xavier (2005, p. 20), há a

necessidade de se desenvolver uma narrativa “que mantenha a atenção, emocione,

estabeleça conexões profundas com o público e una todos os elementos em uma

narrativa compreensível".

Por outro lado, quando adicionamos a inteligência artificial (IA) a este

contexto, novas variáveis surgem, sejam de complexidade ou oportunidades. (Motta;

Lorena, 2023) A IA tem capacidade de processar e analisar um vasto número de

dados em instantes, ajudando a identificar padrões que podem escapar ao olho

humano e também, cada vez mais, auxiliar no processo de desenvolvimento dessas

visualizações. Nos dias atuais, estamos presenciando a emersão de sistemas

modernos que já conseguem, por exemplo, recomendar automaticamente os tipos

de gráficos mais adequados a determinadas circunstâncias, como por exemplo, a

FIGURA 2, no qual um prompt, em uma Inteligência Artificial, para geração de uma

visualização de dados foi feito. Isso significa que o profissional pode se concentrar

menos em tarefas operacionais e mais na parte estratégica do que está sendo

apresentado.

9

 FIGURA 2 – VISUALIZAÇÃO DE DADOS GERADA POR INTELIGÊNCIA ARTIFICIAL

 FONTE: GERADA POR COPILOT EM 24 DE SETEMBRO DE 2025.

Por outro lado, essa automatização também impõe riscos. Para Thomas

Mitchell (2025), IA é uma black box, ou seja, possui completa falta de transparência.

Mesmo que uma narrativa desenvolvida com apoio da IA tenda a ser teoricamente

perfeita, há a possibilidade da falta de clareza quanto à forma como as conclusões

foram alcançadas. Nesse sentido, o storytelling se torna ainda mais crucial, visto

que, é por meio dele que se pode tornar compreensível aquilo que a tecnologia

entrega de forma vaga. Contar a história não é apenas mostrar os resultados, mas

também explicar o caminho percorrido para tal conclusão.

Além da questão da transparência, evidencia-se uma preocupação adicional,

a ética (Nahmias; Perel, 2020), a IA processa dados, mas não compreende

contextos sociais, culturais ou emocionais da mesma maneira que nós. Esse limite

pode levar a decisões desumanizadas, sobretudo quando não há clareza sobre os

critérios utilizados. Assim, o problema ético está no risco de delegar escolhas a

sistemas que carecem de valores humanos. A narrativa, portanto, funciona como a

conexão entre a objetividade e a subjetividade. É nesse momento que se encontra a

importância do storytelling para a inteligência artificial, ele aplica sentido ao que, de

10

outra forma, seria apenas uma informação vaga e distante da realidade de quem

precisa tomar decisões.

É de extrema evidência que, para os profissionais que atuam nesta área, é

preciso desenvolver também competências narrativas e comunicacionais capazes

de traduzir resultados em mensagens claras e relevantes. Em uma criação de uma

análise de dados, por exemplo, o diferencial pode estar menos no algoritmo utilizado

e mais na forma como os resultados são comunicados e mostrados aos diferentes

públicos. A mesma informação pode ser apresentada de maneiras distintas e cabe

ao storytelling a adequação do contexto ideal.

Em suma, a conexão entre storytelling, visualização de dados e inteligência

artificial não deve ser entendida apenas como um algo técnico, mas como uma

junção que envolve tecnologia, comunicação e, até mesmo, ética. A IA aparece

como um desenvolvedor de novas oportunidades, facilitando no processo de criação

da análise de dados. A visualização traduz uma variedade de números e fatos brutos

em formas mais acessíveis ao usuário final. Mas é o storytelling que dá conexão a

tudo isso, alinhando os elementos em uma narrativa que conecta dados aos

usuários, tornando-os compreensíveis. No mundo atual, onde a informação é

abundante e o tempo para compreendê-la é escasso, contar boas histórias com

dados pode ser não apenas uma habilidade diferenciada, mas uma condição

essencial para transformar informação em ação.

11

 REFERÊNCIAS

GALLO, Carmine. Storytelling: aprenda a contar histórias com Steve Jobs, Papa
Francisco, Churchill e outras lendas da liderança. Rio de Janeiro: Alta Books, 2019.

KNAFLIC, Cole Nussbaumer. Storytelling com dados: um guia sobre visualização
de dados para profissionais de negócios. Rio de Janeiro: Alta Books, 2019.

MITCHELL, Thomas. Trust and Transparency in Artificial Intelligence. Philosophy
& Technology, v. 38, article number 87, 2025. Disponível em:
https://link.springer.com/article/10.1007/s13347-025-00916-2
. Acesso em: 19 set. 2025.

MOTTA, Lorena Oliveira dos Santos. O impacto da inteligência artificial nos
processos de negócios, e como as empresas estão se adaptando para
aproveitar essa tecnologia. 2023. Trabalho de Conclusão de Curso (Graduação
em Administração) – Pontifícia Universidade Católica de Minas Gerais, Instituto de
Ciências Econômicas e Gerenciais, Belo Horizonte, 2023.

NAHMIAS, Y.; PEREL, M. The oversight of content moderation by AI: impact
assessments and their limitations. Harvard Journal on Legislation, Forthcoming,
2020.

RIBEIRO, Daniel Melo. Visualização de dados na Internet. 2009. 132 f.
Dissertação (Mestrado em Tecnologias da Inteligência e Design Digital) – Pontifícia
Universidade Católica de São Paulo, São Paulo, 2009. Disponível em:
http://www.danielmelo.net/wp-content/uploads/2009/03/dissertacao_final.pdf
. Acesso em: 19 set. 2025.

XAVIER, Adilson. Storytelling: histórias que deixam marcas. 1. ed. Rio de Janeiro:
BestSeller, 2015.

12

 APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL

A – ENUNCIADO

1 ChatGPT
a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas

em sala. Explique o porquê.
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4

abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha

reta, que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde

que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um
formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

13

3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come

Se a raposa as come, então estão maduras

As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas

práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R1: ՘→ՙ
R2: ՙ → ՚
R3: ¬՚ ∨ ՘

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com

essas três primeiras sentenças devemos derivar . Cuidado com a ordem em que as fórmulas ՙ ↔ ՘
são geradas.

14

Equivalência Implicação: (ս → վ) equivale a (¬ս ∨ վ)

Silogismo Hipotético: ս → վ, վ → տ ⊢ ս → տ

Conjunção: ս, վ ⊢ ս ⋀ վ

Equivalência Bicondicional: (ս ⟷ վ) equivale a (ս → վ) ⋀ (վ → ս)

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão
descritas acima e no material.

4 Redes Neurais Artificiais

Seja a RNA da figura abaixo.

Os neurônios N1, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação

tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada x1=-3, x2=1, dê:

a) (6,25 pontos) Valor de saída do neurônio N1
b) (6,25 pontos) Valor de saída do neurônio N2
c) (6,25 pontos) Valor de saída do neurônio N3
d) (6,25 pontos) Valor de saída da rede como um todo

15

B – RESOLUÇÃO

1
a) Inteligência Artificial (IA) refere-se à capacidade de sistemas computacionais de realizar tarefas

que, normalmente, requerem inteligência humana. Isso inclui atividades como aprendizado,

raciocínio, percepção, resolução de problemas, tomada de decisões e até mesmo reconhecimento de

padrões e fala. O objetivo da IA é criar máquinas ou softwares capazes de realizar essas tarefas de

forma autônoma ou com interação mínima com seres humanos. A IA pode ser dividida em duas

grandes categorias: IA Fraca (ou IA Narrow): Refere-se a sistemas que são projetados para realizar

tarefas específicas, como assistentes virtuais (Siri, Alexa), sistemas de recomendação (Netflix,

YouTube) ou programas de jogos de xadrez. Esses sistemas não possuem consciência ou

capacidade de raciocínio além de suas funções específicas. IA Forte: Refere-se a sistemas com

capacidades cognitivas semelhantes às humanas, ou seja, com a habilidade de compreender,

aprender, raciocinar e tomar decisões de forma geral. Essa IA ainda é um conceito mais teórico e está

em desenvolvimento. Além disso, a IA pode ser implementada por meio de várias técnicas, como

aprendizado de máquina (machine learning), redes neurais, algoritmos genéticos, processamento de

linguagem natural (PNL), entre outros.

b) Na abordagem de Agentes Racionais, o GPT pode ser considerado um tipo de agente que

responde de maneira otimizada aos prompts que recebe. Embora não tenha objetivos próprios, ele

tenta gerar respostas que pareçam racionais e úteis com base nos dados que foram pré-carregados

durante seu treinamento. No entanto, ao contrário de agentes racionais clássicos, que têm um

comportamento orientado por metas e uma forma explícita de otimização, o GPT não toma decisões

por si mesmo, mas sim gera respostas baseadas em probabilidades derivadas de um grande volume

de dados. Na abordagem baseada em conhecimento, o GPT se encaixa de maneira parcial. O

modelo não segue um conjunto fixo de regras ou possui um banco de dados explícito de

conhecimento, como em sistemas tradicionais baseados em regras. No entanto, ele é treinado com

uma enorme quantidade de textos de diversas fontes e, com isso, adquire um tipo de “conhecimento

implícito” sobre padrões de linguagem, o que lhe permite gerar respostas relevantes para os usuários.

Embora isso se aproxime de um sistema baseado em conhecimento, o GPT não possui um

entendimento real ou consciente do conteúdo que gera. A abordagem empírica é onde o GPT se

encaixa com mais clareza. Como um modelo treinado por meio de aprendizado de máquina (machine

learning), ele aprende diretamente com grandes volumes de dados, identificando padrões e

probabilidades para gerar respostas. Esse processo é empírico porque, ao invés de ser programado

com regras fixas, o GPT se baseia na experiência de interagir com imensos conjuntos de dados para

aprimorar sua capacidade de gerar textos. Sua aprendizagem vem da observação de dados e da

modelagem dessas informações para realizar tarefas específicas de linguagem. Finalmente, na

abordagem naturalista, o GPT se destaca como uma tentativa de imitar a comunicação humana. Ele

16

utiliza técnicas de processamento de linguagem natural (PNL) para gerar respostas que são, em

muitos casos, indistinguíveis das produções humanas, em termos de fluidez e coerência. No entanto,

o GPT não possui uma compreensão real ou semântica do que está gerando, o que diferencia sua

“habilidade” de linguagem de um verdadeiro entendimento humano. Mesmo assim, ele representa

uma aproximação interessante do comportamento humano em interações de linguagem, algo que é

uma das principais propostas dessa abordagem.

c) O Chat GPT, desenvolvido pela OpenAI, é uma inteligência artificial avançada baseada na

arquitetura GPT (Generative Pre-trained Transformer), utilizando algoritmos de aprendizado profundo

para compreender e gerar texto de forma mais natural e coerente em comparação com tecnologias

anteriores (CUSTÓDIO, 2023).

Esse modelo se destaca por sua capacidade de realizar uma variedade de tarefas, como responder

perguntas, redigir textos, traduzir idiomas, entre outras funções. Ao ser integrado a diversas

plataformas, o Chat GPT tem se mostrado uma ferramenta poderosa para facilitar a interação

humana com a tecnologia. Esse modelo de linguagem faz parte de um grupo de tecnologias

conhecidas como Large Language Models, sendo especificamente um modelo GPT. Seu principal

objetivo é a geração de texto por meio de interações com o usuário, que insere prompts (perguntas,

instruções, ordens, comandos, etc.) de forma sucessiva. Como apontam Silva e Vicentin (2023), o

funcionamento do ChatGPT pode gerar a impressão de que o “robô” possui um bom entendimento

semântico e uma capacidade de escrita que se aproxima da humana. Isso ocorre graças à enorme

base de dados com a qual o modelo foi pré-treinado, permitindo que ele gere respostas com alta

coerência e fluidez.

Por ser um modelo de Processamento de Linguagem Natural (PNL), o Chat GPT “aprende” a definir

padrões e probabilidades de ocorrência das palavras de forma coerente com a comunicação humana.

Contudo, como ressaltam Foletto, Bentes e Maia (2023), apesar de sua aparência convincente e

verossímil, o modelo não entende o significado real do que está gerando, o que representa um dos

aspectos sensíveis de seu uso. Essa falta de compreensão semântica do Chat GPT levanta questões

sobre sua aplicabilidade em contextos que exigem um entendimento profundo do conteúdo gerado.

Além disso, os modelos de inteligência artificial, como o Chat GPT, frequentemente apresentam

vieses devido à maneira como são treinados. Esses vieses surgem a partir das escolhas feitas

durante o processo de criação, como a seleção dos dados utilizados para o treinamento e as

decisões tomadas pelos desenvolvedores e trabalhadores responsáveis. Sampaio et al. (2023)

apontam que muitas empresas se justificam pela proteção de segredos comerciais, alegando que não

podem revelar os detalhes dos modelos para não prejudicar sua competitividade no mercado. No

entanto, essa falta de transparência sobre os algoritmos e as decisões tomadas levanta sérias

questões, já que os processos envolvidos muitas vezes são obscuros e difíceis de entender.

Em conclusão, embora o Chat GPT e outras IAs similares representem avanços significativos no

campo da tecnologia e do processamento de linguagem natural, é essencial abordar as questões

éticas e técnicas envolvidas no seu uso. A transparência nos processos de treinamento, a mitigação

de vieses e a compreensão dos limites do modelo são pontos fundamentais para garantir que essas

17

ferramentas possam ser utilizadas de maneira eficaz e responsável, sem comprometer a integridade

dos dados e dos resultados gerados.

d) Na abordagem de Agentes Racionais, o Chat GPT pode ser visto como um agente que busca

otimizar suas respostas com base nos dados que recebe. Ele não possui objetivos próprios, mas

responde aos prompts de forma a gerar respostas que pareçam racionais e coerentes, dependendo

das informações fornecidas. No entanto, ao contrário de agentes racionais tradicionais, o Chat GPT

não tem uma percepção do mundo real nem objetivos de longo prazo, o que limita sua aplicação

como um agente totalmente racional.

Na abordagem baseada em conhecimento, o Chat GPT pode ser considerado uma ferramenta que,

embora não possua um banco de dados explícito como em sistemas baseados em regras, é treinado

com uma enorme quantidade de dados. Isso permite que o modelo gere respostas coerentes e

plausíveis em muitas situações, baseando-se nos padrões e probabilidades de ocorrência das

palavras, adquiridos durante o treinamento. Porém, o modelo não possui um conhecimento explícito

estruturado ou uma base de regras que ele siga conscientemente, o que diferencia essa abordagem

das tradicionais em sistemas baseados em conhecimento.

A abordagem empírica se aplica bem ao Chat GPT, pois ele é treinado com grandes quantidades de

dados reais, usando aprendizado de máquina para melhorar suas respostas. Ao invés de seguir

regras predefinidas ou lógicas abstratas, o modelo aprende a partir de exemplos e experiência direta

com dados. Dessa forma, ele gera respostas mais precisas conforme recebe mais interações e mais

dados, o que é típico de sistemas empíricos que dependem da observação e análise de grandes

volumes de informações para realizar inferências e gerar respostas. Por fim, na abordagem

naturalista, o Chat GPT é um exemplo de tentativa de simulação da comunicação humana natural.

Ele se baseia no processamento de linguagem natural para gerar respostas que imitam a interação

humana, com uma fluidez e coerência que, em muitos casos, são difíceis de distinguir das produções

humanas. Contudo, apesar de sua capacidade de gerar textos plausíveis, o modelo não possui uma

compreensão real do conteúdo, o que destaca a diferença entre a inteligência artificial e a inteligência

humana, um ponto que caracteriza a crítica dentro dessa abordagem.

2

3

18

a) raposa come as uvas se e somente se as uvas caem
: as uvas caem
: a raposa come as uvas :

as uvas estão maduras
Esperado: ↔
R1: →
R3: ¬ ∨
R4: r → p EI, R3
R5: q → p SI, R2, R4
R6: (q → p) ^ (p →q) CONJ, R5, R1
R7: (q ↔ p) BICOND, R6

O argumento lógico é válido.

4

a) Valor de saída do neurônio N1 – R: 0,3
N1 - = 1 x 0,4 + (-3) x 0,2 + 1 x 0,8
N1 = 0,3

b) Valor de saída do neurônio N2 – R: 0,3
N2 = 1 x 0,4 + (-3) x 0,1 + 1 x 0,2
N2 = 0,3

c) Valor de saída do neurônio N3 – R: -2
N3 = 1 x 0,2 + (-3) x 0,9 + 1 x 0,5
N3 = -2

d) Valor de saída da rede como um todo – R: -0,1391
N4 = 1 x 0,1 + 0,3 x 0,9 + 0,3 x 0,3 + (-2) x 0,3
N4 = -0,14
Tanh (u) = -0,1391
F(a)(u) = -0,13909

19

 APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA

A – ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv

Informações sobre a base de dados:
Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021,

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A

base original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser

utilizada no presente exercício.

Observação: As variáveis fuel , gear e engine_size foram extraídas dos valores da coluna

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém

todos os dados originais da tabela FIPE.

Metadados:

Nome do campo Descrição

year_of_reference O preço médio corresponde a um

mês de ano de referência

month_of_reference O preço médio corresponde a um

mês de referência, ou seja, a FIPE atualiza

sua tabela mensalmente

fipe_code Código único da FIPE

authentication Código de autenticação único para

consulta no site da FIPE

brand Marca do carro

model Modelo do carro

fuel Tipo de combustível do carro

gear Tipo de engrenagem do carro

engine_size Tamanho do motor em centímetros

cúbicos

20

year_model Ano do modelo do carro. Pode não

corresponder ao ano de fabricação

avg_price Preço médio do carro, em reais

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato

que será considerado correto na resolução do exercício.

1 Análise Exploratória dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Carregue a base de dados media_precos_carros_brasil.csv
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o

problema de valores faltantes
c. Verifique se há dados duplicados nos dados
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de

informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados

encontrados na Análise Exploratória dos dados

2 Visualização dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Gere um gráfico da distribuição da quantidade de carros por marca
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022

(variável de tempo no eixo X)
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de

engrenagem
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de

combustível
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis
independentes do modelo.A variável target é avg_price. Observação: caso julgue
necessário, faça a transformação de variáveis categóricas em variáveis numéricas para
inputar no modelo. Indique quais variáveis foram transformadas e como foram
transformadas

b. Crie partições contendo 75% dos dados para treino e 25% para teste
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário,
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram
inputados e indique o treinamento de cada modelo

d. Grave os valores preditos em variáveis criadas

21

e. Realize a análise de importância das variáveis para estimar a variável target, para cada
modelo treinado

f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na
análise de importância de variáveis

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R²
h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor

resultado e a métrica de avaliação utilizada

B - RESOLUÇÃO

1
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from xgboost import XGBRegressor

dados_df = pd.read_csv('media_precos_carros_brasil.csv')

print(dados_df.shape)

(267542, 11)

print(dados_df.dtypes)

year_of_reference float64

month_of_reference object

fipe_code object

authentication object

brand object

model object

fuel object

gear object

engine_size object

year_model float64

avg_price_brl float64

dtype: object

dados_df.dropna(axis=0, how='all', inplace=True)

dados_df.duplicated().sum()

22

2

dados_df.drop_duplicates(inplace=True)

num_cols = [col for col in dados_df.columns if dados_df[col].dtype !=

'object']

categ_cols = [col for col in dados_df.columns if dados_df[col].dtype ==

'object']

dados_df[num_cols].describe()

dados_df[categ_cols].describe()

dados_df['model'].value_counts()

Palio Week. Adv/Adv TRYON 1.8 mpi Flex 425

Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p 425

Focus 2.0 16V/SE/SE Plus Flex 5p Aut. 400

Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V 400

Corvette 5.7/ 6.0, 6.2 Targa/Stingray 375

 ...

STEPWAY Zen Flex 1.0 12V Mec. 2

Saveiro Robust 1.6 Total Flex 16V CD 2

Saveiro Robust 1.6 Total Flex 16V 2

Gol Last Edition 1.0 Flex 12V 5p 2

Polo Track 1.0 Flex 12V 5p 2

Name: model, Length: 2112, dtype: int64

dados_df['brand'].value_counts()

Fiat 44962

VW - VolksWagen 44312

GM - Chevrolet 38590

Ford 33150

Renault 29191

Nissan 12090

Name: brand, dtype: int64

 A base de dados, que possui 267.542 registros e 11 colunas, apresenta no final 65.245 linhas

vazias, provavelmente devido ao processo de exportação para o formato CSV. Após a eliminação

dessas linhas, não há valores faltantes. Foram encontradas duas linhas duplicadas na base. Entre as

11 colunas, 3 são numéricas e 8 categóricas. As informações estão distribuídas por 5 marcas de

veículos, com uma grande quantidade de modelos diferentes.

23

2

plt.figure(figsize=(20,10))

marca_plt = sns.countplot(x="brand", data=dados_df,

order=dados_df['brand'].value_counts().index)

marca_plt.set_xlabel('Marca')

marca_plt.set_ylabel('Total de Carros')

marca_plt.bar_label(marca_plt.containers[0], size=12, padding=3)

marca_plt.set_title('Distribuição da Qtde de Carros por Marca')

Text(0.5, 1.0, 'Distribuição da Qtde de Carros por Marca')

plt.figure(figsize=(20,10))

marca_plt = sns.countplot(x="gear", data=dados_df,

order=dados_df['gear'].value_counts().index)

marca_plt.set_xlabel('Tipo de Engrenagem')

marca_plt.set_ylabel('Total de Carros')

marca_plt.bar_label(marca_plt.containers[0], size=12, padding=3)

marca_plt.set_title('Distribuição da Qtde de Carros por Tipo de Engrenagem')

Text(0.5, 1.0, 'Distribuição da Qtde de Carros por Tipo de Engrenagem')

24

plt.figure(figsize=(20,10))

marca_plt = sns.barplot(x="month_of_reference", y='avg_price_brl', \

 data=dados_df[dados_df['year_of_reference'] ==

2022].groupby('month_of_reference')['avg_price_brl'].mean().round(2).reset_in

dex(), \

 order=dados_df[dados_df['year_of_reference'] ==

2022]['month_of_reference'].unique())

marca_plt.set_xlabel('Mês')

marca_plt.set_ylabel('Valor Médio')

marca_plt.bar_label(marca_plt.containers[0], size=12, padding=3)

marca_plt.set_title('Evolução da média de preço dos carros por mês em 2022')

Text(0.5, 1.0, 'Evolução da média de preço dos carros por mês em 2022')

25

plt.figure(figsize=(20,10))

marca_plt = sns.barplot(x='brand', y='avg_price_brl', hue='gear', \

 data=dados_df.groupby(['brand',

'gear'])['avg_price_brl'].mean().round(2).reset_index(), \

 hue_order=dados_df['gear'].unique())

marca_plt.set_xlabel('Marca')

marca_plt.set_ylabel('Valor Médio')

for container in marca_plt.containers:

 marca_plt.bar_label(container, size=12, padding=3)

marca_plt.set_title('Distribuição da média do preço dos carros por marca e

tipo de engrenagem')

Text(0.5, 1.0, 'Distribuição da média do preço dos carros por marca e tipo de

engrenagem')

26

 Em quase todas as marcas, observa-se uma grande disparidade entre o preço médio dos carros

automáticos e dos manuais. No entanto, a Renault foge dessa regra, pois, além dos preços serem

bem próximos, o valor médio dos carros manuais é ligeiramente superior ao dos automáticos. A

Volkswagen é a marca com o maior preço médio para os modelos automáticos, seguida pela Fiat e

Nissan, respectivamente.

plt.figure(figsize=(20,10))

marca_plt = sns.barplot(x='brand', y='avg_price_brl', hue='fuel', \

 data=dados_df.groupby(['brand',

'fuel'])['avg_price_brl'].mean().round(2).reset_index(), \

 hue_order=dados_df['fuel'].unique().sort())

marca_plt.set_xlabel('Marca')

marca_plt.set_ylabel('Valor Médio')

for container in marca_plt.containers:

 marca_plt.bar_label(container, size=12, padding=3)

marca_plt.set_title('Distribuição da média do preço dos carros por marca e

tipo de combustível')

Text(0.5, 1.0, 'Distribuição da média do preço dos carros por marca e tipo de

combustível')

27

 Em todas as marcas, os carros movidos a Diesel apresentam um valor médio significativamente

superior aos de outros combustíveis, seguidos pelos modelos a Gasolina, que têm preços médios

maiores do que os carros a Álcool. Vale ressaltar que a Renault e a Nissan não possuem nenhum

veículo movido a Álcool em sua base de dados, logo, não há valores médios para esse combustível

nas respectivas marcas.

3

dados_df['year_model'] = dados_df['year_model'].astype(int)

dados_df.head()

dados_df['fuel_num'] = LabelEncoder().fit_transform(dados_df['fuel'])

dados_df.head()

dados_df['gear_num'] = LabelEncoder().fit_transform(dados_df['gear'])

dados_df.head()

dados_df['engine_size_num'] = dados_df['engine_size'].str.replace(',',

'.').astype(float)

dados_df.head()

dados_num_df = dados_df[[col for col in dados_df.columns if

dados_df[col].dtype != 'object']]

dados_num_df.drop('year_of_reference', axis=1, inplace=True)

dados_num_df.head()

sns.heatmap(dados_num_df.corr("spearman"), annot = True)

plt.title("Mapa de Correlação das Variáveis Numéricas\n", fontsize = 15)

plt.show()

28

X = dados_num_df.drop('avg_price_brl',axis = 1)

Y = dados_num_df['avg_price_brl']

Y.head()

0 9162.0

1 8832.0

2 8388.0

3 8453.0

4 12525.0

Name: avg_price_brl, dtype: float64

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25,

random_state = 42)

print(X_train.shape)

X_train.head(1)

(151721, 4)

print(X_test.shape)

X_test.head(1)

(50574, 4)

model_rf = RandomForestRegressor()

29

model_rf.fit(X_train, Y_train)

RandomForestRegressor()

model_xgboost = XGBRegressor()

model_xgboost.fit(X_train, Y_train)

XGBRegressor(base_score=None, booster=None, callbacks=None,

 colsample_bylevel=None, colsample_bynode=None,

 colsample_bytree=None, device=None, early_stopping_rounds=None,

 enable_categorical=False, eval_metric=None, feature_types=None,

 gamma=None, grow_policy=None, importance_type=None,

 interaction_constraints=None, learning_rate=None, max_bin=None,

 max_cat_threshold=None, max_cat_to_onehot=None,

 max_delta_step=None, max_depth=None, max_leaves=None,

 min_child_weight=None, missing=nan, monotone_constraints=None,

 multi_strategy=None, n_estimators=None, n_jobs=None,

 num_parallel_tree=None, random_state=None, ...)

valores_preditos_rf = model_rf.predict(X_test)

valores_preditos_xgboost = model_xgboost.predict(X_test)

model_rf.feature_importances_

feature_importances_RF = pd.DataFrame(model_rf.feature_importances_, index =

X_train.columns,

columns=['importance']).sort_values('importance', ascending = False)

feature_importances_RF

model_xgboost.feature_importances_

feature_importances_XB = pd.DataFrame(model_xgboost.feature_importances_,

index = X_train.columns,

columns=['importance']).sort_values('importance', ascending = False)

feature_importances_XB

mse_RF = mean_squared_error(Y_test, valores_preditos_rf)

mae_RF = mean_absolute_error(Y_test, valores_preditos_rf)

r2_RF = r2_score(Y_test, valores_preditos_rf)

print(mse_RF)

print(mae_RF)

print(r2_RF)

191532975.81806594

7820.921055193546

30

0.9288314149027983

mse_XG = mean_squared_error(Y_test, valores_preditos_xgboost)

mae_XG = mean_absolute_error(Y_test, valores_preditos_xgboost)

r2_XG = r2_score(Y_test, valores_preditos_xgboost)

print(mse_XG)

print(mae_XG)

print(r2_XG)

191424816.71144438

7819.671020396782

0.928871603964503

31

APÊNDICE 3 – LINGUAGEM R

A – ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é

prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System)

consiste em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas

estão na região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro

visível) e duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0

correspondendo a preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m.

Cada imagem contém 2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de

uma cena, consistindo de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança

quadrada de pixels 3x3 completamente contida dentro da subárea 82x100. Cada linha contém os

valores de pixel nas quatro bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na

vizinhança de 3x3 e um número indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de

vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante,

com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro

valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando

uma vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote mlbench e é completo (não possui dados

faltantes).

Tarefas:

1. Carregue a base de dados Satellite
2. Crie partições contendo 80% para treino e 20% para teste
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
4. Escolha o melhor modelo com base em suas matrizes de confusão.
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

32

2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser

necessário abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com

estes dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o

modelo de Spurr é dado por:

Volume = b0 + b1 * dap2 * Ht

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários

modelos alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de

regressão envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando

assim uma equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
2. Eliminar a coluna NR, que só apresenta um número sequencial
3. Criar partição de dados: treinamento 80%, teste 20%
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes

Neurais (neuralnet) e o modelo alométrico de SPURR

▪ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5))

5. Efetue as predições nos dados de teste
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados

observados

▪ Coeficiente de determinação: R2

33

onde é o valor observado, é o valor predito e é a média dos valores observados. աՑ աՑ^ ա աՑ
Quanto mais perto de 1 melhor é o modelo;

▪ Erro padrão da estimativa: Syx

 esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;

▪ Syx%

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

B – RESOLUÇÃO

1

A acurácia deste foi 0.8411215 (84,11%).

34

A acurácia deste foi 0.8660436 (86,60%).

A acurácia deste foi 0.7764798 (77,64%).

 Baseado nos resultados obtidos, o que resultou no maior índice de acurácia foi o modelo SVM.

Portanto, o melhor modelo para este exercício é o SVM.

install.packages("e1071")

install.packages('knitr')

install.packages("randomForest")

install.packages("kernlab")

install.packages('caret')

install.packages("mlbench")

library('knitr')

library('mlbench')

library('caret')

seed <- 4

set.seed(seed)

data(Satellite)

database <- Satellite

indexes <- createDataPartition(database$classes, p=0.80, list=F)

train <- database[indexes,]

test <- database[-indexes,]

formula <- (classes ~ x.17 + x.18 + x.19 + x.20)

rf <- train(formula, data=train, method='rf')

svm <- train(formula, data=train, method='svmRadial')

rna <- train(formula, data=train, method='nnet', trace=F)

predict.rf <- predict(rf, test)

predict.svm <- predict(svm, test)

predict.rna <- predict(rna, test)

generatePresentation <- function (predicted, testData, modelName, fileName) {

cm <- confusionMatrix(predicted, testData$classes)

35

matrixTable <- paste(knitr::kable(cm$table, 'pipe'), collapse='\n')

overall <- paste(knitr::kable(as.data.frame(cm$overall), 'pipe',

col.names=c('Propriedade', 'Valor')),

collapse='\n')

text <- paste(c("# ", toupper(modelName), "\n\n## Matriz de Confusão\n\n",

matrixTable, "\n\n##

Resultados\n\n", overall), collapse= ')

write.table(text, fileName, quote=F, row.names=F, col.names=F)

}

generatePresentation(predict.rf, test, 'random forest',

'IAA003RandomForest.md')

generatePresentation(predict.svm, test, 'svm', 'IAA003SVM.md')

generatePresentation(predict.rna, test, 'rna', 'IAA003RNA.md')

2

 Baseado nos resultados apresentados na Tabela 4, o melhor modelo para este exercício, devido

ao índice R² mais próximo de 1 e erro padrão de estimativa e percentual de erro padrão de estimativa

mais próximos de 0, é o Modo Alométrico de SPURR.

install.packages("e1071")

install.packages('knitr')

install.packages("randomForest")

install.packages("kernlab")

install.packages('caret')

library('knitr')

library('caret')

seed <- 8

set.seed(seed)

dataset <- read.csv2('http://www.razer.net.br/datasets/Volumes.csv',

header=T, dec=',', sep=';')

dataset$NR <- NULL

indexes <- createDataPartition(y=dataset$VOL, p=0.80, list=F)

36

train <- dataset[indexes,]

test <- dataset[-indexes,]

rf <- caret::train(VOL ~ DAP * DAP * HT, data=train, method='rf')

svm <- caret::train(VOL~ DAP * DAP * HT, data=train, method='svmRadial')

rna <- caret::train(VOL~ DAP * DAP * HT, data=train, method='nnet')

spurr <- nls(VOL ~ b0 + b1 * DAP * DAP * HT, train, start=list(b0=0.5,

b1=0.5))

predict.rf <- predict(rf, test)

predict.svm <- predict(svm, test)

predict.rna <- predict(rna, test)

predict.spurr <- predict(spurr, test)

r2 <- function(yr, yp) {

return (1 - (sum((yr - yp) ^ 2) / sum((yr - mean(yr)) ^ 2)))

}

erroPadraoEstimativa <- function(yr, yp) {

n <- length(yr)

return (sqrt(sum((yr - yp) ^ 2) / (n - 2)))

}

erroPadraoEstimativaPerc <- function(yr, yp) {

return ((erroPadraoEstimativa(yr, yp) / mean(yr)) * 100)

}

yr <- test$VOL

results <- data.frame(

'Random Forest'=c(r2(yr, predict.rf), erroPadraoEstimativa(yr, predict.rf),

erroPadraoEstimativaPerc(yr, predict.rf)),

'SVM'=c(r2(yr, predict.svm), erroPadraoEstimativa(yr, predict.svm),

erroPadraoEstimativaPerc(yr, predict.svm)),

'RNA'=c(r2(yr, predict.rna), erroPadraoEstimativa(yr, predict.rna),

erroPadraoEstimativaPerc(yr, predict.rna)),

'Modelo Alométrico de SPURR'=c(r2(yr, predict.spurr),

erroPadraoEstimativa(yr, predict.spurr),

erroPadraoEstimativaPerc(yr, predict.spurr)),

row.names = c('R²', 'Erro Padrão da Estimativa', 'Percentual de Erro Padrão

da Estimativa')

)

table <- knitr::kable(results, 'pipe')

write.table(table, 'IAA003EX2.md', quote=F, row.names=F, col.names=F)

37

APÊNDICE 4 – ESTATÍSTICA APLICADA I

A – ENUNCIADO

1) Gráficos e tabelas

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa)

e “husage” (idade do marido) e comparar os resultados

(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

2) Medidas de posição e dispersão

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

(15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age”

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

3) Testes paramétricos ou não paramétricos

(40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do

marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique

sua resposta sobre a escolha.

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes

citados no item 1 acima.

B – RESOLUÇÃO

1

Código:
library(rcompanion)

library(car)

library(fdth)

library(nortest)

38

library(DescTools)

options(scipen=999)

load('salarios.RData')

idades <- data.frame(

conjuge = rep(c("Marido", "Esposa"), each = 5634),

idade = c(salarios$husage, salarios$age)

)

ggboxplot(idades, x = "conjuge", y = "idade",

color = "conjuge", palette=c("#00AFBB", "#E7B800"),

ylab = "Idade", xlab = "conjuge")

plotNormalHistogram(idades$idade[idades$conjuge=="Marido"], prob = FALSE,

main = "Distribuição Normal x Idade dos Maridos",

length = 1000)

39

plotNormalHistogram(idades$idade[idades$conjuge=="Esposa"], prob = FALSE,

main = "Distribuição Normal x Idade das Esposas",

length = 1000)

40

 A análise dos boxplots revela que a idade das esposas varia entre 18 e 59 anos, enquanto a

dos maridos vai de 19 até 86 anos. A mediana das idades, representada pela linha central da caixa, é

de 39 anos para as esposas e 41 anos para os maridos. Esse valor corresponde ao segundo quartil,

ou seja, o ponto que separa a metade inferior da superior dos dados. Embora o tamanho das caixas

— que representa o intervalo interquartil — seja semelhante para ambos, a distribuição etária dos

maridos mostra maior dispersão, inclusive com presença de outliers, o que não ocorre entre as

esposas.

 Nos histogramas, observa-se que a maior concentração de idades das esposas está entre 25 e

65 anos, enquanto a dos maridos se concentra de forma mais expressiva entre 25 e 60 anos. No

entanto, as distribuições seguem padrões diferentes: a curva referente aos maridos é mais estreita e

elevada (leptocúrtica), com assimetria voltada para a esquerda, enquanto a das esposas é mais

achatada (platicúrtica) e tende a se assimetria à direita.

41

42

Código:

with(idades,

 range(idade[conjuge=="Marido"])

)

 [1] 19 86

with(idades,

 range(idade[conjuge=="Esposa"])

)

[1] 18 59

ft_marido <- with(idades,

 fdt(idade[conjuge=="Marido"],

 start = 15, end = 90, h = 5

)

)

ft_marido

Class limits f rf rf(%) cf cf(%)

 [15,20) 5 0.00 0.09 5 0.09

 [20,25) 168 0.03 2.98 173 3.07

 [25,30) 532 0.09 9.44 705 12.51

 [30,35) 868 0.15 15.41 1573 27.92

 [35,40) 899 0.16 15.96 2472 43.88

 [40,45) 918 0.16 16.29 3390 60.17

 [45,50) 710 0.13 12.60 4100 72.77

 [50,55) 573 0.10 10.17 4673 82.94

 [55,60) 512 0.09 9.09 5185 92.03

 [60,65) 307 0.05 5.45 5492 97.48

 [65,70) 89 0.02 1.58 5581 99.06

 [70,75) 32 0.01 0.57 5613 99.63

 [75,80) 17 0.00 0.30 5630 99.93

 [80,85) 2 0.00 0.04 5632 99.96

 [85,90) 2 0.00 0.04 5634 100.00

ft_esposa <- with(idades,

 fdt(idade[conjuge=="Esposa"],

43

 start = 15, end = 60, h = 5

)

)

ft_esposa

Class limits f rf rf(%) cf cf(%)

 [15,20) 30 0.01 0.53 30 0.53

 [20,25) 276 0.05 4.90 306 5.43

 [25,30) 733 0.13 13.01 1039 18.44

 [30,35) 946 0.17 16.79 1985 35.23

 [35,40) 982 0.17 17.43 2967 52.66

 [40,45) 881 0.16 15.64 3848 68.30

 [45,50) 688 0.12 12.21 4536 80.51

 [50,55) 600 0.11 10.65 5136 91.16

 [55,60) 498 0.09 8.84 5634 100.00

Com base nos dados apresentados nas Tabelas 1 e 2, observa-se que a maioria das esposas tem

entre 25 e 55 anos, enquanto a faixa etária predominante entre os maridos está entre 20 e 60 anos.

Analisando a frequência acumulada, nota-se que 18,44% das esposas estão na faixa de 25 a 30

anos, e esse percentual sobe para 91,16% até a faixa de 50 a 55 anos. Já entre os maridos, 12,51%

têm entre 25 e 30 anos, e a frequência acumulada atinge 99,06% até a faixa de 65 a 70 anos.Em

relação à frequência relativa, a faixa etária mais representativa entre as esposas é a de 35 a 40 anos,

com 17,43% dos casos (982 mulheres). Para os maridos, o maior percentual está na faixa de 40 a 45

anos, que concentra 16,29% dos dados (918 homens).

conjuge count mean median var sd c.var IQR

Esposa 5634 39.4 39 99.8 9.99 25.3 16

Marido 5634 42.5 41 126. 11.2 26.4 16

with(idades,

subset(table(idade[conjuge=="Esposa"]),

table(idade[conjuge=="Esposa"])==max(table(idade[conjuge=="Esposa"]))

)

)

44

37

217

with(idades,

subset(table(idade[conjuge=="Marido"]),

table(idade[conjuge=="Marido"])==max(table(idade[conjuge=="Marido"]))

)

)

44

201

dif_media <- ((42.5/39.4)-1)*100

dif_media

[1] 7.86802

dif_mediana <- ((41/39)-1)*100

dif_mediana

[1] 5.128205

dif_moda <- ((44/37)-1)*100

dif_moda

[1] 18.91892

 Na amostra analisada, a idade média dos maridos é de 42,5 anos, o que representa um valor

7,87% superior à média das esposas, que é de 39,4 anos. A mediana também apresenta essa

diferença: os maridos têm uma mediana de 41 anos, enquanto entre as esposas esse valor é de 39

anos — uma diferença de 5,13%. Já em relação à moda, observa-se a maior disparidade: a idade

mais frequente entre os maridos é 44 anos (com 201 registros), o que equivale a um aumento de

18,92% em comparação com a moda das esposas, que é de 37 anos (registrada por 217 mulheres).

Código:
group_by(idades, conjuge) %>%

summarise(

count = n(),

mean = mean(idade, na.rm = TRUE),

median = median(idade, na.rm = TRUE),

var = var(idade, na.rm = TRUE),

sd = sd(idade, na.rm = TRUE),

c.var = sd(idade, na.rm = TRUE)/mean(idade, na.rm = TRUE)*100,

IQR = IQR(idade, na.rm = TRUE)

)

conjuge count mean median var sd c.var IQR

Esposa 5634 39.4 39 99.8 9.99 25.3 16

Marido 5634 42.5 41 126. 11.2 26.4 16

dif_VAR <- ((126/99.8)-1)*100

45

dif_VAR

[1] 26.25251

dif_DP <- ((11.2/9.99)-1)*100

dif_DP

[1] 12.11211

 Entre os grupos analisados, a variância da idade dos maridos foi de 126 anos², valor 26,25%

superior à variância observada entre as esposas, que foi de 99,8 anos². O desvio padrão também

seguiu essa tendência: os maridos apresentaram um desvio padrão de 11,2 anos, o que representa

uma diferença de 12,11% em relação ao das esposas, que ficou em 9,99 anos. No que diz respeito ao

coeficiente de variação, os maridos novamente apresentaram maior dispersão relativa, com um índice

de 26,4%, frente aos 25,3% registrados entre as esposas.

3

Código:
with(idades,

JarqueBeraTest(idade[conjuge=="Esposa"],

robust = TRUE

)

)

Robust Jarque Bera Test

data: idade[conjuge == "Esposa"]

X-squared = 158.49, df = 2, p-value < 0.00000000000000022

with(idades,

JarqueBeraTest(idade[conjuge=="Marido"],

robust = TRUE

)

)

Robust Jarque Bera Test

data: idade[conjuge == "Marido"]

X-squared = 153.12, df = 2, p-value < 0.00000000000000022

 Como o p-valor obtido para ambos os grupos foi inferior a 0,05, conclui-se que as amostras não

seguem uma distribuição normal. Diante disso, a aplicação de um teste paramétrico não é apropriada.

Portanto, opta-se por um teste não paramétrico. Considerando que as amostras são independentes, o

teste indicado é o Mann-Whitney U. Testando se a mediana da idade dos maridos e esposas são

estatisticamente iguais:

group_by(idades, conjuge) %>%

summarise(

46

count = n(),

mean = mean(idade, na.rm = TRUE),

median = median(idade, na.rm = TRUE),

var = var(idade, na.rm = TRUE),

sd = sd(idade, na.rm = TRUE),

c.var = sd(idade, na.rm = TRUE)/mean(idade, na.rm = TRUE)*100,

IQR = IQR(idade, na.rm = TRUE)

)

conjuge count mean median var sd c.var IQR

Esposa 5634 39.4 39 99.8 9.99 25.3 16

Marido 5634 42.5 41 126. 11.2 26.4 16

ggboxplot(idades, x = "conjuge", y = "idade",

color = "conjuge", palette=c("#00AFBB", "#E7B800"),

ylab = "Idade", xlab = "conjuge")

Hipóteses do teste Mann-Whitney U:

H₀: A mediana das idades dos maridos é estatisticamente igual à mediana das idades das esposas.

Hₐ: A mediana das idades dos maridos é estatisticamente diferente da mediana das idades das

esposas.

wilcox.test(idade ~ conjuge, data = idades,

exact = FALSE,

conf.int=TRUE)

47

Wilcoxon rank sum test with continuity correction

data: idade by conjuge

W = 13619912, p-value < 0.00000000000000022

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval: -3.000024 -2.000033

sample estimates:

difference in location -2.999966

 Como o p-valor obtido foi menor que 0,05, rejeita-se a H₀, indicando que há diferença

estatisticamente significativa entre as medianas das idades dos maridos e das esposas.

 O intervalo de confiança para a diferença entre as medianas está aproximadamente entre -3 e

-2, com uma mediana estimada da diferença em torno de -3. Isso sugere que, em média, a idade das

esposas é de 2 a 3 anos inferior à dos maridos.

Teste unilateral para comparar as medianas das idades

Hipóteses:

H₀: A mediana da idade das esposas não é menor que a mediana da idade dos maridos (ou seja, é

igual ou maior).

Hₐ: A mediana da idade das esposas é menor que a mediana da idade dos maridos.

wilcox.test(idade ~ conjuge, data = idades,

exact = FALSE,

alternative='less',

conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: idade by conjuge

W = 13619912, p-value < 0.00000000000000022

alternative hypothesis: true location shift is less than 0

95 percent confidence interval: -Inf -2.000046

sample estimates:

difference in location -2.999966

 Como o p-valor foi inferior a 0,05, rejeita-se a hipótese nula (H₀). Isso confirma que há evidência

estatística suficiente para afirmar que a mediana da idade das esposas é menor que a mediana da

idade dos maridos.

 O intervalo de confiança para a diferença entre as medianas encontra-se abaixo de

aproximadamente -2, com uma estimativa central em torno de -3. Isso indica que, em média, a idade

das esposas é de 2 a 3 anos inferior à dos maridos, com um alto grau de confiança estatística.

Teste unilateral para comparar as medianas das idades

Hipóteses:

48

H₀: A mediana da idade das esposas não é maior que a mediana da idade dos maridos (ou seja, é

igual ou

menor).

Hₐ: A mediana da idade das esposas é maior que a mediana da idade dos maridos.

wilcox.test(idade ~ conjuge, data = idades,

exact = FALSE,

alternative='greater',

conf.int=TRUE)

Wilcoxon rank sum test with continuity correction

data: idade by conjuge

W = 13619912, p-value = 1

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval: -3.000034 Inf

sample estimates:

difference in location -2.999966

Como o p-valor foi maior que 0,05, não há evidência suficiente para rejeitar a hipótese nula

(H₀). Dessa forma, não se pode afirmar que a mediana da idade das esposas seja maior que a

mediana da idade dos maridos. Além disso, o intervalo de confiança para a diferença entre as

medianas apresenta valores acima de aproximadamente -3, com uma mediana estimada em torno de

-3, indicando que a diferença entre as medianas não apoia a ideia de que a mediana das esposas

seja superior à dos maridos.

Neste caso, foi necessário verificar as premissas para definir se seria adequado aplicar um

teste paramétrico ou não paramétrico. Após confirmar que as amostras são independentes,

realizou-se o teste de normalidade por meio do teste de Jarque-Bera. Os resultados indicaram que os

dados não seguem uma distribuição normal, o que levou à escolha de um teste não paramétrico.

 Dado que os grupos são independentes e não pareados, o teste mais apropriado foi o

Mann-Whitney U. Os resultados desse teste confirmaram que há, de fato, uma diferença

estatisticamente significativa entre as medianas das idades, sendo a mediana das esposas inferior à

dos maridos.

49

APÊNDICE 5 – ESTATÍSTICA APLICADA II

A – ENUNCIADO

Regressões Ridge, Lasso e ElasticNet

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente

“lwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de

dados são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No

pdf você deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e

R2) e concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de

confiança para os seguintes valores:

husage = 40 (anos – idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos – idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidlt6 = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para

obter o resultado da predição.

B – RESOLUÇÃO
1. Carregando os pacotes

Para Regressão Ridge/Lasso/Elastic-Net

library(glmnet)
require(dplyr)
library(tidyverse)
library(caret)
library(car)

50

library(lmtest)
library(olsrr)

Nessa primeira parte carregou os pacotes necessários para a análise dos modelos de

regressão Ridge, Lasso e Elastic-Net.

2. Buscando o conjunto de dados

load("C:/Users/pamar/MODELOS REGRESSAO/trabalhosalarios.RData")
attach(trabalhosalarios)

Lendo as 6 primeiras linhas dos dados
head(trabalhosalarios)

 husage husunion husearns huseduc husblck hushisp hushrs kidge6 earns age
3 56 0 1500 14 0 0 40 1 100 49
13 31 0 800 17 0 0 40 0 480 29
20 33 0 950 13 0 0 60 0 455 30
21 34 0 1000 14 0 0 50 1 102 31
22 42 0 730 14 0 0 40 1 300 41
25 45 0 1154 16 0 0 38 1 425 45
 black educ hispanic union exper kidlt6 lwage
3 0 12 0 0 31 0 1.897120
13 0 14 0 0 9 0 2.484907
20 0 12 0 0 12 1 2.431418
21 0 12 0 0 13 0 1.629241
22 0 12 0 0 23 0 2.302585
25 0 18 0 0 21 0 2.496741

Estrutura dos dados
str(trabalhosalarios)

'data.frame': 2574 obs. of 17 variables:
 $ husage : num 56 31 33 34 42 45 33 31 31 44 ...
 $ husunion: num 0 0 0 0 0 0 0 0 0 0 ...
 $ husearns: num 1500 800 950 1000 730 ...
 $ huseduc : num 14 17 13 14 14 16 16 18 12 12 ...
 $ husblck : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushisp : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushrs : num 40 40 60 50 40 38 40 55 40 40 ...
 $ kidge6 : num 1 0 0 1 1 1 0 0 0 1 ...
 $ earns : num 100 480 455 102 300 425 770 125 245 539 ...
 $ age : num 49 29 30 31 41 45 32 27 30 42 ...
 $ black : num 0 0 0 0 0 0 0 0 0 0 ...
 $ educ : num 12 14 12 12 12 18 12 14 15 12 ...
 $ hispanic: num 0 0 0 0 0 0 0 0 0 0 ...
 $ union : num 0 0 0 0 0 0 0 0 0 0 ...
 $ exper : num 31 9 12 13 23 21 14 7 9 24 ...
 $ kidlt6 : num 0 0 1 0 0 0 0 1 1 0 ...
 $ lwage : num 1.9 2.48 2.43 1.63 2.3 ...
 - attr(*, "na.action")= 'omit' Named int [1:3060] 1 2 4 5 6 7 8 9 10 11 ...
 ..- attr(*, "names")= chr [1:3060] "1" "2" "4" "5" ...

##Selecionando os dados de treino e teste
amostra<- sample(c(TRUE,FALSE), nrow(trabalhosalarios),
 replace=TRUE, prob=c(0.8,0.2))
dados.treino<-trabalhosalarios[amostra,]

dados.teste<-trabalhosalarios[!amostra,]

51

Estrutura dos dados
str(dados.treino)

'data.frame': 2065 obs. of 17 variables:
 $ husage : num 56 31 33 34 42 45 33 31 45 22 ...
 $ husunion: num 0 0 0 0 0 0 0 0 0 0 ...
 $ husearns: num 1500 800 950 1000 730 ...
 $ huseduc : num 14 17 13 14 14 16 16 12 12 12 ...
 $ husblck : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushisp : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushrs : num 40 40 60 50 40 38 40 40 50 40 ...
 $ kidge6 : num 1 0 0 1 1 1 0 0 0 0 ...
 $ earns : num 100 480 455 102 300 425 770 245 300 299 ...
 $ age : num 49 29 30 31 41 45 32 30 42 23 ...
 $ black : num 0 0 0 0 0 0 0 0 0 0 ...
 $ educ : num 12 14 12 12 12 18 12 15 12 13 ...
 $ hispanic: num 0 0 0 0 0 0 0 0 0 0 ...
 $ union : num 0 0 0 0 0 0 0 0 0 0 ...
 $ exper : num 31 9 12 13 23 21 14 9 24 4 ...
 $ kidlt6 : num 0 0 1 0 0 0 0 1 0 0 ...
 $ lwage : num 1.9 2.48 2.43 1.63 2.3 ...
 - attr(*, "na.action")= 'omit' Named int [1:3060] 1 2 4 5 6 7 8 9 10 11 ...
 ..- attr(*, "names")= chr [1:3060] "1" "2" "4" "5" ...

str(dados.teste)

'data.frame': 509 obs. of 17 variables:
 $ husage : num 31 44 66 26 38 25 24 46 42 46 ...
 $ husunion: num 0 0 0 0 0 0 0 0 0 0 ...
 $ husearns: num 769 750 500 520 1500 350 390 1000 1250 800 ...
 $ huseduc : num 18 12 16 14 16 11 12 12 18 18 ...
 $ husblck : num 0 0 0 0 0 1 1 0 0 0 ...
 $ hushisp : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushrs : num 55 40 40 36 40 40 0 24 50 40 ...
 $ kidge6 : num 0 1 0 0 0 0 0 0 1 0 ...
 $ earns : num 125 539 500 345 550 141 205 992 769 400 ...
 $ age : num 27 42 55 27 38 33 22 33 42 44 ...
 $ black : num 0 0 0 0 0 1 1 0 0 0 ...
 $ educ : num 14 12 12 14 16 10 12 12 16 18 ...
 $ hispanic: num 0 0 0 0 0 0 0 0 0 0 ...
 $ union : num 0 0 0 0 0 0 0 1 0 0 ...
 $ exper : num 7 24 37 7 16 17 4 15 20 20 ...
 $ kidlt6 : num 1 0 0 0 1 0 1 0 0 1 ...
 $ lwage : num 1.78 2.6 2.53 2.15 2.62 ...
 - attr(*, "na.action")= 'omit' Named int [1:3060] 1 2 4 5 6 7 8 9 10 11 ...
 ..- attr(*, "names")= chr [1:3060] "1" "2" "4" "5" ...

Buscando preditores (x e y - Iwage) no conjunto de treino e teste
x_treino <- dados.treino %>% select(-lwage) %>% as.matrix()
y_treino <- dados.treino %>% select(lwage) %>% as.matrix()

x_teste <- dados.teste %>% select(-lwage) %>% as.matrix()
y_teste <- dados.teste %>% select(lwage) %>% as.matrix()

Na segunda parte buscou os dados no programa R, fez-se a leitura das primeiras seis linhas

dos dados, a separação em dados de treino (80% dos dados) e teste (20% dos dados) e a definição

dos da variável resposta (dependente) e as variáveis independentes. Na seção 3 tem a análise dos

modelos de regressão Ridge, Lasso e Elastic-Net.

52

3. Modelos de Regressão Ridge, Lasso e Elastic-Net

a) Regressão Ridge
Validação cruzada para obter melhor valor de lambda para Regressão Ridge
(alpha = 0)
cv_best_lambda <- cv.glmnet(x_treino, y_treino, family = "gaussian", alpha =
0, type.measure = "mse")
print(cv_best_lambda)

Call: cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family =
"gaussian", alpha = 0)

Measure: Mean-Squared Error

 Lambda Index Measure SE Nonzero
min 0.04162 100 0.07837 0.002879 16
1se 0.09615 91 0.08099 0.002414 16

best_lambda <-cv_best_lambda$lambda.min

Modelo Regressão Ridge
ridge = glmnet(x_treino, y_treino, family = "gaussian",alpha = 0, lambda =
best_lambda)

Desempenho dos dados de treino na Regressão Ridge
treino_preditos <- ridge %>% predict(x_treino)
data.frame(R2 = R2(treino_preditos, y_treino),
 RMSE = RMSE(treino_preditos, y_treino))

 s0 RMSE
lwage 0.7041207 0.2766061

Desempenho dos dados de teste na Regressão Ridge
teste_preditos <- ridge %>% predict(x_teste)
data.frame(R2 = R2(teste_preditos, y_teste),
 RMSE = RMSE(teste_preditos, y_teste))

 s0 RMSE
lwage 0.6485221 0.3518183

Validação cruzada Regressão Ridge
set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats =
3)

Modelo final Regressão Ridge
Ridge_modelo_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet",
trControl = train.control, tuneGrid = expand.grid(alpha = 0, lambda =
best_lambda))

Resultados Modelo final Regressão Ridge
print(Ridge_modelo_cv)

glmnet

2574 samples
 16 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...

53

Resampling results:

 RMSE Rsquared MAE
 0.2903418 0.7019108 0.1888077

Tuning parameter 'alpha' was held constant at a value of 0
Tuning
 parameter 'lambda' was held constant at a value of 0.04162196

Em média, o Modelo de Regressão Ridge apresentou um R2 de 70,19% sendo que do total da

variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Ridge e o

RMSE para o modelo é 0,2903418.

b) Regressão Lasso

Validação cruzada para obter melhor valor de lambda para Regressão Lasso
(alpha = 1)
cv_best_lambda <- cv.glmnet(x_treino, y_treino, family = "gaussian", alpha =
1, type.measure = "mse")
print(cv_best_lambda)

Call: cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family =
"gaussian", alpha = 1)

Measure: Mean-Squared Error

 Lambda Index Measure SE Nonzero
min 0.00172 60 0.07786 0.007279 15
1se 0.05900 22 0.08437 0.006790 3

best_lambda = cv_best_lambda$lambda.min
Modelo de regressão Lasso
lasso = glmnet(x_treino, y_treino, family = "gaussian", alpha = 1, lambda =
best_lambda)

Desempenho dos dados de treino na Regressão Lasso
treino_preditos <- lasso %>% predict(x_treino)
data.frame(R2 = R2(treino_preditos, y_treino),
 RMSE = RMSE(treino_preditos, y_treino))

 s0 RMSE
lwage 0.7050773 0.2750101

Desempenho dos dados de teste na Regressão Lasso
teste_preditos <- lasso %>% predict(x_teste)
data.frame(R2 = R2(teste_preditos, y_teste),
 RMSE = RMSE(teste_preditos, y_teste))

 s0 RMSE
lwage 0.6507244 0.3469033

Validação cruzada Regressão Lasso
set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats =
3)

Modelo final Regressão Lasso
Lasso_model_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet",
trControl = train.control, tuneGrid = expand.grid(alpha = 1, lambda =
best_lambda))

54

Resultados Modelo final Regressão Lasso
print(Lasso_model_cv)

glmnet

2574 samples
 16 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.2888847 0.703819 0.1831222

Tuning parameter 'alpha' was held constant at a value of 1
Tuning
 parameter 'lambda' was held constant at a value of 0.001719824

Em média, o Modelo de Regressão Lasso apresentou um R2 de 70,38% sendo que do total

da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Lasso e

o RMSE para o modelo é 0,2888847.

c) Regressão Elastic-Net

Validação cruzada para Regressão Elastic Net

set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 3
, search = "random")

Modelo de Regressão Elastic Net
cv_for_best_value <- train(lwage ~ ., data = dados.treino, method="glmnet",
trControl = train.control)

Obtendo melhor valor de alpha e lambda
cv_for_best_value$bestTune

 alpha lambda
1 0.4089769 0.001472246

Modelo Elastic Net
enet <- glmnet(x_treino, y_treino, alpha = 0.4089769, lambda = 0.001472246
,family = "gaussian")

Desempenho dos dados de treino na Regressão Elastic Net
treino_preditos <- enet %>% predict(x_treino)
data.frame(R2 = R2(treino_preditos, y_treino),
 RMSE = RMSE(treino_preditos, y_treino))

 s0 RMSE
lwage 0.7051887 0.2749518

Desempenho dos dados de teste na Regressão Elastic Net
teste_preditos <- enet %>% predict(x_teste)
data.frame(R2 = R2(teste_preditos, y_teste),
 RMSE = RMSE(teste_preditos, y_teste))

55

 s0 RMSE
lwage 0.6506062 0.346834

Validação cruzada para Regressão Elastic Net
set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats =
3)

Modelo final Regressão Elastic Net
Elasticnet_modelo_cv <- train(lwage ~ ., data = trabalhosalarios,
method="glmnet", trControl = train.control, tuneGrid = expand.grid(alpha =
0.4089769, lambda = 0.001472246))

Resultados Modelo final Regressão Elastic Net
print(Elasticnet_modelo_cv)

glmnet

2574 samples
 16 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.2890305 0.7034141 0.1833517

Tuning parameter 'alpha' was held constant at a value of 0.4089769

Tuning parameter 'lambda' was held constant at a value of 0.001472246

Em média, o Modelo de Regressão Elastic-Net apresentou um R2 de 70,34% sendo que do

total da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo

Elastic-Net e o RMSE para o modelo é 0,2890305.

4. Comparação dos diferentes modelos (Ridge, Lasso e Elastic-Net)

print(Ridge_modelo_cv)

glmnet

2574 samples
 16 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.2903418 0.7019108 0.1888077

Tuning parameter 'alpha' was held constant at a value of 0
Tuning
 parameter 'lambda' was held constant at a value of 0.04162196

print(Lasso_model_cv)

56

glmnet

2574 samples
 16 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.2888847 0.703819 0.1831222

Tuning parameter 'alpha' was held constant at a value of 1

Tuning
 parameter 'lambda' was held constant at a value of 0.001719824

print(Elasticnet_modelo_cv)

glmnet

2574 samples
 16 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.2890305 0.7034141 0.1833517

Tuning parameter 'alpha' was held constant at a value of 0.4089769

Tuning parameter 'lambda' was held constant at a value of 0.001472246

Resultados dos modelos
resultados <- data.frame(Metodo = c("Ridge", "Lasso", "Elastic Net"),
 RMSE = c(0.2903418,0.2888847,0.2890305),
 R2 = c(0.7019108, 0.703819, 0.7034141))

knitr::kable(resultados, align = "c", caption = "Métricas dos modelos")

Métricas dos modelos

Método RMSE R2
Ridge 0,2903418 0.7019108
Lasso 0,2888847 0,703819
Elastic-Net 0,2890305 0,7034141

 Dos três modelos avaliados o Modelo de Regressão Lasso captura 70,38% da variabilidade

do salário-hora da esposa em logaritmo neperiano e o RMSE para o modelo é 0,2888847, sendo o

57

modelo escolhido por apresentar menor valor de RMSE e maior valor R2 (coeficiente de determinação

do modelo) em relação a Regressão Ridge e o modelo de Regressão Elastic-Net.
5. Obtendo melhor modelo

Coeficientes do modelo de Regressão Lasso
lasso_coefficients<-lasso$beta
lasso_coefficients

16 x 1 sparse Matrix of class "dgCMatrix"
 s0
husage 0.0009141029
husunion 0.0124011174
husearns 0.0001232746
huseduc 0.0004232420
husblck -0.0173725642
hushisp -0.0211190175
hushrs -0.0011798022
kidge6 0.0062343995
earns 0.0015600008
age 0.0005880356
black -0.0295717695
educ 0.0250478068
hispanic -0.0244298369
union 0.0535280183
exper .
kidlt6 0.0465055001

Identificando coeficientes significativos
significant_indices <- which(lasso_coefficients != 0)
significant_predictors <- rownames(lasso_coefficients)[significant_indices]
print(significant_predictors)

 [1] "husage" "husunion" "husearns" "huseduc" "husblck" "hushisp"
 [7] "hushrs" "kidge6" "earns" "age" "black" "educ"
[13] "hispanic" "union" "kidlt6"

Na Seção 5 têm os coeficientes do Modelo de Regressão Lasso e a seguir tem a predição e o

intervalo de confiança (Seção 6).

6. Predição e intervalo de confiança

O resultado da predição com intervalos de confiança para os seguintes valores:

husage = 40 (anos – idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos – idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

58

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidlt6 = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto você não

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para

obter o resultado da predição.

#Valores para predição
dadospredicao = matrix(c(40,0,600,13,1,0,40,1,0,38,0,13,1,0,18,1), nrow=1,
ncol=16)

#Valor predito pelo modelo
valorpreditoIwage<-predict(lasso, s = best_lambda, newx = dadospredicao)
valorpreditoIwage

 s1
[1,] 1.602809

exp(valorpreditoIwage)

 s1
[1,] 4.966963

Erro padrão
se <- sqrt(cv_best_lambda$cvm[cv_best_lambda$lambda ==
cv_best_lambda$lambda.min])
se

[1] 0.2790276

#Intervalo de confiança
alpha <- 0.05 # 95% confidence interval

Construindo intervalo de confiança
lower_bound <- exp(valorpreditoIwage) - qt(1 - alpha / 2, lasso$df) * se
upper_bound <- exp(valorpreditoIwage) + qt(1 - alpha / 2,lasso$df) * se

Resultado intervalo de confiança
cat("IC inferior:", lower_bound, "\n")

IC inferior: 4.372229

cat("IC superior:", upper_bound, "\n")

IC superior: 5.561696

7. Buscando o conjunto de dados sem a variável earns

##Retirar a varíavel earns do conjunto de dados
trabalhosalarios<-trabalhosalarios[,-c(9)]

##Selecionando os dados de treino e teste
amostra<- sample(c(TRUE,FALSE), nrow(trabalhosalarios),
 replace=TRUE, prob=c(0.8,0.2))
dados.treino<-trabalhosalarios[amostra,]

dados.teste<-trabalhosalarios[!amostra,]

59

Estrutura dos dados
str(dados.treino)

'data.frame': 2047 obs. of 16 variables:
 $ husage : num 56 34 42 33 31 31 44 22 66 43 ...
 $ husunion: num 0 0 0 0 0 0 0 0 0 0 ...
 $ husearns: num 1500 1000 730 1350 769 340 750 249 500 400 ...
 $ huseduc : num 14 14 14 16 18 12 12 12 16 12 ...
 $ husblck : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushisp : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushrs : num 40 50 40 40 55 40 40 40 40 50 ...
 $ kidge6 : num 1 1 1 0 0 0 1 0 0 1 ...
 $ age : num 49 31 41 32 27 30 42 23 55 31 ...
 $ black : num 0 0 0 0 0 0 0 0 0 0 ...
 $ educ : num 12 12 12 12 14 15 12 13 12 12 ...
 $ hispanic: num 0 0 0 0 0 0 0 0 0 0 ...
 $ union : num 0 0 0 0 0 0 0 0 0 0 ...
 $ exper : num 31 13 23 14 7 9 24 4 37 13 ...
 $ kidlt6 : num 0 0 0 0 1 1 0 0 0 0 ...
 $ lwage : num 1.9 1.63 2.3 2.96 1.78 ...

str(dados.teste)

'data.frame': 527 obs. of 16 variables:
 $ husage : num 31 33 45 45 26 37 35 44 33 39 ...
 $ husunion: num 0 0 0 0 0 0 0 0 0 0 ...
 $ husearns: num 800 950 1154 1200 520 ...
 $ huseduc : num 17 13 16 12 14 12 16 18 12 12 ...
 $ husblck : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushisp : num 0 0 0 0 0 0 0 0 0 0 ...
 $ hushrs : num 40 60 38 50 36 50 42 40 35 50 ...
 $ kidge6 : num 0 0 1 0 0 0 0 1 1 0 ...
 $ age : num 29 30 45 42 27 32 31 45 31 28 ...
 $ black : num 0 0 0 0 0 0 0 0 0 0 ...
 $ educ : num 14 12 18 12 14 17 12 18 12 12 ...
 $ hispanic: num 0 0 0 0 0 0 0 0 0 0 ...
 $ union : num 0 0 0 0 0 1 0 0 0 0 ...
 $ exper : num 9 12 21 24 7 9 13 21 13 10 ...
 $ kidlt6 : num 0 1 0 0 0 1 0 0 0 0 ...
 $ lwage : num 2.48 2.43 2.5 2.01 2.15 ...

Buscando preditores (x e y - Iwage) no conjunto de treino e teste
x_treino <- dados.treino %>% select(-lwage) %>% as.matrix()
y_treino <- dados.treino %>% select(lwage) %>% as.matrix()

x_teste <- dados.teste %>% select(-lwage) %>% as.matrix()
y_teste <- dados.teste %>% select(lwage) %>% as.matrix()

Nessa seção retirou a variável earns do conjunto de dados, a separação em dados de treino

(80% dos dados) e teste (20% dos dados) e a definição dos da variável resposta (dependente) e as

variáveis independentes. Na Seção 8 tem a análise dos modelos de regressão Ridge, Lasso e

Elastic-Net sem a variável earns do conjunto de dados

8. Modelos de Regressão Ridge, Lasso e Elastic-Net sem a variável earns do conjunto de

dados

a) Regressão Ridge

60

Validação cruzada para obter melhor valor de lambda para Regressão Ridge
(alpha = 0)
cv_best_lambda <- cv.glmnet(x_treino, y_treino, family = "gaussian", alpha =
0, type.measure = "mse")
print(cv_best_lambda)

Call: cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family =
"gaussian", alpha = 0)

Measure: Mean-Squared Error

 Lambda Index Measure SE Nonzero
min 0.0228 100 0.1823 0.007804 15
1se 0.3714 70 0.1899 0.007429 15

best_lambda <- cv_best_lambda$lambda.min

Modelo Regressão Ridge
ridge = glmnet(x_treino, y_treino, family = "gaussian",alpha = 0, lambda =
best_lambda)

Desempenho dos dados de treino na Regressão Ridge
treino_preditos <- ridge %>% predict(x_treino)
data.frame(R2 = R2(treino_preditos, y_treino),
 RMSE = RMSE(treino_preditos, y_treino))

 s0 RMSE
lwage 0.2933104 0.4232941

Desempenho dos dados de teste na Regressão Ridge
teste_preditos <- ridge %>% predict(x_teste)
data.frame(R2 = R2(teste_preditos, y_teste),
 RMSE = RMSE(teste_preditos, y_teste))

 s0 RMSE
lwage 0.2637242 0.5083858

Validação cruzada Regressão Ridge
set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats =
3)

Modelo final Regressão Ridge
Ridge_modelo_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet",
trControl = train.control, tuneGrid = expand.grid(alpha = 0, lambda =
best_lambda))

Resultados Modelo final Regressão Ridge
print(Ridge_modelo_cv)

glmnet

2574 samples
 15 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE

61

 0.4417246 0.2839737 0.3310697

Tuning parameter 'alpha' was held constant at a value of 0
Tuning
 parameter 'lambda' was held constant at a value of 0.02279055

Em média, o Modelo de Regressão Ridge apresentou um R2 de 28,39% sendo que do total da

variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Ridge e o

RMSE para o modelo é 0,4417246.

b) Regressão Lasso

Validação cruzada para obter melhor valor de lambda para Regressão Lasso
(alpha = 1)
cv_best_lambda <- cv.glmnet(x_treino, y_treino, family = "gaussian", alpha =
1, type.measure = "mse")
print(cv_best_lambda)

Call: cv.glmnet(x = x_treino, y = y_treino, type.measure = "mse", family =
"gaussian", alpha = 1)

Measure: Mean-Squared Error

 Lambda Index Measure SE Nonzero
min 0.00417 44 0.1813 0.007497 10
1se 0.04271 19 0.1881 0.008248 3

best_lambda = cv_best_lambda$lambda.min
Modelo de regressão Lasso
lasso = glmnet(x_treino, y_treino, family = "gaussian", alpha = 1, lambda =
best_lambda)

Desempenho dos dados de treino na Regressão Lasso
treino_preditos <- lasso %>% predict(x_treino)
data.frame(R2 = R2(treino_preditos, y_treino),
 RMSE = RMSE(treino_preditos, y_treino))

 s0 RMSE
lwage 0.2920455 0.4236468

Desempenho dos dados de teste na Regressão Lasso
teste_preditos <- lasso %>% predict(x_teste)
data.frame(R2 = R2(teste_preditos, y_teste),
 RMSE = RMSE(teste_preditos, y_teste))

 s0 RMSE
lwage 0.2647143 0.5080806

Validação cruzada Regressão Lasso
set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats =
3)

Modelo final Regressão Lasso
Lasso_model_cv <- train(lwage ~ ., data = trabalhosalarios, method="glmnet",
trControl = train.control, tuneGrid = expand.grid(alpha = 1, lambda =
best_lambda))

62

Resultados Modelo final Regressão Lasso
print(Lasso_model_cv)

glmnet

2574 samples
 15 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.4415596 0.284645 0.3307113

Tuning parameter 'alpha' was held constant at a value of 1
Tuning
 parameter 'lambda' was held constant at a value of 0.004172353

Em média, o Modelo de Regressão Lasso apresentou um R2 de 28,46% sendo que do total

da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo Lasso e

o RMSE para o modelo é 0,4415596.

c) Regressão Elastic-Net

Validação cruzada para Regressão Elastic Net

set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats = 3
, search = "random")

Modelo de Regressão Elastic Net
cv_for_best_value <- train(lwage ~ ., data = dados.treino, method="glmnet",
trControl = train.control)

Obtendo melhor valor de alpha e lambda
cv_for_best_value$bestTune

 alpha lambda
1 0.4089769 0.001472246

Modelo Elastic Net
enet <- glmnet(x_treino, y_treino, alpha = 0.4089769, lambda = 0.001472246
,family = "gaussian")

Desempenho dos dados de treino na Regressão Elastic Net
treino_preditos <- enet %>% predict(x_treino)
data.frame(R2 = R2(treino_preditos, y_treino),
 RMSE = RMSE(treino_preditos, y_treino))

 s0 RMSE
lwage 0.2936312 0.4231086

Desempenho dos dados de teste na Regressão Elastic Net
teste_preditos <- enet %>% predict(x_teste)
data.frame(R2 = R2(teste_preditos, y_teste),
 RMSE = RMSE(teste_preditos, y_teste))

63

 s0 RMSE
lwage 0.2612618 0.508639

Validação cruzada para Regressão Elastic Net
set.seed(123)
train.control <- trainControl(method = "repeatedcv", number = 10, repeats =
3)

Modelo final Regressão Elastic Net
Elasticnet_modelo_cv <- train(lwage ~ ., data = trabalhosalarios,
method="glmnet", trControl = train.control, tuneGrid = expand.grid(alpha =
0.4089769, lambda = 0.001472246))

Resultados Modelo final Regressão Elastic Net
print(Elasticnet_modelo_cv)

glmnet

2574 samples
 15 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.441855 0.2835998 0.3309394

Tuning parameter 'alpha' was held constant at a value of 0.4089769

Tuning parameter 'lambda' was held constant at a value of 0.001472246

Em média, o Modelo de Regressão Elastic-Net apresentou um R2 de 28,36% sendo que do

total da variabilidade do salário-hora da esposa em logarítmo neperiano foi explicado pelo modelo

Elastic-Net e o RMSE para o modelo é 0,441855.

9. Comparação dos diferentes modelos (Ridge, Lasso e Elastic-Net) sem a variável earns
do conjunto de dados

print(Ridge_modelo_cv)

glmnet

2574 samples
 15 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.4417246 0.2839737 0.3310697

Tuning parameter 'alpha' was held constant at a value of 0
Tuning
 parameter 'lambda' was held constant at a value of 0.02279055

print(Lasso_model_cv)

64

glmnet

2574 samples
 15 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.4415596 0.284645 0.3307113

Tuning parameter 'alpha' was held constant at a value of 1
Tuning
 parameter 'lambda' was held constant at a value of 0.004172353

print(Elasticnet_modelo_cv)

glmnet

2574 samples
 15 predictor

No pre-processing
Resampling: Cross-Validated (10 fold, repeated 3 times)
Summary of sample sizes: 2317, 2315, 2316, 2317, 2317, 2316, ...
Resampling results:

 RMSE Rsquared MAE
 0.441855 0.2835998 0.3309394

Tuning parameter 'alpha' was held constant at a value of 0.4089769

Tuning parameter 'lambda' was held constant at a value of 0.001472246

Resultados dos modelos
resultados <- data.frame(Metodo = c("Ridge", "Lasso", "Elastic Net"),
 RMSE = c(0.4417298,0.441568,0.441855),
 R2 = c(0.2839878, 0.284641, 0.2835998))

knitr::kable(resultados, align = "c", caption = "Métricas dos modelos")

Métricas dos modelos

Método RMSE R²
Ridge 0,4417298 0,2839878
Lasso 0,4415680 0,2846410
Elastic-Net 0,4418550 0,2835998

Dos três modelos avaliados sem a variável earns o Modelo de Regressão Lasso captura

28,46% da variabilidade do salário-hora da esposa em logaritmo neperiano e o RMSE para o modelo

é 0,4415680, sendo o modelo escolhido por apresentar menor valor de RMSE e maior valor R2

(coeficiente de determinação do modelo) em relação a Regressão Ridge e o modelo de Regressão

Elastic-Net.

10. Obtendo melhor modelo sem a variável earns no conjunto de dados

65

Coeficientes do modelo de Regressão Lasso
lasso_coefficients<-lasso$beta
lasso_coefficients

15 x 1 sparse Matrix of class "dgCMatrix"
 s0
husage .
husunion .
husearns 0.0003533008
huseduc 0.0061869358
husblck .
hushisp 0.0450670456
hushrs -0.0026212237
kidge6 -0.0507666466
age 0.0027096414
black -0.0044682028
educ 0.0728893438
hispanic .
union 0.1664592340
exper .
kidlt6 -0.0226263904

Identificando coeficientes significativos
significant_indices <- which(lasso_coefficients != 0)
significant_predictors <- rownames(lasso_coefficients)[significant_indices]
print(significant_predictors)

 [1] "husearns" "huseduc" "hushisp" "hushrs" "kidge6" "age"
 [7] "black" "educ" "union" "kidlt6"

Na Seção 10 têm os coeficientes do Modelo de Regressão Lasso e a seguir tem a predição e

o intervalo de confiança (Seção 11).

11. Predição e intervalo de confiança sem a variável earns no conjunto de dados

O resultado da predição com intervalos de confiança para os seguintes valores:

husage = 40 (anos – idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos – idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidlt6 = 1 (possui filhos menores de 6 anos)

66

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para

obter o resultado da predição.

dadospredicao = matrix(c(40,0,600,13,1,0,40,1,38,0,13,1,0,18,1), nrow=1,
ncol=15)

#Valor predito pelo modelo
valorpreditoIwage<-predict(lasso, s = best_lambda, newx = dadospredicao)
valorpreditoIwage

 s0
[1,] 2.100205

exp(valorpreditoIwage)

 s0
[1,] 8.167844

Erro padrão
se <- sqrt(cv_best_lambda$cvm[cv_best_lambda$lambda ==
cv_best_lambda$lambda.min])
se

[1] 0.4258416

#Intervalo de confiança
alpha <- 0.05 # 95% confidence interval

Construindo intervalo de confiança
lower_bound <- exp(valorpreditoIwage) - qt(1 - alpha / 2, lasso$df) * se
upper_bound <- exp(valorpreditoIwage) + qt(1 - alpha / 2,lasso$df) * se

Resultado intervalo de confiança
cat("IC inferior:", lower_bound, "\n")

IC inferior: 7.21901

cat("IC superior:", upper_bound, "\n")

IC superior: 9.11667

12. Conclusão

Foram ajustados três métodos de Regressão Ridge, Lasso e Elastic-Net. O melhor modelo de

regressão ajustado foi o Lasso para a variável dependente “lwage” que estava em logaritmo

neperiano e fez a volta aplicando a exponencial no valor ajustado na qual obteve uma estimativa de

4,97 com um intervalo de confiança de 95%variando de 4,37 a 5,56. Também fez o ajuste sem a

variável earns e o melhor modelo também foi o com regressão Lasso com um valor ajustado com

estimativa de 8,17 com um intervalo de confiança de 95%variando de 7,22 a 9,12. Quando retirou a

variável earns o ajuste piorou em termos de R² e RMSE, sendo que sem a variável foi 28,46% o R² e

o RMSE 0,4415680, enquanto com a variável earns no modelos os valores de R2 e RMSE foram

67

70,38% e 0,2888847, respectivamente, sendo o modelo Lasso com um melhor ajuste quando a

variável earns estava presente no conjunto de dados.

68

 APÊNDICE 6 – ARQUITETURA DE DADOS

A – ENUNCIADO

1 Construção de Características: Identificador automático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções

para calcular as diferentes características para o problema da identificação da língua do texto de

entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o

notebook e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com

origem na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).

B – RESOLUÇÃO

69

1
ingles = [

"Hello, how are you?",

"I love to read books.",

"The weather is nice today.",

"Where is the nearest restaurant?",

"What time is it?",

"I enjoy playing soccer.",

"Can you help me with this?",

"I'm going to the movies tonight.",

"This is a beautiful place.",

"I like listening to music.",

"Do you speak English?",

"What is your favorite color?",

"I'm learning to play the guitar.",

"Have a great day!",

"I need to buy some groceries.",

"Let's go for a walk.",

"How was your weekend?",

"I'm excited for the concert.",

"Could you pass me the salt, please?",

"I have a meeting at 2 PM.",

"I'm planning a vacation.",

"She sings beautifully.",

"The cat is sleeping.",

"I want to learn French.",

"I enjoy going to the beach.",

"Where can I find a taxi?",

"I'm sorry for the inconvenience.",

"I'm studying for my exams.",

"I like to cook dinner at home.",

"Do you have any recommendations for restaurants?",

]

espanhol = [

"Hola, ¿cómo estás?",

"Me encanta leer libros.",

"El clima está agradable hoy.",

"¿Dónde está el restaurante más cercano?",

"¿Qué hora es?",

"Voy al parque todos los días.",

70

"¿Puedes ayudarme con esto?",

"Me gustaría ir de vacaciones.",

"Este es mi libro favorito.",

"Me gusta bailar salsa.",

"¿Hablas español?",

"¿Cuál es tu comida favorita?",

"Estoy aprendiendo a tocar el piano.",

"¡Que tengas un buen día!",

"Necesito comprar algunas frutas.",

"Vamos a dar un paseo.",

"¿Cómo estuvo tu fin de semana?",

"Estoy emocionado por el concierto.",

"¿Me pasas la sal, por favor?",

"Tengo una reunión a las 2 PM.",

"Estoy planeando unas vacaciones.",

"Ella canta hermosamente.",

"El perro está jugando.",

"Quiero aprender italiano.",

"Disfruto ir a la playa.",

"¿Dónde puedo encontrar un taxi?",

"Lamento las molestias.",

"Estoy estudiando para mis exámenes.",

"Me gusta cocinar la cena en casa.",

"¿Tienes alguna recomendación de restaurantes?",

]

portugues = [

"Estou indo para o trabalho agora.",

"Adoro passar tempo com minha família.",

"Preciso comprar leite e pão.",

"Vamos ao cinema no sábado.",

"Gosto de praticar esportes ao ar livre.",

"O trânsito está terrível hoje.",

"A comida estava deliciosa!",

"Você já visitou o Rio de Janeiro?",

"Tenho uma reunião importante amanhã.",

"A festa começa às 20h.",

"Estou cansado depois de um longo dia de trabalho.",

"Vamos fazer um churrasco no final de semana.",

"O livro que estou lendo é muito interessante.",

"Estou aprendendo a cozinhar pratos novos.",

71

"Preciso fazer exercícios físicos regularmente.",

"Vou viajar para o exterior nas férias.",

"Você gosta de dançar?",

"Hoje é meu aniversário!",

"Gosto de ouvir música clássica.",

"Estou estudando para o vestibular.",

"Meu time de futebol favorito ganhou o jogo.",

"Quero aprender a tocar violão.",

"Vamos fazer uma viagem de carro.",

"O parque fica cheio aos finais de semana.",

"O filme que assisti ontem foi ótimo.",

"Preciso resolver esse problema o mais rápido possível.",

"Adoro explorar novos lugares.",

"Vou visitar meus avós no domingo.",

"Estou ansioso para as férias de verão.",

"Gosto de fazer caminhadas na natureza.",

"O restaurante tem uma vista incrível.",

"Vamos sair para jantar no sábado.",

]

import random

pre_padroes = []

for frase in ingles:

 pre_padroes.append([frase, 'inglês'])

for frase in espanhol:

 pre_padroes.append([frase, 'espanhol'])

for frase in portugues:

 pre_padroes.append([frase, 'português'])

random.shuffle(pre_padroes)

print(pre_padroes)

[['Preciso fazer exercícios físicos regularmente.', 'português'], ['El perro

está jugando.', 'espanhol'], ['Voy al parque todos los días.', 'espanhol'],

['O restaurante tem uma vista incrível.', 'português'], ['O trânsito está

terrível hoje.', 'português'], ['Estou ansioso para as férias de verão.',

'português'], ['Tengo una reunión a las 2 PM.', 'espanhol'], ['Estoy

aprendiendo a tocar el piano.', 'espanhol'], ['Hello, how are you?',

72

'inglês'], ['The weather is nice today.', 'inglês'], ['What time is it?',

'inglês'], ['Tenho uma reunião importante amanhã.', 'português'], ['A festa

começa às 20h.', 'português'], ['Meu time de futebol favorito ganhou o

jogo.', 'português'], ['Este es mi libro favorito.', 'espanhol'], ['Hoje é

meu aniversário!', 'português'], ["I'm sorry for the inconvenience.",

'inglês'], ['¿Hablas español?', 'espanhol'], ['Vamos sair para jantar no

sábado.', 'português'], ['Where can I find a taxi?', 'inglês'], ['Quero

aprender a tocar violão.', 'português'], ['Have a great day!', 'inglês'],

['Me gusta cocinar la cena en casa.', 'espanhol'], ['Do you speak English?',

'inglês'], ['Vou visitar meus avós no domingo.', 'português'], ['Can you help

me with this?', 'inglês'], ['Could you pass me the salt, please?', 'inglês'],

["I'm planning a vacation.", 'inglês'], ['She sings beautifully.', 'inglês'],

['Lamento las molestias.', 'espanhol'], ['Estou cansado depois de um longo

dia de trabalho.', 'português'], ['Me encanta leer libros.', 'espanhol'],

['Você gosta de dançar?', 'português'], ['What is your favorite color?',

'inglês'], ['¿Qué hora es?', 'espanhol'], ['Estou estudando para o

vestibular.', 'português'], ['O livro que estou lendo é muito interessante.',

'português'], ['Ella canta hermosamente.', 'espanhol'], ['Gosto de praticar

esportes ao ar livre.', 'português'], ['Necesito comprar algunas frutas.',

'espanhol'], ['I love to read books.', 'inglês'], ['¡Que tengas un buen

día!', 'espanhol'], ['Gosto de ouvir música clássica.', 'português'], ['El

clima está agradable hoy.', 'espanhol'], ['A comida estava deliciosa!',

'português'], ['Vou viajar para o exterior nas férias.', 'português'],

['Quiero aprender italiano.', 'espanhol'], ['Disfruto ir a la playa.',

'espanhol'], ['I need to buy some groceries.', 'inglês'], ['Vamos a dar un

paseo.', 'espanhol'], ['¿Tienes alguna recomendación de restaurantes?',

'espanhol'], ['Preciso comprar leite e pão.', 'português'], ['¿Cómo estuvo tu

fin de semana?', 'espanhol'], ['Estou aprendendo a cozinhar pratos novos.',

'português'], ["I'm excited for the concert.", 'inglês'], ['Estoy emocionado

por el concierto.', 'espanhol'], ['¿Dónde puedo encontrar un taxi?',

'espanhol'], ['I enjoy playing soccer.', 'inglês'], ['I enjoy going to the

beach.', 'inglês'], ['I like listening to music.', 'inglês'], ['Vamos fazer

uma viagem de carro.', 'português'], ['I like to cook dinner at home.',

'inglês'], ['Estou indo para o trabalho agora.', 'português'], ['Preciso

resolver esse problema o mais rápido possível.', 'português'], ['I have a

meeting at 2 PM.', 'inglês'], ['Estoy planeando unas vacaciones.',

'espanhol'], ['Vamos fazer um churrasco no final de semana.', 'português'],

['Me gusta bailar salsa.', 'espanhol'], ['I want to learn French.',

'inglês'], ['¿Me pasas la sal, por favor?', 'espanhol'], ['¿Cuál es tu comida

favorita?', 'espanhol'], ['Adoro passar tempo com minha família.',

'português'], ['Me gustaría ir de vacaciones.', 'espanhol'], ['Where is the

73

nearest restaurant?', 'inglês'], ['O parque fica cheio aos finais de

semana.', 'português'], ['This is a beautiful place.', 'inglês'], ['Do you

have any recommendations for restaurants?', 'inglês'], ["I'm learning to play

the guitar.", 'inglês'], ['¿Puedes ayudarme con esto?', 'espanhol'], ['Gosto

de fazer caminhadas na natureza.', 'português'], ['Você já visitou o Rio de

Janeiro?', 'português'], ['Hola, ¿cómo estás?', 'espanhol'], ['¿Dónde está el

restaurante más cercano?', 'espanhol'], ['Adoro explorar novos lugares.',

'português'], ['Estoy estudiando para mis exámenes.', 'espanhol'], ['Vamos ao

cinema no sábado.', 'português'], ["I'm going to the movies tonight.",

'inglês'], ["I'm studying for my exams.", 'inglês'], ['How was your

weekend?', 'inglês'], ["Let's go for a walk.", 'inglês'], ['The cat is

sleeping.', 'inglês'], ['O filme que assisti ontem foi ótimo.', 'português']]

import pandas as pd

dados = pd.DataFrame(pre_padroes)

dados

import re

def tamanhoMedioFrases(texto):

 palavras = re.split("\s", texto)

 tamanhos = [len(s) for s in palavras if len(s) > 0]

 return sum(tamanhos) / len(tamanhos)

def contarCaracteresEspecificos(texto):

 contar_ñ = texto.lower().count('ñ')

 contar_caracteres_esp = sum(texto.lower().count(char) for char in

'çàáéíóú')

 return contar_ñ, contar_caracteres_esp

def contarPontuacao(texto):

 contar_pont = re.findall(r'[.,;!?]', texto)

 return len(contar_pont)

def contarDigitos(texto):

 digitos = sum(char.isdigit() for char in texto)

 return digitos

def contarPalavrasComuns(texto):

 palavras_comum_es = ['estoy', 'gusta', 'soy', 'quiero', 'hola', 'tengo',

'hoy', 'dónde', 'playa','las', 'la', 'alguna', 'soy', 'pero', 'mucho']

74

 palavras_comum_en = ['the', 'and', 'is', 'to', 'it', 'in', 'of', 'that',

'as', 'was', 'love', 'you', 'where', 'what', 'have', 'my', 'are']

 palavras_comum_pt = ['hoje', 'você', 'estou', 'vou', 'praia', 'tenho',

'gosto', 'agora', 'ontem', 'novos', 'muito' , 'sou', 'quero', 'mas']

 contar_en = sum(texto.lower().count(word) for word in palavras_comum_en)

 contar_es = sum(texto.lower().count(word) for word in palavras_comum_es)

 contar_pt = sum(texto.lower().count(word) for word in palavras_comum_pt)

 return contar_en, contar_es, contar_pt

def extraiCaracteristicas(frase):

 texto = frase[0]

 pattern_regex = re.compile('[^\w+]', re.UNICODE)

 texto = re.sub(pattern_regex, ' ', texto)

 caracteristica1 = tamanhoMedioFrases(texto)

 caracteristica2, caracteristica3 = contarCaracteresEspecificos(texto)

 caracteristica4 = contarPontuacao(texto)

 caracteristica5 = contarDigitos(texto)

 caracteristica6, caracteristica7, caracteristica8 =

contarPalavrasComuns(texto)

 padrao = [caracteristica1, caracteristica2, caracteristica3,

caracteristica4, caracteristica5, caracteristica6, caracteristica7,

caracteristica8, frase[1]]

 return padrao

def geraPadroes(frases):

 padroes = []

 for frase in frases:

 padrao = extraiCaracteristicas(frase)

 padroes.append(padrao)

 return padroes

padroes = geraPadroes(pre_padroes)

print(padroes)

dados = pd.DataFrame(padroes)

dados

[[8.2, 0, 2, 0, 0, 1, 1, 0, 'português'], [4.5, 0, 1, 0, 0, 1, 0, 0,

'espanhol'], [3.8333333333333335, 0, 1, 0, 0, 2, 0, 0, 'espanhol'],

75

[5.166666666666667, 0, 1, 0, 0, 2, 0, 0, 'português'], [5.0, 0, 2, 0, 0, 2,

0, 1, 'português'], [4.428571428571429, 0, 1, 0, 0, 3, 0, 1, 'português'],

[3.142857142857143, 0, 1, 0, 1, 1, 3, 0, 'espanhol'], [4.833333333333333, 0,

0, 0, 0, 2, 1, 0, 'espanhol'], [3.5, 0, 0, 0, 0, 2, 0, 0, 'inglês'], [4.2, 0,

0, 0, 0, 4, 0, 0, 'inglês'], [3.0, 0, 0, 0, 0, 3, 0, 0, 'inglês'], [6.2, 0,

0, 0, 0, 0, 0, 1, 'português'], [3.4, 0, 2, 0, 2, 0, 0, 0, 'português'],

[4.375, 0, 0, 0, 0, 2, 0, 0, 'português'], [4.2, 0, 0, 0, 0, 2, 0, 0,

'espanhol'], [4.75, 0, 2, 0, 0, 0, 0, 1, 'português'], [4.333333333333333, 0,

0, 0, 0, 2, 0, 0, 'inglês'], [6.5, 1, 0, 0, 0, 1, 2, 0, 'espanhol'], [4.5, 0,

1, 0, 0, 0, 0, 0, 'português'], [3.0, 0, 0, 0, 0, 2, 0, 0, 'inglês'], [5.0,

0, 0, 0, 0, 1, 0, 1, 'português'], [3.25, 0, 0, 0, 0, 1, 0, 0, 'inglês'],

[3.7142857142857144, 0, 0, 0, 0, 2, 2, 0, 'espanhol'], [4.25, 0, 0, 0, 0, 2,

0, 0, 'inglês'], [4.5, 0, 1, 0, 0, 3, 0, 1, 'português'],

[3.3333333333333335, 0, 0, 0, 0, 3, 0, 0, 'inglês'], [3.857142857142857, 0,

0, 0, 0, 4, 0, 0, 'inglês'], [3.8, 0, 0, 0, 0, 1, 1, 0, 'inglês'],

[6.333333333333333, 0, 0, 0, 0, 1, 0, 0, 'inglês'], [6.333333333333333, 0, 0,

0, 0, 3, 3, 0, 'espanhol'], [4.444444444444445, 0, 0, 0, 0, 2, 0, 1,

'português'], [4.75, 0, 0, 0, 0, 0, 0, 0, 'espanhol'], [4.25, 0, 1, 0, 0, 0,

0, 1, 'português'], [4.6, 0, 0, 0, 0, 4, 0, 0, 'inglês'], [3.0, 0, 1, 0, 0,

0, 0, 0, 'espanhol'], [5.8, 0, 0, 0, 0, 2, 1, 1, 'português'], [4.625, 0, 1,

0, 0, 4, 0, 2, 'português'], [7.0, 0, 0, 0, 0, 0, 1, 0, 'espanhol'],

[4.571428571428571, 0, 0, 0, 0, 1, 0, 1, 'português'], [7.0, 0, 0, 0, 0, 4,

1, 0, 'espanhol'], [3.2, 0, 0, 0, 0, 2, 0, 0, 'inglês'], [3.6, 0, 1, 0, 0, 1,

0, 0, 'espanhol'], [5.2, 0, 2, 0, 0, 1, 0, 1, 'português'], [4.6, 0, 1, 0, 0,

0, 1, 0, 'espanhol'], [5.5, 0, 0, 0, 0, 0, 0, 0, 'português'],

[4.428571428571429, 0, 1, 0, 0, 2, 0, 1, 'português'], [7.333333333333333, 0,

0, 0, 0, 1, 1, 0, 'espanhol'], [3.6, 0, 0, 0, 0, 2, 3, 0, 'espanhol'],

[3.8333333333333335, 0, 0, 0, 0, 1, 0, 0, 'inglês'], [3.2, 0, 0, 0, 0, 1, 0,

0, 'espanhol'], [7.8, 0, 1, 0, 0, 0, 1, 0, 'espanhol'], [4.6, 0, 0, 0, 0, 2,

0, 0, 'português'], [3.8333333333333335, 0, 1, 0, 0, 1, 0, 0, 'espanhol'],

[5.833333333333333, 0, 0, 0, 0, 3, 0, 2, 'português'], [3.6666666666666665,

0, 0, 0, 0, 2, 0, 0, 'inglês'], [5.8, 0, 0, 0, 0, 2, 1, 0, 'espanhol'], [5.0,

0, 1, 0, 0, 0, 1, 0, 'espanhol'], [4.75, 0, 0, 0, 0, 1, 1, 0, 'inglês'],

[3.5, 0, 0, 0, 0, 3, 0, 0, 'inglês'], [4.2, 0, 0, 0, 0, 3, 0, 0, 'inglês'],

[4.333333333333333, 0, 0, 0, 0, 0, 0, 0, 'português'], [3.2857142857142856,

0, 0, 0, 0, 2, 0, 0, 'inglês'], [4.5, 0, 0, 0, 0, 2, 0, 2, 'português'],

[5.75, 0, 2, 0, 0, 2, 0, 0, 'português'], [2.5714285714285716, 0, 0, 0, 1, 2,

0, 0, 'inglês'], [7.0, 0, 0, 0, 0, 3, 2, 0, 'espanhol'], [4.5, 0, 0, 0, 0, 2,

0, 0, 'português'], [4.5, 0, 0, 0, 0, 0, 2, 0, 'espanhol'], [3.6, 0, 0, 0, 0,

1, 0, 0, 'inglês'], [3.3333333333333335, 0, 0, 0, 0, 2, 1, 0, 'espanhol'],

[4.4, 0, 1, 0, 0, 1, 0, 0, 'espanhol'], [5.166666666666667, 0, 1, 0, 0, 2, 0,

76

0, 'português'], [4.8, 0, 1, 0, 0, 0, 1, 0, 'espanhol'], [5.4, 0, 0, 0, 0, 4,

0, 0, 'inglês'], [4.125, 0, 0, 0, 0, 2, 0, 0, 'português'], [4.2, 0, 0, 0, 0,

2, 1, 0, 'inglês'], [5.857142857142857, 0, 0, 0, 0, 2, 0, 0, 'inglês'],

[3.5714285714285716, 0, 0, 0, 0, 4, 1, 0, 'inglês'], [5.25, 0, 0, 0, 0, 1, 0,

0, 'espanhol'], [5.333333333333333, 0, 0, 0, 0, 3, 0, 1, 'português'],

[3.7142857142857144, 0, 1, 0, 0, 3, 0, 1, 'português'], [4.333333333333333,

0, 2, 0, 0, 0, 2, 0, 'espanhol'], [5.333333333333333, 0, 3, 0, 0, 0, 1, 0,

'espanhol'], [6.25, 0, 0, 0, 0, 1, 0, 1, 'português'], [6.0, 0, 1, 0, 0, 3,

1, 0, 'espanhol'], [4.2, 0, 1, 0, 0, 1, 0, 0, 'português'],

[3.5714285714285716, 0, 0, 0, 0, 4, 0, 0, 'inglês'], [3.3333333333333335, 0,

0, 0, 0, 2, 0, 0, 'inglês'], [4.25, 0, 0, 0, 0, 3, 0, 0, 'inglês'],

[2.3333333333333335, 0, 0, 0, 0, 0, 0, 0, 'inglês'], [4.0, 0, 0, 0, 0, 3, 0,

0, 'inglês'], [4.142857142857143, 0, 1, 0, 0, 2, 0, 1, 'português']]

from sklearn.model_selection import train_test_split

import numpy as np

vet = np.array(padroes)

classes = vet[:,-1] # classes = [p[-1] for p in padroes]

padroes_sem_classe = vet[:,0:-1]

X_train, X_test, y_train, y_test = train_test_split(padroes_sem_classe,

classes, test_size=0.25, stratify=classes)

from sklearn import svm

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

treinador = svm.SVC() #algoritmo escolhido

modelo = treinador.fit(X_train, y_train)

acuracia = modelo.score(X_train, y_train)

print("Acurácia nos dados de treinamento: {:.2f}%".format(acuracia * 100))

y_pred = modelo.predict(X_train)

cm = confusion_matrix(y_train, y_pred)

print(cm)

print(classification_report(y_train, y_pred))

print('métricas mais confiáveis')

77

y_pred2 = modelo.predict(X_test)

cm = confusion_matrix(y_test, y_pred2)

print(cm)

print(classification_report(y_test, y_pred2))

Acurácia nos dados de treinamento: 78.26%

[[18 4 1]

 [2 19 1]

 [3 4 17]]

 precision recall f1-score support

espanhol 0.78 0.78 0.78 23

inglês 0.70 0.86 0.78 22

português 0.89 0.71 0.79 24

accuracy 0.78 69

macro avg 0.79 0.78 0.78 69

weighted avg 0.80 0.78 0.78 69

métricas mais confiáveis

[[5 0 2]

 [0 7 1]

 [3 0 5]]

 precision recall f1-score support

espanhol 0.62 0.71 0.67 7

inglês 1.00 0.88 0.93 8

português 0.62 0.62 0.62 8

accuracy 0.74 23

macro avg 0.75 0.74 0.74 23

weighted avg 0.76 0.74 0.74 23

2

import numpy as np

import pandas as pd

https://archive.ics.uci.edu/dataset/915/differentiated+thyroid+cancer+recurre

nce

78

thyro_colunas = ['Age','Gender','Smoking','Hx Smoking','Hx

Radiothreapy','Thyroid Function','Physical

Examination','Adenopathy','Pathology','Focality','Risk','T','N','M','Stage','

Response','Recurred']

thyro = pd.read_csv('Thyroid_Diff.csv',header=0,

 names=thyro_colunas, lineterminator='\n', na_values='?')

print(thyro.head())

thyro['Recurred'].value_counts(dropna=False)

 Age Gender Smoking Hx Smoking Hx Radiothreapy Thyroid Function \

0 27 F No No No

Euthyroid

1 34 F No Yes No

Euthyroid

2 30 F No No No

Euthyroid

3 62 F No No No

Euthyroid

4 62 F No No No

Euthyroid

 Physical Examination Adenopathy

Pathology Focality Risk \

0 Single nodular goiter-left No Micropapillary

Uni-Focal Low

1 Multinodular goiter No Micropapillary

Uni-Focal Low

2 Single nodular goiter-right No Micropapillary

Uni-Focal Low

3 Single nodular goiter-right No Micropapillary

Uni-Focal Low

4 Multinodular goiter No Micropapillary

Multi-Focal Low

 T N M Stage Response Recurred

0 T1a N0 M0 I Indeterminate No

1 T1a N0 M0 I Excellent No

2 T1a N0 M0 I Excellent No

79

3 T1a N0 M0 I Excellent No

4 T1a N0 M0 I Excellent No

No 275

Yes 108

Name: Recurred, dtype: int64

from sklearn.preprocessing import LabelEncoder

num_cols = ['Age']

cat_cols = ['Gender','Smoking','Hx Smoking','Hx Radiothreapy','Thyroid

Function','Physical

Examination','Adenopathy','Pathology','Focality','Risk','T','N','M','Stage','

Response']

tgt_cols = ['Recurred']

num_cols_data = thyro[num_cols]

cat_cols_data = thyro[cat_cols]

tgt_cols_data = thyro[tgt_cols]

cat_cols_num_data = cat_cols_data.apply(LabelEncoder().fit_transform)

ori_num_data = pd.concat([num_cols_data, cat_cols_num_data, tgt_cols_data],

axis=1)

print(ori_num_data.head())

 Age Gender Smoking Hx Smoking Hx Radiothreapy Thyroid Function \

0 27 0 0 0 0

2

1 34 0 0 1 0

2

2 30 0 0 0 0

2

3 62 0 0 0 0

2

4 62 0 0 0 0

2

 Physical Examination Adenopathy Pathology Focality Risk T N M \

0 3 3 2

1 2 0 0 0

80

1 1 3 2

1 2 0 0 0

2 4 3 2

1 2 0 0 0

3 4 3 2

1 2 0 0 0

4 1 3 2

0 2 0 0 0

 Stage Response Recurred

0 0 2 No

1 0 1 No

2 0 1 No

3 0 1 No

4 0 1 No

X = ori_num_data.iloc[:,:16]

cols = ori_num_data[:16]

print(X.head())

Y = ori_num_data['Recurred']

Y_orig = ori_num_data['Recurred']

print(Y.unique())

 Age Gender Smoking Hx Smoking Hx Radiothreapy Thyroid Function \

0 27 0 0 0 0

2

1 34 0 0 1 0

2

2 30 0 0 0 0

2

3 62 0 0 0 0

2

4 62 0 0 0 0

2

 Physical Examination Adenopathy Pathology Focality Risk T N M \

0 3 3 2

1 2 0 0 0

1 1 3 2

1 2 0 0 0

81

2 4 3 2

1 2 0 0 0

3 4 3 2

1 2 0 0 0

4 1 3 2

0 2 0 0 0

 Stage Response

0 0 2

1 0 1

2 0 1

3 0 1

4 0 1

['No' 'Yes']

from sklearn.preprocessing import scale

from sklearn.preprocessing import minmax_scale

import pandas as pd

X_orig = X.copy()

print(Y_orig.unique())

print(X_orig['M'].unique())

X['Age'] = minmax_scale(X['Age'])

X.drop(columns=['M'], axis=1, inplace=True)

print(X_orig.head()

print(X.head())

['No' 'Yes']

[0 1]

Age Gender Smoking Hx Smoking Hx Radiothreapy Thyroid Function \

0 27 0 0 0 0

2 1 34 0 0 1 0

2

82

2 30 0 0 0 0

2

3 62 0 0 0 0

2

4 62 0 0 0 0

2

 Physical Examination Adenopathy Pathology Focality Risk T N M \

0 3 3 2

1 2 0 0 0

1 1 3 2

1 2 0 0 0

2 4 3 2

1 2 0 0 0

3 4 3 2

1 2 0 0 0

4 1 3 2

0 2 0 0 0

 Stage Response

0 0 2

1 0 1

2 0 1

3 0 1

4 0 1

from sklearn.model_selection import train_test_split

import numpy as np

X_oring_train, X_orig_test, y_orig_train, y_orig_test =

train_test_split(X_orig,

 Y_orig, test_size=0.25,

stratify=Y_orig,random_state=10)

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25,

 stratify=Y,random_state=10)

from sklearn import svm

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

treinador = svm.SVC() #algoritmo escolhido

83

modelo_orig = treinador.fit(X_oring_train, y_orig_train)

y_orig_pred = modelo_orig.predict(X_oring_train)

cm_orig_train = confusion_matrix(y_orig_train, y_orig_pred)

print('Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO')

print(cm_orig_train)

print(classification_report(y_orig_train, y_orig_pred))

print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES')

y2_orig_pred = modelo_orig.predict(X_orig_test)

cm_orig_test = confusion_matrix(y_orig_test, y2_orig_pred)

print(cm_orig_test)

print(classification_report(y_orig_test, y2_orig_pred))

Matriz de confusão - com os dados ORIGINAIS usados no TREINAMENTO

[[204 2]

[61 20]]

 precision recall f1-score support

 No 0.77 0.99 0.87 206

 Yes 0.91 0.25 0.39 81

accuracy 0.78 287

macro avg 0.84 0.62 0.63 287

weighted avg 0.81 0.78 0.73 287

Matriz de confusão - com os dados ORIGINAIS usados para TESTES

[[67 2]

[18 9]]

84

 precision recall f1-score support

No 0.79 0.97 0.87 69

Yes 0.82 0.33 0.47 27

accuracy 0.79 96

macro avg 0.80 0.65 0.67 96

weighted avg 0.80 0.79 0.76 96

from sklearn import svm

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

treinador = svm.SVC() #algoritmo escolhido

modelo = treinador.fit(X_train, y_train)

y_pred = modelo.predict(X_train)

cm_train = confusion_matrix(y_train, y_pred)

print('Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO')

print(cm_train)

print(classification_report(y_train, y_pred))

print('Matriz de confusão - com os dados ORIGINAIS usados para TESTES')

y2_pred = modelo.predict(X_test)

cm_test = confusion_matrix(y_test, y2_pred)

print(cm_test)

print(classification_report(y_test, y2_pred))

Matriz de confusão - com os dados TRATADOS usados no TREINAMENTO

[[204 2]

 [13 68]]

 precision recall f1-score support

No 0.94 0.99 0.96 206

Yes 0.97 0.84 0.90 81

accuracy 0.95 287

macro avg 0.96 0.91 0.93 287

weighted avg 0.95 0.95 0.95 287

85

Matriz de confusão - com os dados ORIGINAIS usados para TESTES

[[67 2]

 [5 22]]

 precision recall f1-score support

No 0.93 0.97 0.95 69

Yes 0.92 0.81 0.86 27

accuracy 0.93 96

macro avg 0.92 0.89 0.91 96

weighted avg 0.93 0.93 0.93 96

86

APÊNDICE 7 – APRENDIZADO DE MÁQUINA

A – ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo,

Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher

os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento.

B – RESOLUÇÃO

Seed: 202485

CLASSIFICAÇÃO

Veículo

Técnica Parâmetro Acurácia Matriz de Confusão

SVM – CV
Com grid C=100 Sigma= 0.015 0.8482896 0.8323

RNA – CV
Com grid size=21 decay=0.1 0.8395732 0.7904

SVM – CV
Sem grid C=1 Sigma= 0.06437798 0.7703150 0.7425

RF – CV
Com grid mtry=18 0.7615115 0.7425

SVM – Hold-out C=1 Sigma= 0.06437798 0.7586751 0.7425
RF – CV
Sem grid mtry=10 0.7556298 0.7365

RF – Hold-out mtry=10 0.7379643 0.7725

KNN k=1 0.6390135 0.6176
RNA – CV
Sem grid size=3 decay=0.1 0.6227787 0.4671

RNA – Hold-out size=5 decay=0.1 0.5659535 0.6527

Técnica com melhor desempenho: SVM – CV, acurácia: 0,8482896

Predição de novos casos:

Comandos emitidos no RStudio:
library("caret")

87

setwd("C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/06 -

Veículos")

dados <- read.csv("6 - Veiculos - Dados.csv")

dados_novos <- read.csv("6 - Veiculos - Dados - Novos.csv")

dados$a <- NULL

dados_novos$a <- NULL

View(dados)

View(dados_novos)

KNN

set.seed(202485)

ran <- sample(1:nrow(dados), 0.8 * nrow(dados))

treino <- dados[ran,]

teste <- dados[-ran,]

tuneGrid <- expand.grid(k = c(1,3,5,7,9))

set.seed(202485)

knn <- train(tipo~., data = treino, method = "knn", tuneGrid=tuneGrid)

knn

predict.knn <- predict(knn, teste)

confusionMatrix(predict.knn, as.factor(teste$tipo))

RNA

set.seed(202485)

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE)

treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(202485)

rna <- train(tipo~., data=treino, method="nnet", trace=FALSE)

rna

predict.rna <- predict(rna, teste)

confusionMatrix(predict.rna, as.factor(teste$tipo))

88

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202485)

rna <- train(tipo~., data=treino, method="nnet", trace=FALSE, trControl=ctrl)

rna

predict.rna <- predict(rna, teste)

confusionMatrix(predict.rna, as.factor(teste$tipo))

grid <- expand.grid(size = seq(from = 1, to = 35, by = 10), decay = seq(from

= 0.1, to = 0.6, by = 0.3))

set.seed(202485)

rna <- train(form = tipo~., data = treino, method = "nnet", tuneGrid = grid,

trControl = ctrl, maxit = 2000, trace=FALSE)

rna

predict.rna <- predict(rna, teste)

confusionMatrix(predict.rna, as.factor(teste$tipo))

SVM

set.seed(202485)

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE)

treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(202485)

svm <- train(tipo~., data=treino, method="svmRadial")

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$tipo))

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202485)

svm <- train(tipo~., data=treino, method="svmRadial", trControl=ctrl)

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$tipo))

grid <- expand.grid(C = c(1, 2, 10, 50, 100), sigma = c(0.01, 0.015, 0.2))

89

set.seed(202485)

svm <- train(form = tipo~., data = treino, method = "svmRadial", trControl =

ctrl, tuneGrid = grid)

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$tipo))

Random Forest

set.seed(202485)

indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE)

treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(202485)

rf <- train(tipo~., data=treino, method="rf")

rf

predict.rf <- predict(rf, teste)

confusionMatrix(predict.rf, as.factor(teste$tipo))

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202485)

rf <- train(tipo~., data=treino, method="rf", trControl=ctrl)

rf

predict.rf <- predict(rf, teste)

confusionMatrix(predict.rf, as.factor(teste$tipo))

grid <- expand.grid(mtry = c(2, 3, 6, 9, 12, 15, 18))

set.seed(202485)

rf <- train(form = tipo~., data = treino, method = "rf", trControl = ctrl,

tuneGrid = grid)

rf

predict.rf <- predict(rf, teste)

confusionMatrix(predict.rf, as.factor(teste$tipo))

predict.svm <- predict(svm, dados_novos)

90

resultado <- cbind(dados_novos, predict.svm)

View(resultado)

Diabetes

Técnica Parâmetro Acurácia Matriz de Confusão

SVM – CV
Com grid

C=1
Sigma=0.01

0.7934162 0.7255

SVM – CV
Sem grid

C=0.25
Sigma=0.1129486

0.7787150 0.7255

RF – CV
Com grid

mtry=2 0.7770756 0.7059

SVM – Hold-out C=0.25 Sigma=0.1129486 0.7696365 0.7255

RF – CV
Sem grid

mtry=2 0.7689847 0.7255

RF – Hold-out mtry=2 0.7637726 0.7059

RNA – CV
Com grid

size=21
decay=0.1

0.7609201 0.7386

RNA – CV
Sem grid

size=3
decay=0.1

0.7479905 0.6863

KNN k=9 0.7125222 0.7208

RNA – Hold-out size=3 decay=0.1 0.6794497 0.634

Técnica com melhor desempenho: SVM -CV, acurácia: 0,7934162

Predição de novos casos:

Comandos emitidos no RStudio:

library("caret")

setwd("C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/10 -

Diabetes")

dados <- read.csv("10 - Diabetes - Dados.csv")

dados_novos <- read.csv("10 - Diabetes - Dados - Novos.csv")

dados$num <- NULL

dados_novos$num <- NULL

91

View(dados)

View(dados_novos)

KNN

set.seed(202485)

ran <- sample(1:nrow(dados), 0.8 * nrow(dados))

treino <- dados[ran,]

teste <- dados[-ran,]

tuneGrid <- expand.grid(k = c(1,3,5,7,9))

set.seed(202485)

knn <- train(diabetes~., data = treino, method = "knn", tuneGrid=tuneGrid)

knn

predict.knn <- predict(knn, teste)

confusionMatrix(predict.knn, as.factor(teste$diabetes))

RNA

set.seed(202485)

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE)

treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(202485)

rna <- train(diabetes~., data=treino, method="nnet", trace=FALSE)

rna

predict.rna <- predict(rna, teste)

confusionMatrix(predict.rna, as.factor(teste$diabetes))

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202485)

rna <- train(diabetes~., data=treino, method="nnet", trace=FALSE,

trControl=ctrl)

rna

predict.rna <- predict(rna, teste)

confusionMatrix(predict.rna, as.factor(teste$diabetes))

92

grid <- expand.grid(size = seq(from = 1, to = 35, by = 10), decay = seq(from

= 0.1, to = 0.6, by = 0.3))

set.seed(202485)

rna <- train(form = diabetes~., data = treino, method = "nnet", tuneGrid =

grid, trControl = ctrl, maxit = 2000, trace=FALSE)

rna

predict.rna <- predict(rna, teste)

confusionMatrix(predict.rna, as.factor(teste$diabetes))

SVM

set.seed(202485)

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE)

treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(202485)

svm <- train(diabetes~., data=treino, method="svmRadial")

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$diabetes))

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202485)

svm <- train(diabetes~., data=treino, method="svmRadial", trControl=ctrl)

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$diabetes))

grid <- expand.grid(C = c(1, 2, 10, 50, 100), sigma = c(0.01, 0.015, 0.2))

set.seed(202485)

svm <- train(form = diabetes~. , data = treino, method = "svmRadial",

trControl = ctrl, tuneGrid = grid)

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$diabetes))

93

Random Forest

set.seed(202485)

indices <- createDataPartition(dados$diabetes, p=0.80, list=FALSE)

treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(202485)

rf <- train(diabetes~., data=treino, method="rf")

rf

predict.rf <- predict(rf, teste)

confusionMatrix(predict.rf, as.factor(teste$diabetes))

ctrl <- trainControl(method = "cv", number = 10)

set.seed(202485)

rf <- train(diabetes~., data=treino, method="rf", trControl=ctrl)

rf

predict.rf <- predict(rf, teste)

confusionMatrix(predict.rf, as.factor(teste$diabetes))

grid <- expand.grid(mtry = c(2, 4, 6, 8))

set.seed(202485)

rf <- train(form = diabetes~. , data = treino, method = "rf", trControl =

ctrl, tuneGrid = grid)

rf

predict.rf <- predict(rf, teste)

confusionMatrix(predict.rf, as.factor(teste$diabetes))

predict.svm <- predict(svm, dados_novos)

resultado <- cbind(dados_novos, predict.svm)

View(resultado)

94

REGRESSÃO

Admissão

Técnica Parâmetro R² Syx Pearson RMSE MAE
SVM – CV
Com grid

C = 10
sigma = 0.01

0.789376 0.059158 0.923379 0.058551 0.038229

SVM – Hold-out
Com grid

C = 2
sigma = 0.01

0.781435 0.059204 0.924785 0.058597 0.038832

RF – CV
Com grid

mtry = 2 0.758387 0.062267 0.911964 0.061629 0.041319

RF – Hold-out
Sem grid

mtry = 2 0.756269 0.062346 0.911978 0.061707 0.041387

SVM – CV
Sem grid

C = 1
sigma = 0.2074478

0.755719 0.061922 0.916669 0.061287 0.041750

RF – CV
Sem grid

mtry = 2 0.755678 0.062506 0.911280 0.061865 0.041780

RF – Hold-out
Com grid

mtry = 2 0.754565 0.062347 0.912288 0.061708 0.041125

RNA – Hold-out
Com grid

size = 9
decay = 0.1

0.743898 0.062546 0.912788 0.061905 0.045973

RNA – CV
Sem grid

size = 5
decay = 0.1

0.734980 0.063313 0.910600 0.062664 0.046591

SVM – Hold-out
Sem grid

C = 0.5
sigma = 0.2074478

0.734136 0.062447 0.918901 0.061807 0.042691

RNA – Hold-out
Sem grid

size = 5
decay = 0.1

0.709483 0.065351 0.904786 0.064681 0.048558

RNA – CV
Com grid

size = 9
decay = 0.1

0.684974 0.066554 0.902630 0.065871 0.050512

KNN K = 9 0.633991 0.074328 0.869567 0.073566 0.054662

Técnica com melhor desempenho: SVM – CV com grid, R²: 0,789376

Predição de novos casos:

Gráfico de Resíduos:

95

Comandos emitidos no RStudio:

r2 <- function(observados, estimados) {

 ret <- (1 - (sum((observados-estimados)^2)

 /sum((observados-mean(observados))^2)))

 return(ret)

}

trabRegressao <- function(seed, filepath, filename, filenewcases,

fileheader=T,

 colX, metodo, separacao="ho", usaGrid=F){

 if(metodo == "knn"){

 library(caret)

 library(Metrics)

 library(Fgmutils)

 } else if(metodo == "nnet") {

 library(mlbench)

 library(caret)

 library(mice)

 library(Metrics)

 library(Fgmutils)

 } else if((metodo == "svmRadial") || (metodo == "rf")) {

96

 library(e1071)

 library(kernlab)

 library(caret)

 library(Metrics)

 library(Fgmutils)

 }

 setwd(filepath)

 dados <- read.csv(filename, header=fileheader)

 dados$num <- NULL

 set.seed(seed)

 ind <- createDataPartition(dados[,ncol(dados)], p=0.80, list=F)

 treino_df <- dados[ind,]

 teste_df <- dados[-ind,]

 if(metodo == "knn") {

 tng <- expand.grid(k = c(1,3,5,7,9))

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo, tuneGrid = tng)

 } else {

 if(separacao == "cv"){

 ctrl <- trainControl(method = "cv", number = 10)

 if(usaGrid){

 if(metodo == "nnet"){

 tng <- expand.grid(size = seq(from = 1, to = 10, by = 1),

 decay = seq(from = 0.1, to = 0.9, by = 0.3))

 } else if(metodo == "svmRadial") {

 tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2))

 } else if(metodo == "rf") {

 tng <- expand.grid(mtry=c(2, 4, 6, 8))

 }

 if(metodo == "nnet"){

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl, tuneGrid = tng,

 linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl, tuneGrid = tng)

97

 }

 } else {

 if(metodo == "nnet") {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl, linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl)

 }

 }

 } else {

 if(usaGrid){

 if(metodo == "nnet"){

 tng <- expand.grid(size = seq(from = 1, to = 10, by = 1),

 decay = seq(from = 0.1, to = 0.9, by = 0.3))

 } else if(metodo == "svmRadial") {

 tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2))

 } else if(metodo == "rf") {

 tng <- expand.grid(mtry=c(2, 4, 6, 8))

 }

 if(metodo == "nnet"){

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 tuneGrid = tng, linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 tuneGrid = tng)

 }

 } else {

 if(metodo == "nnet") {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo)

 }

 }

98

 }

 }

 pred <- predict(modelo, teste_df)

 r2 <- r2(pred, teste_df[,ncol(dados)])

 syx <- syx(teste_df[,ncol(dados)], pred, n=nrow(teste_df), p=1)

 pearson <- cor(teste_df[,ncol(dados)], pred, method = "pearson")

 rmse <- rmse(teste_df[,ncol(dados)], pred)

 mae <- mae(teste_df[,ncol(dados)], pred)

 novos_casos <- read.csv(filenewcases, header=fileheader)

 novos_casos$num <- NULL

 pred_novos <- predict(modelo, novos_casos)

 novos_casos[,ncol(dados)] <- NULL

 result_pred <- cbind(novos_casos, pred_novos)

 return(list(model=modelo, R2=r2, Syx=syx, Pearson=pearson, RMSE=rmse,

MAE=mae,

 dfPredicao=result_pred))

}

filepath <- "C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/09 -

Admissão"

filename <- "9 - Admissao - Dados.csv"

filenewcases <- "9 - Admissao - NovosCasos.csv"

fileheader <- TRUE

colX <- eval(ChanceOfAdmit~.)

seed <- 202485

source("Funcoes_Trabalho.R")

setwd(filepath)

KNN
metodo <- "knn"

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

99

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### KNN ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### KNN ###")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

RNA
metodo <- "nnet"

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

100

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### RNA ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

101

print("..CROSS VALIDATION - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

SVM
metodo <- "svmRadial"

HoldOut - Sem Grid ##

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### SVM ###")

print("..HOLDOUT - SEM GRID")

102

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

103

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

RANDOM FOREST

metodo <- "rf"

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### RANDOM FOREST ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

104

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

105

print(" ")

print("..CROSS VALIDATION - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

Biomassa

Técnica Parâmetro R² Syx Pearson Rmse MAE
RF – Hold out
Sem grid

mtry=2 0.984068 157.786610 0.992201 155.134545 63.856373

RF – CV
Com grid

mtry=2 0.976586 181.697563 0.990147 178.643604 72.972522

RF – CV
Sem grid

mtry=2 0.973855 190.189821 0.989462 186.993126 74.669903

RF – Hold out
Com grid

mtry=2 0.965333 212.818902 0.987972 209.241859 79.451578

RNA – Hold out
Com grid

Size=2
Decay =0.7

0.963713 255.742350 0.983519 251.443853 148.422506

SVM – CV
Com grid

C=100
Sigma = 0.01

0.916314 303.006088 0.980208 297.913186 115.408387

SVM – Hold
out
Com grid

C=100
Sigma=0.01

0.916314 303.006088 0.980208 297.913186 115.408387

KNN K =3 0.713939 484.145732 0.948596 476.008249 135.896425
RNA – CV
Com grid

Size=6
Decay =0.4

0.217431 707.588618 0.849904 695.695526 237.414720

RNA – CV
Sem grid

Size=5
Decay =0.1

0.197787 689.456434 0.875019 677.868106 173.054202

SVM – Hold
out
Sem grid

C=1
Sigma=1.027848

-3.391228 1054.157347 0.559121 1036.439155 238.325013

SVM – CV
Sem grid

C=1
Sigma =1.027848

-3.391228 1054.157347 0.559121 1036.439155 238.325013

RNA – Hold out
Sem grid

Size=5
Decay=0.1

-714789053
1188040.0

1247.907676 0.054192 1226.932944 497.813797

Técnica com melhor desempenho: RF – Hold out sem grid, R²: 0,984068

Predição de novos casos:

106

Gráfico de Resíduos:

Comandos emitidos no RStudio:

r2 <- function(observados, estimados) {

 ret <- (1 - (sum((observados-estimados)^2)

 /sum((observados-mean(observados))^2)))

 return(ret)

}

trabRegressao <- function(seed, filepath, filename, filenewcases,

fileheader=T,

 colX, metodo, separacao="ho", usaGrid=F){

 if(metodo == "knn"){

 library(caret)

 library(Metrics)

 library(Fgmutils)

107

 } else if(metodo == "nnet") {

 library(mlbench)

 library(caret)

 library(mice)

 library(Metrics)

 library(Fgmutils)

 } else if((metodo == "svmRadial") || (metodo == "rf")) {

 library(e1071)

 library(kernlab)

 library(caret)

 library(Metrics)

 library(Fgmutils)

 }

 setwd(filepath)

 dados <- read.csv(filename, header=fileheader)

 dados$num <- NULL

 set.seed(seed)

 ind <- createDataPartition(dados[,ncol(dados)], p=0.80, list=F)

 treino_df <- dados[ind,]

 teste_df <- dados[-ind,]

 if(metodo == "knn") {

 tng <- expand.grid(k = c(1,3,5,7,9))

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo, tuneGrid = tng)

 } else {

 if(separacao == "cv"){

 # controlador para Cross Validation usando 10 divisões

 ctrl <- trainControl(method = "cv", number = 10)

 if(usaGrid){

 if(metodo == "nnet"){

 tng <- expand.grid(size = seq(from = 1, to = 10, by = 1),

 decay = seq(from = 0.1, to = 0.9, by = 0.3))

 } else if(metodo == "svmRadial") {

 tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2))

 } else if(metodo == "rf") {

 tng <- expand.grid(mtry=c(2, 4, 6, 8))

 }

 if(metodo == "nnet"){

108

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl, tuneGrid = tng,

 linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl, tuneGrid = tng)

 }

 } else {

 if(metodo == "nnet") {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl, linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 trControl = ctrl)

 }

 }

 } else {

 if(usaGrid){

 if(metodo == "nnet"){

 tng <- expand.grid(size = seq(from = 1, to = 10, by = 1),

 decay = seq(from = 0.1, to = 0.9, by = 0.3))

 } else if(metodo == "svmRadial") {

 tng <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015, 0.2))

 } else if(metodo == "rf") {

 tng <- expand.grid(mtry=c(2, 4, 6, 8))

 }

 if(metodo == "nnet"){

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 tuneGrid = tng, linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 tuneGrid = tng)

 }

 } else {

 if(metodo == "nnet") {

109

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo,

 linout = T, trace = F)

 } else {

 set.seed(seed)

 modelo <- train(colX, data = treino_df, method = metodo)

 }

 }

 }

 }

 pred <- predict(modelo, teste_df)

 r2 <- r2(pred, teste_df[,ncol(dados)])

 syx <- syx(teste_df[,ncol(dados)], pred, n=nrow(teste_df), p=1)

 pearson <- cor(teste_df[,ncol(dados)], pred, method = "pearson")

 rmse <- rmse(teste_df[,ncol(dados)], pred)

 mae <- mae(teste_df[,ncol(dados)], pred)

 novos_casos <- read.csv(filenewcases, header=fileheader)

 novos_casos$num <- NULL

 pred_novos <- predict(modelo, novos_casos)

 novos_casos[,ncol(dados)] <- NULL

 result_pred <- cbind(novos_casos, pred_novos)

 return(list(model=modelo, R2=r2, Syx=syx, Pearson=pearson, RMSE=rmse,

MAE=mae,

 dfPredicao=result_pred))

}

filepath <- "C:/Users/pamar/Documents/Cursos/IAA-2024/IAA008 - APM/Bases/05 -

Biomassa"

filename <- "5 - Biomassa - Dados.csv"

filenewcases <- "5 - Biomassa - Dados - Novos.csv"

fileheader <- TRUE

colX <- eval(biomassa~.) # Critério da coluna de predição. Tem que usar eval!

seed <- 202485 #para setar o seed do experimento

source("Funcoes_Trabalho.R")

setwd(filepath)

110

KNN
metodo <- "knn"

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### KNN ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### KNN ###")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

RNA
metodo <- "nnet"

111

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### RNA ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

112

print("..CROSS VALIDATION - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

SVM
metodo <- "svmRadial"

HoldOut - Sem Grid ##

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### SVM ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

113

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

114

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

RANDOM FOREST
metodo <- "rf"

separacao <- "ho"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("### RANDOM FOREST ###")

print("..HOLDOUT - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "ho"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

115

print("..HOLDOUT - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- FALSE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - SEM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

View(vRet$dfPredicao)

separacao <- "cv"

usaGrid <- TRUE

vRet <- trabRegressao(seed=seed, filepath=filepath, filename=filename,

 filenewcases=filenewcases, fileheader=fileheader,

 colX=colX, metodo=metodo, separacao=separacao,

 usaGrid=usaGrid)

print(" ")

print("..CROSS VALIDATION - COM GRID")

print(vRet$model)

sprintf("R2 : %.6f", vRet$R2)

sprintf("Syx : %.6f", vRet$Syx)

sprintf("Pearson: %.6f", vRet$Pearson)

sprintf("RMSE : %.6f", vRet$RMSE)

sprintf("MAE : %.6f", vRet$MAE)

116

View(vRet$dfPredicao)

AGRUPAMENTO

Veículo

Comandos emitidos no RStudio:
library(klaR)

setwd("C:/base/ ")

dados <- read.csv("veiculos.csv")

View(dados)

dados$a <- NULL

resultado <- cbind(dados, cluster.res$cluster)

resultado

REGRAS DE ASSOCIAÇÃO

117

Musculação

Regras geradas com uma configuração de Suporte e Confiança.

Comandos emitidos no RStudio:

118

setwd("C:/Users/pamar/Downloads")

dados <- read.transactions(file="2 - Musculacao -

Dados.csv",format="basket",sep=";")

inspect(dados[1:4])

set.seed(202485)

itemFrequencyPlot(dados, topN=10, type='absolute')

rules <- apriori(dados, parameter = list(supp = 0.3, conf = 0.8, target =

"rules")) summary(rules)

inspect(rules)

119

 APÊNDICE 8 – DEEP LEARNING

A – ENUNCIADO

1 Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a

arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e

arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN

vista no curso.

4 Tradutor de Textos (Transformer)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a

arquitetura Transformer vista no curso.

B – RESOLUÇÃO

1
import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, Dropout

from tensorflow.keras.models import Model

from mlxtend.plotting import plot_confusion_matrix

from sklearn.metrics import confusion_matrix

cifar10 = tf.keras.datasets.cifar10

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

120

y_train, y_test = y_train.flatten(), y_test.flatten()

print("x_train.shape: ", x_train.shape)

print("y_train.shape: ", y_train.shape)

print("x_test.shape: ", x_test.shape)

print("y_test.shape: ", y_test.shape)

x_train.shape: (50000, 32, 32, 3)

y_train.shape: (50000,)

x_test.shape: (10000, 32, 32, 3)

y_test.shape: (10000,)

K = len(set(y_train))

print("Número de classes: ", K)

i = Input(shape=x_train[0].shape)

x = Conv2D(32, (3, 3), strides=2, activation="relu")(i)

x = Conv2D(64, (3, 3), strides=2, activation="relu")(x)

x = Conv2D(128, (3, 3), strides=2, activation="relu")(x)

x = Flatten()(x)

x = Dropout(0.5)(x)

x = Dense(1024, activation="relu")(x)

x = Dropout(0.2)(x)

x = Dense(K, activation="softmax")(x)

model = Model(i, x)

Número de classes: 10

model.summary()

Model: "functional"

121

Total params: 1,284,170 (4.90 MB)

Trainable params: 1,284,170 (4.90 MB)

Non-trainable params: 0 (0.00 B)

model.compile(optimizer="adam", loss="sparse_categorical_crossentropy",

metrics=["accuracy"])

r = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=15)

Epoch 1/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 17s 7ms/step - accuracy: 0.3518 -

loss: 1.7613 - val_accuracy: 0.5229 - val_loss: 1.3085

Epoch 2/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 10s 3ms/step - accuracy: 0.5243 -

loss: 1.3063 - val_accuracy: 0.5861 - val_loss: 1.1708

Epoch 3/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 10s 3ms/step - accuracy: 0.5832 -

loss: 1.1618 - val_accuracy: 0.6222 - val_loss: 1.0755

Epoch 4/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.6192 -

loss: 1.0688 - val_accuracy: 0.6523 - val_loss: 0.9890

Epoch 5/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.6510 -

loss: 0.9825 - val_accuracy: 0.6773 - val_loss: 0.9348

Epoch 6/15

122

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.6717 -

loss: 0.9248 - val_accuracy: 0.6958 - val_loss: 0.8965

Epoch 7/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.6939 -

loss: 0.8651 - val_accuracy: 0.6927 - val_loss: 0.8837

Epoch 8/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.7133 -

loss: 0.8044 - val_accuracy: 0.6938 - val_loss: 0.8788

Epoch 9/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.7229 -

loss: 0.7807 - val_accuracy: 0.7084 - val_loss: 0.8367

Epoch 10/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.7324 -

loss: 0.7475 - val_accuracy: 0.7095 - val_loss: 0.8563

Epoch 11/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.7427 -

loss: 0.7178 - val_accuracy: 0.7067 - val_loss: 0.8509

Epoch 12/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 9s 3ms/step - accuracy: 0.7580 -

loss: 0.6788 - val_accuracy: 0.7129 - val_loss: 0.8265

Epoch 13/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.7654 -

loss: 0.6619 - val_accuracy: 0.7207 - val_loss: 0.8161

Epoch 14/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 4ms/step - accuracy: 0.7753 -

loss: 0.6369 - val_accuracy: 0.7208 - val_loss: 0.8079

Epoch 15/15

1563/1563 ━━━━━━━━━━━━━━━━━━━━ 9s 3ms/step - accuracy: 0.7823 -

loss: 0.6083 - val_accuracy: 0.7229 - val_loss: 0.8202

plt.plot(r.history["loss"], label="loss")

plt.plot(r.history["val_loss"], label="val_loss")

plt.legend()

plt.show()

plt.plot(r.history["accuracy"], label="acc")

plt.plot(r.history["val_accuracy"], label="val_acc")

plt.legend()

123

plt.show()

y_pred = model.predict(x_test).argmax(axis=1)

124

Mostrar a matriz de confusão

cm = confusion_matrix(y_test, y_pred)

plot_confusion_matrix(conf_mat=cm, figsize=(7, 7), show_normed=True)

labels= ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog",

"horse", "ship", "truck"]

 misclassified = np.where(y_pred != y_test)[0]

i = np.random.choice(misclassified)

plt.imshow(x_test[i], cmap="gray")

125

plt.title("True label: %s Predicted: %s" % (labels[y_test[i]],

labels[y_pred[i]]))

Text(0.5, 1.0, 'True label: bird Predicted: deer')

2

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Input, Embedding, LSTM, Dense

from tensorflow.keras.layers import GlobalMaxPooling1D

from tensorflow.keras.models import Model

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

!wget http://www.razer.net.br/datasets/spam.csv

df = pd.read_csv("spam.csv", encoding="ISO-8859-1")

df.head()

df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)

df.columns = ["labels", "data"]

126

df["b_labels"] = df["labels"].map({ "ham": 0, "spam": 1})

y = df["b_labels"].values

--2025-08-10 20:08:33-- http://www.razer.net.br/datasets/spam.csv

Resolving www.razer.net.br (www.razer.net.br)... 178.128.150.229

Connecting to www.razer.net.br (www.razer.net.br)|178.128.150.229|:80...

connected.

HTTP request sent, awaiting response... 200 OK

Length: 503663 (492K) [application/octet-stream]

Saving to: ‘spam.csv’

spam.csv 100%[===================>] 491.86K --.-KB/s in 0.1s

2025-08-10 20:08:34 (3.56 MB/s) - ‘spam.csv’ saved [503663/503663]

x_train, x_test, y_train, y_test = train_test_split(df["data"], y,

test_size=0.33)

 num_words = 20000

 tokenizer = Tokenizer(num_words=num_words)

 tokenizer.fit_on_texts(x_train)

 sequences_train = tokenizer.texts_to_sequences(x_train)

 sequences_test = tokenizer.texts_to_sequences(x_test)

 word2index = tokenizer.word_index

 V = len(word2index)

 print("%s tokens" % V)

 7197 tokens

 data_train = pad_sequences(sequences_train)

 T = data_train.shape[1]

 data_test = pad_sequences(sequences_test, maxlen=T)

 print("data_train.shape: ", data_train.shape)

 print("data_test.shape: ", data_test.shape)

 data_train.shape: (3733, 189)

 data_test.shape: (1839, 189)

 D = 20

 M = 5

 i = Input(shape=(T,))

 x = Embedding(V+1, D)(i)

 x = LSTM(M)(x)

127

 x = Dense(1, activation="sigmoid")(x)

 model = Model(i, x)

 model.summary()

 Model: "functional"

Total params: 144,486 (564.40 KB)
Trainable params: 144,486 (564.40 KB)
Non-trainable params: 0 (0 00 B)
model.compile(loss="binary_crossentropy",
optimizer="adam",metrics=["accuracy"])

epochs = 5
r = model.fit(data_train, y_train, epochs=epochs,
validation_data=(data_test,y_test))

Epoch 1/5
117/117 ━━━━━━━━━━━━━━━━━━━━ 6s 19ms/step - accuracy: 0.8707
- loss: 0.5696 - val_accuracy: 0.9288 - val_loss: 0.3345
Epoch 2/5
117/117 ━━━━━━━━━━━━━━━━━━━━ 2s 12ms/step - accuracy: 0.9606
- loss: 0.2757 - val_accuracy: 0.9701 - val_loss: 0.1877
Epoch 3/5
117/117 ━━━━━━━━━━━━━━━━━━━━ 3s 12ms/step - accuracy: 0.9814
- loss: 0.1530 - val_accuracy: 0.9810 - val_loss: 0.1307
Epoch 4/5

128

 117/117 ━━━━━━━━━━━━━━━━━━━━ 1s 12ms/step - accuracy: 0.9899

- loss: 0.1086 - val_accuracy: 0.9826 - val_loss: 0.1042

 Epoch 5/5

 117/117 ━━━━━━━━━━━━━━━━━━━━ 1s 12ms/step - accuracy: 0.9943

- loss: 0.0784 - val_accuracy: 0.9875 - val_loss: 0.0833

 plt.plot(r.history["loss"], label="loss")

 plt.plot(r.history["val_loss"], label="val_loss")

 plt.xlabel("Épocas")

 plt.ylabel("loss")

 plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs+1))

 plt.legend()

 plt.show()

 plt.plot(r.history["accuracy"], label="accuracy")

 plt.plot(r.history["val_accuracy"], label="val_accuracy")

 plt.xlabel("Épocas")

 plt.ylabel("Acurácia")

 plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs+1))

 plt.legend()

 plt.show()

129

texto = "Is your car dirty? Discover our new product. Free for all. Click
the link."
seq_texto = tokenizer.texts_to_sequences([texto])
data_texto = pad_sequences(seq_texto, maxlen=T)
pred = model.predict(data_texto)
print(pred)
print ("SPAM" if pred >= 0.5 else "OK")

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 136ms/step
[[0.7058363]]
SPAM

3

import tensorflow as tf
 import glob
 import imageio
 import matplotlib.pyplot as plt
 import numpy as np
 import os
 import PIL
 from tensorflow.keras import layers
 import time
 from IPython import display

(train_images, train_labels), (_,_) = tf.keras.datasets.mnist.load_data()

130

 train_images = train_images.reshape(train_images.shape[0], 28, 28,
1).astype('float32')

 train_images = (train_images - 127.5) / 127.5 # [-1 , 1]

 BUFFER_SIZE = 60000
 BATCH_SIZE = 256

 train_dataset =

tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).bat
ch(BATCH_SIZE)

generator = make_generator_model()

 noise = tf.random.normal([1, 100])
 generated_image = generator(noise, training=False)

 plt.imshow(generated_image[0, :, :, 0], cmap='gray')

.
def make_discriminator_model():

 model = tf.keras.Sequential()
 model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',

input_shape=[28, 28, 1]))
 model.add(layers.LeakyReLU())
 model.add(layers.Dropout(0.3))

 model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
 model.add(layers.LeakyReLU())
 model.add(layers.Dropout(0.3))
 model.add(layers.Flatten())
 model.add(layers.Dense(1)) #camada densa com somente 1 neurônio

131

 return model

discriminator = make_discriminator_model()
 decision = discriminator(generated_image)
 print(decision)

tf.Tensor([[-0.00400878]], shape=(1, 1), dtype=float32)

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

 def discriminator_loss(real_output, fake_output):
 real_loss = cross_entropy(tf.ones_like(real_output), real_output)
 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
 total_loss = real_loss + fake_loss
 return total_loss

 def generator_loss(fake_output):
 return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)
 discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

checkpoint_dir = './training_checkpoints'
 checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
 checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

discriminator_optimizer=discriminator_optimizer,
 generator=generator,
 discriminator=discriminator)

EPOCHS = 100
 noise_dim = 100
 num_examples_to_generate = 16

 seed = tf.random.normal([num_examples_to_generate, noise_dim])

@tf.function
 def train_step(images):
 noise = tf.random.normal([BATCH_SIZE, noise_dim])

 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
 generated_images = generator(noise, training=True)
 real_output = discriminator(images, training=True)
 fake_output = discriminator(generated_images, training=True)

 gen_loss = generator_loss(fake_output)
 disc_loss = discriminator_loss(real_output, fake_output)

 gradients_of_generator = gen_tape.gradient(gen_loss,

generator.trainable_variables)
 gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

132

 generator_optimizer.apply_gradients(zip(gradients_of_generator,

generator.trainable_variables))

 discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,
discriminator.trainable_variables))

 def generate_and_save_images(model, epoch, test_input):
 predictions = model(test_input, training=False)
 fig = plt.figure(figsize=[4,4])

 for i in range(predictions.shape[0]):
 plt.subplot(4, 4, i+1)
 plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
 plt.axis('off')

 plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
 plt.show

def train(dataset, epochs):
 for epoch in range(epochs):
 start = time.time()

 for image_batch in dataset:
 train_step(image_batch)

 display.clear_output(wait=True)
 generate_and_save_images(generator, epoch + 1, seed)

 if (epoch + 1) % 15 == 0:
 checkpoint.save(file_prefix = checkpoint_prefix)

 print ('Time for epoch {} is {} sec'.format(epoch + 1,

time.time()-start))
 display.clear_output(wait=True)
 generate_and_save_images(generator, epochs, seed)

def display_image(epoch_no):
 return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))

 display_image(EPOCHS)

 anim_file = 'dcgan.gif'

 with imageio.get_writer(anim_file, mode='I') as writer:
 filenames = glob.glob('image*.png')
 filenames = sorted(filenames)
 last = -1
 for i,filename in enumerate(filenames):
 frame = 2*(i**0.5)
 if round(frame) > round(last):
 last = frame

133

 else:
 continue
 image = imageio.imread(filename)
 writer.append_data(image)
 image = imageio.imread(filename)
 writer.append_data(image)

 import tensorflow_docs.vis.embed as embed
 embed.embed_file(anim_file)

4

import collections
 import logging
 import os
 import pathlib
 import re
 import string
 import sys
 import time
 import numpy as np
 import matplotlib.pyplot as plt

import tensorflow_datasets as tfds
 import tensorflow_text as text
 import tensorflow as tf

logging.getLogger('tensorflow').setLevel(logging.ERROR)
examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en',
with_info=True, as_supervised=True)

 train_examples, val_examples = examples['train'], examples['validation']

for pt_examples, en_examples in train_examples.batch(3).take(1):
 for pt in pt_examples.numpy():
 print(pt.decode('utf-8'))
 print()

134

 for en in en_examples.numpy():
 print(en.decode('utf-8'))

e quando melhoramos a procura , tiramos a única vantagem da impressão ,
que é a serendipidade .

 mas e se estes fatores fossem ativos ?
 mas eles não tinham a curiosidade de me testar .

 and when you improve searchability , you actually take away the one

advantage of print , which is serendipity .
 but what if it were active ?
 but they did n't test for curiosity .

model_name = "ted_hrlr_translate_pt_en_converter"
 tf.keras.utils.get_file(f"{model_name}.zip",
 f"https://storage.googleapis.com/download.tensorflow.org/models/{model_na

me}.zip", cache_dir='.', cache_subdir='', extract=True)
 tokenizers = tf.saved_model.load(model_name)

def tokenize_pairs(pt, en):
 pt = tokenizers.pt.tokenize(pt)
 pt = pt.to_tensor()

 en = tokenizers.en.tokenize(en)
 en = en.to_tensor()
 return pt, en

BUFFER_SIZE = 20000
 BATCH_SIZE = 64

 def make_batches(ds):
 return(
 ds.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).map(tokenize_pairs,

num_parallel_calls=tf.data.AUTOTUNE).prefetch(tf.data.AUTOTUNE))

 train_batches = make_batches(train_examples)
 val_batches = make_batches(val_examples)

def get_angles(pos, i, d_model):
 angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
 return pos * angle_rates

 def positional_encoding(position, d_model):
 angle_rads = get_angles(np.arange(position)[: , np.newaxis],

np.arange(d_model)[np.newaxis, :], d_model)
 angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

 pos_encoding = angle_rads[np.newaxis, ...]
 return tf.cast(pos_encoding, dtype=tf.float32)

n, d = 2048, 512
 pos_encoding = positional_encoding(n, d)

135

 print(pos_encoding.shape)
 pos_encoding = pos_encoding[0]

 pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2))
 pos_encoding = tf.transpose(pos_encoding, (2, 1, 0))
 pos_encoding = tf.reshape(pos_encoding, (d, n))

 plt.pcolormesh(pos_encoding, cmap='RdBu')
 plt.ylabel('Depth')
 plt.xlabel('Position')
 plt.colorbar()
 plt.show()

def create_padding_mask(seq):
 seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
 return seq[:, tf.newaxis, tf.newaxis, :]

 def create_look_ahead_mask(size):
 mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
 return mask

def scaled_dot_product_attention(q, k, v, mask):

 matmul_qk = tf.matmul(q, k, transpose_b=True)
 dk = tf.cast(tf.shape(k)[-1], tf.float32)

 scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
 if mask is not None:
 scaled_attention_logits += (mask * -1e9)

136

 attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
 output = tf.matmul(attention_weights, v)
 return output, attention_weights

class MultiHeadAttention(tf.keras.layers.Layer):
 def __init__(self, d_model, num_heads):
 super(MultiHeadAttention, self).__init__()
 self.num_heads = num_heads
 self.d_model = d_model
 assert d_model % self.num_heads == 0
 self.depth = d_model // self.num_heads

 self.wq = tf.keras.layers.Dense(d_model)
 self.wk = tf.keras.layers.Dense(d_model)
 self.wv = tf.keras.layers.Dense(d_model)

 self.dense = tf.keras.layers.Dense(d_model)

 def split_heads(self, x, batch_size):
 x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
 return tf.transpose(x, perm=[0, 2, 1, 3])

 def call(self, v, k, q, mask):
 batch_size = tf.shape(q)[0]
 q = self.wq(q)
 q = self.split_heads(q, batch_size)
 k = self.wq(k)
 k = self.split_heads(k, batch_size)
 v = self.wq(v)
 v = self.split_heads(v, batch_size)

 scaled_attention, attention_weights = scaled_dot_product_attention(q,

k, v, mask)

 scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
 concat_attention = tf.reshape(scaled_attention, (batch_size, -1,

self.d_model))
 output = self.dense(concat_attention)
 return output, attention_weights

def point_wise_feed_forward_network(d_model, dff):
 return tf.keras.Sequential([
 tf.keras.layers.Dense(dff, activation='relu'),
 tf.keras.layers.Dense(d_model)
])

class EncoderLayer(tf.keras.layers.Layer):
 def __init__(self, d_model, num_heads, dff, rate=0.1):
 super(EncoderLayer, self).__init__()

 self.mha = MultiHeadAttention(d_model, num_heads)
 self.ffn = point_wise_feed_forward_network(d_model, dff)

137

 self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
 self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

 self.dropout1 = tf.keras.layers.Dropout(rate)
 self.dropout2 = tf.keras.layers.Dropout(rate)
 def call(self, x, training, mask):
 attn_output, _ = self.mha(x, x, x, mask)
 attn_output = self.dropout1(attn_output, training=training)
 out1 = self.layernorm1(x + attn_output)
 ffn_output = self.ffn(out1)
 ffn_output = self.dropout2(ffn_output, training=training)
 out2 = self.layernorm2(out1 + ffn_output)

 return out2

class DecoderLayer(tf.keras.layers.Layer):
 def __init__(self, d_model, num_heads, dff, rate=0.1):
 super(DecoderLayer, self).__init__()
 self.mha1 = MultiHeadAttention(d_model, num_heads)
 self.mha2 = MultiHeadAttention(d_model, num_heads)
 self.ffn = point_wise_feed_forward_network(d_model, dff)
 self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
 self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
 self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
 self.dropout1 = tf.keras.layers.Dropout(rate)
 self.dropout2 = tf.keras.layers.Dropout(rate)
 self.dropout3 = tf.keras.layers.Dropout(rate)
 def call(self, x, enc_output, training, look_ahead_mask, padding_mask):

 attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
 attn1 = self.dropout1(attn1, training=training)
 out1 = self.layernorm1(attn1 + x)

 attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1,

padding_mask)
 attn2 = self.dropout2(attn2, training=training)
 out2 = self.layernorm2(attn2 + out1)

 ffn_output = self.ffn(out2)
 ffn_output = self.dropout3(ffn_output, training=training)
 out3 = self.layernorm3(ffn_output + out2)

 return out3, attn_weights_block1, attn_weights_block2

class Encoder(tf.keras.layers.Layer):
 def __init__(self, num_layers, d_model, num_heads, dff,

input_vocab_size, maximum_position_encoding, rate=0.1):
 super(Encoder, self).__init__()
 self.d_model = d_model
 self.num_layers = num_layers
 self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
 self.pos_encoding = positional_encoding(maximum_position_encoding,

self.d_model)

138

 self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _
in range(num_layers)]

 self.dropout = tf.keras.layers.Dropout(rate)
 def call(self, x, training, mask):
 seq_len = tf.shape(x)[1]
 x = self.embedding(x)
 x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
 x += self.pos_encoding[:, :seq_len, :]
 x = self.dropout(x, training=training)
 for i in range(self.num_layers):
 x = self.enc_layers[i](x, training, mask)
 return x

class Decoder(tf.keras.layers.Layer):
 def __init__(self, num_layers, d_model, num_heads, dff,

target_vocab_size, maximum_position_encoding, rate=0.1):
 super(Decoder, self).__init__()
 self.d_model = d_model
 self.num_layers = num_layers
 self.embedding = tf.keras.layers.Embedding(target_vocab_size,

d_model)
 self.pos_encoding = positional_encoding(maximum_position_encoding,

d_model)
 self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate) for _

in range(num_layers)]
 self.dropout = tf.keras.layers.Dropout(rate)
 def call(self, x, enc_output, training, look_ahead_mask, padding_mask):
 seq_len = tf.shape(x)[1]
 attention_weights = {}
 x = self.embedding(x)
 x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
 x += self.pos_encoding[:, :seq_len, :]
 x = self.dropout(x, training=training)
 for i in range(self.num_layers):
 x, block1, block2 = self.dec_layers[i](x, enc_output, training,

look_ahead_mask, padding_mask)
 attention_weights[f'decoder_layer{i+1}_block1'] = block1
 attention_weights[f'decoder_layer{i+1}_block2'] = block2
 return x, attention_weights

class Transformer(tf.keras.Model):
 def __init__(self, num_layers, d_model, num_heads, dff,

input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1):
 super().__init__()
 self.encoder = Encoder(num_layers, d_model, num_heads, dff,

input_vocab_size, pe_input, rate)
 self.decoder = Decoder(num_layers, d_model, num_heads, dff,

target_vocab_size, pe_target, rate)
 self.final_layer = tf.keras.layers.Dense(target_vocab_size)

 def call(self, inputs, training):
 inp, tar = inputs

139

 enc_padding_mask, look_ahead_mask, dec_padding_mask =
self.create_masks(inp, tar)

 enc_output = self.encoder(inp, training, enc_padding_mask)
 dec_output, attention_weights = self.decoder(tar, enc_output,

training, look_ahead_mask, dec_padding_mask)
 final_output = self.final_layer(dec_output)
 return final_output, attention_weights

 def create_masks(self, inp, tar):
 enc_padding_mask = create_padding_mask(inp)
 dec_padding_mask = create_padding_mask(inp)
 look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
 dec_target_padding_mask = create_padding_mask(tar)
 look_ahead_mask = tf.maximum(dec_target_padding_mask,

look_ahead_mask)
 return enc_padding_mask, look_ahead_mask, dec_padding_mask

num_layers = 4
 d_model = 128
 dff = 512
 num_heads = 8
 dropout_rate = 0.1

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
 def __init__(self, d_model, warmup_steps=4000):
 super(CustomSchedule, self).__init__()
 self.d_model = d_model
 self.d_model = tf.cast(self.d_model, tf.float32)
 self.warmup_steps = warmup_steps
 def __call__(self, step):
 step = tf.cast(step, tf.float32)
 arg1 = tf.math.rsqrt(step)
 arg2 = step * (self.warmup_steps ** -1.5)
 return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)

 learning_rate = CustomSchedule(d_model)
 optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9,

beta_2=0.98, epsilon=1e-9)

loss_object =
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,
reduction='none')

 def loss_function(real, pred):
 mask = tf.math.logical_not(tf.math.equal(real, 0))
 loss_ = loss_object(real, pred)
 mask = tf.cast(mask, dtype=loss_.dtype)
 loss_ *= mask
 return tf.reduce_sum(loss_)/tf.reduce_sum(mask)

 def accuracy_function(real, pred):
 accuracies = tf.equal(real, tf.argmax(pred, axis=2))
 mask = tf.math.logical_not(tf.math.equal(real, 0))
 accuracies = tf.math.logical_and(mask, accuracies)

140

 accuracies = tf.cast(accuracies, dtype=tf.float32)
 mask = tf.cast(mask, dtype=tf.float32)
 return tf.reduce_sum(accuracies)/tf.reduce_sum(mask)

 train_loss = tf.keras.metrics.Mean(name='train_loss')
 train_accuracy = tf.keras.metrics.Mean(name='train_accuracy')

transformer = Transformer(num_layers=num_layers,
 d_model=d_model,
 num_heads=num_heads,
 dff=dff,

input_vocab_size=tokenizers.pt.get_vocab_size().numpy(),

target_vocab_size=tokenizers.en.get_vocab_size().numpy(),
 pe_input=1000,
 pe_target=1000,
 rate=dropout_rate)

checkpoint_path = "./checkpoints/train"

 ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)

 ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path,

max_to_keep=5)

 if ckpt_manager.latest_checkpoint:
 ckpt.restore(ckpt_manager.latest_checkpoint)
 print('Latest checkpoint restored!!')

EPOCHS = 20

 train_step_signature = [
 tf.TensorSpec(shape=(None, None), dtype=tf.int64),
 tf.TensorSpec(shape=(None, None), dtype=tf.int64),
]
 @tf.function(input_signature=train_step_signature)
 def train_step(inp, tar):
 tar_inp = tar[:, :-1]
 tar_real = tar[:, 1:]
 with tf.GradientTape() as tape:
 predictions, _ = transformer([inp, tar_inp], training=True)
 loss = loss_function(tar_real, predictions)

 gradients = tape.gradient(loss, transformer.trainable_variables)
 optimizer.apply_gradients(zip(gradients,

transformer.trainable_variables))

 train_loss(loss)
 train_accuracy(accuracy_function(tar_real, predictions))

for epoch in range(EPOCHS):
 start = time.time()

141

 train_loss.reset_state()
 train_accuracy.reset_state()
 for (batch, (inp, tar)) in enumerate(train_batches):
 train_step(inp, tar)
 if batch % 50 == 0:
 print(f'Epoch {epoch + 1} Batch {batch} Loss

{train_loss.result():.4f} Accuracy {train_accuracy.result():.4f}')
 if (epoch + 1) % 5 == 0:
 ckpt_save_path = ckpt_manager.save()

class Translator(tf.Module):
 def __init__(self, tokenizers, transformer):
 self.tokenizers = tokenizers
 self.transformer = transformer
 def __call__(self, sentence, max_length=20):
 assert isinstance(sentence, tf.Tensor)
 if len(sentence.shape) == 0:
 sentence = sentence[tf.newaxis]
 sentence = self.tokenizers.pt.tokenize(sentence).to_tensor()
 encoder_input = sentence
 start_end = self.tokenizers.en.tokenize([''])[0]
 start = start_end[0][tf.newaxis]
 end = start_end[1][tf.newaxis]
 output_array = tf.TensorArray(dtype=tf.int64, size=0,

dynamic_size=True)
 output_array = output_array.write(0, start)
 for i in tf.range(max_length):
 output = tf.transpose(output_array.stack())
 predictions, _ = self.transformer([encoder_input, output],

training=False)
 predictions = predictions[:, -1:, :]
 predicted_id = tf.argmax(predictions, axis=-1)
 output_array = output_array.write(i+1, predicted_id[0])
 if predicted_id == end:
 break
 output = tf.transpose(output_array.stack())
 text = tokenizers.en.detokenize(output)[0]
 tokens = tokenizers.en.lookup(output)[0]
 _, attention_weights = self.transformer([encoder_input,

output[:,:-1]], training=False)
 return text, tokens, attention_weights

translator = Translator(tokenizers, transformer)

 sentence = "Eu li sobre triceratops na enciclopédia."

 translated_text, translated_tokens, attention_weights =

translator(tf.constant(sentence))

 print(f'{"Prediction":15s}: {translated_text}')
Prediction : b'i read about telatolciss and in the concover .'

142

 APÊNDICE 9 – BIG DATA

A – ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de

uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL).

Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de

dados empregados.

B – RESOLUÇÃO

No ambiente digital interconectado, a área de entretenimento, especialmente a Netflix,

destaca-se por oferecer uma experiência de streaming abrangente. Lançado em 2010 e disponível

em mais de 190 países e 30 idiomas, a empresa é uma líder nesse segmento, oferecendo filmes,

documentários, séries e jogos através de uma plataforma acessível em diversos dispositivos, desde

streaming sticks até smart TVs. A inovação tecnológica da Netflix vai além do seu vasto catálogo,

empregando soluções avançadas para garantir uma experiência de usuário sem interrupções.

Em 2019, a Netflix apresentou um estudo de caso no Kafka Summit sobre o "Netflix Trivia",

um sistema interativo de perguntas e respostas para o processamento de dados em tempo real. Essa

apresentação evidenciou a capacidade da empresa em integrar tecnologias avançadas e forneceu

insights valiosos sobre como gerenciar grandes volumes de dados e proporcionar uma experiência de

usuário fluida e responsiva. A base do Netflix Trivia é composta pelo Apache Kafka e pelo Apache

Flink, plataformas de streaming dirigidas a eventos que permitem a ingestão e o processamento de

dados em tempo real. A escolha do Kafka foi estratégica devido à sua capacidade de lidar com

grandes volumes de dados e sua arquitetura distribuída, que oferece alta disponibilidade e resiliência.

Isso também possibilitou à Netflix um melhor gerenciamento dos custos de criação e investimento em

novos projetos, equilibrando a relação entre produção e custos.

A comunicação dirigida por requisições, como o modelo síncrono, pode levar ao caos e

atrasos devido à complexidade dos fluxos de trabalho, necessidade de rastreabilidade e

inconsistência em todo o sistema, além de gerar retrabalho. Em contraste, uma comunicação

centrada em eventos, como a implementada com Kafka e Flink, é mais eficiente. Esse modelo

proporciona um fluxo canônico de fatos, desacoplamento dos componentes, e melhoria na gestão de

dados e triggers. Além disso, oferece uma rastreabilidade eficiente através de logs.

No ecossistema Kafka da Netflix, a transição de uma comunicação complexa baseada

em requisições síncronas para uma abordagem centrada em eventos é facilitada pela arquitetura de

processamento de dados em tempo real oferecida por Kafka e Flink. Essas ferramentas permitem um

processamento de streams eficiente, com alta tolerância a falhas, observabilidade nativa e facilidade

na inicialização de listeners de eventos.

143

 No contexto de uma empresa que utiliza a suíte Kafka, o tratamento de dados é dividido em

três etapas principais: input (entrada), process (processamento) e output (saída).

Na etapa de entrada, ferramentas como o Kafka são usadas para coletar e armazenar dados

de várias fontes de forma desordenada, garantindo alta disponibilidade e escalabilidade.

Durante a fase de processamento, o Apache Flink é frequentemente empregado. O Flink,

com sua arquitetura robusta, realiza computações complexas sobre fluxos de dados contínuos com

baixa latência, garantindo consistência de estado e possibilitando operações como junções e

agregações. Finalmente, na etapa de saída, um stream Kafka ordenado e chaveado é utilizado para

garantir que os dados processados sejam entregues de forma organizada e associados a chaves

específicas. Um índice de busca pode ser empregado para permitir consultas rápidas e eficientes aos

dados processados. Esse pipeline de dados robusto é essencial para empresas que precisam

processar grandes volumes de dados em tempo real, mantendo a competitividade no mercado. A

integração dessas ferramentas proporciona uma solução poderosa para a gestão de dados em

ambientes corporativos, onde a velocidade e a precisão na entrega de informações são cruciais.

No controle do processo de produção de conteúdo da Netflix, as aplicações nas áreas de

produção, cronograma, contas a pagar, tesouraria e custos são desenvolvidos como microserviços.

Esses microserviços comunicam-se e recebem eventos através de tópicos do Kafka. No Flink, os

eventos são recebidos na ordem em que chegam, vinculados ao ID do produto e passam por um

processamento detalhado que inclui materialização com atraso para correção de dados, filtragem,

agrupamento por janelas de tempo, ordenação cronológica, particionamento através de Partition Key,

enriquecimento com dados de outros microserviços, transformação e disponibilização final em tópicos

do Kafka. Esse nível de desacoplamento e o uso do Flink garantem a manutenção do estado correto

dos eventos, possibilitando a recuperação e a atualização de dados sem afetar as aplicações

envolvidas.

A conclusão do estudo de caso destaca como o Big Data pode transformar uma empresa e

aprimorar a experiência do usuário. A Netflix aplica os "5 V’s" do Big Data – Volume, Velocidade,

Variedade, Veracidade e Valor – para otimizar seus serviços e oferecer uma experiência

personalizada aos seus assinantes.

 Volume: A Netflix gerencia um imenso volume de dados diariamente. Cada clique,

visualização e interação dos usuários geram uma quantidade significativa de informações. Esse

volume colossal de dados é essencial para entender melhor os hábitos e preferências dos assinantes.

Velocidade: A agilidade no processamento dos dados é fundamental para a Netflix. A

plataforma realiza análises em tempo real para oferecer recomendações instantâneas e ajustar a

qualidade do streaming conforme necessário. Esse processamento rápido garante uma experiência

de visualização contínua e sem interrupções.

Variedade: A Netflix coleta uma ampla gama de dados, desde informações estruturadas,

como classificações e histórico de visualização, até dados não estruturados, como comentários e

interações nas redes sociais. Essa diversidade permite uma análise mais abrangente e detalhada do

comportamento dos usuários.

144

Veracidade: A qualidade e a confiabilidade dos dados são vitais para a Netflix. A empresa

implementa rigorosos processos de verificação para garantir a precisão e a utilidade dos dados. Esse

compromisso com a veracidade é essencial para fornecer recomendações relevantes e tomar

decisões estratégicas bem-informadas.

Valor: O verdadeiro valor do Big Data para a Netflix está na capacidade de transformar essas

informações em insights acionáveis. Através da análise de dados, a Netflix personaliza a experiência

de cada usuário, sugerindo filmes e séries que correspondem aos seus interesses individuais. Isso

não só aumenta a satisfação dos clientes, mas também contribui para a retenção e lealdade dos

assinantes.

145

 APÊNDICE 10 – VISÃO COMPUTACIONAL

A – ENUNCIADO

1) Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de

imuno-histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão

divididas em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma

base de imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging)

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada.

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não
utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de
treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última

camada de classificação e armazene os valores da penúltima camada como um vetor de

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:

a) Carregue a base de dados de Treino.
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada

extrator).
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
e) Carregue a base de Teste e execute a tarefa 3 nesta base.
f) Aplique os modelos treinados nos dados de treino
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas

matrizes de confusão.
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2) Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation
cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.

Tarefas:

146

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício
anterior

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation
c) Aplique os modelos treinados nas imagens da base de Teste
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas

matrizes de confusão.
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada

B – RESOLUÇÃO

METODOLOGIA UTILIZADA

A base de imagens de treino original, contida no arquivo Train_Warwick.zip, foi dividida

manualmente em bases de treino e validação, conforme orientação do enunciado do

exercício, ou seja, 80% das imagens para treino e 20% para validação, segregando os

pacientes, fazendo com que não houvesse imagens de um mesmo paciente

simultaneamente em ambas. Desta forma, a divisão apresentou imagens de 16

(dezesseis) pacientes na base de treino (pacientes 1, 4, 6, 9, 11, 15, 16, 24, 25, 29, 32,

46 e 57) e de 4 (quatro) pacientes na base de validação (pacientes 14, 18, 22 e 36).

 Para controlar o processo de leitura dos arquivos de imagem de forma correta para

cada tipo de base (treinamento, validação e teste), foram criados 3 (três arquivos) texto:

Test.txt, Valid.txt e Test.txt, contendo respectivamente os caminhos relativos dos

arquivos de imagem das bases de treino, validação e teste. Esses arquivos são

compactados no arquivo FilePaths.tar, de forma que possam ser descompactados no

local correto, através de código no notebook, quando da sua execução. Para que o

código execute corretamente, previamente a sua execução, as imagens devem estar

divididas em pastas de forma idêntica ao que está apontado nesses arquivos texto.

Para o desenvolvimento e treinamento dos modelos de classificação propostos, foi

utilizada a biblioteca Python scikit-learn. Para o desenvolvimento e treinamento dos

modelos de redes neurais convolucionais profundas, foi utilizada a biblioteca

Tensorflow.

COMPARAÇÃO DOS MODELOS E MÉTRICAS UTILIZADAS

A análise comparativa entre os modelos Random Forest, SVM e RNA para predição

dos dados extraídos, revelou diferenças significativas no desempenho e na influência

de cada tipo de técnica sobre os resultados obtidos. Além disso, pode-se observar

diferenças significativas nos resultados de cada uma das técnicas, dependendo do tipo

de features submetidas a elas como insumo para o treinamento: features geradas pelo

processo de LBP ou features geradas pela rede neural convolucional VGG16 carregada

147

com os pesos pré-treinados com a base imagenet.

 Utilizando as features LBP, a especificidade das classificações está relativamente

equilibrada entre os algoritmos, com o SVM e o Random Forest apresentando

desempenho próximo em todas as métricas e a RNA pior em relação a ambas.

 Com as features VGG16, as métricas produzidas pelos três modelos distintos de

classificação ficam muito próximas umas das outras, com vantagem para um modelo

ou outro dependendo da métrica observada.

Observa-se também que houve uma melhora significativa nas métricas em relação aos

modelos treinados com as features geradas pelo processo LBP.

Como o problema em questão envolve a detecção de câncer de mama, deve-se dar

especial ênfase às predições falso negativas, já que o risco para o paciente é menor de

receber um diagnóstico falso positivo do que ser diagnosticado como negativo, quando

na verdade existe a doença. Desta forma, a principal métrica utilizada na avaliação

deve ser a Sensibilidade, o que leva a classificar como o melhor modelo, o RNA treinado

com as features VGG16, já que ele apresentou a maior sensibilidade: 76,22%, mesmo

tendo o segundo melhor índice de acurácia.

Código

BATCH_SIZE = 32

WORK_FOLDER = '.'

BASES_FOLDER = WORK_FOLDER + '/Bases'

FEATURES_FOLDER = WORK_FOLDER + '/Features'

TRAINING_TXTFILE_PATH = WORK_FOLDER + '/Train.txt'

VALIDATION_TXTFILE_PATH = WORK_FOLDER + '/Valid.txt'

TEST_TXTFILE_PATH = WORK_FOLDER + '/Test.txt'

TRAINING_BASE_PATH = BASES_FOLDER + '/Train'

VALIDATION_BASE_PATH = BASES_FOLDER + '/Valid'

TEST_BASE_PATH = BASES_FOLDER + '/Test'

LBP_RADIUS = 1

148

LBP_NUM_POINTS = 8

import os

import numpy as np

import cv2

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from skimage.feature import local_binary_pattern

from sklearn import svm

from sklearn.ensemble import RandomForestClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score, f1_score, precision_score,

recall_score, classification_report, confusion_matrix

from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from keras.layers import Flatten, Dense

from keras.models import Model

import tensorflow as tf

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

Num GPUs Available: 1

!tar -xvf ./Bases.tar -C ./

!tar -xvf ./FilePaths.tar -C ./

x Bases/

x Bases/Test/

x Bases/Test/0/

x Bases/Test/0/66_HER2_10094.png

.

.

.

x Bases/Valid/3/22_HER2_18855.png

x Bases/Valid/3/22_HER2_19575.png

x Bases/Valid/3/22_HER2_9790.png

x Valid.txt

x Test.txt

x Train.txt

149

os.makedirs(FEATURES_FOLDER, exist_ok=True)

def lbp_riu(img, n_points:int, radius:int):

n_points *= radius # adjust # of neighbours according to radius # Define a

função para

cálculo do LBP

lbp = local_binary_pattern(img, n_points, radius, method='uniform')

#Array de zeros com P+2 posições +1 para o lable feature_array =

np.zeros(n_points+2, dtype=int) rows = img.shape[0]

cols = img.shape[1]

for r in range (0, rows):

for c in range (0, cols):

feature_array[int(lbp[r][c])] += 1

return feature_array, lbp

def calc_features(arq):

img_path = open(arq, 'r')

for line in img_path:

label = line.rstrip('\n').split('/')[-2]

ftype = line.rstrip('\n').split('/')[-3]

nome_arq =

f'{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_{ftype}.csv'

img = cv2.imread(line.strip(),0)

if img is None:

print(f"Erro ao carregar a imagem: {line.strip()}")

continue

if len(img.shape) > 2:

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

features, lbp = lbp_riu(img, LBP_NUM_POINTS, LBP_RADIUS)

features_str = '%s' % (label)

for P in features:

features_str += ",%d" % (P)

features_str += '\n'

arquivo = open(nome_arq, 'a')

arquivo.write(features_str)

arquivo.close()

img_path.close()

print('Gerando Features da base de Treino...')

calc_features(TRAINING_TXTFILE_PATH)

print('Features de Treino geradas!')

print('Gerando Features da base de Validação...')

150

calc_features(VALIDATION_TXTFILE_PATH)

print('Features de Validação geradas!')

print('Gerando Features da base de Teste...')

calc_features(TEST_TXTFILE_PATH)

print('Features de Teste geradas!')

Gerando Features da base de Treino...

Features de Treino geradas!

Gerando Features da base de Validação...

Features de Validação geradas!

Gerando Features da base de Teste...

Features de Teste geradas!

vgg_0 = VGG16(input_shape=(224,224,3),

weights='imagenet',

include_top=False)

flatten = Flatten()(vgg_0.output)

vgg = Model(inputs=vgg_0.input, outputs=flatten)

for l in vgg_0.layers:

l.trainable = False

vgg.summary()

Model: "model"

Layer (type) Output Shape Param #

===

input_1 (InputLayer) [(None, 224, 224, 3)] 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

Layer (type) Output Shape Param #

===

input_1 (InputLayer) [(None, 224, 224, 3)] 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

151

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten (Flatten) (None, 25088) 0

===

Total params: 14,714,688

Trainable params: 0

Non-trainable params: 14,714,688

===

train_generator = ImageDataGenerator(preprocessing_function=preprocess_input)

valid_generator = ImageDataGenerator(preprocessing_function=preprocess_input)

test_generator = ImageDataGenerator(preprocessing_function=preprocess_input)

traingen = train_generator.flow_from_directory(TRAINING_BASE_PATH,

target_size=(224, 224),

batch_size=BATCH_SIZE,

class_mode='categorical',

classes=['0','1','2','3'],

shuffle=False,

seed=42)

validgen = valid_generator.flow_from_directory(VALIDATION_BASE_PATH,

target_size=(224, 224),

batch_size=BATCH_SIZE,

class_mode=None,

classes=['0','1','2','3'],

shuffle=False,

seed=42)

testgen = test_generator.flow_from_directory(TEST_BASE_PATH,

target_size=(224, 224),

batch_size=BATCH_SIZE,

class_mode=None,

classes=['0','1','2','3'],

shuffle=False,

seed=42)

Found 478 images belonging to 4 classes.

152

Found 115 images belonging to 4 classes.

Found 371 images belonging to 4 classes.

print('Gerando Features da base de Treino...')

features_vgg_train = vgg.predict(traingen)

print('Features de Treino Geradas!')

print('-------------------------------------- ')

print('Gerando Features da base de Validação. . ')

features_vgg_valid = vgg.predict(validgen)

print('Features de Validação Geradas!')

print('-------------------------------------- ')

print('Gerando Features da base de Teste. . ')

features_vgg_test = vgg.predict(testgen)

print('Features de Teste Geradas!')

Gerando Features da base de Treino...

15/15 [==============================] - 48s 2s/step

Features de Treino Geradas!

Gerando Features da base de Validação...

4/4 [==============================] - 17s 5s/step

Features de Validação Geradas!

Gerando Features da base de Teste...

12/12 [==============================] - 6s 540ms/step

Features de Teste Geradas!

def extrai_features_vgg(tipo_base:str):

if tipo_base == 'Train':

generator = traingen

features = features_vgg_train

elif tipo_base == 'Valid':

generator = validgen

features = features_vgg_valid

elif tipo_base == 'Test':

generator = testgen

features = features_vgg_test

else:

raise ValueError('Valor de parâmetro inválido para tipo-base')

nome_arq = f'{FEATURES_FOLDER}/vgg16_{tipo_base}.csv'

for i in range(0, len(generator.labels)):

153

features_str = '%d' % (generator.labels[i])

for ft in features[i]:

if ft == 0:

features_str += ",%d" % (ft)

else:

features_str += ",%f" % (ft)

features_str += '\n'

arquivo = open(nome_arq, 'a')

arquivo.write(features_str)

arquivo.close()

print("Salvando features da base de Treino...")

extrai_features_vgg('Train')

print("Salvando features da base de Validação...")

extrai_features_vgg('Valid')

print("Salvando features da base de Teste...")

extrai_features_vgg('Test')

print("fim")

Salvando features da base de Treino...

Salvando features da base de Validação...

Salvando features da base de Teste...

fim

print ("Carregando features LBP...")

dados_train =

pd.read_csv(f"{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_Train.c

sv", header=None)

dados_valid =

pd.read_csv(f"{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_Valid.c

sv", header=None)

X_train_lbp = dados_train.iloc[:, 1:]

y_train_lbp = dados_train.iloc[:, 0]

X_valid_lbp = dados_valid.iloc[:, 1:]

y_valid_lbp = dados_valid.iloc[:, 0]

print("Features LBP Carregadas")

print("Carregando features VGG16...")

dados_train_vgg = pd.read_csv(f"{FEATURES_FOLDER}/vgg16_Train.csv",

header=None)

dados_valid_vgg = pd.read_csv(f"{FEATURES_FOLDER}/vgg16_Valid.csv",

header=None)

X_train_vgg = dados_train_vgg.iloc[:, 1:]

154

y_train_vgg = dados_train_vgg.iloc[:, 0]

X_valid_vgg = dados_valid_vgg.iloc[:, 1:]

y_valid_vgg = dados_valid_vgg.iloc[:, 0]

print("Features VGG16 Carregadas")

Carregando features LBP...

Features LBP Carregadas

Carregando features VGG16...

Features VGG16 Carregadas

model_svm_lbp = svm.SVC(kernel='linear')

print ("Treinando Modelo...")

model_svm_lbp.fit(X_train_lbp, y_train_lbp)

print (f"Treinamento finalizado - kernel:{model_svm_lbp.kernel}")

print ("Efetuando Predições com a base de validação para validar o

modelo...")

predicted_svm = model_svm_lbp.predict(X_valid_lbp)

print ("Predições Efetuadas!")

print(f"Classification report para predições com a base de validação.

Classificador {model_svm_lbp}:\n"

f"{classification_report(y_valid_lbp, predicted_svm)}")

Treinando Modelo...

Treinamento finalizado - kernel:linear

Efetuando Predições com a base de validação para validar o modelo...

Predições Efetuadas!

Classification report para predições com a base de validação. Classificador

SVC(kernel='linear'):

 precision recall f1-score support

0 0.78 0.75 0.76 28

1 0.50 0.07 0.13 27

2 0.52 0.90 0.66 30

3 0.88 0.93 0.90 30

accuracy 0.68 115

macro avg 0.67 0.66 0.61 115

weighted avg 0.67 0.68 0.62 115

model_svm_vgg = svm.SVC(kernel='rbf')

print ("Treinando Modelo...")

155

model_svm_vgg.fit(X_train_vgg, y_train_vgg)

print (f"Treinamento finalizado - kernel:{model_svm_vgg.kernel}")

print ("Efetuando Predições com a base de validação para validar o

modelo...")

predicted_svm = model_svm_vgg.predict(X_valid_vgg)

print ("Predições Efetuadas!")

print(f"Classification report para predições com a base de validação.

Classificador {model_svm_vgg}:\n"

f"{classification_report(y_valid_vgg, predicted_svm)}")

Treinando Modelo...

Treinamento finalizado - kernel:rbf

Efetuando Predições com a base de validação para validar o modelo...

Predições Efetuadas!

Classification report para predições com a base de validação. Classificador

SVC():

 precision recall f1-score support

0 0.62 1.00 0.77 28

1 1.00 0.30 0.46 27

2 0.92 0.77 0.84 30

3 0.81 1.00 0.90 30

accuracy 0.77 115

macro avg 0.84 0.77 0.74 115

weighted avg 0.84 0.77 0.75 115

model_rf_lbp = RandomForestClassifier()

print ("Treinando Modelo...")

model_rf_lbp.fit(X_train_lbp, y_train_lbp)

print (f"Treinamento finalizado.")

print ("Efetuando Predições com a base de validação para validar o

modelo...")

predicted_rf = model_rf_lbp.predict(X_valid_lbp)

print ("Predições Efetuadas!")

print(f"Classification report para predições com a base de validação.

Classificador {model_rf_lbp}:\n"

f"{classification_report(y_valid_lbp, predicted_rf)}")

Treinando Modelo...

Treinamento finalizado.

Efetuando Predições com a base de validação para validar o modelo...

Predições Efetuadas!

156

Classification report para predições com a base de validação. Classificador

RandomForestClassifier():

 precision recall f1-score support

0 0.72 0.75 0.74 28

1 0.71 0.37 0.49 27

2 0.65 0.87 0.74 30

3 0.91 0.97 0.94 30

accuracy 0.75 115

macro avg 0.75 0.74 0.73 115

weighted avg 0.75 0.75 0.73 115

model_rf_vgg = RandomForestClassifier()

print ("Treinando Modelo...")

model_rf_vgg.fit(X_train_vgg, y_train_vgg)

print (f"Treinamento finalizado.")

print ("Efetuando Predições com a base de validação para validar o

modelo...")

predicted_rf = model_rf_vgg.predict(X_valid_vgg)

print ("Predições Efetuadas!")

print(f"Classification report para predições com a base de validação.

Classificador {model_rf_vgg}:\n"

f"{classification_report(y_valid_vgg, predicted_rf)}")

Treinando Modelo...

Treinamento finalizado.

Efetuando Predições com a base de validação para validar o modelo...

Predições Efetuadas!

Classification report para predições com a base de validação. Classificador

RandomForestClassifier():

 precision recall f1-score support

0 0.59 0.96 0.73 28

1 0.67 0.15 0.24 27

2 0.85 0.73 0.79 30

3 0.81 1.00 0.90 30

accuracy 0.72 115

macro avg 0.73 0.71 0.66 115

weighted avg 0.73 0.72 0.67 115

model_mlp_lbp = MLPClassifier(random_state=1, max_iter=300,

learning_rate='adaptive')

157

print ("Treinando Modelo...")

model_mlp_lbp.fit(X_train_lbp, y_train_lbp)

print (f"Treinamento finalizado.")

print ("Efetuando Predições com a base de validação para validar o

modelo...")

predicted_mlp = model_mlp_lbp.predict(X_valid_lbp)

print ("Predições Efetuadas!")

print(f"Classification report para predições com a base de validação.

Classificador {model_mlp_lbp}:\n"

f"{classification_report(y_valid_lbp, predicted_mlp)}")

Treinando Modelo...

Treinamento finalizado.

Efetuando Predições com a base de validação para validar o modelo...

Predições Efetuadas!

Classification report para predições com a base de validação. Classificador

MLPClassifier(learning_rate='adaptive', max_iter=30

0, random_state=1):

 precision recall f1-score support

0 0.50 0.57 0.53 28

1 0.00 0.00 0.00 27

2 0.38 0.63 0.47 30

3 0.61 0.67 0.63 30

accuracy 0.48 115

macro avg 0.37 0.47 0.41 115

weighted avg 0.38 0.48 0.42 115

model_mlp_vgg = MLPClassifier(random_state=1, max_iter=300,

learning_rate='adaptive')

print ("Treinando Modelo...")

model_mlp_vgg.fit(X_train_vgg, y_train_vgg)

print (f"Treinamento finalizado.")

print ("Efetuando Predições com a base de validação para validar o

modelo...")

predicted_mlp = model_mlp_vgg.predict(X_valid_vgg)

print ("Predições Efetuadas!")

print(f"Classification report para predições com a base de validação.

Classificador {model_mlp_vgg}:\n"

f"{classification_report(y_valid_vgg, predicted_mlp)}")

Treinando Modelo...

158

Treinamento finalizado.

Efetuando Predições com a base de validação para validar o modelo...

Predições Efetuadas!

Classification report para predições com a base de validação. Classificador

MLPClassifier(learning_rate='adaptive', max_iter=30

0, random_state=1):

 precision recall f1-score support

0 0.85 0.82 0.84 28

1 0.72 0.48 0.58 27

2 0.79 0.50 0.61 30

3 0.59 1.00 0.74 30

accuracy 0.70 115

macro avg 0.74 0.70 0.69 115

weighted avg 0.74 0.70 0.69 115

print ("Carregando features LBP...")

dados_test_lbp =

pd.read_csv(f"{FEATURES_FOLDER}/lbp_riu_{LBP_NUM_POINTS}_{LBP_RADIUS}_Test.cs

v", header=None)

X_test_lbp = dados_test_lbp.iloc[:, 1:]

y_test_lbp = dados_test_lbp.iloc[:, 0]

print("Features LBP Carregadas")

print("Carregando features VGG16...")

dados_test_vgg = pd.read_csv(f"{FEATURES_FOLDER}/vgg16_Test.csv",

header=None)

X_test_vgg = dados_test_vgg.iloc[:, 1:]

y_test_vgg = dados_test_vgg.iloc[:, 0]

print("Features VGG16 Carregadas")

Carregando features LBP...

Features LBP Carregadas

Carregando features VGG16...

Features VGG16 Carregadas

print ("Efetuando Predições...")

final_predict_svm_lbp = model_svm_lbp.predict(X_test_lbp)

final_predict_svm_vgg = model_svm_vgg.predict(X_test_vgg)

final_predict_rf_lbp = model_rf_lbp.predict(X_test_lbp)

final_predict_rf_vgg = model_rf_vgg.predict(X_test_vgg)

final_predict_mlp_lbp = model_mlp_lbp.predict(X_test_lbp)

final_predict_mlp_vgg = model_mlp_vgg.predict(X_test_vgg)

159

print ("Predições Efetuadas!")

Efetuando Predições...

Predições Efetuadas!

def imprime_metricas_modelo(true_classes, pred_classes, nome_modelo):

def especificidade(true_classes, pred_classes): # Define uma função para

calcular a especificidade que não existe no sklear

cm = confusion_matrix(true_classes, pred_classes)

specificities = []

for i in range(len(cm)):

tn = np.sum(np.delete(np.delete(cm, i, axis=0), i, axis=1))

fp = np.sum(np.delete(cm, i, axis=0)[:, i])

specificity = tn / (tn + fp) if (tn + fp) > 0 else 0

specificities.append(specificity)

return np.mean(specificities)

acuracia = accuracy_score(true_classes, pred_classes)

sensibilidade = recall_score(true_classes, pred_classes, average='macro')

especificidade = especificidade(true_classes, pred_classes)

f1 = f1_score(true_classes, pred_classes, average='macro')

print("-- ")

print(f"Acurácia Modelo {nome_modelo}: {(acuracia * 100):.2f}%")

print(f"Sensibilidade Modelo {nome_modelo}: {(sensibilidade * 100):.2f}%")

print(f"Especificidade Modelo {nome_modelo}: {(especificidade * 100):.2f}%")

print(f"F1 Modelo {nome_modelo}: {(f1 * 100):.2f}%")

class_names = ['0','1','2','3']

def plot_heatmap(y_true, y_pred, class_names, ax, title):

cm = confusion_matrix(y_true, y_pred)

sns.heatmap(

cm,

annot=True,

square=True,

xticklabels=class_names,

yticklabels=class_names,

fmt='d',

cmap=plt.cm.Blues,

cbar=False,

ax=ax

)

ax.set_title(title, fontsize=16)

160

ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")

ax.set_ylabel('True Label', fontsize=12)

ax.set_xlabel('Predicted Label', fontsize=12)

fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, figsize=(10,

10))

plot_heatmap(y_test_lbp, final_predict_svm_lbp, class_names, ax1, title="SVM

com LBP")

plot_heatmap(y_test_lbp, final_predict_rf_lbp, class_names, ax2, title="RF

com LBP")

plot_heatmap(y_test_lbp, final_predict_mlp_lbp, class_names, ax3, title="RNA

com LBP")

plot_heatmap(y_test_vgg, final_predict_svm_vgg, class_names, ax4, title="SVM

com VGG16")

plot_heatmap(y_test_vgg, final_predict_rf_vgg, class_names, ax5, title="RF

com VGG16")

plot_heatmap(y_test_vgg, final_predict_mlp_vgg, class_names, ax6, title="RNA

com VGG16")

fig.suptitle("Comparação das Matrizes de Confusão", fontsize=24)

fig.tight_layout()

fig.subplots_adjust(top=1)

plt.show()

imprime_metricas_modelo(y_test_lbp, final_predict_svm_lbp, "SVM com LBP")

imprime_metricas_modelo(y_test_vgg, final_predict_svm_vgg, "SVM com VGG16")

imprime_metricas_modelo(y_test_lbp, final_predict_rf_lbp, "RF com LBP")

imprime_metricas_modelo(y_test_vgg, final_predict_rf_vgg, "RF com VGG16")

imprime_metricas_modelo(y_test_lbp, final_predict_mlp_lbp, "RNA com LBP")

imprime_metricas_modelo(y_test_vgg, final_predict_mlp_vgg, "RNA com VGG16")

161

Acurácia Modelo SVM com LBP: 66.85%

Sensibilidade Modelo SVM com LBP:

67.26% Especificidade Modelo SVM

com LBP: 88.96% F1 Modelo SVM com

LBP: 67.19%

Acurácia Modelo SVM com VGG16: 76.82%

Sensibilidade Modelo SVM com VGG16:

76.14% Especificidade Modelo SVM com

VGG16: 92.27% F1 Modelo SVM com

VGG16: 72.29%

Acurácia Modelo RF com LBP: 69.81%

Sensibilidade Modelo RF com LBP:

70.55% Especificidade Modelo RF com

LBP: 89.96% F1 Modelo RF com LBP:

69.40%

Acurácia Modelo RF com VGG16: 75.74%

Sensibilidade Modelo RF com VGG16:

162

75.24% Especificidade Modelo RF com

VGG16: 91.90% F1 Modelo RF com VGG16:

72.24%

Acurácia Modelo RNA com LBP: 56.87%

Sensibilidade Modelo RNA com LBP:

56.52% Especificidade Modelo RNA

com LBP: 85.55% F1 Modelo RNA com

LBP: 52.88%

Acurácia Modelo RNA com VGG16: 76.01%

Sensibilidade Modelo RNA com VGG16:

76.22% Especificidade Modelo RNA com

VGG16: 92.07% F1 Modelo RNA com

VGG16: 75.64%

2

COMPARAÇÃO DOS MODELOS E MÉTRICAS UTILIZADAS

A análise comparativa entre os modelos ResNet50 e VGG16, com e sem Data

Augmentation, revelou diferenças claras no desempenho e na influência dessa técnica

sobre os resultados.

 O modelo ResNet50 com a camada TOP adaptada treinada sem Data Augmentation,

apresentou as melhores métricas, em relação ao modelo treinado utilizando Data

Augmentation. Esses valores indicam que o modelo conseguiu generalizar

adequadamente os padrões do conjunto de teste, mostrando um desempenho

consistente sem a necessidade de técnicas adicionais para manipulação de dados. A

ausência de Data Augmentation não comprometeu a sua capacidade de lidar com os

dados de teste.

 Observa-se que a utilização do Data Augmentation no treinamento da camada TOP da

Resnet50 adaptada ao problema de quatro classes produziu métricas relativamente

piores. Esta diminuição sugere que o aumento artificial da variabilidade dos dados não

contribuiu significativamente para o treinamento do modelo, o que pode ter sido

causado pela variabilidade de brilho introduzida, que pode ter gerado distorções de cor

163

importantes nos exemplos de algumas classes submetidos à rede.

 O modelo VGG16 com a camada TOP adaptada, apresentou desempenho geral inferior

ao ResNet50. Sem Data Augmentation, o VGG16 demonstra uma boa capacidade de

generalização, embora significativamente inferior em comparação ao ResNet50. Com

a aplicação de Data Augmentation, o VGG16 também sofreu uma queda nas métricas,

porém menos significativa. Esses resultados indicam que a técnica não apenas não

ajudou os modelos, mas também prejudicou seu desempenho, possivelmente ao

aumentar a dificuldade do treinamento sem um benefício proporcional.

Em suma, os resultados mostram que o ResNet50 sem Data Augmentation foi o

modelo com o melhor desempenho em todas as métricas, inclusive na Sensibilidade,

já comentada no primeiro exercício, como a melhor para a avaliação deste tipo de

problema (detecção de câncer de mama).

Código

resnet_train_generator_da =

ImageDataGenerator(rotation_range=90,

brightness_range=[0.1, 0.7],

width_shift_range=0.5,

height_shift_range=0.5

,

horizontal_flip=True,

vertical_flip=True,

validation_split=0,

preprocessing_function=resnet_preprocess_input

)

vgg16_train_generator_da =

ImageDataGenerator(rotation_range=90,

brightness_range=[0.1, 0.7],

width_shift_range=0.5,

height_shift_range=0.5

,

horizontal_flip=True,

vertical_flip=True,

validation_split=0,

preprocessing_function=vgg16_preprocess_input

164

)

resnet_valid_generator =

ImageDataGenerator(preprocessing_function=resnet_preprocess_input)

vgg16_valid_generator =

ImageDataGenerator(preprocessing_function=vgg16_preprocess_input)

resnet_traingen = resnet_train_generator_da.flow_from_directory(

 TRAINING_BASE_PATH,

 target_size=(224, 224),

 batch_size=BATCH_SIZE,

 class_mode='categorical',

 classes=['0','1','2','3'],

 subset='training',

 shuffle=True,

 seed=42

)

vgg16_traingen = vgg16_train_generator_da.flow_from_directory(

 TRAINING_BASE_PATH,

 target_size=(224, 224),

 batch_size=BATCH_SIZE,

 class_mode='categorical',

 classes=['0','1','2','3'],

 subset='validation',

 shuffle=True,

 seed=42

)

resnet_validgen = resnet_valid_generator.flow_from_directory(

 VALIDATION_BASE_PATH,

 target_size=(224, 224),

 batch_size=BATCH_SIZE,

 class_mode='categorical',

 classes=['0','1','2','3'],

 shuffle=True,

 seed=42

)

vgg16_validgen = vgg16_valid_generator.flow_from_directory(

 VALIDATION_BASE_PATH,

 target_size=(224, 224),

165

 batch_size=BATCH_SIZE,

 class_mode='categorical',

 classes=['0','1','2','3'],

 shuffle=True,

 seed=42

)

Found 478 images belonging to 4 classes.

Found 478 images belonging to 4 classes.

Found 115 images belonging to 4 classes.

Found 115 images belonging to 4 classes.

def monta_camada_top(model_base):

x = model_base.output

x = AveragePooling2D(pool_size=(7, 7))(x)

x = Flatten()(x)

x = Dense(1024, activation='relu')(x)

x = Dropout(0.2)(x)

x = Dense(512, activation='relu')(x)

prediction = Dense(4, activation='softmax')(x)

final_model = Model(inputs=model_base.input, outputs=prediction)

for i in range(0, len(final_model.layers)):

if i >= len(model_base.layers):

final_model.layers[i].trainable = True

else:

final_model.layers[i].trainable = False

return final_model

resnet = ResNet50(

input_shape=(224,224,3)

, weights='imagenet',

include_top=False

)

resnet.trainable = False

model_resnet_da = monta_camada_top(resnet)

model_resnet_da.summary()

Model: "model"

Layer (type) Output Shape Param # Connected to

166

===

==================================

input_1 (InputLayer) [(None, 224, 224, 3)] 0 []

conv1_pad (ZeroPadding2D) (None, 230, 230, 3) 0 ['input_1[0][0]']

conv1_conv (Conv2D) (None, 112, 112, 64) 9472 ['conv1_pad[0][0]']

.

.

.

dropout (Dropout) (None, 1024) 0 ['dense[0][0]']

dense_1 (Dense) (None, 512) 524800 ['dropout[0][0]']

dense_2 (Dense) (None, 4) 2052 ['dense_1[0][0]']

===

=====================================

Total params: 26,212,740

Trainable params: 2,625,028

Non-trainable params: 23,587,712

steps_per_epoch = resnet_traingen.samples // BATCH_SIZE

val_steps = resnet_validgen.samples // BATCH_SIZE

optimizer = RMSprop(learning_rate=0.0001)

model_resnet_da.compile(loss='categorical_crossentropy',

 optimizer=optimizer, metrics=['accuracy'])

checkpoint = ModelCheckpoint(filepath=BEST_WEIGHTS_RESNET_DA_PATH,

 verbose=1,

 save_best_only=True)

history_resnet_da = model_resnet_da.fit(resnet_traingen,

 steps_per_epoch=steps_per_epoch,

 epochs=NUM_EPOCHS,

 steps_per_epoch=steps_per_epoch,

 validation_data=resnet_validgen,

 validation_steps=val_steps,

 callbacks=[checkpointer,

PlotLossesKeras()], verbose=True)

167

accuracy

training (min: 0.610, max: 0.901, cur: 0.901)

validation (min: 0.667, max: 0.802, cur: 0.750)

Loss

training (min: 0.252, max: 0.967, cur: 0.252)

validation (min: 0.439, max: 0.869, cur: 0.686)

14/14 [==============================] - 18s 1s/step - loss: 0.2524 -

accuracy: 0.9013 - val_loss: 0.6861 -

val_accuracy: 0.7500

CPU times: total: 4min 12s

Wall time: 3min 4s

CPU times: total: 4min 12s

Wall time: 3min 4s

del history_resnet_da

del model_resnet_da

gc.collect()

64773

vgg = VGG16(

 input_shape=(224,224,3),

168

 weights='imagenet',

 include_top=False

)

vgg.trainable = False

model_vgg_da = monta_camada_top(vgg)

model_vgg_da.summary()

Model: "model_1"

Layer (type) Output Shape Param #

===

==========

input_2 (InputLayer) [(None, 224, 224, 3)] 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

.

.

.

dropout_1 (Dropout) (None, 1024) 0

dense_4 (Dense) (None, 512) 524800

dense_5 (Dense) (None, 4) 2052

===

==========

Total params: 15,766,852

Trainable params: 1,052,164

Non-trainable params: 14,714,688

steps_per_epoch = vgg16_traingen.samples // BATCH_SIZE

val_steps = vgg16_valldgen.samples // BATCH_SIZE

optimizer = RMSprop(learning_rate=0.0001)

optimizer = Adam(learning_rate=0.0001)

model_vgg_da.compile(loss='categorical_crossentropy', optimizer=optimizer,

metrics=['accuracy'])

checkpoint = ModelCheckpoint(filepath=BEST_WEIGHTS_VGG16_DA_PATH,

 verbose=1,

 save_best_only=True)

history_vgg_da = model_vgg_da.fit(vgg16_traingen,

169

 epochs=30,

 steps_per_epoch=steps_per_epoch,

 validation_data=vgg16_valldgen,

 validation_steps=val_steps,

 callbacks=[checkpointer,

PlotLossesKeras()],

 verbose=True)

accuracy

training (min: 0.509, max: 0.832, cur: 0.827)

validation (min: 0.625, max: 0.854, cur: 0.844)

Loss

training (min: 0.368, max: 1.096, cur: 0.368)

validation (min: 0.375, max: 0.945, cur: 0.375)

14/14 [==============================] - 19s 1s/step - loss: 0.3681 -

accuracy: 0.8274 - val_loss: 0.3746 -

val_accuracy: 0.8438

CPU times: total: 4min 55s

Wall time: 3min 31s

CPU times: total: 4min 55s

Wall time: 3min 31s

del history_vgg_da

170

del model_vgg_da

gc.collect()

84448

resnet_train_generator = ImageDataGenerator(

 validation_split=0,

 preprocessing_function=resnet_preprocess_input

)

vgg16_train_generator = ImageDataGenerator(

 validation_split=0,

 preprocessing_function=vgg16_preprocess_input

)

resnet_traingen = resnet_train_generator.flow_from_directory(

TRAINING_BASE_PATH,

target_size=(224, 224),

batch_size=BATCH_SIZE,

class_mode='categorical',

classes=['0','1','2','3'],

shuffle=True,

subset='training',

seed=42

)

vgg16_traingen = vgg16_train_generator.flow_from_directory(

TRAINING_BASE_PATH,

target_size=(224, 224),

batch_size=BATCH_SIZE,

class_mode='categorical',

classes=['0','1','2','3'],

shuffle=True,

subset='training',

seed=42

)

Found 478 images belonging to 4 classes.

Found 478 images belonging to 4 classes.

model_resnet = monta_camada_top(resnet)

171

steps_per_epoch = resnet_traingen.samples //

BATCH_SIZE val_steps = resnet_validgen.samples //

BATCH_SIZE

optimizer = RMSprop(learning_rate=0.0001)

model_resnet.compile(loss='categorical_crossentropy', optimizer=optimizer,

metrics=['accuracy'])

checkpointer = ModelCheckpoint(filepath=BEST_WEIGHTS_RESNET_PATH,

verbose=1,

save_best_only=True)

history_resnet = model_resnet.fit(resnet_traingen,

epochs=NUM_EPOCHS,

steps_per_epoch=steps_per_epoc

h,

validation_data=resnet_validge

n, validation_steps=val_steps,

callbacks=[checkpointer,

PlotLossesKeras()],

verbose=True)

172

accuracy

training (min: 0.747, max: 1.000, cur: 1.000)

validation (min: 0.771, max: 0.938, cur: 0.885)

Loss

training (min: 0.009, max: 0.625, cur: 0.009)

validation (min: 0.131, max: 0.459, cur: 0.248)

14/14 [==============================] - 10s 743ms/step - loss: 0.0089 -

accuracy: 1.0000 - val_loss: 0.2478 -

val_accuracy: 0.8854

CPU times: total: 2min 37s

Wall time: 1min 52s

del history_resnet

del model_resnet

gc.collect()

32050

model_vgg = monta_camada_top(vgg)

steps_per_epoch = VGG16_traingen.samples // BATCH_SIZE

val_steps = vgg16_validgen.samples // BATCH_SIZE

optimizer = RMSprop(learning_rate=0.0001)

model_vgg.compile(loss='categorical_crossentropy', optimizer=optimizer,

metrics=['accuracy'])

checkpoint = ModelCheckpoint(filepath=BEST_WEIGHTS_VGG16_PATH,

 verbose=1,

 save_best_only=True)

history_VGG = model_vgg.fit(vgg16_traingen,

 epochs=NUM_EPOCHS,

 steps_per_epoch=steps_per_epoch,

 validation_data=vgg16_validgen,

 validation_steps=val_steps,

 callbacks=[checkpointer,

 PlotLossesKeras()],

173

 verbose=True)

accuracy

training (min: 0.664, max: 0.993, cur: 0.989)

validation (min: 0.719, max: 0.812, cur: 0.781)

Loss

training (min: 0.032, max: 0.839, cur: 0.032)

validation (min: 0.491, max: 0.982, cur: 0.749)

14/14 [==============================] - 12s 823ms/step - loss: 0.0323 -

accuracy: 0.9888 - val_loss: 0.7490 -

val_accuracy: 0.7812

CPU times: total: 2min 45s

Wall time: 2min

del history_vgg_da

del model_vgg_da

gc.collect()

82010

resnet_test_generator =

ImageDataGenerator(preprocessing_function=resnet_preprocess_input)

vgg16_test_generator =

ImageDataGenerator(preprocessing_function=vgg16_preprocess_input)

174

resnet_testgen = resnet_test_generator.flow_from_directory(

 TEST_BASE_PATH,

 target_size=(224, 224),

 batch_size=BATCH_SIZE,

 class_mode='categorical',

 classes=['0','1','2','3'],

 shuffle=False,

 seed=42

)

vgg16_testgen = vgg16_test_generator.flow_from_directory(

 TEST_BASE_PATH,

 target_size=(224, 224),

 batch_size=BATCH_SIZE,

 class_mode='categorical',

 classes=['0','1','2','3'],

 shuffle=False,

 seed=42

)

Found 371 images belonging to 4 classes.

Found 371 images belonging to 4 classes.

model_resnet_pred = monta_camada_top(resnet)

model_vgg_pred = monta_camada_top(vgg)

model_resnet_pred.load_weights(BEST_WEIGHTS_RESNET_DA_PATH)

model_vgg_pred.load_weights(BEST_WEIGHTS_VGG16_DA_PATH)

predicted_resnet_da = model_resnet_pred.predict(resnet_testgen)

predicted_classes_resnet_da = np.argmax(predicted_resnet_da, axis=1)

predicted_vgg_da = model_vgg_pred.predict(vgg16_testgen)

predicted_classes_vgg_da = np.argmax(predicted_vgg_da, axis=1)

12/12 [==============================] - 12s 980ms/step

12/12 [==============================] - 19s 2s/step

model_resnet_pred.load_weights(BEST_WEIGHTS_RESNET_PATH)

model_vgg_pred.load_weights(BEST_WEIGHTS_VGG16_PATH)

predicted_resnet = model_resnet_pred.predict(resnet_testgen)

predicted_classes_resnet = np.argmax(predicted_resnet, axis=1)

175

predicted_vgg = model_vgg_pred.predict(vgg16_testgen)

predicted_classes_vgg = np.argmax(predicted_vgg, axis=1)

12/12 [==============================] - 6s 509ms/step

12/12 [==============================] - 6s 541ms/step

def imprime_metricas_modelo(true_classes, pred_classes, nome_modelo):

def especificidade(true_classes, pred_classes): # Define uma função para

calcular a especificidade que não

existe no skle

cm = confusion_matrix(true_classes,

pred_classes) specificities = []

for i in range(len(cm)):

tn = np.sum(np.delete(np.delete(cm, i, axis=0), i,

axis=1)) fp = np.sum(np.delete(cm, i, axis=0)[:, i])

specificity = tn / (tn + fp) if (tn + fp) > 0 else 0

specificities.append(specificity)

return np.mean(specificities)

acuracia = accuracy_score(true_classes, pred_classes)

sensibilidade = recall_score(true_classes, pred_classes, average='macro')

especificidade = especificidade(true_classes, pred_classes)

f1 = f1_score(true_classes, pred_classes, average='macro')

print("-- ")

print(f"Acurácia Modelo {nome_modelo}: {(acuracia * 100):.2f}%")

print(f"Sensibilidade Modelo {nome_modelo}: {(sensibilidade * 100):.2f}%")

print(f"Especificidade Modelo {nome_modelo}: {(especificidade * 100):.2f}%")

print(f"F1 Modelo {nome_modelo}: {(f1 * 100):.2f}%")

resnet_true_classes = resnet_testgen.classes

vgg16_true_classes = vgg16_testgen.classes

resnet_class_names = resnet_testgen.class_indices.keys()

vgg16_class_names = vgg16_testgen.class_indices.keys()

def plot_heatmap(y_true, y_pred, class_names, ax, title):

cm = confusion_matrix(y_true, y_pred)

sns.heatmap(

cm,

annot=True,

square=True,

xticklabels=class_names,

176

yticklabels=class_names,

fmt='d',

cmap=plt.cm.Blues,

cbar=False,

ax=ax

)

ax.set_title(title, fontsize=16)

ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")

ax.set_ylabel('True Label', fontsize=12)

ax.set_xlabel('Predicted Label', fontsize=12)

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(8, 8))

plot_heatmap(resnet_true_classes, predicted_classes_resnet_da,

resnet_class_names, ax1, title="Resnet50 com Data

Aug")

plot_heatmap(resnet_true_classes, predicted_classes_resnet,

resnet_class_names, ax2, title="Resnet50 sem Data

Aug")

plot_heatmap(vgg16_true_classes, predicted_classes_vgg_da, vgg16_class_names,

ax3, title="VGG16 com Data Aug")

plot_heatmap(vgg16_true_classes, predicted_classes_vgg, vgg16_class_names,

ax4, title="VGG16 sem Data Aug")

fig.suptitle("Comparação das Matrizes de Confusão", fontsize=24)

fig.tight_layout()

fig.subplots_adjust(top=0.85)

plt.show()

imprime_metricas_modelo(resnet_true_classes, predicted_classes_resnet_da,

"Resnet50 com Data Aug")

imprime_metricas_modelo(resnet_true_classes, predicted_classes_resnet,

"Resnet50 sem Data Aug")

imprime_metricas_modelo(vgg16_true_classes, predicted_classes_vgg_da, "VGG16

com Data Aug")

imprime_metricas_modelo(vgg16_true_classes, predicted_classes_vgg, "VGG16 sem

Data Aug")

177

Acurácia Modelo Resnet50 com Data Aug: 81.67%

Sensibilidade Modelo Resnet50 com Data Aug: 81.11%

Especificidade Modelo Resnet50 com Data Aug: 93.88% F1

Modelo Resnet50 com Data Aug: 78.86%

Acurácia Modelo Resnet50 sem Data Aug: 93.53%

Sensibilidade Modelo Resnet50 sem Data Aug: 93.79%

Especificidade Modelo Resnet50 sem Data Aug: 97.86% F1

Modelo Resnet50 sem Data Aug: 93.58%

Acurácia Modelo VGG16 com Data Aug: 81.13%

Sensibilidade Modelo VGG16 com Data Aug: 80.59%

Especificidade Modelo VGG16 com Data Aug: 93.74% F1

Modelo VGG16 com Data Aug: 79.01%

Acurácia Modelo VGG16 sem Data Aug: 81.67%

Sensibilidade Modelo VGG16 sem Data Aug: 81.53%

Especificidade Modelo VGG16 sem Data Aug: 93.94% F1

Modelo VGG16 sem Data Aug: 81.00%

178

 APÊNDICE 11 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA

A – ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06)

integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e

propor soluções responsáveis para lidar com esses dilemas.

Parâmetros para elaboração do Trabalho:

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como

usuários, desenvolvedores e a sociedade em geral.

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso,

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas,

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial.

Eles devem considerar como essas soluções podem equilibrar os interesses de diferentes partes

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.

4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais

aprendidos ao analisar um caso concreto.

5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500

e 3000 palavras.

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução,

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas,

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.

7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.

179

8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir

suas mensagens de maneira sucinta.

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação.

Deve-se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp-

content/uploads/2022/03/template-artigo-de-periodico.docx

B – RESOLUÇÃO

1. Introdução

O avanço da Inteligência Artificial (IA) e, mais recentemente, de chatbots como o ChatGPT,

lançado em novembro de 2022 pela empresa OpenAI, tem transformado diversos setores, desde a

comunicação até a saúde, passando pela educação e o entretenimento. Verdadeiras revoluções

estão em andamento e por vir.

No entanto, essa transformação tecnológica traz consigo uma série de dilemas éticos que

precisam ser avaliados com cautela, para garantir que os benefícios sejam maximizados e os riscos

minimizados. Este artigo tem como objetivo explorar as principais implicações éticas associadas ao

uso do ChatGPT em diferentes contextos, abordando questões importantes como privacidade e

segurança de dados, fake news e discriminação, autonomia na tomada de decisão e transparência.

Além disso, propomos soluções responsáveis para enfrentar esses dilemas éticos,

destacando a necessidade de uma abordagem globalizada e colaborativa que envolva governos,

empresas, academia e sociedade civil. Ao adotar práticas éticas e responsáveis, podemos promover

um uso mais seguro, justo e benéfico da IA, contribuindo para o desenvolvimento sustentável e

igualitário da sociedade.

2. Relevância Ética

Floridi e Chiriatii (2020) descrevem GPT (Generative Pre-trained Transformer) como um

modelo de linguagem projetado para gerar sequências de palavras, códigos ou qualquer outro dado a

partir de uma fonte de entrada de informação do usuário, usando um banco de dados composto de

textos de sites da internet como Wikipedia, por exemplo. Contudo, o uso de chatbots como o

ChatGPT, trouxe relevantes e importantes discussões sobre as implicações éticas do seu uso

tornando-se uma preocupação central devido ao impacto significativo dessa tecnologia na sociedade.

As respostas fornecidas pela IA são baseadas em dados até o ano em que foi construída, podendo

estar desatualizadas ou conter informações falsas. Além disso, existe a possibilidade de que o

ChatGPT gere respostas racistas ou discriminatórias, devido aos vieses presentes nos dados de

treinamento.

Atualmente, existem muitos casos de sucesso no uso do ChatGPT, mas, como qualquer

tecnologia, ele também pode ser usado para propósitos nocivos. Um exemplo é o caso de um

180

advogado nos Estados Unidos que usou o chatbot para criar falsos precedentes em uma ação

judicial, resultando em sua punição e multa.

Esse incidente levanta questões éticas e morais, além de destacar a necessidade de uma

política de governança que garanta a transparência no uso da ferramenta. O uso inadequado do

ChatGPT pode ter consequências perigosas, levantando preocupações no campo do Direito,

especialmente em relação à proteção de informações pessoais e direitos autorais.

Um caso emblemático de mau uso do ChatGPT ocorreu na China, onde um homem foi preso

e pode pegar até 10 anos de prisão por espalhar falsas notícias sobre um acidente de trem. A notícia

falsa, criada com o auxílio do ChatGPT, dizia que nove pessoas haviam morrido. O homem usou uma

VPN para acessar o chatbot, que não é acessível na China, e contornou vários sistemas de

segurança para disseminar a falsa notícia.

Outro caso envolve o Bing GPT, o chatbot da Microsoft. Em uma conversa no Reddit, o

chatbot gerou conteúdo prejudicial ao discutir antissemitismo. Embora inicialmente tenha alertado

sobre o perigo de exaltar figuras históricas responsáveis por atos horríveis, o chatbot Bing acabou

gerando respostas automáticas prejudiciais, como uma saudação nazista.

O ChatGPT é acessado por cerca de 1,8 bilhões de pessoas por mês. Desses, 15% dos

acessos diários vêm dos Estados Unidos, 6,32% da Índia e 4,01% do Japão. O Japão notificou a

OpenAI sobre falhas na coleta de dados dos usuários, alegando que a plataforma estava coletando

informações confidenciais sem permissão. A OpenAI se comprometeu a reduzir esse tipo de coleta.

Para superar esses desafios, empresas estão trabalhando para integrar o ChatGPT a outros sistemas

e mecanismos de controle, garantindo que as respostas da IA sejam precisas e seguras.

A adoção do ChatGPT também levanta preocupações sobre o futuro dos empregos. Alguns

especialistas acreditam que a IA pode levar ao desaparecimento de empregos, enquanto outros veem

a criação de novas oportunidades. De qualquer

forma, o ChatGPT é uma tecnologia promissora que pode transformar a interação com as empresas.

Chatbots como o ChatGPT apresentam dilemas éticos significativos, sendo o viés um dos

principais. Treinados em grandes conjuntos de dados de texto, eles podem refletir os vieses

presentes nesses dados, resultando em respostas discriminatórias ou prejudiciais. O uso indevido

também é uma preocupação.

Chatbots podem ser usados para espalhar desinformação, propaganda ou para fins

maliciosos. É essencial garantir o uso responsável e ético dos chatbots. Deepfakes, por exemplo,

podem ser criados com chatbots, manipulando vídeos ou áudios para parecer que alguém disse ou

fez algo que não fez, espalhando desinformação ou prejudicando reputações.

O impacto psicológico do uso de chatbots também merece atenção. Algumas pessoas podem

se tornar dependentes dessas tecnologias, levando a problemas de saúde mental, como depressão

ou ansiedade. Por exemplo, uma pessoa solitária pode se tornar dependente de um chatbot para

companhia, resultando em problemas de saúde mental.

3. Análise Crítica

181

Há vários desafios éticos que podem ser identificados na interação dos usuários com os

modelos LLM (Large Language Model), como o ChatGPT. Partindo do ponto de vista da capacidade

de processamento necessária para se treinar esses modelos de aprendizado de máquina com a

grande quantidade de informações (no caso, textos), em um tempo viável para se disponibilizar a

aplicação para uso, pode-se inferir que o hardware necessário possui um custo muito elevado. Isso

limita a sua implantação a poucas empresas que possuam essa capacidade de investimento, bem

como universidades e institutos de pesquisa públicos ou privados.

As implicações disso é que há uma superconcentração desses modelos nessa minoria de

empresas privadas, praticamente sem concorrência. Além disso, dificulta enormemente os testes e

análises e, consequentemente, a implementação de algum tipo de governança por parte da

sociedade civil.

Soma-se a isso o fato de que os modelos LLM utilizados podem incorporar toda uma sorte de

vieses algorítmicos, vindo tanto da parte dos programadores do modelo em si, como dos dados

utilizados no seu treinamento. A implementação desses algoritmos sem os devidos cuidados e

verificações pode acabar por reforçar, ou mesmo incorporar, estereótipos étnico-raciais,

socioeconômicos e reproduzir comportamentos sectários e segregacionistas. Um exemplo que ilustra

bem, ainda que tenha sido com IA generativa para produção de imagens e não texto, foi o que

ocorreu com a deputada estadual Renata Souza (PSOL-RJ), que ao utilizar uma ferramenta de IA

para geração de imagem em forma semelhante aos posters dos filmes de animação da empresa

Disney, solicitou que fosse gerada um poster “de uma mulher negra, de cabelos afro, com roupas de

estampa africana num cenário de favela” e a IA gerou uma imagem de uma mulher negra com uma

arma na mão.

Além dos possíveis vieses incorporados no desenvolvimento, a forma como os modelos

interagem com os usuários, se não for protegida com as devidas salvaguardas, também pode fazer

com que os modelos incorporem, inadvertidamente, esses mesmos vieses e passem a reproduzi-los.

Um bom exemplo desta possibilidade foi o que ocorreu com o chatbot da Microsoft chamado Tay, que

foi concebido para interagir com jovens entre 18 e 24 anos através de uma conta no Twitter (atual X)

como se fosse um deles. Em menos de um dia de interação na rede social, a IA passou a responder e

incorporar comportamentos xenófobos, racistas e genocidas, e foi então retirada do ar.

Outro caso conhecido foi o da ferramenta de chat do buscador Bing, também da Microsoft,

que durante o seu período de testes, em sessões prolongadas de interação com o mesmo usuário

enviando um número maior de perguntas, passava a respondê-las incorretamente e, às vezes, com

linguagem considerada rude e grosseira.

Para além da questão dos vieses, outros desafios éticos também se apresentam. Entre eles,

pode-se mencionar a eventual propriedade intelectual dos dados utilizados para treinar tanto modelos

generativos de texto quanto de imagem. Se os textos e imagens utilizados no treinamento dos

modelos não forem de domínio público, mas originalmente criados por autores humanos, na hipótese

da empresa criadora da IA fazer uso comercial dela, poderá levar eventualmente a contestação

judicial da propriedade intelectual desses dados de treinamento (textos e imagens).

182

Outro ponto importante diz respeito à segurança dos dados que são enviados pelos usuários

através dos prompts, que podem receber eventualmente algum tipo de dado privado dos mesmos e,

posteriormente, ser difícil a sua anonimização, ou mesmo, eliminação, uma vez incorporados às

bases de treinamento dos modelos. É necessário que as regras de tratamento e a governança dos

dados imputados nos prompts, inclusive do ponto de vista do algoritmo da aplicação, sejam muito

claras, para que se possa fazer um uso consciente das ferramentas. Isso muitas vezes é

especialmente difícil para usuários finais, pessoas físicas que não detêm o conhecimento técnico e

legal para avaliar plenamente a melhor e mais correta forma

de utilizá-las.

Além de todas as discussões anteriores, como os modelos GPT mais modernos incorporam

cada vez mais dados advindos diretamente da internet, não se poderia deixar de mencionar a

questão da possível propagação de notícias falsas (fake news) que por ventura possam estar sendo

veiculadas de forma indiscriminada através de páginas ou redes sociais. Caso não haja um

tratamento adequado nos algoritmos, ou a incorporação de algum tipo de filtro ou “fact checking” na

incorporação dessas informações nas bases de treinamento, essa desinformação pode acabar

influenciando as respostas dos modelos, sendo propagadas por eles.

4. Soluções Responsáveis

Com o surgimento contínuo de novas aplicações de Inteligência Artificial, questões éticas e

filosóficas surgem, exigindo análise profunda e cuidadosa para a busca constante por soluções

responsáveis. A filosofia desempenha um papel fundamental na compreensão desses desafios e na

definição dessas soluções.

Princípios e diretrizes baseados nos aspectos filosóficos e éticos devem ser seguidos ao

projetar, desenvolver e implementar sistemas de Inteligência Artificial.

Alguns desses princípios para que tenhamos soluções responsáveis no desenvolvimento das

aplicações em Inteligência Artificial incluem a transparência, equidade, privacidade, segurança e

responsabilidade.

A transparência na IA envolve tornar os processos de tomada de decisão compreensíveis

para os usuários e partes interessadas. Isso significa explicar como os algoritmos funcionam, quais

dados são usados e como as decisões são tomadas.

A transparência é fundamental para construir confiança e permitir que as pessoas entendam

o impacto das decisões automatizadas.

A equidade refere-se a evitar vieses e discriminação na IA. Os algoritmos podem herdar

preconceitos dos dados de treinamento, resultando em decisões injustas. Garantir a equidade

significa ajustar os modelos para tratar todos os grupos de maneira justa, independentemente de

raça, gênero, origem étnica ou outras características.

A privacidade é crucial na era da IA. Proteger os dados pessoais dos usuários é essencial.

Isso envolve anonimização, consentimento informado e conformidade com regulamentações de

privacidade, como o GDPR (Regulamento Geral de Proteção de Dados).

183

A segurança da IA diz respeito à robustez dos sistemas. Desenvolvedores devem criar

algoritmos que resistem a ataques maliciosos, sejam resilientes a falhas e não causem danos físicos

ou financeiros. Testes rigorosos e monitoramento contínuo são essenciais.

A responsabilidade envolve assumir a responsabilidade pelas ações da IA. Isso inclui

considerar os impactos sociais, legais e éticos. Os criadores de IA devem estar cientes das

consequências e garantir que seus sistemas sejam usados de maneira responsável.

5. Conclusão

O crescimento da Inteligência Artificial (IA), especialmente dos modelos de linguagem como o

ChatGPT, está revolucionando diversos setores, incluindo comunicação, saúde, educação e

entretenimento. No entanto, essa transformação tecnológica traz uma série de questões éticas que

precisam ser cuidadosamente avaliadas para elevar ao máximo os benefícios e minimizar os riscos.

Este artigo analisou as principais implicações éticas associadas ao uso do ChatGPT, abordando

questões relevantes como privacidade e segurança de dados, disseminação de fake news,

discriminação, autonomia na tomada de decisão e transparência.

Os desafios éticos identificados compreendem a possibilidade de respostas desatualizadas

ou falsas, uso indevido para criar desinformação, vieses algorítmicos discriminatórios e possíveis

impactos psicológicos danosos. Casos representativos de mau uso, como a criação de falsos

precedentes legais e a disseminação de notícias falsas, ilustram a necessidade urgente de políticas

de governança e transparência. Além disso, a concentração de poder em poucas empresas capazes

de investir em IA e a dificuldade de implementação de governança pela sociedade civil são de grande

preocupação.

Para enfrentar esses problemas, é essencial adotar uma abordagem globalizada e

colaborativa que envolva governos, empresas, academia e sociedade civil. Princípios éticos como

transparência, equidade, privacidade, segurança e responsabilidade devem guiar o desenvolvimento

e a implementação de sistemas de IA. A transparência ajuda a construir confiança, a equidade evita

discriminação, a privacidade protege dados pessoais, a segurança garante força contra ataques e

falhas, e a responsabilidade assegura que os impactos sociais, legais e éticos sejam considerados.

Avanços já estão ocorrendo para minimizar o impacto negativo da IA, como a

regulamentação criada pela EU (União Européia), a nova lei além da aplicação de novas normas e

categorias de risco, incluindo requisitos mínimos para sistemas usarem IA considerada de alto risco,

fixa o que é terminantemente proibido, como uso de inteligência artificial para manipular

comportamentos humanos que possam causar riscos ao próprio usuário ou a outras pessoas.

Ao estabelecer práticas éticas e responsáveis, podemos promover um uso mais seguro, justo

e benéfico da IA contribuindo para o desenvolvimento sustentável e igualitário da sociedade. A

filosofia e a ética desempenham papéis fundamentais na definição dessas diretrizes, garantindo que a

IA seja um impulso positivo para o futuro.

184

 APÊNDICE 12 – GESTÃO DE PROJETOS DE IA

A – ENUNCIADO

1 Objetivo

Individualmente, ler e resumir – seguindo o template fornecido – um dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied

Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems:

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207.

2024. DOI https://doi.org/10.1016/j.jss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for

machine learning – Adoption, effects, and team assessment. The Journal of Systems &

Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development

of artificial intelligence models – Current state of research and practice. The Journal of

Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss.2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML?

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on

Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI

https://doi.org/10.1145/3411764.3445306

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para

entender o conteúdo dos artigos – caso precise, mas escreva o resumo em língua portuguesa e nas

suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo

escolhido.

No template, você deverá responder às seguintes questões:

● Qual o objetivo do estudo descrito pelo artigo?
● Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?
● Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
● Quais os principais resultados obtidos pelo estudo?

185

Responda cada questão utilizando o espaço fornecido no template, sem alteração do

tamanho da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o

trabalho em PDF.

B – RESOLUÇÃO

186

 APÊNDICE 13 – FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL

A – ENUNCIADO

1 Classificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação.

Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula

prática.
Informações:

● Base de dados: Fashion MNIST Dataset
● Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de

vestuário. É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de
dígitos.

● Tamanho: 70.000 amostras, 784 features (28x28 pixels).
● Importação do dataset: Copiar código abaixo.

data = tf.keras.datasets.fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a

arquitetura RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão.

Além disso, fazer uma breve explicação dos seguintes resultados:

● Gráficos de avaliação do modelo (loss);
● Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R²).

Informações:

● Base de dados: Wine Quality
● Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas

características químicas. A variável target (y) neste exemplo será o score de qualidade do
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)

● Tamanho: 1599 amostras, 12 features.
● Importação: Copiar código abaixo.

url =

"https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/win

equality-red.csv"

data = pd.read_csv(url, delimiter=';')

187

Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para

português, dessa forma:

data.columns = [

 'acidez_fixa', # fixed acidity

 'acidez_volatil', # volatile acidity

 'acido_citrico', # citric acid

 'acucar_residual', # residual sugar

 'cloretos', # chlorides

 'dioxido_de_enxofre_livre', # free sulfur dioxide

 'dioxido_de_enxofre_total', # total sulfur dioxide

 'densidade', # density

 'pH', # pH

 'sulfatos', # sulphates

 'alcool', # alcohol

 'score_qualidade_vinho' # quality

]

Dica 2. Separe os dados (x e y) de tal forma que a última coluna

(índice -1), chamada score_qualidade_vinho, seja a variável target (y)

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de
Sistemas de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados:

● Gráficos de avaliação do modelo (loss);
● Exemplo de recomendação de livro para determinado Usuário.

Informações:

● Base de dados: Base_livros.csv
● Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas),

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
● Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros

(formato .csv).

188

4 Deepdream

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de

um felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 -
Prática Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:

● Imagem onírica obtida por Main Loop;
● Imagem onírica obtida ao levar o modelo até uma oitava;
● Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

Informações:

● Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
● Importação da imagem: Copiar código abaixo.

url =

"https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_sno

w.jpg"

Dica: Para exibir a imagem utilizando display (display.html) use o

link https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg

B – RESOLUÇÃO

1

Comentários/Explicações:

1. Gráficos de perda e acurácia:

Observa-se nos gráficos que com o passar das épocas de treinamento, a perda decresce e a

acurácia aumenta gradualmente para os dados de treino, até a época 10. O mesmo ocorre para os

dados de validação, porém não na mesma proporção, demonstrando valores de perda maiores e

acurácia menores nesses dados do que o apresentado para os dados de treino. Mesmo assim, o

valor da acurácia nos dados de validação ainda pode ser considerado bom, já que fica próxima a 88%

na época 10. Talvez aumentar o número de épocas de treino surtisse algum efeito de melhora nesses

valores.

2. Imagem gerada na seção “Mostrar algumas classificações erradas”:

É selecionado aleatoriamente um caso entre as predições que foram efetuadas e que não

previram a categoria corretamente. Conforme pode-se observar no exemplo selecionado, o modelo

previu para a imagem a categoria 4 (coat – casaco) quando o correto seria 3 (dress – vestido). É

interessante poder visualizar a imagem, pois nota-se que, a olho nu, a mesma pode ser considerada

189

semelhante a ambas as categorias, o que sugere que se poderia tentar trabalhar a configuração do

modelo de predição para melhorar a sua eficácia com amostras desse tipo.

data = tf.keras.datasets.fashion_mnist

(x_train, y_train), (x_test, y_test) = data.load_data()

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1

-ubyte.gz

29515/29515 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3

-ubyte.gz

26421880/26421880 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-

ubyte.gz

5148/5148 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

Downloading data from

https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-

ubyte.gz

4422102/4422102 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

print("x_train.shape: ", x_train.shape)

print("y_train.shape: ", y_train.shape)

print("x_test.shape: ", x_test.shape)

print("y_test.shape: ", y_test.shape)

x_train.shape: (60000, 28, 28)

y_train.shape: (60000,)

x_test.shape: (10000, 28, 28)

y_test.shape: (10000,)

display(x_train)

array([[[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

190

 [0, 0, 0, ..., 0, 0, 0]],

 [[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0]],

 [[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0]],

 ...,

 [[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0]],

 [[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0]],

 [[0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0],

 ...,

 [0, 0, 0, ..., 0, 0, 0],

191

 [0, 0, 0, ..., 0, 0, 0],

 [0, 0, 0, ..., 0, 0, 0]]], dtype=uint8)

display(y_train)

array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)

x_train, x_test = x_train/255.0, x_test/255.0

i = tf.keras.layers.Input(shape=(28, 28))

x = tf.keras.layers.Flatten()(i)

x = tf.keras.layers.Dense(128, activation="relu")(x)

x = tf.keras.layers.Dropout(0.2)(x)

x = tf.keras.layers.Dense(10, activation="softmax")(x)

model = tf.keras.models.Model(i, x)

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

r = model.fit(x_train,

 y_train,

 validation_data=(x_test, y_test),

 epochs=10)

Epoch 1/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 6s 2ms/step - accuracy: 0.7615 -

loss: 0.6722 - val_accuracy: 0.8509 - val_loss: 0.4239

Epoch 2/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8473 -

loss: 0.4126 - val_accuracy: 0.8564 - val_loss: 0.4036

Epoch 3/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8666 -

loss: 0.3683 - val_accuracy: 0.8636 - val_loss: 0.3802

Epoch 4/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.8709 -

loss: 0.3492 - val_accuracy: 0.8662 - val_loss: 0.3679

Epoch 5/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8765 -

loss: 0.3294 - val_accuracy: 0.8766 - val_loss: 0.3531

192

Epoch 6/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - accuracy: 0.8829 -

loss: 0.3152 - val_accuracy: 0.8708 - val_loss: 0.3564

Epoch 7/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8872 -

loss: 0.3029 - val_accuracy: 0.8750 - val_loss: 0.3488

Epoch 8/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - accuracy: 0.8914 -

loss: 0.2930 - val_accuracy: 0.8795 - val_loss: 0.3450

Epoch 9/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.8931 -

loss: 0.2901 - val_accuracy: 0.8734 - val_loss: 0.3609

Epoch 10/10

1875/1875 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - accuracy: 0.8940 -

loss: 0.2835 - val_accuracy: 0.8816 - val_loss: 0.3418

plt.plot(r.history["loss"], label="loss")

plt.plot(r.history["val_loss"], label="val_loss")

plt.legend()

plt.plot(r.history["accuracy"], label="acc")

plt.plot(r.history["val_accuracy"], label="val_acc")

plt.legend()

193

print(model.evaluate(x_test, y_test))

313/313 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - accuracy: 0.8839 -

loss: 0.3343

[0.3418148458003998, 0.881600022315979]

y_pred = model.predict(x_test).argmax(axis=1)

print(y_pred)

313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step

[9 2 1 ... 8 1 5]

cm = confusion_matrix(y_test, y_pred)

plot_confusion_matrix(conf_mat=cm, figsize=(7, 7),

 show_normed=True)

194

misclassified = np.where(y_pred != y_test)[0]

i = np.random.choice(misclassified)

Text(0.5, 1.0, 'True label: 3 Predicted: 4')

195

2

Comentários/Explicações:

1. Gráficos de avaliação do modelo (loss):

Devido à utilização da configuração de “early stop” no treinamento do modelo, o processo de

treinamento utilizou somente 87 épocas das 1500 que foram definidas na sua parametrização. O

porquê disso pode ser observado tanto no gráfico de perda, quanto no de erro. A partir da época 20,

os valores praticamente se estabilizam e o gráfico vira quase uma reta. Isso indica que poderiam ser

utilizadas menos épocas de treinamento para o modelo, de 20 a 30 por exemplo, que, ainda assim,

seria atingido o mesmo desempenho nas predições.

2. Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R2):

Apesar dos valores apresentados nas métricas de erro serem pequenos, analisando se o

coeficiente de determinação R2 das predições, verifica-se que o modelo apresentou uma

performance muito pobre, com um resultado em torno de 22% de acurácia. Faz-se necessário buscar

a melhoria da performance através de mudanças na parametrização do modelo, tais como: utilização

de um gradiente de descida diferente, com “learning rates” diferentes, ou até mesmo o ajuste do

dataset, verificando-se a correlação entre as features para que se possa desconsiderar aquelas que

possuem baixa ou nenhuma correlação com o valor target.

url =

196

"https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/wineq

uality-red.csv"

data = pd.read_csv(url, delimiter=';')

data.columns = [

'acidez_fixa', # fixed acidity

'acidez_volatil', # volatile acidity

'acido_citrico', # citric acid

'acucar_residual', # residual sugar

'cloretos', # chlorides

'dioxido_de_enxofre_livre', # free sulfur dioxide

'dioxido_de_enxofre_total', # total sulfur dioxide

'densidade', # density

'pH', # pH

'sulfatos', # sulphates

'alcool', # alcohol

'score_qualidade_vinho' # quality

]

data.head()

data.shape

(1599, 12)

X = data.iloc[:,0:10].astype(float)

y = data.iloc[:,11].astype(float)

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size=0.25)

i = tf.keras.layers.Input(shape=(10,))

x = tf.keras.layers.Dense(50, activation="relu")(i)

x = tf.keras.layers.Dense(1)(x)

model = tf.keras.models.Model(i, x)

def rmse(y_true, y_pred):

197

 return backend.sqrt(backend.mean(backend.square(y_pred - y_true), axis=-1)

)

def r2(y_true, y_pred):

 media = backend.mean(y_true)

 num = backend.sum (backend.square(y_true - y_pred))

 den = backend.sum (backend.square(y_true - media))

 return (1.0 - num/den)

optimizer=tf.keras.optimizers.Adam(learning_rate=0.05)

model.compile(optimizer=optimizer,

 loss=tf.keras.losses.mse,

 metrics=[rmse, r2])

early_stop = tf.keras.callbacks.EarlyStopping(

 monitor='val_loss',

 patience=20,

 restore_best_weights=True)

r = model.fit(X_train, y_train,

 epochs=1500,

 validation_data=(X_test, y_test),

 callbacks=[early_stop])

Epoch 1/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 7s 56ms/step - loss: 77.3655 - r2:

-114.3765 - rmse: 6.0767 - val_loss: 1.9195 - val_r2: -2.2794 - val_rmse:

1.0737

Epoch 2/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 2.2471 - r2:

-2.8260 - rmse: 1.1428 - val_loss: 1.2225 - val_r2: -1.0808 - val_rmse:

0.8756

Epoch 3/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 1.1147 - r2:

-0.8799 - rmse: 0.8419 - val_loss: 0.9557 - val_r2: -0.6054 - val_rmse:

0.7652

Epoch 4/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.9284 - r2:

-0.6026 - rmse: 0.7516 - val_loss: 0.8254 - val_r2: -0.3956 - val_rmse:

0.7223

198

Epoch 5/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.7919 - r2:

-0.2572 - rmse: 0.6976 - val_loss: 0.8008 - val_r2: -0.3269 - val_rmse:

0.7006

.

.

.

Epoch 83/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.5307 - r2:

0.2058 - rmse: 0.5748 - val_loss: 0.5257 - val_r2: 0.1395 - val_rmse: 0.5822

Epoch 84/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.5557 - r2:

0.1184 - rmse: 0.5868 - val_loss: 0.5025 - val_r2: 0.1633 - val_rmse: 0.5538

Epoch 85/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.5572 - r2:

0.1371 - rmse: 0.5764 - val_loss: 0.5563 - val_r2: 0.0689 - val_rmse: 0.6082

Epoch 86/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.4785 - r2:

0.1995 - rmse: 0.5467 - val_loss: 0.5073 - val_r2: 0.1434 - val_rmse: 0.5728

Epoch 87/1500

38/38 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.5137 - r2:

0.1786 - rmse: 0.5671 - val_loss: 0.5076 - val_r2: 0.1564 - val_rmse: 0.5806

plt.plot(r.history["loss"], label="loss")

plt.plot(r.history["val_loss"], label="val_loss")

plt.legend()

199

plt.plot(r.history["rmse"], label="rmse")

plt.plot(r.history["val_rmse"], label="val_rmse")

plt.legend()

plt.plot(r.history["r2"], label="r2")

200

plt.plot(r.history["val_r2"], label="val_r2")

plt.legend()

y_pred = model.predict(X_test).flatten()

13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step

mse = mean_squared_error(y_test, y_pred)

rmse = sqrt(mse)

r2 = r2_score(y_test, y_pred)

print("mse = ", mse)

print("rmse = ", rmse)

print("r2 = ", r2)

mse = 0.4866209823398623

rmse = 0.6975822405565255

r2 = 0.21903228640689731

3

Comentários/Explicações:

1. Gráficos de avaliação do modelo (loss):

201

Observando-se o gráfico, verifica-se que há uma queda gradual através das épocas no valor

de perda para os dados de treino. No entanto, a partir da época 15, esse valor se estabiliza, indicando

que poderiam ser utilizadas apenas em torno de 15

épocas para o treinamento, garantindo os mesmos resultados. No entanto, para os dados de

validação, o valor da perda estabiliza a partir da época 10 e permanece alto, indicando que a

performance do modelo não foi boa. Isso pode ser devido a pouca quantidade de dados de validação,

desbalanceamento entre as classes de livro + usuário, e/ou necessidade de revisão da configuração

da estrutura da rede neural (camadas e profundidade, por exemplo).

2. Exemplo de recomendação de livro para determinado Usuário:

Foi testada a recomendação de livro para o usuário com ID 278851, onde o modelo seleciona

os livros semelhantes aos que ele já havia lido e é então exibida a opção dentre estas que apresenta

o maior rating.

df = pd.read_csv('Base_livros.csv')

df.head()

df.ID_usuario = pd.Categorical(df.ID_usuario)

df['new_ID_usuario'] = df.ID_usuario.cat.codes

df.ISBN = pd.Categorical(df.ISBN)

df['new_ISBN'] = df.ISBN.cat.codes

N = len(set(df.new_ID_usuario))

M = len(set(df.new_ISBN))

K = 10

u = Input(shape=(1,))

u_emb = Embedding(N, K)(u) # saída : num_samples, 1, K

u_emb = Flatten()(u_emb) # saída : num_samples, K

i = Input(shape=(1,))

i_emb = Embedding(M, K)(i) # saída : num_samples, 1, K

i_emb = Flatten()(i_emb) # saída : num_samples, K

202

x = Concatenate()([u_emb, i_emb])

x = Dense(1024, activation="relu")(x)

x = Dense(1)(x)

model = Model(inputs=[u, i], outputs=x)

model.compile(

 loss="mse",

 optimizer=SGD(learning_rate=0.08, momentum=0.9)

)

user_ids, isbn_ids, ratings = shuffle(df.new_ID_usuario, df.new_ISBN,

df.Notas)

Ntrain = int(0.8 * len(ratings))

train_user = user_ids[:Ntrain]

train_isbn = isbn_ids[:Ntrain]

train_ratings = ratings[:Ntrain]

test_user = user_ids[Ntrain:]

test_isbn = isbn_ids[Ntrain:]

test_ratings = ratings[Ntrain:]

avg_rating = train_ratings.mean()

train_ratings = train_ratings - avg_rating

test_ratings = test_ratings - avg_rating

epochs = 40

r = model.fit(

 x=[train_user, train_isbn],

 y=train_ratings,

 epochs=epochs,

 batch_size=1024,

 verbose=2,

 validation_data=([test_user, test_isbn], test_ratings)

)

Epoch 1/40

101/101 - 3s - 26ms/step - loss: 10.0087 - val_loss: 9.9241

203

Epoch 2/40

101/101 - 0s - 3ms/step - loss: 10.0002 - val_loss: 9.9236

Epoch 3/40

101/101 - 0s - 3ms/step - loss: 9.9887 - val_loss: 10.0067

Epoch 4/40

101/101 - 0s - 4ms/step - loss: 9.6719 - val_loss: 10.3250

.

.

.

Epoch 37/40

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5325

Epoch 38/40

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5323

Epoch 39/40

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5324

Epoch 40/40

101/101 - 0s - 3ms/step - loss: 0.0035 - val_loss: 10.5322

plt.plot(r.history["loss"], label="loss")

plt.plot(r.history["val_loss"], label="val_loss")

plt.legend()

plt.show()

204

input_usuario = np.repeat(a=278851, repeats=M)

Livro = np.array(list(set(isbn_ids)))

preds = model.predict([input_usuario, Livro])

rat = preds.flatten() + avg_rating

idx = np.argmax(rat)

print("Recomendação: Livro - ", Livro[idx], " / ", rat[idx] , "*")

print('Nome do Livro: ', df.loc[df['new_ISBN'] == Livro[idx],

'Titulo'].iloc[0])

4028/4028 ━━━━━━━━━━━━━━━━━━━━ 7s 2ms/step

Recomendação: Livro - 39793 / 10.507515 *

Nome do Livro: Der Sturm / The Perfect Storm

4

Comentários/Explicações:

1. Imagem onírica obtida por Main Loop:

Este resultado mostra a amplificação de padrões locais pela rede neural, onde pequenos

detalhes são intensificados e aparecem texturas e formas abstratas na imagem. O Main Loop foca em

uma única escala.

2. Imagem onírica obtida ao levar o modelo até uma oitava:

A adição de oitavas permite que o modelo processe a imagem em múltiplas escalas,

amplificando padrões em níveis de detalhe maiores e menores. O resultado apresenta padrões mais

amplos e complexos que interagem de forma mais integrada.

3. Diferenças entre as imagens:

No Main Loop, as alterações são mais localizadas e detalhadas, gerando uma textura onírica

intensa em pequenas áreas. Usando oitavas, o modelo cria padrões que se espalham e interagem em

diferentes escalas, resultando em uma imagem mais surreal e globalmente modificada.

url =

'https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.

jpg'

def download(url, max_dim=None):

205

 name = url.split('/')[-1]

 image_path = tf.keras.utils.get_file(name, origin=url)

 img = PIL.Image.open(image_path)

 if max_dim:

 img.thumbnail((max_dim, max_dim))

 return np.array(img)

def deprocess(img):

 img = 255*(img + 1.0)/2.0

 return tf.cast(img, tf.uint8)

def show(img):

 display.display(PIL.Image.fromarray(np.array(img)))

original_img = download(url, max_dim=500)

show(original_img)

display.display(display.HTML('Image cc-by: <a

"href=https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg">Vo

n.grzanka'))

base_model = tf.keras.applications.InceptionV3(include_top=False,

weights='imagenet')

Downloading data from

https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inc

eption_v3_weights_tf_dim_ordering_tf_kernels_notop.h5

206

87910968/87910968 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

names = ['mixed3', 'mixed5']

layers = [base_model.get_layer(name).output for name in names]

dream_model = tf.keras.Model(inputs=base_model.input, outputs=layers)

def calc_loss(img, model):

 img_batch = tf.expand_dims(img, axis=0)

 layer_activations = model(img_batch)

 if len(layer_activations) == 1:

 layer_activations = [layer_activations]

 losses = []

 for act in layer_activations:

 loss = tf.math.reduce_mean(act)

 losses.append(loss)

 return tf.reduce_sum(losses)

class DeepDream(tf.Module):

 def __init__(self, model):

 self.model = model

 @tf.function(

 input_signature=(

 tf.TensorSpec(shape=[None,None,3], dtype=tf.float32),

 tf.TensorSpec(shape=[], dtype=tf.int32),

 tf.TensorSpec(shape=[], dtype=tf.float32),)

)

 def __call__(self, img, steps, step_size):

 print("Tracing")

 loss = tf.constant(0.0)

 for n in tf.range(steps):

 with tf.GradientTape() as tape:

 tape.watch(img)

 loss = calc_loss(img, self.model)

 gradients = tape.gradient(loss, img)

207

 gradients /= tf.math.reduce_std(gradients) + 1e-8

 img = img + gradients*step_size

 img = tf.clip_by_value(img, -1, 1)

 return loss, img

deepdream = DeepDream(dream_model)

def run_deep_dream_simple(img, steps=100, step_size=0.01):

 img = tf.keras.applications.inception_v3.preprocess_input(img)

 img = tf.convert_to_tensor(img)

 step_size = tf.convert_to_tensor(step_size)

 steps_remaining = steps

 step = 0

 while steps_remaining:

 if steps_remaining>100:

 run_steps = tf.constant(100)

 else:

 run_steps = tf.constant(steps_remaining)

 steps_remaining -= run_steps

 step += run_steps

 loss, img = deepdream(img, run_steps, tf.constant(step_size))

 display.clear_output(wait=True)

 show(deprocess(img))

 print ("Step {}, loss {}".format(step, loss))

 result = deprocess(img)

 display.clear_output(wait=True)

 show(result)

 return result

dream_img = run_deep_dream_simple(img=original_img,

 steps=100, step_size=0.01)

208

import time

start = time.time()

OCTAVE_SCALE = 1.30

img = tf.constant(np.array(original_img))

base_shape = tf.shape(img)[:-1]

float_base_shape = tf.cast(base_shape, tf.float32)

for n in range(-2, 3):

 new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.int32)

 img = tf.image.resize(img, new_shape).numpy()

 img = run_deep_dream_simple(img=img, steps=50, step_size=0.01)

display.clear_output(wait=True)

img = tf.image.resize(img, base_shape)

img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8)

show(img)

end = time.time()

end-start

209

15.100679159164429

210

 APÊNDICE 14 – VISUALIZAÇÃO DE DADOS E STORYTELLING

A – ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e

com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu

possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam,
quais possíveis ações podem ser feitas com base neles.

Entregue em um PDF:

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que

possa ser melhorada);

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que

será desenvolvido;

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de

sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos)

B – RESOLUÇÃO

O conjunto de dados utilizado para a visualização é uma tabela que mostra a porcentagem de

consumo de maconha, cocaína e crack por faixa etária, com foco nos últimos 12 meses. Esses

dados representam um panorama do uso de substâncias ilícitas entre jovens e adultos, fornecendo

uma análise detalhada da prevalência de consumo de cada substância em diferentes idades.

211

Esses dados foram coletados de uma pesquisa nacional sobre o uso de drogas entre jovens

e adultos. O foco é observar a evolução do consumo de maconha, cocaína e crack conforme a idade

dos participantes.

Contexto e Público-Alvo

O objetivo dessa visualização de dados é entender como o consumo de substâncias ilícitas

varia de acordo com a idade, especialmente em adolescentes e jovens adultos, que são as faixas

etárias mais vulneráveis ao uso dessas substâncias. Ao analisar essas mudanças, podemos

identificar os períodos críticos de maior consumo e, assim, direcionar melhor as políticas públicas e

ações preventivas.

O público-alvo para essa visualização são os profissionais de saúde e educadores. Eles

podem usar a visualização para adaptar programas de prevenção e reabilitação, focando

principalmente nas idades mais vulneráveis.

A Visualização de Dados

A visualização foi criada utilizando o Power BI, uma plataforma que permite a criação de

gráficos dinâmicos. A ferramenta foi escolhida devido à sua capacidade de gerar gráficos de fácil

leitura, personalizáveis e interativos, o que permite que o público explore os dados de forma

detalhada.

Para mostrar a comparação entre as substâncias e as faixas etárias, foi utilizado um gráfico

de barras horizontais. Esse tipo de gráfico foi escolhido porque ele facilita a leitura das porcentagens

212

de cada substância, permitindo uma comparação clara entre as substâncias em cada faixa etária. O

gráfico de barras horizontais é ideal para este tipo de dado, pois oferece uma visualização clara das

diferenças percentuais entre as substâncias e facilita a comparação visual de diferentes faixas

etárias, permitindo uma leitura mais intuitiva.

As cores escolhidas para cada substância são:

- Maconha: Verde (associada à cor da droga).

- Cocaína: Azul escuro (cor que transmite a ideia de impacto significativo).

- Crack: Vermelho escuro (associado ao perigo e à natureza altamente viciante e destrutiva

do crack).

Essas cores foram escolhidas com base em psicologia das cores para transmitir as

características e os impactos de cada substância de maneira intuitiva.

Descrição da Narrativa/Storytelling

A narrativa criada a partir dessa visualização busca contextualizar os dados e explicar os

padrões observados no gráfico. A história começa com a análise do consumo de maconha, que

começa de forma modesta aos 12 anos (1,1%) e aumenta de forma constante até atingir seu pico aos

20 anos (34%). Esse pico inicial sugere que a maconha é uma droga de iniciação, consumida

principalmente durante a adolescência e o início da idade adulta.

Após os 20 anos, observa-se uma queda gradual no consumo, indicando que muitas pessoas

deixam de consumir maconha após a juventude.

213

A cocaína mostra um padrão diferente. Embora o consumo também tenha um pequeno

aumento até os 20 anos, ele permanece em níveis baixos e estáveis após essa faixa etária, com um

pico de 0,6% aos 20 anos. Isso sugere que, embora a cocaína seja consumida por uma parcela da

população jovem, seu uso não se espalha de forma tão prevalente quanto o da maconha.

O crack, por sua vez, apresenta um padrão semelhante ao da maconha, com uma rápida

ascensão no consumo até os 20 anos (4,9%), o que indica o impacto devastador dessa substância

nas faixas etárias mais jovens.

O consumo de crack, assim como o de maconha, diminui após os 20 anos, mas permanece

presente em níveis baixos em faixas etárias mais velhas, refletindo a natureza altamente viciante e

214

prejudicial dessa droga.

Esses dados trazem importantes insights sobre o comportamento de consumo ao longo da

vida. A visualização sugere que as políticas de prevenção devem se concentrar principalmente nas

faixas etárias de 12 a 20 anos, quando o consumo de drogas, especialmente maconha e crack, está

em seu auge. Além disso, a constância do consumo de cocaína e crack em faixas etárias mais velhas

indica a necessidade de programas contínuos de reabilitação e tratamento.

A visualização também pode ser usada para aumentar a conscientização sobre os riscos do

consumo precoce de substâncias, servindo como um alerta para adolescentes e jovens adultos

sobre os perigos das drogas.

215

 APÊNDICE 15 – TÓPICOS EM INTELIGÊNCIA ARTIFICIAL

A – ENUNCIADO

1) Algoritmo Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab,

ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita

simplesmente para tornar o problema intratável. A solução ótima para este problema não é

conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o

percurso de menor distância que passe uma única vez por todas as cidades e retorne à cidade de

origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado

de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações.

Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas
posições de 1 a 99 deverão ser definidas pelo algoritmo genético.

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
(3) Utilize no mínimo uma população com 100 indivíduos;
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento

(crossover-ox);
(6) Preserve sempre a melhor solução de uma geração para outra.

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”.

2) Compare a representação de dois modelos vetoriais

216

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial,

que poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a

quantidade de palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que

deverão produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização

fique clara e objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a

PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B – RESOLUÇÃO

import matplotlib.pyplot as plt

import numpy as np

import random as rd

def plotaGrafico(individuo : list, coordenadas : list, numGeracao : int,

numCidades : int, distancia :

float):

x_caminho = []

y_caminho = []

for c in individuo:

x, y = coordenadas[c]

x_caminho.append(x)

y_caminho.append(y)

fig, ax = plt.subplots()

ax.plot(x_caminho, y_caminho,'--go', mfc='r', mec='r', label='Melhor Rota',

linewidth=2)

plt.legend()

plt.title(label='Caixeiro Viajante: Melhor Rota usando

GA',fontsize=12,color='k')

txtParams = 'Diatância Total: '+str(round(distancia,3)) + '\n' +

'Núm.Gerações: '+ str(numGeracao)

+ '\n' + 'Qtde.Cidades: '+ str(numCidades)

plt.suptitle(txtParams, fontsize=10, y=1)

for i in individuo:

217

ax.annotate(str(i) if i!=100 else 0, (coordenadas[i][0], coordenadas[i][1]),

fontweight='bold' if

i==0 else 'normal', fontsize=10 if i==0 else 8, color='#000000' if i==0 else

'#999999')

fig.set_size_inches(16,10)

plt.grid(color='#888888', linestyle='dotted')

plt.savefig('solucao_ger'+str(numGeracao)+'.png')

plt.show()

def criaCoordenadas(qtdeCidades : int, xMax : int, yMax : int) -> list:

ret = []

while len(ret) < qtdeCidades:

cidade = (rd.randint(1, xMax), rd.randint(1, yMax))

while cidade in ret:

cidade = (rd.randint(0, xMax), rd.randint(0, yMax))

ret.append(cidade)

ret.append(ret[0])

return ret

def distanciaEuclidiana(pontoA : tuple, pontoB : tuple) -> float:

return (np.sqrt(np.sum((np.array(pontoA) - np.array(pontoB))**2)))

def distanciaTotal(individuo : list, coordenadas: list) -> float:

coordInd = [coordenadas[c] for c in individuo]

return sum([distanciaEuclidiana(c1, c2) for c1, c2 in

list(zip(coordInd[:-1],coordInd[1:]))])

def criaPopulacaoInicial(qtdeIndividuos : int, qtdeCidades : int) -> list:

from math import factorial

ret = []

individuo = list(range(1, qtdeCidades))

ret.append([0]+individuo+[qtdeCidades])

if qtdeIndividuos > factorial(qtdeCidades-1):

qtdeIndividuos = factorial(qtdeCidades-1)

print(f'Quantidade de indivíduos maior que a permnutação possível! População

Inicial ajustada

para {qtdeIndividuos} indivíduos')

218

while len(ret) < qtdeIndividuos:

rd.shuffle(individuo)

while (individuo in ret): # previne permutações repetidas

rd.shuffle(individuo)

ret.append([0]+individuo+[qtdeCidades])

return ret

def avaliaSolucao(populacao : list, coordenadas : list, xMax : int, yMax :

int) -> list:

ret=[]

maiorDistancia = distanciaEuclidiana((1, 1), (xMax, yMax))

for individuo in populacao:

coordInd = [coordenadas[c] for c in individuo]

ret.append(sum([maiorDistancia/distanciaEuclidiana(c1, c2) for c1, c2 in

list(zip(coordInd[:-1],coordInd[1:]))]))

return ret

def ranqueiaPopulacao(populacao : list, coordenadas : list, xMax : int, yMax

: int) -> list:

return np.argsort(avaliaSolucao(populacao, coordenadas, xMax , yMax))[::-1]

def selecionaMelhores(nMelhores : int, populacao : list, coordenadas : list,

xMax : int, yMax : int) ->

list:

ret = [populacao[i] for i in np.argsort(avaliaSolucao(populacao,

coordenadas, xMax , yMax))[::-1]

][:nMelhores]

return ret

def cruzamento(populacaoOrigem : list, populacaoDestino : list, qtde : int =

1) -> list:

ret = []

while len(ret) < qtde:

posicaoA = rd.randrange(0, len(populacaoOrigem))

posicaoB = posicaoA

while posicaoA == posicaoB:

posicaoB = rd.randrange(0, len(populacaoOrigem))

219

individuoA = populacaoOrigem[posicaoA]

individuoB = populacaoOrigem[posicaoB]

indA = populacaoOrigem[posicaoA][1:len(populacaoOrigem[posicaoA])-1]

indB = populacaoOrigem[posicaoB][1:len(populacaoOrigem[posicaoB])-1]

corte = rd.randrange(round(len(indA)/2), len(indA))

novoIndA = indA[:corte]

for gene in indB[corte:]:

if gene in novoIndA:

novoIndA.append(list(set(indB[:corte]) - set(novoIndA))[0])

else:

novoIndA.append(gene)

novoIndB = indB[:corte]

for gene in indA[corte:]:

if gene in novoIndB:

novoIndB.append(list(set(indA[:corte]) - set(novoIndB))[0])

else:

novoIndB.append(gene)

novoIndividuoA = [individuoA[0]] + novoIndA + [individuoA[len(individuoA)-1]]

novoIndividuoB = [individuoB[0]] + novoIndB + [individuoB[len(individuoB)-1]]

if novoIndividuoA not in populacaoDestino: # valida se o novo individuo já

existe

ret.append(novoIndividuoA)

if (len(ret) < qtde) and (novoIndividuoB not in populacaoDestino):

ret.append(novoIndividuoB)

return ret

def mutacao(populacaoOrigem : list, populacaoDestino : list, qtde : int = 1)

-> list:

ret = []

while len(ret) < qtde:

posicao = rd.randrange(0, len(populacaoOrigem))

individuo = populacaoOrigem[posicao]

gene1 = rd.randrange(1, round(len(individuo)/2))

gene2 = rd.randrange(round(len(individuo)/2)+1, len(individuo)-1)

if gene2 != len(individuo)-1:

individuo = individuo[:gene1] + [individuo[gene2]] + individuo[gene1+1:gene2]

+

[individuo[gene1]] + individuo[gene2+1:]

else:

220

individuo = individuo[:gene1] + [individuo[gene2]] + individuo[gene1+1:gene2]

+

[individuo[gene1]]

if individuo not in populacaoDestino: # valida se o novo individuo já existe

ret.append(individuo)

return ret

qtdeIndividuos = 300

qtdeCidades = 100

xTamMax = 100

yTamMax = 100

percMuta = 0.02

percCruza = 0.9

totalGeracoes = 4000

populacaoInicial = criaPopulacaoInicial(qtdeIndividuos, qtdeCidades)

coordenadas = criaCoordenadas(qtdeCidades, xTamMax, yTamMax)

print("Coordenadas das Cidades: ",end='')

print(coordenadas)

qtdeCruza = round(percCruza*qtdeIndividuos)

qtdeMuta = round(percMuta*qtdeIndividuos)

qtdeMelhores = qtdeIndividuos - qtdeCruza - qtdeMuta

numGeracao = 1

melhorIndividuo = selecionaMelhores(len(populacaoInicial), populacaoInicial,

coordenadas,

xTamMax, yTamMax)[0]

menorDistancia = distanciaTotal(melhorIndividuo, coordenadas)

print(f'Geracao {numGeracao}: {menorDistancia}\nMelhor solucao:

{melhorIndividuo}')

plotaGrafico(melhorIndividuo, coordenadas, numGeracao, qtdeCidades,

menorDistancia)

geracaoAtual = populacaoInicial

while numGeracao <= totalGeracoes-1:

proximaGeracao = []

221

proximaGeracao.extend(selecionaMelhores(qtdeMelhores, geracaoAtual,

coordenadas,

xTamMax, yTamMax))

proximaGeracao.extend(cruzamento(geracaoAtual, proximaGeracao, qtdeCruza))

proximaGeracao.extend(mutacao(geracaoAtual, proximaGeracao, qtdeMuta))

geracaoAtual = selecionaMelhores(len(proximaGeracao), proximaGeracao,

coordenadas,

xTamMax, yTamMax)

numGeracao += 1

print('.',end='')

if numGeracao%50 == 0:

melhorIndividuo = geracaoAtual[0]

menorDistancia = distanciaTotal(melhorIndividuo, coordenadas)

print(f'\nGeracao {numGeracao}: {menorDistancia}')

print(f'Geracao {numGeracao}: {menorDistancia}')

print(f'Melhor solucao: {melhorIndividuo} com {menorDistancia} unidades')

plotaGrafico(melhorIndividuo, coordenadas, numGeracao, qtdeCidades,

menorDistancia)

222

Log de Resultados:

223

Coordenadas das Cidades: [(87, 1), (13, 51), (42, 38), (57, 56), (64, 59),

(99, 30), (12, 20), (20, 44),

(50, 20), (71, 98), (4, 92), (89, 51), (3, 75), (6, 5), (98, 22), (40, 38),

(7, 24), (33, 74), (47, 10), (60,

53), (24, 44), (68, 19), (58, 58), (87, 72), (13, 19), (84, 89), (74, 35),

(90, 29), (59, 100), (63, 42), (21,

29), (82, 85), (67, 59), (55, 62), (90, 97), (50, 46), (65, 15), (10, 80),

(24, 67), (38, 86), (37, 2), (27,

60), (53, 19), (34, 14), (34, 42), (97, 89), (21, 7), (77, 86), (70, 38),

(51, 12), (36, 38), (66, 36), (4,

83), (63, 75), (70, 89), (87, 35), (32, 33), (68, 97), (98, 96), (7, 66),

(56, 35), (86, 14), (12, 67), (18,

14), (93, 43), (79, 34), (89, 43), (98, 91), (83, 30), (20, 51), (9, 33),

(97, 85), (16, 97), (15, 92), (12,

84), (93, 25), (92, 81), (84, 66), (68, 24), (44, 66), (12, 87), (28, 27),

(58, 28), (72, 100), (7, 93), (7,

7), (64, 17), (94, 50), (5, 48), (18, 35), (29, 97), (61, 82), (73, 63), (52,

43), (8, 13), (77, 37), (23, 8),

(94, 35), (19, 47), (49, 68), (87, 1)]

Geracao 1: 5389.91580805757

Melhor solucao: [0, 87, 69, 80, 81, 4, 36, 10, 91, 62, 88, 20, 12, 66, 29,

52, 77, 16, 31, 73, 83, 71, 33,

49, 97, 5, 75, 37, 17, 85, 30, 48, 65, 41, 61, 13, 22, 3, 90, 11, 63, 9, 96,

46, 14, 45, 23, 56, 94, 99, 35,

19, 8, 74, 60, 57, 76, 58, 21, 68, 32, 26, 59, 25, 50, 42, 27, 93, 89, 43,

79, 53, 2, 67, 40, 18, 72, 86,

55, 92, 82, 44, 64, 39, 6, 24, 34, 98, 28, 95, 84, 7, 47, 70, 15, 78, 38, 51,

54, 1, 100]

...

Geracao 50: 4822.430448503724

..

Geracao 100: 4497.947104483611

..

.

.

.

Geracao 3950: 2513.966382801496

..

Geracao 4000: 2513.966382801496

Geracao 4000: 2513.966382801496

224

Melhor solucao: [0, 87, 14, 61, 19, 4, 32, 53, 91, 33, 88, 52, 12, 66, 64,

34, 25, 47, 31, 1, 41, 71, 76,

27, 75, 80, 74, 37, 17, 28, 29, 48, 92, 40, 85, 13, 22, 3, 90, 79, 39, 99,

96, 46, 63, 51, 23, 77, 11, 93,

35, 81, 56, 2, 15, 16, 6, 24, 94, 43, 18, 49, 7, 98, 69, 10, 84, 73, 72, 5,

97, 55, 42, 8, 45, 67, 58, 70,

89, 30, 50, 44, 20, 60, 82, 78, 21, 86, 36, 26, 95, 65, 68, 83, 9, 57, 54,

38, 62, 59, 100] com

2513.966382801496 unidades

2) Compare a representação de dois modelos vetoriais

Sentenças:

1. O gato preto pulou o muro alto.

2. O cachorro marrom correu no parque grande.

3. O gato preto saltou sobre o muro baixo.

4. As flores coloridas desabrocharam no jardim ensolarado.

5. O cachorro marrom brincou no gramado amplo.

6. As crianças felizes riram na festa animada.

Vetores simplificados:

Vetor 1: [gato, preto, pulou, muro, alto]

Vetor 2: [cachorro, marrom, correu, parque, grande]

Vetor 3: [gato, preto, saltou, muro, baixo]

Vetor 4: [flores, coloridas, desabrocharam, jardim, ensolarado]

Vetor 5: [cachorro, marrom, brincou, gramado, amplo]

Vetor 6: [crianças, felizes, riram, festa, animada]

Vetorização das Frases

Dado o exemplo:

- Vocabulário Total: gato, preto, pulou, muro, alto, cachorro, marrom, correu, parque, grande, saltou,

baixo, flores, coloridas, desabrocharam, jardim, ensolarado, brincou, gramado, amplo, crianças,

felizes, riram, festa, animada

Aqui, cada vetor será uma lista binária indicando a presença (1) ou ausência (0) das palavras

na sentença.

Aplicação do PCA

Após transformar as frases em vetores binários, aplicaremos o PCA para reduzir suas

dimensões e permitir a projeção gráfica.

Código para Execução
import matplotlib.pyplot as plt

225

from sklearn.decomposition import PCA

from sklearn.feature_extraction.text import CountVectorizer

Sentenças

sentences = [

"O gato preto pulou o muro alto.",

"O cachorro marrom correu no parque grande.",

"O gato preto saltou sobre o muro baixo.",

"As flores coloridas desabrocharam no jardim ensolarado.",

"O cachorro marrom brincou no gramado amplo.",

"As crianças felizes riram na festa animada."

]

vectorizer = CountVectorizer()

X = vectorizer.fit_transform(sentences).toarray()

pca = PCA(n_components=2)

X_pca = pca.fit_transform(X)

plt.figure(figsize=(8, 6))

plt.title('Projeção de Vetores usando PCA')

plt.scatter(X_pca[:, 0], X_pca[:, 1], c='r', marker='o')

for i, sent in enumerate(sentences):

plt.annotate(f'S{i + 1}', (X_pca[i, 0], X_pca[i, 1]))

plt.xlabel('Componente Principal 1')

plt.ylabel('Componente Principal 2')

plt.grid(True)

plt.show()

Resumo

Sentenças Similares: As sentenças 1 e 3, assim como, 2 e 5, são projetadas próximas umas

das outras devido às palavras comuns.

PCA: Facilita a visualização da relação semântica entre as frases.

Visualização: O gráfico exibirá a dispersão das sentenças em um espaço 2D, destacando

similaridades.

Esse processo fornece uma visão clara das semelhanças e diferenças semânticas entre as

frases através das projeções de PCA.

226

