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RESUMO 
 

O corrente trabalho busca elaborar uma metodologia simples, rápida e confiável 
para a identificação de carregamentos mecânicos em um componente em operação, 
utilizando-o como seu próprio transdutor. A metodologia é baseada na utilização de 
uma técnica de regressão linear a partir de um modelo de elementos finitos com 
carregamentos unitários e deformações medidas com extensômetros no 
componente de estudo. Um dos pontos chave para a obtenção da mais fiel 
reconstrução de carregamentos possível é a seleção do número de extensômetros e 
seu posicionamento no componente em estudo. Para a determinação desta 
localização otimizada, utiliza-se o conceito de projeto experimental ótimo, o qual 
busca a minimização da variância e covariância dos coeficientes a se determinar. 
Alguns dos critérios de projeto experimental ótimo mais citados na literatura são o A-
ótimo, o D-ótimo e o E-ótimo. O critério adotado neste trabalho foi o citado pela 
literatura como o de maior relevância para o caso de reconstrução de cargas, o D-
ótimo, o qual minimiza o determinante da matriz de dispersão do modelo. Esta 
minimização utiliza geralmente os algoritmos de troca de Fedorov ou multiplicativos, 
os mais usuais para projeto D-ótimo. Estes algoritmos, em geral, não são capazes 
de garantir um ótimo global para o projeto, além de muitas vezes sofrerem com 
problema de velocidade de convergência. Para contornar estes problemas decidiu-
se adotar neste trabalho um algoritmo genético. Este algoritmo foi implementado na 
linguagem Python e com interface com o software nCode®. Outro algoritmo também 
desenvolvido neste projeto, em conjunto com um modelo de elementos finitos obtido 
com o software HyperMesh®, foi utilizado para gerar o domínio das variáveis de 
projeto, que consistem em posições e orientações de extensômetros virtuais 
posicionados sobre uma porção do contorno do componente em estudo. Desta 
forma, espera-se obter um conjunto de extensômetros em posições e orientações 
determinadas que minimizam o determinante da matriz de dispersão. Para validar a 
eficiência dos algoritmos gerados foram realizados testes virtuais para o estudo dos 
parâmetros do algoritmo genético. Testes físicos com dois componentes distintos 
foram também realizados com o objetivo de validar a metodologia.  Ao final do 
trabalho verificou-se que o algoritmo genético proposto é capaz de atingir valores 
próximos ao mínimo global da função objetivo com maior constância e estabilidade 
do que o algoritmo de troca de Fedorov, apesar de sofrer com um custo 
computacional mais alto. Os testes físicos realizados evidenciaram que uma 
configuração de extensômetros otimizada pelo critério D-ótimo é capaz de reduzir a 
variância dos carregamentos reconstruídos. 
 
 
Palavras-chave: Reconstrução de cargas. Projeto D-ótimo. Seleção ótima de extensômetros. 
Algoritmos genéticos. Algoritmo de troca de Fedorov. 
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ABSTRACT 
 

The current work aims to develop a simple, fast and reliable methodology for the 
identification of mechanical loading on a component in operation, using it as its own 
transducer. The methodology is based on the usage of a linear regression technique 
from a finite element model with unitary loads and measured deformations with strain 
gauges in the component. One of the key points for obtaining the most accurate load 
reconstruction as possible is the selection of the number of strain gauges and their 
placement on the component under study. For the determination of the optimized 
location, the concept of optimal experimental design is used, which seeks to 
minimize the variance and covariance of the coefficients to be determined. Some of 
the optimal experimental design criteria most frequently cited in the literature are the 
A-optimal, D-optimal and E-optimal. The criterion used in this study was cited in the 
literature as the most relevant for the case of loads reconstruction, the D-optimal, 
which minimizes the determinant of the model´s scattering matrix. This minimization 
usually uses the Fedorov´s exchange algorithm or the multiplicative algorithms, the 
most common for D-optimal design. These algorithms generally are not able to 
secure a global optimum for the project, and often suffer with convergence speed 
problems. To work around these problems, it was decided to adopt in this work a 
genetic algorithm. This algorithm was implemented in Python and interfaced with the 
nCode® software. Another algorithm also developed in this study, in conjunction with 
a finite element model obtained with HyperMesh® software, was used to generate 
the design domain variables, which consist of certain positions and orientations of 
virtual gauges over a portion of the component's contour under study. Thus, it is 
expected to obtain a set of strain gages in certain positions and orientations that 
minimize the determinant of the scattering matrix. To validate the efficiency of the 
algorithms generated, virtual tests were performed to the study of the genetic 
algorithm parameters. Physical testing with two different components was also 
conducted to validate the method. At the end of the work it was found that the genetic 
algorithm proposed is able to achieve values close to the global minimum of the 
objective function with greater consistency and stability than the Fedorov exchange 
algorithm, although suffer from a higher computational cost. The physical tests 
carried out showed that an optimized strain gauge configuration by D-optimality 
criteria is able to reduce the variance of the reconstructed loads. 
 
 
Keywords: Load reconstruction. D-optimal design. Optimal selection of strain gauges. 
Genetic algorithms. Fedorov´s exchange algorithm. 
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1 INTRODUÇÃO 

Nos últimos anos, na indústria, tornou-se um procedimento padrão de 

projeto a análise virtual do componente que se deseja projetar e construir. Para 

tanto, utilizam-se softwares implementados com métodos de solução aproximada de 

problemas de valores no contorno, como o Método de Elementos Finitos (MEF). O 

MEF é amplamente difundido para a estimativa de tensões e deformações em 

componentes de geometria complexa, possibilitando previsões de durabilidade dos 

produtos e auxiliando no dimensionamento. 

O projeto de um componente estrutural utilizando ferramentas CAE 

(Computer Aided Engineering) é tão bom quanto a qualidade de seus dados de 

entrada. No caso de cálculos estruturais, as principais fontes de erro relacionadas à 

modelagem do problema físico para o modelo virtual são:  

 Os erros introduzidos na solução do método de elementos finitos, divididos 

em 3 grupos principais por Reddy (2006), os erros de aproximação de 

domínio, erros de aritmética finita e quadratura e os erros de aproximação da 

solução;  

 Erros associados à modelagem das condições de contorno; 

 Erros de aproximação dos carregamentos, os quais nem sempre podem ser 

obtidos por cálculo (HUNTER 2012). 

Desta forma, a habilidade de prever a durabilidade ou a resistência de um 

componente mecânico ou de uma estrutura depende fortemente do conhecimento 

dos carregamentos a serem aplicados. Estes carregamentos são, em geral, medidos 

introduzindo células de carga no sistema ou desenvolvendo transdutores especiais 

para cada aplicação (WICKHAM et al., 1994). 

Entretanto, estes métodos, em geral, alteram a física do problema, ou têm 

implementação muito complexa. Estas limitações podem ser superadas de uma 

forma muito barata ao utilizar-se a técnica de reconstrução de cargas, na qual o 

próprio componente que se deseja medir as cargas é usado como seu transdutor, 

apenas com a aplicação de extensômetros em pontos específicos da geometria. 

(ILANKAMBAN et al., 1996) 
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Para que esta reconstrução de carregamentos seja eficiente, recai-se no 

problema da definição da posição dos pontos a serem instrumentados com 

extensômetros no componente, que é solucionado através da utilização do conceito 

de projeto D-ótimo, o qual minimiza a variância dos carregamentos ao otimizar a 

configuração de extensômetros (GUPTA, 2013). 

Esta dissertação busca apresentar, através de discussão de vários métodos 

conhecidos, e implementar uma proposta de metodologia para obtenção da 

configuração ótima de instrumentação, utilizando a técnica de algoritmos genéticos, 

que produza a menor variância no vetor de carregamentos obtidos através da 

reconstrução das cargas. 

 

1.1. OBJETIVOS 

1.1.1. Objetivo geral 

O objetivo deste estudo é desenvolver um algoritmo capaz de determinar os 

locais e orientações ótimos de instalação de extensômetros em uma estrutura 

qualquer que se comporta como um sistema linear e é submetida a um conjunto de 

carregamentos quase-estáticos. A combinação de extensômetros deve possibilitar 

que a estrutura se torne seu próprio transdutor de forças, permitindo a determinação 

dos carregamentos suportados durante o trabalho para o qual o componente foi 

projetado. 

1.1.2. Objetivos Específicos 

O objetivo geral pode ser detalhado nos seguintes objetivos secundários: 

i. Propor uma metodologia para a seleção da configuração de extensômetros 

que permita reconstruir os carregamentos sofridos por um componente 

mecânico com a menor variância possível; 

ii. Implementar computacionalmente o algoritmo e a metodologia 

apresentados; 

iii. Elaborar e realizar testes físicos que permitam comprovar a eficácia do 

algoritmo e da metodologia. 
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1.2. ESTRUTURA DO TEXTO 

No corrente capítulo é apresentado o problema de reconstrução de cargas 

utilizando o próprio componente como transdutor, sua importância e relevância para 

o desenvolvimento de projetos estruturais. Também são apresentados os objetivos 

gerais e específicos deste trabalho. 

 A partir do segundo capítulo têm-se a base teórica do trabalho, onde são 

explanadas as teorias e histórico de estudos sobre reconstrução de cargas, projeto 

experimental ótimo e sua aplicação na reconstrução de cargas, bem como os 

algoritmos de otimização para projeto D-ótimo. 

No terceiro capítulo discute-se a metodologia adotada para a geração do 

domínio de extensômetros candidatos e para a seleção da configuração ótima. O 

método de validação do algoritmo, também apresentado neste capítulo, é composto 

por testes físicos e virtuais. 

No quarto capítulo são apresentados os algoritmos finais implementados e 

os resultados dos testes virtuais e físicos. Os resultados virtuais apresentam uma 

comparação entre o algoritmo genético e o algoritmo de troca de Fedorov. Por sua 

vez, os resultados físicos de validação do algoritmo genético são apresentados para 

dois componentes mecânicos. 

No quinto capítulo são apresentadas as conclusões do trabalho e discussões 

para futuros desenvolvimentos e estudos. 

Por fim, são apresentadas nos apêndices as listagens dos algoritmos 

implementados. 
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2 REVISÃO DA LITERATURA 

2.1. MÉTODO DE ELEMENTOS FINITOS 

O Método de Elementos Finitos (MEF) é hoje uma das técnicas mais bem-

sucedidas e estabelecidas para a solução de problemas complexos, que seriam 

muito difíceis de serem resolvidos analiticamente. Ele é aplicado com sucesso a 

diferentes áreas da engenharia como: engenharia civil, engenharia mecânica, 

engenharia nuclear, engenharia biomédica, hidrodinâmica, condução de calor, 

geomecânica etc. (BARKANOV 2001). 

A formulação matemática da física dos problemas requer o conhecimento 

prévio dos fenômenos envolvidos (por exemplo, as leis da mecânica clássica), e 

certos artifícios matemáticos, os quais permitem obter relações matemáticas entre 

as grandezas físicas ou químicas envolvidas, na grande maioria das vezes, através 

de equações diferenciais. 

Dependendo da complexidade do problema, a solução das equações 

diferenciais que regem o problema pode ser muito difícil de obter analiticamente 

(como por exemplo a solução de deslocamento de um ponto de uma estrutura de 

geometria complexa sob determinadas condições de contorno). Em muitos casos, os 

métodos aproximados de análise fornecem meios alternativos de obter a resposta. 

Entre os métodos mais populares estão o método das diferenças finitas, os métodos 

variacionais como os de Rayleigh-Ritz e de Galerkin e o Método de Elementos 

Finitos (MEF). 

A solução da equação diferencial no MEF é realizada dividindo o domínio 

geometricamente complexo em subdomínios de geometria mais simples, chamados 

de elementos finitos. Para cada elemento, funções de aproximação são obtidas, 

usando a ideia básica de que qualquer função contínua pode ser representada por 

uma combinação linear, em geral, de funções polinomiais. Estas funções de 

aproximação são usualmente chamadas de funções de interpolação.  

Relações algébricas dos parâmetros não determinados do problema (como o 

deslocamento em um problema de análise estrutural) são obtidas para o conjunto de 

elementos de forma a satisfazer as equações que regem a física do problema. Estes 

parâmetros não determinados são a solução do problema para um número finito e 
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específico de pontos do domínio, chamados de nós. Ao conjunto de nós e elementos 

que possuem relação de adjacência no domínio dá-se o nome de malha (REDDY 

2006). A Figura 1 mostra um exemplo de discretização do domínio em nós e 

elementos. 

 

 
Figura 1 – Exemplo de domínio discretizado em elementos finitos. 

O MEF produz muitas equações algébricas simultâneas, que são geradas e 

resolvidas com o auxílio de computadores. Os resultados são aproximados. 

Entretanto, a precisão melhora à medida que se aumenta o número de elementos 

utilizados para discretizar o domínio. Quanto maior o número de elementos maior 

será o número de equações a serem resolvidas, que exigem maior capacidade de 

processamento.  

Com o aumento da capacidade de processamento dos computadores ao 

longo dos anos, problemas cada vez mais complexos puderam ser resolvidos, o que 

ajudou a tornar popular o método (COOK et al. 1989). 

Existem muitos aplicativos comerciais que oferecem a solução completa 

para problemas de engenharia, permitindo a discretização da geometria inicial, 

atribuição de propriedades e condições de contorno para o problema, solução das 

equações algébricas obtidas pela discretização e pós-processamento dos resultados 

para que grandezas, como por exemplo a tensão em um problema de análise 

estrutural, possam ser visualizadas. 

Como o intuito deste trabalho não é a solução do problema de análise de 

tensões/deformações, mas sim o de reconstruir carregamentos utilizando este 

resultado, optou-se pela utilização do software comercial HyperWorks® para gerar a 

matriz de influência relacionada a cada componente, como é apresentado nos 

capítulos seguintes. 
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2.2. TRANSDUTORES DE FORÇA E RECONSTRUÇÃO DE CARGAS 

Enquanto a metodologia de análise por Elementos Finitos tornou-se muito 

mais sofisticada nos últimos anos, dando aos analistas maior fidelidade em seus 

modelos em termos de representação geométrica, o usuário ainda precisa fornecer 

ao modelo as informações de carregamento (HUNTER 2012).  

Para muitos componentes, os carregamentos podem ser calculados através 

de princípios e equações básicas. Hunter (2012) cita alguns exemplos como o 

cálculo de esforços de uma transmissão, cargas devido a pressão de um gás, 

cargas de rolamentos, forças devido a desbalanceamentos etc.. 

Embora estes possam ser cenários de carga muito complexos, eles são bem 

definidos. Entretanto, há uma grande quantidade de problemas da mecânica 

estrutural em que o carregamento vem de fontes externas de difícil, quando não 

impossível, quantificação. Domínios típicos desse fenômeno de carregamentos 

complexos incluem cargas de estrada de veículos (on/off road, aeroespacial, 

aquáticos). Outras estruturas como prédios e pontes também são submetidos a 

carregamentos complexos que normalmente são difíceis de quantificar (HUNTER 

2012). 

Para que um projeto e análise de engenharia possam ser confiáveis e de 

baixo custo, é imprescindível conhecer, na fase de projeto, os locais e magnitudes 

das forças transmitidas às estruturas. 

O conhecimento das cargas no início do processo de projeto é essencial 

para aumentar a eficiência do processo de otimização do projeto e análise, o que 

garante a integridade estrutural do produto. A previsão exata das cargas conduz a 

uma maior confiabilidade na simulação numérica, como a análise pelo MEF, que, por 

sua vez, reduz de forma significativa a dependência de ensaios experimentais. 

Estes, frequentemente caros e demorados (GUPTA, 2013). 

Uma vez que nem sempre é possível inserir uma célula de carga, é proposto 

que a própria estrutura e um conjunto de extensômetros possam ser usados para 

determinar cada uma das cargas aplicadas (forças e momentos) responsáveis pelas 

tensões medidas. Em essência, a estrutura torna-se o seu próprio transdutor 

(MASROOR e ZACHARY, 1991). 

Neste método, conhecido como reconstrução de cargas, o componente pode 

ser utilizado na montagem completa, de forma inalterada. Exceto pela colocação de 
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extensômetros na superfície, não é necessária qualquer modificação estrutural no 

componente. As deformações são medidas em posições e orientações específicas 

pré-determinadas, e a carga é calculada a partir destas leituras de deformação 

(ILANKAMBAN et al., 1996).  

2.2.1. Metodologia de reconstrução de cargas 

Uma das metodologias de reconstrução de cargas estáticas mais abordadas 

pela literatura assume que os carregamentos não ultrapassam o limite de 

proporcionalidade do material e que os deslocamentos da estrutura são pequenos o 

suficiente de forma que possa ser considerada linear a relação entre carregamentos 

aplicados e deformações medidas. Desta forma, o princípio da superposição linear, 

no qual estados de deformações para cada carregamento independente quando 

somados formam o estado de deformações final do componente, pode ser 

considerado válido (WICKHAM et al., 1994). 

Segundo Gupta (2013), a deformação em qualquer ponto de uma estrutura 

pode ser descrita idealmente como uma combinação linear dos carregamentos 

aplicados. Assim, 

 

  (2.1) 

 

em que  é um vetor de dimensão  de deformações longitudinais medidas 

em  diferentes posições na estrutura,  é a matriz de influência de dimensão 

, sendo que  representa a deformação na posição  devido ao 

carregamento generalizado e unitário aplicado na posição , e  é o vetor de 

dimensão  das  forças generalizadas aplicadas na estrutura. 

É importante salientar que as posições e direções das forças que se deseja 

reconstruir devem ser previamente determinadas. Isto exige um conhecimento 

prévio das possibilidades de forças e momentos que podem eventualmente 

acontecer em determinadas posições dos componentes. 

No exemplo visualizado na Figura 2, o componente 1 é solicitado pelo 

componente 2 através de uma conexão com pino. Assim, o princípio de 

superposição linear indica que as forças e momentos que podem solicitar o 
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componente 1 serão sempre uma combinação linear entre as forças nos 3 eixos 

coordenados e os momentos fletor e torsor.  

 
Figura 2 – Exemplo de determinação da posição e direção das possíveis forças que agem 
em um componente. 

Partindo do princípio de que a matriz  pode ser obtida por testes físicos 

ou virtuais, e que  é um conjunto de deformações medidas no teste físico para o 

qual se deseja reconstruir os carregamentos, o vetor de forças pode ser obtido 

invertendo-se a matriz de influência. Ou seja, 

 

 . (2.2) 

 

Entretanto, como a matriz  é, em geral, retangular , já que o 

número de posições de deformações medidas é, em geral, maior que o de forças, 

Masroor e Zachary (1990), Wickham et al. (1994) e Bicchi (1992) utilizam o conceito 

de inversão generalizada à esquerda (BEN-ISRAEL e GREVILLE, 2003) para obter 

o vetor :  

 

 . (2.3) 
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É fácil perceber, pelo fato de as deformações em cada extensômetro serem 

uma combinação linear das forças aplicadas na estrutura, que para que seja 

possível reconstruir um número  de carregamentos, são necessários  

extensômetros. Entretanto, somente esta restrição não é suficiente para garantir que 

todos os carregamentos desejados possam ser estimados, já que um ou mais 

extensômetros podem ser redundantes. 

Ilankamban et al (1996) fornece alguns exemplos de aplicação desta 

metodologia para uma viga simples e uma combinação de carregamentos 

conhecidos. A Figura 3 mostra o caso de um carregamento axial e um momento 

fletor sendo aplicados simultaneamente a uma viga engastada. Na Figura 3.a, a 

escolha do posicionamento dos extensômetros gera uma matriz de influência 

singular, o que impossibilita a sua inversão, que significa que as posições dos dois 

extensômetros não são independentes para os carregamentos aplicados. Na Figura 

3.b este problema é resolvido, já que o extensômetro inferior à viga passa a ter 

leitura oposta à do carregamento superior. 

 
 (a)  (b) 

Figura 3 – Carregamento axial e momento fletor em uma viga. a) matriz de influência 
singular. b) matriz de influência inversível. 
Fonte: modificado de Ilankamban et al (1996). 

 

Conforme mencionado, a matriz de influência  pode ser obtida a partir de 

testes físicos ou através de um modelo de elementos finitos. Para tanto, aplica-se 

um carregamento unitário em cada uma das direções que se deseja reconstruir, e 
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medem-se as deformações resultantes nos pontos e orientações previamente 

determinados (configuração candidata). Estas deformações são obtidas utilizando 

extensômetros ou pela leitura direta após a análise com o modelo virtual. Desta 

forma, é possível obter para cada um dos carregamentos unitários, a coluna 

correspondente da matriz  (HUNTER, 2012). 

 

2.2.2. Estimativas dos erros e projeto ótimo de experimentos 

Segundo Masroor e Zachary (1990) e Kutner et al. (2004), na prática, o vetor 

de deformações  contém erros de medição. Se os erros nas medições de 

deformação são independentes e identicamente distribuídos (o que normalmente 

ocorre em medições com extensômetros) e o desvio padrão de cada um deles é , a 

matriz de variância-covariância para as estimativas de carga, , pode ser 

escrita na forma (MASROOR e ZACHARY, 1990) 

 

 ,  (2.4) 

 

sendo  uma matriz  e  a variância na medida de deformações. 

Os termos diagonais  de  são a variância da 

estimativa de força ; os demais termos  (  da matriz são a covariância entre 

as estimativas de força  e . 

Como pode ser percebido na equação 2.4, inicialmente é possível reduzir a 

variância-covariância das estimativas de força minimizando a variância na medida 

de deformações. Entretanto, este erro está ligado diretamente aos extensômetros e 

dispositivos de aquisição de dados, e estará limitado à resolução e precisão destes.  

Segundo Gupta (2013), outra forma de reduzir a variância-covariância nas 

estimativas de força é através da minimização dos elementos da matriz , 

conhecida como matriz de dispersão (ANGELO, 2007), a qual depende apenas da 

configuração de extensômetros escolhida para se fazer a reconstrução dos 

carregamentos. 

Este conceito de minimização da variância baseado na otimização da matriz 

de dispersão é conhecido como projeto ótimo de experimentos e, segundo O’Brien 
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(2003), foi desenvolvido por Smith (1918), seguido por Kiefer e Wolfowitz (1959) e 

Fedorov (1972). 

 Muitos são os critérios, ou funções objetivo, utilizados para a obtenção de 

projetos experimentais ótimos. Tendo como referência a bibliografia na área, alguns 

dos mais discutidos para regressão linear são (WONG, 1993): 

 Critério D-ótimo: baseia-se na minimização do determinante da matriz de 

dispersão, , ou na maximização do determinante da matriz 

de informação . Este critério foi proposto por Wald (1943). 

Segundo Aguiar et al. (1995), quanto maior o determinante da matriz de 

informação, mais próximo da ortogonalidade estará a matriz de dispersão. 

Esta ortogonalidade garante a independência mútua dos coeficientes do 

modelo, e no caso específico da reconstrução de cargas significa a 

ortogonalidade entre as colunas da matriz . Desta forma, quando o 

número de extensômetros for igual ao de carregamentos (matriz  

quadrada), cada extensômetro responderia a apenas um carregamento. A 

minimização da matriz de dispersão também reduz a variância e covariância 

média das estimativas de carregamento, como é discutido no próximo 

capítulo. 

 Critério A-ótimo: baseado na minimização do traço da matriz de dispersão, 

, minimizando a dispersão média das estimativas dos 

parâmetros (ANGELO, 2007).  

 Critério E-ótimo: minimiza o máximo autovalor da matriz de dispersão 

 (ANGELO, 2007). 

A Tabela 1 sumariza os critérios para projeto experimental ótimo discutidos e suas 

funções objetivo, . 

Gupta (2013) cita que o critério para a obtenção do projeto experimental 

ótimo que tem maior relevância para o caso de reconstrução de cargas é o D-ótimo. 

A utilização deste critério é praticamente unânime para esta aplicação como pode 

ser visto nos trabalhos de Hunter (2012), Wickham et al. (1994) e Gupta (2013). 
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Tabela 1 – Critérios para projeto experimental ótimo. 

Critério Função objetivo  

D  

A  

E  

Fonte: modificado de Angelo (2007). 

 

Uma das vantagens do critério D-ótimo é a sua convergência monotônica, a 

qual é discutida por Yu (2010) e Gao et al. (2014), utilizando um algoritmo para o 

projeto D-ótimo.  

Wickham et al. (1994) reportam que, em testes comparativos, aplicando os 

projetos A e D ótimos, o primeiro distribui mais uniformemente as variâncias entre as 

estimativas das cargas, mas o segundo atinge melhor o objetivo de otimização na 

precisão geral do vetor de carregamentos. 

 

2.3. PROJETO ÓTIMO D-ÓTIMO 

O conjunto de posições  e orientações  de todos os extensômetros 

possíveis sobre a superfície de um componente constitui o domínio  do problema 

de otimização. A combinação de alguns destes extensômetros (número igual ou 

maior que o de forças que se deseja reconstruir) representa um projeto candidato 

possível. A partir de cada uma destas combinações possíveis, gera-se uma matriz 

de influência, , cujos componentes são as leituras de deformação de cada 

extensômetro deste conjunto candidato para cada carregamento que se deseja 

reconstruir. Esta matriz é utilizada para o cálculo da função objetivo, , a ser 

otimizada. Assim, o problema de otimização associado pode ser escrito como: 

 

Buscar  e  tal que, , (2.5) 

 

em que  representa a N-ésima matriz candidata ,  representa cada um dos 

seus elementos constituintes e  é a matriz de influência da configuração ótima de 

extensômetros. 
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Na prática, um número finito de pontos constitui o domínio do problema de 

otimização, já que as possíveis matrizes de influência, , são obtidas através de 

um número finito de extensômetros posicionados no contorno do componente. O 

problema de otimização se constitui, portanto, em um problema de otimização de 

variáveis discretas. 

A obtenção de todos as deformações no contorno de um componente é 

muito difícil de se realizar por testes físicos, já que envolveria medir dados para 

centenas de extensômetros para cada direção de carregamento possível para a 

estrutura. Para facilitar a obtenção destas deformações, um modelo de elementos 

finitos do componente em estudo é utilizado. Um extensômetro é posicionado em 

cada nó ou centroide de cada face do elemento que pertence ao contorno do 

componente, em um ângulo discreto em relação ao sistema de coordenadas locais 

da superfície do elemento (ex. 0º, 15º, 30º, ... ,165º).  

A combinação de todos os centroides e/ou nós multiplicados pelo número de 

ângulos possíveis fornece o tamanho do domínio discreto de busca do algoritmo de 

otimização (GUPTA, 2013). 

Segundo Arora (2004) existem dois tipos básicos de métodos de otimização 

com variáveis discretas: os enumerativos e estocásticos. Em alguns métodos 

enumerativos existe a possibilidade de que todo o domínio de candidatos seja 

varrido, como o algoritmo de troca clássico proposto por Fedorov (1972) utilizado 

para a obtenção de projetos experimentais ótimos do tipo D-ótimo. Esta abordagem 

é muito custosa computacionalmente. Por outro lado, muitos algoritmos da classe 

dos enumerativos usam estratégias e regras heurísticas para reduzir o número de 

tentativas, como os algoritmos multiplicativos e do tipo “Cocktail”, também utilizados 

para obtenção de projetos experimentais ótimos. Já os métodos estocásticos são, 

em geral, baseados em fenômenos naturais, como o método de recozimento 

simulado (simulated annealing) ou algoritmos genéticos.  

2.3.1. Algoritmos de otimização para projeto D-ótimo 

Mandal et al. (2014) faz uma revisão bibliográfica dos algoritmos de 

otimização para projeto D-ótimo mais utilizados nos últimos anos. As metodologias 

de alguns destes algoritmos são apresentadas a seguir. 
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2.3.1.1. Algoritmos de troca 

Os algoritmos de troca modificam iterativamente o projeto corrente, 

eliminando pontos de projeto existentes e adicionando novos pontos do espaço de 

projeto , minimizando a função objetivo . Algoritmos baseados neste método são 

apresentados nos trabalhos de Nguyen e Miller (1992), Smucker et al. (2011), Gupta 

(2013) e Liao (2001). Gupta (2013) apresenta o algoritmo de forma a reduzir o 

número de cálculos e que  consiste em: 

1. Escolher uma matriz  inicial ; 

2. Calcular ; 

3. Calcular ; 

4. Adicionar uma linha  de um novo candidato à matriz  e calcular o 

novo determinante da matriz de dispersão  através da equação 

 

   (2.6) 

 

e a nova matriz de dispersão  através da equação 

 

  ;  (2.7) 

 

5. Remover uma linha  de candidatos da matriz  e calcular o novo 

determinante da matriz de dispersão  através da equação 

 

   (2.8) 

 

e a nova matriz de dispersão  através da equação 

 

  ;  (2.9) 
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Desta forma, o determinante não necessita ser recalculado a cada nova 

iteração; 

6. Se  for menor que o da iteração anterior, armazenar esta posição de 

extensômetro; 

7. Repetir os passos 4 e 6 até que todo o domínio de candidatos tenha sido 

testado para todas as linhas da matriz . 

Mandal et al. (2014) cita que alguns problemas comuns deste tipo de 

algoritmo são sua baixa taxa de convergência e que, frequentemente, não existe 

garantia de que o resultado encontrado é o ótimo global. Miller e Nguyen (1994) 

também relatam que este tipo de algoritmo encontra ótimos locais e, quando 

executados repetidas vezes com inícios randômicos, eventualmente encontram um 

ótimo global. Além disto, conforme evidenciam Broudiscou et al (1996) e Ramos 

(2011), para um grande número de variáveis (ex. número de extensômetros maior 

que 30) pode ser muito difícil encontrar a resposta por este método.  

 

2.3.1.2. Algoritmos multiplicativos e do tipo “Cocktail” 

Nos algoritmos multiplicativos, pesos são atribuídos ao vetor das variáveis 

de projeto, e estes são atualizados a cada iteração por um fator multiplicativo, de 

forma que mais peso é adicionado ao candidato de projeto que traz maior ganho à 

função objetivo (MANDAL et al., 2014). Dette et al. (2008) propõe dois algoritmos 

multiplicativos e provam sua convergência monotônica. Mandal e Torsney (2006) 

propõe um algoritmo multiplicativo baseado em agrupamentos (Clusters). Mandal et 

al. (2014) observa que estes algoritmos, apesar de simples, são em geral de lenta 

convergência. 

Algoritmos do tipo Cocktail usam combinações de algoritmos de troca e 

multiplicativos. Yu (2011) propôs um algoritmo que é uma simples concatenação 

entre uma iteração do algoritmo de troca, seguido de uma iteração de um algoritmo 

multiplicativo e uma terceira do algoritmo chamado de Troca do Vizinho Mais 

Próximo (Nearest Neighbor Exchange – NNE). Mandal et al. (2014) afirma que este 

tipo de algoritmo é mais rápido que algoritmos tradicionais. 
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2.3.1.3. Algoritmos genéticos 

Desenvolvido por John Holland e seus colegas da Universidade de Michigan 

na década de 70, os algoritmos genéticos (AG) imitam a teoria evolucionista 

proposta por Charles Darwin (MANDAL et al. 2014). Os mecanismos específicos do 

algoritmo usam a linguagem da biologia e sua implementação imita as operações 

genéticas (ARORA, 2004). 

Para o entendimento do algoritmo, algumas definições são necessárias, as 

quais são adaptadas nesta seção a partir das definições de Mandal et al. (2014), 

Broudiscou et al. (1996) e Arora (2004). Estas definições são: 

 Gene: é um escalar do vetor de projeto ótimo, no caso da reconstrução de 

cargas é um dos extensômetros do domínio , em uma determinada posição 

e orientação. 

 Cromossomo: representa um projeto do sistema (um indivíduo da 

população), neste caso, uma configuração de extensômetros. 

 População: é o conjunto de cromossomos da iteração corrente. O tamanho 

da população é definido de acordo com a experiência de uso e do tipo de 

problema a ser resolvido. 

 Geração: é cada iteração do algoritmo genético.  

O procedimento geral de otimização através de AG consiste em:  

1. Obtenção da população inicial através de algum método randômico, em que 

os genes (número atribuído aos extensômetros possíveis) são 

representados por números binários ou não, dependendo do tipo de 

codificação adotada e os cromossomos ou indivíduos são a combinação 

destes.  

2. Calcula-se o valor da aptidão para cada cromossomo, seleciona-se o melhor 

indivíduo e remove-se o pior para gerar a próxima população. No caso da 

reconstrução de cargas, a aptidão é calculada de acordo com uma das 

funções objetivo para projetos experimentais ótimos conforme discutido na 

seção 2.2.2.  
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3. Realiza-se a reprodução para transformar a população atual em uma nova 

geração, através dos mecanismos de seleção, mutação e cruzamento. 

 Seleção: selecionam-se os pares de cromossomos que irão dar origem à 

nova geração de acordo com suas aptidões, quanto maior a aptidão de 

um cromossomo maior a probabilidade de ele ser selecionado. 

 Cruzamento: um par de cromossomos é dividido em um ou mais pontos 

aleatórios e são combinados a primeira parte de um com a segunda 

parte do outro e vice-versa, conforme exemplificado na Figura 4. 

 Mutação: seleciona-se um fator binário do cromossomo aleatoriamente e 

realiza-se a permuta de 0 para 1 e vice-versa. No caso de outros tipos 

de codificação, outros métodos de mutação são utilizados. As 

quantidades de mutação e cruzamento em cada reprodução podem ser 

ajustadas para melhorar a performance do algoritmo. 

4. Repetem-se os passos 2 e 3 até que um critério de parada ou um número 

máximo de iterações seja atingido. 

 
Figura 4 – Operação de cruzamento com um corte. 
Fonte: modificado de Arora (2004). 

Com base nos trabalhos de Xu (1999) e Arora (2014), a seguir são 

apresentados alguns pontos-chave na construção de algoritmos genéticos, que 

determinam sua eficiência na solução de problemas de otimização: 

 Codificação - a forma como cada candidato é codificado para processamento 

no algoritmo. Alguns tipos citados são:  

1. Binária: Neste tipo de codificação cada gene é representado através da sua 

sequência binária de bits, é um dos mais utilizados e citados na literatura. 

2. Inteira: Quando o espaço de projeto é constituído por números inteiros, 

dois pontos consecutivos e próximos podem ter representações binárias 
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muito diferentes. Considere por exemplo que em uma dada iteração os pais 

selecionados foram os números 15 e 16, cujas representações binárias são 

01111 e 10000 respectivamente. Se o cruzamento entre eles ocorrer 

apenas no primeiro bit, por exemplo, os filhos seriam os binários 11111 e 

00000, que correspondem aos valores 31 e 0. Estes pontos são muito 

distantes da geração anterior, tornando difícil a convergência do algoritmo. 

Desta forma, para estes casos é mais interessante utilizar o próprio número 

inteiro ou uma codificação binária cinza. 

3. Binária cinza: esta codificação adapta a codificação binária através de um 

algoritmo específico de forma que entre dois números inteiros consecutivos 

não exista mais do que 1 bit de diferença.  

A Tabela 2 apresenta um comparativo de números inteiros nas 3 

representações discutidas. 

 

 Métodos de seleção: é o processo pelo qual os pais são selecionados de 

acordo com sua aptidão para dar origem à prole. Este passo tem especial 

importância na convergência do modelo uma vez que ele afeta a diversidade 

da população. Se o método impuser uma pressão seletiva muito alta sobre os 

indivíduos mais aptos, os melhores cromossomos serão selecionados com 

muito mais frequência para formar a nova população, reduzindo a diversidade 

da população e antecipando a satisfação do critério de parada. Por outro lado, 

com pouca pressão seletiva cromossomos com menor aptidão serão 

selecionados mais vezes, aumentando muito a diversidade da população e 

retardando a parada. Alguns métodos de seleção são (XU,1999): 

 

1. Seleção por roleta: é o método tradicional proposto por John Holland, que 

consiste em atribuir uma fatia de uma roleta imaginária para cada 

cromossomo da população, cujo tamanho do pedaço é proporcional à sua 

aptidão individual em relação aos outros elementos da população. A roleta 

é girada N (tamanho da população) vezes. Após cada rotação, o 

cromossomo apontado pelo marcador da roleta é selecionado. Na Figura 5 

é apresentada uma representação gráfica deste processo. 

2. Seleção de acordo com a classificação (rank): neste método a aptidão é 

substituída por uma classificação associada a ela. Os indivíduos são 



34 
 

ordenados de acordo com a sua aptidão e recebem uma classificação de 

acordo com a ordem em que aparecem. São atribuídas probabilidades de 

seleção de cada cromossomo baseada no seu “rank” e, a partir daí, utiliza-

se o método da roleta com as novas probabilidades para selecionar os 

cromossomos. Dois métodos que se enquadram nesta categoria são o 

linear de Baker e o de Reeves. 

3. Seleção por competição: Este método seleciona um conjunto aleatório de 

cromossomos da população de dimensão  e seleciona o melhor deles. 

Em geral, esta dimensão  é 2 e a pressão seletiva aumenta a medida que 

se aumenta . 

 

 Modo de substituição da população - a forma como os cromossomos de uma 

geração são substituídos pelos novos. Alguns tipos citados são:  

1. Substituição de regime permanente: neste método apenas uma fração dos 

cromossomos menos aptos da população é substituída pelos novos 

cromossomos gerados durante a reprodução. 

2. Estratégia de evolução : neste método os  filhos competem com 

os  pais em uma população intermediária de tamanho  . 

3. Elitismo: é possível que alguns cromossomos de gerações anteriores 

sejam mais aptos do que os da nova geração. Estes indivíduos seriam 

perdidos na nova geração ou poderiam ser arruinados nos processos de 

cruzamento e mutação. Para que esse efeito seja evitado, um número de 

cromossomos é guardado e inserido na nova geração sempre que estes 

forem mais aptos. 

 

 Cruzamento - após o pareamento randômico dos pais, as suas cargas 

genéticas são combinadas para gerar um novo indivíduo. O cruzamento por 

um ponto que foi explicado anteriormente e exemplificado na Figura 4 é um 

dos mais comuns. Uma desvantagem deste método é que ele possui o 

chamado “efeito de cauda”, que impossibilita que algumas combinações 

possam ser obtidas. Outras formas de cruzamento são: 

1. Cruzamento por dois pontos: é similar ao cruzamento por um ponto, mas 

neste caso 2 pontos são selecionados e o segmento resultante entre os 
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cortes são invertidos entre os dois pais. Este método permite uma maior 

possibilidade de combinações. 

2. Cruzamento uniforme: neste método qualquer gene em qualquer posição 

pode ser trocado entre os pais de acordo com uma probabilidade. Apesar 

de o método ter a habilidade de gerar qualquer combinação possível entre 

dois pais, ele pode ser disruptivo para a evolução da aptidão no algoritmo. 

 

 Mutação - após o cruzamento ter sido executado, alguns genes são 

transformados de acordo com uma probabilidade . Este artifício introduz 

diversidade na população e previne a convergência prematura. Alguns 

métodos de mutação discutidos são: 

1. Mutação uniforme: este é o método mais convencional de mutação, em que 

cada gene tem igual probabilidade de sofrer mutação. Para cada gene, um 

número aleatório  é gerado e o gene é mutado se . Para algoritmos 

com codificação binária o gene é alterado de 0 para 1 e vice-versa. Para as 

codificações por números inteiros ou reais, o gene é substituído por outro 

randomicamente escolhido do domínio de projeto. 

2. Mutação de contorno - este método é similar à mutação uniforme para 

codificações por números inteiros ou reais. Entretanto, o novo gene gerado 

será o elemento do contorno superior ou inferior do domínio, com igual 

probabilidade de ocorrência para ambos. 

 
Tabela 2 – Representações de números de acordo com suas codificações. 

Valor Inteiro Representação 
binária 

Representação binária 
cinza 

1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 

Fonte: Modificado de Xu (1999). 
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Figura 5 – Exemplo de seleção pelo método da roleta. 
Fonte: modificado de Arora (2004). 
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3 MATERIAIS E MÉTODOS 

3.1. METODOLOGIA DA SELEÇÃO DA CONFIGURAÇÃO ÓTIMA DE 

EXTENSÔMETROS 

A metodologia para a seleção dos pontos ótimos para colocação de 

extensômetros em uma estrutura utilizando-o como o seu próprio transdutor de 

forças, proposta deste projeto, é similar àquela desenvolvida por Gupta (2013) e 

Hunter (2012), e é dividida em alguns passos principais. Estes passos são 

apresentados neste capítulo.  

3.1.1. Geração do domínio de extensômetros candidatos 

Um modelo de elementos finitos, construído com o auxílio do pré-

processador HyperMesh® e analisado utilizando o solver RADIOSS®, permitirá a 

geração do domínio candidato.  

O componente no qual se deseja otimizar as posições de extensômetros é 

discretizado, obtendo-se assim a malha de elementos finitos. O conjunto contendo 

os centroides das faces ou nó sobre o contorno dos elementos gerados compõe o 

domínio de posições possíveis para os extensômetros. Cada ângulo de orientação 

discreto em relação a um dos eixos do sistema de coordenadas local do elemento 

ou nó é um extensômetro candidato.  

A análise é feita aplicando as devidas condições de contorno no componente 

de acordo com as interpretações da física do problema. São aplicados casos de 

carga com carregamentos unitários em cada uma das posições e direções das 

forças que se deseja reconstruir. Para cada um destes casos de carga o tensor de 

deformações é obtido para o centroide ou nós de todos os elementos do contorno. 

Para o caso de modelos com elementos tridimensionais, as deformações 

superficiais do componente são obtidas adicionando-se uma camada de elementos 

de casca ou membrana com espessura muito fina (que não afete de forma 

significativa a rigidez e dimensões do componente) e com as mesmas propriedades 

dos elementos tridimensionais. Neste estudo foram adotados elementos lineares do 
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tipo casca e espessura de 0,01 mm como padrão para todos os modelos 

tridimensionais. 

Na Figura 6 pode ser vista a viga engastada, exemplificada na Figura 2, 

modelada no pré-processador HyperMesh® com os carregamentos unitários 

conforme interpretado a partir da peça real. A análise foi executada com o 

processador RADIOSS® e o arquivo de saída da análise fornece o tensor de 

deformações centroidais para cada elemento conforme mostrado na Figura 7. 

 
Figura 6 – Modelo de uma viga engastada com carregamentos unitários e condiçôes de 
contorno. 

 
Figura 7 – Representação dos tensores de deformação nos elementos da membrana do 
componente para um carregamento unitário. 
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Para facilitar a obtenção das matrizes de influência candidatas, foi utilizado o 

software nCode®, o qual permite a localização de extensômetros virtuais no modelo. 

Estes fornecem o pós-processamento da resposta de deformação em uma posição e 

ângulo específico do modelo para um dado carregamento, permitindo a importação 

direta destes valores no algoritmo de otimização desenvolvido. 

O cálculo das deformações  em cada uma das direções discretas  de 

extensômetros sobre cada elemento é calculado pelo nCode® através do tensor de 

deformações resultante da análise e o círculo de Mohr na forma (HIBBELER, 2010) 

  ,  (3.1) 

em que  é qualquer ângulo em relação ao eixo x do sistema de coordenadas do 

elemento,  a deformação elementar na direção x,  a deformação elementar na 

direção y e  a deformação cisalhante. 

Utilizando um algoritmo implementado em linguagem TCL (Tool Command 

Language - Linguagem de Comandos de Ferramentas), em conjunto com o software 

HyperMesh®, possibilita a geração de um arquivo de texto contendo a posição e o 

ângulo de cada extensômetro candidato. Este arquivo de texto é lido diretamente 

pelo nCode®, o qual posiciona os extensômetros automaticamente tendo como base 

os seguintes campos que são gerados pelo algoritmo: 

 Posição do extensômetro: o usuário escolhe entre posicionar o extensômetro 

no centroide de cada elemento ou nos nós da malha. 

 Número de identificação: número atribuído pelo pré-processador durante a 

discretização do modelo para cada nó/elemento selecionado pelo usuário 

para compor o domínio de candidatos. 

 Tipo de extensômetro: para o caso em questão considera-se a utilização 

apenas de extensômetros uniaxiais. 

 Orientação: Este vetor orienta a direção de cada extensômetro. É 

determinado baseado na projeção do vetor normal à face do elemento ou do 

nó (calculado como a média dos vetores normais elementares adjacentes) no 

sistema de coordenadas globais. Neste caso, dado o vetor normal 
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 do nó ou elemento no sistema de coordenadas globais, o algoritmo 

determina a orientação, , do extensômetro de ângulo  baseado no menor 

escalar absoluto entre as componentes . Considere o exemplo em que 

 é o menor escalar absoluto. Assim, 

 

   se  . (3.2) 

Neste caso o vetor de orientação  é igual ao vetor unitário  na direção x do 

sistema de coordenadas globais, uma vez que a componente x do vetor 

normal à face do elemento é o menor escalar absoluto. O vetor de orientação 

proveniente do algoritmo gerador de domínio será sempre igual a um dos 

vetores unitários do sistema de coordenadas globais. Este vetor é projetado 

pelo software nCode® no plano cuja normal é , e o vetor final  de orientação 

para o extensômetro de ângulo  no sistema de coordenadas global será 

  (3.3) 

 

em que  representa o produto vetorial. A Figura 8 ilustra um exemplo deste 

processo. 

 Incremento de ângulo: O ângulo é calculado em sentido anti-horário em 

relação ao vetor normal  do elemento partindo do vetor de orientação , e o 

tamanho do incremento  é definido pelo usuário. 

Dependendo do componente estrutural a ser submetido ao procedimento de 

reconstrução de cargas, pode ser interessante excluir do domínio regiões de 

gradiente de tensão muito grande. Isso, porque um pequeno erro de posicionamento 

durante a colagem do extensômetro pode gerar uma leitura de tensão muito 

diferente da obtida pelo MEF. Além disso, nestas regiões, o erro do modelo de 

elementos finitos pode ser grande. Dessa forma, regiões próximas a soldas, raios 

muito pequenos e descontinuidades geométricas como cantos vivos devem ser 

excluídos do domínio. 

No algoritmo gerador do domínio de candidatos, a identificação destas 

regiões de descontinuidade é feita através do ângulo entre os vetores normais de 
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dois elementos adjacentes, o que se convencionou chamar “arestas características” 

do componente.  

 

 
Figura 8 – Exemplo da determinação do ângulo de orientação do extensômetro de ângulo 

. 

A aresta entre dois elementos adjacentes é considerada uma aresta 

característica do modelo caso o ângulo entre os vetores normais for maior do que 

um valor especificado pelo usuário. Um exemplo da representação das arestas 

características em um componente pode ser visto na Figura 9, para um ângulo limite 

de 30º. 

 
Figura 9 – Exemplo de arestas características de um componente para um ângulo limite 
de 30º.  
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3.2. DETERMINAÇÃO DA CONFIGURAÇÃO ÓTIMA DOS EXTENSÔMETROS 

3.2.1. Função objetivo 

O critério de projeto experimental D-ótimo foi selecionado como função 

objetivo para a otimização da configuração de extensômetros. Nesse caso, o 

problema de otimização pode ser posto como: 

 

Buscar  e  tal que, , (3.4) 

 

em que  e  representam o conjunto de posições e orientações para uma dada 

configuração candidata , os quais geram a N-ésima matriz de influência candidata 

,  cada um dos seus elementos constituintes e  a matriz de influência da 

configuração ótima de extensômetros. 

Como já exposto na seção 2.2.2, este critério é o que apresenta maior 

relevância para o procedimento de otimização de extensômetros para reconstrução 

de cargas. Wickham et al. (1994) cita como motivo para esta relevância que a raiz 

quadrada do determinante da matriz de dispersão  é proporcional 

à variância generalizada das estimativas de força. 

Segundo Aguiar et al. (1995), quando um modelo de regressão é ajustado a 

dados experimentais, os erros experimentais são transmitidos aos coeficientes, no 

nosso caso, as estimativas de força. Geometricamente, os coeficientes e seus erros 

são representados por elipsoides cujos eixos descrevem estes erros, conforme 

exemplificado na Figura 10. Desta forma, quanto menores os eixos desta elipsoide, 

mais precisos são os coeficientes. O volume desta elipsoide é proporcional à raiz 

quadrada do determinante da matriz de dispersão. Desta forma, ao minimizar o 

determinante da matriz de dispersão, minimiza-se o volume da elipsoide. 

3.2.2. Algoritmo de otimização 

A metodologia adotada para a obtenção da configuração ótima dos 

extensômetros para a reconstrução de cargas utiliza um algoritmo genético. Esta 

escolha se deve principalmente à sua capacidade de obter boas aproximações para 
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projetos ótimos globais, permitindo sua utilização para geometrias complexas que 

possam conter mínimos locais e grande número de elementos no modelo de 

elementos finitos. 

 

 
Figura 10 – Elipsoide de confiança para as estimativas de força. 
Fonte: modificado de Aguiar et al. (1995). 

O algoritmo foi desenvolvido na linguagem Python, aproveitando sua 

integração com o software nCode® e permitindo a simplificação da leitura do 

resultado de deformações do modelo de elementos finitos. 

Como cada gene do domínio é representado por um número inteiro, optou-

se por não codificá-los, uma vez que, conforme discutido por Xu (1999), a 

codificação de alguns números inteiros muito próximos pode ter uma representação 

binária muito diferente, comprometendo a convergência do algoritmo. 

Para fazer a seleção dos pais que irão gerar a nova população através do 

cruzamento, utilizou-se o método de classificação linear de Baker (XU, 1999) ao 

invés da aptidão de cada cromossomo. Esta escolha se deu devido ao fato de que a 

aptidão calculada baseada no determinante da matriz de dispersão gera números 

muito grandes, e entre dois cromossomos de uma mesma população pode haver 

uma diferença de algumas ordens decimais, o que causaria uma pressão muito 

grande do cromossomo mais apto sobre os demais. A pressão do mais apto pode 

ser ajustada para obter uma boa taxa de convergência sem comprometer a 

diversidade das gerações. 
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Neste método, cada cromossomo é ordenado em ordem crescente de 

aptidão de 1 a N, e a expectativa de seleção para cada cromossomo é dada pela 

equação (XU, 1999) 

  ,  (3.5) 

em que  é o número de Baker e representa a expectativa de seleção para o 

cromossomo de ordem N, e j é a posição do cromossomo dentro da população.  

Segundo Xu (1999), Baker recomenda que o valor de 1,1 seja utilizado para 

o número de Baker. Dentro do intervalo [1;2], quanto maior o valor, maior a pressão 

do mais apto sobre o menos apto na seleção, permitindo que o usuário ajuste de 

acordo com cada problema. Valores no intervalo [0;1] para o número de Baker 

produzirão as mesmas expectativas, entretanto, neste caso deve-se ordenar os 

cromossomos em ordem decrescente de aptidão. Esta última foi a forma adotada 

neste estudo. Na Tabela 3 a expectativa de seleção  é calculada para alguns 

valores de número de Baker em uma população de 6 cromossomos. 

Tabela 3 – Expectativa de seleção do mètodo de classificação linear de baker. 

Expectativa  
Número de Baker 0,7 0,8 0,9 1,1 1,2 1,3 

O
rd

em
 (j

) 

1 1,3 1,2 1,1 0,90 0,80 0,70 
2 1,18 1,12 1,06 0,94 1,12 0,82 
3 1,06 1,04 1,02 0,98 1,04 0,94 
4 0,94 0,96 0,98 1,02 0,96 1,06 
5 0,82 0,88 0,94 1,06 0,88 1,18 
6 0,7 0,8 0,9 1,10 0,80 1,30 

 

Após a classificação dos cromossomos através de suas aptidões, o número 

de Baker é atribuído a cada cromossomo de acordo com a sua ordem na população. 

O método da Amostragem Universal Estocástica é utilizado para selecionar 

randomicamente os cromossomos que farão parte do cruzamento. 

Este método de amostragem foi proposto por James Baker (XU, 1999) e é 

baseado no método clássico da roleta, sendo que cada fatia desta roleta terá 

tamanho proporcional à expectativa R(j) calculada para cada cromossomo. 

Diferentemente do método da roleta clássica, neste caso ela possui N marcadores 
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igualmente espaçados. Desta forma, a roleta é girada apenas uma vez e os 

cromossomos apontados pelos N marcadores são selecionados. No exemplo da  

Figura 11, seis marcadores são utilizados, uma vez que a população possui 6 

cromossomos. Os valores de P de 1 a 6 representam a expectativa R(j) de seleção 

de cada cromossomo. Quando a roleta é girada, os marcadores assumem a posição 

mostrada em vermelho, e o cromossomo 1 é selecionado 2 vezes, os cromossomos 

2, 3, 4 e 6 são selecionados 1 vez e o cromossomo 5 não é selecionado. 

 
Figura 11 – Método da amostragem universal estocástica. 

Com o objetivo de que o melhor cromossomo de cada geração não seja 

perdido durante os processos de cruzamento e mutação, o modelo de substituição 

da geração com elitismo foi utilizado. Desta forma, alguns dos melhores 

cromossomos são eleitos e serão levados à próxima geração inalterados. 

Os cromossomos selecionados são pareados aleatoriamente e o 

cruzamento por dois pontos é realizado. Este tipo de cruzamento foi selecionado por 

permitir um maior número de combinações entre os pais que o cruzamento simples 

por um ponto. No caso específico deste estudo, trocam-se os números inteiros que 

representam diretamente cada extensômetro entre dois cromossomos. Um exemplo 

deste processo é mostrado na Tabela 4. 

Uma taxa de mutação é atribuída pelo usuário e representa a probabilidade 

que cada gene tem de sofrer mutação. Cada gene da população é testado 
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individualmente e um número aleatório no intervalo [0,1] é atribuído a ele. Caso o 

número seja menor do que a taxa, o gene é escolhido para sofrer mutação. 

Uma vez que os genes são números inteiros e não binários, os genes 

selecionados de cada cromossomo são substituídos por um número inteiro que 

representa outra posição e orientação é escolhido randomicamente do domínio. 

Tabela 4 – Exemplo de cruzamento por dois pontos. 

Pais Filhos 

[x1,x2, x3, x4, x5, x6] [x1,x2, y3, y4, x5, x6] 

[y1,y2, y3, y4, y5, y6] [y1,y2, x3, x4, y5, y6] 

Fonte: modificado de Xu (1999). 

Os processos evolucionários aplicados à população podem gerar genes 

idênticos em um mesmo cromossomo, o que não é desejável no caso específico de 

seleção de extensômetros. Isto pode significar na prática não poder reconstruir uma 

certa quantidade de carregamentos, caso o número de extensômetros passe a ser 

menor que ela. 

Para solucionar este problema, uma etapa de reparação é realizada após a 

mutação. Os extensômetros são ordenados para cada tipo de força aplicada no 

modelo, do maior para o menor valor absoluto de deformação, o que garante que 

estes candidatos têm uma boa resposta para o carregamento que eles devem 

descrever. Uma porcentagem dos extensômetros, determinada pelo usuário, com 

maior valor absoluto de deformação em cada carregamento é guardada na memória, 

e para cada gene repetido encontrado no cromossomo, este é reparado 

substituindo-o por outro randomicamente escolhido da lista previamente 

armazenada. Este procedimento tende a aumentar a aptidão média da geração, 

além de garantir a diversidade, impedindo a convergência para mínimos locais. 

O critério de parada do algoritmo é baseado na estabilização da média das 

aptidões da população, e é calculado como a diferença da média dos logaritmos das 

aptidões do modelo entre duas gerações consecutivas de acordo com a equação: 

 

  (3.5) 
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em que  representa o determinante de cada um dos cromossomos da atual 

geração,  o determinante dos cromossomos da geração anterior e  o número 

total de cromossomos na população. 

O usuário define um erro admissível para a análise e quando  for menor do 

que o erro a análise é encerrada. Além disto, também é possível determinar um 

número máximo de iterações como critério de convergência secundário. 

Para analisar a eficiência do algoritmo genético, o algoritmo de troca de 

Fedorov foi também implementado, utilizando o procedimento mostrado na seção 

2.3.1.1. A implementação computacional segue a forma apresentada por 

Triefenbach (2008). 

3.3. TESTES FÍSICOS DE VALIDAÇÃO DA METODOLOGIA 

Para a validação da metodologia desenvolvida, dois componentes 

estruturais foram utilizados. Um componente proveniente de um trator produzido 

pela empresa CNH Industrial Latin America Ltda. e um suporte construído de forma 

similar à estrutura testada por Hunter (2012). Estes são mostrados na Figura 12.a e 

Figura 12.b. 

Para estes componentes, foram gerados os modelos em elementos finitos 

utilizando os softwares HyperMesh® e RADIOSS®, aplicando os carregamentos 

unitários que melhor representam a combinação possível de carregamentos reais 

sofridos por eles durante os testes. 

 

   
Figura 12 – Estruturas testadas: (a)-alavanca de um trator, (b)-suporte construído. 

 

(a) (b) 



48 
 

O modelo de elementos finitos para a alavanca foi gerado com elementos 

tridimensionais lineares e uma fina camada externa de 0,01m de espessura de 

elementos de casca lineares. Considerou-se que apenas os pontos A e B indicados 

na Figura 13 irão receber carga. 

Para cada um destes pontos, é aplicado um carregamento unitário em cada 

um dos eixos coordenados, perfazendo um total de 6 casos de carga individuais. 

Estes carregamentos permitem reconstruir qualquer combinação de forças que 

possam ocorrer nos dois pontos. Uma porção do tubo central, que foi utilizada para 

fixação do componente durante os testes, teve todos os seus graus de liberdade 

restritos na análise. 

 
Figura 13 – Modelo em elementos finitos da alavanca. 

O componente foi fixado em uma bancada de testes na mesma porção 

restrita no modelo de elementos finitos. Dois dispositivos que permitem a adição de 

massas foram pendurados nos pontos A e B da estrutura. A estrutura foi também 

posicionada em diferentes ângulos de inclinação e rotação de forma que a direção 

da força resultante pudesse ser comparada com a direção da força reconstruída. A 

Figura 14 mostra o componente já posicionado no dispositivo de teste e os ângulos 

de inclinação possíveis. A combinação de carregamentos testados pode ser vista na 

Tabela 5. 
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Figura 14 – Dispositivo de teste para a alavanca. 

 
Tabela 5 – Combinaçâo de carregamentos aplicados durante os testes da alavanca. 

Caso de carga Massa em A 
[kg] 

Massa em B 
[kg] 

Rotação  
[graus] 

Inclinação  
[graus] 

1 11,56 0 0 0 
2 11,56 0 45 0 
3 11,56 0 0 -45 
4 11,56 11,60 0 0 
5 11,56 11,60 -37 0 
6 11,56 11,60 0 -30 
7 0 11,60 0 0 
8 0 11,60 -45 0 
9 0 11,60 0 -38 

 

Foram aplicados 12 extensômetros uniaxiais da marca Excel, modelo PA-06-

125BA-120L de 6 mm de comprimento e 120  (Ohms) de resistência no 

componente, dentre os quais 6 posições foram determinados pelo algoritmo genético 

e os demais foram selecionados aleatoriamente. Desta forma, o erro da 

reconstrução em relação aos carregamentos reais aplicados pode ser calculado com 

combinações aleatórias de 6 extensômetros entre os 12, e comparado com a 

localização ótima. 
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O modelo de elementos finitos para o suporte foi gerado com elementos 

lineares do tipo casca considerando que somente a extremidade superior irá receber 

esforço. Um carregamento unitário em cada um dos eixos coordenados foi aplicado 

a este ponto, perfazendo 3 casos de carga individuais. Estes carregamentos 

permitem reconstruir qualquer direção e intensidade de força que possa ocorrer. Os 

dois furos do tubo inferior foram utilizados para fixar a estrutura ao chão do 

laboratório, e os mesmos foram restritos em todos os seus graus de liberdade na 

análise. O modelo gerado pode ser visto na Figura 15. 

 

 
Figura 15 – Modelo em elementos finitos para o suporte. 

 

O mesmo suporte e pesos utilizados no teste da alavanca foram utilizados 

para testar o suporte. O dispositivo de teste pode ser visto na Figura 16. A 

combinação de carregamentos testados pode ser vista na Tabela 6. 
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Figura 16 – Dispositivo de teste para o suporte. 

 
Tabela 6 – Combinação de carregamentos aplicados durante os testes do suporte. 

Caso de carga Massa em A 
[kg] 

Ângulo em 
relação à vertical 

[graus] 
1 11,55 2,5 
2 21,60 2,5 
3 31,60 2,5 
4 41,70 2,5 

 

Foram aplicados 14 extensômetros uniaxiais da marca Excel, modelo PA-06-

125BA-120L de 6 mm de comprimento e 120  (Ohms) de resistência no 

componente, sendo 10 destes determinados pelo algoritmo de otimização e os 

demais posicionados aleatoriamente.  

Os dois componentes foram fabricados utilizando aços normatizados pela 

CNH Industrial Latin America Ltda.. Desta forma, as propriedades lineares dos 

materiais, utilizadas nas simulações com carregamentos unitários, seguem os 

valores estabelecidos em norma. São eles: 

 Módulo de Young:  207 GPa 
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 Coeficiente de Poisson:  0,29 

 Densidade:  7820 kg/m3 

O sistema de aquisição de dados da marca Lynx modelo DLG4000 e seu 

software de aquisição AqDAnalysis® foram utilizados em todas as medições de 

deformação dos extensômetros. Uma imagem do equipamento pode ser vista na 

Figura 17. 

 
Figura 17 – Sistema de aquisição Lynx DLG4000. 

Todos os testes foram realizados nos laboratórios da CNH Industrial Latin 

America Ltda. e todos os itens utilizados nos testes, conforme descrito nesta seção, 

pertencem a ela. 

 

3.4. RECONSTRUÇÃO DOS CARREGAMENTOS MEDIDOS 

A reconstrução dos carregamentos a partir dos dados de deformação 

medidos fisicamente nos testes foi feita com o processador específico do software 

nCode®. O mesmo modelo de elementos finitos utilizado para a obtenção da 

configuração ótima de extensômetros nos componentes testados foi também 

utilizado na reconstrução dos carregamentos.  

O procedimento baseia-se na inversão da matriz de influência conforme 

demonstrado no capítulo 2, utilizando para tal a equação 
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 . (3.5) 

 

O software nCode® possui uma estrutura de blocos que podem ser 

conectados para construir uma sequência lógica de processamento. A Figura 18 

mostra como a reconstrução ocorre. O modelo de elementos finitos é introduzido no 

bloco 1. O bloco 2 recebe a configuração de extensômetros que foi obtida através do 

algoritmo de otimização, e calcula a matriz de influência para ela. No bloco 3 são 

inseridas as deformações medidas fisicamente em cada um dos extensômetros. O 

bloco 4 faz a inversão da matriz de influência proveniente do bloco 2 e multiplica 

pelo vetor de deformações para cada instante de tempo provenientes do bloco 3. 

Nos blocos 5 e 6 os vetores de força resultante podem ser visualizados e 

exportados. 

 
Figura 18 – Esquema da reconstrução dos carregamentos no nCode®. 
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4 RESULTADOS E DISCUSSÃO 

4.1. ESTRUTURA COMPUTACIONAL 

A estrutura computacional foi desenvolvida em duas partes, a geração do 

domínio de candidatos e a otimização do melhor conjunto de extensômetros para 

reconstrução de cargas, integradas através de um arquivo de texto. Um fluxograma 

exemplificando como todo o processo funciona é mostrado na Figura 19. 

 

 
Figura 19 – Fluxograma da estrutura computacional desenvolvida. 

 

 

4.1.1. Gerador de Domínio de Candidatos 

O algoritmo implementado na linguagem TCL aproveita comandos macro 

implementados no pré-processador HyperMesh®. Inicialmente, o usuário seleciona o 

ângulo limite para as arestas características do componente. Se o ângulo entre as 

normais de dois elementos adjacentes for maior que o valor preestabelecido, os dois 

nós que compõe esta aresta são armazenados. Na sequência o número de carreiras 

adjacentes à aresta que deverão ser excluídos do domínio deve ser informado. Caso 

os resultados de tensão em uma análise prévia com os carregamentos unitários 
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mostre um gradiente de tensão muito grande e próximo a uma aresta, mais de uma 

carreira de elementos adjacente a ela pode ser removido. Na Figura 20 pode-se 

observar um exemplo da interface com o usuário para a seleção do ângulo limite, as 

arestas selecionadas, o número de linhas adjacentes e os elementos selecionados 

para exclusão. 

O próximo passo após a remoção dos elementos indesejáveis é a seleção 

dos elementos/nós que farão parte do domínio. Nesta etapa, o usuário pode 

selecionar todos os elementos/nós restantes ou apenas uma parcela que julgue de 

maior interesse para a reconstrução de cargas. Regiões inacessíveis fisicamente ou 

que possam estar expostas a contato com outros componentes podem ser excluídas 

neste passo. Um exemplo de seleção parcial de nós para a geração do domínio de 

candidatos pode ser visto na Figura 21.  

Após a seleção dos nós, um painel de seleção permite determinar o 

incremento de ângulo para o qual serão gerados os extensômetros virtuais 

candidatos. Este ângulo pode ser qualquer valor no intervalo [0º;180º[. Um arquivo 

de texto que será interpretado pelo software nCode® é gerado contendo para cada 

extensômetro virtual candidato as informações da posição (número do nó ou 

elemento), orientação global inicial do elemento de ângulo 0º e incremento de 

ângulo, conforme discutido no capítulo anterior. Um fluxograma do processo pode 

ser visto na Figura 22. 
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a) Painel de seleção do 

ângulo limite para a 

determinação das arestas 

características. 

 

b) Painel de seleção do 

número de carreiras de 

elementos adjacentes às 

arestas características a 

serem excluídas do 

domínio. 

 

c) Exemplo de arestas 

características em amarelo. 

 

d) Exemplo de elementos 

selecionados para remoção 

do domínio utilizando-se 

apenas uma carreira 

adjacente às arestas 

características. 

Figura 20 – Exemplo de remoçâo de elementos adjacentes a arestas características. 

 

 



57 
 

 
Figura 21 – Exemplo de nós selecionados para a construçâo do domínio de candidatos. 

  

 

4.1.2. Processo de Otimização  

Neste processo quatro blocos principais do nCode® foram utilizados: 

 1 – Bloco de importação do arquivo de saída da análise de elementos finitos e 

do arquivo de texto com os extensômetros do domínio;  

 2 – Bloco de cálculo de deformações em cada extensômetro a partir do tensor 

de deformações de cada elemento;  

 3 – Bloco com o algoritmo de otimização implementado em Python;  

 4 – Bloco gráfico que permite visualizar a evolução da função objetivo ao 

término do processo. 
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Figura 22 – Fluxograma do algorítmo gerador de domínio. 

 

Uma imagem do fluxo de processamento do software nCode® pode ser 

visualizado na Figura 23. Os blocos de 1 a 4 estão dispostos na sequência da direita 

para a esquerda. No bloco 1, o modelo de elementos finitos é interpretado e 

convertido para um formato que o processador do nCode® é capaz de compreender. 

Além disso, o arquivo de texto, o qual foi gerado na etapa de determinação do 

domínio de configurações candidatas, é interpretado e cada extensômetro virtual é 

posicionado como pode ser visualizado na Figura 24. 

 

 
Figura 23 – Estrutura de blocos do software ncode® utilizada no processo de otimização. 

 

Início do algoritmo. 

Seleção dos componentes candidatos. 

Arestas características são determinadas pelo algoritmo baseado 
no ângulo limite definido pelo usuário. 

Elementos adjacentes às arestas são removidos do domínio de 
candidatos em número de carreiras definido pelo usuário. 

Usuário seleciona as porções de nós ou elementos do modelo que 
irão compor o domínio. 

Usuário determina incrementos de ângulo. 

Arquivo de texto com a extensão *.asg é escrito. 

Fim do algoritmo. 
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No bloco 2 a deformação em cada extensômetro virtual é calculada para 

cada carregamento unitário disponível no arquivo de saída do modelo de elementos 

finitos.  

No bloco 3 o algoritmo de otimização é interpretado. Uma interface que 

permite selecionar o método (Fedorov ou AG) e os parâmetros do algoritmo de 

otimização foi implementada. Um panorama dos parâmetros disponibilizados para o 

usuário é mostrado na Figura 25. 

 

 

 
Figura 24 – Detalhe da visualizaçâo do domìnio de extensômetros conforme interpretada 
pelo software nCode®. 

 

 



60 
 

 
Figura 25 – Parâmetros do algorítmo de otimizaçâo disponibilizados ao usuário. 

 
 
Nesta etapa do algoritmo de otimização, todos os processos descritos na 

seção 3.2.2 são executados. Um pseudocódigo do algoritmo implementado é 

mostrado na Figura 26. 

Por fim, o bloco 4 permite exportar e visualizar a evolução da função objetivo 

do cromossomo mais apto e da média dos logaritmos das aptidões dos 

cromossomos da população ao longo das gerações. Um exemplo dos gráficos 

gerados é mostrado na Figura 27. 

 



61 
 

Início  
 

Para cada força ( ) do modelo: 
 Encontrar "bestSetPercentage" 
 
Gerar população inicial  

Para i = 1 até “populationSize”: 
  Para j = 1 até “SetSize” : 

   gene[i,j] = extensômetro aleatório  
  
Enquanto iteração < “maxIterations” e  > “admissibleError”: 

Para cada cromossomo[i] em “populationSize”: 
Calcular aptidão   

   
Ordenar cromossomos em ordem decrescente de aptidão   

   
Para i = 1 até “elitism”: 

cromossomo[i] = eleitos[i] 
   

Para cada cromossomo[i] em “populationSize”: 
Calcula expectativa R[i] de seleção para “rankNumber” 

 
marcador = aleatório [0-1] 
Para i = 1 até “populationSize”: 

S[i] = S[i-1] + R[i] 
Enquanto marcador <= S[i]: 

selecionados = cromossomo[i] 
marcador = marcador + i 

 
Parear cromossomos aleatoriamente 
 
pos1 = posição aleatória [0 até “SetSize”-1] 
pos2 = posição aleatória [Pos1 até “SetSize”] 
Para i = 1 até “populationSize”: 

Cromossomo1(genes pos1-pos2) = Cromossomo2(genes pos1-
pos2) 
Cromossomo2(genes pos1-pos2) = Cromossomo1(genes pos1-
pos2) 
 

Para i = 1 até “populationSize”: 
Para j = 1 até “SetSize” :  

marcador = aleatório [0-1] 
Se marcador < “mutationRate”: 

gene[i,j] = extensômetro aleatório  
 
Para cada cromossomo[i] em “populationSize”: 

Para j = 1 até “SetSize”:  
Para k = 1 até “SetSize”: 

Se gene[j] = gene[k]: 
gene[i,j] = extensômetro  "bestSetPercentage" 

 
Escrever “OutputFile” 
 

Fim 
Figura 26 – Pseudocódigo do algorítmo de otimizaçâo. 

 

Aptidão 

Elitismo 

Seleção 

Cruzamento 

Mutação 

Reparação 
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Figura 27 – Gráficos gerados ao final do processo de otimização. 

 

4.2. ANÁLISE DA EFICIÊNCIA DO ALGORÍTMO IMPLEMENTADO 

Para que fosse possível realizar uma avaliação da eficiência do algoritmo e 

da influência de cada uma de suas variáveis na aptidão final obtida, o exemplo da 

barra mostrado na Figura 6 e na Figura 7 foi utilizado. Este modelo possui 5 

carregamentos aplicados no centro do furo, representando a conexão por pino na 

extremidade. Desta forma, são necessários pelo menos 5 extensômetros para 

realizar a reconstrução de forças. 

Para este modelo, o domínio de configurações candidatas foi gerado tendo 

como referência o centroide dos elementos da membrana exterior com um 

incremento de ângulo de 15º. Uma imagem do domínio de candidatos gerados pode 

ser vista na Figura 28. Ao todo, 7128 extensômetros candidatos foram gerados. 

Inicialmente, um estudo dos parâmetros do algoritmo genético foi realizado. 

Para este estudo, considerou-se como objetivo obter uma configuração com 5 

extensômetros, o mínimo necessário para reconstruir-se as 5 entradas de força 

possíveis. 

 



63 
 

 
Figura 28 – Domínio de candidatos para modelo de teste. 

 

4.2.1. Influência do tamanho da população na eficiência do algoritmo 

A influência do tamanho da população foi avaliada considerando os demais 

parâmetros do algoritmo constantes e com valores recomendados encontrados na 

bibliografia (XU, 1999). Estes parâmetros são mostrados na Tabela 7. 

 
Tabela 7 – Parâmetros do algoritmo genético para análise do tamanho da população. 

Erro admissível 0,001 
Porcentagem dos melhores extensômetros 0,2 

Elitismo 1 
Taxa de mutação 0,2 
Número de Baker 0,9 
Número máximo de iterações 2000 

 

O algoritmo foi executado para tamanho de populações de 5, 10, 20, 50, 100, 

500 e 1000 cromossomos (indivíduos), sendo repetido por 3 vezes para cada uma. 

Foram avaliados o tempo de processamento e a aptidão do cromossomo mais apto 

da população ao final do processamento. A aptidão foi normalizada dividindo-se o 

menor valor encontrado entre todas as análises pela aptidão de cada análise. Desta 

forma, quanto mais próximo de 1 o valor da aptidão normalizada, mais próximo do 

ótimo global está o cromossomo mais apto. No gráfico da Figura 29 são 
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apresentados os resultados para cada processamento e as curvas médias de 

valores de tempo e de aptidão normalizada para cada tamanho de população. 

Observa-se que, apesar de a melhor aptidão ser encontrada para uma 

população de 20 cromossomos, os menores tempos de processamento são 

encontrados para populações com 50 cromossomos.  

Observa-se ainda uma redução da dispersão dos resultados de aptidão para 

populações maiores. Para populações de 500 cromossomos encontramos uma boa 

relação entre a aptidão média, o tempo de processamento médio e a dispersão dos 

resultados. 

 

 
Figura 29 – Influência do tamanho da população no tempo de processamento e aptidão 
final. 

 

4.2.2. Influência da porcentagem dos melhores extensômetros no processo de 

reparação do cruzamento 

A influência da porcentagem dos extensômetros com maior valor absoluto de 

deformação, que são usados na etapa de reparação do algoritmo, foi avaliada 

considerando os demais parâmetros do algoritmo constantes e com os valores 

mostrados na Tabela 8.  
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O algoritmo foi executado para as porcentagens de 10%, 20%, 50% e 100% 

(o valor de 100% significa que qualquer extensômetro do domínio pode ser 

selecionado), sendo repetido por 4 vezes para cada uma. Optou-se por uma 

população de 5 cromossomos apenas, por ser essa a que apresenta maiores 

tempos de processamento e baixa eficiência. Desta forma, a influência da 

porcentagem dos melhores extensômetros na melhoria da aptidão média e na 

redução do tempo de convergência do algoritmo ficaria mais evidente. Foram 

avaliados o tempo de processamento e a aptidão do cromossomo mais apto da 

população ao final do processamento. No gráfico da Figura 30 são apresentados os 

resultados para cada processamento e as curvas médias de valores de tempo e de 

aptidão normalizada para cada porcentagem. 

 
Tabela 8 – Parâmetros do algoritmo genético para análise da porcentagem dos melhores 
extensômetros. 

Erro admissível 0,001 
Tamanho da população 5 
Elitismo 1 
Taxa de mutação 0,2 
Número de Baker 0,9 
Numero máximo de iterações 2000 

 

 

Figura 30 – Influência da porcentagem dos melhores extensômetros no tempo de 
processamento e aptidão final. 
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Como pode ser observado, não fica evidente uma influência significativa da 

porcentagem dos extensômetros com maior valor absoluto de deformação no tempo 

de processamento ou na evolução da aptidão do cromossomo mais apto, uma vez 

que os resultados apresentam dispersão e médias similares para todas as 

porcentagens. 

 

4.2.3. Influência da taxa de mutação na eficiência do algoritmo 

A influência da taxa de mutação na eficiência do algoritmo foi avaliada 

considerando-se os demais parâmetros do algoritmo constantes e com os valores 

mostrados na Tabela 9. 

 
Tabela 9 – Parâmetros do algoritmo genético para análise da taxa de mutação. 

Erro admissível 0,001 
Tamanho da população 5 
Elitismo 1 
Porcentagem dos melhores extensômetros 0,2 
Número de Baker 0,9 
Numero máximo de iterações 2000 

 

O algoritmo foi executado para as taxas de mutação 0,1, 0,2, 0,3 e 0,5, 

sendo repetido por 4 vezes para cada uma. 

No gráfico da Figura 31 são apresentados os resultados para cada 

processamento e as curvas médias de valores de tempo e de aptidão normalizada 

para cada taxa de mutação.  

Observa-se que existe um valor ótimo de aptidão para a taxa de mutação de 

0.2, entretanto os valores de tempo de processamento para esta taxa de mutação é 

em média maior que as demais. Já para as taxas de mutação maiores que 0,2 

observa-se que a aptidão média tende a reduzir. Não foram observados problemas 

de convergência do algoritmo para taxas de mutação até 0,5. 
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Figura 31 – Influência da taxa de mutaçâo no tempo de processamento e aptidão final.

 

4.2.4. Influência do elitismo na eficiência do algoritmo 

A influência do elitismo na eficiência do algoritmo foi avaliada considerando 

os demais parâmetros do algoritmo constantes e com os valores mostrados na 

Tabela 10.  

O algoritmo foi executado para 0, 1, 2 e 3 cromossomos eleitos, sendo 

repetido por 4 vezes para cada ponto.   

No gráfico da Figura 32 são apresentados os resultados para cada 

processamento e as curvas médias de valores de tempo e de aptidão normalizada 

para cada valor de elitismo. 

 
Tabela 10 – Parâmetros do algoritmo genético para análise do elitismo. 

Erro admissível 0,001 
Tamanho da população 5 
Taxa de mutação 0,2 
Porcentagem dos melhores extensômetros 0,2 
Número de Baker 0,9 
Numero máximo de iterações 2000 
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Para todas as análises com valor de elitismo 0 o algoritmo sofreu parada 

prematura, desta forma, os valores de aptidão são mostrados como nulos no gráfico. 

Para valores de elitismo de 1 a 3, observa-se uma tendência de crescimento 

da aptidão média normalizada com o aumento do número de cromossomos eleitos, 

sem demonstrar uma influência significativa nos tempos de processamento. 

 

 
Figura 32 – Influência do elitismo no tempo de processamento e aptidão final. 

 

4.2.5. Influência do número de Baker na eficiência do algoritmo 

A influência do número de Baker na eficiência do algoritmo foi avaliada 

considerando-se os demais parâmetros do algoritmo constantes e com os valores 

mostrados na Tabela 11. O algoritmo foi executado para números de Baker de 0,3, 

0,5, 0,7 e 0,9, sendo repetido por 4 vezes para cada ponto. 

 

Tabela 11 – Parâmetros do algoritmo genético para análise do número de baker. 

Erro admissível 0,001 
Tamanho da população 5 
Taxa de mutação 0,2 
Porcentagem dos melhores extensômetros 0,2 
Elitismo 1 
Numero máximo de iterações 2000 
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No gráfico da Figura 33 são apresentados os resultados para cada 

processamento e para a média de valores de tempo e de aptidão normalizada para 

cada valor de elitismo. 

 

 
Figura 33 – Influência do número de Baker no tempo de processamento e aptidão final. 

 

Observa-se que valores abaixo de 0,5 para o número de Baker geram uma 

pressão muito grande do cromossomo mais apto sobre o menos apto. Desta forma, 

o algoritmo converge prematuramente para um mínimo local, atingindo aptidões 

normalizadas menores. 

Por outro lado, valores acima de 0,7 colocam muito pouca pressão do mais 

apto sobre o menos apto, aumentando os tempos de processamento, sem contribuir 

com a melhoria da aptidão média. O valor de 0,7 tem a melhor relação entre 

aptidões alcançadas e tempo de processamento. 

4.2.6. Influência do erro admissível na eficiência do algoritmo 

A influência do erro admissível na eficiência do algoritmo foi avaliada 

considerando-se os demais parâmetros do algoritmo constantes e com os valores 
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mostrados na Tabela 12. Diferentemente dos demais casos de estudo, para esta 

avaliação optou-se por aumentar o número máximo de iterações admissíveis, de 

forma a garantir que a parada do algoritmo ocorra sempre pelo critério de parada. O 

algoritmo foi executado para erros admissíveis de 0,1, 0,01, 0,001 e 0,0001, sendo 

repetido por 4 vezes para cada ponto. No gráfico da Figura 34 são apresentados os 

resultados para cada processamento e as curvas médias de valores de tempo e de 

aptidão normalizada para cada valor de erro admissível. 

Tabela 12 – Parâmetros do algoritmo genético para análise do erro admissivel. 

Tamanho da população 5 
Taxa de mutação 0,2 
Porcentagem dos melhores extensômetros 0,2 
Elitismo 1 
Número de Baker 0,9 
Numero máximo de iterações 10000 

 

 
Figura 34 – Influência do erro admissivel no tempo de processamento e aptidão final. 
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valores de erro admissível da ordem de 0,0001 para problemas com domínios muito 

grandes e complexos. 

 

4.2.7. Análise das eficiências dos algoritmos proposto e de Fedorov 

Visando realizar de uma análise comparativa entre as eficiências do 

algoritmo proposto e o de Fedorov foram utilizados ensaios numéricos utilizando os 

parâmetros com os valores mostrados na Tabela 13. 

Os valores escolhidos foram baseados nos resultados apresentados nas 

análises de eficiência de cada parâmetro. Na prática, o usuário do algoritmo irá se 

basear na experiência coletada em análises anteriores e nos estudos do presente 

trabalho. Desta forma, recomenda-se que a análise seja repetida algumas vezes 

variando-se os parâmetros para aumentar a probabilidade de encontrar o ótimo 

global. 

Tabela 13 – Parâmetros do algorìtmo genético para comparativo de eficiência com o de 
Fedorov. 

Erro admissível 0,001 
Porcentagem dos melhores extensômetros 0,2 

Elitismo 2 
Taxa de mutação 0,2 
Tamanho da população 200 
Número de Baker 0,7 
Numero máximo de iterações 2000 

 

Foram executadas 10 análises com cada algoritmo. A aptidão foi 

normalizada pelo menor valor encontrado entre todas as análises com os dois 

algoritmos. Na Figura 35 são mostrados os valores de aptidão normalizada em 

função do tempo de processamento para todas as análises. 

Observa-se que o tempo de processamento é praticamente constante para o 

algoritmo de Fedorov, devido ao fato de que, neste algoritmo, o número de iterações 

é constante e igual ao número de extensômetros que se deseja obter multiplicado 

pelo número de candidatos do domínio. Este tempo de processamento é até 100 

vezes inferior aos tempos dispendidos para as análises com o AG. 
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Figura 35 – Plotagem de aptidão normalizada final em função do tempo de processamento 
para os algoritmos de Fedorov e Genético. 

Entretanto, fica também evidente que o valor médio das aptidões 

normalizadas encontrada com o AG é aproximadamente 13 vezes maior do que no 

algoritmo de Fedorov. Nas piores rodadas de análise, o resultado da aptidão do 

algoritmo de Fedorov chega a ser até 33000 vezes pior que a do AG. Este resultado 

evidencia que, frequentemente, o algoritmo de Fedorov converge para configurações 

de mínimos locais. 

 

4.2.8. Análise da aptidão normalizada para diferentes quantidades de 

extensômetros na configuração ótima 

Conforme evidenciado por Gupta (2013), o aumento no número de 

extensômetros utilizados para reconstruir certo número de carregamentos reduz 

consideravelmente o determinante da matriz de dispersão. Desta forma, foram 

realizados alguns testes utilizando os parâmetros mostrados na Tabela 13 e 

variando o número de extensômetros que se deseja obter na configuração final. 
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Foram realizados testes considerando 5, 10 e 15 extensômetros, sendo cada 

ponto repetido 5 vezes. Na Figura 36 são mostrados os valores de aptidão 

normalizada em função do tempo de processamento para todas as análises. 

Observa-se um aumento de até 10 vezes no valor da aptidão normalizada 

quando se utiliza o dobro do número mínimo de extensômetros (neste caso, o 

mínimo são 5 extensômetros, uma vez que se deseja reconstruir 5 carregamentos), 

e de até 100 vezes quando se utiliza três vezes o número mínimo de extensômetros. 

Além disto, o tempo de processamento também é reduzido consideravelmente 

aumentando-se o número de extensômetros da configuração ótima. Desta forma, 

sempre que o usuário tiver disponibilidade de utilizar maior número de 

extensômetros do que o número de forças que se deseja reconstruir, é 

recomendável que o faça. 

 

 
Figura 36 – Influência do número de extensômetros no conjunto ótimo no tempo de 
processamento e aptidão normalizada final. 
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4.3. TESTES FÍSICOS DE VALIDAÇÃO DA METODOLOGIA IMPLEMENTADA 

Os dois componentes apresentados na seção 3.3 foram testados fisicamente 

e foram coletadas as deformações em cada um dos extensômetros para cada caso 

de carga. 

Após a aquisição, os dados adquiridos foram tratados e as forças 

reconstruídas para cada caso de carga utilizando o software nCode®. Os resultados 

são apresentados nesta seção. 

 

4.3.1. Análise dos resultados do teste para a alavanca 

Inicialmente foi utilizado o modelo de elementos finitos da alavanca para a 

geração do domínio de configurações de extensômetros candidatas. Tendo este 

domínio, foi aplicado o processo de otimização utilizando o algoritmo genético. Uma 

série de testes consecutivos variando os parâmetros do algoritmo foi realizada, com 

o objetivo de obter um conjunto com 6 extensômetros (número mínimo para se 

reconstruir os 6 carregamentos propostos, conforme mostrado na Figura 13). 

A configuração com a maior aptidão entre todos os testes foi implementada 

fisicamente. Além destes, outras 6 posições aleatórias foram escolhidas para 

permitir uma análise comparativa da eficiência do conjunto ótimo em relação a 

outros conjuntos aleatórios. Nas figuras Figura 37 e Figura 38 são mostrados os 

extensômetros da configuração ótima (extensômetros de 1 a 6), e os demais 

selecionados (extensômetros de 7 a 9), em sua representação virtual, ao lado de 

fotos dos mesmos aplicados fisicamente no componente. 

Os valores médios de deformações lidas em cada extensômetro para cada 

um dos testes realizados podem ser vistos na Tabela 14. 

A partir das deformações medidas foi feita a reconstrução dos 

carregamentos, e calculados os ângulos de inclinação  e rotação  da peça 

baseados na direção da força resultante média entre os dois pontos de 

carregamento. 

Para que fosse possível fazer uma avaliação da eficiência do conjunto ótimo 

de extensômetros em relação a outros possíveis conjuntos, 5 combinações 
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aleatórias de extensômetros entre os 12 instrumentados foram geradas. A Tabela 15 

mostra as combinações selecionadas. 

 

Tabela 14 – Deformações medidas com extensômetros nos testes com a alavanca. 

  Casos de carga 
  1 2 3 4 5 6 7 8 9 

Ex
te

ns
ôm

et
ro

s 

1 0,69 0,79 -1,67 -101,15 -132,76 -77,81 -103,01 -132,54 -83,18 
2 -1,13 -1,45 -2,37 -21,84 -18,49 -160,63 -24,78 -12,63 -215,25 
3 -0,27 -0,45 0,12 17,16 45,18 10,95 19,48 50,38 13,82 
4 -139,56 -154,52 91,00 -125,46 -42,56 18,28 1,48 -0,79 -0,72 
5 -7,24 -14,88 196,49 20,55 27,92 145,07 -0,69 -2,36 -0,88 
6 -116,64 -72,06 -295,12 -49,65 -32,36 -156,39 -1,68 -0,88 -0,01 
7 -4,99 6,64 -122,78 -18,30 -25,88 -92,65 -9,11 -8,85 -9,26 
8 11,13 18,31 -83,95 8,22 -5,41 -49,78 -2,18 -2,31 -2,30 
9 43,64 27,32 24,75 48,00 36,81 40,62 0,03 -0,31 -0,06 

10 -29,67 -25,88 -29,77 -19,58 -9,08 -17,26 8,79 8,29 12,78 
11 33,82 27,05 16,68 37,65 29,74 31,06 8,26 8,12 10,94 
12 6,17 -6,02 116,27 24,27 29,00 97,19 10,63 10,73 11,68 

* Valores em μm/m. 

 

Para que fosse possível fazer uma avaliação da eficiência do conjunto ótimo 

de extensômetros em relação a outros possíveis conjuntos, 5 combinações 

aleatórias de extensômetros entre os 12 instrumentados foram geradas. A Tabela 15 

mostra as combinações selecionadas. 

Tabela 15 – Combinações aleatórias de extensômetros da alavanca. 

Combinação 1 Combinação 2 Combinação 3 Combinação 4 Combinação 5 
2 1 1 2 2 
3 2 2 4 3 
5 4 3 7 5 
6 8 6 8 9 
7 9 9 9 10 

12 11 12 12 11 
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Figura 37 – Extensômetros aplicados à alavanca virtualmente e fisicamente. 

 



77 
 

 
Figura 38 – Extensômetros aplicados à alavanca virtualmente e fisicamente. 
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Os valores de forças e ângulos reconstruídos para a configuração ótima de 

extensômetros podem ser vistos na Tabela 16. A partir do conhecimento das 

massas aplicadas aos dois braços da alavanca (ver Tabela 5), foram calculados os 

valores de força esperados. A diferença entre estes valores esperados de força e os 

valores reconstruídos foram também calculados e podem ser vistos na Tabela 17. 

Tabela 16 – Força e ângulos reconstruídos para a configuração ótima de extensômetros. 

Casos 
de 

carga 

Valores esperados Valores reconstruídos 
Força em 

A [N] 
Força em 

B [N] 
Rotação 
[graus] 

Inclinação 
[graus] 

Força 
em A [N] 

Força em 
B [N] 

Rotação 
[graus] 

Inclinação 
[graus] 

1 113,4 0,0 0 0 103,2 0,9 -20 11 
2 113,4 0,0 45 0 76,2 1,0 27 14 
3 113,4 0,0 0 -45 128,7 2,9 -30 -38 
4 113,4 113,8 0 0 131,3 148,4 11 -9 
5 113,4 113,8 -37 0 76,3 155,9 -7 -3 
6 113,4 113,8 0 -30 134,2 132,2 13 -27 
7 0,0 113,8 0 0 6,6 147,1 9 -4 
8 0,0 113,8 -45 0 7,3 149,3 -12 -2 
9 0,0 113,8 0 -38 1,7 145,4 11 -33 

 

Tabela 17 – Diferença de força e ângulos entre os valores esperados e reconstruídos para 
a configuração ótima de extensômetros. 

Casos de carga 
Diferença de 

força em A [N] 
Diferença de 

força em B [N] 
Diferença de 

rotação [graus] 
Diferença de 

inclinação 
[graus] 

1 10,23 0,87 19,95 10,72 
2 37,24 0,97 17,94 13,75 
3 15,28 2,89 30,18 7,43 
4 17,86 34,62 10,96 9,26 
5 37,13 42,11 30,40 2,70 
6 20,80 18,41 12,80 3,04 
7 6,58 33,33 9,34 3,59 
8 7,27 35,47 33,16 2,08 
9 1,69 31,62 10,68 4,73 

 

Observa-se que as diferenças de forças reconstruídas em relação aos 

valores esperados é de até 37%. As diferenças para os ângulos de rotação chega a 

82% e para os ângulos de inclinação 16%. 

Alguns fatores contribuem para estes erros elevados: 



79 
 

 Erros associados à fabricação do componente, uma vez que ele tem pequenas 

dimensões e passa por vários processos de conformação e soldagem; 

 Erros associados ao posicionamento dos extensômetros em relação à posição 

no modelo de elementos finitos; 

 Erros associados às medições propriamente ditas dos extensômetros; 

 A alta rigidez da estrutura, fazendo com que os valores de deformação lidos 

fossem muito pequenos para os carregamentos da estrutura e, 

consequentemente, piorando a relação sinal-ruído da leitura. 

 Erros associados ao MEF no cálculo de deformações. 

A diferença entre os valores esperados de força e ângulo e os valores 

reconstruídos para as combinações de 1 a 5 foram também calculados e podem ser 

vistos nas tabelas Tabela 18 a Tabela 22. 

Tabela 18 – Diferença de força e ângulos entre os valores esperados e reconstruídos para 
a combinação 1 de extensômetros. 

Casos de carga 
Diferença de 

força em A [N] 
Diferença de 

força em B [N] 
Diferença de 

rotação 
[graus] 

Diferença de 
inclinação 

[graus] 
1 40,10 15307410,88 80,56 5,90 
2 48,78 10221898,01 32,15 23,05 
3 117,98 9899341,47 39,94 24,88 
4 39,65 18500551,76 22,03 5,80 
5 6,86 8563691,25 59,02 0,16 
6 2,19 11574027,99 22,02 30,16 
7 129,25 4463680,52 22,03 0,16 
8 143,55 5541282,10 67,02 0,16 
9 142,54 6701889,71 22,02 38,16 

 
Tabela 19 – Diferença de força e ângulos entre os valores esperados e reconstruídos para 
a combinação 2 de extensômetros. 

Casos de carga 
Diferença de 

força em A [N] 
Diferença de 

força em B [N] 
Diferença de 

rotação 
[graus] 

Diferença de 
inclinação 

[graus] 
1 13,58 1936,01 0,97 2,22 
2 9,89 2232,51 20,44 3,82 
3 73,73 122,51 51,12 20,40 
4 11,73 2697,14 58,75 2,55 
5 43,82 2636,12 96,49 1,35 
6 101,60 1504,59 59,50 35,17 
7 3,08 2071,01 59,43 1,54 
8 9,62 2251,12 104,95 1,32 
9 7,97 2034,11 58,94 43,11 
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Tabela 20 – Diferença de força e ângulos entre os valores esperados e reconstruídos para 
a combinação 3 de extensômetros. 

Casos de carga 
Diferença de 

força em A [N] 
Diferença de 

força em B [N] 
Diferença de 

rotação 
[graus] 

Diferença de 
inclinação 

[graus] 
1 2822,69 0,49 87,10 54,42 
2 366,11 1,04 123,44 25,24 
3 775,24 2,81 78,70 45,71 
4 17858,43 37,07 11,17 20,70 
5 16995,21 44,19 30,85 1,86 
6 18836,73 19,86 13,03 4,51 
7 2410,96 33,63 9,37 3,46 
8 2411,03 35,73 33,24 1,96 
9 2856,72 31,78 10,72 4,94 

 
Tabela 21 – Diferença de força e ângulos entre os valores esperados e reconstruídos para 
a combinação 4 de extensômetros. 

Casos de carga 
Diferença de 

força em A [N] 
Diferença de 

força em B [N] 
Diferença de 

rotação 
[graus] 

Diferença de 
inclinação 

[graus] 
1 0,07 2113042363,73 29,83 6,58 
2 56,32 1142451740,60 24,79 9,58 
3 79,92 829634077,90 51,97 21,11 
4 10,27 3802564913,60 64,78 1,60 
5 25,53 2539212806,95 101,78 1,37 
6 26,32 3266618304,83 64,78 31,37 
7 81,50 424089365,55 64,73 1,37 
8 83,84 537495610,59 109,75 1,37 
9 93,34 722971738,38 64,76 39,37 

 
Tabela 22 – Diferença de força e ângulos entre os valores esperados e reconstruídos para 
a combinação 5 de extensômetros. 

Casos de carga 
Diferença de 

força em A [N] 
Diferença de 

força em B [N] 
Diferença de 

rotação 
[graus] 

Diferença de 
inclinação 

[graus] 
1 15,31 546,95 28,55 10,39 
2 8,28 660,62 20,83 15,62 
3 32,07 107,79 39,66 8,48 
4 106,87 590,68 24,34 3,24 
5 161,55 562,38 65,35 0,91 
6 136,13 196,63 25,60 42,30 
7 214,79 462,16 25,23 1,21 
8 207,02 526,55 74,48 0,76 
9 240,34 491,52 24,31 46,40 
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Como pode ser observado, a diferença entre as forças reconstruídas e os 

valores esperados para todas as combinações é muito maior do que a diferença 

encontrada com a configuração ótima. 

Algumas das combinações aleatórias geradas mostram valores exorbitantes 

para as forças em um dos braços da alavanca. Isto ocorre porque estas 

combinações não são capazes de reconstruir adequadamente todas as forças que 

ocorrem nos dois braços da alavanca, mesmo que a configuração tenha a 

quantidade mínima de extensômetros necessária. 

Isto prova a necessidade de se utilizar um algoritmo de otimização para 

determinar os pontos ótimos de instrumentação, já que a escolha de pontos de 

forma aleatória, ou até mesmo utilizando a experiência do experimentador, pode 

levar a configurações que não são capazes de reconstruir 1 ou mais carregamentos 

desejados. 

Considerando as combinações capazes de reconstruir as forças para os dois 

braços da alavanca, como a combinação 5 por exemplo, a diferença de valores de 

força entre as reconstruídas e as esperadas é até 35 vezes maior do que a diferença 

encontrada na configuração ótima de extensômetros. Esta observação evidencia a 

redução da variância que a configuração ótima promove. 

 

4.3.2. Análise dos resultados de teste para o suporte 

Assim como para a alavanca, o modelo de elementos finitos do suporte foi 

utilizado para a geração de seu domínio de candidatos. Este domínio foi 

posteriormente otimizado com o algoritmo genético. Uma série de testes 

consecutivos variando os parâmetros do algoritmo foi realizado com o objetivo de 

obter conjuntos com 3, 5 e 7 extensômetros. Essas configurações com diferentes 

números de extensômetros permitem avaliar a redução da variância da reconstrução 

de cargas com o aumento do número de extensômetros. 

Após a determinação das configurações ótimas considerando 3, 5 e 7 

extensômetros, observou-se que alguns deles eram comuns aos 3 conjuntos. Desta 

forma, o número total de extensômetros aplicados à estrutura foi reduzido para 

apenas 10. 
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Além destas, outras 4 posições aleatórias foram escolhidas para permitir 

uma análise comparativa da eficiência do conjunto ótimo em relação a outros 

conjuntos aleatórios. Na Figura 39 são mostrados os extensômetros das 

configurações ótimas (extensômetros de 1 a 10), e os demais selecionados 

(extensômetros de 11 a 14), em sua representação virtual, ao lado de fotos dos 

mesmos aplicados fisicamente no componente. A Tabela 23 mostra as combinações 

ótimas com as numerações conforme mostrado na Figura 39. 

 

Tabela 23 – Combinações ótimas de extensômetros do suporte. 

Combinação 
ótima com 3 

extensômetros 

Combinação 
ótima com 5 

extensômetros 

Combinação 
ótima com 7 

extensômetros 
1 1 2 
2 2 3 
5 4 5 
 5 6 
 8 7 
  9 
  10 

 

 

A partir das deformações medidas foi feita a reconstrução dos 

carregamentos aplicados. 

Para que fosse possível fazer uma avaliação da eficiência dos conjuntos 

ótimos de extensômetros em relação a outros possíveis conjuntos, 6 combinações 

aleatórias de extensômetros entre os 14 instrumentados foram geradas, sendo 2 

combinações com 3 extensômetros, duas com 5 e duas com 7. A  

 

Tabela 24 mostra as combinações aleatórias selecionadas. 
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Figura 39 – Extensômetros aplicados ao suporte virtualmente e fisicamente. 
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Tabela 24 – Combinações aleatórias de extensômetros do suporte. 

Combinação 
1 

Combinação 
2 

Combinação 
3 

Combinação 
4 

Combinação 
5 

Combinação 
6 

4 4 3 3 2 2 
9 8 5 7 5 4 

11 12 10 11 6 5 
  13 12 8 7 
  14 13 10 8 
    11 13 
    12 14 

 
No gráfico da Figura 40 são plotadas as diferenças porcentuais das 

estimativas de força em relação aos valores esperados (conforme mostrado na 

Tabela 6) para cada caso de carga e para cada uma das combinações de 

extensômetros. 

Observa-se que as configurações com 7 extensômetros possui, em geral, 

um erro menor comparativamente às configurações com 3 extensômetros, e em 

alguns casos melhor do que as configurações com 5 extensômetros. Este resultado 

comprova que existe uma redução na variância generalizada das estimativas de 

força quando se adicionam mais extensômetros. 

Observa-se que a combinação 4 foi aquela que apresentou os menores 

valores de erro. Apesar de não ser a configuração ótima, esta combinação possui 

uma aptidão comparável às encontradas nas configurações ótimas. 

No gráfico da Figura 41 são mostradas as diferenças porcentuais das 

estimativas de carga para as configurações ótimas e também para as aleatórias em 

função do determinante da matriz de dispersão de cada configuração. Quanto menor 

o valor do determinante maior a aptidão da configuração. 

 



85 
 

 
Figura 40 – Diferença porcentual na estimativa de força para cada caso de carga do 
suporte. 

 
Figura 41 – Diferença porcentual na estimativa de força para cada configuração de 
extensômetros. 
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5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS 

Este trabalho buscou desenvolver, implementar e testar uma metodologia 

para a identificação de carregamentos mecânicos de um componente mecânico em 

operação, utilizando-o como seu próprio transdutor, sempre que for possível assumi-

los como quase estáticos. 

Para tanto, é necessário que se determine uma configuração otimizada de 

extensômetros a ser aplicada sobre o componente. Nesse sentido, um algoritmo de 

otimização genético foi implementado de forma a fornecer esta configuração ótima 

utilizando o conceito de projeto experimental D-ótimo. Ao final do projeto, o algoritmo 

foi validado através de testes físicos e virtuais. 

 

5.1. CONCLUSÕES 

Os algoritmos para a geração do domínio de candidatos e o de otimização 

foram implementados com sucesso, embasados nas teorias de projeto experimental 

ótimo. Ao término do trabalho, a interface desenvolvida permite operá-los com 

facilidade até mesmo por usuários inexperientes. Durante todos os testes 

executados também se observou uma boa confiabilidade e estabilidade dos 

algoritmos. 

A análise dos parâmetros do algoritmo mostrou intervalos de funcionamento 

que permitem obter melhores respostas com relação à convergência, tempo de 

processamento e qualidade da configuração de extensômetros obtida. Verificou-se 

que, para grande parte dos parâmetros do algoritmo genético, o intervalo de valores 

que demonstram maior eficiência é, em geral, similar àquele recomendado na 

bibliografia pesquisada. 

Constatou-se que o algoritmo genético implementado atinge valores médios 

de aptidão muito maiores do que o algoritmo de Fedorov, apesar de ter um custo 

computacional maior que este. Ficou evidenciada uma constância interessante nos 

valores da função objetivo encontrados pelo algoritmo genético, aproximando-se 

sempre do mínimo global da função, ao contrário do algoritmo de Fedorov que 

converge sempre para mínimos locais. 
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O número de extensômetros utilizados para reconstruir um determinado 

número de carregamentos mostrou ter um grande impacto na minimização da 

função objetivo, contribuindo ainda para a redução dos tempos de processamento. 

Entretanto, este impacto não ficou tão evidente no teste físico que pretendia 

comprová-lo.  

Os testes físicos realizados mostraram que configurações de extensômetros 

escolhidas baseadas na experiência do experimentador ou aleatoriamente podem 

levar a valores de carregamentos reconstruídos muito diferentes dos reais. Isso 

corrobora com a comprovação de que uma configuração otimizada pelo critério D-

ótimo é capaz de reduzir a variância dos mesmos. 

Verificou-se que os erros de fabricação, posicionamento dos extensômetros, 

o nível de sinal para ruído e os erros associados ao MEF podem gerar erros 

consideráveis nos valores finais dos carregamentos obtidos. 

Por fim, constatou-se a viabilidade de se utilizar esta metodologia como meio 

de obtenção das solicitações mecânicas para um componente em operação desde 

que os devidos cuidados na preparação do experimento e fabricação do 

componente sejam tomados. 

 

5.2. SUGESTÕES PARA TRABALHOS FUTUROS 

Buscando o contínuo aprimoramento e de forma a estudar melhorias 

possíveis para a metodologia, sugerem-se como propostas de estudos para 

trabalhos futuros: 

I. Estudar a eficiência dos demais critérios de projeto experimental ótimo 

citados neste trabalho na redução da variância dos carregamentos 

reconstruídos; 

II. Estudar uma metodologia que permita reduzir os erros de posicionamento 

dos extensômetros; 

III. Aplicar esta metodologia de reconstrução a carregamentos dinâmicos; 

IV. Realizar testes utilizando extensômetros com maior sensibilidade (maior 

fator de extensômetro); 
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V. Realizar um estudo das diferentes fontes de erro que dificultam a obtenção 

de valores precisos para os carregamentos reconstruídos. 
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APÊNDICES 

APÊNDICE 1 – ALGORÍTMO DE GERAÇÃO DO DOMÍNIO DE OTIMIZAÇÂO 
  
# -------------------------------------------------------------------------------------------# 

#               Script - Virtual Strain Gages Set Generation                 # 

#       # 

#                               Developed by DIEGO HOEPFNER  # 

#       # 

#               Unauthorized copying or distribution is strictly forbidden # 

# -------------------------------------------------------------------------------------------# 

 

tk_messageBox -message "Please define the angle between surfaces to avoid hard edges" 

set featureangle [hm_getint "Define the feature angle:" "Define the angle between surfaces to avoid hard edges"] 

 

*clearmark comps 1 

tk_messageBox -message "Please select the components to remove the elements adjacent to the hard edges" 

*createmarkpanel comps 1 "Select the components to find features" 

hm_getmark comps 1 

 

tk_messageBox -message "Please define the number of element rows adjacent to the features to be removed" 

set numberofrows [hm_getint "Define the number of rows:" "Define the number of element rows adjacent to the features to be 

removed"] 

 

*deletefeatures 

*features comps 1 $featureangle 0 0 $featureangle 0 

*createmark elems 1 "by comp name" ^feature 

for {set x 0} {$x < $numberofrows} {incr x} {hm_appendmark elems 1 "advanced" "by adjacent"} 

*maskentitymark elements 1 0 

*clearmark elems 1 

*deletefeatures 

 

*clearmark nodes 1 

#cria um painel de seleção de nós, e coloca na marca 1 

tk_messageBox -message "Please select the nodes to generate the strain gage candidate set on" 

*createmarkpanel nodes 1 "Select nodes to be listed:" 

 

#extrai uma lista dos nós selecionados 

set nodeslist [ hm_getmark nodes 1 ] 

 

tk_messageBox -message "Please provide the size of the increment to generate the candidate set of strain gages around each 

node" 

set angle_spacing [hm_getint "Define the angle increment (within the range 0-180):" "The value should be an integer"] 

 

#cria uma lista com os incrementos de ângulo 

if {[info exist angle_list]} then { 

unset angle_list 

} 
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set angle 0  

while {$angle < 180} { 

 lappend angle_list $angle 

 set angle [expr $angle_spacing + $angle] 

} 

 

*clearmark nodes 1 

foreach node_id $nodeslist { 

 *createmark nodes 1 "by id only" $node_id 

 *findmark nodes 1 1 1 elems 0 2 

 set elems_normals [ hm_getmark elems 2 ] 

 *clearmark nodes 1 

 set nodenormal_x 0 

 set nodenormal_y 0 

 set nodenormal_z 0 

 foreach elem_id $elems_normals { 

  if {[lsearch [list 103 104 106 108] [hm_getentityvalue elems $elem_id config 0]] >= 0} { 

   set normal_x [hm_getentityvalue element $elem_id normalx 0] 

   set normal_y [hm_getentityvalue element $elem_id normaly 0] 

   set normal_z [hm_getentityvalue element $elem_id normaly 0] 

   set nodenormal_x [expr {double($normal_x) / double([llength $elems_normals]) + 

double($nodenormal_x)}] 

   set nodenormal_y [expr {double($normal_y) / double([llength $elems_normals]) + 

double($nodenormal_y)}] 

   set nodenormal_z [expr {double($normal_z) / double([llength $elems_normals]) + 

double($nodenormal_z)}] 
  } 

 } 

 set testanormal [expr abs($nodenormal_x)] 

 set orientation($node_id) "1,0,0" 

 if {$testanormal > [expr abs($nodenormal_y)]} { 

  set testanormal [expr abs($nodenormal_y)] 

  set orientation($node_id) "0,1,0" 

 } 

 if {$testanormal > [expr abs($nodenormal_z)]} { 

  set orientation($node_id) "0,0,1" 

 } 

 unset nodenormal_x 

 unset nodenormal_y 

 unset nodenormal_z 

 unset elems_normals 

} 

 

#faz a leitura do diretório de trabalho 

tk_messageBox -message "Please select the folder to save the output file" 

set dir_name [tk_chooseDirectory] 

set output_file "${dir_name}/Gages.asg" 

 

#abre o arquivo selecionado para escrita 

set fo [open $output_file "w"] 
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#para cada nó da nodelist 

puts $fo "<StrainGauges>" 

foreach node_id $nodeslist { 

 #para cada passo do angulo 

 foreach number $angle_list { 

  #escreve no arquivo 

  puts $fo "<StrainGauge ID='node $node_id - $number deg' Type='Single' Location='$node_id' 

AngleOffset='$number' Orientation='$orientation($node_id)' ResultsFrom='OneSurface' LocationType='Node' 

ShellSurface='Top'/>" 

 } 

} 

puts $fo "</StrainGauges>" 

close $fo 

 

*unmaskall 

 

*clearmark comps 1 

*clearmark nodes 1 

*clearmark nodes 2 

*clearmark elems 1 

*clearmark elems 2 

 

 

tk_messageBox -message "Gages list saved in:\n${dir_name}/Gages.asg" 
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APÊNDICE 2 – ALGORÍTMO GENÉTICO DE OTIMIZAÇÃO DA 
CONFIRGURAÇÂO DE EXTENSÔMETROS PARA RECONSTRUÇÂO DE 

CARGAS 
 
# -*- coding: cp1252 -*- 

# ------------------------------------------------------------------------------------------------------------------# 

#  Script - Optimization algorithm to find the set of strain gauges for load reconstruction  # 

#                                                                                                           # 

#                               Developed by DIEGO HOEPFNER                                              # 

#                                                                                                              # 

#               Unauthorized copying or distribution is strictly forbidden                               # 

# ------------------------------------------------------------------------------------------------------------------# 

 

def glyphscript(engineState): 

 

        from numpy import dot 

        from numpy import vdot 

        from numpy import linalg 

        from numpy import zeros 

        from numpy import diag 

        from numpy import matrix 

        from numpy import subtract 

        from numpy import dtype 

        import random 
# 

        DEBUG = False 

# 

#  define the input and output pads 

# 

        tsin = engineState.GetInputTimeSeries(0)  # input from virtual straingage using unit loads 

        mdin = tsin.GetMetaData() 

        tsout = engineState.GetOutputTimeSeries(0)  # output computed force histories 

        mdout = tsout.GetMetaData() 

# 

#  get properties from the glyph 

# 

        propSet = engineState.GetPropertySet() 

        props = propSet.GetProperties() 

        setSize = int(props['SetSize']) 

        maxIterations = int(props['maxIterations']) 

        method = props['Method'] 

        populationSize = int(props['populationSize']) 

        elitism = int(props['elitism']) 

        rankNumber = props['rankNumber'] 

        mutationRate = props['mutationRate'] 

        admissibleError = props['admissibleError'] 

        bestSetPercentage = props['bestSetPercentage'] 

# 

#  get virtual strain data from unit load parameters 
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# 

        numGauges = tsin.GetChannelCount() 

        iChan = 0 

        numLoads = tsin.GetPointCount(iChan) 

        if numLoads > numGauges: 

                message = 'Insufficent number of straingages to reconstruct loads, NumberOfGages >= NumberOfLoads' 

                engineState.JournalError(message) 

                if abort: 

                        return message 

        if numLoads > setSize: 

                message = 'Set size needs to be equal or bigger than number of loads' 

                engineState.JournalError(message) 

                if abort: 

                        return message 

# 

#  create strain matrix 

# 

        E = zeros((numLoads,numGauges),dtype='d') 

        for iGauge in xrange(numGauges): 

                for iLoad in xrange(numLoads): 

                        E[iLoad,iGauge] = tsin.GetValue(iGauge, iLoad) 

# 

######################################################################### 

# 

# 

#------------------------------------------------------------------------ 
#                       Preliminares 

#------------------------------------------------------------------------ 

# 

        if method == 'Genetic': 

                if setSize < 3: 

                        message = 'Insufficent number of straingages to optimize with Genetic Algorithm. Increase setSize(>3) or select 

another method' 

                        engineState.JournalError(message) 

                        if abort: 

                                return message 

                if (setSize*populationSize) > (numGauges): 

                        message = 'Insufficent number of straingages to generate the population, reduce the Set Size or increase the 

number of candidates' 

                        engineState.JournalError(message) 

                        if abort: 

                                return message 

                if (elitism) >= (populationSize): 

                        message = 'Elitism number should be lower than population size' 

                        engineState.JournalError(message) 

                        if abort: 

                                return message 

                if ((rankNumber<0) or (rankNumber>1)): 

                        message = 'rankNumber should be within the range 0-1' 

                        engineState.JournalError(message) 

                        if abort: 
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                                return message 

                BakerRank=list(range(0, populationSize)) 

                S=list(range(0, populationSize)) 

                c=0. 

                for i in xrange(populationSize): 

                        BakerRank[i]=(2.-rankNumber+(2.*rankNumber-2.)*((i)/(populationSize-1.))) 

                        c=c+BakerRank[i] 

                        S[i]=c 

                maximum=0 

                minimum=10000 

                for iLoad in xrange(numLoads): 

                        for iGauge in xrange(numGauges): 

                                if abs(E[iLoad,iGauge])>maximum: 

                                        maximum=abs(E[iLoad,iGauge]) 

                                elif abs(E[iLoad,iGauge])<minimum: 

                                        minimum=abs(E[iLoad,iGauge]) 

                        temp=list() 

                        for iGauge in xrange(numGauges): 

                                if abs(E[iLoad,iGauge])>((1-bestSetPercentage)*maximum+minimum*bestSetPercentage): 

                                        temp.append(iGauge) 

                        exec('bestLoad_' + str(iLoad) + ' = ' + str(list(temp))) 

# 

#------------------------------------------------------------------------ 

#                       Geração inicial 

#------------------------------------------------------------------------ 

# 
                sample = random.sample(range(0,int((numGauges))),(setSize*populationSize)) 

                n = 0 

                population = zeros((setSize,populationSize),dtype=int) 

                for j in xrange(populationSize): 

                        for i in xrange(setSize): 

                                population[i,j] = int(sample[n]) 

                                n=n+1 

                selected=zeros((setSize,elitism),dtype=int) 

                Dselected=[0]*elitism 

                iDet = 0 

                Det=list() 

                error=1 

                message = str(population) 

                engineState.JournalOut(message)                 

                while (iDet < maxIterations) or (error > admissibleError):  

# 

#------------------------------------------------------------------------ 

#                       Aptidão 

#------------------------------------------------------------------------ 

# 

                        D=[0]*populationSize 

                        for i in xrange(populationSize): 

                                A = zeros((setSize,numLoads),dtype='d') 

                                for iGauge in xrange(setSize): 

                                        for iLoad in xrange(numLoads): 
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                                                A[iGauge,iLoad] = E[iLoad,population[iGauge,i]] 

                                D[i]=(1./(linalg.det(dot(A.transpose(),A)))) 

# 

#------------------------------------------------------------------------ 

#                               Seleção e Elitismo 

#------------------------------------------------------------------------ 

# 

                        sortpopulation = list(range(0,populationSize)) 

                        for i in xrange(populationSize): 

                                j=i 

                                while ((j > 0) and (D[j-1] > D[j])): 

                                        u=D[j] 

                                        D[j]=D[j-1] 

                                        D[j-1]=u 

                                        v=sortpopulation[j] 

                                        sortpopulation[j]=sortpopulation[j-1] 

                                        sortpopulation[j-1]=v 

                                        j=j-1 

                        populationSorted = zeros((setSize,populationSize),dtype=int) 

                        for j in xrange(populationSize): 

                                for i in xrange(setSize): 

                                        populationSorted[i,j] = population[i,sortpopulation[j]] 

                        if iDet==0: 

                                for j in xrange(elitism): 

                                        for i in xrange(setSize): 

                                               selected[i,j]=populationSorted[i,j] 
                                        Dselected[j]=D[j]                                 

                        if elitism!=0: 

                                for j in xrange(elitism): 

                                        if abs(Dselected[j])<abs(D[j]): 

                                                for i in xrange(setSize): 

                                                        populationSorted[i,j]=selected[i,j] 

                                                D[j]=Dselected[j] 

                                for j in xrange(elitism): 

                                        for i in xrange(setSize): 

                                               selected[i,j]=populationSorted[i,j] 

                                        Dselected[j]=D[j]    

                        Det.append(D[0]) 

                        message = str(D) 

                        engineState.JournalOut(message) 

                        if iDet!=0: 

                                error=abs(1-Det[iDet]/Det[iDet-1]) 

                        ptr=random.random() 

                        count=0 

                        i=0 

                        newpopulation = zeros((setSize,populationSize)) 

                        while (count<populationSize): 

                                i=i+1 

                                while (ptr<S[i]): 

                                        for j in xrange(setSize): 

                                                newpopulation[j,count] = populationSorted[j,i]                                         
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                                        ptr=ptr+1. 

                                        count=count+1 

                        population=newpopulation 

                        message = str(population) 

                        engineState.JournalOut(message) 

# 

#------------------------------------------------------------------------ 

#                               Cruzamento 

#------------------------------------------------------------------------ 

# 

                        parents1=random.sample(range(0,populationSize),populationSize) 

                        parentsTemp=list(parents1) 

                        parents2=[0]*populationSize 

                        for i in xrange(populationSize): 

                                parents2[i]=random.choice(parentsTemp) 

                                pos=parents2[i] 

                                while parents1[i]==parents2[i]: 

                                        parents2[i]=random.choice(parentsTemp) 

                                        pos=parents2[i] 

                                parentsTemp.remove(pos) 

                        newpopulation = zeros((setSize,populationSize)) 

                        for j in xrange(0,populationSize,2): 

                                up = random.randrange(1,setSize-2) 

                                bottom = random.randrange(up,setSize-1) 

                                for i in xrange(setSize): 

                                        if i<up: 
                                                newpopulation[i,j]=population[i,parents1[j]] 

                                                newpopulation[i,(j+1)]=population[i,parents2[j]] 

                                        elif (i>=up and i<=bottom): 

                                                newpopulation[i,j]=population[i,parents2[j]] 

                                                newpopulation[i,(j+1)]=population[i,parents1[j]] 

                                        else: 

                                                newpopulation[i,j]=population[i,parents1[j]] 

                                                newpopulation[i,(j+1)]=population[i,parents2[j]] 

                        population=newpopulation 

# 

#------------------------------------------------------------------------ 

#                               Mutação 

#------------------------------------------------------------------------ 

# 

                        for j in xrange(populationSize): 

                                for i in xrange(setSize): 

                                        if (random.random()<(1-mutationRate)): 

                                                population[i,j]=random.randrange(numGauges) 

# 

#------------------------------------------------------------------------ 

#                               Reparação 

#------------------------------------------------------------------------ 

# 

                        for j in xrange(populationSize): 

                                for i in xrange(setSize): 
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                                       exec('temp' + '=' + 'bestLoad_' + str(1)) 

                                       for k in xrange(setSize): 

                                               if population[i,j]==population[i,k]: 

                                                       while (population[i,j]==population[i,k]): 

                                                               population[i,j]=random.choice(temp) 

                        iDet=iDet+1 

# 

#------------------------------------------------------------------------ 

# 

#  set output timeseries parameters 

# 

                tsout.SetChannelCount(1) 

                tsout.SetXTitle('Iteration') 

                mdout.CopyMetaDataSet(mdin, -1, -1, 'FEModel') 

                tsout.SetPointCount(0,iDet) 

                tsout.SetChanNumber(0,1) 

                tsout.SetChanTitle(0,'Objective Function Evolution') 

                tsout.SetYTitle(0,'Determinant') 

                yunits = '' 

                tsout.SetSampleRate(0,1) 

                tsout.SetBaseTime(0,0) 

# 

#  output force histories 

# 

                for iPnt in xrange(iDet): 

                        tsout.PutValue(0, iPnt, Det[iPnt]) 
# 

# 

# 

# 

                if DEBUG: 

                        message = 'E - ' + str(E.shape) 

                        engineState.JournalOut(message) 

                        message = str(E) 

                        engineState.JournalOut(message) 

 

                        message = 'A - ' + str(A.shape) 

                        engineState.JournalOut(message) 

                        message = str(A) 

                        engineState.JournalOut(message) 

 

                        message = 'Determinant - ' + str(Det) 

                        engineState.JournalOut(message) 

# 

                position=[0]*setSize 

                for iGauge in xrange((setSize)): 

                        position[iGauge] = populationSorted[iGauge,0]  

                message = 'Positions - ' + str(position) 

                engineState.JournalOut(message) 

# 

######################################################################### 



101 
 

# 

        if method == 'Random': 

# 

#  create first matrix candidate 

# 

                sample = random.sample(range(0,int((numGauges))),setSize) 

                position = sample 

                A = zeros((setSize,numLoads),dtype='d') 

                for iGauge in xrange(setSize): 

                        for iLoad in xrange(numLoads): 

                                A[iGauge,iLoad] = E[iLoad,sample[iGauge]] 

                message = str(A) 

                engineState.JournalOut(message) 

        # 

        #  optimize the inverse matrix determinant 

        # 

                iDet = 0 

                Det=[(1./(linalg.det(dot(A.transpose(),A))))] 

                D=Det[0] 

                Minv = linalg.inv(dot(A.transpose(),A)) 

                Ytransp = zeros((1,numLoads),dtype='d') 

                Ztransp = zeros((1,numLoads),dtype='d') 

        # 

                while (iDet <= maxIterations): 

                        contaiguais = 1 

                        while (contaiguais > 0): 
                                newVec = random.sample(range(0,int((numGauges))),1) 

                                contaiguais = 0 

                                for iGauge in xrange(setSize): 

                                        if position[iGauge] == newVec: 

                                                contaiguais = 1 

                        for iLoad in xrange(numLoads): 

                                Ytransp[0,iLoad] = E[iLoad,newVec] 

                        Y = Ytransp.transpose() 

                        MinvDotY = dot(Minv,Y) 

                        YtranspDotMinvDotY = dot(Ytransp,MinvDotY) 

                        DetAug = 1./((1./D)*(1.+YtranspDotMinvDotY)) 

                        MinvAug = subtract(Minv,(1./(1.+YtranspDotMinvDotY))*dot(MinvDotY,MinvDotY.transpose())) 

                        for iLoad in xrange(numLoads): 

                                Ztransp[0,iLoad] = A[0,iLoad] 

                        Z = Ztransp.transpose() 

                        MinvAugDotZ = dot(MinvAug,Z) 

                        ZtranspDotMinvAugDotZ = dot(Ztransp,MinvAugDotZ) 

                        DetRed = 1./((1./DetAug)*(1.-ZtranspDotMinvAugDotZ)) 

                        MinvRed= subtract(MinvAug,(1./(1.+ZtranspDotMinvAugDotZ))*dot(MinvAugDotZ,MinvAugDotZ.transpose())) 

                        if abs(DetRed) < abs(D): 

                                Det.append(DetRed) 

                                D=DetRed 

                                Minv = MinvRed 

                                for iLoad in xrange(numLoads): 

                                        for iGauge in xrange((setSize-1)): 
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                                                A[iGauge,iLoad] = A[(iGauge+1),iLoad] 

                                        A[(setSize-1),iLoad] = Ytransp[0,iLoad] 

                                for iGauge in xrange((setSize-1)): 

                                        position[iGauge] = position[(iGauge+1)]    

                                position[setSize-1]=newVec 

                        else: 

                                Det.append(D)   

                        iDet = iDet+1 

        # 

        ##              message = 'A - ' + str(A.shape) 

        ##  engineState.JournalOut(message) 

        ##  message = str(A) 

        ##  engineState.JournalOut(message) 

        ##  message = 'Determinant - ' + str(D) 

        ##  engineState.JournalOut(message) 

        ##  message = 'Positions - ' + str(position) 

        ##              engineState.JournalOut(message) 

        # 

        #  set output timeseries parameters 

        # 

                tsout.SetChannelCount(1) 

                tsout.SetXTitle('Iteration') 

                mdout.CopyMetaDataSet(mdin, -1, -1, 'FEModel') 

                tsout.SetPointCount(0,iDet) 

                tsout.SetChanNumber(0,1) 

                tsout.SetChanTitle(0,'Objective Function Evolution') 
                tsout.SetYTitle(0,'Determinant') 

                yunits = '' 

                tsout.SetSampleRate(0,1) 

                tsout.SetBaseTime(0,0) 

        # 

        #  output force histories 

        # 

                for iPnt in xrange(iDet): 

                        tsout.PutValue(0, iPnt, Det[iPnt]) 

        # 

        # 

        # 

        # 

                if DEBUG: 

                        message = 'E - ' + str(E.shape) 

                        engineState.JournalOut(message) 

                        message = str(E) 

                        engineState.JournalOut(message) 

 

                        message = 'A - ' + str(A.shape) 

                        engineState.JournalOut(message) 

                        message = str(A) 

                        engineState.JournalOut(message) 

 

                        message = 'Determinant - ' + str(Det) 
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                        engineState.JournalOut(message) 

        # 

                for iGauge in xrange((setSize)): 

                        position[iGauge] = position[iGauge]+1  

                message = 'Positions - ' + str(position) 

                engineState.JournalOut(message) 

# 

################################################################# 

# 

        if method == 'Fedorov': 

# 

#  create first matrix candidate 

# 

                sample = random.sample(range(0,int((numGauges))),setSize) 

                position = sample 

                A = zeros((setSize,numLoads),dtype='d') 

                for iGauge in xrange(setSize): 

                        for iLoad in xrange(numLoads): 

                                A[iGauge,iLoad] = E[iLoad,sample[iGauge]] 

                message = str(A) 

                engineState.JournalOut(message) 

 

        # 

        #  optimize the inverse matrix determinant 

        # 

                iDet = 0 
                Det=[float(1./(linalg.det(dot(A.transpose(),A))))] 

                D=float(Det[0]) 

                Minv = linalg.inv(dot(A.transpose(),A)) 

                Ytransp = zeros((1,numLoads),dtype='d') 

                Ztransp = zeros((1,numLoads),dtype='d') 

                engineState.JournalOut(message) 

                message = 'Determinant - ' + str(D) 

        # 

                for iGauge in xrange(setSize): 

                        newVec = 0 

                        while (newVec < numGauges): 

                                contaiguais=1 

                                while (contaiguais>0): 

                                        contaiguais=0 

                                        for i in xrange(setSize): 

                                                if position[i] == newVec: 

                                                        newVec = newVec+1 

                                                        contaiguais = contaiguais+1 

                                if newVec < numGauges: 

                                        for iLoad in xrange(numLoads): 

                                                Ytransp[0,iLoad] = E[iLoad,newVec] 

                                        Y = Ytransp.transpose() 

                                        MinvDotY = dot(Minv,Y) 

                                        YtranspDotMinvDotY = float(dot(Ytransp,MinvDotY)) 

                                        DetAug = float(1./((1./D)*(1.+YtranspDotMinvDotY))) 
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                                        MinvAug = subtract(Minv,(1./(1.+YtranspDotMinvDotY))*dot(MinvDotY,MinvDotY.transpose())) 

                                        for iLoad in xrange(numLoads): 

                                                Ztransp[0,iLoad] = A[iGauge,iLoad] 

                                        Z = Ztransp.transpose() 

                                        MinvAugDotZ = dot(MinvAug,Z) 

                                        ZtranspDotMinvAugDotZ = float(dot(Ztransp,MinvAugDotZ)) 

                                        DetRed = float(1./((1./DetAug)*(1.-ZtranspDotMinvAugDotZ))) 

                                        MinvRed= 

subtract(MinvAug,(1./(1.+ZtranspDotMinvAugDotZ))*dot(MinvAugDotZ,MinvAugDotZ.transpose())) 

                                        if abs(DetRed) < abs(D): 

                                                Det.append(DetRed) 

                                                D=DetRed 

                                                Minv = MinvRed 

                                                for iLoad in xrange(numLoads): 

                                                        A[iGauge,iLoad] = Ytransp[0,iLoad] 

                                                position[iGauge]=newVec 

                                        else: 

                                                Det.append(D)   

                                        iDet = iDet+1 

                                        newVec = newVec+1 

        # 

##                                        message = 'newVec - ' + str(newVec) 

##                                        engineState.JournalOut(message) 

##                                        message = 'Y - ' + str(Y) 

##                                        engineState.JournalOut(message) 

##                                        message = 'DetAug - ' + str(DetAug) 
##                                        engineState.JournalOut(message) 

##                                        message = 'Z - ' + str(Z) 

##                                        engineState.JournalOut(message) 

##                                        message = 'DetRed - ' + str(DetRed) 

##                                        engineState.JournalOut(message) 

##                                        message = 'A - ' + str(A) 

##                                        engineState.JournalOut(message) 

##                                        message = 'Determinant - ' + str(D) 

##                                        engineState.JournalOut(message) 

##                                        message = 'Positions - ' + str(position) 

##                                        engineState.JournalOut(message) 

        # 

        #  set output timeseries parameters 

        # 

                tsout.SetChannelCount(1) 

                tsout.SetXTitle('Iteration') 

                mdout.CopyMetaDataSet(mdin, -1, -1, 'FEModel') 

                tsout.SetPointCount(0,iDet) 

                tsout.SetChanNumber(0,1) 

                tsout.SetChanTitle(0,'Objective Function Evolution') 

                tsout.SetYTitle(0,'Determinant') 

                yunits = '' 

                tsout.SetSampleRate(0,1) 

                tsout.SetBaseTime(0,0) 

        # 
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        #  output force histories 

        # 

                for iPnt in xrange(iDet): 

                        tsout.PutValue(0, iPnt, Det[iPnt]) 

        # 

        # 

        # 

        # 

                if DEBUG: 

                        message = 'E - ' + str(E.shape) 

                        engineState.JournalOut(message) 

                        message = str(E) 

                        engineState.JournalOut(message) 

 

                        message = 'A - ' + str(A.shape) 

                        engineState.JournalOut(message) 

                        message = str(A) 

                        engineState.JournalOut(message) 

 

                        message = 'Determinant - ' + str(Det) 

                        engineState.JournalOut(message) 

        # 

                for iGauge in xrange((setSize)): 

                        position[iGauge] = position[iGauge]+1 

                message = 'Positions - ' + str(position) 

                engineState.JournalOut(message) 
        # 

        return '' 

 

 


