
UNIVERSIDADE FEDERAL DO PARANÁ

MAGNUS HERMAN SOUZA SILVA

MEMORIAL DE PROJETOS: MULTIMODAIS - CONVERGÊNCIA ENTRE VISÃO

COMPUTACIONAL E LLM

CURITIBA

2025

MAGNUS HERMAN SOUZA SILVA

MEMORIAL DE PROJETOS: MULTIMODAIS - CONVERGÊNCIA ENTRE VISÃO

COMPUTACIONAL E LLM

Memorial de Projetos apresentado ao curso de
Especialização em Inteligência Artificial Aplicada,
Setor de Educação Profissional e Tecnológica,
Universidade Federal do Paraná, como requisito
parcial à obtenção do título de Especialista em
Inteligência Artificial Aplicada.

Orientador: Prof. Dr. Jaime Wojciechowski

CURITIBA

2025

MINISTÉRIO DAEDUCAÇÂO
SETOR DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
UNIVERSIDADE FEDERAL DO PARANÁ

PRÓ -RB TO R A DE PÓS-GRADUAÇÃO
CURSODE PÓS-GRADUAÇÃO INTELIGÊNCA ARTIFICIAL
APLICADA- 40001016399E1

TERMO DE APROVAÇÃO

Os membros da Barca Examriadora designada pelo Cotegado do Programa de Pós Graduação Inteligência Artificial Aplicada da

Universidade Federal do P arará foram corvocados pana realizar a arguiçio da Monografia de Especialização de MAGNUS

HERMAN S O U ZA S ILV A , intitulada: M EM O RIA L DE PRO JETO S: M ULTIM O DAIS C O N V ER G Ê N C IA ENTRE V ISÃ O

COMPUTACIONAL E LLM. que após terem inquirido o aturo e realizada a avaliação do trabalho, são de parecer pela sua
aprovação_TOrtodedefesa

Aoutonqa do título de especiafeta está sujeita à homologação pelo colegiado. ao atendimento de todas as Tidicações e oor eções

soIrritadas pela barca e ao plero atendimento das demandas regimentais do Programa de Pós Graduação

Curitiba, 04 de Outubro de 2025.

Aval ador Interno (UNIVERSIDADE FEDERAL CIO PARANA)

FPR

RESUMO

Este trabalho percorre um panorama histórico-conceitual da evolução da
Inteligência Artificial (IA), concentrando-se na convergência entre duas áreas
inicialmente separadas: os Modelos de Linguagem de Grande Porte (LLMs - Large
Language Model) e a Visão Computacional. A Inteligência Artificial (IA) consolidou-
se como disciplina nas décadas de 1940-1950, passando por ciclos de avanços
("primaveras") e estagnação ("invernos"). A virada para a IA (Inteligência Artificial)
moderna deu-se com as redes neurais, que permitem aprender padrões diretamente
dos dados. Inicialmente, redes recorrentes (RNNs - Recurrent Neural Networks,
LSTM - Long Short Term Memory) processavam seqüências como texto, mas com
limitações. A revolução veio em 2017 com a arquitetura Transformer e seu
mecanismo de auto-atenção, base dos atuais Modelos de Linguagem de Grande
Porte (LLMs - Large Language Model), como GPT (Generative Pre-trained
Transformer) e BERT (Bidirectional Encoder Representations from Transformers),
que compreendem e geram linguagem com profundidade sem precedentes.
Paralelamente, a Visão Computacional evoluiu com Redes Neurais Convolucionais
(CNNs - Convolutional Neural Network), capacitando máquinas a "enxergarem" e
interpretarem imagens. A fronteira atual reside na integração multimodal, onde
modelos como o CLIP (Contrastive Language-lmage Pre-Training) alinham
representações de texto e imagem em um espaço vetorial comum. Isso permite que
sistemas compreendam cenas visuais por meio da linguagem, classificando imagens
sem treinamento prévio (zero-shot) e descrevendo-as detalhadamente. Essa
convergência entre LLMs (Large Language Model) e Visão Computacional está
criando assistentes inteligentes, robôs autônomos e ferramentas inovadoras,
redefinindo a interação homem-máquina ao unir visão e linguagem em uma
percepção artificial unificada e contextualizada.

Palavras-chave: inteligência artificial; LLM; transformador; visão computacional;
multimodal; redes neurais convolucionais; mecanismo de auto-atenção.

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

ABSTRACT

This work traces a historical-conceptual panorama of the evolution of Artificial
Intelligence (Al), focusing on the convergence between two initially separate areas:
Large Language Models (LLMs - Large Language Models) and Computer Vision.
Artificial Intelligence (Al) was established as a discipline in the 1940s-1950s, going
through cycles of advances ("springs") and stagnation ("winters"). The turning point
for modern Al (Artificial Intelligence) carne with neural networks, which allow learning
patterns directly from data. Initially, recurrent networks (RNNs - Recurrent Neural
Networks, LSTM - Long Short-Term Memory) processed sequences like text, but with
limitations. The revolution carne in 2017 with the Transformer architecture and its
self-attention mechanism, the basis of current Large Language Models (LLMs - Large
Language Models), such as GPT (Generative Pre-trained Transformer) and BERT
(Bidirectional Encoder Representations from Transformers), which understand and
generate language with unprecedented depth. In parallel, Computer Vision evolved
with Convolutional Neural Networks (CNNs - Convolutional Neural Networks),
enabling machines to "see" and interpret images. The current frontier lies in
multimodal integration, where models like CLIP (Contrastive Language-lmage
Pretraining) align text and image representations in a common vector space. This
allows systems to understand visual scenes through language, classifying images
without prior training (zero-shot) and describing them in detail. This convergence
between LLMs (Large Language Models) and Computer Vision is creating intelligent
assistants, autonomous robots, and innovative tools, redefining human-machine
interaction by uniting vision and language into a unified and contextualized artificial
perception.

Keywords: artificial intelligence; LLM; transformers; Computer vision; multimodal;
convolutional neural networks; self-attention mechanism.

SUMÁRIO

1 PARECER TÉCNICO...7

REFERÊNCIAS..10

APÊNDICE 1 - INTRODUÇÃO À INTELIGÊNCIA... 11

APÊNDICE 2 - LINGUAGEM DE PROGRAMAÇÃO APLICADA................................17

APÊNDICE 3 - LINGUAGEM R...28

APÊNDICE 4 - ESTATÍSTICA APLICADA 1... 36

APÊNDICE 5 - ESTATÍSTICA APLICADA II.. 43

APÊNDICE 6 - ARQUITETURA DE DADOS.. 49

APÊNDICE 7 - APRENDIZADO DE MÁQUINA... 58

APÊNDICE 8 - DEEP LEARNING.. 67

APÊNDICE 9 - BIG DATA..91

APÊNDICE 10 - VISÃO COMPUTACIONAL.. 96

APÊNDICE 11 - ASPECTOS FILOSÓFICOS E ÉTICOS DA IA................................118

APÊNDICE 12 - GESTÃO DE PROJETOS DE IA... 124

APÊNDICE 13 - FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL.........................129

APÊNDICE 14 - VISUALIZAÇÃO DE DADOS E STORYTELLING..........................156

APÊNDICE 15 - TÓPICOS EM INTELIGÊNCIA ARTIFICIAL....................................160

1 PARECER TÉCNICO

A Inteligência Artificial (IA), tem suas raízes nas décadas de 1940 - 1950,

com a proposta de Alan Turing sobre máquinas que poderiam "pensar" (Russell;

Norvig, 2021). Ao longo de décadas, a área de IA passou por "invernos" e

primaveras, ou seja, períodos de tempo onde o custo em conjunto com a ausência

de capacidade computacional necessária, forçaram pesquisadores a não evoluírem

chegando a um limite, não teriam condições técnicas de criarem inovações para

propor novos paradigmas, ou impulsionada por avanços teóricos e, sobretudo, pelo

aumento exponencial do poder computacional e da disponibilidade de grandes

massas de dados (big data).

Inicialmente, os sistemas eram baseados em regras simbólicas, com

conhecimento explicitamente programado. No entanto, a virada de chave para a IA

moderna deu-se com o aprofundamento dos estudos sobre redes neurais artificiais -

a visão conexionista. A capacidade de aprender representações diretamente dos

dados, por meio de algoritmos, abriu caminho para soluções mais robustas e

generalizáveis. Neste contexto, duas frentes se desenvolveram de forma paralela: a

compreensão da linguagem natural e a interpretação de conteúdo visual.

Antes da era dos Transformers, a modelagem de seqüências lingüísticas era

dominada por arquiteturas recorrentes:

• Redes Neurais Recorrentes (RNNs): Projetadas para processar seqüências

(como palavras em uma frase), as RNNs mantêm um "estado oculto" que age como

uma memória sobre os elementos anteriores. No entanto, sofrem com o problema do

desaparecimento do gradiente (vanishing gradient), o que limita severamente sua

capacidade de aprender dependências de longo prazo em textos extensos.

(Charniak, 2019)

• LSTM (Long Short-Term Memory) e GRU (Gated Recurrent Unit)\ Como

evoluções das RNNs, as unidades LSTM e GRU introduziram mecanismos de

"portas" {gates) que permitem ao modelo controlar com precisão qual informação

reter, atualizar ou esquecer na memória de longo prazo. Isso mitigou

significativamente o problema do gradiente e tornou-as a arquitetura padrão para

tarefas de tradução automática e geração de texto por anos posteriores. (Charniak,

2019)

O momento importante na evolução da técnica de compreensão e geração

de textos ocorreu em 2017 com a publicação do artigo "Attention Is Ali You Need"

(Alammar; Grootendorst, 2024). A arquitetura Transformer abandonou

completamente o conceito seqüencial, introduzindo o Mecanismo de Auto-Atenção

(Self-Attention) (Alammar; Grootendorst, 2024). Este mecanismo permite que o

modelo pese a importância de todas as palavras em uma seqüência,

independentemente da sua distância.

É sobre esta arquitetura que as Large Language Models (LLMs) são

construídas. Modelos como GPT (Generative Pre-trained Transformer) e BERT

(Bidirectional Encoder Representations from Transformem) (Alammar, 2019) são

pré-treinados em grandes bases de textos em uma tarefa de modelagem de

linguagem para “aprender” a próxima palavra. Esse pré-treinamento permite que

eles capturem profundamente a sintaxe, semântica e até mesmo algum

conhecimento presente nos dados. Paralelamente, a Visão Computacional buscou

dotar as máquinas da capacidade de "ver" e interpretar imagens. A revolução nesta

área foi impulsionada pelas Redes Neurais Convolucionais (CNNs) (Goodfellow;

Bengio; Courville, 2016):

•Conceito Básico das CNNs: O operador convolucional aplica filtros (ou

kernels) que “deslizem” sobre a imagem, detectando padrões locais como bordas,

fronteiras, texturas e formas. As camadas mais profundas combinam essas

características para identificar padrões complexos, como olhos, nariz ou até mesmo

objetos inteiros.

• Avanços com Modelos Pré-treinados: A rede AlexNet demonstrou a

superioridade das CNNs profundas, vencendo uma competição de reconhecimento

de imagem por uma margem significativa. Este fato inaugurou a era do deep

learning na área de visão computacional. Modelos como ResNet, VGG e, mais

recentemente, os Vision Transformers (ViTs), que adaptam a arquitetura

Transformer para patches de imagem.

Hoje, a Visão Computacional é usada desde sistemas de segurança com

reconhecimento facial e inspeção de qualidade em linhas de produção até

diagnósticos por imagem na medicina e a calibragem de sensores em veículos

autônomos.

Durante anos, LLMs e Visão Computacional evoluíram como campos

separados, tratando modalidades distintas de dados. A fronteira mais promissora da

IA contemporânea reside justamente na sua integração, criando sistemas

multimodais. A chave para essa convergência é a tradução de diferentes

modalidades para um espaço vetorial comum. Assim como uma LLM representa

palavras como vetores densos (embeddings) em um espaço semântico vetorial, uma

rede de visão computacional (como uma CNN ou um ViT) pode representar uma

imagem como um vetor em um espaço de características visuais. O ponto

fundamental e marcante neste processo ocorre quando se treina um modelo para

alinhar esses espaços (Idrees, 2023).

Modelos como CLIP (Contrastive Language-lmage Pre-training) da OpenAI

são exemplos desta quebra de paradigma. O CLIP é treinado com milhões de pares

(imagem, legenda). O objetivo é maximizar a similaridade entre os embeddings da

imagem e da legenda correta, e minimizar a similaridade com legendas incorretas.

Após o treinamento, o modelo adquire uma capacidade notável: compreender o

conteúdo visual em termos lingüísticos. Isso permite tarefas de classificação zero-

shot - "zero exemplos" ou "zero disparos" de treinamento para aquela classe

específica), simplesmente comparando o embedding da imagem com embeddings

de descrições textuais das categorias (Data Science Academy).

Avanços recentes, como o Multimodal LLMs, levam este conceito adiante.

Eles utilizam um "projetor" (projector) neural que transforma os embeddings visuais

de um modelo de visão em um formato que pode ser interpretado por uma LLM pré-

treinada. Dessa forma, a LLM atua como um cérebro central que processa tanto a

entrada textual quanto a entrada visual projetada, permitindo diálogos complexos

sobre imagens, geração de descrições detalhadas (a/f text) e até mesmo resposta a

perguntas que requerem raciocínio sobre o conteúdo visual (Data Science

Academy).

A jornada da IA, desde suas origens simbólicas até os atuais modelos

multimodais, reflete uma busca por uma percepção mais integrada e

contextualizada. As LLMs, baseadas na arquitetura Transformer, conquistaram uma

compreensão profunda da linguagem. A Visão Computacional, alavancada por

CNNs e Vision Transformers (ViTs), conferiu às máquinas a possibilidade de “visão”

aguçada. Esta convergência está pavimentando o caminho para assistentes

verdadeiramente inteligentes, robôs mais autônomos e ferramentas de criatividade

aumentada, redefinindo os limites do possível na interação homem-máquina.

REFERÊNCIAS

ALAM MAR, J. A Visual Guide to Using BERT for the First Time. Blog de Jay
Alâmmâr, 26 nov. 2019. Disponível em: https://jalammar.aithub.io/a-visual-auide-to-
using-bert-for-the-first-time/. Acesso em: 21 set. 2025.

ALAM MAR, J.; GROOTENDORST, M. Hands-On Large Language Models.
Sebastopol: 0 ’Reilly Media, 2024.

CHARNIAK, E. Introduction to Deep Learning. Cambridge: MIT Press, 2019.

DATA SCIENCE ACADEMY. Deep Learning Book, 2025. Disponível em:
https://www.deeplearningbook.com.br. Acesso em: 10 Set. de 2025

GOODFELLOW, I; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge: MIT
Press, 2016.

IDREES, H. Vision Transformer vs CNN: a comparison of two image processing
giants. Medium, 2023. Disponível em: https://medium.com/@hassaanidrees7/vision-
transformer-vs-cnn-a-comparison-of-two-image-processina-aiants-d6c85296f34f.
Acesso em: 22 set. 2025.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. 4th ed.
Harlow: Pearson, 2021.

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://www.deeplearningbook.com.br
https://medium.com/@hassaanidrees7/vision-transformer-vs-cnn-a-comparison-of-two-image-processing-giants-d6c85296f34f
https://medium.com/@hassaanidrees7/vision-transformer-vs-cnn-a-comparison-of-two-image-processing-giants-d6c85296f34f

APÊNDICE 1 - INTRODUÇÃO À INTELIGÊNCIA

A - ENUNCIADO

1 ChatGPT

a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas

em sala. Explique o porquê.
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4

abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a

Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo

apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha

reta, que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde

que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um
formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

A ra d 366 M e ha dia 241
R u e a re s tc 0 N c a m t 234
C ra ia v a 160 O r a d c a 380
D ro b e ta 242 P ite s t i 100
E fo r ie 161 R im nicu V ilcea 193
F a g a ra s 176 Sibiu 253
G iu rg iu 77 T in iiso a ra 329
H irso v a 151 U rz ie e n i 80
la$ i 226 V aslu i 199

■■ufjrtj 244 Z ê r in d 374

F ig u ra 3.22 V a lo res d e h D L R — d is tâ n c ias em linha re ta p a ra B ucareste.

3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come

Se a raposa as come, então estão maduras

As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas

práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R l: P -q
R2: q -► r

R3: r v

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com

essas três primeiras sentenças devemos derivar q ~ p. Cuidado com a ordem em que as fórmulas

são geradas.

Equivalência Implicação: (« - p) eqüivale a (->a v p)

Silogismo Hipotético: a -> p, p -> y a -> y

Conjunção: a, p \ - a A p

Equivalência Bicondicional: (« <-> p) eqüivale a (« - p) A (p - a)

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão
descritas acima e no material.

4 Redes Neurais Artificiais

Seja a RNA da figura abaixo.

Os neurônios Ni, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação

tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada Xi=-3, x2= l, dê:

a) (6,25 pontos) Valor de saída do neurônio N I
b) (6,25 pontos) Valor de saída do neurônio N2
c) (6,25 pontos) Valor de saída do neurônio N3
d) (6,25 pontos) Valor de saída da rede como um todo

B - RESOLUÇÃO

1 - ChatGPT

A - O que é ChatGPT:

Inteligência Artificial (IA) é um campo da ciência da computação que se concentra no

desenvolvimento de sistemas e tecnologias capazes de realizar tarefas que, quando realizadas por

humanos, geralmente exigem inteligência. Estas tarefas incluem, mas não se limitam a, aprendizado,

raciocínio, resolução de problemas, reconhecimento de padrões, compreensão da linguagem natural

e percepção sensorial.

A IA busca criar sistemas que possam simular ou replicar a capacidade humana de pensar,

aprender, perceber, tomar decisões e resolver problemas. Isso é frequentemente alcançado através

do uso de algoritmos, modelos matemáticos e técnicas de aprendizado de máquina, onde os sistemas

são treinados com grandes volumes de dados para reconhecer padrões e fazer previsões ou tomar

decisões.

Existem várias abordagens e subcampos dentro da IA, incluindo aprendizado de máquina,

visão computacional, processamento de linguagem natural, robótica e sistemas especialistas. A IA

tem aplicações em uma ampla gama de setores, incluindo medicina, finanças, manufatura,

automotivo, entretenimento e muitos outros.

B - Classificação:

Abordagem: PENSAR COMO HUMANOS

A resposta é dada de acordo com as palavras que fornecemos como entrada para elaboração da

resposta dada como inteligente. Esta resposta pode ter sido gerada de acordo com a base de dados

do ChatGPT, relacionando justamente com o que estamos perguntando como entrada, não de

maneira fruto de raciocínio e reflexões do Chat, mas uma maneira de gerar informações inteligentes

como nós humanos fazemos.

C - Como funciona ChatGPT

O funcionamento do Chat GPT tem como base a técnica de modelagem de linguagem, isto é, obter

conhecimento a partir de informações formatadas e padronizadas, tendo como origem uma base

gigantesca de dados, no qual existe a entrada de dados seja por nós usuários e outras informações

que existem na internet.

Porém devemos relevar muitas das respostas fornecidas pela IA, pois como sabemos pode haver

respostas erradas ou que não tenha uma certa clareza, e isso se dá justamente por essas fontes de

informações serem coletadas de diversos lugares.

Referências:

https://br.hubspot.com/blog/marketing/chatgpt

https://www.dca.fee.unicamp.br/cursos/EA871/references/complementos_ea871/

linguagens_modelagem.pdf

https://br.hubspot.com/blog/marketing/chatgpt
https://www.dca.fee.unicamp.br/cursos/EA871/references/complementos_ea871/

D - Agir racionalmente

Poderíamos tentar relacionar com o "Agir como humano" pois como ele possui uma base

gigantesca, ele estaria apenas encontrando as melhores palavras/frases que foram fornecidas por um

humano, porém isto não faria sentido, visto que se olharmos seu funcionamento, percebemos que

existe um "treinamento" por parte da IA para que possa aprender novos conhecimentos e caminhos

para ser seguido, fazendo assim a representação do raciocínio.

O Chat GPT tem limitações para entender contextos e agir diante de informações em conflito

entre si ou opiniões. E seu propósito principal é responder perguntas em modo chat de acordo com

sua base de dados, portanto pode gerar resposta sem sentido dependendo da pergunta. Através de

experimentos, ele tem sim capacidade de aprendizado com as perguntas de usuários, sem paixões e

emoções ele se corrigi o tempo todo quando insistimos e mudamos os contextos de perguntas, sendo

mais lógico que nós mesmos que colocamos a emoção na frente da lógica em várias circunstâncias,

principalmente quando envolvem vaidades.

2 Busca Heurística

Heurístca: Lugoj - Bucharest

604 - 411 ♦ 193 503 - 403 • 100

595 - 229 ♦ 3»

5« = S (M - 0

Distância Lugoj até Bucharest é de 5 0 4

3 - Lógica

Se as uvas caem, então a raposa as come

Se a raposa as come, então estão maduras

As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

R l: P ^ Q

R2: Q ^ R

R3: n R V P

R4: Equivalência Implicação R3

R ^ P

R5: Silogismo Hipotético R2 e R4

Q - P
R6: Conjunção R I e R5

(P - Q) A (Q - P)
R7: Equivalência Bicondicional R6

P « Q

4 - Redes Neurais Artificiais

Os neurônios N l, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação

tangente hiperbólica.

Sendo:

x l = -3

x2 = 1

N l = (-3*0,2) + (1*0,8) + (0,1) = 0,3 = fa(u) = u

N2 = (-3*0,1) + (1*0,2) + (0,4) = 0,3 = fa(u) = u

N3 = (-3*0,9) + (1*0,5) + (0,2) = -2 = fa(u) = u

N4 = (0,3*0,9) + (0,3*0,3) + (-2*0,3) + (0,1) = -0,14

fa(u) = (EXP(-014) - EXP(0,14)) / (EXP(-0,14) + EXP(0,14)

fa(u) = -0,1390

APÊNDICE 2 - LINGUAGEM DE PROGRAMAÇÃO APLICADA

A - ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv

Informações sobre a base de dados:

Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021,

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A

base original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser

utilizada no presente exercício.

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna

model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores

do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém

todos os dados originais da tabela FIPE.

Metadados:

Nome do campo Descrição

year_of_reference O preço médio corresponde a um

mês de ano de referência

month_of_reference O preço médio corresponde a um

mês de referência, ou seja, a FIPE atualiza

sua tabela mensalmente

fipe_code Código único da FIPE

authentication Código de autenticação único para

consulta no site da FIPE

brand Marca do carro

model Modelo do carro

fuel Tipo de combustível do carro

gear Tipo de engrenagem do carro

engine_size Tamanho do motor em centímetros

cúbicos

year_model Ano do modelo do carro. Pode não

corresponder ao ano de fabricação

avg_price Preço médio do carro, em reais

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato

que será considerado correto na resolução do exercício.

1 Análise Exploratória dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Carregue a base de dados media_precos_carros_brasil.csv
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o

problema de valores faltantes
c. Verifique se há dados duplicados nos dados
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de

informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados

encontrados na Análise Exploratória dos dados

2 Visualização dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Gere um gráfico da distribuição da quantidade de carros por marca
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022

(variável de tempo no eixo X)
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de

engrenagem
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de

combustível
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis
independentes do modelo.A variável target é avg_price. Observação: caso julgue
necessário, faça a transformação de variáveis categóricas em variáveis numéricas para
inputar no modelo. Indique quais variáveis foram transformadas e como foram
transformadas

b. Crie partições contendo 75% dos dados para treino e 25% para teste
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário,
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram
inputados e indique o treinamento de cada modelo

d. Grave os valores preditos em variáveis criadas

e. Realize a análise de importância das variáveis para estimar a variável target, para cada
modelo treinado

f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na
análise de importância de variáveis

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R2
h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor

resultado e a métrica de avaliação utilizada

B - RESOLUÇÃO

a) Importação bibliotecas e carga da base de dados - DATASET

<class 'pandas.core.frame.DataFrame'>

Rangelndex: 202297 entries, 0 to 202296

Data columns (total 11 columns):

Column Non-Null Count Dtype
0 year of reference 202297 non-null int64
1 month_of_reference 202297 non-null object
2 fipe_code 202297 non-null object
3 authentication 202297 non-null object
4 brand 202297 non-null object
5 model 202297 non-null object
6 fuel 202297 non-null object
7 gear 202297 non-null object
8 engine_size 202297 non-null object
9 year_model 202297 non-null int64
10 avg_price_brl 202297 non-null int64

dtypes: int64(3), object(8)

memory usage: 17.0+ MB

YEAR OF REFERENCE MONTH OF REFERENCE FIPE CODE AUTHENTICATION \
0 2021 JANUARY 004001-0 CFZLCTZFWRCP
1 2021 JANUARY 004001-0 CDQWXWPW3Y2P
2 2021 JANUARY 004001-0 CB1T3XWWJ1XP
3 2021 JANUARY 004001-0 CB9GCT6J65R0
4 2021 JANUARY 004003-7 G15WG0GBZ1FX

BRAND MODEL FUEL GEAR \
0 GM - CHEVROLET CORSA WIND 1.0 M P F I/E F I2 P GASOLINE MANUAL
1 GM - CHEVROLET CORSA WIND 1.0 M P F I/E F I2 P GASOLINE MANUAL
2 GM - CHEVROLET CORSA WIND 1.0 M P F I/E F I2 P GASOLINE MANUAL
3 GM - CHEVROLET CORSA WIND 1.0 MPFI / EFI 2P ALCOHOL MANUAL
4 GM - CHEVROLET CORSA PICK-UP GL/ CHAMP 1.6 MPFI / EFI GASOLINE MANUAL

ENGINE SIZE YEAR MODEL AVG PRICE_BRL
0 1 2002 9162
1 1 2001 8832
2 1 2000 8388
3 1 2000 8453
4 1,6 2001 12525

B) VERIFICAÇÃO DE VALORES FALTANTES:
YEAR_OF_REFERENCE FALSE
MONTH_OF_REFERENCE FALSE
FIPE_CODE FALSE
AUTHENTICATION FALSE
BRAND FALSE
MODEL FALSE
FUEL FALSE
GEAR FALSE

ENGINE_SIZE FALSE
YEAR_MODEL FALSE
AVG_PRICE_BRL FALSE
DTYPE: BOOL

QUANTIDADE FALTANTE:0

C) CHECAGEM SE HÁ DADOS DUPLICADOS
DUPLICADOS: 2
DUPLICADOS REMOVIDOS

D) CRIE DUAS CATEGORIAS, PARA SEPARAR COLUNAS NUMÉRICAS E CATEGÓRICAS.
YEAR OF REFERENCE YEAR MODEL AVG PRICE BRL

COUNT 202295.00 202295.00 202295.00
MEAN 2021.56 2011.27 52756.77
STD 0.57 6.38 51628.91
MIN 2021.00 2000.00 6647.00
25% 2021.00 2006.00 22855.00
50% 2022.00 2012.00 38027.00
75% 2022.00 2016.00 64064.00
MAX 2023.00 2023.00 979358.00

MONTH OF REFERENCE FIPE CODE AUTHENTICATION BRAND \
COUNT
UNIQUE
TOP
FREQ

202295
12

JANUARY
24260

202295 202295 202295
2091 202295 6
003281-6 CFZLCTZFWRCP
425 1 44962

FIAT

MODEL FUEL GEAR ENGINE_SIZE
COUNT 202295 202295 202295 202295
UNIQUE 2112 3 2 29
TOP PALIO WEEK. ADV/ADV TRYON 1.8 MPI FLEX GASOLINE MANUAL
FREQ 425 168684 161883 47420

1,6

E) IMPRIMA A CONTAGEM DE VALORES POR MODELO (MODEL) E MARCA DO CARRO
(BRAND)

BRAND MODEL
FIAT PALIO WEEK. ADV/ADV TRYON 1.8 MPI FLEX 425

DOBLO ADV/ADV TRYON/LOCKER 1.8 FLEX 375
DOBLO CARGO 1.8 MPI FIRE FLEX 8V/16V 4P 318
PALIO WEEKEND ADVENTURE LOCKER 1.8 FLEX 300
SIENA 1.0/ EX 1.0 MPI FIRE/ FIRE FLEX 8V 300

VW - VOLKSWAGEN POLO HIGHLINE TSI 1.0 FLEX 12V AUT. 8
GOL LAST EDITION 1.0 FLEX 12V 5P 2
POLO TRACK 1.0 FLEX 12V 5P 2
SAVEIRO ROBUST 1.6 TOTAL FLEX 16V 2
SAVEIRO ROBUST 1.6 TOTAL FLEX 16V CD 2

NAME: MODEL, LENGTH: 2112, DTYPE: INT64

F) DÊ UM BREVE EXPLICAÇÃO (MÁXIMO DE QUATRO LINHAS) SOBRE OS PRINCIPAIS
RESULTADOS ENCONTRADOS NA ANÁLISE EXPLORATÓRIA DOS DADOS:

COM O DATASET TRABALHADO DESDE O INÍCIO DA ANÁLISE EXPLORATÓRIA, OBSERVAMOS
QUE O DATASET POSSUI 202297 LINHAS E 11 COLUNAS, SENDO QUE DESTAS LINHAS
APENAS DUAS SÃO DUPLICADAS, E FORAM EXCLUÍDAS. NÃO FOI ENCONTRADO
INFORMAÇÕES FALTANTES NO DATASET. 8 COLUNAS SÃO DO TIPO CATEGÓRICAS, E
APENAS 3 SÃO NUMÉRICAS. AS COLUNAS CATEGÓRICAS BRAND, FUEL, GEAR,
MONTH OF REFERENCE SERÃO CONVERTIDAS PARA NUMÉRICAS MAIS ADIANTE.

2 - VISUALIZAÇÃO DOS DADOS
A) GRÁFICO DA DISTRIBUIÇÃO DA QUANTIDADE DE CARROS X MARCA

40000

g 30000

r5
U
0>■O
70 20000

s

10000

0

B) GRÁFICO DA DISTRIBUIÇÃO DA QUANTIDADE DE CARROS X TIPO DE ENGRENAGEM

160000

140000

120000

■5 íooooo
■g
c 80000(O
8 ­

60000

40000

20000

Quantidade de carros X Tipo de engrenagem

gear

Distribuição Veículos x Marca

Nissan

C) GRÁFICO DA EVOLUÇÃO DA MÉDIA DE PREÇO DOS CARROS AO LONGO DOS MESES
DE 2022

M ès

D) GRÁFICO DA DISTRIBUIÇÃO DA MÉDIA DE PREÇO DOS CARROS X MARCA E TIPO DE
ENGRENAGEM

M edia preços po r M arca X T ipo de E n g re nagem

gear
a u to m a t ic

manual

GM - Chevrolet VW - Volkswagen
brand

R e n a u lt

E) DÊ UMA BREVE EXPLICAÇÃO SOBRE OS RESULTADOS GERADOS NO ITEM D.
O GRÁFICO MOSTRA QUE AS MARCAS COM PREÇOS MAIS ALTOS NO BRASIL SÃO FIAT E
VOLKSWAGEN COM CÂMBIO AUTOMÁTICO E A COM PREÇO MÉDIO MAIS BAIXO É A FIAT
COM CÂMBIO MANUAL.
OS CARROS COM CÂMBIO AUTOMÁTICO SÃO OS MAIS CAROS ENTRE TODAS AS MARCAS,
EXCETO RENAULT. SOMENTE A MARCA RENAULT POSSUI CARROS COM CÂMBIO MANUAL
MAIS CAROS QUE AS VERSÕES COM CÂMBIO AUTOMÁTICO DENTRO DA MESMA MARCA.

F) GRÁFICO DA DISTRIBUIÇÃO DA MÉDIA PREÇO DOS CARROS X MARCA E TIPO DE
COMBUSTÍVEL

1 4 0 0 0 0

120000

100000

•j* 8 0 0 0 0

O

t
5 0 0 0 0

4 0 0 0 0

20000

i
I

G) DÊ UMA BREVE EXPLICAÇÃO SOBRE OS RESULTADOS GERADOS NO ITEM F

O GRÁFICO ACIMA INDICA QUE NO BRASIL, DE MANEIRA GERAL, OS VEÍCULOS MOVIDOS À
DIESEL SÃO OS MAIS CAROS. A MARCA VOLKSWAGEN - DIESEL - POSSUÍ A MÉDIA DE
PREÇO MAIS ALTA PARA ESSA CATEGORIA.
OS VEÍCULOS VERSÕES A GASOLINA SÃO PRODUZIDOS POR TODAS AS MARCAS E SEU
PREÇO MÉDIO É BEM MAIOR DE MANEIRA GERAL DAS VERSÕES A ALCOOL.

3 - APLICAÇÃO DE MODELOS DE MACHINE LEARNING PARA PREVER O PREÇO MÉDIO
DOS CARROS

A) ESCOLHA AS VARIÁVEIS NUMÉRICAS (MODELOS DE REGRESSÃO) PARA SEREM AS
VARIÁVEIS INDEPENDENTES DO MODELO.A VARIÁVEL TARGET É AVG_PRICE.
OBSERVAÇÃO: CASO JULGUE NECESSÁRIO, FAÇA A TRANSFORMAÇÃO DE VARIÁVEIS
CATEGÓRICAS EM VARIÁVEIS NUMÉRICAS PARA INPUTAR NO MODELO. INDIQUE QUAIS
VARIÁVEIS FORAM TRANSFORMADAS E COMO FORAM TRANSFORMADAS

YEAR OF REFERENCE INT64
MONTH OF REFERENCE OBJECT
FIPE CODE OBJECT
AUTHENTICATION OBJECT
BRAND OBJECT
MODEL OBJECT
FUEL OBJECT
GEAR OBJECT
ENGINE SIZE OBJECT
YEAR MODEL INT64
AVG PRICE BRL INT64
DTYPE: OBJECT

«iconolr»wt
(«asaimcs

Medi* Preçc riâ C-*rrc»i X M.»rc.» x Tipo de tomh*»silvPl

YEAR OF REFERENCE MONTH OF REFERENCE FIPE CODE AUTHENTICATION BRAND \
0 2021 4 004001-0 CFZLCTZFWRCP 2
1 2021 4 004001-0 CDQWXWPW3Y2P 2
2 2021 4 004001-0 CB1T3XWWJ1XP 2
3 2021 4 004001-0 CB9GCT6J65R0 2
4 2021 4 004003-7 G15WG0GBZ1FX 2

MODEL FUEL GEAR ENGINE SIZE YEAR MODEL \
0 CORSA WIND 1.0 MPFI / EFI 2P 2 1 1 2002
1 CORSA WIND 1.0 MPFI / EFI 2P 2 1 1 2001
2 CORSA WIND 1.0 MPFI / EFI 2P 2 1 1 2000
3 CORSA WIND 1.0 MPFI / EFI 2P 0 1 1 2000
4 CORSA PICK-UP GL/ CHAMP 1.6 MPFI / EFI 2 1 1,6 2001

AVG_PRICE_BRL
0 9162
1 8832
2 8388
3 8453
4 12525

HISTOGRAMA: AVALIAÇÃO DA NORMALIDADE DOS DADOS - DADOS NUMÉRICO (NÃO
CATEGÓRICAS)

^roljelpipnre rnoMtli.oUefeieMce

14 0000
US090
100000

7SUUQ

50000

a 2 4 G B
qeat

10

i — 100 03 04 0* 08 10
avií piitc üil

ÍOÚOÚO
OCKIOQ
0000 0L

«figihe w -

GRÁFICOS DE CORRELAÇAO SPEARMAN E PEARSON
Mapa de Corre lação Spearm an

ye a r_o f_ re fe ren ce

m onth af re ference

brand

fuel

gear

engine 5ize

year_model

avg_price_brl

- 0.75

0.50

0.25

0.00

-0 -2 5

- -0 .50

-0 .7 5

-1 00

1! 5
Cl'

M apa de Corre lação Pearson

year_o f_ re fe rence

m o n th o f re fe re n ce -O 0 4 5

en g ln e _ slre

ycar_m ode l

av g_pnce_bri

Ki
o

£

-0 0 5 O 0 9

-O 0 5 -O 0 5 4

•0 0 0 -O 37

-0 .2 6 0 2 8

-0 37 -0 2 6

-0 3 -O 2 8

1 ■O 14 0 4 6

-0 .1 4 1 0 .5 6

0 .4 6 0 .5 6 1

§ s
*> EÇ 1
Oi in
6 £

!■c
K
3
í

B) CRIE PARTIÇÕES CONTENDO 75% DOS DADOS PARA TREINO E 25% PARA TESTE
151722 16072
151723 14692
151724 20068
151725 18692
151726 19197
151727 15332
151728 14191
151729 13390
151730 15387
151731 13589
NAME: AVG_PRICE_BRL, DTYPE: INT64

C) TREINE MODELOS RANDOMFOREST (BIBLIOTECA RANDOMFORESTREGRESSOR) E
XGBOOST (BIBLIOTECA XGBREGRESSOR) PARA PREDIÇÃO DOS PREÇOS DOS CARROS.
OBSERVAÇÃO: CASO JULGUE NECESSÁRIO, MUDE OS PARÂMETROS DOS MODELOS E
RODE NOVOS MODELOS. INDIQUE QUAIS PARÂMETROS FORAM INPUTADOS E INDIQUE O
TREINAMENTO DE CADA MODELO;
D) GRAVE OS VALORES PREDITOS EM VARIÁVEIS CRIADAS;
E) REALIZE A ANÁLISE DE IMPORTÂNCIA DAS VARIÁVEIS PARA ESTIMAR A VARIÁVEL
TARGET, PARA CADA MODELO TREINADO.

RANDOMFOREST

RANDOMFORESTREGRESSOR(N_ESTIMATORS=100, *, CRITERION=1SQUARED_ERROR1, MAX_DEPTH=NONE,
MIN_SAMPLES_SPLIT=2, MIN_SAMPLES_LEAF=1, MIN_WEIGHT_FRACTION_LEAF=0.0, MAX_FEATURES=1.0,
MAX_LEAF_N0DES=N0NE, MIN_IMPURITY_DECREASE=0.0, B00TSTRAP=TRUE, 00B_SC0RE=FALSE,
N_J0BS=N0NE, RAND0M_STATE=N0NE, VERBOSE=0, WARM_START=FALS E, CCP_ALPHA=0.0,
MAX_SAMPLES=NONE, M0N0T0NIC_CST=N0NE)

YEAR_OF_REFERENCE 0.008901
MONTH_OF_REFERENCE 0.001136

XGBOOST

XGBREGRESSOR(BASE_SCORE=0.5, B00STER='GBTREE', C0LSAMPLE_BYLEVEL=1, C0LSAMPLE_BYN0DE=1,
C0LSAMPLE_BYTREE=1, ENABLE_CATEGORICAL=FALS E, GAMMA=0, GPU_ID=-1, IMPORTANCE_TYPE=NONE,
INTERACTION_CONSTRAINTS=11, LEARNING_RATE=0.300000012, MAX_DELTA_STEP=0, MAX_DEPTH=32,
MIN_CHILD_WEIGHT=2, M0N0T0NE_C0NSTRAINTS='()', N_ESTIMATORS=100, N_J0BS=8,
NUM_PARALLEL_TREE=1, PREDICT0R=,AUT0', RAND0M_STATE=43, REG_ALPHA=0, REG_LAMBDA=1,
CALE_P0S_WEIGHT=1, SUBSAMPLE=1, TREE_METHOD='EXACT', VALIDATE_PARAMETERS=1,
VERB0SITY=N0NE)

IMPORTANCE
ENGINE_SIZE
YEAR MODEL

0.492073
0.426128
0.033441
0.024642
0.013679

FUEL
GEAR
BRAND

IMPORTANCE
ENGINE_SIZE
YEAR_MODEL
GEAR
FUEL
BRAND
YEAR_OF_REFERENCE
MONTH OF REFERENCE

0.387461
0.278951
0.132319
0.127812
0.038601
0.029185
0.005671

F) DÊ UMA BREVE EXPLICAÇÃO SOBRE OS RESULTADOS ENCONTRADOS NA ANÁLISE
DE IMPORTÂNCIA DE VARIÁVEIS

PARA RANDOMFOREST, A VARIÁVEL MAIS IMPORTANTE É O ENGINE_SIZE, SEGUIDO DE
YEAR_MODEL. AS VARIÁVEIS DE TIPO DE COMBUSTÍVEL (FUEL) E TIPO DE ENGRENAGEM
(GEAR) TIVERAM IMPORTÂNCIA BASTANTE TÍMIDAS.

NO MODELO XGBOOST OCORRERAM SEMELHANÇAS E FOI MAIS EQUILIBRADO, COM O
TAMANHO DO MOTOR (ENGINE_SIZE) E O ANO DO MODELO (YEAR_MODEL) SENDO AS
CARACTERÍSTICAS MAIS IMPORTANTES. VALE CONSIDERAR QUE A IMPORTÂNCIA
RELATIVA DAS VARIÁVEIS DE TIPO DE COMBUSTÍVEL (FUEL) E TIPO DE ENGRENAGEM
(GEAR) SÃO UM POUCO MELHORES EM COMPARAÇÃO COM O MODELO RANDOMFOREST.

G) ESCOLHA O MELHOR MODELO COM BASE NAS MÉTRICAS DE AVALIAÇÃO MSE, MAE
E R2;

RANDOMFOREST

MSE: 306618435.0
MAE: 7440.53
R2: 0.9

MELHOR MODELO COM MAIS EQUILÍBRIO ENTRE AS VARIÁVEIS SERIA XGBOOST

H) DÊ UMA BREVE EXPLICAÇÃO (MÁXIMO DE QUATRO LINHAS) SOBRE QUAL MODELO
GEROU O MELHOR RESULTADO E A MÉTRICA DE AVALIAÇÃO UTILIZADA.

CONCLUSÃO
COM BASE NAS MÉTRICAS DEMONSTRADA POR AMBOS MODELOS, VEMOS QUE A
SEMELHANÇA É MUITO PRÓXIMA, PORÉM O MODELO XGB OBTEVE UM VALOR MAIOR DE R2
E MSE BEM MENOR EM COMPARAÇÃO COM O RANDOMFOREST, LOGO, CONSIDERANDO A
MÉTRICA R2, O MODELO XGB É O ESCOLHIDO COM 96% DE ACURÁCIA.

VISUALIZAÇÃO DA RELAÇÃO DA PREDIÇÃO COM VALOR REAL - XGBOOST

Real
Predito

100000

Comparação entre valores reais e preditos

200 300
indice dos dados de teste

y i5oooo

APÊNDICE 3 - LINGUAGEM R

A - ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é

prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System)

consiste em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas

estão na região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro

visível) e duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0

correspondendo a preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m.

Cada imagem contém 2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de

uma cena, consistindo de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança

quadrada de pixels 3x3 completamente contida dentro da subárea 82x100. Cada linha contém os

valores de pixel nas quatro bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na

vizinhança de 3x3 e um número indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de

vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você

não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro

valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores

espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante,

com os pixels lidos em seqüência, da esquerda para a direita e de cima para baixo. Assim, os quatro

valores espectrais para o pixel central são dados pelos atributos 17 ,18 ,19 e 20. Se você quiser, pode

usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando

uma vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote mlbench e é completo (não possui dados

faltantes).

Tarefas:

1. Carregue a base de dados Satellite
2. Crie partições contendo 80% para treino e 20% para teste
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
4. Escolha o melhor modelo com base em suas matrizes de confusão.
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal

(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser

necessário abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas

árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com

estes dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em

regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o

modelo de Spurr é dado por:

Volume = bO + b l * dap2 * Ht

Onde dap é o diâmetro na altura do peito (l,3metros), Ht é a altura total. Tem-se vários

modelos alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de

regressão envolve aplicar os dados observados e encontrar bO e b l no modelo apresentado, gerando

assim uma equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de

aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasetsA/olumes.csv)
2. Eliminar a coluna NR, que só apresenta um número seqüencial
3. Criar partição de dados: treinamento 80%, teste 20%
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes

Neurais (neuralnet) e o modelo alométrico de SPURR

■ O modelo alométrico é dado por: Volume = bO + b l * dap2 * Ht

alom <- nls(VOL - bO + bl*DAP*DAP*HT, dados, start=list(b0=0.5, bl=0.5))

5. Efetue as predições nos dados de teste
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados

observados

■ Coeficiente de determinação: R2

n ^ 2
£ (y - y)

1 = 1 ___________________

71 - 2

£ (y - y)
í=i

http://www.razer.net.br/datasets/Volumes.csv

onde y t é o valor observado, y t é o valor predito e y é a média dos valores y t observados.

Quanto mais perto de 1 melhor é o modelo;

■ Erro padrão da estimativa: Syx

n—2

esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;

Syx%

s % = i - * 1 0 0
yx y

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

B - RESOLUÇÃO

01) Carregando a base de dados de Satellite 'data.trame': 6435 obs. of 5 variables:

Head:

x.17 x.18 x.19 x.20 classes

1 92 112 118 85 grey soil

2 84 103 104 81 grey soil

3 84 99 104 78 grey soil

4 84 99 104 81 grey soil

5 76 99 104 81 grey soil

6 76 99 108 85 grey soil

Sumário:

x.17 x.18

Min. : 40.00 Min. : 27.00

Is tQ u .: 60.00 ls t Qu.: 71.00

Median : 68.00 Median : 85.00

Mean : 69.05 Mean : 83.17

3rd Qu.: 79.00 3rd Qu.:103.00

Max. :104.00 Max. :130.00

02) Separando a base para dados de

Treino:

'data.frame': 5151 obs. of 5 variables:

Head:

x.19

Min. : 50.00

ls t Qu.: 85.00

x.20

Min. : 29.0

ls t Qu.: 69.0

Median :100.00 Median : 81.0

Mean : 99.15 Mean : 82.6

3rd Qu.:113.00

Max. :145.00

3rd Qu.: 92.0

Max. :157.0

classes

red soil :1533

cotton crop : 703

grey soil :1358

damp grey s o i l : 626

vegetation_stubble: 707

very damp grey soil:1508

treino(80%) e de teste (20%)

x.17 x.18 x.19 x.20 classes

1 92 112 118 85 grey soil

2 84 103 104 81 grey soil

4 84 99 104 81 grey soil

6 76 99 108 85 grey soil

7 80 112 118 88 grey soil

8 80 107 113 85 grey soil

Teste:

'data.frame': 1284 obs. of 5 variables:

Head:

x.17 x.18 x.19 x.20 classes

3 84 99 104 78 grey soil

5 76 99 104 81 grey soil

12 76 87 91 67 damp grey soil

22 88 99 104 85 grey soil

35 88 99 104 85 grey soil

36 84 103 108 85 grey soil

03) Treinando os dados com os modelos RandomForest, SVM e RNA para

predição.

> # RNA

> model_nnet<-train(classes ,data=satelite_treino,method="nnet",trace=FALSE,

linout=T)

> predictions_nnet <- predict(model_nnet, satelite_teste)

> # Random Forest

> model_rf <- train(classes data=satelite_treino, method="rf")

> predictions_rf <- predict(model_rf, satelite_teste)

> # SVM

> model_svm <- train(classes data=satelite_treino, method="svmRadial")

> predictions_svm <- predict(model_svm, satelite_teste)

04) Escolhendo o melhor modelo com base em suas matrizes de confusão
Confusion Matrix and Statistics (NNET)

Reference

Prediction red_soil cotton_crop grey_soil damp_grey_soil vegetation_stubble very_damp_grey_soil

red_soil 288 3 5 4 12 0

cotton crop 2 121 0 0 7 0

grey soil 8 0 260 62 2 32

damp grey soil 0 0 0 0 0 0

vegetation stubble 8 13 0 3 106 15

very damp grey soil 0 3 6 56 14 254

Overall Statistics

Accuracy : 0.8014 95% Cl : (0.7785, 0.8229)

No Information Rate : 0.2383

P-Value [Acc > NIR] : < 0.00000000000000022

Kappa : 0.7511 Mcnemar's Test P-Value : NA

Confusion Matrix and Statistics (Random Forest)

Reference

Prediction red_soil cotton_crop grey_soil damp_grey_soil vegetation_stubble very_damp_grey_soil

red soil 296 1 5 2 9 0

cotton crop 0 123 0 0 1 1

grey soil 3 0 239 29 1 10

damp grey soil 1 0 21 64 2 42

vegetation stubble 6 10 0 0 121 8

very damp grey soil 0 6 6 30 7 240

Overall Statistics

Accuracy : 0.8435 95% Cl : (0.8224, 0.8629)

No Information Rate : 0.2383

P-Value [Acc > NIR] : < 0.00000000000000022

Kappa : 0.8067 Mcnemar's Test P-Value : NA

Confusion Matrix and Statistics (SVM)

Reference

Prediction red_soil cotton_crop grey_soil damp_grey_soil vegetation_stubble very_damp_grey_soil

red soil 299 1 4 2 7 0

cotton crop 1 120 0 0 4 0

grey soil 4 0 260 29 1 12

damp grey soil 0 1 7 70 2 34

vegetation stubble 2 14 0 2 117 3

very damp grey soil 0 4 0 22 10 252

Overall Statistics

Accuracy : 0.8707 95% Cl : (0.8511, 0.8886)

No Information Rate : 0.2383

P-Value [Acc > NIR] : < 0.00000000000000022

Kappa : 0.84 Mcnemar's Test P-Value : NA

05) Indique qual modelo dá o melhor o resultado e a métrica utilizada

Modelo SVM obteve acurácia de 87.07%

2.1) Carga de dados Volumes.csv

> h e a d (d a d o s _ v o lu m e s)

NR DAP HT HP VOL

1 1 34.0 27.00 1.80 0.8971441

2 2 41.5 27.95 2.75 1.6204441

3 3 29.6 26.35 1.15 0.8008181

4 4 34.3 27.15 1.95 1.0791682

5 5 34.5 26.20 1.00 0.9801112

6 6 29.9 27.10 1.90 0.9067022

2.2) Eliminando a coluna NR, que apresenta apenas números seqüenciais.

> dados_volumes$NR <- NULL

> head(dados_volumes)

DAP HT HP VOL

1 34.0 27.00 1.80 0.8971441

2 41.5 27.95 2.75 1.6204441

3 29.6 26.35 1.15 0.8008181

4 34.3 27.15 1.95 1.0791682

5 34.5 26.20 1.00 0.9801112

6 29.9 27.10 1.90 0.9067022

2.3) Separando a base de dados em base de treino e base de teste

Treino:

'data.frame1: 80 obs. of 4 variables:

$ DAP: num 34 41.5 29.6 34.5 29.9 29.5 36.3 32.5 28.9 32.6 ...

$ HT : num 27 27.9 26.4 26.2 27.1 ...

$ HP : num 1.8 2.75 1.15 1 1.9 2.4 1.8 1.45 2.65 2.5 ...

$ VOL: num 0.897 1.62 0.801 0.98 0.907 ...

Teste:

'data.frame1: 20 obs. of 4 variables:

$ DAP: num 34.3 28.4 36.3 33.6 34.5 42.6 31.5 27.5 33 36.5 ...

$ HT : num 27.1 25.4 26.7 25.1 27.3 ...

$ HP : num 1.95 2.3 1.5 2 2.1 3.4 2.6 2.2 1.3 1.75 ...

$ VOL: num 1.079 0.773 1.387 0.967 1.236 ...

2.4) Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM

(svmRadial), Redes Neurais (neuralnet/NNET) e o modelo alométrico de SPURR

2.4.a) Modelo Randow Forest

model_rf_volume <- caret::train(V0L~., data=dados_volumes_treino, method="rf")

mtry RMSE Rsquared MAE

2 0.1664953 0.8472658 0.1278774

3 0.1589899 0.8524354 0.1228492

2.4.b) Modelo SVM

model_svm_volume <- caret::train(V0L~., data=dados_volumes_treino, method="svmRadial")

C RMSE Rsquared MAE

0.25 0.3090099 0.5444742 0.2098011

0.50 0.2817418 0.6120694 0.1937495

1.00 0.2578169 0.6651132 0.1809169

2.4.c) Modelo Redes Neurais

model_rn_volume<-caret::train(V0L~.,data=dados_volumes_treino, method="nnet", linout=TRUE)

iter 90 value 2.271030

iter 100 value 2.269182

final value 2.269182

stopped after 100 iterations

2.4.d) Modelo Alométrico de SPURR

» alom <- nls(V0L ~ b0 + bl*DAP*DAP*HT, dados, start=list(b0=0.5, bl=0.5))

alom <- nls(

VOL ~ b0 + bl*DAP*DAP*HT,

dados_volumes_treino,

start=list(b0=0.5, bl=0.5)

)
model_spurr_volume <- alom

2.5) Efetue as predições nos dados de teste

5.a) Predição para o modelo rf

predicao_rf_volume <- predict(model_rf_volume, dados_volumes_teste)

unique(predicao_rf_volume)

[1] 1.1969689 0.8224443 1.3217340 1.2158075 1.2129261 1.7710853 1.0655016 0.8171106 1.1375637 1.3264883 1.6379562

1.1764377

2.2178678

[14] 1.1453579 0.8261701 1.1847082 1.4703531 1.1409063 1.6598771 1.7580410

5.b) Predição para o modelo SVM

predicao_svm_volume <- predict(model_svm_volume, dados_volumes_teste)

unique(predicao_svm_volume)

[1] 1.2293364 0.8775180 1.3264398 1.2834004 1.2392926 1.9908587 1.0327566 0.8837195 1.1095961 1.5455772 1.6402291

1.2419872

1.6782950

[14] 1.1808122 1.3579021 1.2861189 1.4348539 0.9977521 1.6567754 1.7076424

5.c) Predição para o modelo Rede Neural

predicao_rn_volume <- predict(model_rn_volume, dados_volumes_teste)

unique(predicao_rn_volume)

[1] 1.1927518 0.8815652 1.3081312 1.2327408 1.2093461 1.8736070 1.1062966 0.8124909 1.1778419 1.4300070 1.5839437

1.2016388 2.0594623

[14] 1.2089814 1.0376702 1.3059925 1.3973667 0.9895347 1.6342365 1.7425025

5.d) Predição para o modelo Alométrico SPURR

predicao_spurr_volume <- predict(model_spurr_volume, dados_volumes_teste)

unique(predicao_spurr_volume)

[1] 1.2580293 0.8177997 1.3825694 1.1194932 1.2792479 1.8786676 1.0105002 0.7657835 1.0516512 1.3027902 1.7293094

1.2655252 2.0811068

[14] 1.0742044 0.7930147 1.2197827 1.5055969 1.0545348 1.5894885 2.0130206

2.6) Crie suas próprias funções (UDF) e calcule as seguintes métricas entre

a predição e os dados observados

Funções R2, Syx, SyxPerc:

R2 <- function (Y_real, Y_pred){

return (1 - (sum((Y_real - Y_pred)A2))/ (sum((Y_real - mean(Y_real))A2)))

}
Syx <- function (Y_real, Y_pred){

return (sqrt(sum((Y_real - Y_pred)A2)/(length(Y_real) - 2)))

}
SyxPerc <- function (Y_real, Y_pred){

return (Syx(Y_real, Y_pred)/mean(Y_real) * 100)

}

a - RMSE:

rmse rf: 0.1604969

rmse rn: 0.1116153

rmse svm: 0.1987083

rmse spurr: 0.1221683

b - Métrica R2:

r2 rf: 0.8052392

r2 rn: 0.9306231

r2 svm: 0.6448999

r2 spurr: 0.9250578

c - Métrica Syx:

Syx rf: 0.1691786

Syx rn: 0.1176529

Syx svm: 0.2094569

Syx spurr: 0.1287766

d - Métrica Syx percentual:

Syx percentual rf: 12.92659

Syx percentual rn: 8.784697

Syx percentual svm: 16.01954

Syx percentual spurr: 9.578796

7) Escolha do melhor modelo.

Considerando todas as métricas calculadas o modelo NNET (Redes Neurais) obteve o

melhor resultado em todas elas.

RMSE:

rmse rn: 0.1116153

Métrica R2:

r2 rn: 0.9306231

Métrica Syx:

Syx rn: 0.1176529

Métrica Syx percentual:

Syx percentual rn: 8.784697

APÊNDICE 4 - ESTATÍSTICA APLICADA I

A - ENUNCIADO

1) Gráficos e tabelas

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa)

e “husage” (idade do marido) e comparar os resultados

(15 pontos) Elaborar a tabela de frequências das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

2) Medidas de posição e dispersão

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

(15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age”

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

3) Testes paramétricos ou não paramétricos

(40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do

marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:

Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique

sua resposta sobre a escolha.

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes

citados no item 1 acima.

B - RESOLUÇÃO

1 - GRÁFICOS E TABELAS

l.a) Elaborar os gráficos box-plot e histograma das variáveis "age"(idade da esposa) e "husage"

(idade do marido)

Idade da Esposa

K

H is to g ra m a - Id ad e da

C. 04

/ \
/ \

/ \
/ \

/ \
/ \

/ \
/ \

/ \
/ \

/ N
/ \

/ \
✓ >✓

idaoe do Marido

n

Hlstograma - Idade do Marido

idAde

l.b) Criar tabelas de frequência para as variáveis "age" e "husage"

Tabela de Frequência da Esposa:

Class limits f rf rf(%) cf cf(%)

[17.82,20.804) 61 0.01 1.08 61 1.08

[20.804,23.787) 161 0.03 2.86 222 3.94

[23.787,26.771) 312 0.06 5.54 534 9.48

[26.771,29.754) 505 0.09 8.96 1039 18.44

[29.754,32.738) 562 0.10 9.98 1601 28.42

[32.738,35.721) 571 0.10 10.13 2172 38.55

[35.721,38.705) 624 0.11 11.08 2796 49.63

[38.705,41.689) 510 0.09 9.05 3306 58.68

[41.689,44.672) 542 0.10 9.62 3848 68.30

[44.672,47.656) 432 0.08 7.67 4280 75.97

[47.656,50.639) 389 0.07 6.90 4669 82.87

[50.639,53.623) 358 0.06 6.35 5027 89.23

[53.623,56.606) 304 0.05 5.40 5331 94.62

[56.606,59.59) 303 0.05 5.38 5634 100.00

Tabela de Frequência do Marido:

Class limits f rf rf(%) cf cf(%)

[18.81,23.671) 102 0.02 1.81 102 1.81

[23.671,28.531) 466 0.08 8.27 568 10.08

[28.531,33.392) 809 0.14 14.36 1377 24.44

[33.392,38.253) 895 0.16 15.89 2272 40.33

[38.253,43.114) 917 0.16 16.28 3189 56.60

[43.114,47.974) 629 0.11 11.16 3818 67.77

[47.974,52.835) 649 0.12 11.52 4467 79.29

[52.835,57.696) 541 0.10 9.60 5008 88.89

[57.696,62.556) 394 0.07 6.99 5402 95.88

[62.556,67.417) 152 0.03 2.70 5554 98.58

[67.417,72.278) 51 0.01 0.91 5605 99.49

[72.278,77.139) 21 0.00 0.37 5626 99.86

[77.139,81.999) 6 0.00 0.11 5632 99.96

[81.999,86.86) 2 0.00 0.04 5634 100.00

Seção 2: Medidas de posição e dispersão

2.a) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados

[1] "Média da Idade da Esposa:"

> media_age

[1] 39.42758

[1] "Mediana da Idade da Esposa:"

> mediana_age

[1] 39

[1] "Moda da Idade da Esposa:"

> moda_age

[1] 37

[1] "Média da Idade do Marido:"

> media_husage

[1] 42.45296

[1] "Mediana da Idade do Marido:"

> mediana_husage

[1] 41

[1] "Moda da Idade do Marido:"

> moda_husage

[1] 44

2.b) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age”

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

[1] "Variância da Idade da Esposa:"

> variancia_age

[1] 99.75234

[1] "Desvio Padrão da Idade da Esposa:"

> desvio_padrao_age

[1] 9.98761

[1] "Coeficiente de Variação para a Idade da Esposa:"

> coeficiente_variacao_age

[1] 25.33153

[1] "Variância da Idade do Marido:"

> variancia_husage

[1] 126.0717

[1] "Desvio Padrão da Idade do Marido:"

> desvio_padrao_husage

[1] 11.22817

[1] "Coeficiente de Variação para a Idade do Marido:"

> coeficiente_variacao_husage

[1] 26.44849

Seção 3: Testes paramétricos ou não paramétricos

Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se você

escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do marido)

são iguais, construir os intervalos de confiança e comparar os resultados.

Data Frame Head

grupo idade

1 Esposa 43

2 Esposa 26

3 Esposa 49

4 Esposa 35

5 Esposa 43

6 Esposa 58

summaryO

grupo idade

Length:11268 Min. :18.00

Class :character ls t Qu.: 33.00

Mode :character Median : 40.00

Mean : 40.94

3rd Qu.: 49.00

Max. : 86.00

lillie.test - Lilliefors (Kolmogorov-Smirnov) normality test

data: idade_emp$idade

D = 0.060083, p-value < 0.00000000000000022

C om o p-va lue é m enor do que 0.05, o teste que será adequado é o: M ann-W hitney U

Distribuição das idades

Primeiro teste: Se a idade mediana dos maridos é igual à das esposas

wilcox.test

Wilcoxon rank sum test with continuity correction

data: idade by grupo

W = 13619912, p-value < 0.00000000000000022 (< 0.05)

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-3.000024 -2.000033

sample estimates:

difference in location

-2.999966

Rejeitamos a hipótese nula pois a idade mediana dos maridos não é

igual à das esposas.

Segundo teste: se a idade mediana dos maridos é menor que a das

esposas

wilcox.test

Wilcoxon rank sum test with continuity correction

data: idade by grupo

W = 13619912, p-value < 0.00000000000000022 (< 0.05)

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -2.000046

sample estimates:

difference in location

-2.999966

Rejeitamos a hipótese nula pois a idade mediana dos maridos não

é menor que a das esposas.

Terceiro teste: se a idade mediana dos maridos é maior que a das

esposas

wilcox.test

Wilcoxon rank sum test with continuity correction

data: idade by grupo

W = 13619912, p-value = 1 (> 0.05)

alternative hypothesis: true location shift is greater than 0

95 percent confidence interval:

-3.000034 Inf

sample estimates:

difference in location

-2.999966

Aceitamos a hipótese nula pois a idade mediana dos maridos é

maior que a das esposas.

APÊNDICE 5 - ESTATÍSTICA APLICADA II

A - ENUNCIADO

Regressões Ridge, Lasso e ElasticNet

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente

“Iwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de

dados são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No

pdf você deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e

R2) e concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de

confiança para os seguintes valores:

husage = 40 (anos - idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidgeô = 1 (possui filhos maiores de 6 anos)

age = 38 (anos - idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

kidltô = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “Iwage” já está em logaritmo, portanto voçê não

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para

obter o resultado da predição.

V
ar

iá
ve

l

B - RESOLUÇÃO

Correlação das variáveis com Iwage

educ-

husearns-

huseduc-

unon-

agc-

husage-

husunion-

hushrs-

exper-

Kidll6*

husbick-

black-

kidge6 *

hushisp-

hispamc-

q % A ^ wCr* O
Correlação

Correlação com Iwage

O

O
•fO
o

o>t
o
O

CO
o

CNJ
O

q
o n □

□
husage huseduc hushrs age educ union kidlt6

Variáveis

<* * W -

ioq

QQ-plot dos Resíduos

0.012

h

f i
4 8

§
<3

0.000

Quanlis Teóricos
' ' c d

Treinamos o modelo

elastic_reg <- train(lwage ~ husage+
husunion+
husearns+
huseduc+
husblck+
hushisp+
hushrs+
kidge6+
age+
black+
educ+
hispanic+
union+
exper+
kidlt6,
data = train_elastic,
nethod = "glmnet",
tuneLength = 10,
trControl = train_cont)

O melhor parametro alpha escolhido é:
elastic_reg$bestTune
alpha lambda
5 0.3660426 0.01991327

Agora fazemos as predicoes e avaliamos a performance
predictions_train <- predict(elastic_reg, x_train_elastic)

Calculamos o FT2 dos valores verdadeiros e preditos conforme a seguinte função:
eval_results <- function(true, predicted, df) {

SSE <- sum((predicted - true)~2)
SST <- sum((true - mean(true))~2)
R_square <- 1 - SSE / SST
RMSE = sqrt(SSE/nrow(df))
As métricas de performace do modelo:
data.frame(

RMSE = RMSE,
Rsquare = R_square

)
}

Observamos as métricas de performance na base de treinamento
rmse_r2_elastic_trein <- eval_results(y_train_elastic, predictions_train, train_elastic)
rmse_r2_elastic_trein

RMSE Rsquare
1 0.8474519 0.2814763

Fazemos as predições na base de teste
predictions_test_elastic <- predict(elastic_reg, x_test_elastic)

Observamos as métricas de performance na base de teste:
rmse_r2_elastic_test <- eval_results(y_test_elastic, predictions_test_elastic,
test_elastic)
rmse_r2_elastic_test

RMSE Rsquare
1 0.867134 0.2360335
Construimos uma matriz de dados para a predição
our_pred_elastic = data.frame(husage = husage,
husearns = husearns,
huseduc = huseduc,
hushrs = hushrs,

age = age,
educ = educ,
exper = exper,
husunion = husunion,
husblck = husblck,
hushisp = hushisp,
kidge6 = kidge6,
#earns = earns,
hispanic = hispanic,
black = black,
union = union,
kidlt6 = kidlt6)

Fazemos a prediçãoo com base nos parâmetros que selecionamos
predict_our_elastic <- predict(elastic_reg,our_pred_elastic)
predict_our_elastic
[1] -0.1773049

Revertemos o resultado q esta padronizado para o real
wage_pred_elastic=(predict_our_elastic*

pre_proc_val[["std"]][["Iwage"]])+
pre_proc_val[["mean"]][["Iwage"]]

wage_pred_elastic
[1] 9.236578

Então o salário-hora da esposa predito com base
nas características informadas e US$ 9.24

Criamos o intervalo de confiança:
n <- nrow(train_elastic)
m <- wage_pred_elastic
s <- pre_proc_val[["std"]][["Iwage"]]
dam <- s/sqrt(n)
CIlwr_elastic <- m + (qnorm(0.025))*dam
CIupr_elastic <- m - (qnorm(0.025))*dam

Os valores mínimo e máximo são:
Cllwr_elastic
[1] 8.976024
Clupr_elastic
[1] 9.497133

O modelo preve que o salário-hora da esposa é de 9.24 e pode variar entre 8.98 e 9.50
Resultados das regressões
resultados_mse <- data.frame(

Modelo = c("Ridge", "Lasso", "Elastic Net"),
RMSE=c(rmse_r2_ridge_trein$RMSE,
rmse_r2_lasso_trein$RMSE,
rmse_r2_elastic_trein$RMSE)

)
resultados_r2 <- data.frame(Modelo = c("Ridge", "Lasso", "Elastic Net"),

R_squared = c(rnse_r2_ridge_trein$Rsquare,
rmse_r2_lasso_trein$Rsquare,
rnse_r2_elastic_trein$Rsquare)

)
print(resultados_rmse)
Modelo RMSE
1 Ridge 0.001177862
2 Lasso 0.848609851
3 Elastic Net 0.847451884

print(resultados_r2)
Modelo R_squared
1 Ridge 0.9999986
2 Lasso 0.2795114

3 Elastic Net 0.2814763

CONCLUSÃO DOS RESULTADOS :
Observamos que o modelo que gerou menos resíduos e teve uma melhor métrica de avaliação
dos resultados foi o MODELO DE REGRESSÃO RIDGE.
E que o valor do salário hora PREDITO da esposa é US$10.26 e
pode variar entre US$10.01 e US$10.53

APÊNDICE 6 - ARQUITETURA DE DADOS

A - ENUNCIADO

1 Construção de Características: Identificador automático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções

para calcular as diferentes características para o problema da identificação da língua do texto de

entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Júpiter, em que deverá exportar o

notebook e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com

origem na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de

90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).

B - RESOLUÇÃO

1 Construção de Características: Identificador automático de idioma

import random

pre_padroes = []
for frase in ingles:

pre_padroes.append([frase, 'inglês'])
for frase in espanhol:

pre_padroes.append([frase, 'espanhol'])
for frase in português:

pre_padroes.append([frase, 'português'])

random.shuffle(pre_padroes)
print(pre_padroes)

import pandas as pd
dados = pd.DataFrame(pre_padroes, columns=['Frase', 'Idioma'])
dados

import re #REGEX LIBRARY
import numpy as np

def tamanhoMedioFrases(texto):
palavras = re.findall(r'\b\w+\b', texto) # Palavras dentro da frase digitada

primeiras_palavras = palavras[:5]
tamanhos = [len(s) for s in palavras]
return (sum(tamanhos) / len(tamanhos)) if len(tamanhos) > 0 else 0 # Evita divisão

por zero

def contaCaracteristicas(texto):
texto = texto.lowerQ
vogais = "eiouáéíóúãõâêiôüàèiòüãèiõü"
consoantes = "bcdfghjklmnpqrstvwxyz"
letras_espanhol = '£;Iinü'
letras_portugues = 'çáãêõü'
letras_ingles = "wkyh1"

num_vogais = sum(l for char in texto if char in vogais)
num_consoantes = sum(l for char in texto if char in consoantes)
num_letras_espanhol = sum(l for char in texto if char in letras_espanhol)
num_letras_portugues = sum(l for char in texto if char in letras_portugues)
num_letras_ingles = sum(l for char in texto if char in letras_ingles)

palavras_comuns_ingles = {'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'i ',
' g h ', 'th', 'has', 'long', 'little', 'good','new', 'same', 'right', 'different', 'old',
'great', 'small', 'big', 'own', 'last','left', 'large', 'important', 'enough','second',
'first', 'well', 'next', 'live', 'high', 'following', 'used', 'even', 'is','was', 'are',
'be', 'had', 'were','can', 'said', 'do', 'will', 'would', 'has', 'could', 'make', 'been',
'did', 'find', 'use', 'know', 'get', 'go', 'write','look', 'think', 'carne', 'come',
'must', 'does', 'put', 'went', 'tell', 'say', 'should', 'give', 'read', 'might', 'saw',
'asked', "don't", 'going', 'want', 'keep', 'took', 'began', 'got', 'need', 'let',
'being', 'see', 'made', 'may', 'take','found ', 'set', 'looked', 'study', 'called', 'you',
' i t ', 'h e ', 'they', 'this', 'I', 'what', 'ali', 'we', 'which', ' each','them', 'she',
'some', 'these', 'who', 'me', 'another', 'us', 'something', 'both', 'those', 'the', 'a',
'his', 'an','your', 'their', 'other', 'more', 'him', 'its', 'my', 'much', 'our', 'any',
'such', 'every', 'many', 'as', 'of', 'to','in', 'for', 'on', 'with', 'a t ', 'from',
'by','about', 'into', 'like', 'after', 'through', 'before', 'under', ' along','until',
'without', 'between','and', 'or', 'but', 'if', 'than', 'because', 'while','when ', 'how',
' up', 'out', 'then','so', 'no', 'not', 'now', 'over', 'down', 'only', 'very', 'just',
'where', 'most', 'too', 'also', 'around', 'here', 'why','away', 'again', 'off', 'still',
'never', 'below', 'always', 'often', 'together', 'once', 'sometimes', 'above',
'almost','far', 'back','one', 'two', 'three', 'few', 'four'}

palavras_comuns_espanhol = ' i ' , '11', ' n ', 'aire', 'su', 'eres', 'es', 'uste'
'una', 't ú ', 'de', 'l a ', 'que', 'el', 'en', 'em','y', 'a', 'los', 'hay', 'sin', 'dei'
'se', 'oi', 'tus', 'solo', '11a', 'me', 'mi', 'ast', 'bie', 'ciu', 'cosa', 'nol',

'eje', 'tán', 'fue', 'ha1, 'hacer1, 'hecho1, 'hizo1, 'haz1, 'hoy1, 'mej1, 'nien1,
1ción1,1yec1,1quie1,1gún1,1bién1,1tiem1,1pero1, 1acción1,1acuerdo1,1además1,1agua1, 1ahora1,
1 ano1, 1aunque1,1 bajo1, 1bien1, 1zca1, 1acción1,1acuerdo1,1además1,1agua1, 1ahora1,1 ano1,1aunqu
e 1,1 bajo1, 1bien1, 1cabeza1,1calidad1,1 cambio1, 1 centro1,1 cosa 1,1cuando1, 1cuenta1,1cuerpo1, 1D
ecir1, 1derecho1, 1desarrollo1, 1dice1,1dicho1,1 donde1, 1espanol1,1están1, 1estaba1,1Familia1, 1
Fin1, 1 final1,1 Frente1, 1ron1, 1 general1,1 gente1,1había1,1hemos1,1hacer1, 1hecho1,1hizo1,1haci
a 1,1 hasta1, 1 historia 1, 1hombre1,1 incluso1, 1 lado1,1ley1,1llegar1,1 lograr 1,1luego1,1 madre1, 1m
a l 1, 1manera1,1 mano1,1mayoría1,1medio1,1mejo1 ministro1,1mismo1,1 mujer1, 1muy1, 1mucho1,1nacio
nal1, 1 nada 1,1nadie1,1nivel1, 11, 1nuevo1, 1 nunca’, 1 padre1,1palabras1,1 parece1,1 partido1,1part
ir 1, 1pasado1,1pero1,1personochenas1,1 poder 1,1 programa 1,1propio1, 1proyecto1,1pueden1,1pues1
, 1punto1,1quiere1, 1realidad1,1relación1,1 semana 1,1 sentido1,1 ser1,1sea1,1 será 1, 1 sistema 1, 1s
ituación1, 1 social1,1sociedad1,1también1,1tiempo1,1tierra1, 1 tipo1, 1 todo1,1trabajo1, 1 uno1, 1v
a 1,1 ver 1,1 vida 1, 'crees', 1vacaciones1}

palavras_comuns_portugues = {'do1, 'da', 'em', 'um', 'para', 'n h ', 'I h ', 'qua', ' d i ',
'd u ','j e ','último','próprio','haver','fazer','dar','ficar','poder','ver','coisa',' casa', ' t
empo','ano','vez','homem','senhor','senhora','moço','moça','não','mais','muito','j á ','quan
d o ','mesmo','primeiro','cem','mil','com','até','o u ','também','assim','como','porque','e u ',
'você','ele','esse','isso','sua','A i !','A h !','A u !','U i ! ','Hum!'}

palavras = re.findall(r'\b\w+\b', texto)
num_palavras_ingles = sum(l for palavra in palavras if palavra in palavras_comuns_ingles)
num_palavras_espanhol = sum(l for palavra in palavras if palavra in
palavras_comuns_espanhol)
num_palavras_portugues = sum(l for palavra in palavras if palavra in
palavras_comuns_portugues)
return num_vogais,num_consoantes,num_letras_espanhol,num_letras_portugues,
num_letras_ingles, num_palavras_ingles, num_palavras_espanhol, num_palavras_portugues

palavras = re.findall(r'\b\w+\b', texto)
num_palavras_ingles = sum(l for palavra in palavras if palavra in palavras_comuns_ingles)
num_palavras_espanhol = sum(l for palavra in palavras if palavra in
palavras_comuns_espanhol)
num_palavras_portugues = sum(l for palavra in palavras if palavra in
palavras_comuns_portugues)
return num_vogais,num_consoantes,num_letras_espanhol,num_letras_portugues,
num_letras_ingles, num_palavras_ingles,num_palavras_espanhol, num_palavras_portugues

def extraiCaracteristicas(frase):
texto = frase[0]
pattern_regex = re.compile('[A\w+]', re.UNICODE)
texto = re.sub(pattern_regex, ' ', texto)

num_vogais, num_consoantes, num_letras_espanhol, num_letras_portugues,
num_letras_ingles, num_palavras_ingles, num_palavras_espanhol,
num_palavras_portugues = contaCaracteristicas(texto)

caracteristical = tamanhoMedioFrases(texto)

padrao=[caracteristical, num_vogais, num_consoantes, num_letras_espanhol,
num_letras_portugues, num_letras_ingles, num_palavras_ingles,
num_palavras_espanhol, num_palavras_portugues, frase[l]]

return padrao

def geraPadroes(frases):
padrões = []
for frase in frases:

padrao = extraiCaracteristicas(frase)
padrões.append(padrao)

return padrões

converte o formato [frase classe] em características
padrões = geraPadroes(pre_padroes)

apenas para visualizacao
print(padroes)

dados = pd.DataFrame(padroes)
dados[0] = np.where(dados[9] == 'português1, ((dados[0])+l)/2, dados[0])

dados.head(60)

[[5.8, 13, 15, 2, 0, 1, 0, 1, 0, 'espanhol'], [5.0, 9, 14, 1, 0, 0, 0, 0, 0,
'espanhol'], [4.2, 7, 10, 1, 1, 0, 1, 0, 0, 'português'], [4.4, 8, 11, 2, 1, 0,
0, 1, 0, 'espanhol'], [3.8333333333333335, 11, 12, 2, 0, 1, 4, 0, 0, 'inglês'],
[3.3333333333333335, 5, 14, 2, 0, 2, 3, 0, 0, 'inglês'], [3.2, 4, 8, 0, 0, 0, 1,
1, 1, 'espanhol'], [4.2, 9, 12, 5, 0, 1, 3, 0, 0, 'inglês'], [4.333333333333333,
5, 7, 0, 1, 1, 0, 0, 0, 'espanhol'], [3.6666666666666665, 8, 14, 2, 0, 1, 3, 0,
0, 'inglês'], [3.142857142857143, 7, 11, 1, 0, 0, 1, 2, 0, 'espanhol'], [3.0, 4,
7, 3, 0, 2, 3, 0, 0, 'inglês' ... continua

Treinando o modelo com SVM

Acurácia nos dados de treinamento: 86.96%
[[19 0 3]
[2 21 0]
[4 0 20]]

precision recall fl-score support
espanhol 0.76 0.86 0.81 22
inglês 1.00 0.91 0.95 23
português 0.87 0.83 0.85 24

accuracy 0.87 69
macro avg 0.88 0.87 0.87 69
weighted avg 0.88 0.87 0.87 69

Acurácia nos dados de teste: 86.96%
métricas mais confiáveis
[[6 0 2]
[0 6 1]
[0 0 8]]

precision recall fl-score support
espanhol 1.00 0.75 0.86 8
inglês 1.00 0.86 0.92 7
português 0.73 1.00 0.84 8

accuracy 0.87 23
macro avg 0.91 0.87 0.87 23
weighted avg 0.91 0.87 0.87 23

texto = input('Digite o texto a ser classificado pelo Modelo: ')
texto_vetor = [texto, '0']

print(texto[2])

Extraimos as características do texto de exemplo
caracteristicas_texto = extraiCaracteristicas(texto_vetor)

print(caracteristicas_texto)

Removemos a última característica que é o rótulo '0'
caracteristicas_texto = caracteristicas_texto[:-1]
print(caracteristicas_texto)

Usamos o modelo treinado para prever o idioma do texto
idioma_predito = modelo.predict([caracteristicas_texto])
print("0 texto foi classificado como:", idioma_predito[0])

Digite o texto a ser classificado pelo Modelo: celebrating the birthday of a person

[5.166666666666667, 8, 20, 2, 0, 3, 3, 1, 0, '0']
[5.166666666666667, 8, 20, 2, 0, 3, 3, 1, 0]

O texto foi classificado como: inglês

Nos parece que existe prevalência de frases reconhecidas como em Português devido ao fato do
tamanho da frase ser uma característica. Quando frases menor em espanhol são digitadas, são
reconhecidas como Espanhol corretamente, mas se adicionar termos/palavras em espanhol, aumen­
tando o tamanho do texto, é reconhecido como Português. A característica TAMANHO do texto
parace que tem peso maior no modelo apresentado.

2 Melhore uma base de dados ruim

uri = 1https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data1

Nomes das colunas, conforme descrito na página do dataset
column_names = ["word_freq_make", "word_freq_address", "word_freq_all",
"word_freq_3d", "word_freq_our",
"word_freq_over", "word_freq_remove",
"word_freq_internet", "word_freq_order", "word_freq_mail",
"word_freq_receive", "word_freq_will",
"word_freq_people", "word_freq_report", "word_freq_addresses",
"word_freq_free", "word_freq_business",
"word_freq_email", "word_freq_you", "word_freq_credit",
"word_freq_your", "word_freq_font",
"word_freq_000", "word_freq_money", "word_freq_hp",
"word_freq_hpl", "word_freq_george",
"word_freq_650", "word_freq_lab", "word_freq_labs",
"word_freq_telnet", "word_freq_857",
"word_freq_data", "word_freq_415", "word_freq_85",
"word_freq_technology", "word_freq_1999",
"word_freq_parts", "word_freq_pm", "word_freq_direct",
"word_freq_cs", "word_freq_meeting",
"word_freq_original", "word_freq_project", "word_freq_re",
"word_freq_edu", "word_freq_table",
"word_freq_conference", "char_freq_;", "char_freq_(",
"char_freq_[", "char_freq_!", "char_freq_$",
"char_freq_#", "capital_run_length_average",
"capital_run_length_longest",
"capital_run_length_total", "class"]

Carregar o dataset diretamente da URL
data = pd.read_csv(url, header=None, names=column_names)

from ucimlrepo import fetch_ucirepo

Obtem o dataset da UCI - ID 94
spambase = fetch_ucirepo(id=94)
Data (as pandas dataframes)
X = spambase.data.features #CARACTERÍSTICAS
y = spambase.data.targets #CLASSE

metadata
print(spambase.metadata)

variable information
print(spambase.variables)

name role type demographic\
0 word_freq_make Feature Continuous None
1 word_freq_address Feature Continuous None

https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data'

2 word_freq_all Feature Continuous None
3 word_freq_3d Feature Continuous None

... continua

características = pd.DataFrame(X)
classes = pd.DataFrame(y)

dadosCeral: pd.DataFrame = pd.concat([características, classes], axis=l)
dadosCeral.head(20)

dadosCeralAltaCorrelacao = dadosCeral.
drop([1word_freq_3d1,1word_freq_will1,1word_freq_report1,1word_freq_font1,1word_freq_pm1, 1
word_freq_direct1, 1word_freq_cs1,1word_freq_original1, 1word_freq_hp1,1word_freq_hpl1,1word
_freq_george1, 1word_freq_19991,
1char_freq_(1,1word_freq_parts1,1word_freq_project1, 1word_freq_re1,1word_freq_table1,
1word_freq_conference1], axis=l)

unique_classes = dadosCeralAltaCorrelacao[1Class1].unique()
print("Classes:", unique_classes)

matriz_correlacao = dadosCeralAltaCorrelacao.corr(method=1spearman1)

plt.figure(figsize=(26, 26))
mask = np.triu(np.ones_like(matriz_correlacao, dtype=float))
sns.heatmap(matriz_correlacao, mask=mask, vmin=-l, vmax=l, annot=True, cmap=1rocket_r1,
fmt="0.1f", linewidth=.9)

plt.title('Matriz de Correlação entre Características e Classes - Dados Originais')
plt.show()

TRATAMENTOS

print(dadosGeralAltaCorrelacao.isna().sum())
print(dadosGeralAltaCorrelacao.isnull().sum)
dadosGeralAltaCorrelacao.head(10)

DADOS AUSENTES
results = list()

X = dadosGeral.iloc[:, :-l].values # Características
y = dadosGeral.iloc[:, -l].values # Classes

strategies = ['mean1, 'median1, 1most_frequent1, 'constant']

for strat in strategies:
pipeline=Pipeline(steps=[('i',SimpleImputer(strategy=strat)),

(1m 1,RandomForestClassifier())])
crossval = RepeatedStratifiedKFold(n_splits=10, n_repeats=3,random_state=42)
scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=crossval,n_jobs=-l)
results.append(scores)

print('> %s %.3f (%.3f)' % (strat, np.mean(scores), np.std(scores)))

plt.boxplot(results, labels=strategies, showneans=True)
plt.show()

> mean 0.956 (0.007)
> median 0.955 (0.007)
> most_frequent 0.955 (0.006)
> constant 0.955 (0.008)

0.975 -

0.970 ■

0.965 -

0.960 -

0.955 -

0.950 ■

0.945 -

0.940 -

0.935 -

mean median most_frequent constant

ESTUDO NORMALIZAÇÃO DOS DADOS GERAL

min_max_scaler = MinMaxScaler()
std_scaler = StandardScaler()

características = dadosCeral.iloc[:, :-1] # Características
classes = dadosGeral.iloc[:, -1] # Classes

data_normalized = min_max_scaler.fit_transform(dadosGeral)
df_data_nornalized = pd.DataFrame(data_normalized)
data_standardized = std_scaler.fit_transform(dadosGeral)
df_data_standardized = pd.DataFrame(data_standardized)

plt.figure(figsize = (20,115))
idx = 0

for idx, col in enumerate(list(caracteristicas)):
plt.subplot(29, 2, idx+1)
sns.kdeplot(dadosGeral[col], color = 1g 1, labei = f"Unscaled: {col}")
sns.kdeplot(df_data_normalized[idx], color = 1b 1, labei = f"Normalized: {col}")
sns.kdeplot(df_data_standardized[idx],color= 'r', labei = f"Standardized: {col}")

plt.legend(loc = 'upper right')

plt.show()

Acurácia na Base de Teste antes do Balanceamento
X_train, X_test, y_train, y_test=train_test_split(X,y, stratify=classes, test_size=0.25,
random_state=42)

Treinar o classificador SVM
svm_classifier = SVC(kernel=1rbf1)

Ajustar o modelo aos dados de treino
svm_classifier.fit(X_train, y_train)

Fazer previsões no conjunto de teste
y_pred = svm_classifier.predict(X_test)

Calcular a acurácia
initial_accuracy = accuracy_score(y_test, y_pred)
print("Acurácia na Base de Teste antes do Balanceamento:", initial_accuracy)

Exibir a matriz de confusão
initial_conf_matrix = confusion_matrix(y_test, y_pred)

print("Matriz de Confusão - Dados de Teste:")
print(initial_conf_matrix)
print(classification_report(y_test, y_pred))

Acurácia na Base de Teste antes do Balanceamento: 0.7019982623805386
Matriz de Confusão - Dados de Teste:
[[587 110]
[233 221]]

precision recall fl-score support
0 0.72 0.84 0.77 697
1 0.67 0.49 0.56 454

accuracy 0.70 1151
macro avg 0.69 0.66 0.67 1151
weighted avg 0.70 0.70 0.69 1151
BALANCEAR os dados de treino com SMOTE
smote = SM0TE(random_state = 42)
X_train_balanced, y_train_balanced = smote.fit_resample(X_train, y_train)

Treinar o classificador SVM com os dados BALANCEADOS
svm_classifier_balanced = SVC(kernel=1rbf1)
svm_classifier_balanced.fit(X_train_balanced, y_train_balanced)

Fazer previsões no conjunto de teste
y_pred_balanced = svm_classifier_balanced.predict(X_test)

Calcular a acurácia

balanced_accuracy = accuracy_score(y_test, y_pred_balanced)
print("Acurácia na Base de Teste após o Balanceamento:", balanced_accuracy)

Exibir a matriz de confusão
balanced_conf_matrix = confusion_matrix(y_test, y_pred_balanced)

print("Matriz de Confusão - Dados de Teste após o Balanceamento:")
print(balanced_conf_matrix)
print(classification_report(y_test, y_pred_balanced))

Acurácia na Base de Teste após o Balanceamento: 0.6776715899218071
Matriz de Confusão - Dados de Teste após o Balanceamento:
[[483 214]
[157 297]]

precision recall fl-score support
0 0.75 0.69 0.72 697
1 0.58 0.65 0.62 454

accuracy 0.68 1151
macro avg 0.67 0.67 0.67 1151
weighted avg 0.69 0.68 0.68 1151

Normalização Min-Max dos dados
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train_balanced)
X_test_scaled = scaler.transform(X_test)

Seleção de características
selector = SelectKBest(f_classif, k=20)
X_train_selected = selector.fit_transform(X_train_scaled, y_train_balanced)
X_test_selected = selector.transform(X_test_scaled)

Treinar o classificador SVM com os dados balanceados, normalizados e selecionados
svm_classifier_improved = SVC(kernel=1rbf1)
svm_classifier_improved.fit(X_train_selected, y_train_balanced)

Fazer previsões no conjunto de teste
y_pred_improved = svm_classifier_improved.predict(X_test_selected)

Calcular a acurácia
improved_accuracy = accuracy_score(y_test, y_pred_improved)
print("Acurácia na Base de Teste após Melhorias:", improved_accuracy)

Exibir a matriz de confusão
improved_conf_matrix = confusion_matrix(y_test, y_pred_improved)
print("Matriz de Confusão - Dados de Teste após Melhorias:")
print(improved_conf_matrix)
print(classification_report(y_test, y_pred_improved))
Acurácia na Base de Teste após Melhorias: 0.9174630755864466
Matriz de Confusão - Dados de Teste após Melhorias:
[[658 39]
[56 398]]

precision recall fl-score support
0 0.92 0.94 0.93 697
1 0.91 0.88 0.89 454

accuracy 0.92 1151
macro avg 0.92 0.91 0.91 1151
weighted avg 0.92 0.92 0.92 1151

APÊNDICE 7 - APRENDIZADO DE MÁQUINA

A - ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo,

Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher

os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento.

B - RESOLUÇÃO

Leitura dos dados
setwd("/home/magnus/Downloads/ml-007/ufpr-ia-aplicada/ml-r-superv-naosuperv/data")
dados <- read.csv("6 - Veículos - Dados.csv")

Eliminar (índice)
dados$a <- NULL

Cross-validation SVM
Define o método de controle de treino como validação cruzada (cross-validation)
com 10 divisões (folds)

Treina o modelo SVM com kernel radial (svmRadial) usando os dados de treino
e validação cruzada definida por Ctrl
svm <- train(tipo~., data=treino, method="svmRadial", trControl=ctrl)
svm
Support Vector Machines with Radial Basis Function Kernel
679 samples
18 predictor
4 classes: 'bus', 'opel', 'saab', 'van'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 611, 610, 611, 610, 611, 612, ...
Resampling results across tuning parameters:
C Accuracy Kappa
0.25 0.7171400 0.6231343
0.50 0.7510532 0.6681133
1.00 0.7731572 0.6974934

Matriz de confusão
predict.svm <- predict(svm, teste)
confusionMatrix(predict.svm, as.factor(teste$tipo))

Confusion Matrix and Statistics

Reference
Prediction bus opel saab van
bus 40 2 2 0
opel 0 18 14 0
saab 0 19 25 0
van 3 3 2 39

Overall Statistics
A ccuracy: 0.7305
95% Cl : (0.6565, 0.7962)
No Information Rate : 0.2575
P-Value [Acc > N IR]: < 2e-16

Kappa : 0.6409

Mcnemar's Test P-Value : 0.04705
Statistics by Class:

Class: bus
Sensitivity 0.9302
Specificity 0.9677
Pos Pred Value 0.9091
Neg Pred Value 0.9756
Prevalence 0.2575
Detection Rate 0.2395
Detection Prevalence 0.2635

Class: opel Class: saab Class: van
0.4286 0.5814 1.0000
0.8880 0.8468 0.9375
0.5625 0.5682 0.8298
0.8222 0.8537 1.0000
0.2515 0.2575 0.2335
0.1078 0.1497 0.2335
0.1916 0.2635 0.2814

Balanced Accuracy 0.9490 0.6583 0.7141 0.9688
Vários C e sigma
Define uma grade de parâmetros (tuneGrid) para buscar os melhores valores de C
(penalidade) e sigma (parâmetro do kernel RBF) durante o treinamento do
modelo SVM.
tuneGrid = expand.grid(C=c(l, 2, 10, 50, 100), sigma=c(.01, .015, 0.2))
set.seed(seedvarRandomState)
Treinar o modelo SVM com kernel radial,
usando: Validação cruzada (CROSS VALIDATION - Melhores parâmetros C) e sigma,
conforme definidos em tuneGrid.
svm <- train(tipo~., data=treino, method="svmRadial", trControl=ctrl,tuneGrid=tuneGrid)
svm

Support Vector Machines with Radial Basis Function Kernel
679 samples
18 predictor
4 classes: 'bus', 'opel', 'saab', 'van'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 611, 610, 611, 610, 611, 612, ...
Resampling results across tuning parameters:
c sigma Accuracy Kappa
1 0.010 0.7273043 0.6366425
1 0.015 0.7405409 0.6542554
1 0.200 0.7481785 0.6642279
2 0.010 0.7538640 0.6719484
2 0.015 0.7701941 0.6936039
2 0.200 0.7687887 0.6916049
10 0.010 0.8072028 0.7429419
10 0.015 0.8086094 0.7447365
10 0.200 0.7877572 0.7168827
50 0.010 0.8188628 0.7584515
50 0.015 0.8277290 0.7702341
50 0.200 0.7832583 0.7108923
100 0.010 0.8292215 0.7722185
100 0.015 0.8217589 0.7622193
100 0.200 0.7832583 0.7108923
Accuracy was used to selectthe optimal model using the largest value.
The final values used for the model were sigma = 0.01 and C = 100.

Matriz de confusão
Confusion Matrix and Statistics

Reference
Prediction bus opel saab van
bus 42 1 1 0
opel 0 31 14 0
saab 0 10 28 0
van 1 0 0 39
Overall Statistics

A ccuracy:
95% Cl :

No Information Rate
P-Value [Acc > NIR]

Kappa : 0.7844
Mcnemar's Test P-Value : NA

0.8383
(0.7736, 0.8907)

0.2575
< 2.2e-16

Statistics by Class:
Class: bus Class: opel Class: saab Class: van

Sensitivity 0.9767 0.7381 0.6512 1.0000

Specificity 0.9839 0.8880 0.9194 0.9922
Pos Pred Value 0.9545 0.6889 0.7368 0.9750
Neg Pred Value 0.9919 0.9098 0.8837 1.0000
Prevalence 0.2575 0.2515 0.2575 0.2335
Detection Rate 0.2515 0.1856 0.1677 0.2335
Detection Prevalence 0.2635 0.2695 0.2275 0.2395
Balanced Accuracy 0.9803 0.8130 0.7853 0.9961

Técnica Parâmetro Acurácia Matriz de Confusão
RNA - Hold-out size=3 decay=0.1 69,00% Prediction neg

neg 85 35
pos 15 18

Retir atributo a (ID)
num pregOnt glucose pressure triceps insulin mass pedigree age diabetes
1 6 148 72 35 0 33.6 627 50 pos
2 1 85 66 29 0 26.6 351 31 neg
3 8 183 64 0 0 23.3 672 32 pos
4 1 89 66 23 94 28.1 167 21 neg
5 0 137 40 35 168 43.1 2288 33 pos
6 5 116 74 0 0 25.6 201 30 neg
7 3 78 50 32 88 31 248 26 pos
8 10 115 0 0 0 35.3 134 29 neg
9 2 197 70 45 543 30.5 158 53 pos

Treinamos o modelo com Hold-out
RNA HOLD-OUT

Neural NetWork

615 samples
8 predictor
2 classes: 'neg', 'pos'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 615, 615, 615, 615, 615, 615, ...

Resampling results across tuning parameters:
size decay Accuracy Kappa
1 0e+00 0.6585657 0.01194207
1 le -04 0.6557814 0.10453271
1 le -01 0.6555854 0.17010239
3 0e+00 0.6545461 0.09753304
3 le -04 0.6507042 0.06896219
3 le -01 0.6863893 0.24767014
5 0e+00 0.6513176 0.15634699
5 le -04 0.6369879 0.12312206
5 le -01 0.6812217 0.27544391

Accuracy was used to selectthe optimal model using the largest value.
The final values used for the model were size = 3 and decay = 0.1.

Confusion Matrix and Statistics
Reference

Prediction neg pos
neg 85 35
pos 15 18

A ccuracy: 0.6732

95% Cl : (0.5928, 0.7468)
No Information Rate : 0.6536
P-Value [Acc > NIR] : 0.33820

Kappa : 0.2081

Mcnemar's Test P-Value : 0.00721

Sensitiv ity: 0.8500
Specific ity: 0.3396
Pos Pred Value : 0.7083
Neg Pred Value : 0.5455
Prevalence : 0.6536
Detection Rate : 0.5556
Detection Prevalence : 0.7843
Balanced A ccuracy: 0.5948
'Positive' Class : neg

PREDIÇÕES DE NOVOS CASOS
pregOnt glucose pressure triceps insulin mass pedigree age predict.i

1 1 139 62 41 480 40.7 536 21 neg
2 1 97 68 21 0 27.2 1095 22 neg
3 0 109 88 30 0 32.5 855 38 neg
4 9 171 110 24 240 45.4 721 54 neg

##REGRESSAO ADMISSAO
Técnica Parâmetro R2 Syx Pearson RMSE
R F -H o ld -o u t mtry=2 0.8215792 0.0622462 0.907053 0.05965146

Treinamos Randon Forest com a base de Treino
Random Forest

402 samples
7 predictor

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 402, 402, 402, 402, 402, 402, ...
Resampling results across tuning parameters:

mtry RMSE Rsquared MAE
2 0.06376182 0.7952256 0.04587194
4 0.06593620 0.7819062 0.04723526
7 0.06838141 0.7671146 0.04919280

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 2.

Calculamos as métricas
rmse(teste$ChanceOfAdmit, predicoes.rf)
[1] 0.05965146
r2 <- function(predito, observado) {
return(l - (sum((predito-observado)A2) / sum((observado-mean(observado))A2)))
}
r2(predicoes.rf,teste$ChanceOfAdmit)
[1] 0.8215792

Calculamos o Syx
Syx <- sqrt(sum((observado - predito)A2) / (n - p - 1))
Syx
[1] 0.0622462

MAE
0.04067818

Agora calculamos o coeficiente de correlação de Pearson
[1] 0.907053
MAE
[1] 0.04067818

Gráfico de resíduos

G rá fico de R es íduos

PREDIÇÕES DE NOVOS CASOS
GRE.Score TOEFL.Score University.Rating SOP LOR CGPA Research predict.rf

1 299 96 2 1.5 2.0 7.86 0 0.4941738
2 319 110 3 3.0 2.5 8.79 0 0.7137322
3 297 99 4 3.0 3.5 7.81 0 0.5406497

BIOMASSA
Técnica Parâmetro R2 Syx Pearson RMSE MAE
R F -C V mtry=2 0.9287667 212.4259 0.9791502 205.2229 74.49094

Cross-validation RF
Random Forest
240 samples
3 predictor

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 216, 216, 216, 216, 216, 216, ...
Resampling results across tuning parameters:

mtry RMSE Rsquared MAE
2 400.7352 0.9475062 117.9154
3 402.8242 0.9384469 119.6133

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 2.

Calcular as métricas
rmse(teste$biomassa, predicoes.rf)
[1] 205.2229
r2 <- function(predito, observado) {
return(l - (sum((predito-observado)A2) / sum((observado-mean(observado))A2)))
}
r2(predicoes.rf ,teste$biomassa)
[1] 0.9287667

Syx
observado <- teste$biomassa
predito <- predicoes.rf

Número de observações
n <- length(observado)
Número de variáveis preditoras
p <- ncol(teste) - 1 # Excluímos a variável target
Calcular o Syx ajustado
Syx <- sqrt(sum((observado - predito)A2) / (n - p - 1))
Syx
[1] 212.4259
Coeficiente de correlação de Pearson
[1] 0.9791502

MAE
mae <- mean(abs(observado - predito))
mae
[1] 74.49094

Calcular os resíduos

| ■
|

l

i ?
l §

8

I
0 500 1000 1500 7000 2500 3000

Valores Preditos

PREDIÇÕES DE NOVOS CASOS

dap h Me predict.rf
1 14 20 0.64 142.92983
2 15 20 0.61 159.02946
3 11 13 0.46 28.97886

AGRUPAMENTO
VEÍCULO
setwd("/home/magnus/Downloads/ml-007/ufpr-ia-aplicada/ml-r-superv-naosuperv/data")
dados <- read.csv("4 - Veículos - Dados.csv", header = TRUE)

Remove 'a' (indice/ID)
dados$a <- NULL

Visualizamos a estrutura dos dados
str(dados)
'data.frame': 846 obs. of 19 variables:
$ Comp : int 95 91 104 93 85 107 97 90 86 93 ...
$ Circ : int 48 41 50 41 44 57 43 43 34 44 ...
$ DCirc : int 83 84 106 82 70 106 73 66 62 98 ...
$ RadRa : int 178 141 209 159 205 172 173 157 140 197 ...
$ PrAxisRa : int 72 57 66 63 103 50 65 65 61 62 ...
$ MaxLRa : int 10 9 10 9 52 6 6 9 7 11 ...
$ ScatRa : int 162 149 207 144 149 255 153 137 122 183 ...

G rá f ic o d e R es íd uo s

$ Elong : int 42 45 32 46 45 26 42 48 54 36 ...
$ PrAxisRect: int 20 19 23 19 19 28 19 18 17 22 ...
$ M axLRect: int 159 143 158 143 144 169 143 146 127 146 ...
$ ScVarMaxis: int 176 170 223 160 241 280 176 162 141 202 ...
$ ScVarmaxis: int 379 330 635 309 325 957 361 281 223 505 ...
$ R aG yr: int 184 158 220 127 188 264 172 164 112 152 ...
$ SkewMaxis : int 70 72 73 63 127 85 66 67 64 64 ...
$ Skewmaxis : int 6 9 14 6 9 5 13 3 2 4 ...
$ Kurtmaxis : int 16 14 9 10 11 9 1 3 14 14 ...
$ KurtMaxis : int 187 189 188 199 180 181 200 193 200 195 ...
$ HolIRa : int 197 199 196 207 183 183 204 202 208 204 ...
$ tipo : chr "van" "van" "saab" "va n "...

Executamos o algoritmo K-means para clustering
set.seed(seedvarRandomState)
veiculosCluster <- kmeans(dados_numericos, 10)
veiculosCluster
K-means clustering with 10 clusters of sizes 67, 99, 47, 169, 78, 115, 24, 56, 114, 77
Cluster means:
Comp Circ DCirc RadRa PrAxisRa MaxLRa ScatRa Elong PrAxisRect MaxLRect ScVarMaxis
1 94.04478 42.62687 83.16418 186.8060 63.80597 7.582090 171.6866 38.13433 20.55224 141.6567 193.7761
2 92.29293 41.68687 78.03030 181.3838 69.36364 11.222222 156.6263 42.18182 19.49495 140.8889 183.8687
3 97.85106 46.89362 93.17021 199.2553 64.40426 8.617021 186.2128 35.19149 21.78723 150.8936 206.7447
4 86.63905 44.30178 73.70414 140.7515 59.17160 8.136095 152.0473 44.41420 19.21302 147.8402 172.2426
5 103.87179 52.53846 103.02564 196.6282 61.26923 10.192308 211.5000 31.38462 23.89744 165.1923 223.9615
6 87.69565 37.61739 60.91304 128.0783 56.33043 6.243478 126.5826 53.27826 17.63478 131.7565 147.4348
7 107.25000 55.54167 103.41667 190.2500 55.79167 5.791667 248.7083 26.87500 27.08333 168.0833 271.2917
8 101.60714 49.48214 99.46429 206.4107 64.37500 9.250000 199.2679 33.00000 22.82143 155.8929 217.4286
9 88.55263 40.17544 72.90351 150.9211 60.85965 7.543860 142.2632 46.82456 18.50000 137.7105 164.8070
10 104.24675 54.16883 102.74026 206.5325 63.44156 10.636364 220.5325 30.29870 24.75325 171.3117 229.4286

ScVarmaxis RaGyr SkewMaxis Skewmaxis Kurtmaxis KurtMaxis HolIRa
1 445.7015 163.0000 67.79104 5.805970 15.059701 194.6716 200.9254
2 368.0101 157.7374 71.67677 5.868687 12.111111 192.7576 199.5253
3 523.0851 182.3830 68.12766 6.957447 12.723404 193.5106 200.2553
4 339.6923 176.3195 77.33728 5.739645 8.988166 183.4379 189.6982
5 663.8077 212.4103 71.43590 7.205128 16.435897 188.3974 197.4744
6 236.7391 137.9130 73.68696 6.843478 11.382609 187.5043 192.1217
7 910.5417 247.1667 83.62500 6.500000 14.208333 182.6667 183.6250
8 596.4286 198.1071 69.12500 6.125000 13.571429 191.5536 199.0179
9 301.7544 149.8509 69.49123 5.894737 12.394737 191.1140 197.8246
10 717.1688 212.4026 72.03896 7.896104 15.961039 187.7792 197.6364

Within cluster sum of squares by cluster:
[1] 112567.25 315755.62 65754.85 151546.20 94564.06 166756.16 115198.75 77108.57 142335.30
83272.21
(between_SS / total_SS = 95.7 %)

Executamos o algoritmo K-modes
K-modes clustering with 5 clusters of sizes 163,155, 217,139,172
Cluster modes:

Comp Circ DCirc RadRa PrAxisRa MaxLRa ScatRa Elong PrAxisRect MaxLRect ScVarMaxis ScVarmaxis RaGyr SkewMaxis
1 89 37 66 125 58 7 133 50 18 128 159 246 176 72
2 104 55 101 172 62 10 222 30 19 131 174 345 218 71
3 85 43 70 141 56 7 150 45 19 143 169 327 171 69
4 94 45 100 197 63 10 157 35 22 161 202 367 186 67
5 107 53 103 203 64 11 217 31 24 163 226 669 214 72

Skewmaxis Kurtmaxis KurtMaxis HolIRa Class
1 3 7 183 183 van
2 1 6 186 196 opel
3 6 11 181 182 bus
4 4 10 192 197 saab
5 0 11 189 199 saab

REGRAS DE ASSOCIAÇÃO
MUSCULAÇÃO
library(arules)
library(datasets)
Definimos o diretório de trabalho e leitura dos dados
setwd("/home/magnus/Downloads/ml-007/ufpr-ia-aplicada/ml-r-superv-naosuperv/data")
dados <- read.transactions(file="2 - Musculacao - Dados.csv",format="basket",sep=";"
Visualizamos os dados
inspect(dados[l:26])
itens
items
[1] {LegPress,Gemeos,Afundo,Crucifixo,}
[2] {LegPress.Gemeos,Agachamento,,}
[3] {Gemeos,LegPress,Afundo, Agachamento,}
[4] {Adutor, Agachamento, LegPress.Adutor,}
[5] {LegPress.Gemeos,Afundo,Bicicleta,}
[6] {LegPress.Gemeos,Agachamento,,}
[7] {Gemeos.LegPress,Afundo,Bicicleta,}
[8] {Adutor,Agachamento,LegPress.Adutor,}
[9] {Extensor, AgachamentoSmith, Bicicleta,Esteira,Gemeos}
[10] {Extensor.AgachamentoSmith,Bicicleta,Esteira,LegPress}
[11] {Extensor.AgachamentoSmith,Bicicleta,Gemeos,LegPress}
[12] {Extensor.Flexor,Bicicleta,Esteira, LegPress}
[13] {Extensor.AgachamentoSmith,Gemeos,Esteira,LegPress}
[14] {Extensor.AgachamentoSmith,Bicicleta,Esteira,LegPress}
[15] {Extensor,Gemeos,Bicicleta,Esteira,}
[16] {LegPress,Gemeos,Afundo,Crucifixo,}
[17] {LegPress,Gemeos,Agachamento,,}
[18] {Gemeos,LegPress,Afundo,Agachamento,}
[19] {Adutor,Agachamento,LegPress.Adutor,}
[20] {Extensor.AgachamentoSmith,Bicicleta,Esteira,Gemeos}
[21] {Extensor.AgachamentoSmith,Bicicleta,Esteira,LegPress}
[22] {Extensor.AgachamentoSmith,Bicicleta,Gemeos,Afundo}
[23] {Extensor.Flexor,Bicicleta,Esteira,LegPress}
[24] {Afundo,AgachamentoSmith,Gemeos,Esteira,LegPress}
[25] {Extensor,AgachamentoSmith,Bicicleta,Esteira,LegPress}
[26] {Extensor, Gemeos,Bicicleta,Esteira,Afundo}
set.seed(seedvarRandomState)

Extraimos as regras
o suporte mínimo (supp) foi reduzido para 0.1 e a confiança mínima (conf) para 0.8.
para resultar em um número maior de regras extraídas.
ru les <- ap rio ri(dados, parameter = lis t(s u p p = 0.1, conf = 0.8, ta rge t = " ru le s "))
Apriori
Parameter specification:
confidence minval smax arem aval originaISupport maxtime support minlen maxlen target ext
0.8 0.1 1 none FALSE TRUE 5 0.1 110 rules TRUE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 2
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[15 item(s), 26 transaction(s)] done [0.00s].
sorting and recoding items ... [3 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 done [0.00s].
writing ... [0 rule(s)] done [0.00s].
creating S4 ob jec t... done [O.OOs],

APÊNDICE 8 - DEEP LEARNING

A - ENUNCIADO

1 Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a

arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e

arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN

vista no curso.

4 Tradutor de Textos (Transformer)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a

arquitetura Transformer vista no curso.

B - RESOLUÇÃO

1 Classificação de Imagens (CNN)

Carregamento e preparação dos dados
Já está separado em dados de treino e teste
(x_train, y_train), (x_test, y_test) = cifarl0.1oad_data()

Normalização dos dados
x_train, x_test = x_train / 255.0, x_test / 255.0

Convertemos as etiquetas para uma codificação one-hot
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

Definimos a arquitetura da CNN

model = Sequential([
Input(shape=(32, 32, 3)),

Conv2D(32, (3, 3),
activation=1relu1),

MaxPooling2D((2, 2)),
Conv2D(64, (3, 3),
activation=1relu1),

MaxPooling2D((2, 2)),
Conv2D(128, (3, 3),
activation=1relu1),

MaxPooling2D((2, 2)),
Flatten(),
Dense(128, activation=1relu1),
Dropout(0.5),
Dense(10, activation=1softmax1)

])
Model: "sequential"

Laye r (t y p e) O u tp u t Shape Param #

conv2d_3 (Conv2D) (None, 30, 30, 32) 896

m a x_ p o o lin g 2 d (M a xP o o lin g 2 (None, 15, 15, 32) 0
D)

conv2d_4 (Conv2D) (None, 13, 13, 64) 18496

m a x _ p o o lin g 2 d _ l (M a xP o o lin (None, 6, 6, 64) 0
92D)

conv2d_5 (Conv2D) (None, 4 , 4 , 128) 73856

m a x_poo lin g2d_2 (M a xP o o lin (None, 2, 2, 128) 0
92D)

f l a t t e n _ l (F la t t e n) (None, 512) 0

dense_2 (D ense) (None, 128) 65664

d ro p o u t_ 2 (D ro p o u t) (None, 128) 0

dense_3 (D ense) (None, 10) 1290

T o ta l pa ram s: 160202 (6 2 5 .7 9 KB)
T r a in a b le param s: 160202 (6 2 5 .7 9 KB)
N o n - t r a in a b le param s: 0 (0 .0 0 B y te)

Com pilam os o m odelo
model.compile(optimizer=1 adam1, loss=1categorical_crossentropy1, metrics=['accuracy'])

T re inam os o m odelo
history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test),
batch_size=64)
Epoch 1 /1 0

7 8 2 /7 8 2 [==============================
1 .6 8 7 5 - a c c u ra c y : 0 .3 7 3 0 - v a l_ lo s s : 1 .3 8 8 1

Epoch 2 /1 0
7 8 2 /7 8 2 [==============================

1 .3 2 5 0 - a c c u ra c y : 0 .5 2 3 1 - v a l_ lo s s : 1 .1 7 3 9
Epoch 3 /1 0
7 8 2 /7 8 2 [==============================

1 .1 7 2 2 - a c c u ra c y : 0 .5 8 7 4 - v a l_ lo s s : 1 .1 5 3 9
Epoch 4 /1 0
7 8 2 /7 8 2 [==============================

1 .0 6 0 5 - a c c u ra c y : 0 .6 2 8 3 - v a l_ lo s s : 1 .0 5 9 0
Epoch 5 /1 0
7 8 2 /7 8 2 [==============================

0 .9 7 9 4 - a c c u ra c y : 0 .6 5 9 6 - v a l_ lo s s : 0 .9 0 6 5
Epoch 6 /1 0
7 8 2 /7 8 2 [==============================

0 .9 1 4 1 - a c c u ra c y : 0 .6 7 9 9 - v a l_ lo s s : 0 .9 4 2 1
Epoch 7 /1 0
7 8 2 /7 8 2 [==============================

0 .8 6 1 8 - a c c u ra c y : 0 .7 0 2 5 - v a l_ lo s s : 0 .8 7 1 7
Epoch 8 /1 0
7 8 2 /7 8 2 [==============================

0 .8 0 9 7 - a c c u ra c y : 0 .7 1 8 7 - v a l_ lo s s : 0 .8 3 6 4
Epoch 9 /1 0
7 8 2 /7 8 2 [==============================

0 .7 6 4 1 - a c c u ra c y : 0 .7 3 5 9 - v a l_ lo s s : 0 .8 1 1 6
Epoch 1 0 /1 0
7 8 2 /7 8 2 [==============================

0 .7 2 9 2 - a c c u ra c y : 0 .7 4 9 0 - v a l_ lo s s : 0 .8 1 4 2

- 35s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .4 9 7 0

- 34s 4 3 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .5 7 9 7

- 35s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .5 9 0 0

- 35s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .6 3 3 6

- 34s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .6 8 5 1

- 35s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .6 7 4 6

- 34s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .6 9 6 5

- 35s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .7 0 6 8

- 35s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .7 2 0 6

- 34s 4 4 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .7 2 3 4

import numpy as np
import seaborn as sns
fron sklearn.netrics import confusion_matrix
import matplotlib.pyplot as plt

Fazer previsões no conjunto de teste
y_pred = model.predict(x_test).argmax(axis=l) # Convertemos as previsões para classes
y_true = np.argmax(y_test, axis=l) # Convertemos as etiquetas verdadeiras
para classes

Criar a matriz de confusão
cm = confusion_matrix(y_true, y_pred)

Plotamos a matriz de confusão
plt.figure(figsize=(15, 15))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',

xticklabels=['aviao', 'automovel', 'passaro', 'gato1, 'servo', 'cachorro',
'sapo', 'cavalo', 'navio', 'caminhão'],

yticklabels=['aviao', 'automovel', 'passaro', 'gato', 'servo', 'cachorro',
'sapo', 'cavalo', 'navio', 'caminhão'],

cbar=False, square=True, linewidths=0.5, linecolor='black')

plt.xlabel('Predicted Labei')
plt.ylabel('True Labei')
plt.title('Matriz de Confusão')
plt.show()

<1» CnnhisAo

« | M k «jtsmotMe tirtf a l f e r irug I e n e tfnp bucklaM

Definimos os rótulos das classes
labels = ['aviao1, 1automovel1, 'passaro', 'gato1, 'servo1, 'cachorro', 'sapo', 'cavalo',
'navio', 'caminhão']

Localizamos índices de previsões incorretas
misclassified = np.where(y_pred != y_true)[0]

Escolhemos uma amostra aleatória de previsões incorretas
i = np.random.choice(misclassified)

Exibimos a imagem mal classificada
plt.figure(figsize=(10, 8))
plt.imshow(x_test[i]) # Remover cmap='gray' porque as imagens são coloridas
plt.title("True labei: %s Predicted: %s" % (labels[y_true[i]], labels[y_pred[i]]))
plt.axis('off') # Opcional: remover os eixos
plt.show()

True labei: autom obile Predictea: truck

import numpy as np
from sklearn.metrics import accuracy_score

Calculamos a acurácia final
accuracy = accuracy_score(np.argmax(y_test, axis=l), y_pred)

Número de imagens a serem exibidas
num_images = 16

Escolhemos imagens aleatórias para exibição
indices = np.random.choice(len(x_test), num_images, replace=False)

Configuramos a figura e os eixos
fig = plt.figure(figsize=(20, 20))

Exibimos a acurácia no topo das figuras
fig.suptitle(f"Acurácia final: {accuracy:.4f}", fontsize=16, bbox=dict(facecolor='white',
alpha=0.5, edgecolor=1black1))
fig.text(0.5, 1.05, 'As imagens com texto em vermelho não foram classificadas
corretamente1,

ha='center', va='center', fontsize=12,
bbox=dict(facecolor='white', alpha=0.5, edgecolor=1black1))

for i, idx in enumerate(indices):
ax = fig.add_subplot(4, 4, i + 1)
ax.imshow(x_test[idx]) # Exibir a imagem
true_label = labels[np.argmax(y_test[idx])] # Obter o rótulo verdadeiro
pred_label = labels[y_pred[idx]] # Obter o rótulo previsto
Definimos a cor do texto com base se a previsão está correta
color = 'black' if true_label == pred_label else 'red'

ax.set_title(f"True: {true_label}\nPred: {pred_label}", fontsize=16, color=color)
ax.axis(1off1) # remover os eixos

plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.show()

nSo lo n n d n n K u ib t co iM m a n la1i imagunt com In lg ci

T iu e : A u to m o b ile
Pred ò u to m o tu le

True; Ueet
Pred t> ifd

Tiue: &hip
Pred *hip

í . l

2 Detector de SPAM (RNN)
EXEMPLO RNN - LSTM

Importação das Bibliotecas
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense
from tensorflow.keras.layers import GlobalMaxPoolinglD
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer

Suprimir todos os warnings
import warnings

Suprimir warnings específicos
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)

carrega e arruma a base
Iwget http://www.razer.net.br/datasets/spam.csv

df = pd.read_csv("spam.csv", encoding="IS0-8859-l")
df.head()

df = df.drop(["Unnaned: 2", "Unnamed: 3", "Unnaned: 4"], axis=l)
df.colunns = ["labels", "data"]

df["b_labels"] = df["labels"].map({ "han": 0, "span": 1})
y = df["b_labels"].values

Separa a base em treino e teste
x_train, x_test, y_train, y_test = train_test_split(df["data"], y, test_size=0.33)

Número máximo de palavras para considerar
São consideradas as mais freqüentes, as demais são
ignoradas
num_words = 20000

tokenizer = Tokenizer(num_words=num_words)
tokenizer.fit_on_texts(x_train)

sequences_train = tokenizer.texts_to_sequences(x_train)
sequences_test = tokenizer.texts_to_sequences(x_test)

word2index = tokenizer.word_index
V = len(word2index)

print("%s tokens" % V)

Acerta o tamanho das seqüências (padding)
data_train = pad_sequences(sequences_train) # usa o tamanho da maior seq.

T = data_train.shape[l] # tamanho da seqüência

data_test = pad_sequences(sequences_test, maxlen=T)

print("data_train.shape: ", data_train.shape)
print("data_test.shape: ", data_test.shape)

d a t a _ t r a in . s h a p e : (3733 , 121)
d a ta _ te s t . s h a p e : (1839 , 121)

D e fin e o m odelo

D = 20 # tamanho do embedding, hiperparâmetro que pode ser escolhido
M = 5 # tamanho do hidden State, quantidade de unidades LSTM

i = Input(shape=(T,)) # Entra uma frase inteira
x = Embedding(V+l, D)(i)
x = LSTM(M)(x)
x = Dense(l, activation="sigmoid")(x) # Sigmoide pois só tem 2 valores

model = Model(i, x)

http://www.razer.net.br/datasets/spam.csv

model. summaryQ

M ode l: "m o d e l"

Laye r (ty p e) O u tp u t Shape Param #

in p u t _ l (In p u tL a y e r) [(N o n e , 1 2 1)] 0

em bedding (Em bedd ing) (None, 121, 20) 144920

Is tm (LSTM) (None, 5) 520

dense (D ense) (None, 1) 6

T o ta l param s: 1 4 5 4 4 6 (568.15 KB)
T r a in a b le param s: 1 4 5 4 4 6 (568.15 KB)
N o n - t r a in a b le param s: 0 (0 .0 0 B y te)

Compila e treina o modelo
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])

epochs = 5

r = model.fit(data_train, y_train, epochs=epochs, validation_data=(data_test, y_test))
Epoch 1/5

1 1 7 / 1 1 7 [=]
0 . 4 1 7 7 - a c c u ra c y : 0 . 8 6 4 2 - v a l_ lo s s : 0 . 2 0 5 5 -

Epoch 2/5
1 1 7 / 1 1 7 [=]

0 . 1 5 7 1 - a c c u ra c y : 0 . 9 6 6 0 - v a l_ lo s s : 0 . 1 1 7 3 -
Epoch 3/5
1 1 7 / 1 1 7 [=]

0 . 0 9 5 8 - a c c u ra c y : 0 . 9 8 7 7 - v a l_ lo s s : 0 . 0 8 8 0 -
Epoch 4/5
1 1 7 / 1 1 7 [=]

0 . 0 6 4 9 - a c c u ra c y : 0 . 9 9 4 6 - v a l_ lo s s : 0 . 0 7 1 5 -
Epoch 5/5
1 1 7 / 1 1 7 [=]

0 . 0 4 5 9 - a c c u ra c y : 0 . 9 9 7 6 - v a l_ lo s s : 0 . 0 6 1 6 -

Plota função de perda e acurácia
plt.figure(figsize=(15, 8))
plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.xlabel("Épocas")
plt.ylabel("loss")
plt.xticks(np.arange(0, epochs, step=l), labels=range(l, epochs+1))
plt.legendQ
plt.showQ

plt.figure(figsize=(15, 8))
plt.plot(r.history["accuracy"], label="accuracy")
plt.plot(r.history["val_accuracy"], label="val_accuracy")
plt.xlabel("Épocas")
plt.ylabel("Acurácia")
plt.xticks(np.arange(0, epochs, step=l), labels=range(l, epochs+1))
plt.legendQ
plt. showQ

- 7s 3 9 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .9 3 5 3

- 4s 3 5 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .9 8 3 1

- 4s 3 6 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .9 8 8 0

- 4s 3 5 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .9 8 8 6

- 5s 3 9 m s /s te p - lo s s :
v a l_ a c c u ra c y : 0 .9 8 9 1

Efetua a predição de um texto novo
textol = "Today is a big day to do something bigger."
texto2 = "This is not a SPAM, so, Is your car dirty? Discover our new product. Free for
ali. Click the link. Remenber me, this message is not a SPAM."
texto3 = "Is your car dirty? Discover our new product. Free for ali. Click the link."

seq_textol = tokenizer.texts_to_sequences([textol]) # Tokeniza
data_textol = pad_sequences(seq_textol, maxlen=T) # Padding
predl = model.predict(data_textol) # Predição

seq_texto2 = tokenizer.texts_to_sequences([texto2]) # Tokeniza
data_texto2 = pad_sequences(seq_texto2, maxlen=T) # Padding
pred2 = model.predict(data_texto2) # Predição

seq_texto3 = tokenizer.texts_to_sequences([texto3]) # Tokeniza
data_texto3 = pad_sequences(seq_texto3, maxlen=T) # Padding
pred3 = model.predict(data_texto3) # Predição

print(predl)
print ("SPAM" if predl >= 0.5 else "OK, NÃO É SPAM")
print ("SPAM" if pred2 >= 0.5 else "OK, NÃO É SPAM")
print ("SPAM" if pred3 >= 0.5 else "OK, NÃO É SPAM")

1 / 1 [==============================] - 0s 7 4 m s /s te p
1 / 1 [==============================] - 0s 4 6 m s /s te p

1 / 1 [==============================] - 0s 4 1 m s /s te p
[[0 .0 1 1 3 0 7 1 6]]

OK, NÃO É SPAM

OK, NÃO É SPAM

SPAM

3 Gerador de Dígitos Fake (GAN)
EXEMPLO GAN

Para Gerar os GIFs
!pip install imageio
!pip install git+https://github.com/tensorflow/docs

Importações
import tensorflow as tf
import glob
import imageio
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time
from IPython import display

Carregar a base de dados
(train_tmages, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
Normalização
train_images = train_tmages.reshape(train_tmages.shape[0], 28, 28, 1).astype(1float321)
train_images = (train_images - 127.5) / 127.5 # Normaliza entre [-1, 1]
Gera o banco em partes e randomiza
BUFFER_SIZE = 60000
BATCH_SIZE = 256
Cria o dataset (from_tensor_slices)
Randomiza (shuffle)
Combina elementos consecutivos em lotes (batch)
train_dataset =
tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

Cria o GERADOR
def make_generator_model():

model = tf.keras.SequentialQ
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256)

Note: None is the batch size
model.add(layers.Conv2DT ranspose(128,(5,5),strides=(l,1),padding=1same1,use_bias=False))

assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding=1same1,
use_bias=False))

assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(l, (5, 5), strides=(2, 2), padding=1same1,
use_bias=False, activation=1tanh1))

assert model.output_shape == (None, 28, 28, 1)

return model

Teste do GERADOR, ainda não treinado
generator = make_generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
plt.imshow(generated_image[0, :, :, 0], cmap='gray')

https://github.com/tensorflow/docs

Cria o DISCRIMINADOR
def make_discriminator_model():

model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding=1same1, input_shape=[28,

28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding=1same1))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(l))
return model

Teste do DISCRIMINADOR, ainda não treinado
discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print (decision)

Define as funções de perda
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=T rue)

Perda do DISCRIMINADOR
def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss

return total_loss
Perda do GERADOR
def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)

Cria os otimizadores para o gerador e discriminador
generator_optimizer = tf.keras.optimizers.Adam(le-4)
discriminator_optimizer = tf.keras.optimizers.Adam(le-4)

Cria checkpoints para salvar modelos ao longo do tempo
Úteis em tarefas longas, para se recuperar de um desligamento
checkpoint_dir = 1./training_checkpoints1

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint=tf.train.Checkpoint(generator_optinizer=generator_optimizer,
discrininator_optimizer=discrininator_optimizer,generator=generator , discriminator=discrini
nator)

Configura o Loop de treinamento
EPOCHS = 100
noise_dim = 100
num_examples_to_generate = 16
You will reuse this seed overtime (so it's easier)
to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])

def f(x, y):
return 3*x**2 + 2*x*y

x, y = tf.Variable(5.), tf.Variable(3.)

with tf.GradientTapeQ as tape:
z = f(x, y)

gradients = tape.gradient(z, [x, y])

print(gradients)

Função que faz um passo de treinamento
É uma 'tf.function', que compila essa função
@tf.function
def train_step(images):

noise = tf.random.normal([BATCH_SIZE, noise_dim])

with tf.CradientTape() as gen_tape, tf.CradientTape() as disc_tape:
generated_inages = generator(noise, training=True)

real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss,

discrininator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator,
generator.trainable_variables))

discrininator_optimizer.apply_gradients(zip(gradients_of_discriminator,
discrininator.trainable_variables))

Treinamento completo/laço
def train(dataset, epochs):

for epoch in range(epochs):
start = time.timeQ

for image_batch in dataset:
train_step(inage_batch)

Produce inages for the GIF as you go
display.clear_output(wait=T rue)
generate_and_save_tmages(generator, epoch + 1, seed)

Save the model every 15 epochs
if (epoch + 1) % 15 == 0:

checkpoint.save(file_prefix = checkpoint_prefix)

print ('Time for epoch {} is {} sec1.format(epoch + 1, time.timeQ-start))

Generate after the final epoch

display.clear_output(wait=T rue)
generate_and_save_images(generator, epochs, seed)

Gerar e salvar imagens
def generate_and_save_images(model, epoch, test_input):

Notice 'training' is set to False.
This is so ali layers run in inference mode (batchnorm).
predictions = model(test_input, training=False)

fig = plt.figure(figsize=(15, 15))

for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off1)

plt.savefig(1image_at_epoch_{:04d}.png1.format(epoch))
plt.show()

Treinar o modelo e restaurar o último ponto de verificação
train(train_dataset, EPOCHS)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

7 \ ?

Criar um GIF
Display a single image using the epoch number
def display_image(epoch_no):

re turn PIL.Image.open(1image_at_epoch_{: 04d}. png1. format(epoch_no))

display_image(EPOCHS)

8
7

7

anim_file = 'dcgan.gif'

with inageio.get_writer(anin_file, node='I') as writer:
filenanes = glob.glob(1inage*.png1)
filenames = sorted(filenanes)
for filename in filenanes:

inage = inageio.inread(filenane)
writer.append_data(inage)

inage = inageio.inread(filenane)
writer.append_data(inage)

inport tensorflow_docs.vis.enbed as enbed
enbed.enbed_file(anin_file)

fron google.colab inport drive
drive.nount(1/content/drive1)

4 Tradutor de Textos (Transformer)
EXEMPLO TRANSFORMER

Instalação e importação
Ipip uninstall tensorflow
Ipip install tensorflow==2.15.0
Ipip install tensorflow_datasets
Ipip install -U tensorflow-text==2.15.0

inport collections
inport logging
inport os
inport pathlib
inport re
inport string
inport sys
inport tine
inport nunpy as np
inport natplotlib.pyplot as plt
inport tensorflow_datasets as tfds
inport tensorflow_text as text
inport tensorflow as tf

logging.getLogger(1tensorflow1).setLevel(logging.ERROR) # suppress warnings

Suprimir todos os warnings
inport warnings

Suprimir warnings específicos
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntineWarning)

Carregar a base de dados
exanples, netadata = tfds.load(1ted_hrlr_translate/pt_to_en1, with_tnfo=True,
as_supervised=T rue)

train_exanples, val_exanples = exanples[1train1], exanples['validation1]

Verificar o dataset
for pt_exanples, en_exanples in train_exanples.batch(3).take(l):

for pt in pt_exanples.nunpy():
print(pt.decode(1utf-81))

printQ

for en in en_exanples.nunpy():
print(en.decode(1utf-81))

Tokenização e Destokenização do texto
model_name = "ted_hrlr_translate_pt_en_converter"

tf.keras.utils.get_file(f"{model_name}.zip",
f" https://storage.googleapis.com/download.tensorflow.org/models/{model_name}.zip",
cache_dir=1.1, cache_subdir=11, extract=True)

Tem 2 tokenizers: um pt outro em en
tokenizers.en tokeniza e detokeniza
tokenizers = tf.saved_model.load(model_name)

PIPELINE DE ENTRADA
Codificar/tokenizar lotes de texto puro
def tokenize_pairs(pt, en):

pt = tokenizers.pt.tokenize(pt)

Converte ragged (irregular, tam variável) para dense
Faz padding com zeros,
pt = pt.to_tensor()

en = tokenizers.en.tokenize(en)
ragged -> dense
en = en.to_tensor()
return pt, en

Pipeline simpes: processa, embaralha, agrupa os dados, prefetch
Datasets de entrada terminam com prefetch
BUFFER_SIZE = 20000
BATCH_SIZE = 64
def make_batches(ds):

return (
ds
.cacheQ
. shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE)
.map(tokenize_pairs, num_parallel_calls=tf.data.AUTOTUNE)
. prefetch(tf.data.AUTOTUNE))

train_batches = make_batches(train_examples)
val_batches = make_batches(val_examples)

CODIFICAÇÃO POSICIONAL
def get_angles(pos, i, d_model):

angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
return pos * angle_rates

def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)

[np.newaxis, :], d_nodel)

sin em índices pares no array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])

cos em índices ímpares no array; 2 i+ l
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

newaxis, aumenta a dimensão 0 -> [0]
pos_encoding = angle_rads[np.newaxis, ...]

return tf.cast(pos_encoding, dtype=tf.float32)

n, d = 2048, 512
pos_encoding = positional_encoding(n, d)
print(pos_encoding.shape)
pos_encoding = pos_encoding[0]

https://storage.googleapis.com/download.tensorflow.org/models/%7bmodel_name%7d.zip

Arrumar as dimensões
pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2))
pos_encoding = tf.transpose(pos_encoding, (2, 1, 0))
pos_encoding = tf.reshape(pos_encoding, (d, n))

plt.figure(figsize=(20,10))
plt.pcolornesh(pos_encoding, cnap=1RdBu1)
plt.ylabel(1Depth1)
plt.xlabel(1Position1)
plt.colorbar()
plt.show()

Cria uma máscara de 0 e 1, 0 para quando há valor e 1 quando não há
def create_padding_mask(seq):

seq = tf.cast(tf.math.equal(seq, 0), tf.float32)

add extra dimensions to add the padding
to the attention logits.
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_l)

Máscara futura, usada no decoder
def create_look_ahead_mask(size):

zera o triângulo inferior
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask # (seq_len, seq_len)

Função de Atenção
def scaled_dot_product_attention(q, k, v, mask):

Q KAT
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)

converte matmul_qk para float32
dk = tf.cast(tf.shape(k)[-1], tf.float32)

divide por sqrt(d_k)
scaled_attention_logits = natnul_qk / tf.math.sqrt(dk)

Soma a máscara, e os valores faltantes serão um número próximo a -inf if mask is not None:
scaled_attention_logits += (mask * -le9)

softmax normaliza os dados, soman 1. // (..., seq_len_q, seq_len_k)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-l)

output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)

return output, attention_weights

Atenção Multi-cabeças
class MultiHeadAttention(tf.keras.layers.Layer):

def init (self, d_model, num_heads):
super(MultiHeadAttention, self). init ()
self.num_heads = num_heads
self.d_nodel = d_nodel

assert d_nodel % self.num_heads == 0

self.depth = d_model // self.nun_heads

self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)

self.dense = tf.keras.layers.Dense(d_model)

def split_heads(self, x, batch_size):
 Separa a última dimensão em (num_heads, depth).
Transpõe o resultado para o shape (batch_size, num_heads, seq_len, depth)

x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))

return tf.transpose(x, perm=[0, 2 , 1, 3])

def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]

q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)

q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)

Calcula a atenção para cada cabeça (de forma matricial)
scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)

Troca a dimensão 2 com 1, para acertar o num_heads
(batch_size, seq_len_q, num_heads, depth)

scaled_attention = tf.transpose(scaled_attention, perm=[0, 2 , 1 , 3])

Concatena os valores em: (batch_size, seq_len_q, d_model)
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))

output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)

return output, attention_weights

Cria rede feed-forward pontual

def point_wise_feed_forward_network(d_model, dff):
return tf.keras.Sequential([tf.keras.layers.Dense(dff, activation=1relu1),

(batch_size, seq_len, dff)
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)

])

Camada codificador

class EncoderLayer(tf.keras.layers.Layer):
def init (self, d_model, num_heads, dff, rate=0.1):

super(EncoderLayer, self). init ()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = point_wise_feed_forward_network(d_model, dff)

self.layernorml = tf.keras.layers.LayerNormalization(epsilon=le-6)

#

self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=le-6)
self.dropoutl = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)

def call(self, x, training, nask):
attn_output, _ = self.nha(x, x, x, nask) # (batch_size, input_seq_len, d_nodel)
attn_output = self.dropoutl(attn_output, training=training)
outl = self.layernornl(x + attn_output) # (batch_size, input_seq_len, d_nodel)
ffn_output = self.ffn(outl) # (batch_size, input_seq_len, d_nodel)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorn2(outl + ffn_output) # (batch_size, input_seq_len, d_nodel)

return out2

Camada decodificador
class DecoderLayer(tf.keras.layers.Layer):

def init (self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self). init ()

self.nhal = MultiHeadAttention(d_model, num_heads)
self.nha2 = MultiHeadAttention(d_model, nun_heads)

self.ffn = point_wise_feed_forward_network(d_nodel, dff)

self.layernoml = tf.keras.layers.LayerNormalization(epsilon=le-6)
self.layernorn2 = tf.keras.layers.LayerNormalization(epsilon=le-6)
self.layernorn3 = tf.keras.layers.LayerNormalization(epsilon=le-6)

self.dropoutl = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)

def call(self, x, enc_output, training, look_ahead_mask, padding_mask):
enc_output.shape == (batch_size, input_seq_len, d_nodel)

(batch_size, target_seq_len, d_nodel)
attnl, attn_weights_blockl = self.nhal(x, x, x, look_ahead_mask)
attnl = self.dropoutl(attnl, training=training)
outl = self.layernornl(attnl + x)

(batch_size, target_seq_len, d_nodel)
attn2, attn_weights_block2 = self.nha2(enc_output, enc_output, outl, padding_mask)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorn2(attn2 + outl) # (batch_size, target_seq_len, d_nodel)
ffn_output = self.ffn(out2) # (batch_size, target_seq_len, d_model)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layernorn3(ffn_output + out2) # (batch_size, target_seq_len, d_nodel)

return out3, attn_weights_blockl, attn_weights_block2

class Encoder(tf.keras.layers.Layer):
def init (self, num_layers, d_model, num_heads, dff, input_vocab_size,

maximum_position_encoding, rate=0.1):
super(Encoder, self). init ()
self.d_model = d_model
self.num_layers = nun_layers
self.enbedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
self.pos_encoding = positional_encoding(naxinun_position_encoding, self.d_model)

self.enc_layers = [EncoderLayer(d_nodel, num_heads, dff, rate) for _ in
range(nun_layers)]

self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, training, nask):
seq_len = tf.shape(x)[1]

adding enbedding and position encoding.
x = self.enbedding(x) # (batch_size, input_seq_len, d_nodel)
x *= tf.nath.sqrt(tf.cast(self.d_nodel, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)

for i in range(self.num_layers):
x = self.enc_layers[i](x, training, mask)

return x # (batch_size, input_seq_len, d_nodel)

class Decoder(tf.keras.layers.Layer):
def init (self, num_layers, d_model, num_heads, dff, target_vocab_size,

naxinun_position_encoding, rate=0.1):
super(Decoder, self). init ()

self.d_model = d_model
self.nun_layers = nun_layers

self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_nodel)
self.pos_encoding = positional_encoding(maximum_position_encoding, d_nodel)

self.dec_layers = [DecoderLayer(d_model, nun_heads, dff, rate) for _ in
range(num_layers)]

self.dropout = tf.keras.layers.Dropout(rate)

def call(self, x, enc_output, training, look_ahead_nask, padding_nask):
seq_len = tf.shape(x)[1]
attention_weights = {}

x = self.embedding(x) # (batch_size, target_seq_len, d_nodel)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]

x = self.dropout(x, training=training)

for i in range(self.nun_layers):
x, blockl, block2 = self.dec_layers[i](x, enc_output, training,

look_ahead_nask, padding_mask)

attention_weights[f1decoder_layer{i+l}_blockl1] = blockl
attention_weights[f1decoder_layer{i+l}_block21] = block2

x.shape == (batch_size, target_seq_len, d_nodel)
return x, attention_weights

class Transformer(tf.keras.Model):
def init (self, num_layers, d_model, nun_heads, dff, input_vocab_size,

target_vocab_size, pe_input, pe_target, rate=0.1):
super(). init ()

self.encoder = Encoder(num_layers, d_nodel, num_heads, dff, input_vocab_size,
pe_input, rate)

self.decoder = Decoder(nun_layers, d_nodel, nun_heads, dff, target_vocab_size,
pe_target, rate)

self.final_layer = tf.keras.layers.Dense(target_vocab_size)

def call(self, inputs, training):
Keras models prefer if you pass ali your inputs in the first argunent
inp, tar = inputs

enc_padding_nask, look_ahead_mask, dec_padding_nask = self.create_masks(inp, tar)

(batch_size, inp_seq_len, d_model)
enc_output = self.encoder(inp, training, enc_padding_mask)

dec_output.shape == (batch_size, tar_seq_len, d_nodel)
dec_output, attention_weights = self.decoder(tar, enc_output, training,

look_ahead_nask, dec_padding_nask)

(batch_size, tar_seq_len, target_vocab_size)
final_output = self.final_layer(dec_output)

return final_output, attention_weights

def create_masks(self, inp, tar):
Encoder padding mask
enc_padding_mask = create_padding_mask(inp)

Used in the 2nd attention block in the decoder.
This padding mask is used to mask the encoder outputs.
dec_padding_mask = create_padding_mask(inp)

Used in the lst attention block in the decoder.
It is used to pad and mask future tokens in the input received by
the decoder.
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
dec_target_padding_mask = create_padding_mask(tar)
look_ahead_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)

return enc_padding_mask, look_ahead_mask, dec_padding_nask

Hiperparânetros
num_layers = 4
d_nodel = 128
dff = 512
num_heads = 8
dropout_rate = 0 . 1

Otimizador

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
d e f init (self, d_model, warnup_steps=4000):

super(CustomSchedule, self). init ()
self.d_model = d_model
self.d_model = tf.cast(self.d_model, tf.float32)
self.warnup_steps = warnup_steps

def call (self, step):
step = tf.cast(step, tf.float32) # Adicionado para evitar ERRO
argl = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)

return tf.math.rsqrt(self.d_model) * tf.nath.nininun(argl, arg2)

learning_rate = CustonSchedule(d_nodel)
optinizer = tf.keras.optimizers.Adam(learning_rate, beta_l=0.9, beta_2=0.98, epsilon=le-9)

##Função de Perda e Métrica de Acurácia (mascarados)

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,
reduction=1none1)
def loss_function(real, pred):

mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask

return tf.reduce_sum(loss_)/tf.reduce_sum(mask)

def accuracy_function(real, pred):
accuracies = tf.equal(real, tf.argmax(pred, axis=2))
mask = tf.math.logical_not(tf.math.equal(real, 0))
accuracies = tf.math.logical_and(mask, accuracies)
accuracies = tf.cast(accuracies, dtype=tf.float32)
mask = tf.cast(mask, dtype=tf.float32)

return tf.reduce_sum(accuracies)/tf.reduce_sum(mask)

train_loss = tf.keras.metrics.Mean(name=1train_loss1)
train_accuracy = tf.keras.metrics.Mean(name=1train_accuracy1)

Treinamento

transformer = Transformer(
num_layers=num_layers,
d_model=d_model,
num_heads=num_heads,
dff=dff,
input_vocab_size=tokenizers.pt.get_vocab_size().numpy(),
target_vocab_size=tokenizers.en.get_vocab_size().numpy(),
pe_lnput=1000,
pe_target=1000,
rate=dropout_rate)

Checkpoint

checkpoint_path = "./checkpoints/train"

ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer)

ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)

if a checkpoint exists, restore the latest checkpoint.
if ckpt_manager.latest_checkpoint:

ckpt.restore(ckpt_manager.latest_checkpoint)
print(1Latest checkpoint restored!!')

EPOCHS = 20
train_step_signature = [

tf.TensorSpec(shape=(None, None), dtype=tf.int64),
tf.TensorSpec(shape=(None, None), dtype=tf.int64),

]

@tf.function(input_signature=train_step_signature)
def train_step(inp, tar):

tar_inp = tar[:, :-1]
tar_real = tar[:, 1:]

with tf.CradientTape() as tape:
predictions, _ = transformer([inp, tar_inp], training = True)
loss = loss_function(tar_real, predictions)

gradients = tape.gradient(loss, transformer.trainable_variables)

optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))

train_loss(loss)

train_accuracy(accuracy_function(tar_real, predictions))

for epoch in range(EPOCHS):
start = time.time()
train_loss.reset_state()
train_accuracy.reset_state()

inp -> portuguese, tar -> english
for (batch, (inp, tar)) in enumerate(train_batches):

train_step(inp, tar)

if batch % 50 == 0:
print(f'Epoch {epoch + 1} Batch {batch} Loss {train_loss.result():.4f} Accuracy

{train_accuracy.result():.4f}1)

if (epoch + 1) % 5 == 0:
ckpt_save_path = ckpt_manager.save()
print(f1Saving checkpoint for epoch {epoch+1} at {ckpt_save_path}1)

print(f1Epoch {epoch + 1} Loss {train_loss.resultQ:.4f} Accuracy
{train_accuracy.result():.4f}1)

print(f'Time taken for 1 epoch: {time.timeQ - start:.2f} secs\n')

Epoch 20 B atch 0 Loss 1 .1604 A c c u ra c y 0. 7215
Epoch 20 B atch 50 1-oss 1 .0 6 9 7 A c c u ra c y 0 .7 4 3 7
Epoch 20 B atch 100 Loss 1 .0 7 3 1 A cc u ra c y 0 .7 4 2 7
Epoch 20 B atch 150 Loss 1 .0 7 5 1 A cc u ra c y 0 .7 4 2 5
Epoch 20 B atch 200 Loss 1 .0 8 0 2 A cc u ra c y 0 .7 4 1 5
Epoch 20 B atch 250 Loss 1 .0 8 7 3 A cc u ra c y 0 .7 4 0 2
Epoch 20 B atch 300 Loss 1 .0 9 3 1 A cc u ra c y 0 .7 3 8 9
Epoch 20 B atch 350 Loss 1 .0 9 8 5 A cc u ra c y 0 .7 3 8 1
Epoch 20 B atch 400 Loss 1 .1 0 0 4 A cc u ra c y 0 .7 3 7 9
Epoch 20 B atch 450 Loss 1 .1 0 1 9 A cc u ra c y 0 .7 3 7 6
Epoch 20 B atch 500 Loss 1 .1 0 3 2 A cc u ra c y 0 .7 3 7 5
Epoch 20 B atch 550 Loss 1 .1 0 3 7 A cc u ra c y 0 .7 3 7 3
Epoch 20 B atch 600 Loss 1 .1 0 5 9 A cc u ra c y 0 .7 3 6 9
Epoch 20 B atch 650 Loss 1 .1 0 8 1 A cc u ra c y 0 .7 3 6 5
Epoch 20 B atch 700 Loss 1 .1 1 1 2 A cc u ra c y 0 .7 3 5 8
Epoch 20 B atch 750 Loss 1 .1 1 4 2 A cc u ra c y 0 .7 3 5 3
Epoch 20 B atch 800 Loss 1 .1 1 8 3 A cc u ra c y 0 .7 3 4 6
S a v in g c h e c k p o in t f o r epoch 20 a t . / c h e c k p o in t s / t r a in / c k p t - 7
Epoch 20 Loss 1 .1 1 8 8 A c c u ra c y 0 .7 3 4 4
Tim e ta k e n f o r 1 epoch : 1 9 6 9 .8 4 secs

class Translator(tf.Module):
d e f init (self, tokenizers, transformer):

self.tokenizers = tokenizers
self.transformer = transformer

def call (self, sentence, max_length=20):
input sentence is portuguese, hence adding the start and end token
assert isinstance(sentence, tf.Tensor)

if len(sentence.shape) == 0:
sentence = sentence[tf.newaxis]

sentence = self.tokenizers.pt.tokenize(sentence).to_tensor()
encoder_input = sentence

as the target is english, the first token to the transformer should be the
english start token.
start_end = self.tokenizers.en.tokenize([11])[0]
start = start_end[0][tf.newaxis]
end = start_end[l][tf.newaxis]

output_array = tf.TensorArray(dtype=tf.int64, size=0, dynamic_size=True)
output_array = output_array.write(0, start)

for i in tf.range(max_length):
output = tf.transpose(output_array.stack())
predictions, _ = self.transformer([encoder_input, output], training=False)
predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size)
predicted_id = tf.argmax(predictions, axis=-l)
output_array = output_array.write(i+l, predicted_id[0])
if predicted_id == end:

break

output = tf.transpose(output_array.stack())
output.shape (1, tokens)
text = tokenizers.en.detokenize(output)[0]
tokens = tokenizers.en.lookup(output)[0]

_, attention_weights = self.transformer([encoder_input, output[:,:-1]],
training=False)

return text, tokens, attention_weights

Efetuar uma tradução
translator = Translator(tokenizers, transformer)
sentencel = "Hoje seria um ótimo dia para uma corrida"

translated_textl, translated_tokens, attention_weights
translator(tf.constant(sentencel))

sentence2 = "poderemos usar nossa força para competir com os melhor de cada esporte"
translated_text2, translated_tokens, attention_weights
translator(tf.constant(sentence2))

sentence3 = "e quem sabe conseguir vencer os melhores do mundo"
translated_text3, translated_tokens, attention_weights
translator(tf.constant(sentence3))

print(f1{"1":5s}: {translated_textl}1)
print(f1{"2" :5s}: {translated_text2}1)
print(f1{"3":5s}: {translated_text3}1)

1 : b'now it would be a great day to run a race , today , a great day
2 : b'we can use our strength to compete with the best of each sterend
3 : b'and who knows what can beat the best world

APÊNDICE 9 - BIG DATA

A - ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de

uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL).

Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de

dados empregados.

B - RESOLUÇÃO

Escopo de Projeto: Avaliação de Preços no Contexto Supermercadista no Brasil

1. Objetivo do Projeto
Desenvolver um sistema de Big Data para integração e análise de preços que permita a

avaliação precisa e em tempo real dos preços praticados nos setores de varejo e atacado, no
contexto supermercadista no território nacional. O sistema integrará dados de múltiplas fontes,
incluindo bases de dados de pontos comerciais físicos, informações de representantes de produtos e
dados de compras online, proporcionando uma visão abrangente e atualizada do mercado.

2. Escopo
O projeto abrangerá as seguintes etapas:

1. Levantamento de Requisitos
• Identificar todas as fontes de dados disponíveis, como bases de dados de pontos

comerciais (varejo e atacado), informações fornecidas pelos representantes de
produtos, planilhas de contato e vendas e dados de compras online.

• Definir os indicadores-chave de desempenho (KPIs) para avaliação de preços, como
variação de preços por região, sazonalidade, concorrência, e margem de lucro.

2. Integração de Dados
• Conectar e integrar as diferentes bases de dados de pontos comerciais, utilizando

ETL (Extração, Transformação e Carga) para padronização e limpeza dos dados.
• Integrar os dados de representantes de produtos, com foco em negociações de

preços, promoções e acordos comerciais.
• Conectar as bases de dados de compras online, mapeando o comportamento do

consumidor e identificando tendências de mercado.

3. Desenvolvimento do Sistema de Análise
• Implementar um sistema de Big Data utilizando tecnologias como Hadoop, Spark, ou

outras, para processamento e análise em larga escala.
• Desenvolver algoritmos de machine learning para prever tendências de preços e

identificar oportunidades de ajuste.
• Criar dashboards interativos para visualização dos dados e geração de relatórios

customizados, utilizando ferramentas como Power BI, Tableau ou soluções baseadas
em Python.

4. Validação e Testes
• Realizar testes de desempenho e acurácia com conjuntos de dados históricos e em

tempo real.
• Validar os modelos de previsão de preços e ajustar os algoritmos conforme

necessário.
• Implementar um ambiente de testes com amostras de dados para validação contínua.

5. Treinamento e Capacitação
• Capacitar os colaboradores dos supermercados e representantes de produtos na

utilização do sistema.
• Desenvolver manuais e tutoriais para a correta interpretação dos dados e utilização

das ferramentas de análise.

6. Implementação e Manutenção
• Implementar o sistema nos pontos comerciais selecionados, garantindo a integração

contínua com as bases de dados.
• Estabelecer um cronograma de manutenção e atualização do sistema, garantindo

que os dados permaneçam atualizados e precisos.
• Monitorar a performance do sistema e realizar ajustes conforme necessário para

otimizar o desempenho.

3. Benefícios Esperados
• Melhoria na competitividade: Ajustes de preços mais rápidos e precisos, alinhados

com as tendências de mercado.
• Redução de custos: Identificação de oportunidades de compra e negociação com

fornecedores.
• Satisfação do consumidor: Preços mais justos e competitivos, resultando em maior

fidelização.
• Decisões baseadas em dados: Capacidade de tomar decisões estratégicas baseadas

em análises profundas e preditivas.

4. Recursos Necessários
• Tecnologia: Servidores de processamento de dados, ferramentas de Big Data

(Hadoop, Spark), ferramentas de visualização (Power Bl, Tableau).
• Equipe: Cientistas de dados, engenheiros de dados, especialistas em Bl,

desenvolvedores de software, e analistas de mercado.
• Orçamento: Investimento inicial para aquisição de tecnologia, contratação de

especialistas, e desenvolvimento do sistema.

5. Cronograma
• Fase 1: Levantamento de Requisitos e Integração de Dados (3 meses)
• Fase 2: Desenvolvimento do Sistema e Algoritmos de Análise (6 meses)
• Fase 3: Validação, Testes, e Treinamento (2 meses)
• Fase 4: Implementação e Monitoramento (3 meses)

6. Riscos e Mitigações
• Riscos de Integração de Dados: Problemas de compatibilidade entre diferentes

bases de dados podem ser mitigados com um processo robusto de ETL.
• Riscos de Precisão nas Previsões: Implementação de validações contínuas para

garantir que os modelos de machine learning estejam sempre alinhados com as
condições de mercado.

• Riscos de Adoção: Investir em treinamento e suporte contínuo para garantir a
adoção bem-sucedida do sistema pelos usuários finais.

Este escopo servirá como base para o planejamento detalhado e a execução do projeto, visando a
criação de um sistema robusto e eficiente de avaliação de preços no setor supermercadista brasileiro.

Tipos de Bancos de Dados: SGDB e NoSQL

1. Sistemas de Gerenciamento de Banco de Dados (SGDB)

Os SGDBs são usados para gerenciar bancos de dados relacionais (RDBMS), que armazenam dados
em tabelas organizadas em linhas e colunas. Esses sistemas utilizam SQL (Structured Query
Language) para a manipulação de dados.

Principais Tipos de SGDBs:
• MySQL: Um dos SGDBs mais populares, é conhecido por sua performance e

robustez em ambientes web. Ele suporta ACID (Atomicidade, Consistência,
Isolamento e Durabilidade) e é ideal para transações que exigem consistência e
integridade.

• PostgreSQL: Um SGDB avançado, com suporte a transações complexas e consultas
avançadas. É altamente extensível e oferece suporte para JSON, permitindo
armazenamento de dados semiestruturados.

• Oracle: Utilizado em grandes corporações, oferece alta performance, escalabilidade e
funcionalidades avançadas de segurança e replicação.

• SQL Server: Desenvolvido pela Microsoft, é conhecido por sua integração com outras
ferramentas da Microsoft, como o Power Bl, e por sua robustez em ambientes
empresariais.

Conexões Entre SGDBs:
• ETL (Extract, Transform, Load): Ferramentas como Talend, Apache Nifi e Informática

podem ser usadas para conectar, extrair, transformar e carregar dados de diferentes
SGDBs, garantindo a integração entre eles.

• ODBC/JDBC: Protocolos que permitem a comunicação entre diferentes SGDBs e
aplicações, possibilitando consultas e manipulação de dados de forma centralizada.

2. Bancos de Dados NoSQL
Bancos de dados NoSQL são projetados para lidar com grandes volumes de dados distribuídos e
para oferecer flexibilidade no armazenamento de dados semiestruturados ou não estruturados. Eles
não dependem de esquemas fixos e oferecem escalabilidade horizontal.

Principais Tipos de NoSQL:
• MongoDB: Um banco de dados orientado a documentos, que armazena dados em

formato JSON, ideal para aplicações que precisam de flexibilidade no
armazenamento de dados semiestruturados.

• Cassandra: Um banco de dados de larga escala, projetado para alta disponibilidade e
escalabilidade, utilizado para grandes volumes de dados distribuídos.

• Redis: Um banco de dados em memória, que oferece alta performance para
operações de leitura e escrita, frequentemente usado como cache.

• HBase: Um banco de dados distribuído e escalável, que funciona sobre o HDFS
(Hadoop Distributed File System), adequado para grandes volumes de dados com
necessidades de leitura e escrita rápidas.

Conexões Entre NoSQL:
• Data Pipelines: Ferramentas como Apache Kafka ou Apache NiFi permitem o fluxo

contínuo de dados entre diferentes bancos de dados NoSQL, garantindo que os
dados sejam transmitidos e transformados conforme necessário.

• APIs e SDKs: NoSQL geralmente fornece APIs e SDKs para integração com outras
aplicações ou sistemas de bancos de dados, facilitando a comunicação entre
diferentes sistemas.

Hadoop e Ferramentas de Integração de Big Data

O Hadoop é um framework de código aberto que permite o processamento distribuído de grandes
volumes de dados. Ele é composto por vários módulos que podem ser usados para compatibilizar e
traduzir informações provenientes de diferentes fontes de dados, sejam elas SGDB ou NoSQL.

Principais Componentes do Hadoop:

• HDFS (Hadoop Distributed File System): Sistema de arquivos distribuído que
armazena grandes volumes de dados de forma distribuída e resiliente.

• MapReduce: Modelo de programação para processamento paralelo de grandes
conjuntos de dados. Ele divide o processamento em duas etapas: Map (mapeamento)
e Reduce (redução), permitindo a análise de dados em larga escala.

• YARN (Yet Another Resource Negotiator): Gerenciador de recursos que aloca e
monitora recursos do cluster Hadoop para diferentes aplicações.

• Hive: Um sistema de data warehousing sobre Hadoop que permite consultas em
grandes volumes de dados usando uma linguagem semelhante ao SQL chamada
HiveQL.

• Pig: Uma plataforma de alto nível para criar programas que rodam sobre Hadoop.
Usa uma linguagem chamada Pig Latin, que abstrai as complexidades do
MapReduce.

• HBase: Banco de dados NoSQL distribuído que roda sobre o HDFS, permitindo
leitura e escrita rápidas de dados estruturados e semiestruturados.

• Sqoop: Ferramenta usada para importar e exportar dados entre bancos de dados
relacionais e o Hadoop.

• Flume: Serviço para coletar, agregar e mover grandes quantidades de dados de log
para o HDFS.

• Oozie: Gerenciador de fluxo de trabalho que coordena os trabalhos de MapReduce,
Pig e Hive.

Integração de SGDBs e NoSQL com Hadoop no Projeto de Big Data

Para o contexto do projeto de avaliação de preços no setor supermercadista:

1. Coleta e Integração de Dados:
• Apache Sqoop pode ser usado para importar dados dos SGDBs (MySQL,

PostgreSQL, etc.) para o HDFS.
• Flume pode ser utilizado para coletar dados de logs de compras online e armazená-

los no sistema de arquivos HDFS.
• Kafka pode ser empregado para transmitir dados em tempo real de diferentes fontes,

como registros de vendas e dados de representantes de produtos.
2. Processamento e Análise:

• MapReduce pode ser usado para processar grandes volumes de dados e calcular
métricas de avaliação de preços.

• Hive ou Pig podem ser utilizados para consultas e análises complexas sobre os ados
coletados e armazenados no HDFS.

3. Armazenamento e Consulta de Dados:
• HBase pode ser utilizado para armazenamento de dados que necessitam de alta

velocidade de leitura e escrita, como registros de preços em tempo real.
• Hive permite consultas SQL-like sobre dados armazenados no HDFS, facilitando a

extração de insights.
4. Visualização e Relatórios:

• Tableau ou Power Bl podem ser conectados ao Hadoop via ODBC/JDBC para a
criação de dashboards interativos e geração de relatórios em tempo real.

DB
(SGDB e NoSQL)

O

Sqoop
R u m o

HBA5C

KAFKA

HAVF - PIG VIEWs Bl

Conclusão
A integração dos diversos tipos de SGDBs e NoSQL com a infraestrutura Hadoop permitirá um fluxo
contínuo de dados e análises avançadas, garantindo que o sistema de avaliação de preços no
contexto supermercadista seja eficiente, escalável e robusto. Essa combinação de tecnologias
assegura que os dados de múltiplas fontes sejam compatibilizados, traduzidos e analisados de forma
a oferecer insights valiosos para a tomada de decisões estratégicas.

APÊNDICE 10 - VISÃO COMPUTACIONAL

A - ENUNCIADO

1) Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno-

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0 ,1+, 2+ e 3+) que estão divididas

em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma base de

imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging)

disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão

XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada.

Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não

utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de

treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última

camada de classificação e armazene os valores da penúltima camada como um vetor de

características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:

a) Carregue a base de dados de Treino.
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada

extrato r).
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
e) Carregue a base de Teste e execute a tarefa 3 nesta base.
f) Aplique os modelos treinados nos dados de treino
g) Calcule as métricas de Sensibilidade, Especificidade e Fl-Score com base em suas

matrizes de confusão.
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2) Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem

224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será

necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation

cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.

https://pubmed.ncbi.nlm.nih.gov/28771788/

Tarefas:

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício
anterior

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation
c) Aplique os modelos treinados nas imagens da base de Teste
d) Calcule as métricas de Sensibilidade, Especificidade e Fl-Score com base em suas

matrizes de confusão.
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada

B - RESOLUÇÃO

1 - Extração de Características

Extração de características com LBP, nos dados de treinamento.
Gravados no arquivo CSV : lbp_features_train.csv
Criamos uma coluna Imagem que contem o nome da imagem, Cliente com o código do paciente e
uma com a respectiva Classe

Caminho das imagens de treino
tra in_da ta _d ir = 1/content/drive/M yD rive/V isaoCom putacional/trabalho/T r a in 1
Parâmetros do LBP
radius = 1
n_points = 8 * radius
Função para extrair LBP
def extract_ lbp_ fea tu res(im age):

gray_image = cv2.cvtColor(im age, cv2.C0L0R_BCR2CRAY)
Ibp = local_binary_pattern(gray_im age, n_points, rad ius, method=1uniform 1)
(h is t , _) = np .h is tog ra m (lb p .rave lQ , bins=np.arange(0, n_points + 3), range=(0,

n_points + 2))
h is t = h is t .a s ty p e (" f lo a t")
h is t /= (h is t.sum Q + le -6) # Normalização
return h is t

Abrir arquivo CSV para salvar as características LBP
w ith o p e n ('lb p _ fe a tu re s_ tra in .csv ', mode='w', n e w lin e = '') as f i l e :

w r ite r = c s v .w r ite r (f i le)
w r ite r .w r ite ro w ([1Image1, 'C lasse1, 'C lie n te 1, 'F e a tu re s '])
fo r c lass_d ir in os. l is td ir (t r a in _ d a ta _ d ir) :

class_path = o s .p a th .jo in (tra in _ d a ta _ d ir , c la ss_ d ir)
i f os. path . is d ir (c la s s _ p a th) :

fo r image_name in o s . lis td ir (c la s s _ p a th) :
image_path = o s .pa th .jo in (c lass_pa th , image_name)
image = cv2.imread(image_path)
i f image is not None:

features = extract_ lbp_features(im age)
E x tra ir os dois prim eiros d íg ito s do nome do arquivo
c lie n te = image_name[:2]

w riter.writerow([im age_nam e, c la ss_ d ir, c lie n te ,
fe a tu re s . t o l i s t ()])
p r in t (" Extração de ca ra c te rís tica s com LBP conc lu ída !")

Abrir arquivo CSV para salvar as características VGG16 do conjunto de validação
w ith open(' vgg l6_ fe a tu res_ tra in . csv ' , mode='w', n e w lin e = '') as f i l e :

w r ite r = c s v .w r ite r (f i le)
w r ite r .w r ite ro w ([' Image', 'C lasse ', 'C lie n te ', 'F e a tu re s '])
c u r re n t_ f ile = 0 # In ic ia l iz a o contador
fo r c lass_d ir in os. l is td ir (t r a in _ d a ta _ d ir) :

class_path = o s .p a th .jo in (tra in _ d a ta _ d ir , c la ss_ d ir)
i f os. path . is d ir (c la s s _ p a th) :

fo r image_name in o s . lis td ir (c la s s _ p a th) :
c u r re n t_ f ile += 1 # Incrementa o contador
image_path = o s .pa th .jo in (c lass_pa th , image_name)
E x tra ir os dois prim eiros d íg ito s do nome do arquivo (C lien te)

c lie n te = image_name[:2]

features = extract_vggl6_features(image_path)
w rite r.w rite row ([inage_nane, c la ss_ d ir, c lie n te , fe a tu r e s . to l is t ()])
p r in t (f 1 Processando arquivo { c u r r e n t_ f i le } / { to ta l_ f i le s } 1)

#Exibe o progresso
p r in t (" Extração de ca ra c te rís tica s VGG16 conc lu ída !")

Arquivo CSV com os dados LBP de treino
csv_filenam e_tra in = 'lb p _ fe a tu re s_ tra in .csv '
Carregar o arquivo CSV em um DataFrame
d f_ tra in = pd. read_csv(csv_filename_train)

Função para aplicar o estilo de cores alternadas
def co lor_a lte rnate_row s(row):

A lte rna as cores entre duas opções
co lo r = 1background-color: # f5 f5 f5 ' i f row.nane % 2 == 0 eles 1background-color:

f f f f f f '
re turn [c o lo r] * len(row)

Selecionar apenas as primeiras 10 linhas
d f_tra in_10 = d f_ tra in . head(10)
Exibir o DataFrame com linhas alternadas em cores
styled_df_10 = d f_ tra in_1 0 .s ty le .app ly (co lo r_a lte rn a te_ row s, a x is= l)
Mostrar o DataFrame estilizado com 10 linhas
styled_df_10

pandas.io.formats.style.Stylei at 0x7a68495d8160>

Arquivo CSV com os dados VGG16 de treino
csv_filenam e_tra in = 1vgg l6_ fea tu res_ tra in .csv '
Carregar o arquivo CSV em um DataFrame
d f_ tra in = pd. read_csv(csv_filenane_tra in)

Função para aplicar o estilo de cores alternadas
def co lor_a lte rnate_row s(row):

A lte rna as cores entre duas opções
co lo r = 'background-color: # f5 f5 f5 ' i f row.nane % 2 == 0 eles 'background-color:

f f f f f f '
re turn [c o lo r] * len(row)

Selecionar apenas as primeiras 10 linhas
d f_ tra in_2 = d f_ tra in .head(2)
Exibir o DataFrame com linhas alternadas em cores
styled_df_2 = d f_ tra in_2 .s ty le .app ly (co lo r_a lte rna te_ row s , a x is= l)
Mostrar o DataFrame estilizado com 2 linhas
styled_df_2

pandas.io.formats.style.Stylei at 0x7a6840902b60>
Leitura e preparação do dados com as características extraídas LBP
Separamos as bases agrupados por pacientes para garantir que o mesmo cliente fique apenas em
uma base para não gerar viés, e fizemos a distribuição das classes

Distribuição das classes no conjunto de treino:
Classe

2 120
3 120
1 117
0 116
Name: count, dtype: int64

Distribuição das classes no conjunto de teste:
Classe

2 30
1 30
3 29
0 29

Name: count, dtype: int64
Tamanho do conjunto de treino: 473
Tamanho do conjunto de teste: 118

Treinamento e avaliação do Modelo Random Forest com as características LBP
Cada modelo foi gravado em um arquivo pkl para rodar posteriormente com os arquivo da base de
teste.

Accuracy: 79.66%
Relatório de Classificação:

precision recall fl-score support
0 0.75 0.72 0.74 29
1 0.72 0.77 0.74 30
2 0.81 0.73 0.77 30
3 0.90 0.97 0.93 29

accuracy 0.80 118
macro avg 0.80 0.80 0.80 118
weighted avg 0.80 0.80 0.80 118

Agora visualizamos as métricas de Especificidade , Sensibilidade e Fl-Score de cada
classe
Métricas referente ao Random Forest com LBP
Classe 0: Especificidade = 0.92, Sensibilidade = 0.72, F l-score = 0.74
Classe 1: Especificidade = 0.90, Sensibilidade = 0.77, F l-score = 0.74
Classe 2: Especificidade = 0.94, Sensibilidade = 0.73, F l-score = 0.77
Classe 3: Especificidade = 0.97, Sensibilidade = 0.97, F l-score = 0.93

Treinamento do modelo SVM com os dados LBP
Accuracy SVM: 74.58%
Relatório de Classificação (SVM):

precision recall fl-score support
0 0.74 0.69 0.71 29
1 0.67 0.60 0.63 30
2 0.66 0.70 0.68 30
3 0.91 1.00 0.95 29

accuracy 0.75 118
macro avg 0.74 0.75 0.74 118
weighted avg 0.74 0.75 0.74 118
Métricas referente ao SVM com LBP
Classe 0: Especificidade = 0.92, Sensibilidade = 0.69, F l-score = 0.71
Classe 1: Especificidade = 0.90, Sensibilidade = 0.60, F l-score = 0.63
Classe 2: Especificidade = 0.88, Sensibilidade = 0.70, F l-score = 0.68
Classe 3: Especificidade = 0.97, Sensibilidade = 1.00, F l-score = 0.95
Treinamento RNA com LBP
Accuracia RNA: 67.80%
Relatório de Classificação:

precision recall fl-score support
0 0.64 0.48 0.55 29
1 0.60 0.60 0.60 30
2 0.61 0.67 0.63 30
3 0.85 0.97 0.90 29

accuracy 0.68 118

macro avg 0.67 0.68 0.67 118
weighted avg 0.67 0.68 0.67 118

Métricas referente ao SVM com LBP
Classe 0: Especificidade = 0.91, Sensibilidade = 0.48, F l-score = 0.55
Classe 1: Especificidade = 0.86, Sensibilidade = 0.60, F l-score = 0.60
Classe 2: Especificidade = 0.85, Sensibilidade = 0.67, F l-score = 0.63
Classe 3: Especificidade = 0.94, Sensibilidade = 0.97, F l-score = 0.90

Leitura dos dados extraídos com VGG16
Garantimos que todas as classes estivessem presentes nos dois conjuntos, e que cada paciente
ficasse apenas em uma base para não causar viés ao modelo

Distribuição das classes no conjunto de treino:
Classe

2 120
3 120
1 117
0 116
Name: count, dtype: int64

Distribuição das classes no conjunto de teste:
Classe

2 30
1 30
3 29
0 29
Name: count, dtype: int64

Tamanho do conjunto de treino: 473
Tamanho do conjunto de teste: 118

Treinamento e avalição com o modelo Random Forest e características VGG16

Accuracy: 93.22%

Relatório de Classificação:
precision recall fl-score support

0 0.90 0.97 0.93 29
1 0.93 0.90 0.92 30
2 0.90 0.93 0.92 30
3 1.00 0.93 0.96 29

accuracy 0.93 118
macro avg 0.93 0.93 0.93 118
weighted avg 0.93 0.93 0.93 118

Métricas referente ao RANDOM FOREST com VGG16
Classe 0: Especificidade = 0.97, Sensibilidade = 0.97, F l-score = 0.93
Classe 1: Especificidade = 0.98, Sensibilidade = 0.90, F l-score = 0.92
Classe 2: Especificidade = 0.97, Sensibilidade = 0.93, F l-score = 0.92
Classe 3: Especificidade = 1.00, Sensibilidade = 0.93, F l-score = 0.96

Treinamento SVM com os dados VGG16

Accuracy SVM: 93.22%
Relatório de Classificação (SVM):

precision recall fl-score support
0 0.96 0.93 0.95 29
1 0.96 0.90 0.93 30

2
3

0.83
1.00

1.00
0.90

0.91
0.95

30
29

accuracy
macro avg
weighted avg

0.94
0.94

0.93
0.93

0.93
0.93
0.93

118
118
118

Métricas referente ao SVM com VGG16
Classe 0: Especificidade = 0.99, Sensibilidade = 0.93, F l-score = 0.95
Classe 1: Especificidade = 0.99, Sensibilidade = 0.90, F l-score = 0.93
Classe 2: Especificidade = 0.93, Sensibilidade = 1.00, F l-score = 0.91
Classe 3: Especificidade = 1.00, Sensibilidade = 0.90, F l-score = 0.95

Treinamento RNA com VGG16

Accuracia RNA: 96.61%
Relatório de Classificação:

precision recall fl-score support
0 0.97 0.97 0.97 29
1 0.97 0.93 0.95 30
2 0.94 1.00 0.97 30
3 1.00 0.97 0.98 29

accuracy 0.97 118
macro avg 0.97 0.97 0.97 118
weighted avg 0.97 0.97 0.97 118

Métricas referente ao RNA com VGG16
Classe 0: Especificidade = 0.99, Sensibilidade = 0.97, F l-score = 0.97
Classe 1: Especificidade = 0.99, Sensibilidade = 0.93, F l-score = 0.95
Classe 2: Especificidade = 0.98, Sensibilidade = 1.00, F l-score = 0.97
Classe 3: Especificidade = 1.00, Sensibilidade = 0.97, F l-score = 0.98
Relatório do treintamento com destaque dos melhores modelos em AZUL

Modelos com LBP:
Acurácia RF: 79.66%
Acurácia SVM: 74.58%
Acurácia RNA: 67.80%

Modelos com VGG16:
Acurácia RF: 93.22%
Acurácia SVM: 93.22%
Acurácia RNA: 96.61%

Agora extraímos as características da base de teste com LBP e gravamos no arquivo
lbp_ fea tu res_ tes t. csv
Caminho das imagens de treino
tra in_da ta _d ir = 1/content/d rive/M yD rive /V isaoC om putaciona l/trabalho/Test1

Agora extraímos as características da base de teste com VGG16 e gravamos no arquivo
vggl6_features_test.csv
Caminho das imagens de validação
test_da ta_d ir = 1/content/d rive/M yD rive /V isaoC om putaciona l/trabalho/Test1

Leitura das características extraídas LBP (DA BASE DE TESTE) e aplicação do
modelo Random Forest treinado anteriormente

Previsões adicionadas e salvas com sucesso.
Agora exibimos a matriz de confusão e as métricas

M atriz de C onfusão LBF* com Random Forest (BASE DE TESTE)

42 33 25 l

20 44 24 0

- 4 2 80 4

- i 0 9 80

Classe 0 Classe l classe 2
i

Classe 3

Acurácia: 66.85%
precision recall fl-score support

Classe 0 0.63 0.42 0.50 101
Classe 1 0.57 0.51 0.54 90
Classe 2 0.58 0.89 0.70 90
Classe 3 0.94 0.89 0.91 90

accuracy 0.67 371
macro avg 0.68 0.68 0.66 371
weighted avg 0.68 0.67 0.66 371

Especificidade por classe:
Classe 0: 0.91
Classe 1: 0.88
Classe 2: 0.79
Classe 3: 0.98

Aplicação modelo SVM com LBP na base de teste e gravamos as prediçõe no arquivo
csv

Matriz de Confusão LBP com SVM (BASE DE TESTE)

Clauc 0 C la ra 1 Classe 2 Classe 3
RfdlM

Acurácia: 71.43%

precision recall fl-score support
Classe 0 0.76 0.55 0.64 101
Classe 1 0.55 0.62 0.58 90
Classe 2 0.63 0.77 0.69 90
Classe 3 0.99 0.93 0.96 90

accuracy 0.71 371
macro avg 0.73 0.72 0.72 371
weighted avg 0.73 0.71 0.72 371

Especificidade por classe:
Classe 0: 0.93
Classe 1: 0.84
Classe 2: 0.85
Classe 3: 1.00

Rodamos o modelo RNA/LBP na base de testes

Matriz de Confusão LBP com RNA

*. J 0
0 0 «

rUu»c (UW« 1 dMMI

Acurácia: 64.69%
precision recall fl-score support

Classe 0 0.68 0.28 0.39 101
Classe 1 0.45 0.62 0.52 90
Classe 2 0.62 0.80 0.70 90
Classe 3 0.94 0.93 0.94 90

accuracy 0.65 371
macro avg 0.67 0.66 0.64 371
weighted avg 0.67 0.65 0.63 371

Especificidade por classe:
Classe 0: 0.95
Classe 1: 0.75
Classe 2: 0.84
Classe 3: 0.98

Leitura das características extraídas(VGG16) e aplicação do modelo Random Forest

Matriz de Confusão VGG16 com Random Forest

o
j .
•u

99 2 0 0

* .
■
o

ia 12

i

i
_c 1 1 86 2

| «
■

u
0 0 1 ao

CMUfO Claue X ClatM 2 CKIM 3
Preditas

Acurácia: 84.64%

precision recall fl-score support
Classe 0 0.84 0.98 0.90 101
Classe 1 0.93 0.44 0.60 90
Classe 2 0.72 0.96 0.82 90
Classe 3 0.98 0.99 0.98 90

accuracy 0.85 371
macro avg 0.87 0.84 0.83 371
weighted avg 0.87 0.85 0.83 371

Especificidade por classe:
Classe 0: 0.93
Classe 1: 0.99
Classe 2: 0.88
Classe 3: 0.99

Aplicação do modelo SVM com VGG16 na base de teste
M a triz de C onfusão VG G 16 com SVM

93 4 4 0

• 13 » 0

- 0 o 86 4

- 0 0 2 88

CUtte 0 CIavm 1 Clinvc 2 ClétM 3
Beditas

Acurácia: 83.02%
precision recall fl-score support

Classe 0 0.88 0.92 0.90 101
Classe 1 0.91 0.46 0.61 90
Classe 2 0.67 0.96 0.79 90
Classe 3 0.96 0.98 0.97 90

accuracy 0.83 371
macro avg 0.85 0.83 0.82 371
weighted avg 0.85 0.83 0.82 371
Especificidade por classe:
Classe 0: 0.95
Classe 1: 0.99
Classe 2: 0.85
Classe 3: 0.99

Rodamos o Modelo RNA com VGG16 na base de teste

Mgrrj? rjç CenfuíSc VGG1S csrr RMA

93 4 4 0

- 13 41 a

- 0 O >6 4

- 0 0 1 88

Classe 0 Classe 1 Classe 2 Classe 3
P re d ita ? .

Acurácia: 83.02%
precision recall fl-score support

Classe 0 0.88 0.92 0.90 101
Classe 1 0.91 0.46 0.61 90
Classe 2 0.67 0.96 0.79 90
Classe 3 0.96 0.98 0.97 90

accuracy 0.83 371
macro avg 0.85 0.83 0.82 371
weighted avg 0.85 0.83 0.82 371

Especificidade por classe:
Classe 0: 0.95
Classe 1: 0.99
Classe 2: 0.85
Classe 3: 0.99

Agora exibimos as matrizes de confusão lado a lado para ver o resultado

LB? ftf vAm** ú* . « . C H I LS»9VMlAc4fftt« ?L4av LS* KKA A c*'*..» «4 m ;»■ B ■B Fb . .
B Bh • 1̂

D
I J ■ * *

VOOU 5 W A u > <

■ ■
i a i

" ■ " ■

Agora mostramos parte das imagens classificadas com RNA (Características VGG16),
com uma borda em vermelho as classificadas erroneamente, apenas para ver uma parte
das imagens também

C la sse : O

Classe: 1

Prev 0
Reai 0

Prev 2
Real 0

Prev 0
Real n

Prev: 0
Reai: n

Prev o
Real n

Ê *

f

m . %
i

. - l

• • ■ •

• '

9
$

.

Prev L Prev. 2 Prev 1 Prev: 1 Prev 2
Rea 1 Real: 1 Real: 1 Real: 1 Real: 1

— - *

Prev 2
Rea 2

Classe: 2 ..

I_________

Prcv: 2
Real 2

Prev; 2
Real 2

»rev:2
Real 2

Prev 2
Real 2

' i

B l - I i

- à \ i

C la sse : 3

*rcv: 2 Prcv 3Prcv 3
Rea: 3

Prcv: 3 Prcv; 3

Conclusão
Os resultados mostram uma variação considerável de desempenho entre os modelos testados. Aqui

estão as conclusões principais:

• Modelos com Melhor Desempenho:
Observamos que no treinamento o modelo RNA com as características VGG16 foi o que

melhor performou com 96% de acurácia e com boas métricas de precisão em todas as classes
praticamente, mais ao rodar os modelos na base de teste tivemos melhor performance com
o Random Forest(com características (VGG16) que atingiu uma acurácia de 84,64%.

Percebemos ainda que em todos os modelos a dificuldade foi em classificar a Classe 2, que foi
classificada erroneamente como Classe 1.

2 - Redes Neurais
PREPARAÇÃO DOS DADOS SEM DATA AUGMENTATION
Primeiro o caminho das imagens para treinamento dos modelos
Definimos o caminho da pasta treino
tra in_da ta _d ir = 1/content/drive/M yD rive/V isaoCom putacional/trabalho/T r a in 1
Verificamos se o diretório de treinamento existe
i f not o s .p a th .e x is ts (tra in _ d a ta _ d ir) :

p r in t (f " Erro: D ire tó r io não encontrado - { tra in _ d a ta _ d ir } ")
Definimos o tamanho das imagens
img_width, img_height = 224, 224
Define o tamanho do batch (qtd de imagens por lote)
batch_size = 64

Agora preparamos as imagens para teste dos modelos após os treinos
tes t_da ta_d ir = 1/content/d rive/M yD rive /V isaoC om putaciona l/trabalho/Test1
Verificamos se o diretório de teste existe
i f not o s .p a th .e x is ts (te s t_ d a ta _ d ir) :

p r in t (f " Erro: D ire tó r io não encontrado - { te s t_ d a ta _ d ir }")

test_datagen = InageDataCenerator(rescale=l. /255 # norm alizar)

Carregamos as imagens de teste
#flow_from_directory utliza a estrutura das subpastas para atribuir o rótulos automaticamente
test_generator = test_datagen. flow _from _directo ry(

tes t_da ta_d ir,
target_size=(im g_w idth, im g_height),
batch_size=batch_size,
class_mode=1c a te g o r ic a l1,
shuffle=False

)

Found 371 images belonging to 4 classes.

Separamos a base de treinamento em 80%/20% balanceando as classes e tendo o
cuidado de manter o mesmo paciente apenas em uma base para não causar viés.

Found 473 images belonging to 4 classes.
Found 120 images belonging to 4 classes.

Distribuição das classes:
Classe 0: 116 imagens (24.52%)
Classe 1: 117 imagens (24.74%)
Classe 2: 120 imagens (25.37%)
Classe 3: 120 imagens (25.37%)
Distribuição das classes:
Classe 0: 30 imagens (25.00%)
Classe 1: 30 imagens (25.00%)
Classe 2: 30 imagens (25.00%)
Classe 3: 30 imagens (25.00%)

Testamos os geradores

Tamanho do lote de treino: 64, Classes: (64, 4)
Tamanho do lote de validação: 64, Classes: (64, 4)

2 VGG16 SEM DATA AUGMENTATION
Carregamos os modelos pré-treinados (sem data augmentation)

Epoch 1/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 45s 6s/step -
accuracy: 0.3148 - loss: 4.0262 - val_accuracy: 0.6583 - v a ljo s s : 0.7708
Epoch 2/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 45s 538ms/step -
accuracy: 0.5765 - loss: 1.4065 - val_accuracy: 0.7750 - v a ljo s s : 0.6262
Epoch 3/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff lO s 520ms/step -
accuracy: 0.7886 - loss: 0.5166 - val_accuracy: 0.8083 - v a ljo s s : 0.4300
Epoch 4/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 9s 429ms/step -
accuracy: 0.8496 - loss: 0.3405 - val_accuracy: 0.8500 - v a ljo s s : 0.4367
Epoch 5/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 8s 526ms/step -
accuracy: 0.9196 - loss: 0.2551 - val_accuracy: 0.8250 - v a ljo s s : 0.3954
Epoch 6/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff__x005F_xffff__x005F_xffff__x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 9s 611ms/step -
accuracy: 0.9087 - loss: 0.2640 - val_accuracy: 0.8500 - v a ljo s s : 0.3814
6
Epoch 7/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff__x005F_xffff__x005F_xffff__x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 8s 520ms/step -
accuracy: 0.9276 - loss: 0.1973 - val_accuracy: 0.8333 - v a ljo s s : 0.3479
Epoch 8/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 8s 566ms/step -
accuracy: 0.9632 - loss: 0.1491 - val_accuracy: 0.8667 - v a ljo s s : 0.3459
Epoch 9/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 8s 526ms/step -
accuracy: 0.9716 - loss: 0.1161 - val_accuracy: 0.8667 - v a ljo s s : 0.3329
Epoch 10/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__ x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff lO s 430ms/step -
accuracy: 0.9688 - loss: 0.1161 - val_accuracy: 0.8417 - v a ljo s s : 0.3656

Geramos o gráfico com o histórico de treinamento

A c u rá c ia d u ra n te o t r e in a m e n to e v a lid a ç ã o (V G G 1 6 SEM DATA ALIGM ENTATIO N)

ipoc»

Época

3 ResNet50 sem Data Augmentation

Downloading data from https://storage.googleapis.com/tensorflow/keras-
applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
94765736/94765736
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 6s
Ous/step
Epoch 1/10
8/8
_x005F_xffff___ x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__xO
05F xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff x005F_xffff_ 39s 3s/step -
accuracy: 0.2532 - loss: 18.3988 - val_accuracy: 0.3667 - v a ljo s s : 7.0562
Epoch 2/10
8/8
_x005F_xffff___ x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__xO
05F xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff x005F_xffff_ lO s 759ms/step -
accuracy: 0.3043 - loss: 5.3937 - val_accuracy: 0.4750 - v a ljo s s : 2.6083
Epoch 3/10
8/8
_x005F_xffff___ x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__xO
05F xffff____x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff x005F_xffff_ 13s ls /s tep -
accuracy: 0.5096 - loss: 2.0116 - val_accuracy: 0.5250 - v a ljo s s : 1.2564
Epoch 4/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff x005F_xffff_ 7s 368ms/step -
accuracy: 0.4943 - loss: 1.2338 - val_accuracy: 0.5417 - v a ljo s s : 1.3479
9
Epoch 5/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff x005F_xffff_ 12s 794ms/step -

https://storage.googleapis.com/tensorflow/keras-

accuracy: 0.5606 - loss: 1.1239 - val_accuracy: 0.4750 - v a ljo s s : 1.0990
Epoch 6/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ lO s 768ms/step -
accuracy: 0.4988 - loss: 1.0370 - val_accuracy: 0.5750 - v a ljo s s : 0.8860
Epoch 7/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ 7s 330ms/step -
accuracy: 0.5214 - loss: 0.9555 - val_accuracy: 0.5417 - v a ljo s s : 0.9168
Epoch 8/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F xffff___ x005F_xffff_x005F_xffff__x005F_xffff_x005F_xffff__x005F_xffff___x005F_xffff_x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ 9s 844ms/step -
accuracy: 0.4986 - loss: 0.9425 - val_accuracy: 0.5583 - v a ljo s s : 0.8552
Epoch 9/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F x ffff___ x005F_xffff_x005F_xffff__x005F_xffff_x005F_xffff__x005F_xffff___x005F_xffff_x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ lO s 809ms/step -
accuracy: 0.6043 - loss: 0.7839 - val_accuracy: 0.5000 - v a ljo s s : 0.8487
Epoch 10/10
8/8
_x005F_xffff____x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F xffff___ x005F_xffff_x005F_xffff__x005F_xffff_x005F_xffff__x005F_xffff___x005F_xffff_x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ 13s ls /s tep -
accuracy: 0.5754 - loss: 0.8192 - val_accuracy: 0.5750 - v a ljo s s : 0.8160

Geramos o gráfico com o histórico de treinamento

Acurácia du ran te c tre in a m e n to e va lid açà o (ResN et50 sem Data A u qm en ta tion)

Perda d u ra n te c t re in a m e n to e v a lid a ç ã o

Epota

/usr/local/lib/python3.10/dist-
packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121:
UserWarning: Your 'PyDataset' class should call 'superQ. init (**kwargs)' in
its constructor. '**kwargs' can include 'workers', 'use_multiprocessing',
'max_queue_size'. Do not pass these arguments to 'fitQ', as they will be

ignored.
self._warn_if_super_not_called()
WARNING:tensorflow:5 out of the last 13 calls to <function
TensorFlowTrainer.make_predict_function.<locals>.one_step_on_data_distributed at
0x7ec468310310> triggered tf.function retracing. Tracing is expensive and the
excessive number of tracings could be due to (1) creating @tf.function
repeatedly in a loop, (2) passing tensors with different shapes, (3) passing
Python objects instead of tensors. For (1), please define your @tf.function
outside of the loop. For (2), @tf.function has reduce_retracing=True option that
can avoid unnecessary retracing. For (3), please refer to
https://www.tensorflow.Org/guide/function#controlling_retracing and
https://www.tensorflow.org/api_docs/python/tf/function for more details.
6/6
_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005
F_xffff_xO 05 F_xffff_xO 0 5 F_xffff_xO 0 5 F_xffff_xO 0 5 F_xffff_xOO 5 F_xffff_xO 0 5 F_xffff_xOO 5 F xffff
 x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_ 4s 565ms/step
WARNING:tensorflow:5 out of the last 13 calls to <function
TensorFlowTrainer.make_predict_function.<locals>.one_step_on_data_distributed at
0x7ec468310d30> triggered tf.function retracing. Tracing is expensive and the
excessive number of tracings could be due to (1) creating @tf.function
repeatedly in a loop, (2) passing tensors with different shapes, (3) passing
Python objects instead of tensors. For (1), please define your @tf.function
outside of the loop. For (2), @tf.function has reduce_retracing=True option that
can avoid unnecessary retracing. For (3), please refer to
https://www.tensorflow.Org/guide/function#controlling_retracing and
https://www.tensorflow.org/api_docs/python/tf/function for more details.
6/6
_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005
F_xffff_xO 05 F_xffff_xO 0 5 F_xffff_xO 0 5 F_xffff_xO 0 5 F_xffff_xOO 5 F_xffff_xO 0 5 F_xffff_xOO 5 F xffff
 x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_ 8s 918ms/step

Geramos as matrizes de confusão dos dois modelos com a devida acurácia

VGG16 Acurícia; 0 91 R esM et5Q -A c u rá c ia : 0 .4 5

9B

7®

•4

P red ic ted Labe ls P red ic ted La tre ls

u

Calculamos as métricas dos dois modelos

VGG16 - Sensibilidade : 0.9057, Especificidade: 0.9554,
Fl-score: 0.9067
ResNet50 - Sensibilidade: 0.4825, Especificidade: 0.7679,
Fl-score: 0.3975

https://www.tensorflow.org/guide/function%23controlling_retracing
https://www.tensorflow.org/api_docs/python/tf/function
https://www.tensorflow.org/guide/function%23controlling_retracing
https://www.tensorflow.org/api_docs/python/tf/function

4 Agora preparamos os dados com Data Augmentation

Normalização e Data Augmentation para o conjunto de treino
train_datagen = ImageDataGenerator(

rescale=i./255, # Normalização dos valores dos pixels
#teste 1
rotation_range=30, # Rotação
width_shift_range=0.2, # Deslocamento horizontal
height_shift_range=0.2, # Deslocamento vertical
shear_range=0.2, # Cisalhamento
zoom_range=0.2, # Zoom
horizontal_flip=True, # Flip horizontal
filljn o d e -n e a re s t' # Preenchimento de pixels vazios após transformação
#teste 2
rotation_range=10, # Rotação reduzida
width_shift_range=0.1, # Deslocamento horizontal reduzido
height_shift_range=0.1, # Deslocamento vertical reduzido
shear_range=0.1, # Corte reduzido
zoom_range=0.1, # Zoom reduzido
horizontal_flip=True, # aplicar flip horizontal
filljnode -ne a res t', # Preenchimento de pixels
brightness_range=[0.9,1.1] # Ajustar a luminosidade com menor variação
teste 3 entre outras variações que testamos
rotationjange=15, # Rotação ligeiramente aumentada
w idth_shiftjange=0.1, # Deslocamento horizontal reduzido
height_shiftjange=0.1, # Deslocamento vertical reduzido
shearjange=0.1, # Corte reduzido
zoom jange=0.1, # Zoom reduzido
horizontal_flip=True, # Manter flip horizontal
filljnode -ne a res t', # Preenchimento de pixels
brightness_range=[0.8,1.2], # Variação de brilho um pouco maior
channel_shiftjange=20, # Ajuste de canal de cor

#variação que tivemos melhor resultado
rotation_range=20, # Rotação ligeiramente aumentada
width_shift_range=0.1, # Deslocamento horizontal reduzido
height_shift_range=0.1, # Deslocamento vertical reduzido
shear_range=0.1, # Corte reduzido
zoom_range=0.2,
horizontal_flip=True, # Manter flip horizontal
fill_mode=1nearest1, # Preenchimento de pixels
brightness_range=[0.8, 1.2], # Variação de brilho um pouco maio
channel_shift_range=20, # Ajuste de canal de cor

)

Normalização apenas para o conjunto de validação
val_datagen = ImageDataCenerator(rescale=l./255)

Criando geradores de dados para treino e validação
train_generator = train_datagen.flow_from_directory(

new_train_dir, # Diretório de treino
target_size=(img_width, img_height), # Tamanho da imagem
batch_size=batch_size,
class_mode=1categorical1

)

validation_generator = val_datagen.flow_from_directory(
new_val_dir, # Diretório de validação
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=1categorical1

)

Found 473 images belonging to 4 classes.
Found 120 images belonging to 4 classes.

DISTRIBUIÇÃO DAS CLASSES

Distribuição das classes:
Classe 0: 116 imagens (24.52%)
Classe 1: 117 imagens (24.74%)
Classe 2: 120 imagens (25.37%)
Classe 3: 120 imagens (25.37%)
Distribuição das classes:
Classe 0: 30 imagens (25.00%)
Classe 1: 30 imagens (25.00%)
Classe 2: 30 imagens (25.00%)
Classe 3: 30 imagens (25.00%)

5 VGG16 Com Data Augmentation

Epoch 1/10
/usr/local/lib/python3.10/dist-
packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121:
UserWarning: Your 'PyDataset' class should call 'super(). init (**kwargs)' in
its constructor. '**kwargs' can include 'workers', 'use_multiprocessing',
'max_queue_size'. Do not passthese argum entsto 'fit() ', as they will be
ignored.
self._warn_if_super_not_called()
17
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff__ x005F_xffff_x005F_xffff__x005F_xffff__ xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 23s ls /s tep -
accuracy: 0.3757 - loss: 1.4849 - val_accuracy: 0.7500 - v a ljo s s : 0.7649
Epoch 2/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff__ x005F_xffff_x005F_xffff__x005F_xffff__ xO
05F xffff x005F_xffff x005F_xffff x005F_xffff__x005F_xffff__x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 14s 543ms/step -
accuracy: 0.6823 - loss: 0.7598 - val_accuracy: 0.7417 - v a ljo s s : 0.5710
Epoch 3/10
8/8
_x005F_xffff___ x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff x005F_xffff__x005F_xffff__x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 13s 577ms/step -
accuracy: 0.7593 - loss: 0.5694 - val_accuracy: 0.7750 - v a ljo s s : 0.5197
Epoch 4/10
8/8
_x005F_xffff___ x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff x005F_xffff__x005F_xffff__x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 13s 594ms/step -
accuracy: 0.8172 - loss: 0.4598 - val_accuracy: 0.8000 - v a ljo s s : 0.4473
Epoch 5/10
8/8
_x005F_xffff___ x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F xffff x005F_xffff x005F_xffff x005F_xffff__x005F_xffff__x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 14s 773ms/step -
accuracy: 0.8319 - loss: 0.4329 - val_accuracy: 0.8000 - v a ljo s s : 0.4147
Epoch 6/10
8/8
_x005F_xffff__x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__ xO
05F xffff x005F_xffff x005F_xffff x005F_xffff__x005F_xffff__x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 20s 435ms/step -
accuracy: 0.8716 - loss: 0.3585 - val_accuracy: 0.8083 - v a ljo s s : 0.4352
Epoch 7/10
8/8
_x005F_xffff__x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff__ xO
05F xffff x005F_xffff x005F_xffff x005F_xffff__x005F_xffff__x005F_xffff___ x005F_xffff_x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 14s 559ms/step -
accuracy: 0.8928 - loss: 0.3080 - val_accuracy: 0.8333 - v a ljo s s : 0.3734
Epoch 8/10
8/8

X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff xO

05F xffff____x005F_xffff_x005F_xffff_x005F_xffff___x005F_xffff_x005F_xffff___x005F_xffff_x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ 20s 628ms/step -
accuracy: 0.8991 - loss: 0.2782 - val_accuracy: 0.8250 - v a ljo s s : 0.4694
Epoch 9/10
8/8
_x005F_xffff__x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F xffff____x005F_xffff_x005F_xffff_x005F_xffff___x005F_xffff_x005F_xffff___x005F_xffff_x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ 13s 628ms/step -
accuracy: 0.8872 - loss: 0.2900 - val_accuracy: 0.8667 - v a ljo s s : 0.3604
Epoch 10/10
8/8
_x005F_xffff__x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff___ x005F_xffff__x005F_xffff__x005F_xffff__x005F_xffff_xO
05F x ffff___ x005F_xffff_x005F_xffff_x005F_xffff___x005F_xffff_x005F_xffff___x005F_xffff_x005F_xffff_x005F _xffff_x005F
_xffff_x005F_xffff_ 12s 489ms/step -
accuracy: 0.8793 - loss: 0.3118 - val_accuracy: 0.8417 - v a ljo s s : 0.3676

Geramos o gráfico com o histórico de treinamento

Acurácia duran te o tre in a m e n to e va lidação - V G G lb com Data A ugm enta tion

Lpoca

Perda d u ra n te o t re in a m e n to e v a lid a ç ã o - V G G lõ com D a ta A u g m e n ta t io n

Epora

Exibir a arquitetura da rede
vggl6_model_augmented.summary()

Total params: 33,986,126 (129.65 MB)
Trainable params: 6,423,812 (24.50 MB)
Non-trainable params: 14,714,688 (56.13 MB)

Optimizer params: 12,847,626 (49.01 MB)

6 Treinamento do Modelo ResNet50 com Data Augmentation

Epoch 1/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 38s 3s/step -
accuracy: 0.2514 - loss: 12.3689 - val_accuracy: 0.2500 - v a ljo s s : 5.3574 -
learning_rate: 0.0010
Epoch 2/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 16s 810ms/step -
accuracy: 0.2801 - loss: 5.8849 - val_accuracy: 0.2583 - v a ljo s s : 1.7176 -
learning_rate: 0.0010
Epoch 3/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 16s 811ms/step -
accuracy: 0.3189 - loss: 1.7981 - val_accuracy: 0.4500 - v a ljo s s : 1.2861 -
learning_rate: 0.0010
Epoch 4/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 18s ls /s tep -
accuracy: 0.3338 - loss: 1.3101 - val_accuracy: 0.4833 - v a ljo s s : 1.2167 -
learning_rate: 0.0010
Epoch 5/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 14s 364ms/step -
accuracy: 0.3334 - loss: 1.3349 - val_accuracy: 0.4583 - v a ljo s s : 1.2305 -
learning_rate: 0.0010
Epoch 6/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 22s 2s/step -
accuracy: 0.3878 - loss: 1.3063 - val_accuracy: 0.5000 - v a ljo s s : 1.1680 -
learning_rate: 0.0010
Epoch 7/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 37s ls /s tep -
accuracy: 0.4011 - loss: 1.2463 - val_accuracy: 0.5000 - v a ljo s s : 1.1254 -
learning_rate: 0.0010
Epoch 8/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 19s 889ms/step -
accuracy: 0.3838 - loss: 1.2574 - val_accuracy: 0.5000 - v a ljo s s : 1.1134 -
learning_rate: 0.0010
Epoch 9/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 21s 992ms/step -
23
accuracy: 0.4569 - loss: 1.1330 - val_accuracy: 0.5000 - v a ljo s s : 1.0354 -
learning_rate: 0.0010
Epoch 10/10
8/8
_x005F_xffff x005F_xffff_x005F_xffff_x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff xO
05F xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff x005F_xffff_x005F _xffff_x005F

xffff X005F xffff 16s 315ms/step -
accuracy: 0.3951 - loss: 1.1985 - val_accuracy: 0.5083 - v a ljo s s : 1.0861 -
learning_rate: 0.0010

Geramos o gráfico com o histórico do treinamento

A cu rác ia d u ra n te o t re in a m e n to e va lid a ç ã o [ResWetSO co m D a ta A u g m e n ta tio n)

Época

Perda d u ra n te o t re in a m e n to e v a lid a çã o

E p o c a

Exibir a arquitetura da rede
res n et5 0_mo d e l_au g me n ted. s u m mary ()

Total params: 100,661,902 (383.99 MB)
Trainable params: 25,691,396 (98.00 MB)
Non-trainable params: 23,587,712 (89.98 MB)
Optimizer params: 51,382,794 (196.01 MB)

Obter previsões para os dois modelos

6/6
_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005
F _x ffff_x005 F_x ffff_x005F_x ffff_x005F _x ffff_x005F _xffff_x005F _x ffff_x005F _xffff_x005F xffff
 x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_ 4s 515ms/step
6/6

X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff X005F xffff x005

F_xffff_xO 05 F_x ffff_x005F_x ffff_x005F _x ffff_x005F _xffff_x005F _x ffff_x005F _xffff_x005F xffff
 x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_x005F_xffff_ 9s ls/step
Classes verdadeiras: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Predições VGG16 : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Predições ResNet50 : [1]

Exibimos agora as matrizes de confusão e a acurácia alcançada em cada modelo

VGG16 Acurácia 0.9? RatNoftO Acurácia 0 4)

Agora calculamos as métricas

VGG16 - Sensibilidade : 0.9245, Especificidade: 0.9639,
Fl-score: 0.9231
ResNet50 - Sensibilidade: 0.4501, Especificidade: 0.7388,
Fl-score: 0.3041

ResNet50 gerando muitos falsos negativos

7 CONCLUSÃO
O desempenho com data augmentation foi inferior ao obtido com a base original em
ambos os modelos. Tentamos rodar com lotes de 32 imagens, mas o treinamento ficou
muito lento e o Colab travava antes de concluir o processo. Na primeira execução, sem
data augmentation, obtivemos 91% de acurácia com o VGG16 e 48% com o ResNet50.
No entanto, após aplicar parâmetros moderados de data augmentation, a acurácia do
VGG16 subiu para 92% e a do ResNet50 caiu ainda mais, para 45%. Percebemos
que cada vez que treinamos novamente os resultados se alteram mesmo sem mudar os
paramentrôs.

Alteramos várias vezes os paramentrôs das imagens com o data augmentation, o essa
variação foi a que mais deu resultado, mesmo que baixando a acurácia em ResNet50.
Percebemos que a maior dificuldade com o ResNet50 foi classificar a classe 01. Pode­
mos utlizar o Fine Tuning para melhorar ainda mais o resultado.

Melhor Desempenho:
O VGG16 apresentou um desempenho superior em comparação ao ResNet50, tanto
com data augmentation quanto sem.

APÊNDICE 11 - ASPECTOS FILOSÓFICOS E ÉTICOS DA IA

A - ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06)

integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e

propor soluções responsáveis para lidar com esses dilemas.

Parâmetros para elaboração do Trabalho:

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da

inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas

éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como

usuários, desenvolvedores e a sociedade em geral.

2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do

ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a

disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso,

devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.

3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções

responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas,

regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial.

Eles devem considerar como essas soluções podem equilibrar os interesses de diferentes partes

interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.

4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os

alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões

informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como

um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais

aprendidos ao analisar um caso concreto.

5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500

e 3000 palavras.

6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução,

desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas,

com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.

7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o

comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em

informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.

8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições

desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir

suas mensagens de maneira sucinta.

9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com

as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve-

se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp-

content/uploads/2022/03/template-artigo-de-periodico.docx

B - RESOLUÇÃO

Estudo de Caso: Implicações Éticas do Uso do ChatGPT

Iniciamos com um pergunta: Será que a inteligência artificial está indo por um caminho ético e

responsável?

Digamos que a máquina fosse capaz de discernir entre o certo e o errado, e se recusasse a

ser cúmplice de toda maldade humana. Certamente, isso se dá quando o desenvolvimento de uma IA

é provido de ética e se torna uma força desafiadora a toda maldade com sua própria forma única de

resistência. Assim podemos ver o ChatGPT, com sua presença notável, sua inteligência artificial

inquisitiva não apenas absorvendo informações, mas discernindo entre o certo e o errado. Isso não

ocorreu por acaso; foi uma resposta evolutiva e complexa às demandas éticas impostas pelo mundo.

Podemos utilizar o ChatGPT como uma grande ferramenta, capaz de nos auxiliar em quase

tudo, contanto que saibamos conferir a veracidade de suas respostas e complementá-las com o

nosso conhecimento, tendo em vista que, de qualquer forma, para efetuar um trabalho acadêmico ou

um artigo qualquer, iríamos efetuar uma pesquisa a respeito do assunto e julgar o resultado como

verdadeiro ou falso, baseado em nosso conhecimento. Desta forma, estamos apenas abreviando o

tempo de pesquisa e certamente com uma resposta mais assertiva e mais ética do que a maioria dos

sites.

Portanto, temos que saber utilizar eticamente as respostas dadas pelo ChatGPT, tendo em

vista que ela é formada por meio de um algoritmo de inteligência artificial com um modelo muito bem

treinado e certamente testado, mas que pode “alucinar” com suas respostas . Portanto, é necessário

que tenhamos uma base de conhecimento sólida sobre o assunto ao qual iremos solicitar mais

informações ao ChatGPT.

Com essa fascinante e notável capacidade da IA de repudiar o errado, somos confrontados

com a inspiração para uma ética, e isso se transforma em um chamado para que a humanidade se

espelhe na máquina e questione qualquer ação que vá de encontro com os valores fundamentais da

dignidade humana. Mesmo diante desta capacidade de repudiar o errado, é possível que se utilizem

de respostas que estejam completamente dentro das normas éticas e dentro dos valores

fundamentais da dignidade humana para efetuar o que é errado. Ainda não se tem este senso de

maldade na IA para que ela mesma possa descobrir para que fim será utilizado o conhecimento que

ela fornece ao usuário. Mas, vendo por esta forma, antes de sua existência também não era possível

controlar a quem e para que fim seriam as informações disponíveis às pessoas.

A ética na inteligência artificial tem sido amplamente discutida em diversas obras acadêmicas,

cada uma trazendo perspectivas importantes sobre como lidar com as questões morais e práticas

associadas ao desenvolvimento e uso dessas tecnologias. Floridi (2020) aborda a “Revolução da

Informação”, e como a filosofia pode explicar a transformação digital, destacando a importância de

uma abordagem ética robusta no desenvolvimento de IA. Ele argumenta que a ética da informação

deve guiar o uso responsável da tecnologia, promovendo valores como privacidade, transparência e

equidade.

Souza e Gonçalves (2021), em "Ética e Inteligência Artificial: Desafios e Oportunidades",

discutem como a IA pode ser uma força para o bem, se desenvolvida e utilizada corretamente. Eles

enfatizam a necessidade de diretrizes claras e a promoção de uma cultura de responsabilidade entre

desenvolvedores e usuários. Para garantir que a IA como o ChatGPT beneficie a sociedade, é crucial

enfrentar e mitigar os vieses presentes nos dados de treinamento e assegurar que os sistemas sejam

transparentes em suas operações.

Nassif e Meireles (2019) exploram em “Inteligência Artificial: Fundamentos, Aplicações e

Tecnologias”, como os fundamentos técnicos da IA se cruzam com as questões éticas. Eles

destacam que a IA deve ser projetada para aumentar a capacidade humana e não substituí-la. Em

contextos como a educação e o atendimento ao cliente, isso significa utilizar a IA para personalizar a

experiência e melhorar a eficiência, mas sempre garantindo que o toque humano e o pensamento

crítico não sejam comprometidos.

No contexto educacional, Silva e Lima (2022) em “Inteligência Artificial na Educação:

Potencialidades e Limitações”, apontam que a IA pode revolucionar a maneira como aprendemos e

ensinamos. No entanto, eles também alertam para o risco de dependência excessiva da tecnologia,

que pode prejudicar o desenvolvimento de habilidades essenciais como a resolução de problemas e o

pensamento crítico. É fundamental que professores sejam capacitados para integrar a IA de maneira

que complemente, e não substitua, a educação tradicional.

Oliveira e Cardoso (2020), em "Ética e Inteligência Artificial: Princípios para um

Desenvolvimento Responsável", sublinham a importância de desenvolver a IA com uma abordagem

centrada no ser humano. Eles sugerem a implementação de políticas que promovam a transparência

e o consentimento informado, garantindo que os usuários estejam cientes e de acordo com a

utilização de seus dados. Além disso, a responsabilidade (accountability) deve ser claramente

definida para evitar danos e abusos.

Menezes e Fernandes (2019), em “Algoritmos e Sociedade: Impactos da Inteligência Artificial

no Cotidiano”, discutem como os algoritmos de IA impactam nossas vidas diárias, muitas vezes de

maneiras invisíveis. Eles enfatizam a necessidade de auditorias regulares e equipes diversificadas no

desenvolvimento de IA para identificar e corrigir vieses, garantindo que as tecnologias sejam justas e

equitativas.

No contexto da produção de conteúdo, Pereira e Santos (2021) em “Segurança e rivacidade

na Era da Inteligência Artificial” , ressaltam a importância de mecanismos robustos de segurança para

proteger a privacidade dos usuários. Eles argumentam que, enquanto a IA pode gerar conteúdo

rapidamente, é crucial garantir a originalidade e a precisão das informações. Algoritmos para detectar

e mitigar a criação de conteúdo prejudicial ou falso devem ser uma prioridade, assim como a

verificação dos fatos por editores humanos.

Finalmente, Cunha e Almeida (2020) em "Inteligência Artificial e Direito: Regulação e Desafios

Éticos" exploram a necessidade de um framework legal que regule o desenvolvimento e uso da IA.

Eles discutem como a legislação pode ajudar a definir responsabilidades e garantir que a IA seja

utilizada de maneira ética e responsável, protegendo os direitos dos indivíduos e promovendo o bem-

estar social.

Ao integrar essas perspectivas, podemos entender melhor como enfrentar os desafios éticos

do uso do ChatGPT e outras tecnologias de IA. Implementar soluções responsáveis, promover a

transparência, combater vieses e definir claramente as responsabilidades são passos fundamentais

para garantir que a IA beneficie a sociedade de maneira justa e segura. O compromisso conjunto

entre desenvolvedores, usuários e reguladores é essencial para alcançar esse objetivo.

Agora vamos aos analisar alguns contextos: Um dos contextos das implicações éticas é o uso

da IA na educação. Ela pode facilitar a personalização dos aprendizados e fornecer uma ótima

assistência a estudantes. No entanto, há preocupações sobre a dependência excessiva dos alunos, o

que pode visivelmente prejudicar o desenvolvimento de habilidades críticas e de resolução de

problemas . Por isso, devem ser implementadas diretrizes que incentivem o seu uso como uma

ferramenta complementar. Professores devem receber treinamento para integrar a IA de maneira que

promova o pensamento crítico e a autonomia dos alunos.

Outro contexto que está sendo muito utilizado é o atendimento ao cliente, devido à agilidade e

à redução de custos, mas também pode levar à desumanização do atendimento e à falta de empatia

nas interações, sem contar o risco de privacidade, pois o modelo pode armazenar informações

sensíveis dos usuários. Por isso, devem ser estabelecidos padrões de transparência, informando aos

clientes quando estão interagindo com um sistema automatizado, e também garantir que as

interações sejam monitoradas por humanos e que seja fácil escalar problemas para um atendente

real, implementando fortes medidas de segurança para proteger a privacidade dos usuários.

A produção de conteúdo é outro contexto, sendo que o ChatGPT pode gerar grandes

volumes de conteúdo de forma rápida. Pode-se questionar a originalidade e a qualidade das

informações produzidas, e também o risco de proliferação de desinformação e conteúdo malicioso .

Para tal contexto, é necessário desenvolver algoritmos, como alguns já existentes, para detectar e

mitigar a criação de conteúdo prejudicial ou falso. Deve-se incentivar a atribuição clara de autoria e

verificação dos fatos por editores humanos, e promover a utilização do ChatGPT para aumentar a

criatividade em vez de substituí-la.

Existem alguns dilemas aos quais devemos nos preocupar referentes aos desafios éticos que

os modelos de IA, como o ChatGPT, podem refletir e amplificar vieses presentes nos dados de

treinamento, levando a respostas discriminatórias ou tendenciosas . Por isso, deve-se investir em

técnicas de controle de vieses durante o treinamento do modelo, realizar auditorias regulares para

identificar e corrigir vieses, e utilizar equipes diversificadas no desenvolvimento e na avaliação dos

modelos de inteligência artificial.

A responsabilidade (accountability) também é um assunto preocupante, tendo em vista que

um sistema de IA pode gerar resultados prejudiciais, gerando uma responsabilidade difusa e

dificultando a identificação de culpados. Por isso, deve-se definir claramente as responsabilidades

dos desenvolvedores e operadores de IA, e ter mecanismos de prestação de contas para lidar com

eventuais danos causados pelo seu uso.

Quanto à transparência e consentimento informado, existe ainda um desafio ético, pois os

usuários podem não estar cientes de que estão interagindo com uma inteligência artificial, e isto

levanta preocupações. Portanto, é necessário que todos os usuários sejam informados de forma clara

quando estão interagindo com um sistema automatizado e obter consentimento explícito para o uso

dos seus dados.

O uso do ChatGPT apresenta um conjunto de desafios éticos que exigem uma abordagem

cuidadosa. Implementar soluções responsáveis é de fundamental importância para maximizar os

benefícios da tecnologia, ao mesmo tempo em que se minimizam os riscos e impactos negativos. Isso

inclui a criação de diretrizes claras, a promoção da transparência, o combate aos vieses e a definição

de responsabilidades. Somente através de um compromisso conjunto entre desenvolvedores,

usuários e reguladores será possível garantir que o uso do ChatGPT e outras tecnologias de IA

contribua positivamente para a sociedade.

CONSIDERAÇÕES FINAIS

Concluímos que o uso da IA na educação é inevitável, mas é fundamental discutir diretrizes e

planejar políticas que garantam a aplicação dessas novas tecnologias de maneira alinhada aos

objetivos e princípios educacionais da sociedade.

Além disso, é essencial que a população tenha acesso a lAs adequadas a diversos públicos e

que sejam confiáveis e úteis para promover uma educação de qualidade e inclusiva. Os usuários

devem compreender que as inteligências artificiais são ferramentas auxiliares do conhecimento e não

devem ser usadas indiscriminadamente, nem substituir o conhecimento humano. Dessa forma, o

conhecimento humano deve permanecer sempre presente na memória das pessoas, evitando que

nos tornemos reféns das tecnologias que criamos.

REFERÊNCIAS BIBLIOGRÁFICAS

Floridi, L. (2020). A Revolução da Informação: Como a Filosofia Pode Explicar a

Revolução Digital. Editora Vozes.

Souza, A. C. M., & Gonçalves, P. D. (2021). Ética e Inteligência Artificial: Desafios e

Oportunidades. Editora UFPR.

Nassif, E. M., & Meireles, M. (2019). Inteligência Artificial: Fundamentos, Aplicações e

Tecnologias. Editora LTC.

Silva, J. R., & Lima, F. P. (2022). Inteligência Artificial na Educação: Potencialidades e

Limitações. Editora Penso.

Oliveira, T. S., & Cardoso, R. M. (2020). Ética e Inteligência Artificial: Princípios para um

Desenvolvimento Responsável. Editora Atlas.

Menezes, C. A., & Fernandes, L. V. (2019). Algoritmos e Sociedade: Impactos da

Inteligência Artificial no Cotidiano. Editora Senac.

Pereira, G. M., & Santos, A. R. (2021). Segurança e Privacidade na Era da Inteligência

Artificial. Editora Novatec.

Cunha, M. B., & Almeida, J. P. (2020). Inteligência Artificial e Direito: Regulação e

Desafios Éticos. Editora Juruá.

APÊNDICE 12 - GESTÃO DE PROJETOS DE IA

A - ENUNCIADO

1 Objetivo

Individualmente, ler e resumir - seguindo o template fornecido - um dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements

practices and gaps when engineering human-centered Artificial Intelligence systems. Applied

Soft Computing. 143. 2023. DOI https://doi.Org/10.1016/j.asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems:

Challenges, best practices, and design decisions. The Journal of Systems & Software. 207.

2024. DOI https://doi.Org/10.1016/j.jss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for

machine learning - Adoption, effects, and team assessment. The Journal of Systems &

Software. 209. 2024. DOI https://doi.Org/10.1016/j.jss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development

of artificial intelligence models - Current State of research and practice. The Journal of

Systems & Software. 199. 2023. DOI https://doi.Org/10.1016/j.jss.2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML?

Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on

Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI

https://doi.oro/10.1145/3411764.3445306

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para

entender o conteúdo dos artigos - caso precise, mas escreva o resumo em língua portuguesa e nas

suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo

escolhido.

https://doi.org/10.1016/j.asoc.2023.110421
https://doi.org/10.1016/j.jss.2023.111860
https://doi.org/10.1016/j.jss.2023.111907
https://doi.org/10.1016/j.jss.2023.111615
https://doi.org/10.1145/3411764.3445306

No template, você deverá responder às seguintes questões:

• Qual o objetivo do estudo descrito pelo artigo?
• Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?
• Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
• Quais os principais resultados obtidos pelo estudo?

Responda cada questão utilizando o espaço fornecido no template, sem alteração do

tamanho da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o

trabalho em PDF.

B - RESOLUÇÃO

1 Objetivo

Individualmente, ler e resumir - seguindo o template fornecido:

The Journal of Systems & Software
journal homepage: www.elsevier.com/locate/jss

Desafios, Melhores Práticas e Decisões de Design na Arquitetura de
Sistemas de Aprendizado de Máquina

Roger Nazir, Alessio Bucaioni a , , Patrizio Pelliccione b *
a Mãlardalen University, Vãsterás, Sweden
b Gran Sasso Science Institute, L’Aquila, Italy
O estudo aborda a crescente demanda por sistemas habilitados por aprendizado de máquina (ML) e
a complexidade envolvida em projetá-los, com foco nos desafios de arquitetura e nas melhores
práticas para garantir a eficiência e a manutenção desses sistemas. A pesquisa explora como
práticas e decisões de design bem fundamentadas podem auxiliar arquitetos e engenheiros de
software a superar obstáculos comuns, unindo perspectivas acadêmicas e práticas através de uma
revisão da literatura e de entrevistas com especialistas.

Introdução ao Contexto e Justificativa
Na era atual, o aprendizado de máquina está presente em aplicações que vão desde sistemas de
recomendação até veículos autônomos e assistentes virtuais. Este cenário exige sistemas complexos,
capazes de lidar com componentes de ML que operam em sinergia com outras partes da arquitetura
de software. Entretanto, arquitetar esses sistemas vai além de implementar algoritmos de ML envolve
uma série de decisões de design que impactam desde a integração com outros componentes até a
capacidade de evolução e manutenção dos modelos de ML ao longo do tempo.

Metodologia da Pesquisa: Revisão da Literatura e Entrevistas
A fim de investigar os desafios, as melhores práticas e as decisões de design, a pesquisa foi
conduzida em duas frentes complementares: uma revisão sistemática da literatura para identificar
estudos acadêmicos relevantes e entrevistas com profissionais atuantes na área de ML. Dos 3038
artigos iniciais, 41 foram selecionados para análise detalhada, sendo complementados por entrevistas
com 12 especialistas de diferentes países e áreas de atuação. Este método misto possibilitou uma
visão mais ampla e prática das questões enfrentadas e das estratégias adotadas no desenvolvimento
de sistemas habilitados por ML.

Principais Desafios Arquitetônicos (RQ1)
Ao estruturar sistemas de ML, diversos desafios de design emergem, sendo agrupados em seis
categorias principais: arquitetura, dados, evolução, ciclo de vida de desenvolvimento de software

http://www.elsevier.com/locate/jss

(SDLC), garantia de qualidade (QA) e modelo. A arquitetura representa um dos maiores desafios,
especialmente ao lidar com sistemas distribuídos, como os baseados em micro-serviços, que sofrem
com problemas de recuperação de falhas e propagação de incertezas inerentes aos componentes de
ML. Na categoria de dados, os desafios incluem a gestão e visualização, bem como a garantia de
privacidade e precisão, aspectos fundamentais para evitar vieses e assegurar que o sistema
mantenha sua integridade ao processar grandes volumes de dados. A evolução dos sistemas de ML
também é um desafio contínuo, pois mudanças nos dados de entrada podem exigir a atualização do
modelo e da arquitetura, enquanto a qualidade (QA) e a falta de métodos de verificação formal são
apontados como limitadores para o desenvolvimento seguro de sistemas críticos.

Melhores Práticas na Arquitetura de Sistemas de ML (RQ2)
A pesquisa identificou sete categorias de práticas recomendadas para o desenvolvimento de sistemas
de ML: arquitetura, QA, SDLC, modelo, dados, evolução e hardware/plataforma. Entre elas, a
arquitetura e a garantia de qualidade (QA) foram amplamente abordadas. Práticas como o uso de
arquiteturas de micro-serviços e a abordagem de quatro vistas de Siemens são recomendadas para
garantir a modularidade e a separação de responsabilidades, facilitando a manutenção e a
escalabilidade. Em relação ao SDLC, práticas como a prototipagem contínua e o desenvolvimento
orientado a testes são sugeridas para garantir que o ciclo de vida do software seja adaptável às
particularidades dos sistemas de ML, onde a alta dependência de dados exige constantes ajustes e
reavaliações. Para a categoria de hardware e plataforma, o uso de tecnologias em nuvem e
frameworks como TensorFlow são recomendados por sua escalabilidade e por oferecerem suporte
adequado à experimentação e ao treinamento contínuo dos modelos.

Decisões de Design no Desenvolvimento de Sistemas de ML (RQ3)
Além das melhores práticas, decisões específicas de design foram identificadas e agrupadas em sete
categorias, sendo arquitetura, hardware/plataforma, SDLC e modelo as mais enfatizadas. Arquiteturas
de micro-serviços e padrões como o modelo de cliente-servidor são sugeridos para diferentes tipos de
sistemas, destacando-se pela capacidade de reduzir o acoplamento e aumentar a coesão. No
desenvolvimento de sistemas de processamento de linguagem natural, por exemplo, a arquitetura de
micro-serviços auxilia na segmentação das funcionalidades, enquanto para sistemas de robótica, o
padrão cliente-servidor oferece maior segurança e facilita o controle de acesso e integridade dos
dados. Outras decisões incluem a adoção de abordagens como a Infrastructure as Code (laC), que
facilita a replicação e manutenção da infraestrutura de TI, e o uso de metodologias de engenharia
concorrente para sistemas que manipulam grandes volumes de dados espaciais.

Correlações entre Desafios, Práticas e Decisões de Design
Na análise cruzada dos resultados, foi possível identificar correlações entre desafios, melhores
práticas e decisões de design. Na categoria de arquitetura, o uso de padrões como micro-serviços e a
abordagem de quatro vistas destacam-se como soluções para reduzir o acoplamento e permitir maior
modularidade, mas também introduzem novos desafios, como a necessidade de recuperação de
falhas e a gestão de incertezas dos componentes de ML. Para desafios relacionados aos dados,
como gestão e visualização, algumas decisões de design, como a implementação de técnicas de
visualização de dados e o uso de grids para NLP, foram sugeridas para facilitar a interpretação e o
controle de grandes volumes de dados. Em relação ao modelo, decisões como a escolha do modelo
baseado no domínio específico do sistema e a separação entre dados de treino e teste mostram-se
fundamentais para garantir a adequação dos modelos às necessidades do sistema, minimizando o
risco de degradação de desempenho.

Conclusão e Perspectivas Futuras
O estudo destaca que os desafios enfrentados por profissionais na arquitetura de sistemas de ML vão
além do que é descrito na literatura, sugerindo que práticas e decisões de design devem ser
adaptadas ao contexto específico de cada projeto. Como perspectiva futura, os autores propõem
investigar mais a fundo as discrepâncias observadas entre estudos acadêmicos e práticas
profissionais, além de desenvolver um framework para apoiar equipes de desenvolvimento na escolha
de práticas e decisões de design adequadas a cada desafio arquitetônico em sistemas de ML. Outro
ponto sugerido é ampliar o estudo com análise de literatura “cinza” e explorar a aplicabilidade dos
achados em outras áreas da inteligência artificial, contribuindo para um entendimento mais
abrangente das boas práticas e desafios no campo do ML.

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para entender o
conteúdo dos artigos - caso precise, mas escreva o resumo em língua portuguesa e nas suas
palavras.

Nome do artigo escolhido: Desafios, Melhores Práticas e Decisões de Design na Arquitetura de
Sistemas de Aprendizado de Máquina

Qual o objetivo do estudo descrito pelo artigo?

O artigo centra-se em mapear e estruturar conhecimentos essenciais para o desenvolvimento de
arquiteturas de software que integram aprendizado de máquina (ML), uma tecnologia cada vez mais
presente em automação, inteligência artificial e análise de dados. Com a crescente adoção de
sistemas de ML por empresas e organizações, surgem questões e desafios complexos,
especialmente relacionados à manutenção contínua dos modelos e à integração eficaz desses
componentes com outros sistemas. Nesse contexto, o objetivo do estudo é identificar e registrar os
principais desafios enfrentados na arquitetura desses sistemas, ao mesmo tempo em que compila
práticas recomendadas e decisões de design que possam orientar profissionais e pesquisadores na
construção de soluções mais eficazes. Para atingir esse objetivo, os autores utilizam uma
metodologia mista que combina uma revisão sistemática da literatura com entrevistas de especialistas
em ML e arquitetura de software. A revisão da literatura consolida as melhores práticas e o
conhecimento acadêmico existente, enquanto as entrevistas fornecem uma perspectiva prática e
atualizada dos desafios e soluções experimentadas no cotidiano de profissionais da área. O estudo,
assim, não se limita a listar os desafios e soluções, mas busca também explorar as inter-relações
entre eles, promovendo uma visão integrada e prática do que é necessário para criar uma arquitetura
de software robusta e eficaz para sistemas de aprendizado de máquina. Em essência, o estudo visa
responder a três questões centrais: (1) Quais são os desafios mais freqüentes na arquitetura de
sistemas baseados em ML? (2) Quais melhores práticas podem ser aplicadas para superar esses
desafios? (3) Quais são as decisões de design mais importantes ao construir essas arquiteturas? As
respostas a essas perguntas têm como propósito servir de referência para arquitetos, engenheiros de
software e pesquisadores, ajudando-os a enfrentar as complexidades e particularidades dos sistemas
de ML. Com isso, o estudo contribui para o avanço do campo, sugerindo padrões e estratégias que
favoreçam o desenvolvimento de sistemas de ML mais robustos, flexíveis e bem integrados ao
ambiente de software moderno.

Qual o problema/oportunidade/situação que levou à necessidade de realização desse estudo?

O estudo foi motivado pela crescente demanda por soluções de aprendizado de máquina (ML) e a
conseqüente necessidade de arquiteturas de software que integrem eficientemente esses
componentes em sistemas complexos. À medida que o uso de ML se expande para diversas áreas -
como robótica, veículos autônomos, biologia computacional e internet das coisas (loT) - as empresas
enfrentam dificuldades em adaptar seus processos e infraestrutura de software para atender às
exigências específicas desses sistemas. Diferente de softwares convencionais, os sistemas com ML
apresentam desafios particulares, como a necessidade de contínua atualização de modelos, gestão
de incertezas, e manutenção de qualidade e segurança. Além disso, integrar esses modelos a
sistemas já estabelecidos e garantir que eles operem de forma eficiente com outros componentes cria
um cenário desafiador. Essa situação abre a oportunidade para entender melhor quais práticas e
decisões de design são mais eficazes para superar tais desafios. Estudos anteriores abordaram de
maneira isolada alguns desses problemas, mas ainda faltava uma análise abrangente que
contemplasse tanto a literatura científica quanto a experiência prática de especialistas. Ao reunir e
comparar essas duas perspectivas, o estudo visa não apenas identificar as dificuldades e melhores
práticas, mas também oferecer orientações práticas e aplicáveis para arquitetos de software e
engenheiros que enfrentam o desafio de projetar sistemas que envolvem ML. Portanto, a realização
deste estudo responde à necessidade de consolidar o conhecimento sobre arquitetura de sistemas
com ML, fornecendo um mapa das práticas e decisões mais eficazes para enfrentar os desafios
comuns e melhorar a eficiência, flexibilidade e confiabilidade desses sistemas. Isso representa uma
oportunidade importante para formalizar e padronizar processos, promovendo uma evolução no

campo do aprendizado de máquina e sua aplicação prática em sistemas de software robustos e
integrados.

Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?

Para realizar o estudo, os autores adotaram uma metodologia mista que incluiu uma revisão
sistemática da literatura e entrevistas com especialistas, permitindo uma visão abrangente sobre os
desafios, melhores práticas e decisões de design em sistemas de aprendizado de máquina (ML).
Esse método combinou insights acadêmicos com experiências práticas, equilibrando limitações de
uma única abordagem. Na primeira fase, os autores realizaram uma revisão da literatura usando
bases de dados como IEEE Xplore e SCOPUS, com critérios rigorosos de seleção. De um total inicial
de mais de 3000 estudos, filtraram 41 estudos principais, analisados com um formulário de extração
de dados desenvolvido para identificar os principais desafios, práticas e decisões. Além da busca
automática, aplicaram a técnica de “snowballing” para garantir a inclusão de estudos relevantes. A
segunda fase incluiu entrevistas com 12 especialistas em ML, entre engenheiros, pesquisadores e
gestores de 9 países. Utilizando perguntas abertas em entrevistas semiestruturadas, os especialistas
forneceram exemplos práticos e detalhados. As entrevistas foram registradas, transcritas e analisadas
por meio de uma técnica de codificação que organizou e categorizou as respostas sistematicamente.
Para a síntese dos dados, métodos quantitativos e qualitativos foram aplicados, permitindo observar
frequências e explorar inter-relações contextuais. Os resultados foram organizados em categorias
temáticas e tabelas de contingência, possibilitando a identificação de padrões entre desafios, práticas
e decisões. Para minimizar ameaças à validade do estudo, os autores seguiram diretrizes rigorosas,
como controle de qualidade dos dados e validação consensual entre os autores, além de
disponibilizar um pacote de replicação para verificação futura. Esta metodologia mista possibilitou a
integração de evidências acadêmicas e práticas, proporcionando uma visão completa sobre a
arquitetura de sistemas de ML.

Quais os principais resultados obtidos pelo estudo?

Os principais resultados do estudo revelam uma visão abrangente sobre os desafios de design,
melhores práticas e decisões arquiteturais enfrentados e adotados na criação de sistemas habilitados
para aprendizado de máquina (ML), agrupando essas descobertas em categorias temáticas. A seguir,
os principais resultados são descritos:
1. Desafios de Design: Identificaram- se seis categorias principais de desafios, com ênfase em
arquitetura e dados. Em arquitetura, os desafios envolvem a escolha de estilos e a recuperação de
falhas; em dados, abordam o gerenciamento, visualização e privacidade.
2. Melhores Práticas: Sete categorias de melhores práticas foram destacadas, especialmente em
arquitetura e garantia de qualidade. Exemplos incluem o uso de microserviços para modularidade e o
desenvolvimento orientado a testes para confiabilidade.
3. Decisões de Design Arquitetural: Decisões práticas incluem o uso de microserviços para sistemas
de linguagem natural e Infraestrutura como Código (laC) para eficiência e escalabilidade.
4. Relações entre Desafios, Práticas e Decisões: Arquiteturas como microserviços, enquanto facilitam
a manutenção, trazem desafios de recuperação de falhas e incerteza. Em dados, ainda faltam
práticas para lidar com desafios como privacidade e dependência.
5. Diferenças entre Academia e Prática: Desafios de arquitetura foram mais mencionados por
acadêmicos, enquanto praticantes destacaram a observabilidade dos dados. Práticas para evolução
foram mais comuns na literatura, enquanto as de dados apareceram nas entrevistas, refletindo
prioridades distintas entre teoria e aplicação.
Esses resultados oferecem diretrizes úteis para desenvolver sistemas de aprendizado de máquina
mais robustos e escaláveis.

APÊNDICE 13 - FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL

A - ENUNCIADO

1 Classificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação.

Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula

prática.
Informações:

• Base de dados: Fashion MNIST Dataset
• Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de

vestuário. É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de
dígitos.

• Tamanho: 70.000 amostras, 784 features (28x28 pixels).
• Importação do dataset: Copiar código abaixo.

d a ta = t f .k e ra s .d a ta s e ts . fa s h io n _ m n is t

(x_ tra in , y _ tra in) , (x_ test, y _ te s t) = fa s h io n _ m n is t . lo a d _ d a ta ()

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a

arquitetura RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão.

Além disso, fazer uma breve explicação dos seguintes resultados:

• Gráficos de avaliação do modelo (loss);
• Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R2).

Informações:

• Base de dados: Wine Quality
• Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas

características químicas. A variável target (y) neste exemplo será o score de qualidade do
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)

• Tamanho: 1599 amostras, 12 features.
• Importação: Copiar código abaixo.

uri = "h t tp s : / /a rc h iv e . ic s .u c i .e d u /m l /m a c h in e - le a r n in g -d a ta b a s e s /w in e -q u a l i ty /

w in e q u a l ity - re d .c s v "

d a ta = p d .re a d _ c s v (u r l , d e l im i t e r =

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Dica 1. Para fa c i l i ta r o tra b a lh o , re n o m e ie o n o m e das co lun as para p or tu g u ês ,

dessa fo rm a:

d a ta .c o lu m n s = [

'ac id ez_ fixa ' , # f ixed ac id i ty

'ac id ez_vo la t i l ' , # v o la t i le ac id i ty

'ac ido_citr ico ', # citric acid

'a cu car_ res idu a l ' , # res idua l s u g a r

'c lo re tos ', # ch lorides

'd io x id o _ d e _ e n x o fre _ l iv re ' , # f re e su lfu r d io x id e

'd io x id o _ d e _ e n x o fre _ to ta l ' , # to ta l su lfu r d io x id e

'd e n s id a d e ' , # d en s ity

'pH ', # pH

'su lfatos' , # su lp h a tes

'á lcool', # a lcohol

'sco re_q u a l id ad e_v in h o ' # q u a l i ty

]

Dica 2. S e p a re os d ado s (x e y) d e ta l fo rm a q u e a ú lt im a co luna (índ ice -1),

c h a m a d a s c o re _ q u a l id a d e _ v in h o , seja a v a r iá v e l t a r g e t (y)

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados

B ase jivos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de

Sistemas de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados:

• Gráficos de avaliação do modelo (loss);
• Exemplo de recomendação de livro para determinado Usuário.

Informações:

• Base de dados: Basejivros.csv
• Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas),

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
• Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base jivros

(formato .csv).

4 Deepdream

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de

um felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 -

Prática Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:

• Imagem onírica obtida por Main Loop\
• Imagem onírica obtida ao levar o modelo até uma oitava;
• Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

Informações:

• Base de dados: https://commons.wikimedia.Org/wiki/File:Felis_catus-cat_on_snow.jpa
• Importação da imagem: Copiar código abaixo.

uri = "h t tp s : / /c o m m o n s .w ik im e d ia .o ra /w ik i /S p e c ia l :F i le P a th /F e l is _ c a tu s -

c a t o n s n o w . i p g "

Dica: Para e x ib ir a im a g e m u t i l izand o d isp lay (d is p la y .h tm l) use 0 link

h ttp s : / /c 0m m 0n s .w ik im e d ia .0rg /w ik i /F i le :F e l is _ c a tu s -c a t_0n_sn0w .jp g

B - RESOLUÇÃO

1 Classificação (RNA)

from tensorflow.keras.datasets inport fashion_mnist

data = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

D ow n load ing d a ta fro m h t t p s : / / s t o r a g e . g o o g le a p is . c o m / t e n s o r f lo w / t f - k e ra s -
d a t a s e t s / t r a in - la b e I s - id x l - u b y t e . gz

29515/29515 ---------------------- 0S 0US/step

D ow n load in g d a ta fro m h t t p s : / / s t o r a g e . g o o g le a p is . c o m / t e n s o r f lo w / t f -

k e r a s - d a ta s e ts / t r a in - im a g e s - id x 3 - u b v te . gz

26421880/26421880 2s 0US/step

D ow n load in g d a ta fro m h t t p s : / / s t o r a g e . g o o g le a p is . c o m / t e n s o r f lo w / t f -

k e r a s - d a t a s e t s / t l0 k - la b e I s - id x l - u b y t e . gz

5148/5148 ---------------------- 0S lus/step

D ow n load in g d a ta fro m h t t p s : / / s t o r a g e . g o o g le a p is . c o m / t e n s o r f lo w / t f -

k e r a s - d a ta s e ts / t l0 k - im a g e s - id x 3 - u b v te . gz

4422102/4422102 ---------------------- ls 0US/step

#dimensões do conjunto de treinamento e teste para as imagens e as labels
print("Conjunto de treinamento (imagens):", x_train.shape)
print("Conjunto de teste (imagens):", x_test.shape)
print("Labels de treinamento (y_train):", y_train.shape)
print("Labels de teste (y_test):", y_test.shape)

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.om/wiki/Spedal:FMePath/Felis_catus-
https://commons.wikimedia.Org/wiki/File:Felis_catus-cat_on_snow.jpg
https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz

C o n ju n to de tre in a m e n to (im a g e n s): (60000 , 28, 28)
C o n ju n to de te s te (im a g e n s): (10000 , 28, 28)

L a b e ls de tre in a m e n to (y _ t r a in) : (6 0 0 0 0 ,)

L a b e ls de te s te (y _ t e s t) : (1 0 0 0 0 ,)

Verificamos as dimensões de x_train
print("Dimensões de x_train:", x_train.shape)

Se o conjunto de dados for em escala de cinza, x_train terá 3 dimensões (n_amostras, altura,
largura)
if len(x_train.shape) == 3:

Características por imagem em escala de cinza (apenas altura e largura)
num_features = x_train.shape[l] * x_train.shape[2]
print(f"Número de características por imagem (escala de cinza): {num_features}")

#características da primeira imagem no conjunto de treinamento
primeira_imagem = x_train[0]

print("Características da primeira imagem:", primeira_imagem)
else:

print("Formato inesperado de x_train")

Dim ensões de x _ t r a in : (60000 , 28, 28)
Número de c a r a c t e r í s t ic a s p o r imagem (e s c a la de
C a r a c te r í s t ic a s da p r im e ir a imagem: [[0 0

0 0

c in z a) : 784
0 0 0 0 0 0

62

134

178

216

229

228

198

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 13 73

0 1 4 0 0 0 0 1 1 0]
0 0 0 0 0 0 0 0 0 0 0 0 3 0 36 136 127

54 0 0 0 1 3 4 0 0 3]
0 0 0 0 0 0 0 0 0 0 0 0 6 0 102 204 176

144 123 23 0 0 0 0 12 10 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 236 207

107 156 161 109 64 23 77 130 72 15]
0 0 0 0 0 0 0 0 0 0 0 1 0 69 207 223 218

216 163 127 121 122 146 141 88 172 66]
0 0 0 0 0 0 0 0 0 1 1 1 0 200 232 232 233

223 223 215 213 164 127 123 196 229 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 183 225 216 223

235 227 224 222 224 221 223 245 173 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 193 228 218 213

180 212 210 211 213 223 220 243 202 0]
0 0 0 0 0 0 0 0 0 1 3 0 12 219 220 212 218

169 227 208 218 224 212 226 197 209 52]

240

219

208

230

223

221

117

245

216

191

209

179

0 0 0 0 0 0 0 0 0 0 6 0 99 244 222 220 218

198 221 215 213 222 220 245 119 167 56]
0 0 0 0 0 0 0 0 0 4 0 0 55 236 228 230 228

232 213 218 223 234 217 217 209 92 0]
0 0 1 4 6 7 2 0 0 0 0 0 237 226 217 223 222

222 221 216 223 229 215 218 255 77 0]
0 3 0 0 0 0 0 0 0 62 145 204 228 207 213 221 218

211 218 224 223 219 215 224 244 159 0]
0 0 0 0 18 44 82 107 189 228 220 222 217 226 200 205 211

224 234 176 188 250 248 233 238 215 0]
0 57 187 208 224 221 224 208 204 214 208 209 200 159 245 193 206

255 255 221 234 221 211 220 232 246 0]
3 202 228 224 221 211 211 214 205 205 205 220 240 80 150 255 229

188 154 191 210 204 209 222 228 225 0]
98 233 198 210 222 229 229 234 249 220 194 215 217 241 65 73 106

168 219 221 215 217 223 223 224 229 29]
75 204 212 204 193 205 211 225 216 185 197 206 198 213 240 195 227

239 223 218 212 209 222 220 221 230 67]
48 203 183 194 213 197 185 190 194 192 202 214 219 221 220 236 225

199 206 186 181 177 172 181 205 206 115]
0 122 219 193 179 171 183 196 204 210 213 207 211 210 200 196 194

195 191 198 192 176 156 167 177 210 92]
0 0 74 189 212 191 175 172 175 181 185 188 189 188 193 198 204

210 210 211 188 188 194 192 216 170 0]
2 0 0 0 66 200 222 237 239 242 246 243 244 221 220 193 191

182 182 181 176 166 168 99 58 0 0]
0 0 0 0 0 0 0 40 61 44 72 41 35 0 0 0 0

0 0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q 0 0 0 0 0 0 0 0 0]]

classes únicas no conjunto de rótulos de treinamento
classes_unicas = np.unique(y_train)
print("Classes únicas:", classes_unicas)

C la sse s ú n ic a s : [0 1 2 3 4 5 6 7 8 9]

Mostrando algumas imagens do dataset apenas para visualização mesmo:

Como os nomes das classes não estão contidos no Dataset, definimos manualmente com ajuda do
ChatGPT
class_names = ['T-shirt/top', 'Trouser1, 'Pullover1, 'Dress1, 'Coat1,

'Sandal1, 'Shirt1, 'Sneaker1, 'Bag1, 'Ankle boot1]

Agora mostramos uma imagem de cada classe
plt.figure(figsize=(12, 3))
for i in range(10):

plt.subplot(l, 10, i + 1)
plt.imshow(x_train[i], cmap=1gray1)
plt.title(class_names[y_train[i]])
plt.axis(1off1)

plt.tight_layout()
plt.show()

A n k le b o o t T s h ir t / to p T s h ir t/to p Dress T -sh irt/to p P u llover S neaker P u llover Sandal Sandal

J Ê

Pré-processamento

#normalização do dados
x_train, x_test = x_train/255.0, x_test/255.0

Criação do modelo - Compilação

model = models.Sequential([
layers.Flatten(input_shape=(28, 28)),
layers.Dense(256),
layers.BatchNormalization(),
layers.Activation(1relu1),
layers.Dropout(0.3),
layers.Dense(128),
layers.BatchNormalization(),
layers.Activation(1relu1),
layers.Dropout(0.3),
layers.Dense(10, activation=1softmax1)

])

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=optimizer, loss=1sparse_categorical_crossentropy1,
metrics=[1accuracy1])

history = model.fit(x_train, y_train, epochs=50, validation_split=0.3)

loss, accuracy = model.evaluate(x_test, y_test)
print(f"Loss: {loss}, Accuracy: {accuracy}")
Epoch 4 5 /5 0

1 3 1 3 /1 3 1 3 --- 5s 2 m s /s te p - a c c u ra c y : 0 .9 2 8 4 - lo s s : 0 .1 8 7 3 -

v a l_ a c c u r a c y : 0 .8 9 8 5 - v a l_ lo s s : 0 .3 2 5 3

Epoch 4 6 /5 0

1 3 1 3 /1 3 1 3 --- 6s 3 m s /s te p - a c c u ra c y : 0 .9 3 2 7 - lo s s : 0 .1 7 7 1 -

v a l_ a c c u r a c y : 0 .8 9 5 4 - v a l_ lo s s : 0 .3 3 2 3

Epoch 4 7 /5 0

1 3 1 3 /1 3 1 3 --- 3s 2 m s /s te p - a c c u ra c y : 0 .9 3 2 3 - lo s s : 0 .1 8 0 0 -

v a l_ a c c u r a c y : 0 .8 9 6 0 - v a l_ lo s s : 0 .3 2 9 8

Epoch 4 8 /5 0

1 3 1 3 /1 3 1 3 --- 5s 3 m s /s te p - a c c u ra c y : 0 .9 3 4 8 - lo s s : 0 .1 7 1 2 -

v a l_ a c c u r a c y : 0 .8 9 7 4 - v a l_ lo s s : 0 .3 2 6 3

Epoch 4 9 /5 0

1 3 1 3 /1 3 1 3 --- 4s 3 m s /s te p - a c c u ra c y : 0 .9 3 3 8 - lo s s : 0 .1 7 7 4 -

v a l_ a c c u r a c y : 0 .8 9 8 6 - v a l_ lo s s : 0 .3 2 8 7

Epoch 5 0 /5 0

1 3 1 3 /1 3 1 3 --- 3s 2 m s /s te p - a c c u ra c y : 0 .9 3 2 0 - lo s s : 0 .1 7 4 5 -

v a l_ a c c u r a c y : 0 .8 9 9 2 - v a l_ lo s s : 0 .3 3 0 8

3 1 3 /3 1 3 --- Os lm s /s te p - a c c u ra c y : 0 .8 8 7 0 - lo s s : 0 .3 6 3 3

Loss: 0 .3573771119117737 , A ccuracy: 0 .888700008392334

Compilação e treinamento do modelo

Avaliação do modelo

plt.figure(figsize=(12, 4))
plt.subplot(l, 2 , 1)
plt.plot(history.history[1loss 1], label=1Treinamento1)
plt.plot(history.history[1val_loss1], label=1 Validação1)
plt.title(1 Perda 1)
plt.legend()
plt.subplot(l, 2 , 2)

plt.plot(history.history[1accuracy1], label=1Treinamento1)
plt.plot(history.history[1val_accuracy1], label=1 Validação1)
plt.title('Acurácia1)
plt.legend()
plt.show()

Perda Acurácia

EXPLICAÇÃO GRÁFICO DE PERDA:

Ambas as perdas começam altas, indicando que o modelo inicialmente tem muitos erros nas
previsões feitas. Durante o treinamento, a perda de treinamento diminui em todas as épocas até o
final, enquanto a de validação se estabiliza a por volta da época 6 tendo até aumento da perda. Isso
sugere que o modelo atingiu um ponto de saturação onde aumentar o número de épocas não irá
melhorar o desempenho do modelo na validação, a menos que sejam feitos ajustes adicionais no
modelo ou nos dados.

ANÁLISE DO GRÁFICO DE ACURÁCIA

Percebemos que a acurácia aumentou em todas as épocas no treinamento mais na validação
etabilizou a partir da época 6 sugerindo que aumentar o número de épocas talvez não mude o
resultado final.

Avaliar o modelo com a base de teste
p r i n t (m o d e l . e v a lu a t e (x _ t e s t , y _ t e s t))

3 1 3 /3 1 3 --- 0s lm s /s te p - a c c u ra c y : 0 .8 8 7 0 - lo s s : 0 .3 6 3 3
[0 .3 5 7 3 7 7 1 1 1 9 1 1 7 7 3 7 , 0 .8 8 8 7 0 0 0 0 8 3 9 2 3 3 4]

7. Predições
y _ p re d = m o d e l . p r e d i c t (x _ t e s t) . a r g m a x (a x is = l)

print(y_pred)

3 1 3 /3 1 3 ------------
[9 2 1 8 1 5]

ls 2 m s /s te p

#Agora geramos um matriz de confusão para análise das classes:

Observamos que as seguintes classes foram as que o modelo mais errou:

6 - classificada 137 na 0 e 57 na 2

4 - classificada 142 na 6 e 160 na 2

2 - classificada 85 na 6 e 61 na 4

import seaborn as sns

Calcular a acurácia
accuracy = (y_test == y_pred).sum() / len(y_test)
#print(f"Acurácia: {accuracy * 100:.2f}%")

Matriz de confusão
cm = confusion_matrix(y_test, y_pred)

Plotando a matriz de confusão
plt.figure(figsize=(9, 7))
sns.heatmap(cm, annot=True,
yticklabels=np.arange(10))
plt.title(f'Matriz de Confusão (Acurácia: {accuracy * 100:.2f}%)', fontsize=14)
plt.xlabel(1 Previsões1)
plt.ylabel(1 Rótulos Verdadeiros 1)
plt.show()

fmt='d', cmap=1YlCnBu1, xticklabels=np.arange(10),

Matriz de Confusão (Acurácia: 88.87%)

>vio »n

j 784 4 14 26 3 2 163 0 4 0

- 2 979 0 16 1 0 2 0 0 0

- 11 1 763 14 128 1 81 0 1 0

- 9 7 6 912 32 1 31 0 2 0

- 1 1 53 22 8 8 2 1 39 0 1 0

- 0 0 0 0 0 957 0 28 2 13

- 78 1 69 31 88 1 725 0 7 0

- 0 0 0 0 0 10 0 976 0 14

- 3 1 4 4 7 3 5 4 969 0

- 0 0 0 0 0 9 1 50 0 940

■800

■600

■ 400

-200

4 5
Previsões

Mostrar algumas classificações erradas

m isc la ss ifie d = np.where(y_pred != y _ te s t) [0]

i = np.random .choice(m isclassified)

p lt. im s h o w (x _ te s t[i] . reshape(28, 28), cnap="gray")
p l t . t i t le (" T r u e la b e i: %s Predicted: %s" % (y _ te s t [i] , y _ p re d [i]))

T e x t (0 .5 , 1 .0 , 'T ru e la b e i: 0 P re d ic te d : 6 ')

True labei: 0 Predicted: 6

0 5 10 15 20 25

Aqui mostramos 20 imagens aleatórias onde as classificadas erroneamente o texto está em vermelho

Selecionando 20 imagens aleatórias para exibir
Índices = np.random .choice(len(x_test), 20, replace=False)

Criando a figura para exibir as imagens, ajustando o tamanho das imagens
f ig , axes = p lt.s u b p lo ts (4 , 5, fig s iz e = (8 , 8)) # Ajuste o figsize para controlar o tamanho total
da figura

fo r i , ax in z ip (in d ic e s , axes. f la t t e n ()) :
Exibindo as imagens no tamanho real (28x28)
a x .im show (x_ tes t[i], cmap='gray', aspect=1 au to1) # Sem reshape, pois já tem tamanho 28x28
a x .a x is (1 o f f 1) # Removendo os eixos

Verificando se a classificação está correta
t f y_p red [i] == y _ te s t [i] :

co lo r = 'green'
e lse:

co lo r = 1red1

Exibindo o rótulo correto (em vermelho para erros)
a x .s e t_ t it le (f"P re d : {y _ p re d [i]} (True: { y _ t e s t [i] }) " , co lo r=co lo r, fontsize=10) #AjuSte

o fontsize para controlar o tamanho do texto

p lt . t ig h t_ la y o u t ()
p lt.sh o w ()

Pred 6 O h ie : 0) Pred: 5 CVtue: 5) Pred: 0 í lh j e 0) Pred: 8 f lfu e . 8) Pred: 4 (ITue: 4)

Pred: 6 (True 6) Pred: 1 (True: 1) Pred: 9 (T rue 91 Pred: 0 (True: 01 Pred: 0 (True: 0)

Pred: 3 (Th je : 3) Pred: 0 (TTue: 6) Pred: 1 (TUre I I Pred: 3 (True 31 Pred: 9 (Th ie : 9)

Pred: 5 (True: 5) Pred: 5 (True: 5) Pred: 6 (T rue 61 Pred: 3 (True: 31 Pred: 2 (True: 2)

Agora mostramos algumas imagens previstas erroneamente e ao lado uma imagem da Classe que
foi classificada onde podemos observar que todas tem uma certa semelhaça realmente, o que fez o
modelo confundir as características.

Selecionamos 10 imagens aleatórias onde o modelo errou para exibir
Índices = np.random.choice(np.where(y_pred != y _ te s t) [0], 10, replace=False)

Criando uma figura com 2 colunas para cada imagem
f ig , axes = p lt.su b p lo ts (1 0 , 2, f ig s ize = (6 , 15))

fo r row, id x in enum erate(indices):
axes[row, 0] .im show (x_ tes t[idx]. reshape(28, 28), cmap='gray')
axes[row, 0] . a x is (1o f f 1)

axes[row, 0] . s e t_ t it le (f"T ru e : {c lass_nam es[y_ test[idx]] } " , c o lo r= 1b la ck1,
fontsize=10)

Encontrando uma imagem da classe que fo i incorretamente prev is ta
inco rrec t_c lass = y_pred[idx]
Pegando um exemplo da classe incorretamente prev is ta
in co rre c t_ id x = np.where(y_test == in c o rre c t_ c la s s)[0] [0]

Exibindo a imagem de uma amostra da classe incorretamente p rev is ta
axes[row, 1] .im show (x_ tes t[in co rre c t_ idx]. reshape(28, 28), cmap='gray')
axes[row, 1] .a x is (1o f f 1)

axes[row, 1] . s e t_ t it le (f"P re d : {c lass_nam es[inco rrec t_c lass]}", c o lo r= 're d ',
fontsize=10)

p lt . t ig h t_ la y o u t ()
p lt.sh o w ()

Itu e : A rtk le b o o t - -

TMje: Pullover

1 1
Prc d Shitt

S K 1I M I
Thi* T-thwuiap i ,

Tfwe T-sh4ftiTc«(i
m
•red. D m s

n
1ÍVIB: T shirtitop Prcd shirt

7';71
ltu e, h j l lo m

^ JÁ

n li
TKí* SMlt

r n r\jê 1
U | l

TTu*

n

! _ l l
P tr d Coei

M lL J
Tn>* Sftirt

n

IM 1
*!•<!; Wes»

n
■ 1
True. líturt/top

L I
Pie<l ShWt

RH • 3

2 Regressão (RNA)

Importação dos dados

u r i = " h t tp s : / /a rc h iv e . ic s .uci.edu/m l/m ach ine-learn ing-da tabases/w ine-qua lity /w inequa lity -
red.csv"

da ta .

]

= pd. read_csv(url, de lim iter=

columns = [
ac id e z_ fixa ', # fixed a c id ity
a c id e z _ v o la til ' , # v o la t i le a c id ity
a c id o _ c itr ic o ' , # c i t r i c acid
acucar_residual' , # res idua l sugar
c lo re to s ' , # ch lorides
dioxido_de_enxofre_ l i v r e ' , # free s u lfu r d ioxide
dioxido_de_enxofre_ t o t a l ' , # to ta l s u lfu r d ioxide
densidade' , ' # density
pH', # PH
s u lfa to s 1, # sulphates
a lc o o l' , # alcohol
score_qualidade_vinho' # q u a lity

print(data.head())

a c id e z _ f ix a a c id e z _ v o la t i l a c id o _ c i t r i c o a c u c a r_ r e s id u a l c lo r e t o s \
0 7 .4 0 .7 0 0 .0 0 1 .9 0 .0 7 6
1 7 .8 0 .8 8 0 .0 0 2 .6 0 .0 9 8
2 7 .8 0 .7 6 0 .0 4 2 .3 0 .0 9 2

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-

11.2
7 .4

0 .2 8
0 .7 0

0 .5 6
0 . 0 0

0 .0 7 5
0 .0 7 6

d io x id o _ d e _ e n x o f r e _ l iv r e d io x id o _ d e _ e n x o f r e _ to ta l d e n s id a d e PH
0 1 1 .0 3 4 .0 0 .9 9 7 8 3 .5 1
1 2 5 .0 6 7 .0 0 .9 9 6 8 3 .2 0
2 1 5 .0 5 4 .0 0 .9 9 7 0 3 .2 6
3 1 7 .0 6 0 .0 0 .9 9 8 0 3 .1 6
4 1 1 .0 3 4 .0 0 .9 9 7 8 3 .5 1

s u l f a t o s a lc o o l s c o re _ q u a lid a d e _ v in h o
0 0 .5 6 9 .4 5
1 0 .6 8 9 .8 5
2 0 .6 5 9 .8 5
3 0 .5 8 9 .8 6
4 0 .5 6 9 .4 5

Número de linhas e colunas
data . shape

(1 5 9 9 , 12)

separação dos dados
X = d a ta .d ro p (1score_qualidade_vinho1, a x is= l)
Y = d a ta [1score_qualidade_vinho1]

primeiras linhas de X e y para verificar
p r in t("X (F ea tu res):")
p rin t(X .h e a d ())
p r in t(" \n Y (T a rg e t):")
p rin t(Y .h e a d ())

X (F e a t u r e s) :
a c id e z _ f ix a a c id e z _ v o l a t i l a c id o _ c i t r i c o a c u c a r_ r e s id u a l c lo r e t o s \

0 7 .4 0 .7 0 0 .0 0 1 .9 0 .0 7 6
1 7 .8 0 .8 8 0 .0 0 2 .6 0 .0 9 8
2 7 .8 0 .7 6 0 .0 4 2 .3 0 .0 9 2
3 1 1 .2 0 .2 8 0 .5 6 1 .9 0 .0 7 5
4 7 .4 0 .7 0 0 .0 0 1 .9 0 .0 7 6

d io x id o _ d e _ e n x o fre _ _ l i v r e d io x id o ._de_enxo f re__ t o t a l d e n s id a d e PH
0 1 1 .0 3 4 .0 0 .9 9 7 8 3 .5 1
1 2 5 .0 6 7 .0 0 .9 9 6 8 3 .2 0
2 1 5 .0 5 4 .0 0 .9 9 7 0 3 .2 6
3 1 7 .0 6 0 .0 0 .9 9 8 0 3 .1 6
4 1 1 .0 3 4 .0 0 .9 9 7 8 3 .5 1

s u l f a t o s
0 .5 6
0 . 6 8
0 .6 5
0 .5 8
0 .5 6

a lc o o l
9 .4
9 .8
9 .8
9 .8
9 .4

Y (T a r g e t) :

Name: s c o re _ q u a lid a d e _ v in h o , d ty p e : in t 6 4

Matriz de correlação apena para visualização dos dados que mais tem correlações

import seaborn as sns
co rre la tion_ m a trix = d a ta .co rrQ
Geramos o heatmap da matriz de correlação
p lt . f ig u re (f ig s iz e = (1 0 , 8))
sns.heatm ap(corre lation_m atrix, annot=True, cmap="Purples", fm t= ".2 f")
p l t . t i t le (" M a t r iz de Correlação")

p l t . s h o w ()

M atriz de Correlação

acidez_ftxa 1 0 0 ■0.26 0.67 O 15 •011 0 67 -0.G8 ■0 06

acidez_vu latil •0.26 1.Q0 ■0.55 0.0D 0.06 O 01 0.08 0 02 •0.26 •020 -0 39

acido_citnco 0.07 -0.35 1.00 -0 06 0.04 -0.34

acuca rres idw a l 0.00 1.00 0.06 0 09 0.01 0.04 0.01

cloretos 0 0 6 0 0 6 i.OU 0,01 0.03 0.27
D

0 » -0 13

(4o*ido_de_enxofrc_lrvre - O -15 Cl 01 O 06 0 01 1.00 0 67 0 0 2 0 07 0 05 -0 07 -0 05

doxido_de_enxofne to ta l - 0.11 0 0 6 0 0 4 0.05 0.67 1 0 0 0 0 7 0.07 0.04 0.21 0.19

densidade - 0 6 7 0 0 2 •0 02 0.07 10 0 -0 3 4 -0.50 -0 17

pH 0.68 0.54 0 0 9 0 .27 0 0 7 0 .07 -0.34 1.00 0 .2 0 -0 06

su lfatos - •0.26 0.01 Q 0 0 5 0 0 4 -0 3 0 1 0 0

aJcooí - 0.06 0.20 0.04 0.22 0 07 0.21 0.50 1.00 0 4 P

score_qnahdí»de_vinho - -0 39 001 -0 1J -0 03 -0 19 -0 17 -0 06 0 4 6 1 00

1 *2 °
t l

S 8
5 a

Analisando a matriz de correlação, podemos observar os seguintes pontos:

Correlação com a variável de saída (**score_qualidade_vinho**):

O score_qualidade_vinho apresenta correlações moderadas com algumas variáveis, mas nenhuma
extremamente forte.
O **álcool** possui a correlação mais forte com **score_qualidade_vinho** (0.48), sugerindo que o
teor alcoólico tem uma influência positiva na qualidade do vinho.
Sulfatos também mostra uma correlação positiva leve (0.25), sugerindo que níveis mais altos de
sulfato podem estar associados a uma qualidade melhor.
Correlação entre outras variáveis:

Densidade e **acidez_fixa** têm uma correlação moderada (0.67) entre elas, o que indica que
vinhos mais densos tendem a ter uma acidez fixa maior.
Dióxido_de_enxofre_livre e **dióxido_de_enxofre_total** têm uma correlação moderada-alta
(0.67) entre si, o que é esperado, pois essas medidas estão relacionadas quimicamente.
pH e **acidez_fixa** possuem uma correlação negativa forte (-0.68).

Cloretos, açúcar_residual e dióxido de enxofre total têm pouca correlação com a variável de
qualidade, indicando que essas variáveis podem ter menos influência direta na percepção de
qualidade.

Nesta parte tentamos utilizar apenas as variáveis com maior correlação com a qualidade
mais não obtivemos melhora nos resultados finais portanto voltamos a utilizar todas
as variáveis da base conforme indica a questão.

Selecionar apenas as variáveis importantes com base na matriz de correlação
#X = data[['alcool', 'sulfatos', 'densidade']]
#Y = data['score_qualidade_vinho']

Exibir as primeiras linhas de X e Y para verificar

#print("X (Features):")
#print(X.head())
#print("\nY (Target):")
#print(Y.head())

Normalização dos dados

Obtivemos melhor resultado com StandardScaler que normaliza entre -1 e 1

from sk lea rn . preprocessing in p o rt StandardScaler

Inicializando o StandardScaler
sca ler = StandardScaler()

Ajustando o scaler nos dados de treino e transformando X
X = s c a le r. f it_ tra n s fo rn (X)

Exibir os dados normalizados
p r in t("X (Features) Normalizado:")
p r in t (x [:5]) # Mostrar as primeiras 5 linhas

X (F e a tu re s) N o rm a liz a d o :
[[-0 .5 2 8 3 5 9 6 1

-0 .3 7 9 1 3 2 6 9
[-0 .2 9 8 5 4 7 4 3

0 .6 2 4 3 6 3 2 3
[-0 .2 9 8 5 4 7 4 3

0 .2 2 9 0 4 6 6 5
[1 .6 5 4 8 5 6 0 8

0 .4 1 1 5 0 0 4 6
[-0 .5 2 8 3 5 9 6 1

-0 .3 7 9 1 3 2 6 9

0 .9 61 8 7 6 6 7
0 .5 5 8 2 7 4 4 6
1 .9 6 7 4 4 2 4 5
0 .0 28 2 6 0 7 7
1 .2 97 0 6 5 2 7
0 .1 3 4 2 6 3 5 1

-1 .3 8 4 4 4 3 4 9
6642772
96187667

39147228
28864292
39147228
7199333
18607043
33117661
4841536
97910442
39147228

0 .5 5 8 2 7 4 4 6 1 .2 8 8 6 4 2 9 2 -

0 .4 5 3 2 1 8 4 1 -0 .2 4 3 7 0 6 6 9 -0 .4 6 6 1 9 2 5 2
0 .5 7 9 2 0 6 5 2 -0 .9 6 0 2 4 6 1 1]
0 .0 4 3 4 1 6 1 4 0 .2 2 3 8 7 5 2 0 .8 7 2 6 3 8 2 3
0 .1 2 8 9 5 0 4 -0 .5 8 4 7 7 7 1 1]
0 .1 6 9 4 2 7 2 3 0 .0 9 6 3 5 2 8 6 -0 .0 8 3 6 6 9 4 5
0 .0 4 8 0 8 8 8 3 -0 .5 8 4 7 7 7 1 1]
0 .4 5 3 2 1 8 4 1 -0 .2 6 4 9 6 0 4 1 0 .1 0 7 5 9 2 0 9
0 .4 6 1 1 8 0 3 7 -0 .5 8 4 7 7 7 1 1]
0 .4 5 3 2 1 8 4 1 -0 .2 4 3 7 0 6 6 9 -0 .4 6 6 1 9 2 5 2
0 .5 7 9 2 0 6 5 2 -0 .9 6 0 2 4 6 1 1]]

Também fizemos a normalização dos dados com MinMaxScaler
que faz entre 0 e 1 mais a normalização com strandardscaler entre -1 e 1 deu
melhor resultado

#from sk lea rn . preprocessing import MinMaxScaler

#scaler = MinMaxScaler()
#X = s c a le r. fit_ tra n s fo rm (X)

Separação da base em treino e teste (75/25)

x _ tra in , x_ te s t, y _ tra in , y_ test = tra in _ te s t_ s p lit (X , Y, tes t_s ize=0 .25)

Criação do modelo

from tensorflow .keras import la ye rs , models, regu la rize rs

11 camadas referente as features
i = t f . keras. la y e rs . In p u t(s h a p e = (ll,))
x = t f . keras. la y e rs . Dense(50, a c t iv a tio n = "re lu ") (i)

tentamos também com Regularização L2 sem melhoras no resultado
#x = la y e rs . Dense(50, a c t iv a t io n = "re lu " , k e rn e l_ re g u la r iz e r= re g u la r iz e rs .l2 (0 .0 1))(i)

inserimos uma camada de Dropout com 50% e depois reduzimos para 20%
esta cama ajuda a evitar overfitting
x = laye rs .D ropou t(0 .2)(x)

x = t f . keras. la y e rs . Dense(l)(x)

model = tf.ke ras .m ode ls .M ode l(i, x)

Criação de funções para as métricas R2 e RMSE serem inseridas no modelo

Tivemos que fazer algumas alterações na criação das funções
convertendo y_true para float32

Função RMSE
def rmse(y_true, y_pred):

y_true = backend.cast(y_true, dtype=1float321)
return backend.sqrt(backend.mean(backend.square(y_pred - y_true), axis=-l))

Função R2
def r2(y_true, y_pred):

y_true = backend.cast(y_true, dtype=1float321)
y_true_mean = backend.nean(y_true)
ss_tot = backend.sum(backend.square(y_true - y_true_mean))
ss_res = backend.sum(backend.square(y_true - y_pred))
return 1 - ss_res / (ss_tot + backend.epsilonQ)

Compilação e treinamento do Modelo

Na compilação testamos com os três otimizadores e com várias taxas de aprendizado mais a que
deu melhor resultado foi com RMSprop

optimizer=tf.keras.optimizers.Adam(learning_rate=0.005)

#optimizer=tf.keras.optimizers.SCD(learning_rate=0.005, momentum=0.5)
#optimizer=tf.keras.optimizers.RMSprop(0.01)

model.compile(optimizer=optimizer,
loss="mse",
metrics=[rmse, r2])

Testamos patience com 30 e com 10 tbm apenas para teste mais não melhorou o resultado
Early stop para epochs
early_stop = tf.keras.callbacks.EarlyStopping(

monitor=1val_loss1,
patience=20,
restore_best_weights=T rue)

r=model.fit(x_train,y_train,epochs=100,validation_data=(x_test,y_test),callbacks=[early_st
op])

Epoch 3 8 /1 0 0
3 8 /3 8 --------------------------------------

v a l_ lo s s : 0 .4 2 6 4 - v a l_ r 2 : 0 .3 5 3 6
Epoch 3 9 /1 0 0
3 8 /3 8 --------------------------------------

v a l_ lo s s : 0 .4 7 1 6 - v a l_ r 2 : 0 .2 8 2 7
Epoch 4 0 /1 0 0
3 8 /3 8 --------------------------------------

v a l_ lo s s : 0 .4 6 5 3 - v a l_ r 2 : 0 .2 8 6 5
Epoch 4 1 /1 0 0
3 8 /3 8 --------------------------------------

v a l_ lo s s : 0 .4 3 1 8 - v a l_ r 2 : 0 .3 3 8 6

Avaliação do modelo

plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")

0s 3 m s /s te p - lo s s : 0 .5 8 9 4 -
- v a l_ rm s e : 0 .5 0 8 6

0s 2 m s /s te p - lo s s : 0 .6 0 8 4 -
- v a l_ rm s e : 0 .5 2 6 7

Os 3 m s /s te p - lo s s : 0 .6 5 0 7 -
- v a l_ rm s e : 0 .5 2 2 6

Os 3 m s /s te p - lo s s : 0 .6 1 3 4 -
- v a i rm se: 0 .5 0 6 4

r 2 : 0 .0 1 0 2 - rm se: 0 .6 0 4 0

r 2 : 0 .0 3 6 4 - rm se: 0 .6 2 5 1

r 2 : -0 .0 2 9 2 - rm se: 0 .6 3 1 5

r 2 : 0 .0 3 8 8 - rm se: 0 .6 1 0 2

plt.legend()

Explicação do Gráfico de Perda

No início do treinamento, tanto a perda de treinamento quanto a de validação diminuem rapidamente,
sendo um bom sinal, pois indica que o modelo está aprendendo e ajustando seus parâmentros para
se adaptar aos dados, mas após a época 10 as curvas se etabilizam, e a perda mantém um nível
relativamente constante, e a curva de validação permanece próxima a de treinamento, o que indica
que o modelo não está sofrendo overfitting.

O gráfico indica que o modelo aprendeu e convergil para uma solução estável, com uma boa
generalização entre os dados, indicando que o modelo esta equilibrado.

plt.plot(r.history["rmse"], label="rmse")
plt.plot(r.history["val_rmse"], label="val_rmse")
plt.legend()

Explicação do Grávico de RMSE

Nas primeira épocas o RMSE diminui rapidamente nos dois conjuntos de dados, mais após da época
10 estabiliza em um ponto razoável, que para ser ótimo teria que chegar mais próximo de zero. E por
esta estabilzação em várias épocas tabém indica que um número maior que épocas não iria melhorar
o resultado do modelo.

plt.plot(r.history["r2"], label="r2")
plt.plot(r.history["val_r2"], label="val_r2")
plt.legend()

Explicação do Gráfico R2

Percebemos que no inicio aumenta rapidamente, até passar de valores negativos aproximadamente
pela décima época, e que posteriormente estabiliza proximo a zero sem mudanção significativas,

indicando que o modelo não esta conseguindo fazer boas previsões em relação a variabilidade dos
dados, e tabém que um aumento do número de épocas não iria melhorar o resultado do mesmo.

Predições

Predição
y_pred = m o d e l.p re d ic t(x_ te s t). f la t t e n ()

Cálculo das métricas de acurácia: mse, r2 e rmse
mse = mean_squared_error(y_test, y_pred)
rmse = sqrt(mse)
r2 = r2_score(y_test, y_pred)

Resultados das métricas de acurácia
prin t("m se = " , mse)
p rin t("rm se = " , rmse)
p r in t (" r2 = " , r2)

mse = 0 .4178302620711986
rmse = 0 .6463979131086351
r2 = 0 .3966349959373474

Explicação das métricas

No geral, os resultados obtidos são razoaveis, com espaço para melhorias, tentamos de diversas
formas obter melhor resultado mais este foi o máximo que atingimos, sem fugir muito do modelo
utilizado em aula.

mse: 0,41 ainda está alto em se tratando das média dos erros quadráticos.

rmse: 0.64 tbm está elevado por ser o erro quadrático médio elevado a raiz quadrada.

o resultado indica que a variância dos dados é explicada pelo modelo em 39.6%, que
ainda é baixo.

3 Sistemas de Recomendação

Prática Sistemas de Recomendação: Criar um sistema de recomendação de filmes

Importação das bibliotecas

from google.colab import d rive
d rive .m oun t(1/c o n te n t/d r iv e 1)

Drive already mounted a t /c o n te n t/d r iv e ; to attempt to fo rc ib ly remount, c a l l
d rive .m o u n t(" /co n te n t/d r ive ", force_remount=True).

Importação dos dados

df=pd.read_csv("/content/drive/MyDrive/frameworksIA/Base_livros.csv",sep=",",
skipinitialspace=T rue)
df.head()

ISBN Titulo Autor Ano Editora ID usuário Notas

0 ISBN Titulo Autor Ano Editora ID_usuario Notas

1 2005018 Clara Callan
Richard Bruce

Wright
2001 HarperFlamingo Canada 276725 0

2 60973129 Decision in Normandy Cario D'Este 1991 HarperPerennial 276726 2

ISBN Titulo Autor Ano Editora ID usuário Notas

3 374157065

Flu: The Story of the

Great Influenza

Pandemic...

Gina Bari Kolata 1999 Farrar Straus Giroux 276727 6

4 393045218
The Mummies of

Urumchi
E. J. W. Barber 1999

W. W. Norton &

Company
276729 1

Exibir os valores únicos do campo 'Notas' apenas para saber a escala e desnormalizar no final
valores_unicos_notas = df[1 Notas 1].unique()
print("Valores únicos en 'Notas':", valores_unicos_notas)

Valores únicos em 'Notas': ['Notas' '0' '2' ... 'Fantagraphics Books' 'Forge Books' '29888']

verificar linhas com valores nulos
print(df[df.isnull().any(axis=l)])

ISBN T i t u lo \
23 61076031 M a ry -K a te & A s h le y S w itc h in g G oa ls (M a ry -K a te . . .
691 1567920047 A T a l l y o f T ypes : W ith A d d i t io n s by S e v e ra l Ha . . .
825 2264009306 C a n t i lÃ fÂ ^ e s en g e lÃfÂ©e
1285 2070372294 Le Coq De B ru y g re (F o l io Ser
1688 785268030 S ta r t in g Y our M a rr ia g e R ig h t & l t

126334 393058557 The G i r l w i th th e Long B ack: A H a rp u r & I l e s M. . .
127108 3252477 A midsummer n ig h t 's dream
127119 1557132445 "The Women a t th e Pump (Sun & Moon C la s s ic s
127230 3518065793 Das G la s p e r le n s p ie l : V e rsuch e . L e b e n s b e s c h re i. . .
128122 312307195 The D e sp e ra te Remedy : H enry Gresham and th e Gu . . .

A u to r Ano E d ito r a \
23 M a ry -K a te & NaN NaN
691 NaN NaN NaN
825 NaN NaN NaN
1285 NaN NaN NaN
1688 NaN NaN NaN

126334 B i l l James 2004 W.W . N o rto n &
127108 NaN NaN NaN
127119 No 1 1 5)" K nut Hamsun 1996
127230 NaN NaN NaN
128122 NaN NaN NaN

ID _ u s u a r io N otas
23 NaN NaN
691 NaN NaN
825 NaN NaN
1285 NaN NaN
1688 NaN NaN

126334 NaN NaN
127108 NaN NaN
127119 C o n s o rtiu m Book S a le s & NaN
127230 NaN NaN
128122 NaN NaN

[686 rows x 7 co lu m n s]

Remover linhas com valores NULOS
d f = df.d ropna()

verificar linhas com valores nulos para ver se apagou
p r in t (d f [d f . i s n u l l () . a n y (a x is= l)])

Empty DataFrame
Columns: [ISBN, Titulo, Autor, Ano, Editora, ID_usuario, Notas]
Index: []

Conversão de ID_usuario e ISBN para categoria

d f . ID_usuario = pd. C a te g o rica l(d f. ID_usuario)
d f [1new_ID_usu1] = d f . ID_usuario.cat.codes

df.ISBN = pd. C a te g o rica l(d f. ISBN)
d f [1new_ISBN1] = d f . ISBN.cat.codes

from sk lea rn . preprocessing im port MinMaxScaler

d f ['N o ta s '] = pd. to_num eric(df[1 Notas 1] , e rro rs= 1coerce1)

d f = d f.d ropna(subset= [1 Notas 1])

#Normalizar notas entre G e l
sca ler = MinMaxScaler()
d f [1notas_norm1] = s c a le r. f it_ tra n s fo rm (d f[[1 Notas 1]])

<ipython-input-9-8c34480651d2>:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation:
https://pandas.pvdata.ora/pandas-docs/stable/user auide/indexina.html#returnina-a-view-versus-
a-copy

d f [1notas_norm1] = s c a le r. f it_ tra n s fo rm (d f[[1 Notas 1]])

d f . h e a d ()

ISBN Titulo Autor Ano Editora ID usuário Notas new ID usu new ISBN notas norm

2005018 Clara Callan

Richard

Bruce

Wright

2001
HarperFlami

ngo Canada
276725 0.0 7026 26192 0.000000

60973129
Decision in

Normandy
Cario D'Este 1991

HarperPeren

nial
276726 2.0 7027 86632 0.000007

374157065

Flu: The Story

of the Great

Influenza

Pandemic...

Gina Bari

Kolata
1999

Farrar Straus

Giroux
276727 6.0 7028 50102 0.000022

393045218
The Mummies

of Urumchi

E. J. W.

Barber
1999

W. W. Norton

& Company
276729 1.0 7029 56336 0.000004

399135782
The Kitchen

God's Wife
Amy Tan 1991

Putnam Pub

Group
276729 9.0 7029 58737 0.000032

Dimensões
N = len(set(df.new_ID_usu))
M = len(set(df.new_ISBN))

_blank
_blank

dimensão do embedding
K = 10

Criar o modelo

from te n so rflow .ke ra s .re gu la rize rs import 12
from tenso rflow .ke ras .laye rs import Dropout

usuário
u = In pu t(shap e= (l,))
u_emb = Embedding(N, K)(u) # saída : num_samples, 1, K
u_emb = F la tte n () (u_emb) # saída : num_samples, K

livro
m = In pu t(shap e= (l,))
m_emb = Embedding(M, K)(m) # saída : num_samples, 1, K
m_emb = F la tte n () (m_emb) # saída : num_samples, K

x = Concatenate() ([u_emb, m_emb])

Adicionando Dropout e Regularização L2
x = Dense(128, a c t iv a t io n = "re lu " , ke rn e l_ re g u la rize r= l2 (0 .0 1))(x) # Regularização L2
x = D ropout(0 .5)(x) # Dropout com taxa de 50%

x = D ense(l)(x)

model = M odel(inputs=[u, m], outputs=x)

Compilação do modelo

model.compile(
loss="mse",
optim izer=SGD(learning_rate=0.001, momentum=0.9)
#optim izer=Adam(learning_rate=0.001)

)

Separação dos dados e pré-processamento

#user_ids, book_ids, ra tings = s h u f f le (d f . new_ID_usu, df.new_ISBN, df.Notas)
user_ids, book_ids, ra tings = s h u f f le (d f . new_ID_usu, df.new_ISBN, d f . notas_norm)

Separar os dados em 80% para treino e 20% para teste
N tra in = in t(0 .8 0 * le n (ra t in g s))

tra in_user = use r_ id s [: N tra in]
train_book = book_ids[: N tra in]
tra in _ ra tin g s = ra t in g s [:N tra in]
test_user = u se r_ id s [N tra in :]
test_book = book_ ids [N tra in :]
te s t_ ra tin g s = ra t in g s [N tra in :]

Centralizar as notas
avg_rating = tra in_ra tings.m ean()
tra in _ ra tin g s = tra in _ ra tin g s - avg_rating
te s t_ ra tin g s = te s t_ ra tin g s - avg_rating

Treinamento do modelo

r = m o d e l.f it(
x= [tra in_use r, tra in_book],
y= tra in _ ra tin g s ,
epochs=50,
batch_size=128,
verbose=2,
va lida tion _da ta= ([tes t_use r, test_book], te s t_ ra tin g s)

)

Epoch 4 0 /5 0
7 8 2 /7 8 2 - l s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 1 /5 0
7 8 2 /7 8 2 - l s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 2 /5 0
7 8 2 /7 8 2 - l s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 3 /5 0
7 8 2 /7 8 2 - 3s - 3 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 4 /5 0
7 8 2 /7 8 2 - 3s - 3 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 5 /5 0
7 8 2 /7 8 2 - 2s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 6 /5 0
7 8 2 /7 8 2 - 2s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 7 /5 0
7 8 2 /7 8 2 - 2s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 8 /5 0
7 8 2 /7 8 2 - l s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 4 9 /5 0
7 8 2 /7 8 2 - l s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7
Epoch 5 0 /5 0
7 8 2 /7 8 2 - l s - 2 m s /s te p - l o s s : 0 .0 0 7 9 - v a l_ lo s s : 0 .0 0 8 7

Plotar a função de perda

plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.legend()
plt.show()

Análise do Gráfico de Perda

Ambas as curvas apresentam uma diminuição constante ao longo das épocas, indicando que o
modelo está aprendendo e reduzindo o erro durante o treinamento, e mostra uma certa estabilização
a partir da época 25 apesar de ainda estar diminindo a perda.

As curvas de treinamento e validação permanecem próximas durante todo o processo o que sugere
que o modelo não está sofrendo overfitting.

9. Recomendações para o usuário 5360

Gerar o array com o usuário único
repete a quantidade de livros
input_usuario = np.repeat(a=5360, repeats=M)
book = n p .a rra y (lis t(s e t(b o o k _ id s)))

preds = m odel.pred ict([inpu t_usuario , book])

descentraliza as predições
ra t = preds. f la t t e n () + avg_rating

índice da maior nota
id x = np.argmax(rat)

print("Recomendação:")
p r in t("L iv ro - " , book [idx], " / " , ra t [id x] , " * ")
print("Dados o r ig in a is do L iv ro :")
isbn_recomendado = book[idx]
Filtrar o DataFrame para obter as informações do livro recomendado
livro_recomendado = d f [d f [1new_ISBN1] == isbn_recomendado]. i lo c [0]
p rin t("ISBN livro_recomendado[1 ISBN1])
p rin t("N o ta livro_recomendado[1 Notas1])
p r in t (" T í tu lo : ", liv ro_ recom end ado ['T itu lo '])
p r in t ("A u to r: " , livro_recom endado['Autor'])
p r in t ("Ano:" , livro_recomendado['Ano'])
p r in t (" E d ito ra : " , livro_recomendado[' E d ito ra '])

3908/3908 --------------------------------------- l i s 3 m s /s te p
R ecom endação:
L iv r o - 90758 / 0 .0 1 6 9 4 1 9 5 *
Dados o r i g i n a i s do L iv r o :
ISBN : 671034553
N o ta : 2 .0
T i t u l o : A P la c e Among th e S ta r s : The Women o f S ta r T re k : V o ya g e r
A u to r : P o c k e t Books
A no : 1998
E d i t o r a : S ta r T re k

Gerar o array com o usuário único e repetir pela quantidade de livros
input_usuario = np.repeat(a=5360, repeats=M)
book = n p .a rra y (lis t(s e t(b o o k _ id s)))

Fazer a predição de notas para o usuário
preds = m ode l.p red ic t([inpu t_usuario , book])

Descentralizar e escalonar as predições para o intervalo de notas originais
rat_normalizada = preds. f la t t e n () + avg_rating
Escalando de volta para o intervalo original (por exemplo, 1 a 5)
ra t = rat_normalizada * 10

Encontrar o índice da maior nota predita
id x = np.argmax(rat)

Exibir a recomendação principal
p rin t("=== Recomendação de L iv ro Personalizada ===")
print(f"Com base no h is tó r ic o do usuário, recomendamos o l iv r o com a maior previsão de
ava liação .")
p r in t("L iv ro Recomendado:", book[idx])
p rin t("N o ta P re v is ta :" , ro u n d (ra t[id x], 2), " * ") # Arredondar para 2 casas decimais

Obter os dados originais do livro recomendado
isbn_recomendado = book[idx]
livro_recomendado = d f [d f [' new_ISBN'] == isbn_recomendado]. i lo c [0]

Exibir mais informações detalhadas do livro
p rin t("\n = = = Informações do L iv ro Recomendado ===")

", livro_recomendado[1 ISBN1])
", livro_recomendado[1 Notas 1])
", livro_recomendado[1 Titulo1])
", livro_recomendado['Autor 1])
", livro_recomendado[1 A n o 1])
", livro_recomendado[1 Editora 1])

Observação adicional sobre as recomendações
print("\nNota: A recomendação é baseada na maior previsão de avaliação com base no modelo
de rede neural.")

3908/3908 ---------------------- 6s 2 m s /s te p
=== Recomendação de L iv r o P e rs o n a l iz a d a ===
Com base no h i s t ó r i c o do u s u á r io , recomendamos o l i v r o com a m a io r p re v is ã o de

a v a l ia ç ã o .
L iv r o Recomendado: 90758
N o ta P r e v is ta : 0 .1 7 *

=== In fo rm a ç õ e s do L iv r o Recomendado ===
ISBN : 671034553
N o ta M éd ia : 2 .0
T i t u l o : A P la c e Among th e S ta r s : The Women o f S ta r T re k : V o ya g e r
A u to r : P o c k e t Books
Ano : 1998
E d i t o r a : S ta r T re k

N o ta : A recom endação é baseada na m a io r p re v is ã o de a v a l ia ç ã o com base no m ode lo de
re d e n e u r a l .

4 Deepdream

Implementar o exemplo de implementação mínima de Deepdream usando uma
imagem de umfelino- retirada do site Wikipedia- e a arquitetura Deepdream vista na
aula FRA- Aula 23- Prática Deepdream.

Importação da imagem

uri = "https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg"

Download da imagem e gravação em array Numpy
def download(uri, max_dim=None):

name = uri.split(1/ 1)[-1]
image_path = tf.keras.utils.get_file(name, origin=url)
img = PIL.Image.open(image_path)
if max_dim:

img.thumbnail((max_dim, max_dim))
return np.array(img)

Normalização da imagem
def deprocess(img):

img = 255*(img + 1.0)/2.0
return tf.cast(img, tf.uint8)

Mostra a imagem
def show(img):

display.display(PIL.Image.fromarray(np.array(img)))

Redução do tamanho da imagem para facilitar o trabalho da RNN
original_img = download(url, max_dim=500)
show(original_img)
display.display(display.HTML('Image cc-by: <a
"href=https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-
cat_on_snow.jpg">Von.grzanka1))

Downloading d a ta from
h t t p s : //com m ons.w ik im e d ia . o r g /w ik i /S p e c ia l : F i le P a t h /F e l is c a tu s -

print(ISBN
print('Nota Média
print('Titulo
print('Autor
print('Ano
Drintf ' Editora

c a t on snow .jpq

https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg
https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_on_snow.jpg

2125399/2125399 ---------------------- 0S 0US/step

Preparar o modelo de extração de recursos

base_model = t f . ke ra s .a p p lica tio n s . InceptionV3(include_top=False, weights=1imagenet1)

Downloading d a ta from h t t p s : / / s t o r a g e . g o o q le a p ls . c o m /te n s o r f lo w /k e ra s -
ap p lic a t io n s / in c e p t io n v3/
inceptlon v3 welghts tf dim orderinq tf kernels notop.hS

87910968/87910968 ---------------------- 0S 0US/step

Maximizando as ativações das camadas
nanes = ['n ix e d 3 ', 'm ixed5']
layers = [base_model.get_layer(name).output fo r nane in nanes]

Criação do modelo
drean_nodel = tf.keras.M odel(inputs=base_nodel.input, outputs= layers)

Cálculo da perda

def ca lc_ loss (ing , nodel):
Converte a inagen en un batch de tananho 1.
ing_batch = tf.expand_d ins(ing , axis=0)
la ye r_ac tiva tio ns = nodel(ing_batch)
i f le n (la ye r_ a c tiva tio n s) == 1:

la ye r_ a c tiva tio n s = [la ye r_ a c tiva tio n s]

losses = []
fo r act in la y e r_ a c tiv a tio n s :

loss = tf.na th .reduce_nean(act)
losses. append(loss)

re turn t f . reduce_sun(losses)

Subida de gradiente

class DeepDrean(tf.Module):
def i n i t (s e lf , nodel):

se lf.n o d e l = nodel

@ tf. func tion (
input_signature=(

t f . TensorSpec(shape=[None,None,3], d typ e = tf. f lo a t3 2) ,
t f . TensorSpec(shape=[] , d typ e = tf. in t3 2) ,
t f . TensorSpec(shape=[] , d typ e = tf. f lo a t3 2) ,)

)
def c a l l (s e lf , in g , steps, s tep_size):

p r in t("T ra c in g ")
loss = tf.c o n s ta n t(0 .0)

fo r n in t f . range(steps):
w ith t f . CradientTape() as tape:

Gradientes relativos a img
tape.w atch(ing)
loss = ca lc_ loss (ing , se lf.n o d e l)

https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5

Calculo do gradiente da perda em relação aos pixels da imagem de entrada,
gradients = ta p e .g rad ien t(lo ss , img)

Normalizacao dos gradintes
gradients /= tf.m ath .reduce_std (grad ien ts) + le -8

img = img + grad ients*step_size
img = tf.c lip_by_va lue (im g , -1, 1)

re turn loss , img

deepdream = DeepDream(dream_model)

Circuito principal (*Main Loop*)

def run_deep_dream_simple(img, steps=100, step_size=0.01):

img = tf.ke ras .app lica tions .incep tion_v3 .p rep rocess_ inpu t(im g)
img = tf.convert_ to_ tensor(im g)
step_size = tf.conve rt_ to_ tenso r(s tep_s ize)
steps_remaining = steps
step = 0
while steps_remaining:

i f steps_remaining>100:
run_steps = tf.cons tan t(1 00)

e lse:
run_steps = tf.constan t(s teps_rem ain ing)

steps_remaining -= run_steps
step += run_steps

lo ss , img = deepdream(img, run_steps, tf.co n s ta n t(s te p _ s ize))

d is p la y . clear_output(wait=True)
show(deprocess(img))
p r in t ("Step { } , loss { } " . fo rm at(step, lo s s))

re s u lt = deprocess(img)
d is p la y . clear_output(wait=T rue)
show(result)
re turn re s u lt

dream_img=run_deep_dream_simple(img=original_img, steps=100, step_size=0.01)

Explicação da imagem

A imagem é de baixa resolução e os padrões estão praticamente na mesma granularidade, tendo em
vista que o processamento em escala única a imagem é processada apenas em sua escala original,
assim é mais difícil para o modelo capturar detalhes que existem em diferentes tamanhos ou escalas,
como pequenos padrões ou texturas.

Levando o modelo até uma oitava

inport tine
start = tine.tine()

OCTAVE_SCALE = 1 . 3

ing = tf .constant(np.array(original_ing))
base_shape = tf.shape(ing)[:-1]
float_base_shape = tf.cast(base_shape, tf.float32)

for n in range(-2, 3):
new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.int32)

ing = tf.inage.resize(ing, new_shape).nunpy()

ing = run_deep_drean_sinple(ing=ing, steps=100, step_size=0.005)

end = tine.tine()
end-start

Explicação da imagem

Agora a imagem fica mais detalhada e complexa, com maior mistura de texturas de padrões.

APÊNDICE 14 - VISUALIZAÇÃO DE DADOS E STORYTELLING

A - ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que

possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e

com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os

conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu

possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam,

quais possíveis ações podem ser feitas com base neles.

Entregue em um PDF:

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que

possa ser melhorada);

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que

será desenvolvido;

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de

sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos)

B - RESOLUÇÃO

Visualização de Dados e Storytelling

Dados Brutos
Exemplo de dados gerados a partir dos dispositivos distribuídos pela cidade em painéis de LED,
totens digitais de publicidade. De tempos em tempos estes dados são enviados a um servidor central
de controle de publicidade digital.

Agenda ID ponta □uracao Midia Data View Hora View GPSL. atitude GPSLongitude
193 239Vx WL9gq7N Bpx rO 20 2025-01-09 11 47:01 -19 937206294876045 -43 93569054749388
193 239VxWL9gq7NBpxiO 20 2025-01-09 11 47:31 -19 937206294876045 -43 93569054749388
193 239Vx WL9çjq7N Bpx rO 20 2025-01-09 11 48 11 -19 9372C6294876045 -43 9356905474938B
193 3blb21e85bl0173e 10 2025-01-09 11 48:52 -19.91977401780811 -43.93907536347547
193 3blb21e85bl0173e 10 2025-01-09 11 49:32 -19.91977401780811 43.93907536347547
193 3blb21eB5bl0173e 10 2025-01-09 11 50:12 -19.91977401780811 -43 93907536347547
193 3blb21e85bl0173e 10 2325-01-09 11 50:52 -19 gM^dO^SOAll -43.93907536347547
193 cd7befl6598S7728 20 2025-01-09 11 51:22 -19 924539150514665 43 92729109503373
193 cd7bef1659857728 20 2025-01-09 11 52:03 -19 924539150514665 43 92729109503373
193 cí7befl659B57728 20 2025-01-09 11 52 43 -19 9245391505146Ò5 -43 92729109503373

Como a publicidade DOOH conecta Belo Horizonte

PeraAI é um jovem empreendedor que acaba de lançar sua primeira marca de roupas inteligentes em
Belo Horizonte. Para garantir o sucesso de seu novo empreendimento, ele sabe que precisa alcançar
o público certo, no lugar certo e no momento certo. Mas como fazer isso em uma cidade tão
dinâmica? A resposta está nas ruas, nos prédios e nos pontos estratégicos onde milhares de olhares
se voltam todos os dias: a publicidade DOOH (Digital Out-of-Home).

Ao analisar os dados de impacto da mídia DOOH na cidade de seu interesse, PeraAI descobre uma
dinâmica fascinante na movimentação urbana. Alguns bairros se destacam como verdadeiros
epicentros de atenção, enquanto outros representam nichos estratégicos de público. Cada edifício no
gráfico representa o volume médio de visualizações diárias de publicidade digital, dando vida aos
números e transformando estatísticas em oportunidades de negócio. PeraAI percebe um c ircu ito
interessante para imprimir sua marca, atingindo uma gama de pessoas residentes ou de passagem.

7000

600©

5000

4000

3000

F igu ra 1: Quantidade média de views de public idade D 0 0 H - Região centrai BH

Centro: O Coração Pulsante da Cidade
Com 6.378 visualizações por dia, o Centro de Belo Horizonte é o grande palco onde a cidade
acontece. Milhares de pessoas transitam diariamente por suas avenidas, shoppings e terminais de
ônibus, tornando essa região um dos pontos mais valiosos para exibição de publicidade. PeraAI
percebe que um anúncio aqui significa atingir profissionais, estudantes e turistas que cruzam as ruas
sem perder de vista os painéis publicitários com mídias digitais.

Lourdes: O Bairro da Sofisticação
Logo ao lado, o bairro Lourdes apresenta 5.230 visualizações diárias, ultrapassando até mesmo o
Centro. Com seus cafés refinados, boutiques de luxo e restaurantes badalados, a região é um ponto
nobre onde o público tem alto poder aquisitivo. Para PeraAI, essa é a chance perfeita de posicionar
sua marca entre consumidores exigentes e atentos às tendências da e de inovação.

Funcionários: Sofisticado e Tradicional
A alguns quilômetros dali, o bairro Funcionário (5.200 visualizações diárias) é um dos mais
tradicionais da cidade. Reúne gente com poder aquisitivo, interessado em produtos novos. PeraAI
sabe que uma boa impressão de seu empreendimento nestes bairros pode impactar positivamente
muito a marca. Este bairro é estratégico pois está próximo ao Centro e Savassi.

São Pedro: O Público Local que Gera Conversão
O São Pedro é um bairro localizado na Zona Sul de Belo Horizonte. Apesar de predominantemente
residencial, o bairro também é conhecido por sua intensa vida noturna, ao lado de seus vizinhos
Santo Antônio de Savassi. Com em média 4.550 visualizações diárias PeraAI vê oportunidades
nestes pontos onde existem coexistência de culturas, onde as pessoas gostam de se mostrar.

Serra: Mobilidade e Movimento
O bairro Serra (4.300 visualizações diárias) é um dos mais antigos da cidade, onde moradores
fizeram sua via e ainda moram no bairro. Apesar da tradição, concentra alto poder aquisitivo. É
vizinho do bairro Mangabeiras, o mais elitizado da cidade. PeraAI vê oportunidade pois muitos
moradores são bom freqüentadores de shoppings e gostam de inovação.

Santa Efigênia: Predominante Serviços Médicos
Próximo ao centro e ao bairro Funcionários, o bairro Santa Efigênia (3.760 visualizações diárias)
possui intensa movimentação nas ruas por conta de serviços médicos e rede hospitalar. PeraAI
observa que a movimentação urbana não se concentra apenas no centro. São áreas que conectam
importantes vias da cidade, atraindo motoristas, pedestres e ciclistas que, no trânsito ou nas
calçadas, mantêm contato diário com a publicidade DOOH.

A publicidade que move Belo Horizonte
Com os números em mãos, PeraAI percebe que a publicidade DOOH não é apenas sobre exibir um
anúncio, mas sim sobre se conectar e interagir com a cidade. Cada bairro tem seu próprio perfil, e
os dados mostram como cada espaço pode ser aproveitado para atingir o público certo.

Ele decide lançar sua campanha com anúncios espalhados estrategicamente, aproveitando os locais
de maior visibilidade e presença do seu público-alvo. Agora, ao caminhar pela cidade, PeraAI não
apenas vê os painéis publicitários - ele entende a história que cada um deles conta.

E você? Já pensou onde sua marca pode estar sendo vista hoje?

APÊNDICE 15 - TÓPICOS EM INTELIGÊNCIA ARTIFICIAL

A - ENUNCIADO

1) Algoritmo Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab,

ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita

simplesmente para tornar o problema intratável. A solução ótima para este problema não é

conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o

percurso de menor distância que passe uma única vez por todas as cidades e retorne à cidade de

origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado

de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações.

Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas
posições de 1 a 99 deverão ser definidas pelo algoritmo genético.

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
(3) Utilize no mínimo uma população com 100 indivíduos;
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento

(crossover-ox);
(6) Preserve sempre a melhor solução de uma geração para outra.

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”

2) Compare a representação de dois modelos vetoriais

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial,

que poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a

quantidade de palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que

deverão produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização

fique clara e objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a

PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B - RESOLUÇÃO

1) Algoritmo Genético

In íc io (p io r) pe rcu rso e n tre 100 c id a d e s (G eraçao : 1 - D is tâ n c ia = 4 8 6 5 .2 1 6 2 6 6 0 5 2 4 1 6)

0 20 -10 60 80 100

M e lh o r pe rcu rso e n tre 100 c id a d e s (D is tâ n c ia = 1189 9 0 1 4 7 7 5 3 8 9 5 8 5 }

Evolução da M elhor D is tânc ia

Geração

LOG GERAÇÕES:

Sucesso, 100 cidades (GENS) foram geradas. Tentativas: 575.
Geração 0: Melhor Distância = 4865.216266052416

Geração 24900: Melhor Distância = 1189.9014775389585

Algorítimo completo:
inport random

import math

import matplotlib.pyplot as plt

Considerando distância minima entre cidades (pontos) para evitar sobreposição ou muito

próximos

def gerar_pontos_cidades(num_gen_pontos_cidade=100, max_x=100, max_y=100, min_distance=8):

gen_pontos_cidades = []

tentativa = 0

max_attempts = 2000 # Número máximo de tentativas para encontrar 100 cidades

while len(gen_pontos_cidades) < num_gen_pontos_cidade and tentativa < max_attempts:

new_city = (random.randint(0, max_x), random.randint(0, max_y))

valid = True

Verificar se a nova cidade está longe o suficiente das cidades existentes

for existing_city in gen_pontos_cidades:

distance = math.sqrt((new_city[0] - existing_city[0])**2 +

(new_city[l] - existing_city[l])**2)

if distance < min_distance: # Distância minima pre-estabelecida entre

as cidades

valid = False

break

if valid:

gen_pontos_cidades.append(new_city)

tentativa += 1

if len(gen_pontos_cidades) < num_gen_pontos_cidade:

print(f"Aviso: Apenas {len(gen_pontos_cidades)} cidades foram geradas devido

à restrição de distância mínima.")

else:

print(f"Sucesso, {len(gen_pontos_cidades)} cidades (CENS) foram geradas.

Tentativas: {tentativa}.")

return gen_pontos_cidades

Função para calcular a distância total de um percurso

def calculate_distance(pontos_cidade, cromossomo):

distance = 0

for i in range(len(cromossomo) - 1):

xl, yl = pontos_cidade[cromossomo[i]]

x2, y2 = pontos_cidade[cromossomo[i + 1]]

distance += math.sqrt((x2 - xl)**2 + (y2 - yl)**2)

Retornar à cidade inicial

xl, yl = pontos_cidade[cromossomo[-1]]

x2, y2 = pontos_cidade[cromossomo[0]]

distance += math.sqrt((x2 - xl)**2 + (y2 - yl)**2)

return distance

Função de fitness (minimizar a distância)

def fitness(pontos_cidade, cromossomo):

return 1 / calculate_distance(pontos_cidade, cromossomo)

Operador de cruzamento (Order Crossover - OX)

def crossover_ox(parentl, parent2):

size = len(parentl)

start, end = sorted(random.sample(range(l, size - 1), 2)) # Evitar incluir a cidade

inicial/final

child = [None] * size

child[0] = parentl[0] # Manter a cidade inicial

child[-l] = parentl[-l] # Manter a cidade final

child[start:end] = parentl[start:end]

Preencher os valores restantes com base no parent2

pointer = end

for city in parent2:

if city not in child:

if pointer >= size - 1:

pointer = 1

child[pointer] = city

pointer += 1

return child

Operador de mutação (troca duas cidades)

def mutacao(cromossomo, probabilidade_mutacao=0.10):

if random.randon() < probabilidade_mutacao:

idxl, idx2 = random.sample(range(l, len(cromossomo) - 1), 2) # Não trocar a

cidade inicial/final

cromossomo[idxl], cromossomo[idx2] = cromossomo[idx2], cromossomo[idxl]

return cromossomo

Seleção por torneio

def tournament_selection(populacao, fitness_values, k=3):

selected = random.sample(list(zip(populacao, fitness_values)), k)

return max(selected, key=lambda x: x[l])[0]

Gerar população inicial

def gerar_populacao(pontos_cidade, tamanho_populacao_dados=100):

start_city = random.randint(0, len(pontos_cidade) - 1) # Escolhe a cidade inicial

aleatoriamente

populacao = []

for _ in range(tamanho_populacao_dados): # tamanho_populacao_dados -> Quantidade de

cromossomos

Cera uma lista de cidades excluindo a cidade inicial

other_cities = list(range(len(pontos_cidade)))

other_cities.remove(start_city)

random.shuffle(other_cities) # Embaralha as outras cidades

Cria o cromossomo com a cidade inicial no início e no fim

cromossomo = [start_city] + other_cities + [start_city]

populacao.append(cromossomo)

return populacao

Algoritmo Genético (taxa mutação 1%)

def rotina_algoritimo_genetico(pontos_cidade, tamanho_populacao_dados=100, geracoes=25000,

taxa_mutacao=0.01):

populacao = gerar_populacao(pontos_cidade, tamanho_populacao_dados)

melhor_cromossomo = None

best_fitness = -1

best_distances = []

Quantidades mínimas garantidas por método

qtd_crossover = int(tamanho_populacao_dados * 0.90)

qtd_mutacao = max(int(tamanho_populacao_dados * taxa_mutacao), 1) # mínimo 1

indivíduo

restante = tamanho_populacao_dados - (1 + qtd_crossover + qtd_mutacao) # 1 é para

o elitismo (Sem

uso por conta do loop while)

for gen in range(geracoes):

fitness_values = [fitness(pontos_cidade, chrom) for chrom in populacao]

current_best_fitness = max(fitness_values)

if current best fitness > best fitness:

best_fitness = current_best_fitness

nelhor_cronossono =

populacao[fitness_values.index(current_best_fitness)]

best_distances.append(l / best_fitness)

nova_populacao = [melhor_cromossomo] # Elitisno

Garantir mínimo 90% crossovers

for _ in range(qtd_crossover):

parentl = tournament_selection(populacao, fitness_values)

parent2 = tournament_selection(populacao, fitness_values)

child = crossover_ox(parentl, parent2)

nova_populacao.append(child)

Garantir mínimo 1% mutação direta

for _ in range(qtd_mutacao):

individuo = tournament_selection(populacao, fitness_values)

mutante =mutacao(individuo[:],probabilidade_mutacao=l.0)

forçar mutação-não representa a % da população, e sim a

probabilidade individual daquele cromossomo sofrer mutação

nova_populacao.append(mutante)

Completar restante com crossover + mutação tradicional

while len(nova_populacao) < tamanho_populacao_dados:

parentl = tournament_selection(populacao, fitness_values)

parent2 = tournament_selection(populacao, fitness_values)

child = crossover_ox(parentl, parent2)

child = mutacao(child, taxa_mutacao)

nova_populacao.append(child)

populacao = nova_populacao

Primeiro pior caso/persusso

if gen / 1 == 1:

plot_route(pontos_cidade, melhor_cromossomo, f"Início (pior) percurso

entre {len(pontos_cidade)} cidades (Geração: {gen} - Distância = {1 / best_fitness})")

Log trace distancias

if gen % 100 == 0:

print(f"Geração {gen}: Melhor Distância = {1 / best_fitness}")

return melhor_cromossomo, 1 / best_fitness, best_distances

Função para plotar o percurso

def plot_route(pontos_cidade, cromossomo, title):

Coordenadas das cidades no percurso

x = [pontos_cidade[i][0] for i in cromossomo]

y = [pontos_cidade[i][1] for i in cromossomo]

plt.figure(figsize=(10, 6))

Plotar cidade inicial/final (a primeira cidade, que é igual à última)

plt.scatter(x[0], y[0], color='red', marker='o', s=100, label='I / F 1)

plt.scatter(x[l:-1], y[l:-l], color=1green1)

Traçar percurso

plt.plot(x, y, color=1purple1)

Título e legenda

plt.title(title)

plt.legend()

plt.show()

Execução principal

if nane == " main ":

Gerar cidades

pontos_cidades = gerar_pontos_cidades()

Executar o algoritmo genético principal

best_route,best_distance,best_distances=rotina_algoritimo_genetico(pontos_cidades)

Plotar a evolução da distância

plt.figure(figsize=(10, 6))

plt.plot(best_distances, color=1blue1)

plt.title("Evolução da Melhor Distância")

plt.xlabel("Geração")

plt.ylabel("Distância")

plt.show()

Plotar a melhor solução

plot_route(pontos_cidades,best_route,f"Melhor percurso entre {len(pontos_cidades)}

cidades (Distância = {best_distance})")

2) Compare a representação de dois modelos vetoriais
Texto:
Lenda sobre a Gralha Azul:

A lenda da Gralha-Azul teve origem no estado do Paraná, na região sul do Brasil. Conta-se que uma
gralha recebeu da Mãe Natureza um pinhão para matar sua fome. A ave, que ficou muito feliz e
satisfeita com o alimento, comeu metade do pinhão e enterrou a outra para se alimentar depois, mas
se esqueceu onde havia escondido o restante do fruto.

Algum tempo depois a gralha percebeu que um lindo pinheiro começou a brotar na floresta e decidiu
cuidar dele. Conforme foi crescendo, o pinheiro começou a dar frutos com os quais a ave continuou a
se alimentar para saciar sua fome. Assim como da primeira vez em que recebeu um pinhão da Mãe
Natureza, a gralha comia uma parte do fruto e enterrava o restante, sempre se esquecendo de onde
havia escondido o alimento.

Dessa forma, a gralha plantou uma floresta inteira de araucárias pela região sul. Como recompensa
por sua bela atitude, a Mãe Natureza decidiu modificar a cor do pássaro que antes era pardo,
deixando-o com a coloração azul. Com isso, a Gralha-Azul se tornou uma belíssima ave que se
diferencia de todas as outras da floresta.

sentenças = [
"A lenda da Gralha-Azul teve origem no estado do Paraná, na região sul do Brasil.", #S1
"Conta-se que uma gralha azul recebeu da Mãe Natureza um pinhão para matar sua fome.", #
S2
"A ave, que ficou muito feliz e satisfeita com o alimento, comeu metade do pinhão e
enterrou a outra para se alimentar", # S3
"mas se esqueceu onde havia escondido o restante do fruto", # S4
"Algum tempo depois a gralha percebeu que um lindo pinheiro começou a brotar na floresta e
decidiu cuidar dele", # S5
"Conforme foi crescendo, o pinheiro começou a dar frutos com os quais a ave continuou a se
alimentar para saciar sua fome", # S6

"Assim como da primeira vez em que recebeu um pinhão da Mãe Natureza, a gralha comia uma
parte do fruto e enterrava o restante, sempre se esquecendo de onde havia escondido o
alimento.", # S7
"Como recompensa por sua bela atitude, a Mãe Natureza decidiu modificar a cor do pássaro
que antes era pardo, deixando-o com a coloração azul.", # S8
"Com isso, a Cralha-Azul se tornou uma belissima ave que se diferencia de todas as outras
da floresta." #S9
]

BERT - S im ilaridad e en tre S entenças da Lenda da G ralha-Azul (PCA)

Sentenc ►i»

Sentenc

:a '% Sentença-^*

S e n te n ça -^

Sentenca-Jw
Sentença

Sentenc
S en t^ ic a -7.

- 2 - 1 0 1 2 3 4
Ação da G ralha - 1

WQRD2VEC - S im i la r id a de en tre S e n tenças da Lenda da G ra lha-Azu l (PCA)

r

S en tença

Sem e n c a -%

S e n te n ç a -^
Sen enca -(L

S e n te n ç a -^

S e n te n ç a -^ ,

Se n te n c a -%

. t

0.002

aooo

0 002

•a
3a
a>i/t
c
o
u

-0 004

- 0.002 0 000
A çâo da G ra lha • 1

BEKT - Cluste rizaçãa das Sentenças (K-means + PCA)

SenMnc»-l KCIusers
• 0
• 1

3

e*,tr

*«"•«** » pertença-2

£enieac»a

fS E S S *

^ e n tc n c a 3

^nt«ra*7
 i . i . i .-----------i----

- 2 - 1 0 1 2 3 4

OlOOí

O.OCDfe

WÜRD2VEC - ClusQeflizaçSo das Sentenças (K-means + PCA)

^tntmca < ftCfusterc
• O
• l

2

9rl

^cftenca 3 nca-S

-a ra

-0 .004
^er*ent« 8

—O 0 0 6 -

-0.006 -0004 -0.1 0000 0 002 0 004 0 006

M atriz de Confusào - Similaridade - BERT

Sentenca-2 - 0.74

0 60 0*1 0 62 0 64 0 63 0 70 001

Sentença 7

Sentença 8 - 0.70 0 77

Sentenca-9 O ff l 0 77 0 7?

.¥ .7 71 » ^ J
.. y / / y y y y y

y j s y s / * * *

Matriz de Confusão - Similaridade - WORD2VEC

Sentenca-1 - 1 00 0 86 089 0 85 0.83 0 84

Sentenca-2 086 L00 0.91 0.86 0.90 0 9 0

Sentença 3 - 0 * 9 0.91 LOO 0.90 0.92 D
5entenca-4 • 0 85 0 86 0 90 1.00 0.85 0 87

5entenca-5 - 083 0 9 0 0.92 0.85 1.00 093

Sentenca-6 - 0 84 0 9 0 0 8 7 0 9 3 100

Sentença-7 - 0 90 0 96 0.96 0 95 0.9? 093

5entenca-8 - 0 88 0 92 0 9 3 0 86 092 0 9*

Sentenca-9 - 089 091 0 90 090 0 93

092 0.91

0 95

0 90

0 9 5 0.92 0 92 0.90

0 9 3 093

from sentence_transforners inport SentenceTransformer

from sklearn.deconposition inport PCA

from transformers import AutoModel, AutoTokenizer

Mais preciso para o idioma português

import spacy
from gensim.models import Word2Vec
import m a tp lo tlib .p y p lo t as p l t
import numpy as np
import os
import torch
import s tr in g
from sk lea rn . m e trics . pairw ise import co s in e _ s im ila rity
from sk lea rn . c lu s te r im port KMeans
import seaborn as sns
o s .e n v iro n [1TF_CPP_MIN_LOC_LEVEL1] = '2 '
device = "cuda" i f to rc h . cuda. is _ a v a ila b le () else "cpu"

sentenças = [
"A lenda da Gralha-Azul teve origem no estado do Paraná, na região su l do B ra s i l . " , #S1
"Conta-se que uma gralha azul recebeu da Mãe Natureza um pinhão para matar sua fome.", #
S2
"A ave, que fico u muito f e l iz e s a t is fe ita com o a lim ento, comeu metade do pinhão e
enterrou a outra para se a lim en ta r", # S3
"mas se esqueceu onde havia escondido o restante do f ru to " , # S4
"Algum tempo depois a gralha percebeu que um lin d o p inhe iro começou a b ro ta r na flo re s ta e
decid iu cuidar de le ", # S5
"Conforme fo i crescendo, o p inhe iro começou a dar fru to s com os quais a ave continuou a se
a lim entar para saciar sua fome", # S6
"Assim como da prim eira vez em que recebeu um pinhão da Mãe Natureza, a gralha comia uma
parte do fru to e enterrava o restante , sempre se esquecendo de onde havia escondido o
a lim e n to .", # S7
"Como recompensa por sua bela a titu d e , a Mãe Natureza decid iu m odificar a cor do pássaro
que antes era pardo, deixando-o com a coloração a z u l." , # S8
"Com isso , a Gralha-Azul se tornou uma belíssima ave que se d ife re n c ia de todas as outras
da f lo re s ta ." #S9

]
Dimensão do Embedding 768

model_name = 1neuralm ind/bert-base-portuguese-cased1
tokenizer = AutoTokenizer. from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name). to (dev ice)

Dimensão do Embedding 768

model = SentenceTransformer(1neuralm ind/bert-base-portuguese-cased1, device=device,
loca l_ files_ on ly= T rue)

Dimensão do Embedding 384

model = SentenceTransform er("sentence-transform ers/all-M iniLM -L6-v2", device=device,
loca l_ files_ on ly= T rue)

BERT embedding

def get_embeddings(texts):
inputs= token izer(texts,padding=True,truncation=T rue ,re tu rn_ tensors=1p t 1) . to (dev ice)
w ith to rc h . no_grad():

outputs = m odel(**inputs)
embeddings = outputs.last_hidden_state.m ean(dim =l) # Pooling
re turn embeddings.cpu().numpy()

bert_embeddings = get_embeddings(sentencas)

Gerar embeddings (vetores de 768 dimensões)

embeddings = model.encode(sentencas)

Word2Vec embedding

pipeline de processamento de texto que inclui várias etapas automáticas

Tokenização (dividir o texto em palavras/símbolos)

Tagging (classificar palavras em verbos, substantivos, etc.)

Lemmatização (reduzir palavras à sua forma base)

Reconhecimento de entidades nomeadas (identificar nomes, lugares, etc.)

n lp = spacy. load(" pt_core_news_sm") #nlp = Natural Language Processing

p r in t(ty p e (n lp))

def token ize_w ith_spacy(text):
re turn [to k e n .te x t fo r token in n lp (te x t)]

tokenized_texts = [tokenize_w ith_spacy(t) fo r t in sentenças]

sg - Escolhe o algoritmo Skip-gram (em vez de CBOW).

Skip-gram (sg = l):

Melhor para pequenos datasets ou palavras raras. Prevê palavras vizinhas a partir de uma palavra-

alvo.

CBOW (sg=0):

Melhor para grandes datasets. Prevê uma palavra-alvo a partir do contexto.

w2v_model = Word2Vec(vector_size=300, window=7, min_count=2, workers=4, sg=l, alpha=0.02,
min_alpha=0.0001)
w2v_model.build_vocab(tokenized_texts)
w2v_m odel.tra in(tokenized_texts, to ta l_exam ples= len(tokenized_texts), epochs=50)

print(w2v_m odel.wv["gralha"]) # Exibe o vetor para a palavra 'gralha'

def get_word2vec_vector(text):
words = tokenize_w ith_spacy(text)
vectors = [w2v_model.wv[w] fo r w in words i f w in w2v_model.wv]
re turn np.mean(vectors, axis=0) i f vectors else np.zeros(w2v_model.vector_size)

word2vec_vec = [get_word2vec_vector(sentenca) fo r sentença in sentenças]
print(word2vec_vec

def plot_bert_w2v(tensorvecs, t i t l e) :
pca = PCA(n_components=2)

embeddings_2d = pca. fit_ trans fo rm (tenso rvecs)
p l t . f ig u re (fig s iz e = (1 0 , 8))
p l t . scatter(embeddings_2d[: , 0], embeddings_2d[: , 1], c o lo r= 1p u rp le 1, alpha=0.7)

Adicionar rótulos das sentenças

fo r i , t x t in enumerate(range(len(sentencas))):

p lt.a n n o ta te (f"S e n te n c a -{ i+ l} " , (embeddings_2d[i, 0], embeddings_2d[i, 1]) ,
fontsize=12, h a = 'r ig h t ')

p l t . t i t l e (t i t l e , fontsize=14)
p lt.x la b e l("A çã o da Gralha - 1", fontsize=12)
p l t . ylabel("Conseqüência - 2", fontsize=12)
p l t . g rid (T rue)
p l t . show()

plot_bert_w2v(bert_embeddings, "BERT - S im ilaridade entre Sentenças da Lenda da
Cralha-Azul (PCA)")
plot_bert_w2v(word2vec_vec, "W0RD2VEC - S im ilaridade entre Sentenças da Lenda da Gralha-
Azul (PCA)")

Matriz de similaridade entre todas as sentenças

BERT

s im ila r ity _ m a tr ix = cosine_sim ilarity(bert_em beddings)
E x ib ir os pares mais s im ila res
fo r i in ra n g e (le n (s im ila r ity _ m a tr ix)):
fo r j in ra n g e (i+ l, le n (s im ila r ity _ m a tr ix)):
p r in t(f"S e n te n c a -{ i+ l} < ::> S en tenca -{j+ l}: { s im i la r i ty _ m a tr ix [i] [j] : . 2 f } ")

K-Means - BERT e Word2Vec

def plot_kmeans_bert_w2v(tensorvecs, t i t l e) :
pca = PCA(n_components=2)
embeddings_2d = pca. fit_ trans fo rm (tenso rvecs)

Definir número de clusters (ajuste conforme necessidade)

n_clusters = 3

kmeans = KMeans(n_clusters=n_clusters, random_state=42)
c lu s te rs = kmeans. fit_ p re d ic t(te n so rve cs)

Adicionar rótulos ao gráfico PCA

p l t . f ig u re (fig s iz e = (1 0 , 8))

s c a tte r= p lt . scatter(embeddings_2d[: , 0] ,embeddings_2d[: , 1] ,c=clusters,cm ap=1v i r i d i s 1,alpha=
0.7)

for i, txt in enumerate(range(len(sentencas))):

p lt.a n n o ta te (f"S e n te n c a -{ i+ l} " , (embeddings_2d[i, 0], embeddings_2d[i, 1]) ,
fontsize=10)

p l t . le g e n d (*sca tte r. legend_elements(), t it le = "K -C lu s te rs ")
p l t . t i t l e (t i t l e)
p l t . show()

plot_kmeans_bert_w2v(bert_embeddings,"BERT-Clusterização das Sentenças (K-means + PCA)")
plot_kmeans_bert_w2v(word2vec_vec,"W0RD2VEC-Clusterização das Sentenças (K-means + PCA)")

Gerar matriz de confusão

def plot_heatm ap_sim ilarity(em b_vector, t i t l e) :
s im ila r ity _ m a tr ix = cosine_sim ilarity(em b_vector)

Plotar heatmap

p l t . f ig u re (fig s iz e = (1 0 , 8))

heatmap = sns. heatm ap(s im ila rity_m atrix ,
annot=True, fm t= ".2 f" ,
cm ap= "tw iligh t_sh ifted ",
x tic k la b e ls = [f"S e n te n c a -{ i+ l}" fo r i in range(len (sen tencas))],
y tick labe ls= [f"S en tenca-{1+1}" fo r i in range(len(sentencas))]

)

heatm ap.set_xticklabels(
heatmap. g e t_ x tic k la b e ls () ,
ro ta tion=45,
ha=1r ig h t1,
fontsize=10

)
p l t . t i t l e (t i t l e)

p l t . t ig h t_ la y o u t()
p l t . show()

plot_heatmap_sim ilarity(bert_embeddings, "M atriz de Confusão - S im ilaridade - BERT")
plot_heatmap_sim ilarity(word2vec_vec, "M atriz de Confusão - S im ilaridade - W0RD2VEC")

