

UNIVERSIDADE FEDERAL DO PARANÁ

DANILO DANTAS SONCINI

MEMORIAL DE PROJETOS: DO PLANEJAMENTO À EXECUÇÃO ÁGIL

CURITIBA

2025

DANILO DANTAS SONCINI

MEMORIAL DE PROJETOS: DO PLANEJAMENTO À EXECUÇÃO ÁGIL

Trabalho de Conclusão de Curso apresentado ao
curso de Pós-Graduação em Desenvolvimento Ágil
de Software, Setor de Educação Profissional e
Tecnológica, Universidade Federal do Paraná,
como requisito parcial à obtenção do título de
Especialista em Desenvolvimento Ágil de
Software.

Orientador: Prof. Dr. Jaime Wojciechowski

CURITIBA

2025

MINISTÉRIO DA EDUCAÇÃO
SETOR DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PÓS-GRADUAÇÃO
CURSO DE PÓS-GRADUAÇÃO DESENVOLVIMENTO ÁGIL
DE SOFTWARE - 40001016398E1

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação Desenvolvimento Ágil de Software

da Universidade Federal do Paraná foram convocados para realizar a arguição da Monografia de Especialização de DANILO

DANTAS SONCINI, intitulada: MEMORIAL DE PROJETOS: DO PLANEJAMENTO À EXECUÇÃO ÁGIL, que após terem inquirido

o aluno e realizada a avaliação do trabalho, são de parecer pela sua ______________ no rito de defesa.

A outorga do título de especialista está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

Curitiba, 20 de Outubro de 2025.

JAIME WOJCIECHOWSKI

Presidente da Banca Examinadora

RAFAELA MANTOVANI FONTANA

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Rua Doutor Alcides Vieira Arco-verde - Curitiba - Paraná - Brasil
CEP 81520-260 - Tel: (41) 98874-0472 - E-mail: jaimewo@ufpr.br

MMMANTAAANTAANTANTANTANTANTANTANTNANTANTANTTNTANTTANNTNTNTTTNTTAANTANTANTANNNTTANTANTTANTANANTANTANTANNNNNNNNNANTANTTANTANTTAAANTANANNTANTNANTNANTNTNNTANTAAANNTNNNNTTTANTANTANTNNANTNTNTTAAAANTNANTTTTANNNTAAAAANNTANTTTTAAAAAAANTAAAANNNNNNNTTAAANTNNTNNTNNNNTTNNTTTTTANTTAAAAAANNNNTTTTTA TTTTTTTTTTA TAA OVAVOOOOOOOOOOOVOOOOOOOOOOOVOVOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOVVOOOOOOVV N

aprovação

RESUMO

A pós-graduação em Desenvolvimento Ágil de Software proporcionou uma

formação sólida sobre metodologias ágeis, boas práticas de programação e

processos modernos de desenvolvimento. As disciplinas de Métodos Ágeis e

Gerenciamento Ágil de Projetos apresentaram frameworks como Scrum e Kanban,

destacando a importância da flexibilidade e colaboração. As disciplinas de

Modelagem Ágil e Aspectos Ágeis da Programação reforçaram conceitos de

documentação, organização e qualidade de código, incluindo práticas como

Test-Driven Development. Os fundamentos de Introdução à Programação e Banco

de Dados foram essenciais para a construção de aplicações robustas. As disciplinas

Web e Mobile aprofundaram conhecimentos em desenvolvimento, alinhados às

diretrizes da aplicação de UX no Desenvolvimento Ágil. A disciplina DevOps abordou

automação e entrega contínua, enquanto Testes Automatizados enfatizou a

importância da validação constante do software. O curso permitiu uma visão

abrangente e integrada do desenvolvimento ágil, preparando para a criação de

soluções eficientes e alinhadas às demandas do mercado.

Palavras-chave: Scrum; modelagem; desenvolvimento; devops; testes.

ABSTRACT

The postgraduate program in Agile Software Development provided a solid

foundation in agile methodologies, programming best practices, and modern

development processes. The courses in Agile Methods and Agile Project

Management introduced frameworks such as Scrum and Kanban, emphasizing the

importance of flexibility and collaboration. The subjects Agile Modeling and Agile

Aspects of Programming reinforced concepts related to documentation, code

organization, and quality, including practices such as Test-Driven Development The

fundamentals of Introduction to Programming and Databases were essential for

building robust applications. Meanwhile, the Web and Mobile courses deepened

knowledge in development, aligned with UX application guidelines in Agile

Development. The DevOps course covered automation and continuous delivery,

while Automated Testing emphasized the importance of constant software validation .

Overall, the program offered a comprehensive and integrated view of agile

development, preparing students to create efficient solutions aligned with market

demands.

Keywords: Scrum; modeling; development; devops; testing.

SUMÁRIO

1 PARECER TÉCNICO.. 7
2 DISCIPLINA: MADS – MÉTODOS ÁGEIS PARA DESENVOLVIMENTO DE
SOFTWARE... 9
3 DISCIPLINA: MAG1 E MAG2 – MODELAGEM ÁGIL DE SOFTWARE 1 E 2.......16
4 DISCIPLINA: GAP1 E GAP2 – GERENCIAMENTO ÁGIL DE PROJETOS DE
SOFTWARE 1 E 2..21
5 DISCIPLINA: INTRO – INTRODUÇÃO À PROGRAMAÇÃO................................ 24
6 DISCIPLINA: BD – BANCO DE DADOS..26
7 DISCIPLINA: AAP – ASPECTOS ÁGEIS DE PROGRAMAÇÃO.......................... 30
8 DISCIPLINA: WEB1 E WEB2 – DESENVOLVIMENTO WEB 1 E 2...................... 34
9 DISCIPLINA: UX – UX NO DESENVOLVIMENTO ÁGIL DE SOFTWARE............35
10 DISCIPLINA: MOB1 E MOB2 – DESENVOLVIMENTO MOBILE 1 E 2.............. 40
11 DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E
IMPLANTAÇÃO DE SOFTWARE (DEVOPS)... 41
12 DISCIPLINA: TEST – TESTES AUTOMATIZADOS.. 43
13 CONCLUSÃO... 45
REFERÊNCIAS..46

7

1 PARECER TÉCNICO

 O desenvolvimento de software moderno exige abordagens que garantam

agilidade, flexibilidade e qualidade nas entregas. Nesse contexto, as metodologias

ágeis se consolidaram como a base para a gestão de projetos, promovendo ciclos

iterativos, colaboração entre equipes e adaptação às mudanças de escopo (Rigby,

2020), (Beck, 2004). O presente memorial documenta a trajetória acadêmica dentro

da pós-graduação em Desenvolvimento Ágil de Software, evidenciando a conexão

entre as disciplinas estudadas e os trabalhos desenvolvidos, desde a fase de

planejamento até a execução prática de projetos.

 Ao longo do curso, foram explorados diferentes aspectos do desenvolvimento

ágil. Disciplinas como Métodos Ágeis para Desenvolvimento de Software e

Gerenciamento Ágil de Projetos forneceram os alicerces teóricos para a adoção de

frameworks como Scrum e Kanban, destacando a importância da organização e do

monitoramento contínuo dos processos (Schwaber; Sutherland, 2020), (Anderson,

2010). Foram abordadas práticas fundamentais como definição de papéis e

responsabilidades dentro das equipes, acompanhamento de backlog, refinamento de

requisitos e métricas ágeis para mensuração de progresso. A partir desses

conceitos, foi possível estruturar projetos práticos, aplicando ferramentas e artefatos

ágeis para melhorar a gestão e a execução das tarefas.

 A modelagem desempenhou um papel essencial na estruturação dos

sistemas, abordada nas disciplinas de Modelagem Ágil de Software e Banco de

Dados. O aprendizado sobre UML incluiu a construção de diagramas de casos de

uso, diagramas de classes e diagramas de sequência, proporcionando uma

representação visual detalhada do funcionamento das aplicações. Essa base se

conecta diretamente ao desenvolvimento de sistemas, possibilitando a

implementação de soluções robustas e alinhadas às necessidades dos usuários.

 O aspecto técnico do curso foi fortalecido com disciplinas como Aspectos

Ágeis de Programação, Desenvolvimento Web e Desenvolvimento Mobile, onde

foram aplicados princípios de código limpo, reutilização de componentes e padrões

arquiteturais. Em Aspectos Ágeis de Programação, foram trabalhados conceitos

como Clean Code, Refatoração, TDD (Test-Driven Development) e BDD

(Behavior-Driven Development), garantindo a criação de códigos mais organizados e

8

fáceis de manter (Beck, 2002), (Martin, 2009). No Desenvolvimento Web, foi

aprofundado o uso do framework Angular e da linguagem TypeScript, com foco na

construção de Single Page Applications (SPA), formulários dinâmicos e integração

com APIs. Já em Desenvolvimento Mobile, o curso abordou o uso do Android Studio,

a estruturação de interfaces com Views, manipulação de listas com RecyclerView e

desafios da programação assíncrona no ambiente mobile.

 A disciplina de UX (User Experience) no Desenvolvimento Ágil proporcionou

uma abordagem centrada no usuário, garantindo que os produtos desenvolvidos

fossem intuitivos, acessíveis e eficientes. Foram explorados conceitos como criação

de personas, mapeamento da jornada do usuário, acessibilidade, responsividade e

consistência na interface, reforçando a importância de um design bem estruturado

para melhorar a experiência do usuário final (Gothelf; Seiden, 2013).

 Por fim, as disciplinas de DevOps e Testes Automatizados agregaram a

dimensão da automação e da qualidade ao ciclo de desenvolvimento. Em DevOps,

foram estudadas práticas como versionamento de código com Git e GitHub,

conteinerização com Docker, pipelines de integração e entrega contínua (CI/CD)

(Humble; Farley, 2011). Já em Testes Automatizados, o foco esteve na

implementação de testes unitários e na automação de testes End-to-End, garantindo

maior confiabilidade e eficiência nos processos de desenvolvimento.

 O presente memorial busca conectar cada uma dessas disciplinas e seus

respectivos trabalhos, demonstrando como a aplicação integrada dos conceitos

estudados contribuiu para a construção de soluções ágeis e eficazes. Dessa forma,

a experiência acadêmica se consolidou como um processo iterativo de aprendizado

e aprimoramento, refletindo a essência do desenvolvimento ágil de software.

9

2 DISCIPLINA: MADS – MÉTODOS ÁGEIS PARA DESENVOLVIMENTO DE
SOFTWARE

 A disciplina de Métodos Ágeis para Desenvolvimento de Software funciona

como o alicerce do curso, servindo como base para a aplicação dos princípios ágeis

em todas as demais áreas do desenvolvimento de software. Ao ensinar como adotar

metodologias como Scrum, Kanban e Extreme Programming (Beck, 2004), a

disciplina proporciona um entendimento fundamental sobre práticas iterativas,

colaboração e entrega contínua de valor ao usuário, comparando com os métodos

clássicos de desenvolvimento de software, como o modelo em cascata que

priorizam um planejamento detalhado e fases sequenciais de execução, os métodos

ágeis propõem uma abordagem mais adaptativa e colaborativa.

 O modelo tradicional busca a previsibilidade e o controle por meio de

documentação e etapas rigidamente definidas, os métodos ágeis enfatizam a

flexibilidade, a comunicação contínua e a capacidade de responder rapidamente às

mudanças. De acordo com Pressman e Maxim (2021), compreender essas

diferenças permite ao desenvolvedor escolher a metodologia mais adequada ao

contexto do projeto, equilibrando planejamento e agilidade conforme as

necessidades do produto e da equipe.

 A construção de um mapa mental diferenciando cada um dos métodos ágeis

e suas aplicações no desenvolvimento de software se torna um recurso valioso para

consolidar o aprendizado e guiar a aplicação prática dessas metodologias. Esse

material auxilia na visualização clara das conexões entre os frameworks ágeis e

suas influências no Desenvolvimento Ágil de Software.

2.1 ARTEFATOS DO PROJETO

10

FIGURA 1 - MAPA MENTAL PROCESSO DE SOFTWARE

FONTE: O autor (2025)

FIGURA 2 - MAPA MENTAL ENTREGA CONTÍNUA

FONTE: O autor (2025)

11

FIGURA 3 - MAPA MENTAL ENGENHARIA DE SOFTWARE

FONTE: O autor (2025)

12

FIGURA 4 - MAPA MENTAL EXTREME PROGRAMING

FONTE: O autor (2025)

13

FIGURA 5 - MAPA MENTAL LEAN

FONTE: O autor (2025)

14

FIGURA 6 - MAPA MENTAL MODELOS TRADICIONAIS

FONTE: O autor (2025)

15

FIGURA 7 - MAPA MENTAL MANIFESTO ÁGIL

FONTE: O autor (2025)

16

3 DISCIPLINA: MAG1 E MAG2 – MODELAGEM ÁGIL DE SOFTWARE 1 E 2

A disciplina de Modelagem Ágil de Software tem como foco a utilização de

técnicas de modelagem para estruturar sistemas de forma clara e eficiente dentro do

contexto ágil (Ambler, 2002). Através da UML (Unified Modeling Language) , são

abordadas as principais ferramentas para representação dos requisitos e do

comportamento do sistema, garantindo uma visão compartilhada entre os membros

da equipe de desenvolvimento. A partir do diagrama de casos de uso, são definidas

as histórias de usuário, que descrevem de forma detalhada as interações dos

usuários com o sistema, auxiliando na construção de funcionalidades alinhadas às

necessidades do projeto.

 O primeiro grande desafio da disciplina foi a modelagem de um

sistema de gestão de condomínios, onde aplicamos os conceitos estudados para

estruturar os principais requisitos e interações do software.

 Com essa base estabelecida, a disciplina avançou para o

aprofundamento na modelagem estrutural e comportamental do sistema. O estudo

de objetos e classes possibilitou a criação do diagrama de classes, representando a

estrutura do sistema e os relacionamentos entre seus elementos. O diagrama de

sequência trouxe uma visão detalhada do fluxo de mensagens entre os

componentes, demonstrando a interação entre os objetos ao longo da execução dos

casos de uso. Além disso, foram explorados outros diagramas complementares da

UML, como o diagrama de atividades, que representa fluxos de processos dentro do

sistema, e diagramas suplementares que ajudam a refinar a modelagem e a

documentação do projeto.

 Na etapa final, os diagramas elaborados no primeiro trabalho foram

expandidos e refinados, incorporando novas representações para aprimorar a

modelagem do sistema. Esse processo consolidou a importância da modelagem

como um suporte essencial ao desenvolvimento ágil, permitindo uma abordagem

iterativa e adaptável ao longo do ciclo de vida do projeto.

17

3.1 ARTEFATOS DO PROJETO

FIGURA 11 - DIAGRAMA DE CASO DE USO NÍVEL 1

FONTE: O autor (2025)

FIGURA 12 - DIAGRAMA DE CASO DE USO NÍVEL 2

FONTE: O autor (2025)

18

FIGURA 13 - DIAGRAMA DE CLASSES

FONTE: O autor (2025)

19

FIGURA 14 - DIAGRAMA DE SEQUÊNCIA

FONTE: O autor (2025)

20

FIGURA 15 - EXEMPLO DE CENÁRIOS DE TESTE

FONTE: O autor (2025)

21

4 DISCIPLINA: GAP1 E GAP2 – GERENCIAMENTO ÁGIL DE PROJETOS DE
SOFTWARE 1 E 2

A disciplina de Gerenciamento Ágil de Projetos de Software aprofunda a

aplicação dos princípios ágeis na condução de projetos de desenvolvimento,

explorando desde os conceitos fundamentais até práticas avançadas de

planejamento, execução e monitoramento. Ao introduzir abordagens como Scrum e

Kanban, a disciplina proporciona um entendimento essencial sobre organização do

fluxo de trabalho, métricas de desempenho e estratégias para garantir entregas

contínuas e alinhadas às necessidades do usuário.

 Na primeira etapa, o foco está na concepção e planejamento ágil de projetos,

trazendo reflexões sobre a diferença entre métodos tradicionais e ágeis e

demonstrando como a mentalidade iterativa impacta positivamente o

desenvolvimento de software. O aprofundamento no Scrum permite compreender

sua estrutura, incluindo papéis, eventos e artefatos, possibilitando a construção de

um plano de release realista e eficiente Esse exercício prático se torna um elemento

fundamental para consolidar o aprendizado, conectando a teoria à aplicação real.

 Já na segunda etapa, a disciplina se volta para a gestão do fluxo de trabalho

e acompanhamento do progresso, abordando conceitos do PMBOK e a importância

da gestão visual na organização das demandas. O estudo do Kanban possibilita a

compreensão das dinâmicas de fluxo contínuo e da limitação do trabalho em

progresso (WIP), enquanto o aprofundamento em métricas ágeis permite uma

análise quantitativa do desempenho da equipe. A execução de um ciclo de 35 dias

no Kanban Board Game representa um experimento para testar na prática a

eficiência do fluxo de trabalho e avaliar oportunidades de melhoria no processo de

desenvolvimento.

 A estrutura da disciplina permite uma visão clara sobre como as metodologias

ágeis influenciam a gestão de projetos de software, reforçando a importância do

planejamento estratégico, do acompanhamento baseado em dados e da adaptação

contínua. Ao integrar teoria e prática, a disciplina capacita os alunos a

desenvolverem projetos de forma mais ágil, eficiente e alinhada às exigências do

mercado.

22

4.1 ARTEFATOS DO PROJETO

FIGURA 8 - PLANO DE RELEASE: SISTEMA DE SUPORTE A TIMES ÁGEIS

FONTE: O autor (2025)

23

FIGURA 9 - PLANO DE RELEASE: SISTEMA DE SUPORTE A TIMES ÁGEIS

FONTE: O autor (2025)

FIGURA 10 - DIAGRAMA DE CUMULATIVE FLOW

FONTE: O autor (2025)

24

5 DISCIPLINA: INTRO – INTRODUÇÃO À PROGRAMAÇÃO

A disciplina de Introdução à Programação teve como objetivo apresentar os

fundamentos da programação utilizando a linguagem Java, proporcionando uma

base para o desenvolvimento de software. Ao longo da disciplina, foram explorados

os princípios essenciais da lógica de programação e os primeiros conceitos de

estruturação de código, permitindo a construção de programas.

 Um dos momentos mais importantes da disciplina foi a introdução à

Programação Orientada a Objetos (POO), um paradigma essencial no

desenvolvimento moderno de software (Deitel; Deitel, 2016). Foram explorados

conceitos como classes, objetos, encapsulamento, herança e polimorfismo,

permitindo estruturar programas de maneira modular e reutilizável. Essa abordagem

possibilitou a criação de sistemas mais organizados e escaláveis, preparando o

caminho para o aprofundamento em técnicas mais avançadas de desenvolvimento.

 Com essa base consolidada, tivemos o desafio de aplicar os conhecimentos

adquiridos no sistema onde os testes estavam sendo criados e a aplicação

precisava ser escrita, conversando muito bem com os aprendizados de Aspectos

Ágeis

5.1 ARTEFATOS DO PROJETO

25

FIGURA 21 - TESTES DE UNIDADE APROVADOS

FONTE: O autor (2025)

26

6 DISCIPLINA: BD – BANCO DE DADOS

A disciplina de Banco de Dados teve como objetivo apresentar os

fundamentos essenciais para o armazenamento e a manipulação eficiente de dados,

proporcionando uma base sólida para o desenvolvimento de sistemas robustos e

confiáveis. Foram abordados os princípios de banco de dados, explorando conceitos

como estruturação, organização e recuperação de informações

 O foco da foi dado em Banco de dados relacionais trabalhando com

modelagem de dados, onde foram estudados os conceitos de modelos conceituais,

lógicos e físicos, além da normalização para garantir a integridade e a eficiência das

tabelas. A partir desse conhecimento, pudemos projetar bancos de dados

estruturados de forma otimizada, reduzindo redundâncias e garantindo um melhor

desempenho no armazenamento e na consulta das informações.

 Além da modelagem, a disciplina aprofundou o estudo da linguagem SQL,

explorando os comandos essenciais para a criação (DDL) e manipulação de bancos

de dados (DML). Foram abordadas operações como inserção, atualização, exclusão

e consulta de dados, além de conceitos mais avançados, como joins, funções

agregadas e subconsultas, permitindo a extração eficiente de informações e a

interação dinâmica com os dados armazenados.

 Como atividade prática, os alunos desenvolveram a modelagem de dois

projetos de banco de dados. O primeiro foi um sistema de controle de biblioteca,

onde foram definidos os relacionamentos entre livros, usuários e empréstimos,

garantindo uma estrutura eficiente para o gerenciamento das operações da

biblioteca. O segundo projeto foi de escolha livre, e a opção selecionada foi um

sistema de controle de vacinação, onde foram modeladas tabelas para armazenar

informações sobre pacientes, vacinas aplicadas, datas de imunização e unidades de

saúde. Esses projetos permitiram a aplicação direta dos conceitos estudados,

reforçando a importância da modelagem e da linguagem SQL na construção de

bancos de dados bem estruturados e funcionais.

6.1 ARTEFATOS DO PROJETO

27

FIGURA 22 - MODELO RELACIONAL - VACINA

FONTE: O autor (2025)

28

FIGURA 23 - MODELO ENTIDADE RELACIONAMENTO - BIBLIOTECA

FONTE: O autor (2025)

29

FIGURA 24 - MODELO RELACIONAL - BIBLIOTECA

FONTE: O autor (2025)

30

7 DISCIPLINA: AAP – ASPECTOS ÁGEIS DE PROGRAMAÇÃO

A disciplina de Aspectos Ágeis de Programação tem como objetivo

aprimorar a qualidade do código e a eficiência do desenvolvimento de software por

meio de boas práticas ágeis. Conceitos como Clean Code, Pair Programming,

Refatoração, TDD, BDD e Clean Architecture foram explorados para garantir que o

código produzido seja mais legível, sustentável e fácil de manter (Martin, 2009). A

ênfase na escrita de código limpo permitiu entender a importância de nomes

descritivos, estrutura organizada e redução de complexidade desnecessária,

promovendo um desenvolvimento mais ágil e eficiente.

 Ao longo da disciplina, a prática de Pair Programming foi introduzida como

uma técnica colaborativa, reforçando a troca de conhecimento entre

desenvolvedores e melhorando a qualidade do código desde as primeiras etapas

(Martin, 2011). O conceito de Refatoração se mostrou essencial para aprimorar

trechos de código sem alterar seu comportamento, tornando-os mais simples e

eficientes (Fowler, 2020).

 Como atividade prática, foi realizada a refatoração de uma função de

ordenação, aplicando os conceitos de Clean Code para melhorar sua organização,

clareza e eficiência. Esse exercício possibilitou a aplicação direta dos

conhecimentos adquiridos, demonstrando como pequenas mudanças na estrutura

do código podem torná-lo mais compreensível e fácil de manter. Com isso, a

disciplina reforçou a importância de práticas ágeis no dia a dia do desenvolvimento

de software, garantindo código de alta qualidade e alinhado aos princípios da

engenharia de software moderna.

7.1 ARTEFATOS DO PROJETO

31

FIGURA 16 - CÓDIGO INICIAL

FONTE: O autor (2025)

32

FIGURA 17 - CÓDIGO FINAL

FONTE: O autor (2025)

33

FIGURA 19 - SEQUÊNCIA DE COMMITS UTILIZADOS NA REFATORAÇÃO

FONTE: O autor (2025)

FIGURA 20 - SEQUÊNCIA DE COMMITS UTILIZADOS NA REFATORAÇÃO

FONTE: O autor (2025)

34

8 DISCIPLINA: WEB1 E WEB2 – DESENVOLVIMENTO WEB 1 E 2

A disciplina de Desenvolvimento Web teve como foco a construção de

aplicações modernas utilizando o framework Angular e a linguagem TypeScript,

explorando os principais conceitos e práticas para o desenvolvimento de sistemas

dinâmicos e interativos. Desde os primeiros momentos, foi introduzido o conceito de

Single Page Application (SPA), uma abordagem que permite que a aplicação

funcione de forma mais fluida e responsiva, carregando apenas os dados

necessários sem a necessidade de recarregar toda a página. Essa arquitetura

melhora a experiência do usuário e otimiza o desempenho das aplicações web.

 Foram explorados conceitos como componentes, diretivas, serviços e

roteamento, demonstrando como a modularização do código e a reutilização de

componentes auxiliam no desenvolvimento ágil. O TypeScript, por sua vez, trouxe

tipagem estática e recursos avançados que melhoram a qualidade do código,

tornando-o mais seguro e fácil de manter.

 Um dos temas aprofundados foi a implementação de formulários e

validações, garantindo que os dados inseridos pelos usuários estivessem corretos e

em conformidade com as regras de validações personalizadas para melhorar a

usabilidade e evitar erros de entrada. Esse aprendizado mostrou como os

frameworks web contribuem para o desenvolvimento ágil, facilitando a criação de

interfaces robustas e interativas de forma eficiente.

 A disciplina abordou a construção de um backend utilizando Java, permitindo

a integração entre o frontend desenvolvido no Angular e um servidor que gerencia

os dados e as regras de negócio. Foram explorados conceitos como APIs REST,

consumo de endpoints e comunicação entre frontend e backend, garantindo que os

alunos tivessem uma visão completa do desenvolvimento full-stack.

35

9 DISCIPLINA: UX – UX NO DESENVOLVIMENTO ÁGIL DE SOFTWARE

A disciplina de UX User Experience agregou um novo olhar ao

desenvolvimento de software, trazendo a importância de colocar o usuário no centro

do processo de criação. Ao longo da disciplina, foi reforçado que um sistema bem

projetado não se trata apenas de funcionalidade, mas também de como ele se

encaixa na realidade e nos desafios do usuário. Para isso, foram aplicadas técnicas

como a criação de personas e o mapeamento da jornada do usuário, permitindo uma

compreensão mais profunda das necessidades, dores e expectativas de quem irá

utilizar a aplicação.

 Outro ponto central foi a busca por feedbacks rápidos, uma prática essencial

para validar as decisões de design e garantir que o sistema evolua de forma

alinhada às necessidades reais dos usuários. Além disso, a consistência na

interface, na navegação e no uso foi enfatizada como um fator essencial para criar

experiências intuitivas e eficientes. O aprendizado reforçou que manter padrões

visuais e interativos melhora significativamente a usabilidade e reduz a curva de

aprendizado dos usuários.

 A responsividade e adaptabilidade também foram temas recorrentes,

garantindo que as interfaces sejam acessíveis e funcionais em diferentes

dispositivos e tamanhos de tela. A disciplina destacou que, em um cenário onde o

acesso móvel é predominante, projetar para diferentes contextos de uso é uma

necessidade fundamental.

 Os conceitos de design foram explorados, abordando o uso estratégico de

cores, tipografia e acessibilidade, tornando as interfaces mais agradáveis e

inclusivas. Foi enfatizada a importância de projetar sistemas que não apenas sejam

visualmente atraentes, mas que também ofereçam uma experiência fluida para

todos os usuários, incluindo aqueles com limitações visuais ou motoras.

 No trabalho da disciplina pudemos trabalhar alguns conceitos de design e

prototipação e trabalhar na necessidade do usuário.

36

9.1 ARTEFATOS DO PROJETO

FIGURA 25 - TELA DE LOGIN

FONTE: O autor (2025)

FIGURA 26 - FLUXO CADASTRO DO DOCUMENTO

FONTE: O autor (2025)

37

FIGURA 27 - FORMULÁRIO DE CADASTRO DE ASSINANTE

FONTE: O autor (2025)

FIGURA 28- ESCOLHA DE COMO A ASSINATURA SER FINALIZADA

FONTE: O autor (2025)

FIGURA 29 - FORMULÁRIO MENSAGEM PARA SOLICITAÇÃO DA ASSINATURA

FONTE: O autor (2025)

38

FIGURA 30 - CONFIRMAÇÃO DE ENVIOS

FONTE: O autor (2025)

FIGURA 31 - ENVIO DE TOKEN PARA CONFIRMAÇÃO

FONTE: O autor (2025)

39

FIGURA 32 - PREENCHIMENTO DO TOKEN

FONTE: O autor (2025)

FIGURA 33 - CONFIRMAÇÃO DA ASSINATURA

FONTE: O autor (2025)

40

10 DISCIPLINA: MOB1 E MOB2 – DESENVOLVIMENTO MOBILE 1 E 2

A disciplina de Desenvolvimento Mobile teve como objetivo explorar o

ecossistema do mercado mobile e capacitar os alunos para o desenvolvimento de

aplicativos Android utilizando o Android Studio. O curso iniciou com uma visão geral

do setor, apresentando as tendências e desafios do desenvolvimento para

dispositivos móveis, destacando a importância da experiência do usuário e da

performance das aplicações nesse ambiente altamente dinâmico.

 O aprendizado seguiu com um aprofundamento nos conceitos fundamentais

do Android, com foco na construção da interface por meio das Views e no

funcionamento do empilhamento de Views dentro da estrutura do sistema. Através

de aulas práticas, foram exploradas técnicas essenciais para a criação de interfaces

responsivas e interativas, permitindo um melhor entendimento sobre a navegação

entre telas e a organização dos elementos visuais em uma aplicação mobile.

 Com o avanço da disciplina, os estudos se concentraram no reuso de Views

utilizando RecyclerView, uma ferramenta essencial para lidar com listas de grande

volume de dados de forma eficiente. Além disso, a disciplina abordou a integração

com bancos de dados locais e remotos, bem como a comunicação com APIs,

permitindo que os aplicativos pudessem consumir e armazenar dados de maneira

estruturada. Um dos grandes desafios enfrentados foi a programação assíncrona no

ambiente Android, uma necessidade fundamental para garantir uma experiência

fluida ao usuário, evitando travamentos e melhorando o desempenho da aplicação.

 A experiência da disciplina proporcionou uma continuidade natural ao

conhecimento adquirido ao longo do curso, mas agora aplicado ao desenvolvimento

mobile. A transição dos conceitos já estudados para o contexto de aplicativos

Android reforçou a importância de práticas ágeis, do reuso de código e da

otimização do desempenho, preparando os alunos para enfrentar os desafios do

desenvolvimento de aplicações para dispositivos móveis.

41

11 DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E
IMPLANTAÇÃO DE SOFTWARE (DEVOPS)

A disciplina de DevOps apresentou uma visão abrangente do ciclo de vida

do desenvolvimento de software, destacando a importância da integração entre

desenvolvimento e operações para entregar software de forma mais eficiente e

confiável. O conceito de DevOps foi introduzido como um conjunto de práticas que

busca automatizar e aprimorar os processos de desenvolvimento, teste e entrega

contínua, garantindo maior agilidade e qualidade nos projetos.

Um dos primeiros temas abordados foi a gestão de versionamento com Git e

GitHub, enfatizando seu papel essencial na colaboração entre equipes,

rastreamento de mudanças e controle do código-fonte. Em seguida, exploramos a

importância das métricas, que permitem monitorar o desempenho dos processos e

tomar decisões mais embasadas para otimizar o fluxo de desenvolvimento.

Outro ponto-chave da disciplina foi a conteinerização com Docker, que

possibilita criar ambientes isolados e padronizados, facilitando a replicação e a

portabilidade das aplicações. Também foram abordados conceitos fundamentais

sobre pipelines de CI/CD Continuous Integration/Continuous Deployment,

demonstrando como automatizar a construção, os testes e a entrega de software.

Além disso, tivemos um primeiro contato com Kubernetes, um orquestrador de

containers que permite escalar e gerenciar aplicações distribuídas de forma

eficiente. O tema da observabilidade também foi explorado, reforçando a

necessidade de monitoramento contínuo para identificar falhas rapidamente e

garantir a estabilidade dos sistemas.

A disciplina foi dinâmica e focada em apresentar as bases de cada conceito,

oferecendo aos alunos a oportunidade de aprofundamento nos temas de maior

interesse. O trabalho prático teve como foco o uso do Docker e Git, permitindo

aplicar os conhecimentos adquiridos na prática e compreender melhor os benefícios

dessas ferramentas dentro do fluxo DevOps. Com isso, a disciplina proporcionou

uma base sólida para entender os desafios e as soluções modernas na automação e

entrega contínua de software.

42

11.1 ARTEFATOS DO PROJETO

FIGURA 34 - PRINT DA CRIAÇÃO DO DOCKER

FONTE: O autor (2025)

43

12 DISCIPLINA: TEST – TESTES AUTOMATIZADOS

A disciplina de Testes de Software foi objetiva e direta, oferecendo uma

visão clara sobre a importância dos testes no desenvolvimento de software e os

diferentes níveis de testes que garantem a qualidade e a confiabilidade das

aplicações. Desde o início, foi enfatizado que testar não é apenas uma etapa

adicional do processo, mas sim uma prática essencial para evitar falhas e garantir

que o código esteja sempre funcionando conforme o esperado.

 O foco principal da disciplina esteve nos testes unitários dentro do

ecossistema Java, explorando como estruturar códigos testáveis e reforçando a

conexão com os conceitos abordados na disciplina de Aspectos Ágeis de

Programação, como TDD (Test-Driven Development). Durante as aulas práticas, os

alunos aprenderam a criar e executar testes unitários de forma eficiente, garantindo

que cada componente do software fosse validado de maneira isolada, facilitando a

manutenção e a evolução do sistema.

 Além dos testes unitários, a disciplina também abordou a importância

de testes mais abrangentes, culminando na prática de testes End-to-End (E2E)

utilizando a ferramenta Playwright. Essa abordagem permitiu validar o

funcionamento completo da aplicação, simulando a interação real do usuário e

garantindo que todos os componentes trabalhassem corretamente juntos.

 O trabalho final da disciplina consistiu na implementação de um teste

utilizando o Playwright, consolidando os conceitos aprendidos e permitindo que os

alunos experimentassem na prática os desafios e benefícios da automação de

testes. Dessa forma, a disciplina proporcionou uma base essencial para a aplicação

de testes dentro do ciclo de desenvolvimento, reforçando a necessidade de garantir

qualidade, confiabilidade e segurança no código desde as fases iniciais do projeto.

12.1 ARTEFATOS DO PROJETO

44

FIGURA 35 - ARQUIVO DE TESTE
import { test, expect } from '@playwright/test';

test('Deve preencher os dados do trabalho', async ({ page }) => {

 await page.goto('https://pt.anotepad.com/', { waitUntil: 'domcontentloaded' });

 await expect(page).toHaveTitle(/Bloco de Notas Online - Crie e Compartilhe Notas

Online/);

 await page.fill('input[name="notetitle"]', 'Entrega trabalho TEST DAS 2024');

 await page.fill('textarea[name="notecontent"]', 'Nome: Danilo Dantas Soncini');

 await page.click('input[id="btnSaveNote"]');

});

FONTE: O autor (2025)

FIGURA 36 - RESULTADO DO TESTE

FONTE: O autor (2025)

45

13 CONCLUSÃO

A jornada da pós-graduação em Desenvolvimento Ágil de Software

proporcionou uma experiência transformadora, consolidando o aprendizado sobre as

metodologias ágeis e suas aplicações práticas. O curso, estruturado em módulos

que abordaram os principais conceitos do desenvolvimento ágil, desde o

planejamento estratégico até a entrega de software, permitiu uma imersão profunda

nos diversos aspectos da construção de sistemas robustos e eficientes.

A cada disciplina, novos desafios surgiram, e a aplicação prática dos

conhecimentos adquiridos em projetos práticos tornou a aprendizagem mais

engajadora e significativa. Destaca-se a importância do trabalho em equipe, da

comunicação eficaz, da adaptabilidade às mudanças e da busca constante por

aprimorar os processos e a qualidade do código.

A experiência prática, com a utilização de ferramentas como Scrum,

Kanban, UML, TDD, Git, Docker e Kubernetes, proporcionou a oportunidade de

vivenciar as melhores práticas ágeis, vivenciando como a aplicação de cada técnica

impacta positivamente o desenvolvimento de software.

A pós-graduação em Desenvolvimento Ágil de Software forneceu as

ferramentas e a base para a construção de uma carreira de sucesso no

desenvolvimento de software, preparando profissionais capazes de se adaptar às

demandas do mercado e entregar soluções inovadoras e de alta qualidade.

46

 REFERÊNCIAS

AMBLER, S. Agile Modeling: Effective Practices for Extreme Programming and
the Unified Process. New York: John Wiley & Sons, 2002.

ANDERSON, D. Kanban: Successful Evolutionary Change for Your Technology
Business. Sequim: Blue Hole Press, 2010.

BECK, K. Test-Driven Development: by Example. Boston: Addison-Wesley, 2002.

BECK, K. Programação Extrema (XP) explicada: acolha as mudanças. Porto

Alegre: Bookman, 2004

DEITEL, P; DEITEL, H. Java: como programar. 10. ed. São Paulo: Pearson, 2016.

FOWLER, M. Refatoração: Aperfeiçoando o Design de Códigos Existentes. 2.
ed. São Paulo: Novatec, 2020.

GOTHELF, J; SEIDEN, J. Lean UX: Applying Lean Principles to Improve User
Experience. 2. ed. Sebastopol: O’Reilly Media, 2013.

HUMBLE, J; FARLEY, D. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Boston: Addison-Wesley, 2011.

MARTIN, R. Código Limpo: Habilidades Práticas do Agile Software. São Paulo:

Alta Books, 2009.

MARTIN, R. O Codificador Limpo: Um Código de Conduta para Programadores
Profissionais. São Paulo: Alta Books, 2011.

PRESSMAN, R.; MAXIM, B. Engenharia de Software: uma abordagem
profissional. 9. ed. Porto Alegre: AMGH, 2021.

RIGBY, D. Ágil do Jeito Certo: Transformação sem Caos. São Paulo: Benvirá,

2020.

SCHWABER, K; SUTHERLAND, J. The Scrum Guide. 2020. Disponível em:

https://scrumguides.org. Acesso em: 17 out. 2025.

