

UNIVERSIDADE FEDERAL DO PARANÁ

DIEGO DOIN HOEPFNER

DETERMINAÇÃO DA CONFIGURAÇÂO ÓTIMA DE SENSORES PARA
RECONSTRUÇÃO DE CARGAS UTILIZANDO ALGORITMOS GENÉTICOS

CURITIBA

2016

1

DIEGO DOIN HOEPFNER

DETERMINAÇÃO DA CONFIGURAÇÂO ÓTIMA DE SENSORES PARA
RECONSTRUÇÃO DE CARGAS UTILIZANDO ALGORITMOS GENÉTICOS

Dissertação apresentada ao Programa de Pós-
Graduação em Engenharia Mecânica, Área de
Concentração em Mecânica dos Sólidos e Vibrações,
Setor de Tecnologia, Universidade Federal do
Paraná, como parte das exigências para a obtenção
do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Dr. Jucélio Tomás Pereira.

CURITIBA

2016

2

H694d

Hoepfner, Diego Doin

Determinação da configuração ótima de sensores para reconstrução de
cargas utilizando algoritmos genéticos / Diego Doin Hoepfner. – Curitiba,
2016.

105 f. : il. color. ; 30 cm.

Dissertação - Universidade Federal do Paraná, Setor de Tecnologia,

Programa de Pós-Graduação em Engenharia Mecânica, 2016.

Orientador: Jucélio Tomás Pereira.
Bibliografia: p. 88-90.

1. Pressão. 2. Otimização estrutural. 3. Medidores de tensão. 4.

Algoritmos genéticos. I. Universidade Federal do Paraná. II.Pereira, Jucélio
Tomás. III. Título.

CDD: 624.172

3

TERMO DE APROVAÇÃO

DIEGO DOIN HOEPFNER

DETERMINAÇÃO DA CONFIGURAÇÂO ÓTIMA DE SENSORES PARA
RECONSTRUÇÃO DE CARGAS UTILIZANDO ALGORÍTMOS GENÉTICOS

Dissertação aprovada como requisito parcial à obtenção do grau de Mestre em
Engenharia Mecânica do Curso de Mestrado do Programa de Pós-Graduação em
Engenharia Mecânica da Universidade Federal do Paraná, na área de concentração
Mecânica dos Sólidos e Vibrações.

Banca Examinadora:

Prof. Dr. Marco Antonio Luersen Prof. Dr. Carlos Alberto Bavastri

UTFPR UFPR

 Prof. Dr. Jorge Luiz Erthal

 UFPR

Curitiba, 15 de março de 2016.

4

Dedicado à minha amada esposa Elenice.

5

AGRADECIMENTOS

Ao Grande Arquiteto Do Universo, fonte inesgotável de sabedoria, por

direcionar meu caminho.

A minha esposa Elenice Cavalheiro da Silveira, pela motivação que me deu,

por sua compreensão nos momentos de ausência e pela dedicação e

companheirismo durante a realização deste trabalho.

Aos meus pais Bernardo e Elizabeth, pelo exemplo de retidão e pelo suporte

que me deram.

 Ao Prof. Dr. Jucélio Tomás Pereira pela orientação deste trabalho e por

todos os ensinamentos e conhecimento compartilhados.

Ao meu chefe Bruno Santos Lucena, por compreender a importância deste

projeto para a companhia e apoiar a sua execução.

A empresa CNH Industrial Latin America Ltda., por prover os meios para a

realização deste trabalho, fornecendo os equipamentos, softwares e materiais

necessários.

Ao Guilherme Escorsin Roque, pelo auxílio na execução dos testes físicos.

A todos que de alguma maneira contribuíram para a realização deste

trabalho.

6

“O que sabemos é uma gota, o que ignoramos, um imenso oceano.

A admirável disposição e harmonia do universo não pôde senão sair

do plano de um ser omnisciente e onipotente. ”

(Isaac Newton).

7

RESUMO

O corrente trabalho busca elaborar uma metodologia simples, rápida e confiável
para a identificação de carregamentos mecânicos em um componente em operação,
utilizando-o como seu próprio transdutor. A metodologia é baseada na utilização de
uma técnica de regressão linear a partir de um modelo de elementos finitos com
carregamentos unitários e deformações medidas com extensômetros no
componente de estudo. Um dos pontos chave para a obtenção da mais fiel
reconstrução de carregamentos possível é a seleção do número de extensômetros e
seu posicionamento no componente em estudo. Para a determinação desta
localização otimizada, utiliza-se o conceito de projeto experimental ótimo, o qual
busca a minimização da variância e covariância dos coeficientes a se determinar.
Alguns dos critérios de projeto experimental ótimo mais citados na literatura são o A-
ótimo, o D-ótimo e o E-ótimo. O critério adotado neste trabalho foi o citado pela
literatura como o de maior relevância para o caso de reconstrução de cargas, o D-
ótimo, o qual minimiza o determinante da matriz de dispersão do modelo. Esta
minimização utiliza geralmente os algoritmos de troca de Fedorov ou multiplicativos,
os mais usuais para projeto D-ótimo. Estes algoritmos, em geral, não são capazes
de garantir um ótimo global para o projeto, além de muitas vezes sofrerem com
problema de velocidade de convergência. Para contornar estes problemas decidiu-
se adotar neste trabalho um algoritmo genético. Este algoritmo foi implementado na
linguagem Python e com interface com o software nCode®. Outro algoritmo também
desenvolvido neste projeto, em conjunto com um modelo de elementos finitos obtido
com o software HyperMesh®, foi utilizado para gerar o domínio das variáveis de
projeto, que consistem em posições e orientações de extensômetros virtuais
posicionados sobre uma porção do contorno do componente em estudo. Desta
forma, espera-se obter um conjunto de extensômetros em posições e orientações
determinadas que minimizam o determinante da matriz de dispersão. Para validar a
eficiência dos algoritmos gerados foram realizados testes virtuais para o estudo dos
parâmetros do algoritmo genético. Testes físicos com dois componentes distintos
foram também realizados com o objetivo de validar a metodologia. Ao final do
trabalho verificou-se que o algoritmo genético proposto é capaz de atingir valores
próximos ao mínimo global da função objetivo com maior constância e estabilidade
do que o algoritmo de troca de Fedorov, apesar de sofrer com um custo
computacional mais alto. Os testes físicos realizados evidenciaram que uma
configuração de extensômetros otimizada pelo critério D-ótimo é capaz de reduzir a
variância dos carregamentos reconstruídos.

Palavras-chave: Reconstrução de cargas. Projeto D-ótimo. Seleção ótima de extensômetros.
Algoritmos genéticos. Algoritmo de troca de Fedorov.

8

ABSTRACT

The current work aims to develop a simple, fast and reliable methodology for the
identification of mechanical loading on a component in operation, using it as its own
transducer. The methodology is based on the usage of a linear regression technique
from a finite element model with unitary loads and measured deformations with strain
gauges in the component. One of the key points for obtaining the most accurate load
reconstruction as possible is the selection of the number of strain gauges and their
placement on the component under study. For the determination of the optimized
location, the concept of optimal experimental design is used, which seeks to
minimize the variance and covariance of the coefficients to be determined. Some of
the optimal experimental design criteria most frequently cited in the literature are the
A-optimal, D-optimal and E-optimal. The criterion used in this study was cited in the
literature as the most relevant for the case of loads reconstruction, the D-optimal,
which minimizes the determinant of the model´s scattering matrix. This minimization
usually uses the Fedorov´s exchange algorithm or the multiplicative algorithms, the
most common for D-optimal design. These algorithms generally are not able to
secure a global optimum for the project, and often suffer with convergence speed
problems. To work around these problems, it was decided to adopt in this work a
genetic algorithm. This algorithm was implemented in Python and interfaced with the
nCode® software. Another algorithm also developed in this study, in conjunction with
a finite element model obtained with HyperMesh® software, was used to generate
the design domain variables, which consist of certain positions and orientations of
virtual gauges over a portion of the component's contour under study. Thus, it is
expected to obtain a set of strain gages in certain positions and orientations that
minimize the determinant of the scattering matrix. To validate the efficiency of the
algorithms generated, virtual tests were performed to the study of the genetic
algorithm parameters. Physical testing with two different components was also
conducted to validate the method. At the end of the work it was found that the genetic
algorithm proposed is able to achieve values close to the global minimum of the
objective function with greater consistency and stability than the Fedorov exchange
algorithm, although suffer from a higher computational cost. The physical tests
carried out showed that an optimized strain gauge configuration by D-optimality
criteria is able to reduce the variance of the reconstructed loads.

Keywords: Load reconstruction. D-optimal design. Optimal selection of strain gauges.
Genetic algorithms. Fedorov´s exchange algorithm.

9

LISTA DE FIGURAS

Figura 1 – Exemplo de domínio discretizado em elementos finitos. 20

Figura 2 – Exemplo de determinação da posição e direção das possíveis forças que

agem em um componente. .. 23

Figura 3 – Carregamento axial e momento fletor em uma viga. a) matriz de influência

singular. b) matriz de influência inversível. .. 24

Figura 4 – Operação de cruzamento com um corte. ... 32

Figura 5 – Exemplo de seleção pelo método da roleta. .. 36

Figura 6 – Modelo de uma viga engastada com carregamentos unitários e condiçôes

de contorno. .. 38

Figura 7 – Representação dos tensores de deformação nos elementos da membrana

do componente para um carregamento unitário. ... 38

Figura 8 – Exemplo da determinação do ângulo de orientação do extensômetro de

ângulo . .. 41

Figura 9 – Exemplo de arestas características de um componente para um ângulo

limite de 30º. .. 41

Figura 10 – Elipsoide de confiança para as estimativas de força. 43

Figura 11 – Método da amostragem universal estocástica. 45

Figura 12 – Estruturas testadas: (a)-alavanca de um trator, (b)-suporte construído. 47

Figura 13 – Modelo em elementos finitos da alavanca. .. 48

Figura 14 – Dispositivo de teste para a alavanca. ... 49

Figura 15 – Modelo em elementos finitos para o suporte. ... 50

Figura 16 – Dispositivo de teste para o suporte. ... 51

Figura 17 – Sistema de aquisição Lynx DLG4000. ... 52

Figura 18 – Esquema da reconstrução dos carregamentos no nCode®. 53

Figura 19 – Fluxograma da estrutura computacional desenvolvida. 54

Figura 20 – Exemplo de remoçâo de elementos adjacentes a arestas características.

 .. 56

Figura 21 – Exemplo de nós selecionados para a construçâo do domínio de

candidatos. .. 57

Figura 22 – Fluxograma do algorítmo gerador de domínio. 58

10

Figura 23 – Estrutura de blocos do software ncode® utilizada no processo de

otimização. .. 58

Figura 24 – Detalhe da visualizaçâo do domìnio de extensômetros conforme

interpretada pelo software nCode®. ... 59

Figura 25 – Parâmetros do algorítmo de otimizaçâo disponibilizados ao usuário. 60

Figura 26 – Pseudocódigo do algorítmo de otimizaçâo. .. 61

Figura 27 – Gráficos gerados ao final do processo de otimização. 62

Figura 28 – Domínio de candidatos para modelo de teste. 63

Figura 29 – Influência do tamanho da população no tempo de processamento e

aptidão final. .. 64

Figura 30 – Influência da porcentagem dos melhores extensômetros no tempo de

processamento e aptidão final. .. 65

Figura 31 – Influência da taxa de mutaçâo no tempo de processamento e aptidão

final. ... 67

Figura 32 – Influência do elitismo no tempo de processamento e aptidão final. 68

Figura 33 – Influência do número de Baker no tempo de processamento e aptidão

final. ... 69

Figura 34 – Influência do erro admissivel no tempo de processamento e aptidão final.

 .. 70

Figura 35 – Plotagem de aptidão normalizada final em função do tempo de

processamento para os algoritmos de Fedorov e Genético. 72

Figura 36 – Influência do número de extensômetros no conjunto ótimo no tempo de

processamento e aptidão normalizada final. ... 73

Figura 37 – Extensômetros aplicados à alavanca virtualmente e fisicamente........... 76

Figura 38 – Extensômetros aplicados à alavanca virtualmente e fisicamente........... 77

Figura 39 – Extensômetros aplicados ao suporte virtualmente e fisicamente. 83

Figura 40 – Diferença porcentual na estimativa de força para cada caso de carga do

suporte. ... 85

Figura 41 – Diferença porcentual na estimativa de força para cada configuração de

extensômetros. .. 85

11

LISTA DE TABELAS

Tabela 1 – Critérios para projeto experimental ótimo. ... 27

Tabela 2 – Representações de números de acordo com suas codificações. 35

Tabela 3 – Expectativa de seleção do mètodo de classificação linear de baker. 44

Tabela 4 – Exemplo de cruzamento por dois pontos. ... 46

Tabela 5 – Combinaçâo de carregamentos aplicados durante os testes da alavanca.

 .. 49

Tabela 6 – Combinaçâo de carregamentos aplicados durante os testes do suporte.

 .. 51

Tabela 7 – Parâmetros do algoritmo genético para análise do tamanho da

população. ... 63

Tabela 8 – Parâmetros do algoritmo genético para análise da porcentagem dos

melhores extensômetros. .. 65

Tabela 9 – Parâmetros do algoritmo genético para análise da taxa de mutação. 66

Tabela 10 – Parâmetros do algoritmo genético para análise do elitismo. 67

Tabela 11 – Parâmetros do algoritmo genético para análise do número de baker. .. 68

Tabela 12 – Parâmetros do algoritmo genético para análise do erro admissivel. 70

Tabela 13 – Parâmetros do algorìtmo genético para comparativo de eficiência com o

de Fedorov. ... 71

Tabela 14 – Deformações medidas com extensômetros nos testes com a alavanca.

 .. 75

Tabela 15 – Combinações aleatórias de extensômetros da alavanca. 75

Tabela 16 – Força e ângulos reconstruídos para a configuração ótima de

extensômetros. .. 78

Tabela 17 – Diferença de força e ângulos entre os valores esperados e

reconstruídos para a configuração ótima de extensômetros. 78

Tabela 18 – Diferença de força e ângulos entre os valores esperados e

reconstruídos para a combinação 1 de extensômetros. .. 79

Tabela 19 – Diferença de força e ângulos entre os valores esperados e

reconstruídos para a combinação 2 de extensômetros. .. 79

Tabela 20 – Diferença de força e ângulos entre os valores esperados e

reconstruídos para a combinação 3 de extensômetros. .. 80

12

Tabela 21 – Diferença de força e ângulos entre os valores esperados e

reconstruídos para a combinação 4 de extensômetros. .. 80

Tabela 22 – Diferença de força e ângulos entre os valores esperados e

reconstruídos para a combinação 5 de extensômetros. .. 80

Tabela 23 – Combinações ótimas de extensômetros do suporte. 82

Tabela 24 – Combinações aleatórias de extensômetros do suporte. 84

13

LISTA DE SÍMBOLOS

® Marca registrada
 Produto vetorial

Alfabeto Latino

 Componente da matriz de influência

 Matriz de influência

 Matriz de influência transposta

 Inversa da matriz de influência

 Matriz de influência ótima

 Qualquer matriz de influência possível dentro do domínio de candidatos

 Matriz de influência aumentada

 Critério de convergência do algoritmo genético

 Determinante da matriz de dispersão para o cromossomo j na geração

corrente

 Determinante da matriz de dispersão para o cromossomo j na geração

anterior

() Determinante de uma matriz

 Vetor de orientação proveniente do algoritmo gerador de domínio

 Vetor de carregamentos generalizados

 Componente na direção x do vetor normal elementar

 Valor absoluto da componente na direção x do vetor normal elementar

 Componente na direção y do vetor normal elementar

 Valor absoluto da componente na direção y do vetor normal elementar

 Matriz de informação

 Matriz de dispersão

 Matriz de dispersão aumentada

 Determinante da matriz de dispersão

 Determinante da matriz de dispersão aumentada

14

 Componente na direção y do vetor normal elementar

 Valor absoluto da componente na direção y do vetor normal elementar

 Expectativa de seleção para o cromossomo no ordenamento j

 Matriz variância-covariância para as estimativas de carregamentos

() Traço de uma matriz

 Conjunto de posições de extensômetros

 Vetor de um novo extensômetro candidato a ser adicionado na matriz

de dispersão

 Vetor transposto de um novo extensômetro candidato a ser adicionado

na matriz de dispersão

 Vetor de um extensômetro candidato a ser removido da matriz de

dispersão

 Vetor transposto de um extensômetro candidato a ser removido da

matriz de dispersão

Alfabeto Grego

 Domínio de candidatos

 Deformação elementar cisalhante no plano xy

 Vetor de deformações medidas com extensômetros

 Deformação na superfície do elemento em uma determinada orientação

 Deformação elementar na direção x

 Deformação elementar na direção y

 Vetor normal de um elemento

 Incremento angular

 Conjunto de orientações de extensômetros

 Variância na medida de deformações

 Função objetivo

 Vetor de orientação final para o extensômetro de ângulo 0º.

15

SUMÁRIO

1 INTRODUÇÃO .. 16
1.1. OBJETIVOS ... 17

1.1.1. Objetivo geral... 17
1.1.2. Objetivos Específicos .. 17

1.2. ESTRUTURA DO TEXTO .. 18

2 REVISÃO DA LITERATURA .. 19
2.1. MÉTODO DE ELEMENTOS FINITOS .. 19
2.2. TRANSDUTORES DE FORÇA E RECONSTRUÇÃO DE CARGAS 21

2.2.1. Metodologia de reconstrução de cargas .. 22
2.2.2. Estimativas dos erros e projeto ótimo de experimentos 25

2.3. PROJETO ÓTIMO D-ÓTIMO ... 27
2.3.1. Algoritmos de otimização para projeto D-ótimo 28

2.3.1.1. Algoritmos de troca ... 29
2.3.1.2. Algoritmos multiplicativos e do tipo “Cocktail”......................... 30
2.3.1.3. Algoritmos genéticos .. 31

3 MATERIAIS E MÉTODOS .. 37
3.1. METODOLOGIA DA SELEÇÃO DA CONFIGURAÇÃO ÓTIMA DE

EXTENSÔMETROS ... 37
3.2. DETERMINAÇÃO DA CONFIGURAÇÃO ÓTIMA DOS EXTENSÔMETROS

.. 42
3.3. TESTES FÍSICOS DE VALIDAÇÃO DA METODOLOGIA 47
3.4. RECONSTRUÇÃO DOS CARREGAMENTOS MEDIDOS 52

4 RESULTADOS E DISCUSSÃO .. 54
4.1. ESTRUTURA COMPUTACIONAL .. 54

4.1.1. Gerador de Domínio de Candidatos .. 54
4.1.2. Processo de Otimização .. 57

4.2. ANÁLISE DA EFICIÊNCIA DO ALGORÍTMO IMPLEMENTADO 62
4.2.1. Influência do tamanho da população na eficiência do algoritmo 63
4.2.2. Influência da porcentagem dos melhores extensômetros no processo de
reparação do cruzamento ... 64
4.2.3. Influência da taxa de mutação na eficiência do algoritmo 66
4.2.4. Influência do elitismo na eficiência do algoritmo 67
4.2.5. Influência do número de Baker na eficiência do algoritmo 68
4.2.6. Influência do erro admissível na eficiência do algoritmo 69
4.2.7. Análise das eficiências dos algoritmos proposto e de Fedorov 71
4.2.8. Análise da aptidão normalizada para diferentes quantidades de
extensômetros na configuração ótima .. 72

4.3. TESTES FÍSICOS DE VALIDAÇÃO DA METODOLOGIA IMPLEMENTADA
.. 74

4.3.1. Análise dos resultados do teste para a alavanca................................... 74
4.3.2. Análise dos resultados de teste para o suporte 81

5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS 86

16

5.1. CONCLUSÕES... 86
5.2. SUGESTÕES PARA TRABALHOS FUTUROS .. 87

REFERÊNCIAS ... 89

APÊNDICES ... 92

16

1 INTRODUÇÃO

Nos últimos anos, na indústria, tornou-se um procedimento padrão de

projeto a análise virtual do componente que se deseja projetar e construir. Para

tanto, utilizam-se softwares implementados com métodos de solução aproximada de

problemas de valores no contorno, como o Método de Elementos Finitos (MEF). O

MEF é amplamente difundido para a estimativa de tensões e deformações em

componentes de geometria complexa, possibilitando previsões de durabilidade dos

produtos e auxiliando no dimensionamento.

O projeto de um componente estrutural utilizando ferramentas CAE

(Computer Aided Engineering) é tão bom quanto a qualidade de seus dados de

entrada. No caso de cálculos estruturais, as principais fontes de erro relacionadas à

modelagem do problema físico para o modelo virtual são:

 Os erros introduzidos na solução do método de elementos finitos, divididos

em 3 grupos principais por Reddy (2006), os erros de aproximação de

domínio, erros de aritmética finita e quadratura e os erros de aproximação da

solução;

 Erros associados à modelagem das condições de contorno;

 Erros de aproximação dos carregamentos, os quais nem sempre podem ser

obtidos por cálculo (HUNTER 2012).

Desta forma, a habilidade de prever a durabilidade ou a resistência de um

componente mecânico ou de uma estrutura depende fortemente do conhecimento

dos carregamentos a serem aplicados. Estes carregamentos são, em geral, medidos

introduzindo células de carga no sistema ou desenvolvendo transdutores especiais

para cada aplicação (WICKHAM et al., 1994).

Entretanto, estes métodos, em geral, alteram a física do problema, ou têm

implementação muito complexa. Estas limitações podem ser superadas de uma

forma muito barata ao utilizar-se a técnica de reconstrução de cargas, na qual o

próprio componente que se deseja medir as cargas é usado como seu transdutor,

apenas com a aplicação de extensômetros em pontos específicos da geometria.

(ILANKAMBAN et al., 1996)

17

Para que esta reconstrução de carregamentos seja eficiente, recai-se no

problema da definição da posição dos pontos a serem instrumentados com

extensômetros no componente, que é solucionado através da utilização do conceito

de projeto D-ótimo, o qual minimiza a variância dos carregamentos ao otimizar a

configuração de extensômetros (GUPTA, 2013).

Esta dissertação busca apresentar, através de discussão de vários métodos

conhecidos, e implementar uma proposta de metodologia para obtenção da

configuração ótima de instrumentação, utilizando a técnica de algoritmos genéticos,

que produza a menor variância no vetor de carregamentos obtidos através da

reconstrução das cargas.

1.1. OBJETIVOS

1.1.1. Objetivo geral

O objetivo deste estudo é desenvolver um algoritmo capaz de determinar os

locais e orientações ótimos de instalação de extensômetros em uma estrutura

qualquer que se comporta como um sistema linear e é submetida a um conjunto de

carregamentos quase-estáticos. A combinação de extensômetros deve possibilitar

que a estrutura se torne seu próprio transdutor de forças, permitindo a determinação

dos carregamentos suportados durante o trabalho para o qual o componente foi

projetado.

1.1.2. Objetivos Específicos

O objetivo geral pode ser detalhado nos seguintes objetivos secundários:

i. Propor uma metodologia para a seleção da configuração de extensômetros

que permita reconstruir os carregamentos sofridos por um componente

mecânico com a menor variância possível;

ii. Implementar computacionalmente o algoritmo e a metodologia

apresentados;

iii. Elaborar e realizar testes físicos que permitam comprovar a eficácia do

algoritmo e da metodologia.

18

1.2. ESTRUTURA DO TEXTO

No corrente capítulo é apresentado o problema de reconstrução de cargas

utilizando o próprio componente como transdutor, sua importância e relevância para

o desenvolvimento de projetos estruturais. Também são apresentados os objetivos

gerais e específicos deste trabalho.

 A partir do segundo capítulo têm-se a base teórica do trabalho, onde são

explanadas as teorias e histórico de estudos sobre reconstrução de cargas, projeto

experimental ótimo e sua aplicação na reconstrução de cargas, bem como os

algoritmos de otimização para projeto D-ótimo.

No terceiro capítulo discute-se a metodologia adotada para a geração do

domínio de extensômetros candidatos e para a seleção da configuração ótima. O

método de validação do algoritmo, também apresentado neste capítulo, é composto

por testes físicos e virtuais.

No quarto capítulo são apresentados os algoritmos finais implementados e

os resultados dos testes virtuais e físicos. Os resultados virtuais apresentam uma

comparação entre o algoritmo genético e o algoritmo de troca de Fedorov. Por sua

vez, os resultados físicos de validação do algoritmo genético são apresentados para

dois componentes mecânicos.

No quinto capítulo são apresentadas as conclusões do trabalho e discussões

para futuros desenvolvimentos e estudos.

Por fim, são apresentadas nos apêndices as listagens dos algoritmos

implementados.

19

2 REVISÃO DA LITERATURA

2.1. MÉTODO DE ELEMENTOS FINITOS

O Método de Elementos Finitos (MEF) é hoje uma das técnicas mais bem-

sucedidas e estabelecidas para a solução de problemas complexos, que seriam

muito difíceis de serem resolvidos analiticamente. Ele é aplicado com sucesso a

diferentes áreas da engenharia como: engenharia civil, engenharia mecânica,

engenharia nuclear, engenharia biomédica, hidrodinâmica, condução de calor,

geomecânica etc. (BARKANOV 2001).

A formulação matemática da física dos problemas requer o conhecimento

prévio dos fenômenos envolvidos (por exemplo, as leis da mecânica clássica), e

certos artifícios matemáticos, os quais permitem obter relações matemáticas entre

as grandezas físicas ou químicas envolvidas, na grande maioria das vezes, através

de equações diferenciais.

Dependendo da complexidade do problema, a solução das equações

diferenciais que regem o problema pode ser muito difícil de obter analiticamente

(como por exemplo a solução de deslocamento de um ponto de uma estrutura de

geometria complexa sob determinadas condições de contorno). Em muitos casos, os

métodos aproximados de análise fornecem meios alternativos de obter a resposta.

Entre os métodos mais populares estão o método das diferenças finitas, os métodos

variacionais como os de Rayleigh-Ritz e de Galerkin e o Método de Elementos

Finitos (MEF).

A solução da equação diferencial no MEF é realizada dividindo o domínio

geometricamente complexo em subdomínios de geometria mais simples, chamados

de elementos finitos. Para cada elemento, funções de aproximação são obtidas,

usando a ideia básica de que qualquer função contínua pode ser representada por

uma combinação linear, em geral, de funções polinomiais. Estas funções de

aproximação são usualmente chamadas de funções de interpolação.

Relações algébricas dos parâmetros não determinados do problema (como o

deslocamento em um problema de análise estrutural) são obtidas para o conjunto de

elementos de forma a satisfazer as equações que regem a física do problema. Estes

parâmetros não determinados são a solução do problema para um número finito e

20

específico de pontos do domínio, chamados de nós. Ao conjunto de nós e elementos

que possuem relação de adjacência no domínio dá-se o nome de malha (REDDY

2006). A Figura 1 mostra um exemplo de discretização do domínio em nós e

elementos.

Figura 1 – Exemplo de domínio discretizado em elementos finitos.

O MEF produz muitas equações algébricas simultâneas, que são geradas e

resolvidas com o auxílio de computadores. Os resultados são aproximados.

Entretanto, a precisão melhora à medida que se aumenta o número de elementos

utilizados para discretizar o domínio. Quanto maior o número de elementos maior

será o número de equações a serem resolvidas, que exigem maior capacidade de

processamento.

Com o aumento da capacidade de processamento dos computadores ao

longo dos anos, problemas cada vez mais complexos puderam ser resolvidos, o que

ajudou a tornar popular o método (COOK et al. 1989).

Existem muitos aplicativos comerciais que oferecem a solução completa

para problemas de engenharia, permitindo a discretização da geometria inicial,

atribuição de propriedades e condições de contorno para o problema, solução das

equações algébricas obtidas pela discretização e pós-processamento dos resultados

para que grandezas, como por exemplo a tensão em um problema de análise

estrutural, possam ser visualizadas.

Como o intuito deste trabalho não é a solução do problema de análise de

tensões/deformações, mas sim o de reconstruir carregamentos utilizando este

resultado, optou-se pela utilização do software comercial HyperWorks® para gerar a

matriz de influência relacionada a cada componente, como é apresentado nos

capítulos seguintes.

21

2.2. TRANSDUTORES DE FORÇA E RECONSTRUÇÃO DE CARGAS

Enquanto a metodologia de análise por Elementos Finitos tornou-se muito

mais sofisticada nos últimos anos, dando aos analistas maior fidelidade em seus

modelos em termos de representação geométrica, o usuário ainda precisa fornecer

ao modelo as informações de carregamento (HUNTER 2012).

Para muitos componentes, os carregamentos podem ser calculados através

de princípios e equações básicas. Hunter (2012) cita alguns exemplos como o

cálculo de esforços de uma transmissão, cargas devido a pressão de um gás,

cargas de rolamentos, forças devido a desbalanceamentos etc..

Embora estes possam ser cenários de carga muito complexos, eles são bem

definidos. Entretanto, há uma grande quantidade de problemas da mecânica

estrutural em que o carregamento vem de fontes externas de difícil, quando não

impossível, quantificação. Domínios típicos desse fenômeno de carregamentos

complexos incluem cargas de estrada de veículos (on/off road, aeroespacial,

aquáticos). Outras estruturas como prédios e pontes também são submetidos a

carregamentos complexos que normalmente são difíceis de quantificar (HUNTER

2012).

Para que um projeto e análise de engenharia possam ser confiáveis e de

baixo custo, é imprescindível conhecer, na fase de projeto, os locais e magnitudes

das forças transmitidas às estruturas.

O conhecimento das cargas no início do processo de projeto é essencial

para aumentar a eficiência do processo de otimização do projeto e análise, o que

garante a integridade estrutural do produto. A previsão exata das cargas conduz a

uma maior confiabilidade na simulação numérica, como a análise pelo MEF, que, por

sua vez, reduz de forma significativa a dependência de ensaios experimentais.

Estes, frequentemente caros e demorados (GUPTA, 2013).

Uma vez que nem sempre é possível inserir uma célula de carga, é proposto

que a própria estrutura e um conjunto de extensômetros possam ser usados para

determinar cada uma das cargas aplicadas (forças e momentos) responsáveis pelas

tensões medidas. Em essência, a estrutura torna-se o seu próprio transdutor

(MASROOR e ZACHARY, 1991).

Neste método, conhecido como reconstrução de cargas, o componente pode

ser utilizado na montagem completa, de forma inalterada. Exceto pela colocação de

22

extensômetros na superfície, não é necessária qualquer modificação estrutural no

componente. As deformações são medidas em posições e orientações específicas

pré-determinadas, e a carga é calculada a partir destas leituras de deformação

(ILANKAMBAN et al., 1996).

2.2.1. Metodologia de reconstrução de cargas

Uma das metodologias de reconstrução de cargas estáticas mais abordadas

pela literatura assume que os carregamentos não ultrapassam o limite de

proporcionalidade do material e que os deslocamentos da estrutura são pequenos o

suficiente de forma que possa ser considerada linear a relação entre carregamentos

aplicados e deformações medidas. Desta forma, o princípio da superposição linear,

no qual estados de deformações para cada carregamento independente quando

somados formam o estado de deformações final do componente, pode ser

considerado válido (WICKHAM et al., 1994).

Segundo Gupta (2013), a deformação em qualquer ponto de uma estrutura

pode ser descrita idealmente como uma combinação linear dos carregamentos

aplicados. Assim,

 (2.1)

em que é um vetor de dimensão de deformações longitudinais medidas

em diferentes posições na estrutura, é a matriz de influência de dimensão

, sendo que representa a deformação na posição devido ao

carregamento generalizado e unitário aplicado na posição , e é o vetor de

dimensão das forças generalizadas aplicadas na estrutura.

É importante salientar que as posições e direções das forças que se deseja

reconstruir devem ser previamente determinadas. Isto exige um conhecimento

prévio das possibilidades de forças e momentos que podem eventualmente

acontecer em determinadas posições dos componentes.

No exemplo visualizado na Figura 2, o componente 1 é solicitado pelo

componente 2 através de uma conexão com pino. Assim, o princípio de

superposição linear indica que as forças e momentos que podem solicitar o

23

componente 1 serão sempre uma combinação linear entre as forças nos 3 eixos

coordenados e os momentos fletor e torsor.

Figura 2 – Exemplo de determinação da posição e direção das possíveis forças que agem
em um componente.

Partindo do princípio de que a matriz pode ser obtida por testes físicos

ou virtuais, e que é um conjunto de deformações medidas no teste físico para o

qual se deseja reconstruir os carregamentos, o vetor de forças pode ser obtido

invertendo-se a matriz de influência. Ou seja,

 . (2.2)

Entretanto, como a matriz é, em geral, retangular , já que o

número de posições de deformações medidas é, em geral, maior que o de forças,

Masroor e Zachary (1990), Wickham et al. (1994) e Bicchi (1992) utilizam o conceito

de inversão generalizada à esquerda (BEN-ISRAEL e GREVILLE, 2003) para obter

o vetor :

 . (2.3)

24

É fácil perceber, pelo fato de as deformações em cada extensômetro serem

uma combinação linear das forças aplicadas na estrutura, que para que seja

possível reconstruir um número de carregamentos, são necessários

extensômetros. Entretanto, somente esta restrição não é suficiente para garantir que

todos os carregamentos desejados possam ser estimados, já que um ou mais

extensômetros podem ser redundantes.

Ilankamban et al (1996) fornece alguns exemplos de aplicação desta

metodologia para uma viga simples e uma combinação de carregamentos

conhecidos. A Figura 3 mostra o caso de um carregamento axial e um momento

fletor sendo aplicados simultaneamente a uma viga engastada. Na Figura 3.a, a

escolha do posicionamento dos extensômetros gera uma matriz de influência

singular, o que impossibilita a sua inversão, que significa que as posições dos dois

extensômetros não são independentes para os carregamentos aplicados. Na Figura

3.b este problema é resolvido, já que o extensômetro inferior à viga passa a ter

leitura oposta à do carregamento superior.

 (a) (b)

Figura 3 – Carregamento axial e momento fletor em uma viga. a) matriz de influência
singular. b) matriz de influência inversível.
Fonte: modificado de Ilankamban et al (1996).

Conforme mencionado, a matriz de influência pode ser obtida a partir de

testes físicos ou através de um modelo de elementos finitos. Para tanto, aplica-se

um carregamento unitário em cada uma das direções que se deseja reconstruir, e

25

medem-se as deformações resultantes nos pontos e orientações previamente

determinados (configuração candidata). Estas deformações são obtidas utilizando

extensômetros ou pela leitura direta após a análise com o modelo virtual. Desta

forma, é possível obter para cada um dos carregamentos unitários, a coluna

correspondente da matriz (HUNTER, 2012).

2.2.2. Estimativas dos erros e projeto ótimo de experimentos

Segundo Masroor e Zachary (1990) e Kutner et al. (2004), na prática, o vetor

de deformações contém erros de medição. Se os erros nas medições de

deformação são independentes e identicamente distribuídos (o que normalmente

ocorre em medições com extensômetros) e o desvio padrão de cada um deles é , a

matriz de variância-covariância para as estimativas de carga, , pode ser

escrita na forma (MASROOR e ZACHARY, 1990)

 , (2.4)

sendo uma matriz e a variância na medida de deformações.

Os termos diagonais de são a variância da

estimativa de força ; os demais termos (da matriz são a covariância entre

as estimativas de força e .

Como pode ser percebido na equação 2.4, inicialmente é possível reduzir a

variância-covariância das estimativas de força minimizando a variância na medida

de deformações. Entretanto, este erro está ligado diretamente aos extensômetros e

dispositivos de aquisição de dados, e estará limitado à resolução e precisão destes.

Segundo Gupta (2013), outra forma de reduzir a variância-covariância nas

estimativas de força é através da minimização dos elementos da matriz ,

conhecida como matriz de dispersão (ANGELO, 2007), a qual depende apenas da

configuração de extensômetros escolhida para se fazer a reconstrução dos

carregamentos.

Este conceito de minimização da variância baseado na otimização da matriz

de dispersão é conhecido como projeto ótimo de experimentos e, segundo O’Brien

26

(2003), foi desenvolvido por Smith (1918), seguido por Kiefer e Wolfowitz (1959) e

Fedorov (1972).

 Muitos são os critérios, ou funções objetivo, utilizados para a obtenção de

projetos experimentais ótimos. Tendo como referência a bibliografia na área, alguns

dos mais discutidos para regressão linear são (WONG, 1993):

 Critério D-ótimo: baseia-se na minimização do determinante da matriz de

dispersão, , ou na maximização do determinante da matriz

de informação . Este critério foi proposto por Wald (1943).

Segundo Aguiar et al. (1995), quanto maior o determinante da matriz de

informação, mais próximo da ortogonalidade estará a matriz de dispersão.

Esta ortogonalidade garante a independência mútua dos coeficientes do

modelo, e no caso específico da reconstrução de cargas significa a

ortogonalidade entre as colunas da matriz . Desta forma, quando o

número de extensômetros for igual ao de carregamentos (matriz

quadrada), cada extensômetro responderia a apenas um carregamento. A

minimização da matriz de dispersão também reduz a variância e covariância

média das estimativas de carregamento, como é discutido no próximo

capítulo.

 Critério A-ótimo: baseado na minimização do traço da matriz de dispersão,

, minimizando a dispersão média das estimativas dos

parâmetros (ANGELO, 2007).

 Critério E-ótimo: minimiza o máximo autovalor da matriz de dispersão

 (ANGELO, 2007).

A Tabela 1 sumariza os critérios para projeto experimental ótimo discutidos e suas

funções objetivo, .

Gupta (2013) cita que o critério para a obtenção do projeto experimental

ótimo que tem maior relevância para o caso de reconstrução de cargas é o D-ótimo.

A utilização deste critério é praticamente unânime para esta aplicação como pode

ser visto nos trabalhos de Hunter (2012), Wickham et al. (1994) e Gupta (2013).

27

Tabela 1 – Critérios para projeto experimental ótimo.

Critério Função objetivo

D

A

E

Fonte: modificado de Angelo (2007).

Uma das vantagens do critério D-ótimo é a sua convergência monotônica, a

qual é discutida por Yu (2010) e Gao et al. (2014), utilizando um algoritmo para o

projeto D-ótimo.

Wickham et al. (1994) reportam que, em testes comparativos, aplicando os

projetos A e D ótimos, o primeiro distribui mais uniformemente as variâncias entre as

estimativas das cargas, mas o segundo atinge melhor o objetivo de otimização na

precisão geral do vetor de carregamentos.

2.3. PROJETO ÓTIMO D-ÓTIMO

O conjunto de posições e orientações de todos os extensômetros

possíveis sobre a superfície de um componente constitui o domínio do problema

de otimização. A combinação de alguns destes extensômetros (número igual ou

maior que o de forças que se deseja reconstruir) representa um projeto candidato

possível. A partir de cada uma destas combinações possíveis, gera-se uma matriz

de influência, , cujos componentes são as leituras de deformação de cada

extensômetro deste conjunto candidato para cada carregamento que se deseja

reconstruir. Esta matriz é utilizada para o cálculo da função objetivo, , a ser

otimizada. Assim, o problema de otimização associado pode ser escrito como:

Buscar e tal que, , (2.5)

em que representa a N-ésima matriz candidata , representa cada um dos

seus elementos constituintes e é a matriz de influência da configuração ótima de

extensômetros.

28

Na prática, um número finito de pontos constitui o domínio do problema de

otimização, já que as possíveis matrizes de influência, , são obtidas através de

um número finito de extensômetros posicionados no contorno do componente. O

problema de otimização se constitui, portanto, em um problema de otimização de

variáveis discretas.

A obtenção de todos as deformações no contorno de um componente é

muito difícil de se realizar por testes físicos, já que envolveria medir dados para

centenas de extensômetros para cada direção de carregamento possível para a

estrutura. Para facilitar a obtenção destas deformações, um modelo de elementos

finitos do componente em estudo é utilizado. Um extensômetro é posicionado em

cada nó ou centroide de cada face do elemento que pertence ao contorno do

componente, em um ângulo discreto em relação ao sistema de coordenadas locais

da superfície do elemento (ex. 0º, 15º, 30º, ... ,165º).

A combinação de todos os centroides e/ou nós multiplicados pelo número de

ângulos possíveis fornece o tamanho do domínio discreto de busca do algoritmo de

otimização (GUPTA, 2013).

Segundo Arora (2004) existem dois tipos básicos de métodos de otimização

com variáveis discretas: os enumerativos e estocásticos. Em alguns métodos

enumerativos existe a possibilidade de que todo o domínio de candidatos seja

varrido, como o algoritmo de troca clássico proposto por Fedorov (1972) utilizado

para a obtenção de projetos experimentais ótimos do tipo D-ótimo. Esta abordagem

é muito custosa computacionalmente. Por outro lado, muitos algoritmos da classe

dos enumerativos usam estratégias e regras heurísticas para reduzir o número de

tentativas, como os algoritmos multiplicativos e do tipo “Cocktail”, também utilizados

para obtenção de projetos experimentais ótimos. Já os métodos estocásticos são,

em geral, baseados em fenômenos naturais, como o método de recozimento

simulado (simulated annealing) ou algoritmos genéticos.

2.3.1. Algoritmos de otimização para projeto D-ótimo

Mandal et al. (2014) faz uma revisão bibliográfica dos algoritmos de

otimização para projeto D-ótimo mais utilizados nos últimos anos. As metodologias

de alguns destes algoritmos são apresentadas a seguir.

29

2.3.1.1. Algoritmos de troca

Os algoritmos de troca modificam iterativamente o projeto corrente,

eliminando pontos de projeto existentes e adicionando novos pontos do espaço de

projeto , minimizando a função objetivo . Algoritmos baseados neste método são

apresentados nos trabalhos de Nguyen e Miller (1992), Smucker et al. (2011), Gupta

(2013) e Liao (2001). Gupta (2013) apresenta o algoritmo de forma a reduzir o

número de cálculos e que consiste em:

1. Escolher uma matriz inicial ;

2. Calcular ;

3. Calcular ;

4. Adicionar uma linha de um novo candidato à matriz e calcular o

novo determinante da matriz de dispersão através da equação

 (2.6)

e a nova matriz de dispersão através da equação

 ; (2.7)

5. Remover uma linha de candidatos da matriz e calcular o novo

determinante da matriz de dispersão através da equação

 (2.8)

e a nova matriz de dispersão através da equação

 ; (2.9)

30

Desta forma, o determinante não necessita ser recalculado a cada nova

iteração;

6. Se for menor que o da iteração anterior, armazenar esta posição de

extensômetro;

7. Repetir os passos 4 e 6 até que todo o domínio de candidatos tenha sido

testado para todas as linhas da matriz .

Mandal et al. (2014) cita que alguns problemas comuns deste tipo de

algoritmo são sua baixa taxa de convergência e que, frequentemente, não existe

garantia de que o resultado encontrado é o ótimo global. Miller e Nguyen (1994)

também relatam que este tipo de algoritmo encontra ótimos locais e, quando

executados repetidas vezes com inícios randômicos, eventualmente encontram um

ótimo global. Além disto, conforme evidenciam Broudiscou et al (1996) e Ramos

(2011), para um grande número de variáveis (ex. número de extensômetros maior

que 30) pode ser muito difícil encontrar a resposta por este método.

2.3.1.2. Algoritmos multiplicativos e do tipo “Cocktail”

Nos algoritmos multiplicativos, pesos são atribuídos ao vetor das variáveis

de projeto, e estes são atualizados a cada iteração por um fator multiplicativo, de

forma que mais peso é adicionado ao candidato de projeto que traz maior ganho à

função objetivo (MANDAL et al., 2014). Dette et al. (2008) propõe dois algoritmos

multiplicativos e provam sua convergência monotônica. Mandal e Torsney (2006)

propõe um algoritmo multiplicativo baseado em agrupamentos (Clusters). Mandal et

al. (2014) observa que estes algoritmos, apesar de simples, são em geral de lenta

convergência.

Algoritmos do tipo Cocktail usam combinações de algoritmos de troca e

multiplicativos. Yu (2011) propôs um algoritmo que é uma simples concatenação

entre uma iteração do algoritmo de troca, seguido de uma iteração de um algoritmo

multiplicativo e uma terceira do algoritmo chamado de Troca do Vizinho Mais

Próximo (Nearest Neighbor Exchange – NNE). Mandal et al. (2014) afirma que este

tipo de algoritmo é mais rápido que algoritmos tradicionais.

31

2.3.1.3. Algoritmos genéticos

Desenvolvido por John Holland e seus colegas da Universidade de Michigan

na década de 70, os algoritmos genéticos (AG) imitam a teoria evolucionista

proposta por Charles Darwin (MANDAL et al. 2014). Os mecanismos específicos do

algoritmo usam a linguagem da biologia e sua implementação imita as operações

genéticas (ARORA, 2004).

Para o entendimento do algoritmo, algumas definições são necessárias, as

quais são adaptadas nesta seção a partir das definições de Mandal et al. (2014),

Broudiscou et al. (1996) e Arora (2004). Estas definições são:

 Gene: é um escalar do vetor de projeto ótimo, no caso da reconstrução de

cargas é um dos extensômetros do domínio , em uma determinada posição

e orientação.

 Cromossomo: representa um projeto do sistema (um indivíduo da

população), neste caso, uma configuração de extensômetros.

 População: é o conjunto de cromossomos da iteração corrente. O tamanho

da população é definido de acordo com a experiência de uso e do tipo de

problema a ser resolvido.

 Geração: é cada iteração do algoritmo genético.

O procedimento geral de otimização através de AG consiste em:

1. Obtenção da população inicial através de algum método randômico, em que

os genes (número atribuído aos extensômetros possíveis) são

representados por números binários ou não, dependendo do tipo de

codificação adotada e os cromossomos ou indivíduos são a combinação

destes.

2. Calcula-se o valor da aptidão para cada cromossomo, seleciona-se o melhor

indivíduo e remove-se o pior para gerar a próxima população. No caso da

reconstrução de cargas, a aptidão é calculada de acordo com uma das

funções objetivo para projetos experimentais ótimos conforme discutido na

seção 2.2.2.

32

3. Realiza-se a reprodução para transformar a população atual em uma nova

geração, através dos mecanismos de seleção, mutação e cruzamento.

 Seleção: selecionam-se os pares de cromossomos que irão dar origem à

nova geração de acordo com suas aptidões, quanto maior a aptidão de

um cromossomo maior a probabilidade de ele ser selecionado.

 Cruzamento: um par de cromossomos é dividido em um ou mais pontos

aleatórios e são combinados a primeira parte de um com a segunda

parte do outro e vice-versa, conforme exemplificado na Figura 4.

 Mutação: seleciona-se um fator binário do cromossomo aleatoriamente e

realiza-se a permuta de 0 para 1 e vice-versa. No caso de outros tipos

de codificação, outros métodos de mutação são utilizados. As

quantidades de mutação e cruzamento em cada reprodução podem ser

ajustadas para melhorar a performance do algoritmo.

4. Repetem-se os passos 2 e 3 até que um critério de parada ou um número

máximo de iterações seja atingido.

Figura 4 – Operação de cruzamento com um corte.
Fonte: modificado de Arora (2004).

Com base nos trabalhos de Xu (1999) e Arora (2014), a seguir são

apresentados alguns pontos-chave na construção de algoritmos genéticos, que

determinam sua eficiência na solução de problemas de otimização:

 Codificação - a forma como cada candidato é codificado para processamento

no algoritmo. Alguns tipos citados são:

1. Binária: Neste tipo de codificação cada gene é representado através da sua

sequência binária de bits, é um dos mais utilizados e citados na literatura.

2. Inteira: Quando o espaço de projeto é constituído por números inteiros,

dois pontos consecutivos e próximos podem ter representações binárias

33

muito diferentes. Considere por exemplo que em uma dada iteração os pais

selecionados foram os números 15 e 16, cujas representações binárias são

01111 e 10000 respectivamente. Se o cruzamento entre eles ocorrer

apenas no primeiro bit, por exemplo, os filhos seriam os binários 11111 e

00000, que correspondem aos valores 31 e 0. Estes pontos são muito

distantes da geração anterior, tornando difícil a convergência do algoritmo.

Desta forma, para estes casos é mais interessante utilizar o próprio número

inteiro ou uma codificação binária cinza.

3. Binária cinza: esta codificação adapta a codificação binária através de um

algoritmo específico de forma que entre dois números inteiros consecutivos

não exista mais do que 1 bit de diferença.

A Tabela 2 apresenta um comparativo de números inteiros nas 3

representações discutidas.

 Métodos de seleção: é o processo pelo qual os pais são selecionados de

acordo com sua aptidão para dar origem à prole. Este passo tem especial

importância na convergência do modelo uma vez que ele afeta a diversidade

da população. Se o método impuser uma pressão seletiva muito alta sobre os

indivíduos mais aptos, os melhores cromossomos serão selecionados com

muito mais frequência para formar a nova população, reduzindo a diversidade

da população e antecipando a satisfação do critério de parada. Por outro lado,

com pouca pressão seletiva cromossomos com menor aptidão serão

selecionados mais vezes, aumentando muito a diversidade da população e

retardando a parada. Alguns métodos de seleção são (XU,1999):

1. Seleção por roleta: é o método tradicional proposto por John Holland, que

consiste em atribuir uma fatia de uma roleta imaginária para cada

cromossomo da população, cujo tamanho do pedaço é proporcional à sua

aptidão individual em relação aos outros elementos da população. A roleta

é girada N (tamanho da população) vezes. Após cada rotação, o

cromossomo apontado pelo marcador da roleta é selecionado. Na Figura 5

é apresentada uma representação gráfica deste processo.

2. Seleção de acordo com a classificação (rank): neste método a aptidão é

substituída por uma classificação associada a ela. Os indivíduos são

34

ordenados de acordo com a sua aptidão e recebem uma classificação de

acordo com a ordem em que aparecem. São atribuídas probabilidades de

seleção de cada cromossomo baseada no seu “rank” e, a partir daí, utiliza-

se o método da roleta com as novas probabilidades para selecionar os

cromossomos. Dois métodos que se enquadram nesta categoria são o

linear de Baker e o de Reeves.

3. Seleção por competição: Este método seleciona um conjunto aleatório de

cromossomos da população de dimensão e seleciona o melhor deles.

Em geral, esta dimensão é 2 e a pressão seletiva aumenta a medida que

se aumenta .

 Modo de substituição da população - a forma como os cromossomos de uma

geração são substituídos pelos novos. Alguns tipos citados são:

1. Substituição de regime permanente: neste método apenas uma fração dos

cromossomos menos aptos da população é substituída pelos novos

cromossomos gerados durante a reprodução.

2. Estratégia de evolução : neste método os filhos competem com

os pais em uma população intermediária de tamanho .

3. Elitismo: é possível que alguns cromossomos de gerações anteriores

sejam mais aptos do que os da nova geração. Estes indivíduos seriam

perdidos na nova geração ou poderiam ser arruinados nos processos de

cruzamento e mutação. Para que esse efeito seja evitado, um número de

cromossomos é guardado e inserido na nova geração sempre que estes

forem mais aptos.

 Cruzamento - após o pareamento randômico dos pais, as suas cargas

genéticas são combinadas para gerar um novo indivíduo. O cruzamento por

um ponto que foi explicado anteriormente e exemplificado na Figura 4 é um

dos mais comuns. Uma desvantagem deste método é que ele possui o

chamado “efeito de cauda”, que impossibilita que algumas combinações

possam ser obtidas. Outras formas de cruzamento são:

1. Cruzamento por dois pontos: é similar ao cruzamento por um ponto, mas

neste caso 2 pontos são selecionados e o segmento resultante entre os

35

cortes são invertidos entre os dois pais. Este método permite uma maior

possibilidade de combinações.

2. Cruzamento uniforme: neste método qualquer gene em qualquer posição

pode ser trocado entre os pais de acordo com uma probabilidade. Apesar

de o método ter a habilidade de gerar qualquer combinação possível entre

dois pais, ele pode ser disruptivo para a evolução da aptidão no algoritmo.

 Mutação - após o cruzamento ter sido executado, alguns genes são

transformados de acordo com uma probabilidade . Este artifício introduz

diversidade na população e previne a convergência prematura. Alguns

métodos de mutação discutidos são:

1. Mutação uniforme: este é o método mais convencional de mutação, em que

cada gene tem igual probabilidade de sofrer mutação. Para cada gene, um

número aleatório é gerado e o gene é mutado se . Para algoritmos

com codificação binária o gene é alterado de 0 para 1 e vice-versa. Para as

codificações por números inteiros ou reais, o gene é substituído por outro

randomicamente escolhido do domínio de projeto.

2. Mutação de contorno - este método é similar à mutação uniforme para

codificações por números inteiros ou reais. Entretanto, o novo gene gerado

será o elemento do contorno superior ou inferior do domínio, com igual

probabilidade de ocorrência para ambos.

Tabela 2 – Representações de números de acordo com suas codificações.

Valor Inteiro Representação
binária

Representação binária
cinza

1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101

Fonte: Modificado de Xu (1999).

36

Figura 5 – Exemplo de seleção pelo método da roleta.
Fonte: modificado de Arora (2004).

37

3 MATERIAIS E MÉTODOS

3.1. METODOLOGIA DA SELEÇÃO DA CONFIGURAÇÃO ÓTIMA DE

EXTENSÔMETROS

A metodologia para a seleção dos pontos ótimos para colocação de

extensômetros em uma estrutura utilizando-o como o seu próprio transdutor de

forças, proposta deste projeto, é similar àquela desenvolvida por Gupta (2013) e

Hunter (2012), e é dividida em alguns passos principais. Estes passos são

apresentados neste capítulo.

3.1.1. Geração do domínio de extensômetros candidatos

Um modelo de elementos finitos, construído com o auxílio do pré-

processador HyperMesh® e analisado utilizando o solver RADIOSS®, permitirá a

geração do domínio candidato.

O componente no qual se deseja otimizar as posições de extensômetros é

discretizado, obtendo-se assim a malha de elementos finitos. O conjunto contendo

os centroides das faces ou nó sobre o contorno dos elementos gerados compõe o

domínio de posições possíveis para os extensômetros. Cada ângulo de orientação

discreto em relação a um dos eixos do sistema de coordenadas local do elemento

ou nó é um extensômetro candidato.

A análise é feita aplicando as devidas condições de contorno no componente

de acordo com as interpretações da física do problema. São aplicados casos de

carga com carregamentos unitários em cada uma das posições e direções das

forças que se deseja reconstruir. Para cada um destes casos de carga o tensor de

deformações é obtido para o centroide ou nós de todos os elementos do contorno.

Para o caso de modelos com elementos tridimensionais, as deformações

superficiais do componente são obtidas adicionando-se uma camada de elementos

de casca ou membrana com espessura muito fina (que não afete de forma

significativa a rigidez e dimensões do componente) e com as mesmas propriedades

dos elementos tridimensionais. Neste estudo foram adotados elementos lineares do

38

tipo casca e espessura de 0,01 mm como padrão para todos os modelos

tridimensionais.

Na Figura 6 pode ser vista a viga engastada, exemplificada na Figura 2,

modelada no pré-processador HyperMesh® com os carregamentos unitários

conforme interpretado a partir da peça real. A análise foi executada com o

processador RADIOSS® e o arquivo de saída da análise fornece o tensor de

deformações centroidais para cada elemento conforme mostrado na Figura 7.

Figura 6 – Modelo de uma viga engastada com carregamentos unitários e condiçôes de
contorno.

Figura 7 – Representação dos tensores de deformação nos elementos da membrana do
componente para um carregamento unitário.

39

Para facilitar a obtenção das matrizes de influência candidatas, foi utilizado o

software nCode®, o qual permite a localização de extensômetros virtuais no modelo.

Estes fornecem o pós-processamento da resposta de deformação em uma posição e

ângulo específico do modelo para um dado carregamento, permitindo a importação

direta destes valores no algoritmo de otimização desenvolvido.

O cálculo das deformações em cada uma das direções discretas de

extensômetros sobre cada elemento é calculado pelo nCode® através do tensor de

deformações resultante da análise e o círculo de Mohr na forma (HIBBELER, 2010)

 , (3.1)

em que é qualquer ângulo em relação ao eixo x do sistema de coordenadas do

elemento, a deformação elementar na direção x, a deformação elementar na

direção y e a deformação cisalhante.

Utilizando um algoritmo implementado em linguagem TCL (Tool Command

Language - Linguagem de Comandos de Ferramentas), em conjunto com o software

HyperMesh®, possibilita a geração de um arquivo de texto contendo a posição e o

ângulo de cada extensômetro candidato. Este arquivo de texto é lido diretamente

pelo nCode®, o qual posiciona os extensômetros automaticamente tendo como base

os seguintes campos que são gerados pelo algoritmo:

 Posição do extensômetro: o usuário escolhe entre posicionar o extensômetro

no centroide de cada elemento ou nos nós da malha.

 Número de identificação: número atribuído pelo pré-processador durante a

discretização do modelo para cada nó/elemento selecionado pelo usuário

para compor o domínio de candidatos.

 Tipo de extensômetro: para o caso em questão considera-se a utilização

apenas de extensômetros uniaxiais.

 Orientação: Este vetor orienta a direção de cada extensômetro. É

determinado baseado na projeção do vetor normal à face do elemento ou do

nó (calculado como a média dos vetores normais elementares adjacentes) no

sistema de coordenadas globais. Neste caso, dado o vetor normal

40

 do nó ou elemento no sistema de coordenadas globais, o algoritmo

determina a orientação, , do extensômetro de ângulo baseado no menor

escalar absoluto entre as componentes . Considere o exemplo em que

 é o menor escalar absoluto. Assim,

 se . (3.2)

Neste caso o vetor de orientação é igual ao vetor unitário na direção x do

sistema de coordenadas globais, uma vez que a componente x do vetor

normal à face do elemento é o menor escalar absoluto. O vetor de orientação

proveniente do algoritmo gerador de domínio será sempre igual a um dos

vetores unitários do sistema de coordenadas globais. Este vetor é projetado

pelo software nCode® no plano cuja normal é , e o vetor final de orientação

para o extensômetro de ângulo no sistema de coordenadas global será

 (3.3)

em que representa o produto vetorial. A Figura 8 ilustra um exemplo deste

processo.

 Incremento de ângulo: O ângulo é calculado em sentido anti-horário em

relação ao vetor normal do elemento partindo do vetor de orientação , e o

tamanho do incremento é definido pelo usuário.

Dependendo do componente estrutural a ser submetido ao procedimento de

reconstrução de cargas, pode ser interessante excluir do domínio regiões de

gradiente de tensão muito grande. Isso, porque um pequeno erro de posicionamento

durante a colagem do extensômetro pode gerar uma leitura de tensão muito

diferente da obtida pelo MEF. Além disso, nestas regiões, o erro do modelo de

elementos finitos pode ser grande. Dessa forma, regiões próximas a soldas, raios

muito pequenos e descontinuidades geométricas como cantos vivos devem ser

excluídos do domínio.

No algoritmo gerador do domínio de candidatos, a identificação destas

regiões de descontinuidade é feita através do ângulo entre os vetores normais de

41

dois elementos adjacentes, o que se convencionou chamar “arestas características”

do componente.

Figura 8 – Exemplo da determinação do ângulo de orientação do extensômetro de ângulo

.

A aresta entre dois elementos adjacentes é considerada uma aresta

característica do modelo caso o ângulo entre os vetores normais for maior do que

um valor especificado pelo usuário. Um exemplo da representação das arestas

características em um componente pode ser visto na Figura 9, para um ângulo limite

de 30º.

Figura 9 – Exemplo de arestas características de um componente para um ângulo limite
de 30º.

42

3.2. DETERMINAÇÃO DA CONFIGURAÇÃO ÓTIMA DOS EXTENSÔMETROS

3.2.1. Função objetivo

O critério de projeto experimental D-ótimo foi selecionado como função

objetivo para a otimização da configuração de extensômetros. Nesse caso, o

problema de otimização pode ser posto como:

Buscar e tal que, , (3.4)

em que e representam o conjunto de posições e orientações para uma dada

configuração candidata , os quais geram a N-ésima matriz de influência candidata

, cada um dos seus elementos constituintes e a matriz de influência da

configuração ótima de extensômetros.

Como já exposto na seção 2.2.2, este critério é o que apresenta maior

relevância para o procedimento de otimização de extensômetros para reconstrução

de cargas. Wickham et al. (1994) cita como motivo para esta relevância que a raiz

quadrada do determinante da matriz de dispersão é proporcional

à variância generalizada das estimativas de força.

Segundo Aguiar et al. (1995), quando um modelo de regressão é ajustado a

dados experimentais, os erros experimentais são transmitidos aos coeficientes, no

nosso caso, as estimativas de força. Geometricamente, os coeficientes e seus erros

são representados por elipsoides cujos eixos descrevem estes erros, conforme

exemplificado na Figura 10. Desta forma, quanto menores os eixos desta elipsoide,

mais precisos são os coeficientes. O volume desta elipsoide é proporcional à raiz

quadrada do determinante da matriz de dispersão. Desta forma, ao minimizar o

determinante da matriz de dispersão, minimiza-se o volume da elipsoide.

3.2.2. Algoritmo de otimização

A metodologia adotada para a obtenção da configuração ótima dos

extensômetros para a reconstrução de cargas utiliza um algoritmo genético. Esta

escolha se deve principalmente à sua capacidade de obter boas aproximações para

43

projetos ótimos globais, permitindo sua utilização para geometrias complexas que

possam conter mínimos locais e grande número de elementos no modelo de

elementos finitos.

Figura 10 – Elipsoide de confiança para as estimativas de força.
Fonte: modificado de Aguiar et al. (1995).

O algoritmo foi desenvolvido na linguagem Python, aproveitando sua

integração com o software nCode® e permitindo a simplificação da leitura do

resultado de deformações do modelo de elementos finitos.

Como cada gene do domínio é representado por um número inteiro, optou-

se por não codificá-los, uma vez que, conforme discutido por Xu (1999), a

codificação de alguns números inteiros muito próximos pode ter uma representação

binária muito diferente, comprometendo a convergência do algoritmo.

Para fazer a seleção dos pais que irão gerar a nova população através do

cruzamento, utilizou-se o método de classificação linear de Baker (XU, 1999) ao

invés da aptidão de cada cromossomo. Esta escolha se deu devido ao fato de que a

aptidão calculada baseada no determinante da matriz de dispersão gera números

muito grandes, e entre dois cromossomos de uma mesma população pode haver

uma diferença de algumas ordens decimais, o que causaria uma pressão muito

grande do cromossomo mais apto sobre os demais. A pressão do mais apto pode

ser ajustada para obter uma boa taxa de convergência sem comprometer a

diversidade das gerações.

44

Neste método, cada cromossomo é ordenado em ordem crescente de

aptidão de 1 a N, e a expectativa de seleção para cada cromossomo é dada pela

equação (XU, 1999)

 , (3.5)

em que é o número de Baker e representa a expectativa de seleção para o

cromossomo de ordem N, e j é a posição do cromossomo dentro da população.

Segundo Xu (1999), Baker recomenda que o valor de 1,1 seja utilizado para

o número de Baker. Dentro do intervalo [1;2], quanto maior o valor, maior a pressão

do mais apto sobre o menos apto na seleção, permitindo que o usuário ajuste de

acordo com cada problema. Valores no intervalo [0;1] para o número de Baker

produzirão as mesmas expectativas, entretanto, neste caso deve-se ordenar os

cromossomos em ordem decrescente de aptidão. Esta última foi a forma adotada

neste estudo. Na Tabela 3 a expectativa de seleção é calculada para alguns

valores de número de Baker em uma população de 6 cromossomos.

Tabela 3 – Expectativa de seleção do mètodo de classificação linear de baker.

Expectativa
Número de Baker 0,7 0,8 0,9 1,1 1,2 1,3

O
rd

em
 (j

)

1 1,3 1,2 1,1 0,90 0,80 0,70
2 1,18 1,12 1,06 0,94 1,12 0,82
3 1,06 1,04 1,02 0,98 1,04 0,94
4 0,94 0,96 0,98 1,02 0,96 1,06
5 0,82 0,88 0,94 1,06 0,88 1,18
6 0,7 0,8 0,9 1,10 0,80 1,30

Após a classificação dos cromossomos através de suas aptidões, o número

de Baker é atribuído a cada cromossomo de acordo com a sua ordem na população.

O método da Amostragem Universal Estocástica é utilizado para selecionar

randomicamente os cromossomos que farão parte do cruzamento.

Este método de amostragem foi proposto por James Baker (XU, 1999) e é

baseado no método clássico da roleta, sendo que cada fatia desta roleta terá

tamanho proporcional à expectativa R(j) calculada para cada cromossomo.

Diferentemente do método da roleta clássica, neste caso ela possui N marcadores

45

igualmente espaçados. Desta forma, a roleta é girada apenas uma vez e os

cromossomos apontados pelos N marcadores são selecionados. No exemplo da

Figura 11, seis marcadores são utilizados, uma vez que a população possui 6

cromossomos. Os valores de P de 1 a 6 representam a expectativa R(j) de seleção

de cada cromossomo. Quando a roleta é girada, os marcadores assumem a posição

mostrada em vermelho, e o cromossomo 1 é selecionado 2 vezes, os cromossomos

2, 3, 4 e 6 são selecionados 1 vez e o cromossomo 5 não é selecionado.

Figura 11 – Método da amostragem universal estocástica.

Com o objetivo de que o melhor cromossomo de cada geração não seja

perdido durante os processos de cruzamento e mutação, o modelo de substituição

da geração com elitismo foi utilizado. Desta forma, alguns dos melhores

cromossomos são eleitos e serão levados à próxima geração inalterados.

Os cromossomos selecionados são pareados aleatoriamente e o

cruzamento por dois pontos é realizado. Este tipo de cruzamento foi selecionado por

permitir um maior número de combinações entre os pais que o cruzamento simples

por um ponto. No caso específico deste estudo, trocam-se os números inteiros que

representam diretamente cada extensômetro entre dois cromossomos. Um exemplo

deste processo é mostrado na Tabela 4.

Uma taxa de mutação é atribuída pelo usuário e representa a probabilidade

que cada gene tem de sofrer mutação. Cada gene da população é testado

46

individualmente e um número aleatório no intervalo [0,1] é atribuído a ele. Caso o

número seja menor do que a taxa, o gene é escolhido para sofrer mutação.

Uma vez que os genes são números inteiros e não binários, os genes

selecionados de cada cromossomo são substituídos por um número inteiro que

representa outra posição e orientação é escolhido randomicamente do domínio.

Tabela 4 – Exemplo de cruzamento por dois pontos.

Pais Filhos

[x1,x2, x3, x4, x5, x6] [x1,x2, y3, y4, x5, x6]

[y1,y2, y3, y4, y5, y6] [y1,y2, x3, x4, y5, y6]

Fonte: modificado de Xu (1999).

Os processos evolucionários aplicados à população podem gerar genes

idênticos em um mesmo cromossomo, o que não é desejável no caso específico de

seleção de extensômetros. Isto pode significar na prática não poder reconstruir uma

certa quantidade de carregamentos, caso o número de extensômetros passe a ser

menor que ela.

Para solucionar este problema, uma etapa de reparação é realizada após a

mutação. Os extensômetros são ordenados para cada tipo de força aplicada no

modelo, do maior para o menor valor absoluto de deformação, o que garante que

estes candidatos têm uma boa resposta para o carregamento que eles devem

descrever. Uma porcentagem dos extensômetros, determinada pelo usuário, com

maior valor absoluto de deformação em cada carregamento é guardada na memória,

e para cada gene repetido encontrado no cromossomo, este é reparado

substituindo-o por outro randomicamente escolhido da lista previamente

armazenada. Este procedimento tende a aumentar a aptidão média da geração,

além de garantir a diversidade, impedindo a convergência para mínimos locais.

O critério de parada do algoritmo é baseado na estabilização da média das

aptidões da população, e é calculado como a diferença da média dos logaritmos das

aptidões do modelo entre duas gerações consecutivas de acordo com a equação:

 (3.5)

47

em que representa o determinante de cada um dos cromossomos da atual

geração, o determinante dos cromossomos da geração anterior e o número

total de cromossomos na população.

O usuário define um erro admissível para a análise e quando for menor do

que o erro a análise é encerrada. Além disto, também é possível determinar um

número máximo de iterações como critério de convergência secundário.

Para analisar a eficiência do algoritmo genético, o algoritmo de troca de

Fedorov foi também implementado, utilizando o procedimento mostrado na seção

2.3.1.1. A implementação computacional segue a forma apresentada por

Triefenbach (2008).

3.3. TESTES FÍSICOS DE VALIDAÇÃO DA METODOLOGIA

Para a validação da metodologia desenvolvida, dois componentes

estruturais foram utilizados. Um componente proveniente de um trator produzido

pela empresa CNH Industrial Latin America Ltda. e um suporte construído de forma

similar à estrutura testada por Hunter (2012). Estes são mostrados na Figura 12.a e

Figura 12.b.

Para estes componentes, foram gerados os modelos em elementos finitos

utilizando os softwares HyperMesh® e RADIOSS®, aplicando os carregamentos

unitários que melhor representam a combinação possível de carregamentos reais

sofridos por eles durante os testes.

Figura 12 – Estruturas testadas: (a)-alavanca de um trator, (b)-suporte construído.

(a) (b)

48

O modelo de elementos finitos para a alavanca foi gerado com elementos

tridimensionais lineares e uma fina camada externa de 0,01m de espessura de

elementos de casca lineares. Considerou-se que apenas os pontos A e B indicados

na Figura 13 irão receber carga.

Para cada um destes pontos, é aplicado um carregamento unitário em cada

um dos eixos coordenados, perfazendo um total de 6 casos de carga individuais.

Estes carregamentos permitem reconstruir qualquer combinação de forças que

possam ocorrer nos dois pontos. Uma porção do tubo central, que foi utilizada para

fixação do componente durante os testes, teve todos os seus graus de liberdade

restritos na análise.

Figura 13 – Modelo em elementos finitos da alavanca.

O componente foi fixado em uma bancada de testes na mesma porção

restrita no modelo de elementos finitos. Dois dispositivos que permitem a adição de

massas foram pendurados nos pontos A e B da estrutura. A estrutura foi também

posicionada em diferentes ângulos de inclinação e rotação de forma que a direção

da força resultante pudesse ser comparada com a direção da força reconstruída. A

Figura 14 mostra o componente já posicionado no dispositivo de teste e os ângulos

de inclinação possíveis. A combinação de carregamentos testados pode ser vista na

Tabela 5.

49

Figura 14 – Dispositivo de teste para a alavanca.

Tabela 5 – Combinaçâo de carregamentos aplicados durante os testes da alavanca.

Caso de carga Massa em A
[kg]

Massa em B
[kg]

Rotação
[graus]

Inclinação
[graus]

1 11,56 0 0 0
2 11,56 0 45 0
3 11,56 0 0 -45
4 11,56 11,60 0 0
5 11,56 11,60 -37 0
6 11,56 11,60 0 -30
7 0 11,60 0 0
8 0 11,60 -45 0
9 0 11,60 0 -38

Foram aplicados 12 extensômetros uniaxiais da marca Excel, modelo PA-06-

125BA-120L de 6 mm de comprimento e 120 (Ohms) de resistência no

componente, dentre os quais 6 posições foram determinados pelo algoritmo genético

e os demais foram selecionados aleatoriamente. Desta forma, o erro da

reconstrução em relação aos carregamentos reais aplicados pode ser calculado com

combinações aleatórias de 6 extensômetros entre os 12, e comparado com a

localização ótima.

50

O modelo de elementos finitos para o suporte foi gerado com elementos

lineares do tipo casca considerando que somente a extremidade superior irá receber

esforço. Um carregamento unitário em cada um dos eixos coordenados foi aplicado

a este ponto, perfazendo 3 casos de carga individuais. Estes carregamentos

permitem reconstruir qualquer direção e intensidade de força que possa ocorrer. Os

dois furos do tubo inferior foram utilizados para fixar a estrutura ao chão do

laboratório, e os mesmos foram restritos em todos os seus graus de liberdade na

análise. O modelo gerado pode ser visto na Figura 15.

Figura 15 – Modelo em elementos finitos para o suporte.

O mesmo suporte e pesos utilizados no teste da alavanca foram utilizados

para testar o suporte. O dispositivo de teste pode ser visto na Figura 16. A

combinação de carregamentos testados pode ser vista na Tabela 6.

51

Figura 16 – Dispositivo de teste para o suporte.

Tabela 6 – Combinação de carregamentos aplicados durante os testes do suporte.

Caso de carga Massa em A
[kg]

Ângulo em
relação à vertical

[graus]
1 11,55 2,5
2 21,60 2,5
3 31,60 2,5
4 41,70 2,5

Foram aplicados 14 extensômetros uniaxiais da marca Excel, modelo PA-06-

125BA-120L de 6 mm de comprimento e 120 (Ohms) de resistência no

componente, sendo 10 destes determinados pelo algoritmo de otimização e os

demais posicionados aleatoriamente.

Os dois componentes foram fabricados utilizando aços normatizados pela

CNH Industrial Latin America Ltda.. Desta forma, as propriedades lineares dos

materiais, utilizadas nas simulações com carregamentos unitários, seguem os

valores estabelecidos em norma. São eles:

 Módulo de Young: 207 GPa

52

 Coeficiente de Poisson: 0,29

 Densidade: 7820 kg/m3

O sistema de aquisição de dados da marca Lynx modelo DLG4000 e seu

software de aquisição AqDAnalysis® foram utilizados em todas as medições de

deformação dos extensômetros. Uma imagem do equipamento pode ser vista na

Figura 17.

Figura 17 – Sistema de aquisição Lynx DLG4000.

Todos os testes foram realizados nos laboratórios da CNH Industrial Latin

America Ltda. e todos os itens utilizados nos testes, conforme descrito nesta seção,

pertencem a ela.

3.4. RECONSTRUÇÃO DOS CARREGAMENTOS MEDIDOS

A reconstrução dos carregamentos a partir dos dados de deformação

medidos fisicamente nos testes foi feita com o processador específico do software

nCode®. O mesmo modelo de elementos finitos utilizado para a obtenção da

configuração ótima de extensômetros nos componentes testados foi também

utilizado na reconstrução dos carregamentos.

O procedimento baseia-se na inversão da matriz de influência conforme

demonstrado no capítulo 2, utilizando para tal a equação

53

 . (3.5)

O software nCode® possui uma estrutura de blocos que podem ser

conectados para construir uma sequência lógica de processamento. A Figura 18

mostra como a reconstrução ocorre. O modelo de elementos finitos é introduzido no

bloco 1. O bloco 2 recebe a configuração de extensômetros que foi obtida através do

algoritmo de otimização, e calcula a matriz de influência para ela. No bloco 3 são

inseridas as deformações medidas fisicamente em cada um dos extensômetros. O

bloco 4 faz a inversão da matriz de influência proveniente do bloco 2 e multiplica

pelo vetor de deformações para cada instante de tempo provenientes do bloco 3.

Nos blocos 5 e 6 os vetores de força resultante podem ser visualizados e

exportados.

Figura 18 – Esquema da reconstrução dos carregamentos no nCode®.

54

4 RESULTADOS E DISCUSSÃO

4.1. ESTRUTURA COMPUTACIONAL

A estrutura computacional foi desenvolvida em duas partes, a geração do

domínio de candidatos e a otimização do melhor conjunto de extensômetros para

reconstrução de cargas, integradas através de um arquivo de texto. Um fluxograma

exemplificando como todo o processo funciona é mostrado na Figura 19.

Figura 19 – Fluxograma da estrutura computacional desenvolvida.

4.1.1. Gerador de Domínio de Candidatos

O algoritmo implementado na linguagem TCL aproveita comandos macro

implementados no pré-processador HyperMesh®. Inicialmente, o usuário seleciona o

ângulo limite para as arestas características do componente. Se o ângulo entre as

normais de dois elementos adjacentes for maior que o valor preestabelecido, os dois

nós que compõe esta aresta são armazenados. Na sequência o número de carreiras

adjacentes à aresta que deverão ser excluídos do domínio deve ser informado. Caso

os resultados de tensão em uma análise prévia com os carregamentos unitários

55

mostre um gradiente de tensão muito grande e próximo a uma aresta, mais de uma

carreira de elementos adjacente a ela pode ser removido. Na Figura 20 pode-se

observar um exemplo da interface com o usuário para a seleção do ângulo limite, as

arestas selecionadas, o número de linhas adjacentes e os elementos selecionados

para exclusão.

O próximo passo após a remoção dos elementos indesejáveis é a seleção

dos elementos/nós que farão parte do domínio. Nesta etapa, o usuário pode

selecionar todos os elementos/nós restantes ou apenas uma parcela que julgue de

maior interesse para a reconstrução de cargas. Regiões inacessíveis fisicamente ou

que possam estar expostas a contato com outros componentes podem ser excluídas

neste passo. Um exemplo de seleção parcial de nós para a geração do domínio de

candidatos pode ser visto na Figura 21.

Após a seleção dos nós, um painel de seleção permite determinar o

incremento de ângulo para o qual serão gerados os extensômetros virtuais

candidatos. Este ângulo pode ser qualquer valor no intervalo [0º;180º[. Um arquivo

de texto que será interpretado pelo software nCode® é gerado contendo para cada

extensômetro virtual candidato as informações da posição (número do nó ou

elemento), orientação global inicial do elemento de ângulo 0º e incremento de

ângulo, conforme discutido no capítulo anterior. Um fluxograma do processo pode

ser visto na Figura 22.

56

a) Painel de seleção do

ângulo limite para a

determinação das arestas

características.

b) Painel de seleção do

número de carreiras de

elementos adjacentes às

arestas características a

serem excluídas do

domínio.

c) Exemplo de arestas

características em amarelo.

d) Exemplo de elementos

selecionados para remoção

do domínio utilizando-se

apenas uma carreira

adjacente às arestas

características.

Figura 20 – Exemplo de remoçâo de elementos adjacentes a arestas características.

57

Figura 21 – Exemplo de nós selecionados para a construçâo do domínio de candidatos.

4.1.2. Processo de Otimização

Neste processo quatro blocos principais do nCode® foram utilizados:

 1 – Bloco de importação do arquivo de saída da análise de elementos finitos e

do arquivo de texto com os extensômetros do domínio;

 2 – Bloco de cálculo de deformações em cada extensômetro a partir do tensor

de deformações de cada elemento;

 3 – Bloco com o algoritmo de otimização implementado em Python;

 4 – Bloco gráfico que permite visualizar a evolução da função objetivo ao

término do processo.

58

Figura 22 – Fluxograma do algorítmo gerador de domínio.

Uma imagem do fluxo de processamento do software nCode® pode ser

visualizado na Figura 23. Os blocos de 1 a 4 estão dispostos na sequência da direita

para a esquerda. No bloco 1, o modelo de elementos finitos é interpretado e

convertido para um formato que o processador do nCode® é capaz de compreender.

Além disso, o arquivo de texto, o qual foi gerado na etapa de determinação do

domínio de configurações candidatas, é interpretado e cada extensômetro virtual é

posicionado como pode ser visualizado na Figura 24.

Figura 23 – Estrutura de blocos do software ncode® utilizada no processo de otimização.

Início do algoritmo.

Seleção dos componentes candidatos.

Arestas características são determinadas pelo algoritmo baseado
no ângulo limite definido pelo usuário.

Elementos adjacentes às arestas são removidos do domínio de
candidatos em número de carreiras definido pelo usuário.

Usuário seleciona as porções de nós ou elementos do modelo que
irão compor o domínio.

Usuário determina incrementos de ângulo.

Arquivo de texto com a extensão *.asg é escrito.

Fim do algoritmo.

59

No bloco 2 a deformação em cada extensômetro virtual é calculada para

cada carregamento unitário disponível no arquivo de saída do modelo de elementos

finitos.

No bloco 3 o algoritmo de otimização é interpretado. Uma interface que

permite selecionar o método (Fedorov ou AG) e os parâmetros do algoritmo de

otimização foi implementada. Um panorama dos parâmetros disponibilizados para o

usuário é mostrado na Figura 25.

Figura 24 – Detalhe da visualizaçâo do domìnio de extensômetros conforme interpretada
pelo software nCode®.

60

Figura 25 – Parâmetros do algorítmo de otimizaçâo disponibilizados ao usuário.

Nesta etapa do algoritmo de otimização, todos os processos descritos na

seção 3.2.2 são executados. Um pseudocódigo do algoritmo implementado é

mostrado na Figura 26.

Por fim, o bloco 4 permite exportar e visualizar a evolução da função objetivo

do cromossomo mais apto e da média dos logaritmos das aptidões dos

cromossomos da população ao longo das gerações. Um exemplo dos gráficos

gerados é mostrado na Figura 27.

61

Início

Para cada força () do modelo:
 Encontrar "bestSetPercentage"

Gerar população inicial

Para i = 1 até “populationSize”:
 Para j = 1 até “SetSize” :

 gene[i,j] = extensômetro aleatório

Enquanto iteração < “maxIterations” e > “admissibleError”:

Para cada cromossomo[i] em “populationSize”:
Calcular aptidão

Ordenar cromossomos em ordem decrescente de aptidão

Para i = 1 até “elitism”:

cromossomo[i] = eleitos[i]

Para cada cromossomo[i] em “populationSize”:
Calcula expectativa R[i] de seleção para “rankNumber”

marcador = aleatório [0-1]
Para i = 1 até “populationSize”:

S[i] = S[i-1] + R[i]
Enquanto marcador <= S[i]:

selecionados = cromossomo[i]
marcador = marcador + i

Parear cromossomos aleatoriamente

pos1 = posição aleatória [0 até “SetSize”-1]
pos2 = posição aleatória [Pos1 até “SetSize”]
Para i = 1 até “populationSize”:

Cromossomo1(genes pos1-pos2) = Cromossomo2(genes pos1-
pos2)
Cromossomo2(genes pos1-pos2) = Cromossomo1(genes pos1-
pos2)

Para i = 1 até “populationSize”:
Para j = 1 até “SetSize” :

marcador = aleatório [0-1]
Se marcador < “mutationRate”:

gene[i,j] = extensômetro aleatório

Para cada cromossomo[i] em “populationSize”:

Para j = 1 até “SetSize”:
Para k = 1 até “SetSize”:

Se gene[j] = gene[k]:
gene[i,j] = extensômetro "bestSetPercentage"

Escrever “OutputFile”

Fim
Figura 26 – Pseudocódigo do algorítmo de otimizaçâo.

Aptidão

Elitismo

Seleção

Cruzamento

Mutação

Reparação

62

Figura 27 – Gráficos gerados ao final do processo de otimização.

4.2. ANÁLISE DA EFICIÊNCIA DO ALGORÍTMO IMPLEMENTADO

Para que fosse possível realizar uma avaliação da eficiência do algoritmo e

da influência de cada uma de suas variáveis na aptidão final obtida, o exemplo da

barra mostrado na Figura 6 e na Figura 7 foi utilizado. Este modelo possui 5

carregamentos aplicados no centro do furo, representando a conexão por pino na

extremidade. Desta forma, são necessários pelo menos 5 extensômetros para

realizar a reconstrução de forças.

Para este modelo, o domínio de configurações candidatas foi gerado tendo

como referência o centroide dos elementos da membrana exterior com um

incremento de ângulo de 15º. Uma imagem do domínio de candidatos gerados pode

ser vista na Figura 28. Ao todo, 7128 extensômetros candidatos foram gerados.

Inicialmente, um estudo dos parâmetros do algoritmo genético foi realizado.

Para este estudo, considerou-se como objetivo obter uma configuração com 5

extensômetros, o mínimo necessário para reconstruir-se as 5 entradas de força

possíveis.

63

Figura 28 – Domínio de candidatos para modelo de teste.

4.2.1. Influência do tamanho da população na eficiência do algoritmo

A influência do tamanho da população foi avaliada considerando os demais

parâmetros do algoritmo constantes e com valores recomendados encontrados na

bibliografia (XU, 1999). Estes parâmetros são mostrados na Tabela 7.

Tabela 7 – Parâmetros do algoritmo genético para análise do tamanho da população.

Erro admissível 0,001
Porcentagem dos melhores extensômetros 0,2

Elitismo 1
Taxa de mutação 0,2
Número de Baker 0,9
Número máximo de iterações 2000

O algoritmo foi executado para tamanho de populações de 5, 10, 20, 50, 100,

500 e 1000 cromossomos (indivíduos), sendo repetido por 3 vezes para cada uma.

Foram avaliados o tempo de processamento e a aptidão do cromossomo mais apto

da população ao final do processamento. A aptidão foi normalizada dividindo-se o

menor valor encontrado entre todas as análises pela aptidão de cada análise. Desta

forma, quanto mais próximo de 1 o valor da aptidão normalizada, mais próximo do

ótimo global está o cromossomo mais apto. No gráfico da Figura 29 são

64

apresentados os resultados para cada processamento e as curvas médias de

valores de tempo e de aptidão normalizada para cada tamanho de população.

Observa-se que, apesar de a melhor aptidão ser encontrada para uma

população de 20 cromossomos, os menores tempos de processamento são

encontrados para populações com 50 cromossomos.

Observa-se ainda uma redução da dispersão dos resultados de aptidão para

populações maiores. Para populações de 500 cromossomos encontramos uma boa

relação entre a aptidão média, o tempo de processamento médio e a dispersão dos

resultados.

Figura 29 – Influência do tamanho da população no tempo de processamento e aptidão
final.

4.2.2. Influência da porcentagem dos melhores extensômetros no processo de

reparação do cruzamento

A influência da porcentagem dos extensômetros com maior valor absoluto de

deformação, que são usados na etapa de reparação do algoritmo, foi avaliada

considerando os demais parâmetros do algoritmo constantes e com os valores

mostrados na Tabela 8.

0

50

100

150

200

250

300

0.00

0.20

0.40

0.60

0.80

1.00

1.20

5 50 500

Te
m

po
 d

e
pr

oc
es

sa
m

en
to

 [s
]

Ap
tid

ão
 n

or
m

al
iz

ad
a

Tamanho da população

65

O algoritmo foi executado para as porcentagens de 10%, 20%, 50% e 100%

(o valor de 100% significa que qualquer extensômetro do domínio pode ser

selecionado), sendo repetido por 4 vezes para cada uma. Optou-se por uma

população de 5 cromossomos apenas, por ser essa a que apresenta maiores

tempos de processamento e baixa eficiência. Desta forma, a influência da

porcentagem dos melhores extensômetros na melhoria da aptidão média e na

redução do tempo de convergência do algoritmo ficaria mais evidente. Foram

avaliados o tempo de processamento e a aptidão do cromossomo mais apto da

população ao final do processamento. No gráfico da Figura 30 são apresentados os

resultados para cada processamento e as curvas médias de valores de tempo e de

aptidão normalizada para cada porcentagem.

Tabela 8 – Parâmetros do algoritmo genético para análise da porcentagem dos melhores
extensômetros.

Erro admissível 0,001
Tamanho da população 5
Elitismo 1
Taxa de mutação 0,2
Número de Baker 0,9
Numero máximo de iterações 2000

Figura 30 – Influência da porcentagem dos melhores extensômetros no tempo de
processamento e aptidão final.

66

Como pode ser observado, não fica evidente uma influência significativa da

porcentagem dos extensômetros com maior valor absoluto de deformação no tempo

de processamento ou na evolução da aptidão do cromossomo mais apto, uma vez

que os resultados apresentam dispersão e médias similares para todas as

porcentagens.

4.2.3. Influência da taxa de mutação na eficiência do algoritmo

A influência da taxa de mutação na eficiência do algoritmo foi avaliada

considerando-se os demais parâmetros do algoritmo constantes e com os valores

mostrados na Tabela 9.

Tabela 9 – Parâmetros do algoritmo genético para análise da taxa de mutação.

Erro admissível 0,001
Tamanho da população 5
Elitismo 1
Porcentagem dos melhores extensômetros 0,2
Número de Baker 0,9
Numero máximo de iterações 2000

O algoritmo foi executado para as taxas de mutação 0,1, 0,2, 0,3 e 0,5,

sendo repetido por 4 vezes para cada uma.

No gráfico da Figura 31 são apresentados os resultados para cada

processamento e as curvas médias de valores de tempo e de aptidão normalizada

para cada taxa de mutação.

Observa-se que existe um valor ótimo de aptidão para a taxa de mutação de

0.2, entretanto os valores de tempo de processamento para esta taxa de mutação é

em média maior que as demais. Já para as taxas de mutação maiores que 0,2

observa-se que a aptidão média tende a reduzir. Não foram observados problemas

de convergência do algoritmo para taxas de mutação até 0,5.

67

Figura 31 – Influência da taxa de mutaçâo no tempo de processamento e aptidão final.

4.2.4. Influência do elitismo na eficiência do algoritmo

A influência do elitismo na eficiência do algoritmo foi avaliada considerando

os demais parâmetros do algoritmo constantes e com os valores mostrados na

Tabela 10.

O algoritmo foi executado para 0, 1, 2 e 3 cromossomos eleitos, sendo

repetido por 4 vezes para cada ponto.

No gráfico da Figura 32 são apresentados os resultados para cada

processamento e as curvas médias de valores de tempo e de aptidão normalizada

para cada valor de elitismo.

Tabela 10 – Parâmetros do algoritmo genético para análise do elitismo.

Erro admissível 0,001
Tamanho da população 5
Taxa de mutação 0,2
Porcentagem dos melhores extensômetros 0,2
Número de Baker 0,9
Numero máximo de iterações 2000

68

Para todas as análises com valor de elitismo 0 o algoritmo sofreu parada

prematura, desta forma, os valores de aptidão são mostrados como nulos no gráfico.

Para valores de elitismo de 1 a 3, observa-se uma tendência de crescimento

da aptidão média normalizada com o aumento do número de cromossomos eleitos,

sem demonstrar uma influência significativa nos tempos de processamento.

Figura 32 – Influência do elitismo no tempo de processamento e aptidão final.

4.2.5. Influência do número de Baker na eficiência do algoritmo

A influência do número de Baker na eficiência do algoritmo foi avaliada

considerando-se os demais parâmetros do algoritmo constantes e com os valores

mostrados na Tabela 11. O algoritmo foi executado para números de Baker de 0,3,

0,5, 0,7 e 0,9, sendo repetido por 4 vezes para cada ponto.

Tabela 11 – Parâmetros do algoritmo genético para análise do número de baker.

Erro admissível 0,001
Tamanho da população 5
Taxa de mutação 0,2
Porcentagem dos melhores extensômetros 0,2
Elitismo 1
Numero máximo de iterações 2000

0

20

40

60

80

100

120

140

160

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Te
m

po
 d

e
pr

oc
es

sa
m

en
to

 [s
]

Ap
tid

ão
 n

or
m

al
iz

ad
a

Elitismo

69

No gráfico da Figura 33 são apresentados os resultados para cada

processamento e para a média de valores de tempo e de aptidão normalizada para

cada valor de elitismo.

Figura 33 – Influência do número de Baker no tempo de processamento e aptidão final.

Observa-se que valores abaixo de 0,5 para o número de Baker geram uma

pressão muito grande do cromossomo mais apto sobre o menos apto. Desta forma,

o algoritmo converge prematuramente para um mínimo local, atingindo aptidões

normalizadas menores.

Por outro lado, valores acima de 0,7 colocam muito pouca pressão do mais

apto sobre o menos apto, aumentando os tempos de processamento, sem contribuir

com a melhoria da aptidão média. O valor de 0,7 tem a melhor relação entre

aptidões alcançadas e tempo de processamento.

4.2.6. Influência do erro admissível na eficiência do algoritmo

A influência do erro admissível na eficiência do algoritmo foi avaliada

considerando-se os demais parâmetros do algoritmo constantes e com os valores

0

20

40

60

80

100

120

140

160

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Te
m

po
 d

e
pr

oc
es

sa
m

en
to

 [s
]

Ap
tid

ão
 n

or
m

al
iz

ad
a

Número de Baker

70

mostrados na Tabela 12. Diferentemente dos demais casos de estudo, para esta

avaliação optou-se por aumentar o número máximo de iterações admissíveis, de

forma a garantir que a parada do algoritmo ocorra sempre pelo critério de parada. O

algoritmo foi executado para erros admissíveis de 0,1, 0,01, 0,001 e 0,0001, sendo

repetido por 4 vezes para cada ponto. No gráfico da Figura 34 são apresentados os

resultados para cada processamento e as curvas médias de valores de tempo e de

aptidão normalizada para cada valor de erro admissível.

Tabela 12 – Parâmetros do algoritmo genético para análise do erro admissivel.

Tamanho da população 5
Taxa de mutação 0,2
Porcentagem dos melhores extensômetros 0,2
Elitismo 1
Número de Baker 0,9
Numero máximo de iterações 10000

Figura 34 – Influência do erro admissivel no tempo de processamento e aptidão final.

Os valores médios da aptidão normalizada aumentam com a redução do

erro admissível, conforme esperado. Entretanto, o custo computacional aumenta em

aproximadamente 6 vezes para um ganho de aptidão normalizada de apenas 2

vezes. Este aumento de custo computacional pode tornar inviável a utilização de

0

100

200

300

400

500

600

700

800

900

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.0001 0.0010 0.0100 0.1000

Te
m

po
 d

e
pr

oc
es

sa
m

en
to

 [s
]

Ap
tid

ão
 n

or
m

al
iz

ad
a

Erro admissível

71

valores de erro admissível da ordem de 0,0001 para problemas com domínios muito

grandes e complexos.

4.2.7. Análise das eficiências dos algoritmos proposto e de Fedorov

Visando realizar de uma análise comparativa entre as eficiências do

algoritmo proposto e o de Fedorov foram utilizados ensaios numéricos utilizando os

parâmetros com os valores mostrados na Tabela 13.

Os valores escolhidos foram baseados nos resultados apresentados nas

análises de eficiência de cada parâmetro. Na prática, o usuário do algoritmo irá se

basear na experiência coletada em análises anteriores e nos estudos do presente

trabalho. Desta forma, recomenda-se que a análise seja repetida algumas vezes

variando-se os parâmetros para aumentar a probabilidade de encontrar o ótimo

global.

Tabela 13 – Parâmetros do algorìtmo genético para comparativo de eficiência com o de
Fedorov.

Erro admissível 0,001
Porcentagem dos melhores extensômetros 0,2

Elitismo 2
Taxa de mutação 0,2
Tamanho da população 200
Número de Baker 0,7
Numero máximo de iterações 2000

Foram executadas 10 análises com cada algoritmo. A aptidão foi

normalizada pelo menor valor encontrado entre todas as análises com os dois

algoritmos. Na Figura 35 são mostrados os valores de aptidão normalizada em

função do tempo de processamento para todas as análises.

Observa-se que o tempo de processamento é praticamente constante para o

algoritmo de Fedorov, devido ao fato de que, neste algoritmo, o número de iterações

é constante e igual ao número de extensômetros que se deseja obter multiplicado

pelo número de candidatos do domínio. Este tempo de processamento é até 100

vezes inferior aos tempos dispendidos para as análises com o AG.

72

Figura 35 – Plotagem de aptidão normalizada final em função do tempo de processamento
para os algoritmos de Fedorov e Genético.

Entretanto, fica também evidente que o valor médio das aptidões

normalizadas encontrada com o AG é aproximadamente 13 vezes maior do que no

algoritmo de Fedorov. Nas piores rodadas de análise, o resultado da aptidão do

algoritmo de Fedorov chega a ser até 33000 vezes pior que a do AG. Este resultado

evidencia que, frequentemente, o algoritmo de Fedorov converge para configurações

de mínimos locais.

4.2.8. Análise da aptidão normalizada para diferentes quantidades de

extensômetros na configuração ótima

Conforme evidenciado por Gupta (2013), o aumento no número de

extensômetros utilizados para reconstruir certo número de carregamentos reduz

consideravelmente o determinante da matriz de dispersão. Desta forma, foram

realizados alguns testes utilizando os parâmetros mostrados na Tabela 13 e

variando o número de extensômetros que se deseja obter na configuração final.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 100 1000

Ap
tid

ão
 N

or
m

al
iza

da

Tempo de Processamento [s]

Algoritmo de Fedorov

Algoritmo Genético

Média de aptidão - Fedorov

Média de aptidão - Genético

73

Foram realizados testes considerando 5, 10 e 15 extensômetros, sendo cada

ponto repetido 5 vezes. Na Figura 36 são mostrados os valores de aptidão

normalizada em função do tempo de processamento para todas as análises.

Observa-se um aumento de até 10 vezes no valor da aptidão normalizada

quando se utiliza o dobro do número mínimo de extensômetros (neste caso, o

mínimo são 5 extensômetros, uma vez que se deseja reconstruir 5 carregamentos),

e de até 100 vezes quando se utiliza três vezes o número mínimo de extensômetros.

Além disto, o tempo de processamento também é reduzido consideravelmente

aumentando-se o número de extensômetros da configuração ótima. Desta forma,

sempre que o usuário tiver disponibilidade de utilizar maior número de

extensômetros do que o número de forças que se deseja reconstruir, é

recomendável que o faça.

Figura 36 – Influência do número de extensômetros no conjunto ótimo no tempo de
processamento e aptidão normalizada final.

0

100

200

300

400

500

600

700

0.00

0.20

0.40

0.60

0.80

1.00

1.20

5 10 15

Te
m

po
 d

e
pr

oc
es

sa
m

en
to

 [s
]

Ap
tid

ão
 n

or
m

al
iz

ad
a

Número de extensômetros no conjunto ótimo

74

4.3. TESTES FÍSICOS DE VALIDAÇÃO DA METODOLOGIA IMPLEMENTADA

Os dois componentes apresentados na seção 3.3 foram testados fisicamente

e foram coletadas as deformações em cada um dos extensômetros para cada caso

de carga.

Após a aquisição, os dados adquiridos foram tratados e as forças

reconstruídas para cada caso de carga utilizando o software nCode®. Os resultados

são apresentados nesta seção.

4.3.1. Análise dos resultados do teste para a alavanca

Inicialmente foi utilizado o modelo de elementos finitos da alavanca para a

geração do domínio de configurações de extensômetros candidatas. Tendo este

domínio, foi aplicado o processo de otimização utilizando o algoritmo genético. Uma

série de testes consecutivos variando os parâmetros do algoritmo foi realizada, com

o objetivo de obter um conjunto com 6 extensômetros (número mínimo para se

reconstruir os 6 carregamentos propostos, conforme mostrado na Figura 13).

A configuração com a maior aptidão entre todos os testes foi implementada

fisicamente. Além destes, outras 6 posições aleatórias foram escolhidas para

permitir uma análise comparativa da eficiência do conjunto ótimo em relação a

outros conjuntos aleatórios. Nas figuras Figura 37 e Figura 38 são mostrados os

extensômetros da configuração ótima (extensômetros de 1 a 6), e os demais

selecionados (extensômetros de 7 a 9), em sua representação virtual, ao lado de

fotos dos mesmos aplicados fisicamente no componente.

Os valores médios de deformações lidas em cada extensômetro para cada

um dos testes realizados podem ser vistos na Tabela 14.

A partir das deformações medidas foi feita a reconstrução dos

carregamentos, e calculados os ângulos de inclinação e rotação da peça

baseados na direção da força resultante média entre os dois pontos de

carregamento.

Para que fosse possível fazer uma avaliação da eficiência do conjunto ótimo

de extensômetros em relação a outros possíveis conjuntos, 5 combinações

75

aleatórias de extensômetros entre os 12 instrumentados foram geradas. A Tabela 15

mostra as combinações selecionadas.

Tabela 14 – Deformações medidas com extensômetros nos testes com a alavanca.

 Casos de carga
 1 2 3 4 5 6 7 8 9

Ex
te

ns
ôm

et
ro

s

1 0,69 0,79 -1,67 -101,15 -132,76 -77,81 -103,01 -132,54 -83,18
2 -1,13 -1,45 -2,37 -21,84 -18,49 -160,63 -24,78 -12,63 -215,25
3 -0,27 -0,45 0,12 17,16 45,18 10,95 19,48 50,38 13,82
4 -139,56 -154,52 91,00 -125,46 -42,56 18,28 1,48 -0,79 -0,72
5 -7,24 -14,88 196,49 20,55 27,92 145,07 -0,69 -2,36 -0,88
6 -116,64 -72,06 -295,12 -49,65 -32,36 -156,39 -1,68 -0,88 -0,01
7 -4,99 6,64 -122,78 -18,30 -25,88 -92,65 -9,11 -8,85 -9,26
8 11,13 18,31 -83,95 8,22 -5,41 -49,78 -2,18 -2,31 -2,30
9 43,64 27,32 24,75 48,00 36,81 40,62 0,03 -0,31 -0,06

10 -29,67 -25,88 -29,77 -19,58 -9,08 -17,26 8,79 8,29 12,78
11 33,82 27,05 16,68 37,65 29,74 31,06 8,26 8,12 10,94
12 6,17 -6,02 116,27 24,27 29,00 97,19 10,63 10,73 11,68

* Valores em μm/m.

Para que fosse possível fazer uma avaliação da eficiência do conjunto ótimo

de extensômetros em relação a outros possíveis conjuntos, 5 combinações

aleatórias de extensômetros entre os 12 instrumentados foram geradas. A Tabela 15

mostra as combinações selecionadas.

Tabela 15 – Combinações aleatórias de extensômetros da alavanca.

Combinação 1 Combinação 2 Combinação 3 Combinação 4 Combinação 5
2 1 1 2 2
3 2 2 4 3
5 4 3 7 5
6 8 6 8 9
7 9 9 9 10

12 11 12 12 11

76

Figura 37 – Extensômetros aplicados à alavanca virtualmente e fisicamente.

77

Figura 38 – Extensômetros aplicados à alavanca virtualmente e fisicamente.

78

Os valores de forças e ângulos reconstruídos para a configuração ótima de

extensômetros podem ser vistos na Tabela 16. A partir do conhecimento das

massas aplicadas aos dois braços da alavanca (ver Tabela 5), foram calculados os

valores de força esperados. A diferença entre estes valores esperados de força e os

valores reconstruídos foram também calculados e podem ser vistos na Tabela 17.

Tabela 16 – Força e ângulos reconstruídos para a configuração ótima de extensômetros.

Casos
de

carga

Valores esperados Valores reconstruídos
Força em

A [N]
Força em

B [N]
Rotação
[graus]

Inclinação
[graus]

Força
em A [N]

Força em
B [N]

Rotação
[graus]

Inclinação
[graus]

1 113,4 0,0 0 0 103,2 0,9 -20 11
2 113,4 0,0 45 0 76,2 1,0 27 14
3 113,4 0,0 0 -45 128,7 2,9 -30 -38
4 113,4 113,8 0 0 131,3 148,4 11 -9
5 113,4 113,8 -37 0 76,3 155,9 -7 -3
6 113,4 113,8 0 -30 134,2 132,2 13 -27
7 0,0 113,8 0 0 6,6 147,1 9 -4
8 0,0 113,8 -45 0 7,3 149,3 -12 -2
9 0,0 113,8 0 -38 1,7 145,4 11 -33

Tabela 17 – Diferença de força e ângulos entre os valores esperados e reconstruídos para
a configuração ótima de extensômetros.

Casos de carga
Diferença de

força em A [N]
Diferença de

força em B [N]
Diferença de

rotação [graus]
Diferença de

inclinação
[graus]

1 10,23 0,87 19,95 10,72
2 37,24 0,97 17,94 13,75
3 15,28 2,89 30,18 7,43
4 17,86 34,62 10,96 9,26
5 37,13 42,11 30,40 2,70
6 20,80 18,41 12,80 3,04
7 6,58 33,33 9,34 3,59
8 7,27 35,47 33,16 2,08
9 1,69 31,62 10,68 4,73

Observa-se que as diferenças de forças reconstruídas em relação aos

valores esperados é de até 37%. As diferenças para os ângulos de rotação chega a

82% e para os ângulos de inclinação 16%.

Alguns fatores contribuem para estes erros elevados:

79

 Erros associados à fabricação do componente, uma vez que ele tem pequenas

dimensões e passa por vários processos de conformação e soldagem;

 Erros associados ao posicionamento dos extensômetros em relação à posição

no modelo de elementos finitos;

 Erros associados às medições propriamente ditas dos extensômetros;

 A alta rigidez da estrutura, fazendo com que os valores de deformação lidos

fossem muito pequenos para os carregamentos da estrutura e,

consequentemente, piorando a relação sinal-ruído da leitura.

 Erros associados ao MEF no cálculo de deformações.

A diferença entre os valores esperados de força e ângulo e os valores

reconstruídos para as combinações de 1 a 5 foram também calculados e podem ser

vistos nas tabelas Tabela 18 a Tabela 22.

Tabela 18 – Diferença de força e ângulos entre os valores esperados e reconstruídos para
a combinação 1 de extensômetros.

Casos de carga
Diferença de

força em A [N]
Diferença de

força em B [N]
Diferença de

rotação
[graus]

Diferença de
inclinação

[graus]
1 40,10 15307410,88 80,56 5,90
2 48,78 10221898,01 32,15 23,05
3 117,98 9899341,47 39,94 24,88
4 39,65 18500551,76 22,03 5,80
5 6,86 8563691,25 59,02 0,16
6 2,19 11574027,99 22,02 30,16
7 129,25 4463680,52 22,03 0,16
8 143,55 5541282,10 67,02 0,16
9 142,54 6701889,71 22,02 38,16

Tabela 19 – Diferença de força e ângulos entre os valores esperados e reconstruídos para
a combinação 2 de extensômetros.

Casos de carga
Diferença de

força em A [N]
Diferença de

força em B [N]
Diferença de

rotação
[graus]

Diferença de
inclinação

[graus]
1 13,58 1936,01 0,97 2,22
2 9,89 2232,51 20,44 3,82
3 73,73 122,51 51,12 20,40
4 11,73 2697,14 58,75 2,55
5 43,82 2636,12 96,49 1,35
6 101,60 1504,59 59,50 35,17
7 3,08 2071,01 59,43 1,54
8 9,62 2251,12 104,95 1,32
9 7,97 2034,11 58,94 43,11

80

Tabela 20 – Diferença de força e ângulos entre os valores esperados e reconstruídos para
a combinação 3 de extensômetros.

Casos de carga
Diferença de

força em A [N]
Diferença de

força em B [N]
Diferença de

rotação
[graus]

Diferença de
inclinação

[graus]
1 2822,69 0,49 87,10 54,42
2 366,11 1,04 123,44 25,24
3 775,24 2,81 78,70 45,71
4 17858,43 37,07 11,17 20,70
5 16995,21 44,19 30,85 1,86
6 18836,73 19,86 13,03 4,51
7 2410,96 33,63 9,37 3,46
8 2411,03 35,73 33,24 1,96
9 2856,72 31,78 10,72 4,94

Tabela 21 – Diferença de força e ângulos entre os valores esperados e reconstruídos para
a combinação 4 de extensômetros.

Casos de carga
Diferença de

força em A [N]
Diferença de

força em B [N]
Diferença de

rotação
[graus]

Diferença de
inclinação

[graus]
1 0,07 2113042363,73 29,83 6,58
2 56,32 1142451740,60 24,79 9,58
3 79,92 829634077,90 51,97 21,11
4 10,27 3802564913,60 64,78 1,60
5 25,53 2539212806,95 101,78 1,37
6 26,32 3266618304,83 64,78 31,37
7 81,50 424089365,55 64,73 1,37
8 83,84 537495610,59 109,75 1,37
9 93,34 722971738,38 64,76 39,37

Tabela 22 – Diferença de força e ângulos entre os valores esperados e reconstruídos para
a combinação 5 de extensômetros.

Casos de carga
Diferença de

força em A [N]
Diferença de

força em B [N]
Diferença de

rotação
[graus]

Diferença de
inclinação

[graus]
1 15,31 546,95 28,55 10,39
2 8,28 660,62 20,83 15,62
3 32,07 107,79 39,66 8,48
4 106,87 590,68 24,34 3,24
5 161,55 562,38 65,35 0,91
6 136,13 196,63 25,60 42,30
7 214,79 462,16 25,23 1,21
8 207,02 526,55 74,48 0,76
9 240,34 491,52 24,31 46,40

81

Como pode ser observado, a diferença entre as forças reconstruídas e os

valores esperados para todas as combinações é muito maior do que a diferença

encontrada com a configuração ótima.

Algumas das combinações aleatórias geradas mostram valores exorbitantes

para as forças em um dos braços da alavanca. Isto ocorre porque estas

combinações não são capazes de reconstruir adequadamente todas as forças que

ocorrem nos dois braços da alavanca, mesmo que a configuração tenha a

quantidade mínima de extensômetros necessária.

Isto prova a necessidade de se utilizar um algoritmo de otimização para

determinar os pontos ótimos de instrumentação, já que a escolha de pontos de

forma aleatória, ou até mesmo utilizando a experiência do experimentador, pode

levar a configurações que não são capazes de reconstruir 1 ou mais carregamentos

desejados.

Considerando as combinações capazes de reconstruir as forças para os dois

braços da alavanca, como a combinação 5 por exemplo, a diferença de valores de

força entre as reconstruídas e as esperadas é até 35 vezes maior do que a diferença

encontrada na configuração ótima de extensômetros. Esta observação evidencia a

redução da variância que a configuração ótima promove.

4.3.2. Análise dos resultados de teste para o suporte

Assim como para a alavanca, o modelo de elementos finitos do suporte foi

utilizado para a geração de seu domínio de candidatos. Este domínio foi

posteriormente otimizado com o algoritmo genético. Uma série de testes

consecutivos variando os parâmetros do algoritmo foi realizado com o objetivo de

obter conjuntos com 3, 5 e 7 extensômetros. Essas configurações com diferentes

números de extensômetros permitem avaliar a redução da variância da reconstrução

de cargas com o aumento do número de extensômetros.

Após a determinação das configurações ótimas considerando 3, 5 e 7

extensômetros, observou-se que alguns deles eram comuns aos 3 conjuntos. Desta

forma, o número total de extensômetros aplicados à estrutura foi reduzido para

apenas 10.

82

Além destas, outras 4 posições aleatórias foram escolhidas para permitir

uma análise comparativa da eficiência do conjunto ótimo em relação a outros

conjuntos aleatórios. Na Figura 39 são mostrados os extensômetros das

configurações ótimas (extensômetros de 1 a 10), e os demais selecionados

(extensômetros de 11 a 14), em sua representação virtual, ao lado de fotos dos

mesmos aplicados fisicamente no componente. A Tabela 23 mostra as combinações

ótimas com as numerações conforme mostrado na Figura 39.

Tabela 23 – Combinações ótimas de extensômetros do suporte.

Combinação
ótima com 3

extensômetros

Combinação
ótima com 5

extensômetros

Combinação
ótima com 7

extensômetros
1 1 2
2 2 3
5 4 5
 5 6
 8 7
 9
 10

A partir das deformações medidas foi feita a reconstrução dos

carregamentos aplicados.

Para que fosse possível fazer uma avaliação da eficiência dos conjuntos

ótimos de extensômetros em relação a outros possíveis conjuntos, 6 combinações

aleatórias de extensômetros entre os 14 instrumentados foram geradas, sendo 2

combinações com 3 extensômetros, duas com 5 e duas com 7. A

Tabela 24 mostra as combinações aleatórias selecionadas.

83

Figura 39 – Extensômetros aplicados ao suporte virtualmente e fisicamente.

84

Tabela 24 – Combinações aleatórias de extensômetros do suporte.

Combinação
1

Combinação
2

Combinação
3

Combinação
4

Combinação
5

Combinação
6

4 4 3 3 2 2
9 8 5 7 5 4

11 12 10 11 6 5
 13 12 8 7
 14 13 10 8
 11 13
 12 14

No gráfico da Figura 40 são plotadas as diferenças porcentuais das

estimativas de força em relação aos valores esperados (conforme mostrado na

Tabela 6) para cada caso de carga e para cada uma das combinações de

extensômetros.

Observa-se que as configurações com 7 extensômetros possui, em geral,

um erro menor comparativamente às configurações com 3 extensômetros, e em

alguns casos melhor do que as configurações com 5 extensômetros. Este resultado

comprova que existe uma redução na variância generalizada das estimativas de

força quando se adicionam mais extensômetros.

Observa-se que a combinação 4 foi aquela que apresentou os menores

valores de erro. Apesar de não ser a configuração ótima, esta combinação possui

uma aptidão comparável às encontradas nas configurações ótimas.

No gráfico da Figura 41 são mostradas as diferenças porcentuais das

estimativas de carga para as configurações ótimas e também para as aleatórias em

função do determinante da matriz de dispersão de cada configuração. Quanto menor

o valor do determinante maior a aptidão da configuração.

85

Figura 40 – Diferença porcentual na estimativa de força para cada caso de carga do
suporte.

Figura 41 – Diferença porcentual na estimativa de força para cada configuração de
extensômetros.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

0.01 0.1 1 10 100 1000 10000 100000

Di
fe

re
nç

a
po

rc
en

tu
al

 n
a

es
tim

at
iv

a
de

 fo
rç

a

Aptidão

Configurações aleatórias

Configurações ótimas

86

5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Este trabalho buscou desenvolver, implementar e testar uma metodologia

para a identificação de carregamentos mecânicos de um componente mecânico em

operação, utilizando-o como seu próprio transdutor, sempre que for possível assumi-

los como quase estáticos.

Para tanto, é necessário que se determine uma configuração otimizada de

extensômetros a ser aplicada sobre o componente. Nesse sentido, um algoritmo de

otimização genético foi implementado de forma a fornecer esta configuração ótima

utilizando o conceito de projeto experimental D-ótimo. Ao final do projeto, o algoritmo

foi validado através de testes físicos e virtuais.

5.1. CONCLUSÕES

Os algoritmos para a geração do domínio de candidatos e o de otimização

foram implementados com sucesso, embasados nas teorias de projeto experimental

ótimo. Ao término do trabalho, a interface desenvolvida permite operá-los com

facilidade até mesmo por usuários inexperientes. Durante todos os testes

executados também se observou uma boa confiabilidade e estabilidade dos

algoritmos.

A análise dos parâmetros do algoritmo mostrou intervalos de funcionamento

que permitem obter melhores respostas com relação à convergência, tempo de

processamento e qualidade da configuração de extensômetros obtida. Verificou-se

que, para grande parte dos parâmetros do algoritmo genético, o intervalo de valores

que demonstram maior eficiência é, em geral, similar àquele recomendado na

bibliografia pesquisada.

Constatou-se que o algoritmo genético implementado atinge valores médios

de aptidão muito maiores do que o algoritmo de Fedorov, apesar de ter um custo

computacional maior que este. Ficou evidenciada uma constância interessante nos

valores da função objetivo encontrados pelo algoritmo genético, aproximando-se

sempre do mínimo global da função, ao contrário do algoritmo de Fedorov que

converge sempre para mínimos locais.

87

O número de extensômetros utilizados para reconstruir um determinado

número de carregamentos mostrou ter um grande impacto na minimização da

função objetivo, contribuindo ainda para a redução dos tempos de processamento.

Entretanto, este impacto não ficou tão evidente no teste físico que pretendia

comprová-lo.

Os testes físicos realizados mostraram que configurações de extensômetros

escolhidas baseadas na experiência do experimentador ou aleatoriamente podem

levar a valores de carregamentos reconstruídos muito diferentes dos reais. Isso

corrobora com a comprovação de que uma configuração otimizada pelo critério D-

ótimo é capaz de reduzir a variância dos mesmos.

Verificou-se que os erros de fabricação, posicionamento dos extensômetros,

o nível de sinal para ruído e os erros associados ao MEF podem gerar erros

consideráveis nos valores finais dos carregamentos obtidos.

Por fim, constatou-se a viabilidade de se utilizar esta metodologia como meio

de obtenção das solicitações mecânicas para um componente em operação desde

que os devidos cuidados na preparação do experimento e fabricação do

componente sejam tomados.

5.2. SUGESTÕES PARA TRABALHOS FUTUROS

Buscando o contínuo aprimoramento e de forma a estudar melhorias

possíveis para a metodologia, sugerem-se como propostas de estudos para

trabalhos futuros:

I. Estudar a eficiência dos demais critérios de projeto experimental ótimo

citados neste trabalho na redução da variância dos carregamentos

reconstruídos;

II. Estudar uma metodologia que permita reduzir os erros de posicionamento

dos extensômetros;

III. Aplicar esta metodologia de reconstrução a carregamentos dinâmicos;

IV. Realizar testes utilizando extensômetros com maior sensibilidade (maior

fator de extensômetro);

88

V. Realizar um estudo das diferentes fontes de erro que dificultam a obtenção

de valores precisos para os carregamentos reconstruídos.

89

REFERÊNCIAS

AGUIAR, P. F. de et al. D-optimal designs. Chemometrics and Intelligent
Laboratory Systems, v. 30, p. 199-210, 1995.

ALTAIR HyperWorks. Version 12.0. [S.l.]: Altair Engineering Inc., 2014.

ANGELO, J. F. Aplicação de Projeto Experimental Ótimo à Reação de
Interesterificação de Estearina de Palma com Óleo de Linhaça. Dissertação de
Mestrado em Engenharia Química. São Paulo: Escola Politécnica da Universidade
de São Paulo, 2007.

ARORA, J. S. Introduction to Optimum Design. 2. ed. San Diego: Elsevier, 2004.

BARKANOV, E.; Introduction to the Finite Element Method. Institute of Materials
and Structures Faculty of Civil Engineering Riga Technical University. Riga, 2001.
Disponível em: < http://icas.bf.rtu.lv/doc/Book.pdf>. Acesso em: 15 jan. 2016.

BEN-ISRAEL, A.; GREVILLE T. N. E. Generalized Inverses. Theory and
Applications. 2. ed. New York: Springer, 2003.

BICCHI, A. A Criterion for Optimal Design of Multi-axis Force Sensors. Robotics and
Autonomous Systems, v. 10, p. 269-286, 1992.

BROUDISCOU, A.; LEARDI, R.; PHAN-TAN-LUU, R. Genetic Algorithm as a Tool for
Selection of D-Otpimal Design. Chemometrics and Intelligent Laboratory
Systems, v. 35, p. 105-116, 1996.

COOK, R. D.; MALKUS, D. S.; PLESHA, M. E. Conceps and Applications of Finite
Element Analysis. 3. ed. Madison: John Wiley & Sons, 1989.

DETTE, H.; PEPELYSHEV, A.; ZHIGLJAVSKY, A. Improving Updating Rules in
Multiplicative Algorithms for Computing D-optimal Designs. Computational
Statistics and Data Analysis, v. 53, p. 312-320, 2008.

FEDOROV, V. V. Theory of Optimal Experiments. New York: Academic Press,
1972.

GAO, W. et al. Efficient Computational Algorithm for Optimal Allocation in Regression
Models. Journal of Computational and Applied Mathematics, v. 261, p. 118-126,
2014.

GUPTA, D. K.; Inverse Methods for Load Identification Augmented by Optimal
Sensor Placement. PhD Thesis. Milwaukee: University of Wisconsin-Milwaukee,
2013.

HBM nCode. Version 10.0. [S.l.]: HBM United Kingdom Limited, 2014.

90

HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Pearson Prentice
Hall, 2010.

HUNTER T. G. Experimental Correlation of an N-Dimensional Load Transducer
Augmented By Finite Element Analysis. In: INTERNATIONAL CONFERENCE ON
SERVICE COMPUTING, 9., 2012, Honolulu, Hawaii, USA. 2012 3DS SIMULIA
Community Conference. Disponível em: <http://www.simulia.com/
SCCProceedings2012/content/>. Acesso em: 28 ago. 2014.

ILANKAMBAN, R.; PERUMALSWAMI, P.R. Back Load Calculation a Method of
Measuring Component Loads Without Load Cells. In: MSC WORLD USERS'
CONFERENCE, 1996, Monterey, California, USA. MSC 1996 World Users'
Conference Proceedings. Disponível em: < http://web.mscsoftware.com/support/
library/conf/wuc96/>. Acesso em: 28 ago. 2014.

KIEFER, J.; WOLFOWITZ, J. Optimum design in regression problems. Mathematical
Statistics, v. 30, p. 271-294, 1959.

KUTNER, M. et al. Applied Linear Statistical Models. 5. ed. New York: McGraw-
Hill, 2004.

LIAO, H. Construction of Approximate Optimal Designs by Exchange
Algorithm. Dissertação de Mestrado em Matemática Aplicada. Taiwan: National Sun
Yat-sen University Library, 2001.

MANDAL, A.; TORSNEY, B. Construction of Optimal Designs Using a Clustering
Approach. Journal of Statistical Planning and Inference, v. 136, p.1120-1134
2006.

MANDAL, A.; WONG, W. K.; Yu, Y. Algorithmic Searches for Optimal Designs. In:
BINGHAM, D. et al. Handbooks of Modern Statistical Methods: Handbook of
Design and Analysis of Experiments. Ames, USA: Chapman & Hall/CRC Press,
2014.

MASROOR, S.A.; ZACHARY, L.W. Designing an All-purpose Force Transducer.
Experimental Mechanics, v.31, p. 33-35, 1991.

MILLER, A.J.; NGUYEN, N. Algorithm AS 295: A Fedorov Exchange Algorithm for D-
Optimal Design. Journal of the Royal Statistical Society. Series C (Applied
Statistics), v. 43, p. 669-677, 1994.

NGUYEN, N.; MILLER, A.J. A Review of Some Exchange Algorithms for
Constructing Discrete D-Optimal Designs. Computational Statistics & Data
Analysis, v. 14, p. 489-498, 1992.

O’BRIEN, T. E.; FUNK, G.M. A Gentle Introduction to Optimal Design for Regression
Models. The American Statistician, v. 57, p.265-267, 2003.

91

RAMOS, H.O.C. Um Algoritmo para Otimização Restrita com Aproximação de
Derivadas. Tese de Doutorado em Engenharia Mecânica. Rio de Janeiro:
Universidade Federal do Rio de Janeiro, 2011.

REDDY, J. N. An Introduction to the Finite Element Method. 3. ed. Mc Graw Hill,
2006.

SMITH, K. On the Standard Deviations of Adjusted and Interpolated Values of an
Observed Polynomial Function and its Constants and the Guidance They Give
Towards a Proper Choice of the Distribution of Observations. Science &
Mathematics, Biometrika, v. 12, p. 1–85, 1918.

SMUCKER, B.; CASTILLO, E.; ROSENBERGER, J.L. Exchange Algorithms for
Constructing Model-Robust Experimental Designs. Journal of Quality Technology,
v. 43, p. 28-42, 2011.

TRIEFENBACH, F. Design of Experiments: The D-Optimal approach and its
implementation as a computer algorithm. Trabalho de Graduação em Tecnologia
da Informação e Comunicação. Meschede: South Westphalia University of Applied
Sciences, 2008.

WALD, A. On the efficient design of statistical investigation. The Annals of
Mathematical Statistics, v. 14, no. 2, p. 134-140, 1943.

WICKHAM, M. et al. The Design and Application of a Multi-Axis Load
Transducer. SAE Technical Paper 940250, 1994.

WONG, W.K. Comparing Robust Properties of A, D, E and G-Optimal Designs.
Computational Statistics & Data Analysis, v. 18, p. 441-448, 1993.

XU, H. Comparison of Genetic Operators on a General Genetic Algorithm
Package. Tese de Mestrado. Shangai: Shanghai Jiao Tong University, 1999.

YU, Y. Monotonic Convergence of a General Algorithm for Computing Optimal
Designs. The Annals of Statistics, v. 38, p. 1593-1606, 2010.

YU, Y. D-Optimal Designs Via a Cocktail Algorithm. Statistics and Computing, v.
21, p. 475-481, 2011.

92

APÊNDICES

APÊNDICE 1 – ALGORÍTMO DE GERAÇÃO DO DOMÍNIO DE OTIMIZAÇÂO

---#

Script - Virtual Strain Gages Set Generation #

Developed by DIEGO HOEPFNER #

Unauthorized copying or distribution is strictly forbidden #

---#

tk_messageBox -message "Please define the angle between surfaces to avoid hard edges"

set featureangle [hm_getint "Define the feature angle:" "Define the angle between surfaces to avoid hard edges"]

*clearmark comps 1

tk_messageBox -message "Please select the components to remove the elements adjacent to the hard edges"

*createmarkpanel comps 1 "Select the components to find features"

hm_getmark comps 1

tk_messageBox -message "Please define the number of element rows adjacent to the features to be removed"

set numberofrows [hm_getint "Define the number of rows:" "Define the number of element rows adjacent to the features to be

removed"]

*deletefeatures

*features comps 1 $featureangle 0 0 $featureangle 0

*createmark elems 1 "by comp name" ^feature

for {set x 0} {$x < $numberofrows} {incr x} {hm_appendmark elems 1 "advanced" "by adjacent"}

*maskentitymark elements 1 0

*clearmark elems 1

*deletefeatures

*clearmark nodes 1

#cria um painel de seleção de nós, e coloca na marca 1

tk_messageBox -message "Please select the nodes to generate the strain gage candidate set on"

*createmarkpanel nodes 1 "Select nodes to be listed:"

#extrai uma lista dos nós selecionados

set nodeslist [hm_getmark nodes 1]

tk_messageBox -message "Please provide the size of the increment to generate the candidate set of strain gages around each

node"

set angle_spacing [hm_getint "Define the angle increment (within the range 0-180):" "The value should be an integer"]

#cria uma lista com os incrementos de ângulo

if {[info exist angle_list]} then {

unset angle_list

}

93

set angle 0

while {$angle < 180} {

 lappend angle_list $angle

 set angle [expr $angle_spacing + $angle]

}

*clearmark nodes 1

foreach node_id $nodeslist {

 *createmark nodes 1 "by id only" $node_id

 *findmark nodes 1 1 1 elems 0 2

 set elems_normals [hm_getmark elems 2]

 *clearmark nodes 1

 set nodenormal_x 0

 set nodenormal_y 0

 set nodenormal_z 0

 foreach elem_id $elems_normals {

 if {[lsearch [list 103 104 106 108] [hm_getentityvalue elems $elem_id config 0]] >= 0} {

 set normal_x [hm_getentityvalue element $elem_id normalx 0]

 set normal_y [hm_getentityvalue element $elem_id normaly 0]

 set normal_z [hm_getentityvalue element $elem_id normaly 0]

 set nodenormal_x [expr {double($normal_x) / double([llength $elems_normals]) +

double($nodenormal_x)}]

 set nodenormal_y [expr {double($normal_y) / double([llength $elems_normals]) +

double($nodenormal_y)}]

 set nodenormal_z [expr {double($normal_z) / double([llength $elems_normals]) +

double($nodenormal_z)}]
 }

 }

 set testanormal [expr abs($nodenormal_x)]

 set orientation($node_id) "1,0,0"

 if {$testanormal > [expr abs($nodenormal_y)]} {

 set testanormal [expr abs($nodenormal_y)]

 set orientation($node_id) "0,1,0"

 }

 if {$testanormal > [expr abs($nodenormal_z)]} {

 set orientation($node_id) "0,0,1"

 }

 unset nodenormal_x

 unset nodenormal_y

 unset nodenormal_z

 unset elems_normals

}

#faz a leitura do diretório de trabalho

tk_messageBox -message "Please select the folder to save the output file"

set dir_name [tk_chooseDirectory]

set output_file "${dir_name}/Gages.asg"

#abre o arquivo selecionado para escrita

set fo [open $output_file "w"]

94

#para cada nó da nodelist

puts $fo "<StrainGauges>"

foreach node_id $nodeslist {

 #para cada passo do angulo

 foreach number $angle_list {

 #escreve no arquivo

 puts $fo "<StrainGauge ID='node $node_id - $number deg' Type='Single' Location='$node_id'

AngleOffset='$number' Orientation='$orientation($node_id)' ResultsFrom='OneSurface' LocationType='Node'

ShellSurface='Top'/>"

 }

}

puts $fo "</StrainGauges>"

close $fo

*unmaskall

*clearmark comps 1

*clearmark nodes 1

*clearmark nodes 2

*clearmark elems 1

*clearmark elems 2

tk_messageBox -message "Gages list saved in:\n${dir_name}/Gages.asg"

95

APÊNDICE 2 – ALGORÍTMO GENÉTICO DE OTIMIZAÇÃO DA
CONFIRGURAÇÂO DE EXTENSÔMETROS PARA RECONSTRUÇÂO DE

CARGAS

-*- coding: cp1252 -*-

--#

Script - Optimization algorithm to find the set of strain gauges for load reconstruction #

Developed by DIEGO HOEPFNER #

Unauthorized copying or distribution is strictly forbidden #

--#

def glyphscript(engineState):

 from numpy import dot

 from numpy import vdot

 from numpy import linalg

 from numpy import zeros

 from numpy import diag

 from numpy import matrix

 from numpy import subtract

 from numpy import dtype

 import random

 DEBUG = False

define the input and output pads

 tsin = engineState.GetInputTimeSeries(0) # input from virtual straingage using unit loads

 mdin = tsin.GetMetaData()

 tsout = engineState.GetOutputTimeSeries(0) # output computed force histories

 mdout = tsout.GetMetaData()

get properties from the glyph

 propSet = engineState.GetPropertySet()

 props = propSet.GetProperties()

 setSize = int(props['SetSize'])

 maxIterations = int(props['maxIterations'])

 method = props['Method']

 populationSize = int(props['populationSize'])

 elitism = int(props['elitism'])

 rankNumber = props['rankNumber']

 mutationRate = props['mutationRate']

 admissibleError = props['admissibleError']

 bestSetPercentage = props['bestSetPercentage']

get virtual strain data from unit load parameters

96

 numGauges = tsin.GetChannelCount()

 iChan = 0

 numLoads = tsin.GetPointCount(iChan)

 if numLoads > numGauges:

 message = 'Insufficent number of straingages to reconstruct loads, NumberOfGages >= NumberOfLoads'

 engineState.JournalError(message)

 if abort:

 return message

 if numLoads > setSize:

 message = 'Set size needs to be equal or bigger than number of loads'

 engineState.JournalError(message)

 if abort:

 return message

create strain matrix

 E = zeros((numLoads,numGauges),dtype='d')

 for iGauge in xrange(numGauges):

 for iLoad in xrange(numLoads):

 E[iLoad,iGauge] = tsin.GetValue(iGauge, iLoad)

#--
Preliminares

#--

 if method == 'Genetic':

 if setSize < 3:

 message = 'Insufficent number of straingages to optimize with Genetic Algorithm. Increase setSize(>3) or select

another method'

 engineState.JournalError(message)

 if abort:

 return message

 if (setSize*populationSize) > (numGauges):

 message = 'Insufficent number of straingages to generate the population, reduce the Set Size or increase the

number of candidates'

 engineState.JournalError(message)

 if abort:

 return message

 if (elitism) >= (populationSize):

 message = 'Elitism number should be lower than population size'

 engineState.JournalError(message)

 if abort:

 return message

 if ((rankNumber<0) or (rankNumber>1)):

 message = 'rankNumber should be within the range 0-1'

 engineState.JournalError(message)

 if abort:

97

 return message

 BakerRank=list(range(0, populationSize))

 S=list(range(0, populationSize))

 c=0.

 for i in xrange(populationSize):

 BakerRank[i]=(2.-rankNumber+(2.*rankNumber-2.)*((i)/(populationSize-1.)))

 c=c+BakerRank[i]

 S[i]=c

 maximum=0

 minimum=10000

 for iLoad in xrange(numLoads):

 for iGauge in xrange(numGauges):

 if abs(E[iLoad,iGauge])>maximum:

 maximum=abs(E[iLoad,iGauge])

 elif abs(E[iLoad,iGauge])<minimum:

 minimum=abs(E[iLoad,iGauge])

 temp=list()

 for iGauge in xrange(numGauges):

 if abs(E[iLoad,iGauge])>((1-bestSetPercentage)*maximum+minimum*bestSetPercentage):

 temp.append(iGauge)

 exec('bestLoad_' + str(iLoad) + ' = ' + str(list(temp)))

#--

Geração inicial

#--

 sample = random.sample(range(0,int((numGauges))),(setSize*populationSize))

 n = 0

 population = zeros((setSize,populationSize),dtype=int)

 for j in xrange(populationSize):

 for i in xrange(setSize):

 population[i,j] = int(sample[n])

 n=n+1

 selected=zeros((setSize,elitism),dtype=int)

 Dselected=[0]*elitism

 iDet = 0

 Det=list()

 error=1

 message = str(population)

 engineState.JournalOut(message)

 while (iDet < maxIterations) or (error > admissibleError):

#--

Aptidão

#--

 D=[0]*populationSize

 for i in xrange(populationSize):

 A = zeros((setSize,numLoads),dtype='d')

 for iGauge in xrange(setSize):

 for iLoad in xrange(numLoads):

98

 A[iGauge,iLoad] = E[iLoad,population[iGauge,i]]

 D[i]=(1./(linalg.det(dot(A.transpose(),A))))

#--

Seleção e Elitismo

#--

 sortpopulation = list(range(0,populationSize))

 for i in xrange(populationSize):

 j=i

 while ((j > 0) and (D[j-1] > D[j])):

 u=D[j]

 D[j]=D[j-1]

 D[j-1]=u

 v=sortpopulation[j]

 sortpopulation[j]=sortpopulation[j-1]

 sortpopulation[j-1]=v

 j=j-1

 populationSorted = zeros((setSize,populationSize),dtype=int)

 for j in xrange(populationSize):

 for i in xrange(setSize):

 populationSorted[i,j] = population[i,sortpopulation[j]]

 if iDet==0:

 for j in xrange(elitism):

 for i in xrange(setSize):

 selected[i,j]=populationSorted[i,j]
 Dselected[j]=D[j]

 if elitism!=0:

 for j in xrange(elitism):

 if abs(Dselected[j])<abs(D[j]):

 for i in xrange(setSize):

 populationSorted[i,j]=selected[i,j]

 D[j]=Dselected[j]

 for j in xrange(elitism):

 for i in xrange(setSize):

 selected[i,j]=populationSorted[i,j]

 Dselected[j]=D[j]

 Det.append(D[0])

 message = str(D)

 engineState.JournalOut(message)

 if iDet!=0:

 error=abs(1-Det[iDet]/Det[iDet-1])

 ptr=random.random()

 count=0

 i=0

 newpopulation = zeros((setSize,populationSize))

 while (count<populationSize):

 i=i+1

 while (ptr<S[i]):

 for j in xrange(setSize):

 newpopulation[j,count] = populationSorted[j,i]

99

 ptr=ptr+1.

 count=count+1

 population=newpopulation

 message = str(population)

 engineState.JournalOut(message)

#--

Cruzamento

#--

 parents1=random.sample(range(0,populationSize),populationSize)

 parentsTemp=list(parents1)

 parents2=[0]*populationSize

 for i in xrange(populationSize):

 parents2[i]=random.choice(parentsTemp)

 pos=parents2[i]

 while parents1[i]==parents2[i]:

 parents2[i]=random.choice(parentsTemp)

 pos=parents2[i]

 parentsTemp.remove(pos)

 newpopulation = zeros((setSize,populationSize))

 for j in xrange(0,populationSize,2):

 up = random.randrange(1,setSize-2)

 bottom = random.randrange(up,setSize-1)

 for i in xrange(setSize):

 if i<up:
 newpopulation[i,j]=population[i,parents1[j]]

 newpopulation[i,(j+1)]=population[i,parents2[j]]

 elif (i>=up and i<=bottom):

 newpopulation[i,j]=population[i,parents2[j]]

 newpopulation[i,(j+1)]=population[i,parents1[j]]

 else:

 newpopulation[i,j]=population[i,parents1[j]]

 newpopulation[i,(j+1)]=population[i,parents2[j]]

 population=newpopulation

#--

Mutação

#--

 for j in xrange(populationSize):

 for i in xrange(setSize):

 if (random.random()<(1-mutationRate)):

 population[i,j]=random.randrange(numGauges)

#--

Reparação

#--

 for j in xrange(populationSize):

 for i in xrange(setSize):

100

 exec('temp' + '=' + 'bestLoad_' + str(1))

 for k in xrange(setSize):

 if population[i,j]==population[i,k]:

 while (population[i,j]==population[i,k]):

 population[i,j]=random.choice(temp)

 iDet=iDet+1

#--

set output timeseries parameters

 tsout.SetChannelCount(1)

 tsout.SetXTitle('Iteration')

 mdout.CopyMetaDataSet(mdin, -1, -1, 'FEModel')

 tsout.SetPointCount(0,iDet)

 tsout.SetChanNumber(0,1)

 tsout.SetChanTitle(0,'Objective Function Evolution')

 tsout.SetYTitle(0,'Determinant')

 yunits = ''

 tsout.SetSampleRate(0,1)

 tsout.SetBaseTime(0,0)

output force histories

 for iPnt in xrange(iDet):

 tsout.PutValue(0, iPnt, Det[iPnt])

 if DEBUG:

 message = 'E - ' + str(E.shape)

 engineState.JournalOut(message)

 message = str(E)

 engineState.JournalOut(message)

 message = 'A - ' + str(A.shape)

 engineState.JournalOut(message)

 message = str(A)

 engineState.JournalOut(message)

 message = 'Determinant - ' + str(Det)

 engineState.JournalOut(message)

 position=[0]*setSize

 for iGauge in xrange((setSize)):

 position[iGauge] = populationSorted[iGauge,0]

 message = 'Positions - ' + str(position)

 engineState.JournalOut(message)

101

 if method == 'Random':

create first matrix candidate

 sample = random.sample(range(0,int((numGauges))),setSize)

 position = sample

 A = zeros((setSize,numLoads),dtype='d')

 for iGauge in xrange(setSize):

 for iLoad in xrange(numLoads):

 A[iGauge,iLoad] = E[iLoad,sample[iGauge]]

 message = str(A)

 engineState.JournalOut(message)

 #

 # optimize the inverse matrix determinant

 #

 iDet = 0

 Det=[(1./(linalg.det(dot(A.transpose(),A))))]

 D=Det[0]

 Minv = linalg.inv(dot(A.transpose(),A))

 Ytransp = zeros((1,numLoads),dtype='d')

 Ztransp = zeros((1,numLoads),dtype='d')

 #

 while (iDet <= maxIterations):

 contaiguais = 1

 while (contaiguais > 0):
 newVec = random.sample(range(0,int((numGauges))),1)

 contaiguais = 0

 for iGauge in xrange(setSize):

 if position[iGauge] == newVec:

 contaiguais = 1

 for iLoad in xrange(numLoads):

 Ytransp[0,iLoad] = E[iLoad,newVec]

 Y = Ytransp.transpose()

 MinvDotY = dot(Minv,Y)

 YtranspDotMinvDotY = dot(Ytransp,MinvDotY)

 DetAug = 1./((1./D)*(1.+YtranspDotMinvDotY))

 MinvAug = subtract(Minv,(1./(1.+YtranspDotMinvDotY))*dot(MinvDotY,MinvDotY.transpose()))

 for iLoad in xrange(numLoads):

 Ztransp[0,iLoad] = A[0,iLoad]

 Z = Ztransp.transpose()

 MinvAugDotZ = dot(MinvAug,Z)

 ZtranspDotMinvAugDotZ = dot(Ztransp,MinvAugDotZ)

 DetRed = 1./((1./DetAug)*(1.-ZtranspDotMinvAugDotZ))

 MinvRed= subtract(MinvAug,(1./(1.+ZtranspDotMinvAugDotZ))*dot(MinvAugDotZ,MinvAugDotZ.transpose()))

 if abs(DetRed) < abs(D):

 Det.append(DetRed)

 D=DetRed

 Minv = MinvRed

 for iLoad in xrange(numLoads):

 for iGauge in xrange((setSize-1)):

102

 A[iGauge,iLoad] = A[(iGauge+1),iLoad]

 A[(setSize-1),iLoad] = Ytransp[0,iLoad]

 for iGauge in xrange((setSize-1)):

 position[iGauge] = position[(iGauge+1)]

 position[setSize-1]=newVec

 else:

 Det.append(D)

 iDet = iDet+1

 #

 ## message = 'A - ' + str(A.shape)

 ## engineState.JournalOut(message)

 ## message = str(A)

 ## engineState.JournalOut(message)

 ## message = 'Determinant - ' + str(D)

 ## engineState.JournalOut(message)

 ## message = 'Positions - ' + str(position)

 ## engineState.JournalOut(message)

 #

 # set output timeseries parameters

 #

 tsout.SetChannelCount(1)

 tsout.SetXTitle('Iteration')

 mdout.CopyMetaDataSet(mdin, -1, -1, 'FEModel')

 tsout.SetPointCount(0,iDet)

 tsout.SetChanNumber(0,1)

 tsout.SetChanTitle(0,'Objective Function Evolution')
 tsout.SetYTitle(0,'Determinant')

 yunits = ''

 tsout.SetSampleRate(0,1)

 tsout.SetBaseTime(0,0)

 #

 # output force histories

 #

 for iPnt in xrange(iDet):

 tsout.PutValue(0, iPnt, Det[iPnt])

 #

 #

 #

 #

 if DEBUG:

 message = 'E - ' + str(E.shape)

 engineState.JournalOut(message)

 message = str(E)

 engineState.JournalOut(message)

 message = 'A - ' + str(A.shape)

 engineState.JournalOut(message)

 message = str(A)

 engineState.JournalOut(message)

 message = 'Determinant - ' + str(Det)

103

 engineState.JournalOut(message)

 #

 for iGauge in xrange((setSize)):

 position[iGauge] = position[iGauge]+1

 message = 'Positions - ' + str(position)

 engineState.JournalOut(message)

 if method == 'Fedorov':

create first matrix candidate

 sample = random.sample(range(0,int((numGauges))),setSize)

 position = sample

 A = zeros((setSize,numLoads),dtype='d')

 for iGauge in xrange(setSize):

 for iLoad in xrange(numLoads):

 A[iGauge,iLoad] = E[iLoad,sample[iGauge]]

 message = str(A)

 engineState.JournalOut(message)

 #

 # optimize the inverse matrix determinant

 #

 iDet = 0
 Det=[float(1./(linalg.det(dot(A.transpose(),A))))]

 D=float(Det[0])

 Minv = linalg.inv(dot(A.transpose(),A))

 Ytransp = zeros((1,numLoads),dtype='d')

 Ztransp = zeros((1,numLoads),dtype='d')

 engineState.JournalOut(message)

 message = 'Determinant - ' + str(D)

 #

 for iGauge in xrange(setSize):

 newVec = 0

 while (newVec < numGauges):

 contaiguais=1

 while (contaiguais>0):

 contaiguais=0

 for i in xrange(setSize):

 if position[i] == newVec:

 newVec = newVec+1

 contaiguais = contaiguais+1

 if newVec < numGauges:

 for iLoad in xrange(numLoads):

 Ytransp[0,iLoad] = E[iLoad,newVec]

 Y = Ytransp.transpose()

 MinvDotY = dot(Minv,Y)

 YtranspDotMinvDotY = float(dot(Ytransp,MinvDotY))

 DetAug = float(1./((1./D)*(1.+YtranspDotMinvDotY)))

104

 MinvAug = subtract(Minv,(1./(1.+YtranspDotMinvDotY))*dot(MinvDotY,MinvDotY.transpose()))

 for iLoad in xrange(numLoads):

 Ztransp[0,iLoad] = A[iGauge,iLoad]

 Z = Ztransp.transpose()

 MinvAugDotZ = dot(MinvAug,Z)

 ZtranspDotMinvAugDotZ = float(dot(Ztransp,MinvAugDotZ))

 DetRed = float(1./((1./DetAug)*(1.-ZtranspDotMinvAugDotZ)))

 MinvRed=

subtract(MinvAug,(1./(1.+ZtranspDotMinvAugDotZ))*dot(MinvAugDotZ,MinvAugDotZ.transpose()))

 if abs(DetRed) < abs(D):

 Det.append(DetRed)

 D=DetRed

 Minv = MinvRed

 for iLoad in xrange(numLoads):

 A[iGauge,iLoad] = Ytransp[0,iLoad]

 position[iGauge]=newVec

 else:

 Det.append(D)

 iDet = iDet+1

 newVec = newVec+1

 #

message = 'newVec - ' + str(newVec)

engineState.JournalOut(message)

message = 'Y - ' + str(Y)

engineState.JournalOut(message)

message = 'DetAug - ' + str(DetAug)
engineState.JournalOut(message)

message = 'Z - ' + str(Z)

engineState.JournalOut(message)

message = 'DetRed - ' + str(DetRed)

engineState.JournalOut(message)

message = 'A - ' + str(A)

engineState.JournalOut(message)

message = 'Determinant - ' + str(D)

engineState.JournalOut(message)

message = 'Positions - ' + str(position)

engineState.JournalOut(message)

 #

 # set output timeseries parameters

 #

 tsout.SetChannelCount(1)

 tsout.SetXTitle('Iteration')

 mdout.CopyMetaDataSet(mdin, -1, -1, 'FEModel')

 tsout.SetPointCount(0,iDet)

 tsout.SetChanNumber(0,1)

 tsout.SetChanTitle(0,'Objective Function Evolution')

 tsout.SetYTitle(0,'Determinant')

 yunits = ''

 tsout.SetSampleRate(0,1)

 tsout.SetBaseTime(0,0)

 #

105

 # output force histories

 #

 for iPnt in xrange(iDet):

 tsout.PutValue(0, iPnt, Det[iPnt])

 #

 #

 #

 #

 if DEBUG:

 message = 'E - ' + str(E.shape)

 engineState.JournalOut(message)

 message = str(E)

 engineState.JournalOut(message)

 message = 'A - ' + str(A.shape)

 engineState.JournalOut(message)

 message = str(A)

 engineState.JournalOut(message)

 message = 'Determinant - ' + str(Det)

 engineState.JournalOut(message)

 #

 for iGauge in xrange((setSize)):

 position[iGauge] = position[iGauge]+1

 message = 'Positions - ' + str(position)

 engineState.JournalOut(message)
 #

 return ''

