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RESUMO

A poés-graduacdo em Desenvolvimento Agil de Software proporcionou uma
formagdo sdlida sobre metodologias ageis, boas praticas de programagédo e
processos modernos de desenvolvimento. As disciplinas de Métodos Ageis e
Gerenciamento Agil de Projetos apresentaram frameworks como Scrum e Kanban,
destacando a importancia da flexibilidade e colaboragdo. As disciplinas de
Modelagem Agil e Aspectos Ageis da Programacdo reforcaram conceitos de
documentagdo, organizagdo e qualidade de cdodigo, incluindo praticas como
Test-Driven Development. Os fundamentos de Introducdo a Programacao e Banco
de Dados foram essenciais para a constru¢ao de aplicagdes robustas. As disciplinas
Web e Mobile aprofundaram conhecimentos em desenvolvimento, alinhados as
diretrizes da aplicagdo de UX no Desenvolvimento Agil. A disciplina DevOps abordou
automagao e entrega continua, enquanto Testes Automatizados enfatizou a
importancia da validagdao constante do software. O curso permitiu uma visao
abrangente e integrada do desenvolvimento agil, preparando para a criagdo de

solucgdes eficientes e alinhadas as demandas do mercado.

Palavras-chave: Scrum; modelagem; desenvolvimento; devops; testes.



ABSTRACT

The postgraduate program in Agile Software Development provided a solid
foundation in agile methodologies, programming best practices, and modern
development processes. The courses in Agile Methods and Agile Project
Management introduced frameworks such as Scrum and Kanban, emphasizing the
importance of flexibility and collaboration. The subjects Agile Modeling and Agile
Aspects of Programming reinforced concepts related to documentation, code
organization, and quality, including practices such as Test-Driven Development The
fundamentals of Introduction to Programming and Databases were essential for
building robust applications. Meanwhile, the Web and Mobile courses deepened
knowledge in development, aligned with UX application guidelines in Agile
Development. The DevOps course covered automation and continuous delivery,
while Automated Testing emphasized the importance of constant software validation .
Overall, the program offered a comprehensive and integrated view of agile
development, preparing students to create efficient solutions aligned with market
demands.

Keywords: Scrum; modeling; development; devops; testing.
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1 PARECER TECNICO

O desenvolvimento de software moderno exige abordagens que garantam
agilidade, flexibilidade e qualidade nas entregas. Nesse contexto, as metodologias
ageis se consolidaram como a base para a gestdo de projetos, promovendo ciclos
iterativos, colaboragédo entre equipes e adaptagdo as mudancgas de escopo (Rigby,
2020), (Beck, 2004). O presente memorial documenta a trajetéria académica dentro
da pés-graduacdo em Desenvolvimento Agil de Software, evidenciando a conexao
entre as disciplinas estudadas e os trabalhos desenvolvidos, desde a fase de
planejamento até a execugéao pratica de projetos.

Ao longo do curso, foram explorados diferentes aspectos do desenvolvimento
agil. Disciplinas como Métodos Ageis para Desenvolvimento de Software e
Gerenciamento Agil de Projetos forneceram os alicerces teéricos para a adogéo de
frameworks como Scrum e Kanban, destacando a importancia da organizacéao e do
monitoramento continuo dos processos (Schwaber; Sutherland, 2020), (Anderson,
2010). Foram abordadas praticas fundamentais como definicdo de papéis e
responsabilidades dentro das equipes, acompanhamento de backlog, refinamento de
requisitos e métricas ageis para mensuracédo de progresso. A partir desses
conceitos, foi possivel estruturar projetos praticos, aplicando ferramentas e artefatos
ageis para melhorar a gestao e a execugao das tarefas.

A modelagem desempenhou um papel essencial na estruturagao dos
sistemas, abordada nas disciplinas de Modelagem Agil de Software e Banco de
Dados. O aprendizado sobre UML incluiu a construcao de diagramas de casos de
uso, diagramas de classes e diagramas de sequéncia, proporcionando uma
representagao visual detalhada do funcionamento das aplicagdes. Essa base se
conecta diretamente ao desenvolvimento de sistemas, possibilitando a
implementacéo de solugdes robustas e alinhadas as necessidades dos usuarios.

O aspecto técnico do curso foi fortalecido com disciplinas como Aspectos
Ageis de Programac&o, Desenvolvimento Web e Desenvolvimento Mobile, onde
foram aplicados principios de cddigo limpo, reutilizagdo de componentes e padrbes
arquiteturais. Em Aspectos Ageis de Programacdo, foram trabalhados conceitos
como Clean Code, Refatoracdo, TDD (Test-Driven Development) e BDD

(Behavior-Driven Development), garantindo a criagao de cédigos mais organizados e



faceis de manter (Beck, 2002), (Martin, 2009). No Desenvolvimento Web, foi
aprofundado o uso do framework Angular e da linguagem TypeScript, com foco na
construgcao de Single Page Applications (SPA), formularios dinadmicos e integragao
com APls. J& em Desenvolvimento Mobile, o curso abordou o uso do Android Studio,
a estruturagao de interfaces com Views, manipulagéo de listas com RecyclerView e
desafios da programagéao assincrona no ambiente mobile.

A disciplina de UX (User Experience) no Desenvolvimento Agil proporcionou
uma abordagem centrada no usuario, garantindo que os produtos desenvolvidos
fossem intuitivos, acessiveis e eficientes. Foram explorados conceitos como criagao
de personas, mapeamento da jornada do usuario, acessibilidade, responsividade e
consisténcia na interface, reforcando a importancia de um design bem estruturado
para melhorar a experiéncia do usuario final (Gothelf; Seiden, 2013).

Por fim, as disciplinas de DevOps e Testes Automatizados agregaram a
dimensao da automacéao e da qualidade ao ciclo de desenvolvimento. Em DevQOps,
foram estudadas praticas como versionamento de cédigo com Git e GitHub,
conteinerizagdo com Docker, pipelines de integracdo e entrega continua (CI/CD)
(Humble; Farley, 2011). Ja em Testes Automatizados, o foco esteve na
implementacéo de testes unitarios e na automacgéao de testes End-to-End, garantindo
maior confiabilidade e eficiéncia nos processos de desenvolvimento.

O presente memorial busca conectar cada uma dessas disciplinas e seus
respectivos trabalhos, demonstrando como a aplicagdo integrada dos conceitos
estudados contribuiu para a construgéo de solugdes ageis e eficazes. Dessa forma,
a experiéncia académica se consolidou como um processo iterativo de aprendizado

e aprimoramento, refletindo a esséncia do desenvolvimento agil de software.



2 DISCIPLINA: MADS — METODOS AGEIS PARA DESENVOLVIMENTO DE
SOFTWARE

A disciplina de Métodos Ageis para Desenvolvimento de Software funciona
como o alicerce do curso, servindo como base para a aplicagdo dos principios ageis
em todas as demais areas do desenvolvimento de software. Ao ensinar como adotar
metodologias como Scrum, Kanban e Extreme Programming (Beck, 2004), a
disciplina proporciona um entendimento fundamental sobre praticas iterativas,
colaboragao e entrega continua de valor ao usuario, comparando com os métodos
classicos de desenvolvimento de software, como o modelo em cascata que
priorizam um planejamento detalhado e fases sequenciais de execugéo, os métodos
ageis propdem uma abordagem mais adaptativa e colaborativa.

O modelo tradicional busca a previsibilidade e o controle por meio de
documentacdo e etapas rigidamente definidas, os métodos ageis enfatizam a
flexibilidade, a comunicagao continua e a capacidade de responder rapidamente as
mudangas. De acordo com Pressman e Maxim (2021), compreender essas
diferengas permite ao desenvolvedor escolher a metodologia mais adequada ao
contexto do projeto, equilibrando planejamento e agilidade conforme as
necessidades do produto e da equipe.

A construcao de um mapa mental diferenciando cada um dos métodos ageis
e suas aplicagdes no desenvolvimento de software se torna um recurso valioso para
consolidar o aprendizado e guiar a aplicagdo pratica dessas metodologias. Esse
material auxilia na visualizagédo clara das conexdes entre os frameworks ageis e

suas influéncias no Desenvolvimento Agil de Software.

2.1 ARTEFATOS DO PROJETO
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FIGURA 1 - MAPA MENTAL PROCESSO DE SOFTWARE
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FONTE: O autor (2025)

FIGURA 2 - MAPA MENTAL ENTREGA CONTINUA
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FIGURA 3 - MAPA MENTAL ENGENHARIA DE SOFTWARE
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FIGURA 4 - MAPA MENTAL EXTREME PROGRAMING

T As pessoas —,
2° Arquitetura do software —
Projetar —— Ouvir —— Testar —— Codificar —
Tomaria grandes decisbes o mais tarde possivel

Para que o custo das medificagées talvez nao
aumente i

aclongodotempo Foco constante em exceléncia téenica —

Implementaria apenas o que é preciso

Introduziria elementos no projeto apenas se
igo

eles simplificassem o cadi
Programacio em pares —,
Testes de unidade —|
testes de funcionais — 5 B .
A Extreme Programming (¥P) & um método de
| desenvolvimento de software que define a

A coisa mais simples que possa funcionar — codificacso como a princioal atividads no —
Y projeto de software. O que @ bom aos extremos

Integragao continua —|

Iteragdes muito, muito pequenas — —
Mudangas Incrementais
Simplicidade Presumida
Feedback Rapida Fundamentais —,
Aceitagio das mudancas
Alta qualidade
[Ensinar aprendendo —,
Investimento inicial pequenc —| L=
Jogar para ganhar —|

Experimentacdo concreta —

Comunicachc honesta s franca —|
Trabalhar em favor dos instintos —]
Aceitagao de responsabilidades —)|

Adaptagao —|

Viajar com pouca bagagem —|

Métricas genuinas —

Coragem

Extreme Programming

Feedback
Valores —
Comunicacio

Simplicidade

FONTE: O autor (2025)



FIGURA 5 - MAPA MENTAL LEAN
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FIGURA 6 - MAPA MENTAL MODELOS TRADIC

Suparte — Teste — Caodificagio —— Projeto —— Analise

Mais antigo paradigma

Modelo Linear Sequencial =,

Sern iteracio

Demora para ter um sisterma funcionando

Avaliagho —— protstipe —— requisitos

Software nunca esta pronto

Modelo de Prototipagio —y

Cliente visualiza o software antes

lteragio
Suporte — Teste — Codificagio —— Projete —— Andlise
Peguencs incrementos com todos os processos

sl T }Modd.ahcru‘nmtﬂ'—.

Software funcionando

O software é desenvolvido em uma série de

Comunicagéc —— Entrega —— Construgao —— Modelagem —— Planejamento
versdes evolucionarias: }Mﬂdﬁﬂ&p’ﬂ-‘

progressivamente o software fica mais
sofisticado

Baseado na UML —,
Modelagem de Negbcio —,
Requisitos —
Andlise e Design —
Implementagio —

Teste —— Disciplinas —y

14

IONAIS

Modelos Tradicienals

implantaio — [~ Processo Unificade —

Gestiio de Mudanga —1

Gerencimanto de Projeto —]

Ambiente —
Cancepgas
Elaboragio
Canstrugio

Transicéo

Fases —

FONTE: O autor (2025)



FIGURA 7 - MAPA MENTAL MANIFESTO AGIL
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3 DISCIPLINA: MAG1 E MAG2 — MODELAGEM AGIL DE SOFTWARE 1 E 2

A disciplina de Modelagem Agil de Software tem como foco a utilizagdo de
técnicas de modelagem para estruturar sistemas de forma clara e eficiente dentro do
contexto agil (Ambler, 2002). Através da UML (Unified Modeling Language) , sao
abordadas as principais ferramentas para representacdo dos requisitos e do
comportamento do sistema, garantindo uma visdo compartilhada entre os membros
da equipe de desenvolvimento. A partir do diagrama de casos de uso, sao definidas
as historias de usuario, que descrevem de forma detalhada as interagdes dos
usuarios com o sistema, auxiliando na construcdo de funcionalidades alinhadas as
necessidades do projeto.

O primeiro grande desafio da disciplina foi a modelagem de um
sistema de gestdo de condominios, onde aplicamos os conceitos estudados para
estruturar os principais requisitos e interagées do software.

Com essa base estabelecida, a disciplina avangou para o
aprofundamento na modelagem estrutural e comportamental do sistema. O estudo
de objetos e classes possibilitou a criacdo do diagrama de classes, representando a
estrutura do sistema e os relacionamentos entre seus elementos. O diagrama de
sequéncia trouxe uma visdo detalhada do fluxo de mensagens entre os
componentes, demonstrando a interagao entre os objetos ao longo da execugao dos
casos de uso. Além disso, foram explorados outros diagramas complementares da
UML, como o diagrama de atividades, que representa fluxos de processos dentro do
sistema, e diagramas suplementares que ajudam a refinar a modelagem e a
documentacéo do projeto.

Na etapa final, os diagramas elaborados no primeiro trabalho foram
expandidos e refinados, incorporando novas representagbes para aprimorar a
modelagem do sistema. Esse processo consolidou a importancia da modelagem
como um suporte essencial ao desenvolvimento agil, permitindo uma abordagem

iterativa e adaptavel ao longo do ciclo de vida do projeto.
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3.1 ARTEFATOS DO PROJETO

FIGURA 11 - DIAGRAMA DE CASO DE USO NIVEL 1
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FONTE: O autor (2025)

FIGURA 12 - DIAGRAMA DE CASO DE USO NiVEL 2
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FONTE: O autor (2025)



Pagamento

- apartamento : Apartamento
- mes/ano : date

- dataVencimento : date

- dataPagamento : date

- valor : number

FIGURA 13 - DIAGRAMA DE CLASSES
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FONTE: O autor (2025)

Manutencao

- tipo : string
- descricao : text
- data : date
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FIGURA 14 - DIAGRAMA DE SEQUENCIA
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FONTE: O autor (2025)



FIGURA 15 - EXEMPLO DE CENARIOS DE TESTE
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4 DISCIPLINA: GAP1 E GAP2 —- GERENCIAMENTO AGIL DE PROJETOS DE
SOFTWARE 1 E 2

A disciplina de Gerenciamento Agil de Projetos de Software aprofunda a
aplicacdo dos principios ageis na conducado de projetos de desenvolvimento,
explorando desde os conceitos fundamentais até praticas avancadas de
planejamento, execugdo e monitoramento. Ao introduzir abordagens como Scrum e
Kanban, a disciplina proporciona um entendimento essencial sobre organizagédo do
fluxo de trabalho, métricas de desempenho e estratégias para garantir entregas
continuas e alinhadas as necessidades do usuario.

Na primeira etapa, o foco esta na concepgao e planejamento agil de projetos,
trazendo reflexdes sobre a diferenga entre métodos tradicionais e ageis e
demonstrando como a mentalidade iterativa impacta positivamente o
desenvolvimento de software. O aprofundamento no Scrum permite compreender
sua estrutura, incluindo papéis, eventos e artefatos, possibilitando a construcéo de
um plano de release realista e eficiente Esse exercicio pratico se torna um elemento
fundamental para consolidar o aprendizado, conectando a teoria a aplicagao real.

Ja na segunda etapa, a disciplina se volta para a gestao do fluxo de trabalho
e acompanhamento do progresso, abordando conceitos do PMBOK e a importancia
da gestao visual na organizagao das demandas. O estudo do Kanban possibilita a
compreensdo das dinamicas de fluxo continuo e da limitagdo do trabalho em
progresso (WIP), enquanto o aprofundamento em métricas ageis permite uma
analise quantitativa do desempenho da equipe. A execug¢ao de um ciclo de 35 dias
no Kanban Board Game representa um experimento para testar na pratica a
eficiéncia do fluxo de trabalho e avaliar oportunidades de melhoria no processo de
desenvolvimento.

A estrutura da disciplina permite uma visao clara sobre como as metodologias
ageis influenciam a gestdo de projetos de software, reforcando a importancia do
planejamento estratégico, do acompanhamento baseado em dados e da adaptagao
continua. Ao integrar teoria e pratica, a disciplina capacita os alunos a
desenvolverem projetos de forma mais agil, eficiente e alinhada as exigéncias do

mercado.
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FIGURA 8 - PLANO DE RELEASE:

ARTEFATOS DO PROJETO
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Planning

FSTIMATIVA §

Listar Salas

SENDO Scrum Master
QUERQ Criar uma sala de Poker Planning
PARA Conduzir uma dindmica de Poker

Criar Atividade

SENDO Scrum Master
QUERQ Criar uma atividade na sala
PARA Conduzir uma dindmica de Poker
Planning

FSTIMATIVA 2

Convidar para sala

SENDO Scrum Master
QUEROQ Convidar outros usudrios

PARA participarem da dindmica de Poker

Planning

FRTIMATIVA 3

Data Fim: 24/06/2024
Participar da sala

SENDO o Time de
Desenvolvimento

QUERQ poder participar das sala de
Poker Planning
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Prker Planning
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Listar Atividades

SENDO Serum Master
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Planning PARA que o time de desenvolvimento eventos de Poker Planning
possa votar nela
ESTIMATIVA 2 ESTIMATIVA 5 ESTIMATIVA 3
ESTIMATIVA 2
Manter atividades

ESTIMATIVA 3
Manter Sala

SENDO Serum Master
QUERO Editar e deletar salas

SENDO Scrum Master
QUERQ poder editar e deletar uma
atividades
PARA Conduzir a dinimica de Poker
Planning

ESTIMATIVA 2

FONTE: O autor (2025)
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FIGURA 9 - PLANO DE RELEASE: SISTEMA DE SUPORTE A TIMES AGEIS
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ESTIMATIVA 5

Revelar votos de uma Afividade

SENDO Scrum Master
QUERQ poder revelar os votos de uma
atividade
PARA conduzir a dindmica agil e iniciar
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ESTIMATIVA 3

Finalizar Poker Planning
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SENDO Scrum Master
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participantes do time estejam na sala
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Finalizar a votagiio de uma Atividade

SENDO Scrum Master
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Permitir Convidade Observador

SENDO Scrum Master
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FONTE: O autor (2025)

FIGURA 10 - DIAGRAMA DE CUMULATIVE FLOW
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5 DISCIPLINA: INTRO — INTRODUGAO A PROGRAMAGAO

A disciplina de Introdugdo a Programacéo teve como objetivo apresentar os
fundamentos da programacédo utilizando a linguagem Java, proporcionando uma
base para o desenvolvimento de software. Ao longo da disciplina, foram explorados
0s principios essenciais da logica de programagao e os primeiros conceitos de
estruturacéo de codigo, permitindo a construgao de programas.

Um dos momentos mais importantes da disciplina foi a introducdo a
Programagdo Orientada a Objetos (POO), um paradigma essencial no
desenvolvimento moderno de software (Deitel; Deitel, 2016). Foram explorados
conceitos como classes, objetos, encapsulamento, heranga e polimorfismo,
permitindo estruturar programas de maneira modular e reutilizavel. Essa abordagem
possibilitou a criagdo de sistemas mais organizados e escalaveis, preparando o
caminho para o aprofundamento em técnicas mais avancadas de desenvolvimento.

Com essa base consolidada, tivemos o desafio de aplicar os conhecimentos
adquiridos no sistema onde os testes estavam sendo criados e a aplicagdo
precisava ser escrita, conversando muito bem com os aprendizados de Aspectos

Ageis

5.1 ARTEFATOS DO PROJETO
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FIGURA 21 - TESTES DE UNIDADE APROVADOS
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6 DISCIPLINA: BD - BANCO DE DADOS

A disciplina de Banco de Dados teve como objetivo apresentar os
fundamentos essenciais para o armazenamento e a manipulagéo eficiente de dados,
proporcionando uma base sodlida para o desenvolvimento de sistemas robustos e
confiaveis. Foram abordados os principios de banco de dados, explorando conceitos
como estruturacao, organizacao e recuperagao de informagdes

O foco da foi dado em Banco de dados relacionais trabalhando com
modelagem de dados, onde foram estudados os conceitos de modelos conceituais,
I6gicos e fisicos, além da normalizagdo para garantir a integridade e a eficiéncia das
tabelas. A partir desse conhecimento, pudemos projetar bancos de dados
estruturados de forma otimizada, reduzindo redundéncias e garantindo um melhor
desempenho no armazenamento e na consulta das informacgdes.

Além da modelagem, a disciplina aprofundou o estudo da linguagem SQL,
explorando os comandos essenciais para a criagao (DDL) e manipulagao de bancos
de dados (DML). Foram abordadas operag¢des como insergao, atualizagéo, excluséao
e consulta de dados, além de conceitos mais avangados, como joins, fung¢des
agregadas e subconsultas, permitindo a extragdo eficiente de informagbes e a
interagdo dindmica com os dados armazenados.

Como atividade pratica, os alunos desenvolveram a modelagem de dois
projetos de banco de dados. O primeiro foi um sistema de controle de biblioteca,
onde foram definidos os relacionamentos entre livros, usuarios e empréstimos,
garantindo uma estrutura eficiente para o gerenciamento das operagdes da
biblioteca. O segundo projeto foi de escolha livre, e a opgao selecionada foi um
sistema de controle de vacinagdo, onde foram modeladas tabelas para armazenar
informacdes sobre pacientes, vacinas aplicadas, datas de imunizagao e unidades de
saude. Esses projetos permitiram a aplicagdo direta dos conceitos estudados,
reforcando a importancia da modelagem e da linguagem SQL na construgcédo de

bancos de dados bem estruturados e funcionais.

6.1 ARTEFATOS DO PROJETO
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FIGURA 22 - MODELO RELACIONAL - VACINA

Vid INT
“» data DATETIME
& dose INT

% enfermeiro_id INT
@ paciente_id INT
@ lote_id INT
@ locd_id INT

PRIMARY
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& cpf VARCHAR(45)
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FONTE: O autor (2025)
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FIGURA 23 - MODELO ENTIDADE RELACIONAMENTO - BIBLIOTECA
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FONTE: O autor (2025)
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FIGURA 24 - MODELO RELACIONAL - BIBLIOTECA
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FONTE: O autor (2025)
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7 DISCIPLINA: AAP — ASPECTOS AGEIS DE PROGRAMAGAO

A disciplina de Aspectos Ageis de Programacgdo tem como objetivo
aprimorar a qualidade do codigo e a eficiéncia do desenvolvimento de software por
meio de boas praticas ageis. Conceitos como Clean Code, Pair Programming,
Refatoracdo, TDD, BDD e Clean Architecture foram explorados para garantir que o
codigo produzido seja mais legivel, sustentavel e facil de manter (Martin, 2009). A
énfase na escrita de codigo limpo permitiu entender a importancia de nomes
descritivos, estrutura organizada e reducdo de complexidade desnecessaria,
promovendo um desenvolvimento mais agil e eficiente.

Ao longo da disciplina, a pratica de Pair Programming foi introduzida como
uma técnica colaborativa, reforcando a troca de conhecimento entre
desenvolvedores e melhorando a qualidade do cddigo desde as primeiras etapas
(Martin, 2011). O conceito de Refatoracdo se mostrou essencial para aprimorar
trechos de codigo sem alterar seu comportamento, tornando-os mais simples e
eficientes (Fowler, 2020).

Como atividade pratica, foi realizada a refatoragdo de uma funcado de
ordenagéao, aplicando os conceitos de Clean Code para melhorar sua organizagao,
clareza e eficiéncia. Esse exercicio possibilitou a aplicagdo direta dos
conhecimentos adquiridos, demonstrando como pequenas mudangas na estrutura
do codigo podem torna-lo mais compreensivel e facil de manter. Com isso, a
disciplina reforcou a importancia de praticas ageis no dia a dia do desenvolvimento
de software, garantindo cédigo de alta qualidade e alinhado aos principios da

engenharia de software moderna.

7.1 ARTEFATOS DO PROJETO



FIGURA 16 - CODIGO INICIAL

bubbleSort(arr, n)}

i, j, temp;
swapped;
1=8; i

swapped = -
for (J =@; j<n=1=1; j++

if {arrlj] > arr[j + 1]1)
b
1
(parameter) arr: any
temp = arr[jl;
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swapped = -

swapped ==
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printArray(arr, size)

i;
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console.loglarr[i] +

arr = [ 64, 34, 25, 12, 22, 11, 98 1;
n = arr.length;
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printArray{arr, nj;

FONTE: O autor (2025)
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FIGURA 17 - CODIGO FINAL

bubbleSort(numbers){
i =@; i < numbers.length - 1; i++
if (!swapValues{numbers, i — 1)) break;

swapValues(numbers, alreadySorted) {
swapped = 7
key = 8; key < numbers.length - alreadySorted; key++
if (isNextValueGreaterThanCurrent({numbers, key)
swapWithNextValue(numbers, key};
swapped = 7

return swapped:

isNextValueGreaterThanCurrent (numbers, key) {
return numbers[key] > numbers[key + 11;

swapWithNextValue(numbers, key) {
temp = numbers [key];
numbers [key] = numbers[key + 1];
numbers [key + 1] = temp;

FONTE: O autor (2025)
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FIGURA 19 - SEQUENCIA DE COMMITS UTILIZADOS NA REFATORAGAO
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FONTE: O autor (2025)

FIGURA 20 - SEQUENCIA DE COMMITS UTILIZADOS NA REFATORACAO
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2

FONTE: O autor (2025)
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8 DISCIPLINA: WEB1 E WEB2 — DESENVOLVIMENTO WEB 1 E 2

A disciplina de Desenvolvimento Web teve como foco a constru¢do de
aplicagbes modernas utilizando o framework Angular e a linguagem TypeScript,
explorando os principais conceitos e praticas para o desenvolvimento de sistemas
dinamicos e interativos. Desde os primeiros momentos, foi introduzido o conceito de
Single Page Application (SPA), uma abordagem que permite que a aplicagéao
funcione de forma mais fluida e responsiva, carregando apenas os dados
necessarios sem a necessidade de recarregar toda a pagina. Essa arquitetura
melhora a experiéncia do usuario e otimiza o desempenho das aplicacées web.

Foram explorados conceitos como componentes, diretivas, servicos e
roteamento, demonstrando como a modularizagdo do cédigo e a reutilizagdo de
componentes auxiliam no desenvolvimento agil. O TypeScript, por sua vez, trouxe
tipagem estatica e recursos avangados que melhoram a qualidade do cadigo,
tornando-o mais seguro e facil de manter.

Um dos temas aprofundados foi a implementacdo de formularios e
validagdes, garantindo que os dados inseridos pelos usuarios estivessem corretos e
em conformidade com as regras de validagbes personalizadas para melhorar a
usabilidade e evitar erros de entrada. Esse aprendizado mostrou como os
frameworks web contribuem para o desenvolvimento agil, facilitando a criagdo de
interfaces robustas e interativas de forma eficiente.

A disciplina abordou a constru¢do de um backend utilizando Java, permitindo
a integracao entre o frontend desenvolvido no Angular e um servidor que gerencia
os dados e as regras de negocio. Foram explorados conceitos como APIs REST,
consumo de endpoints e comunicagéo entre frontend e backend, garantindo que os

alunos tivessem uma visao completa do desenvolvimento full-stack.
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9 DISCIPLINA: UX — UX NO DESENVOLVIMENTO AGIL DE SOFTWARE

A disciplina de UX User Experience agregou um novo olhar ao
desenvolvimento de software, trazendo a importancia de colocar o usuario no centro
do processo de criacdo. Ao longo da disciplina, foi reforcado que um sistema bem
projetado ndo se trata apenas de funcionalidade, mas também de como ele se
encaixa na realidade e nos desafios do usuario. Para isso, foram aplicadas técnicas
como a criagao de personas e o mapeamento da jornada do usuario, permitindo uma
compreensao mais profunda das necessidades, dores e expectativas de quem ira
utilizar a aplicagéo.

Outro ponto central foi a busca por feedbacks rapidos, uma pratica essencial
para validar as decisbes de design e garantir que o sistema evolua de forma
alinhada as necessidades reais dos usuarios. Além disso, a consisténcia na
interface, na navegagao e no uso foi enfatizada como um fator essencial para criar
experiéncias intuitivas e eficientes. O aprendizado reforcou que manter padrées
visuais e interativos melhora significativamente a usabilidade e reduz a curva de
aprendizado dos usuarios.

A responsividade e adaptabilidade também foram temas recorrentes,
garantindo que as interfaces sejam acessiveis e funcionais em diferentes
dispositivos e tamanhos de tela. A disciplina destacou que, em um cenario onde o
acesso movel é predominante, projetar para diferentes contextos de uso é uma
necessidade fundamental.

Os conceitos de design foram explorados, abordando o uso estratégico de
cores, tipografia e acessibilidade, tornando as interfaces mais agradaveis e
inclusivas. Foi enfatizada a importancia de projetar sistemas que ndo apenas sejam
visualmente atraentes, mas que também oferecam uma experiéncia fluida para
todos os usuarios, incluindo aqueles com limitagdes visuais ou motoras.

No trabalho da disciplina pudemos trabalhar alguns conceitos de design e

prototipacao e trabalhar na necessidade do usuario.
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ARTEFATOS DO PROJETO
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FIGURA 25 - TELA DE LOGIN

EEEEE

FONTE: O autor (2025)

FIGURA 26 - FLUXO CADASTRO DO DOCUMENTO
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o Documentos Adicionados

Documentos adicionados aparecerso aqui

FONTE: O autor (2025)
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FIGURA 27 - FORMULARIO DE CADASTRO DE ASSINANTE

ira aqui todos os dados de quem assinaré o documento
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CANCELAR  AVANGAR

FONTE: O autor (2025)

FIGURA 28- ESCOLHA DE COMO A ASSINATURA SER FINALIZADA
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FONTE: O autor (2025)

FIGURA 29 - FORMULARIO MENSAGEM PARA SOLICITACAO DA ASSINATURA
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FONTE: O autor (2025)



FIGURA 30 - CONFIRMAGAO DE ENVIOS
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FONTE: O autor (2025)

FIGURA 31 - ENVIO DE TOKEN PARA CONFIRMACAO
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FIGURA 32 - PREENCHIMENTO DO TOKEN
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FIGURA 33 - CONFIRMACAO DA ASSINATURA
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10 DISCIPLINA: MOB1 E MOB2 — DESENVOLVIMENTO MOBILE 1 E 2

A disciplina de Desenvolvimento Mobile teve como objetivo explorar o
ecossistema do mercado mobile e capacitar os alunos para o desenvolvimento de
aplicativos Android utilizando o Android Studio. O curso iniciou com uma viséo geral
do setor, apresentando as tendéncias e desafios do desenvolvimento para
dispositivos moveis, destacando a importancia da experiéncia do usuario e da
performance das aplicacbes nesse ambiente altamente dinamico.

O aprendizado seguiu com um aprofundamento nos conceitos fundamentais
do Android, com foco na construgcdo da interface por meio das Views e no
funcionamento do empilhamento de Views dentro da estrutura do sistema. Através
de aulas praticas, foram exploradas técnicas essenciais para a criagao de interfaces
responsivas e interativas, permitindo um melhor entendimento sobre a navegacao
entre telas e a organizagao dos elementos visuais em uma aplicagdo mobile.

Com o avango da disciplina, os estudos se concentraram no reuso de Views
utilizando RecyclerView, uma ferramenta essencial para lidar com listas de grande
volume de dados de forma eficiente. Além disso, a disciplina abordou a integracao
com bancos de dados locais e remotos, bem como a comunicagcdo com APIs,
permitindo que os aplicativos pudessem consumir e armazenar dados de maneira
estruturada. Um dos grandes desafios enfrentados foi a programagéo assincrona no
ambiente Android, uma necessidade fundamental para garantir uma experiéncia
fluida ao usuario, evitando travamentos e melhorando o desempenho da aplicagéo.

A experiéncia da disciplina proporcionou uma continuidade natural ao
conhecimento adquirido ao longo do curso, mas agora aplicado ao desenvolvimento
mobile. A transigdo dos conceitos ja estudados para o contexto de aplicativos
Android reforcou a importancia de praticas ageis, do reuso de cédigo e da
otimizacao do desempenho, preparando os alunos para enfrentar os desafios do

desenvolvimento de aplicagdes para dispositivos moveis.
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1" DISCIPLINA: INFRA - INFRAESTRUTURA PARA DESENVOLVIMENTO E
IMPLANTAGAO DE SOFTWARE (DEVOPS)

A disciplina de DevOps apresentou uma visao abrangente do ciclo de vida
do desenvolvimento de software, destacando a importancia da integragéo entre
desenvolvimento e operagdes para entregar software de forma mais eficiente e
confiavel. O conceito de DevOps foi introduzido como um conjunto de praticas que
busca automatizar e aprimorar os processos de desenvolvimento, teste e entrega
continua, garantindo maior agilidade e qualidade nos projetos.

Um dos primeiros temas abordados foi a gestdo de versionamento com Git e
GitHub, enfatizando seu papel essencial na colaboracdo entre equipes,
rastreamento de mudancgas e controle do codigo-fonte. Em seguida, exploramos a
importancia das métricas, que permitem monitorar o desempenho dos processos e
tomar decisbes mais embasadas para otimizar o fluxo de desenvolvimento.

Outro ponto-chave da disciplina foi a conteinerizagdo com Docker, que
possibilita criar ambientes isolados e padronizados, facilitando a replicagéo e a
portabilidade das aplicagdes. Também foram abordados conceitos fundamentais
sobre pipelines de CI/CD Continuous Integration/Continuous Deployment,
demonstrando como automatizar a construcdo, os testes e a entrega de software.
Além disso, tivemos um primeiro contato com Kubernetes, um orquestrador de
containers que permite escalar e gerenciar aplicagbes distribuidas de forma
eficiente. O tema da observabilidade também foi explorado, reforcando a
necessidade de monitoramento continuo para identificar falhas rapidamente e
garantir a estabilidade dos sistemas.

A disciplina foi dindmica e focada em apresentar as bases de cada conceito,
oferecendo aos alunos a oportunidade de aprofundamento nos temas de maior
interesse. O trabalho pratico teve como foco o uso do Docker e Git, permitindo
aplicar os conhecimentos adquiridos na pratica e compreender melhor os beneficios
dessas ferramentas dentro do fluxo DevOps. Com isso, a disciplina proporcionou
uma base sélida para entender os desafios e as solucdbes modernas na automacéo e

entrega continua de software.
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11.1 ARTEFATOS DO PROJETO

FIGURA 34 - PRINT DA CRIACAO DO DOCKER

FONTE: O autor (2025)
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12 DISCIPLINA: TEST — TESTES AUTOMATIZADOS

A disciplina de Testes de Software foi objetiva e direta, oferecendo uma
visdo clara sobre a importancia dos testes no desenvolvimento de software e os
diferentes niveis de testes que garantem a qualidade e a confiabilidade das
aplicagdes. Desde o inicio, foi enfatizado que testar ndo é apenas uma etapa
adicional do processo, mas sim uma pratica essencial para evitar falhas e garantir
que o codigo esteja sempre funcionando conforme o esperado.

O foco principal da disciplina esteve nos testes unitarios dentro do
ecossistema Java, explorando como estruturar codigos testaveis e reforgando a
conexdo com os conceitos abordados na disciplina de Aspectos Ageis de
Programacgao, como TDD (Test-Driven Development). Durante as aulas praticas, os
alunos aprenderam a criar e executar testes unitarios de forma eficiente, garantindo
que cada componente do software fosse validado de maneira isolada, facilitando a
manutencgao e a evolugao do sistema.

Além dos testes unitarios, a disciplina também abordou a importancia
de testes mais abrangentes, culminando na pratica de testes End-to-End (E2E)
utilizando a ferramenta Playwright. Essa abordagem permitiu validar o
funcionamento completo da aplicacdo, simulando a interagdo real do usuario e
garantindo que todos os componentes trabalhassem corretamente juntos.

O trabalho final da disciplina consistiu na implementagcao de um teste
utilizando o Playwright, consolidando os conceitos aprendidos e permitindo que os
alunos experimentassem na pratica os desafios e beneficios da automacgado de
testes. Dessa forma, a disciplina proporcionou uma base essencial para a aplicagao
de testes dentro do ciclo de desenvolvimento, reforcando a necessidade de garantir

qualidade, confiabilidade e seguranga no codigo desde as fases iniciais do projeto.

12.1 ARTEFATOS DO PROJETO



44

FIGURA 35 - ARQUIVO DE TESTE
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FIGURA 36 - RESULTADO DO TESTE
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13  CONCLUSAO

A jornada da pés-graduacdo em Desenvolvimento Agil de Software
proporcionou uma experiéncia transformadora, consolidando o aprendizado sobre as
metodologias ageis e suas aplicagbes praticas. O curso, estruturado em méddulos
que abordaram os principais conceitos do desenvolvimento &gil, desde o
planejamento estratégico até a entrega de software, permitiu uma imersao profunda
nos diversos aspectos da construgao de sistemas robustos e eficientes.

A cada disciplina, novos desafios surgiram, e a aplicagcdo pratica dos
conhecimentos adquiridos em projetos praticos tornou a aprendizagem mais
engajadora e significativa. Destaca-se a importancia do trabalho em equipe, da
comunicagcao eficaz, da adaptabilidade as mudancas e da busca constante por
aprimorar os processos e a qualidade do codigo.

A experiéncia pratica, com a utilizacdo de ferramentas como Scrum,
Kanban, UML, TDD, Git, Docker e Kubernetes, proporcionou a oportunidade de
vivenciar as melhores praticas ageis, vivenciando como a aplicagao de cada técnica
impacta positivamente o desenvolvimento de software.

A poés-graduagdo em Desenvolvimento Agil de Software forneceu as
ferramentas e a base para a construcdo de uma carreira de sucesso no
desenvolvimento de software, preparando profissionais capazes de se adaptar as

demandas do mercado e entregar solugdes inovadoras e de alta qualidade.
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