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RESUMO 
 

A extração de atributos é um pilar da Visão Computacional, servindo como uma 
ponte que transforma dados brutos de imagem — volumosos e não estruturados — 
em representações compactas e significativas. Este processo é essencial para que as 
máquinas possam executar tarefas complexas como reconhecimento de objetos, 
segmentação e navegação autônoma. A principal motivação para essa extração é a 
maldição da dimensionalidade, um fenômeno onde a altíssima dimensão dos dados 
de imagem prejudica a eficiência dos algoritmos de aprendizado de máquina, tornando 
os dados esparsos e os modelos menos precisos. Historicamente, a área evoluiu de 
métodos manuais e heurísticos para abordagens automáticas impulsionadas pelo 
Deep Learning, que representou uma revolução. As redes neurais profundas são 
capazes de aprender hierarquias de características ricas e complexas diretamente dos 
dados, superando as limitações dos métodos antigos que descartavam muita 
informação para manter a tratabilidade computacional. No entanto, o poder e a escala 
das técnicas modernas de Deep Learning trazem desafios éticos e práticos 
significativos e interconectados. Questões como o viés algorítmico (importado de 
grandes conjuntos de dados), a privacidade, a segurança contra ataques adversariais, 
a falta de interpretabilidade dos modelos (o problema da caixa-preta) e o alto consumo 
de energia formam uma teia complexa de consequências. A busca por maior precisão 
muitas vezes agrava esses outros problemas. Portanto, embora a evolução da 
extração de atributos represente um notável avanço tecnológico, ela impõe a 
responsabilidade de gerenciar suas profundas e interligadas consequências sociais e 
técnicas. 

 
 

Palavras-chave: visão computacional; pixel; extração de atributos; aprendizagem 
profunda; maldição da dimensionalidade. 



 
 

  
 

ABSTRACT 
 

Feature extraction is a cornerstone of Computer Vision, serving as a bridge that 
transforms raw image data — which is bulky and unstructured — into compact and 
meaningful representations. This process is essential for machines to perform complex 
tasks such as object recognition, segmentation, and autonomous navigation. The 
primary motivation for this extraction is the "curse of dimensionality," a phenomenon 
where the extremely high dimension of image data impairs the efficiency of machine 
learning algorithms, making the data sparse and the models less accurate. Historically, 
the field has evolved from manual and heuristic methods to automated approaches 
driven by Deep Learning, which marked a revolution. Deep neural networks are 
capable of learning rich and complex hierarchies of features directly from data, 
overcoming the limitations of older methods that discarded too much information to 
maintain computational tractability. However, the power and scale of modern Deep 
Learning techniques bring significant and interconnected ethical and practical 
challenges. Issues such as algorithmic bias (imported from large datasets), privacy, 
security against adversarial attacks, the lack of model interpretability (the "black box" 
problem), and high energy consumption form a complex web of consequences. The 
pursuit of greater accuracy often exacerbates these other problems. Therefore, 
although the evolution of feature extraction represents a remarkable technological 
advancement, it imposes the responsibility of managing its profound and interlinked 
social and technical consequences. 

 
 

Keywords: computer vision; pixel; feature extraction; deep learning; curse of 
dimensionality. 
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1 PARECER TÉCNICO 
 

A extração de atributos constitui um pilar fundamental na Visão Computacional, 
servindo como a ponte conceitual e algorítmica entre os dados brutos de imagem, 
inerentemente não estruturados e de alta dimensionalidade, e as representações 
significativas e de alto nível que permitem a compreensão computacional (Szeliski, 
2022). Esta etapa é crucial para a capacidade dos sistemas de entender o mundo 
visual, possibilitando a execução de tarefas complexas como reconhecimento de 
objetos, detecção de padrões, segmentação de imagens e navegação autônoma 
(Forsyth; Ponce, 2012). 

Historicamente, a área evoluiu de métodos manuais e heurísticos, que 
demandavam grande expertise humana para o design de características, para 
abordagens automáticas e hierárquicas impulsionadas pelo Deep Learning. Essa 
transição marcou uma revolução na forma como as máquinas interpretam o conteúdo 
visual, expandindo significativamente as fronteiras da aplicabilidade da Visão 
Computacional em diversos setores, desde a medicina à automação industrial 
(Szeliski, 2022). 

Na sua essência, a Visão Computacional busca desenvolver os métodos 
algorítmicos e as representações que permitem a uma máquina adquirir, processar, 
analisar e compreender dados visuais para produzir representações, descrições e 
interpretações significativas do mundo (Szeliski, 2022). Os dados brutos, na forma de 
imagens digitais, são matrizes de valores de pixel que, embora contenham toda a 
informação visual, são excessivamente volumosos e redundantes para uso direto em 
tarefas de alto nível (Bishop, 2006). A extração de atributos é, portanto, o processo 
transformacional que converte esses dados brutos em um formato mais compacto, 
informativo e tratável computacionalmente.  
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Este processo pode ser formalmente entendido como um passo de 
concentração de informação (Bishop, 2006). Ele visa reduzir a dimensionalidade 
massiva dos dados de imagem para um conjunto gerenciável de vetores de atributos, 
descartando informações redundantes e focando em entidades que são invariantes a 
condições variáveis, como ponto de vista e iluminação (Forsyth; Ponce, 2012). Esta 
transformação é o que permite que sistemas computacionais realizem tarefas de nível 
médio e alto, como segmentação, descrição de objetos e reconhecimento de cenas, 
que estão no cerne da Visão Computacional (Szeliski, 2022). Sem essa etapa de 
abstração, os algoritmos de aprendizado de máquina seriam sobrecarregados pela 
complexidade e pela escala dos dados de pixel brutos, tornando tarefas como o 
reconhecimento de objetos praticamente inviáveis. 

A principal motivação teórica para a extração de atributos reside no fenômeno 
conhecido como a maldição da dimensionalidade (curse of dimensionality) (Liu; Lin, 
2023). Este termo descreve uma série de problemas que surgem ao trabalhar com 
dados em espaços de alta dimensão. O espaço de todas as imagens possíveis é um 
exemplo primordial de um espaço de altíssima dimensão; uma imagem modesta de 
256x256 pixels em tons de cinza já corresponde a um ponto em um espaço com 
65.536 dimensões. Nesses espaços vastos, os dados tornam-se inerentemente 
esparsos (Liu; Lin, 2023). A distância entre quaisquer dois pontos tende a se tornar 
quase uniforme, tornando ineficazes os métodos baseados em vizinhança como o k-
NN, além disso a quantidade de dados necessária para cobrir adequadamente o 
espaço e treinar um modelo generalizável cresce exponencialmente com o número de 
dimensões. 

Na prática, isso significa que, à medida que a dimensionalidade dos dados 
aumenta, o desempenho dos classificadores e de outros modelos de aprendizado de 
máquina pode se degradar, um fenômeno contraintuitivo que destaca a necessidade 
de uma representação mais eficiente (Van Der Maaten; Postma; Van Den Herik, 
2009). A extração de atributos aborda diretamente essa maldição, seu objetivo é 
mapear os dados de um espaço de alta dimensão para um espaço de baixa dimensão 
que seja mais eficaz para a tarefa em questão, eliminando informações redundantes 
ou irrelevantes e preservando as características mais salientes e discriminativas (Van 
Der Maaten; Postma; Van Den Herik, 2009). Ao fazer isso, não apenas se reduz o 
custo computacional e de armazenamento, mas também melhora a eficiência e a 
precisão dos algoritmos subsequentes, tornando o aprendizado de máquina em dados 
visuais uma tarefa tratável. 
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A extração de atributos é um processo que cria um novo conjunto de atributos 
a partir do conjunto original, isso é feito derivando informações do conjunto de 
características existente para construir um novo subespaço de atributos de menor 
dimensão (Raschka; Mirjalili, 2017). As novas características são tipicamente 
combinações ou transformações das características originais, este processo de 
transformação visa capturar a essência da informação em uma forma mais compacta. 

A trajetória histórica da extração de atributos pode ser interpretada como uma 
busca contínua para otimizar a tensão fundamental entre a preservação da informação 
e a tratabilidade computacional. Os primeiros métodos, desenvolvidos em uma era de 
recursos computacionais limitados, focavam intensamente na criação de 
representações extremamente compactas. Isso era alcançado através de heurísticas 
e modelos matemáticos que, por necessidade, descartavam informações visuais que 
eram difíceis de modelar ou computacionalmente caras para processar. A revolução 
do Deep Learning, impulsionada pelo poder computacional massivo dos GPUs, 
representa uma mudança fundamental neste equilíbrio. Em vez de descartar a 
complexidade, as redes neurais profundas são capazes de aprender transformações 
muito mais ricas e sutis diretamente dos dados, preservando uma quantidade de 
informação que antes era inacessível. Essa evolução não é apenas sobre novos 
algoritmos, mas sobre uma mudança filosófica no que é considerado 
computacionalmente viável preservar do sinal visual original de alta dimensão. 

Os avanços técnicos na extração de atributos, especialmente aqueles 
impulsionados pelo Deep Learning, não existem em um vácuo. Eles têm um impacto 
profundo e transformador no mundo real, impulsionando inovações em setores 
críticos. No entanto, o poder sem precedentes dessas tecnologias também traz 
consigo um conjunto de desafios éticos, sociais e práticos significativos que exigem 
uma análise cuidadosa, como as questões de viés algorítmico, privacidade, segurança 
e os custos ocultos de interpretabilidade e consumo de energia. Estes desafios não 
são problemas independentes, mas sim facetas profundamente interconectadas de 
uma mesma questão central: as consequências de construir sistemas poderosos, 
escaláveis, mas fundamentalmente opacos e famintos por dados. Uma solução de um 
determinado domínio muitas vezes exacerba um problema em outro, criando um 
complexo problema de otimização multiobjetivo para o campo como um todo. 
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A busca pela precisão levou ao aumento da escala dos modelos em conjuntos 
de dados massivos; esse aumento de escala leva diretamente a custos energéticos 
mais altos (Strubell; Ganesh; Mccallum, 2019). O uso de conjuntos de dados massivos 
coletados da web melhora a generalização, mas também importa vieses sociais em 
escala (Mehrabi et al., 2021) e cria enormes desafios de privacidade (Liu et al., 2021). 

A complexidade que permite alta precisão torna os modelos caixas-pretas, 
criando o problema da interpretabilidade (Guidotti et al., 2018), e essa falta de 
interpretabilidade torna mais difícil diagnosticar e mitigar o viés. As mesmas fronteiras 
de decisão complexas e não lineares que tornam os modelos precisos também criam 
a vulnerabilidade a ataques adversariais, com a intenção de explorar pequenas 
lacunas não intuitivas para humanos na compreensão do modelo (Liu et al., 2020). 

Portanto, é inadequado tratar essas questões como uma lista de verificação de 
problemas separados, elas formam uma teia de consequências interconectadas que 
derivam da própria natureza do paradigma do Deep Learning. A jornada da extração 
de atributos em Visão Computacional é uma narrativa notável de evolução científica e 
tecnológica, ela traça um caminho desde os primeiros dias de engenharia meticulosa 
e manual, onde a inteligência humana era diretamente codificada em heurísticas para 
extrair características como bordas e cantos, até a era atual do Deep Learning, onde 
representações visuais ricas e hierárquicas são aprendidas automaticamente a partir 
de vastas quantidades de dados, no entanto, este poder recém-descoberto não vem 
sem responsabilidades e desafios profundos. 
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APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 
 

A – ENUNCIADO 
 

1 ChatGPT  
a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado. 
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas 

em sala. Explique o porquê. 
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio 

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências. 
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 

abordagens vistas em sala. Explique o porquê. 
 

2 Busca Heurística 
 

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a 
Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo 
apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha reta, 
que pode ser observada na tabela abaixo. 

 
Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde 

que seja digitalizada (foto) e convertida para PDF. 
 

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi 
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um 
formato em blocos, planilha, ou qualquer outra representação. 

 
NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.  
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3 Lógica  

 
Verificar se o argumento lógico é válido. 

 
Se as uvas caem, então a raposa as come 
Se a raposa as come, então estão maduras 
As uvas estão verdes ou caem 

 
Logo 

 
A raposa come as uvas se e somente se as uvas caem 

 
Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas 

práticas. 
 
 

Dicas:  
 

1. Transformar as afirmações para lógica: 
 

p: as uvas caem 
q: a raposa come as uvas  
r: as uvas estão maduras 

 
2. Transformar as três primeiras sentenças para formar a base de conhecimento 

 
R1:   

R2:    

R3:   

 
3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com 

essas três primeiras sentenças devemos derivar . Cuidado com a ordem em que as fórmulas 

são geradas. 
 

Equivalência Implicação: ( ) equivale a (¬   ) 

 

Silogismo Hipotético:  ,    

 
Conjunção: ,      
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Equivalência Bicondicional: (   ) equivale a ( )  ( ) 

 

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato 
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão descritas 
acima e no material. 

 

4 Redes Neurais Artificiais  
 

Seja a RNA da figura abaixo. 
 

 
 

Os neurônios N1, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação 
tangente hiperbólica (pesquise a fórmula e aplique). 

 
Dada a entrada x1=-3, x2=1, dê: 
 

a) (6,25 pontos) Valor de saída do neurônio N1 
b) (6,25 pontos) Valor de saída do neurônio N2 
c) (6,25 pontos) Valor de saída do neurônio N3 
d) (6,25 pontos) Valor de saída da rede como um todo 
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B – RESOLUÇÃO 
 
1- a) Inteligência Artificial (IA) é um campo da ciência da computação que se concentra no 
desenvolvimento de sistemas e algoritmos que podem realizar tarefas que normalmente exigiria 
inteligência humana. Isso inclui habilidades como aprendizado, raciocínio, resolução de problemas, 
reconhecimento de padrões, compreensão de linguagem natural e tomada de decisões. Os sistemas 
de IA são projetados para processar grandes quantidades de dados, identificar padrões e tomar 
decisões ou realizar ações com base nesses padrões. Eles podem usar uma variedade de técnicas, 
incluindo aprendizado de máquina, redes neurais, lógica simbólica, algoritmos de otimização e muito 
mais. A IA tem aplicações em uma ampla gama de áreas, incluindo reconhecimento de fala, visão 
computacional, processamento de linguagem natural, diagnóstico médico, automação industrial, 
finanças, jogos, entretenimento e muito mais. Nos últimos anos, tem havido avanços significativos na 
IA, impulsionados pelo aumento da capacidade computacional, melhores algoritmos e grandes 
conjuntos de dados disponíveis para treinamento de modelos de IA. 
 
b) Pensar como humanos: Com base na resposta fornecida pelo ChatGPT, a partir das IAs são 
implementados sistemas que visam realizar tarefas que exigem inteligência humana: "(...) podem 
realizar tarefas que normalmente exigiriam inteligência humana. Isso inclui habilidades como 
aprendizado, raciocínio, resolução de problemas, reconhecimento de padrões, compreensão de 
linguagem natural e tomada de decisões.". A ideia de implementar uma inteligência humana pode 
implicar em pensar como humanos. 

Agir racionalmente: Na resposta é mencionado que IAs são projetadas para processar grande volumes 
de dados e a partir deles tomar decisões ou realizar ações: "Os sistemas de IA são projetados para 
processar grandes quantidades de dados, identificar padrões e tomar decisões ou realizar ações com 
base nesses padrões.". Portanto, uma IA vai dar um resultado conforme os dados que foram utilizados 
para análise e aprendizado, sendo adaptável conforme a situação. 

Pensar racionalmente: Na resposta do ChatGPT, é citada a possibilidade de aplicação em diversas 
áreas e como os avanços obtidos nos últimos anos vão de encontro a melhores algoritmos e aumento 
da capacidade computacional, pode-se relacionar à abordagem de pensar racionalmente. Nessa 
abordagem, a IA busca modelar o processo de raciocínio correto e depende de poder computacional, 
premissas corretas e algoritmos que consigam resolver os problemas para um resultado logicamente 
certo. 

Agir como humanos: Apesar de o ChatGPT falar em uso de inteligência humana nas IAs levando à 
abordagem de pensar como humanos “(...) podem realizar tarefas que normalmente exigiria inteligência 
humana”, para que uma IA pense como humano, todo o processo de pensamento deve ser mapeado: 
introspecção, experimentos psicológicos, imagens cerebrais e ainda o fator pessoal. Quando todo esse 
processo for determinado, então poderemos ter IAs com pensamento humano. Com isso, podemos 
dizer que as IAs existentes, por mais que consigam realizar tarefas humanas, não pensam como 
humanos, e sim imitam seu comportamento. 
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c) ChatGPT é um aplicativo desenvolvido pela OpenAI. Usando os modelos de linguagem GPT, ele 
pode responder suas perguntas, escrever textos, redigir e-mails, manter uma conversa, explicar código 
em diferentes linguagens de programação, traduzir linguagem natural em código e muito mais- ou pelo 
menos tentar- tudo baseado na linguagem natural em que você o alimenta. 

ChatGPT usa aprendizado profundo, um subconjunto de aprendizado de máquina, para produzir texto 
semelhante ao humano por meio de redes neurais transformadoras. O transformador prevê o texto– 
incluindo a próxima palavra, frase ou parágrafo– com base na sequência típica de seus dados de 
treinamento. O treinamento começa com dados genéricos e depois passa para dados mais 
personalizados para uma tarefa específica. O ChatGPT foi treinado com texto online para aprender a 
linguagem humana e, em seguida, usou transcrições para aprender o básico das conversas. 

O ChatGPT é ajustado a partir do GPT-3.5, um modelo de linguagem treinado para produzir texto. Foi 
otimizado para diálogo usando Aprendizado por Reforço com Feedback Humano (RLHF)– um método 
que usa demonstrações humanas e comparações de preferências para orientar o modelo em direção 
ao comportamento desejado. 

Os treinadores humanos fornecem conversas e classificam as respostas. Esses modelos de 
recompensa ajudam a determinar as melhores respostas. Para continuar treinando o chatbot, os 
usuários podem votar positivamente ou negativamente em sua resposta clicando nos ícones de polegar 
para cima ou polegar para baixo ao lado da resposta. Os usuários também podem fornecer feedback 
adicional por escrito para melhorar e ajustar o diálogo futuro. 

Referências: 

GUINNESS, Harris. How does ChatGPT work?. 2023. Disponível em Acesso em 20 fev. 2024. 

HETLER, Amanda. Definition: ChatGPT. 2023. Disponível em Acesso em 22 fev. 2024. 

OPENAI. What is ChatGPT?. 2024. Disponível em Acesso em 23 fev. 2024. 

d) Agir como Humanos: Essa abordagem se enquadra com a forma como o ChatGPT funciona, pois o 
objetivo não é definir o que é pensamento nem implementar algum processo cognitivo, já que não é 
necessário verificar respostas corretas, basta que ele consiga imitar o comportamento humano, além 
de utilizar habilidades como aprendizado, raciocínio e linguagem natural, sendo esta última a principal 
utilizada por ele gerando respostas plausíveis e que podem facilmente serem identificadas como 
"escritas por um ser humano". 

Agir racionalmente: O ChatGPT também pode ser classificado dentro dessa abordagem, pois tem como 
objetivo implementar agentes que respondem a situações e buscam o melhor resultado possível, isso 
pode ser demonstrado na representação do conhecimento e raciocínio para que tome boas decisões 
além das habilidades descritas como resoluções de problemas, reconhecimento de padrões e tomada 
de decisões. O ChatGPT, sendo um sistema treinado com uma base de dados, consegue utilizar esse 
arcabouço de informações para gerar respostas, na grande maioria das vezes, corretas. 
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2- a) Abaixo está a melhor rota escolhida pelo algoritmo de busca heurística aplicando o algoritmo A*, 
representada em azul. 

FIGURA 1 – RESULTADO DA BUSCA HEURÍSTICA 

FONTE: O autor (2025). 

3- Legenda: 

: Uvas caem 

: Raposa come as uvas 

 : Uvas estão maduras 

 Base de Conhecimento (BC): 

1:  (Se as uvas caem, então a raposa as come) 

2:  (Se a raposa as come, então estão maduras) 

3: ¬    (As uvas estão verdes ou as uvas caem) 

4:  COND, R3 

5: SH, R2, R4 
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6: ( )  ( ) CONJ, R5, R1 

7:   ) BICOND, R6 

Logo,    (A raposa come as uvas se e somente se as uvas caem) pode ser derivado a partir da 

base de conhecimento (BC). 

     

4- Os neurônios N1, N2 e N3 possuem função de ativação linear. Já o N4 possui função de ativação 
tangente hiperbólica (pesquise a fórmula e aplique). 

Dada a entrada x1=-3, x2=1, dê: 

a)  

 

 

 

b)  
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APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA 
 

A – ENUNCIADO 
 

Nome da base de dados do exercício: precos_carros_brasil.csv 

Informações sobre a base de dados:  
Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021, 

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A base 
original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser 
utilizada no presente exercício. 

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna 
model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores 
do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém todos 
os dados originais da tabela FIPE. 

  
Metadados: 
 

Nome do campo Descrição 

year_of_reference O preço médio corresponde a um 
mês de ano de referência 

month_of_reference O preço médio corresponde a um 
mês de referência, ou seja, a FIPE atualiza 

sua tabela mensalmente 

fipe_code Código único da FIPE 

authentication Código de autenticação único para 
consulta no site da FIPE 

brand Marca do carro 

model Modelo do carro 

fuel Tipo de combustível do carro 

gear Tipo de engrenagem do carro 

engine_size Tamanho do motor em centímetros 
cúbicos 

year_model Ano do modelo do carro. Pode não 
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corresponder ao ano de fabricação 

avg_price Preço médio do carro, em reais 

 
Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato 

que será considerado correto na resolução do exercício. 
 

1 Análise Exploratória dos dados 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 
a. Carregue a base de dados media_precos_carros_brasil.csv 
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o 

problema de valores faltantes 
c. Verifique se há dados duplicados nos dados 
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de 

informações das variáveis numéricas e categóricas (estatística descritiva dos dados) 
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand) 
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados 

na Análise Exploratória dos dados 
 

2 Visualização dos dados 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 
a. Gere um gráfico da distribuição da quantidade de carros por marca 
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro 
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 

(variável de tempo no eixo X) 
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem 
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d 
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível 
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f 

 
 

3 Aplicação de modelos de machine learning para prever o preço médio dos carros 
 

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas: 
a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis 

independentes do modelo.A variável target é avg_price. Observação: caso julgue necessário, 
faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo. 
Indique quais variáveis foram transformadas e como foram transformadas 

b. Crie partições contendo 75% dos dados para treino e 25% para teste 
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca 

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário, 
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram 
inputados e indique o treinamento de cada modelo 

d. Grave os valores preditos em variáveis criadas 
e. Realize a análise de importância das variáveis para estimar a variável target, para cada 

modelo treinado 
f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na 

análise de importância de variáveis 
g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R² 
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h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor 
resultado e a métrica de avaliação utilizada 

 
B - RESOLUÇÃO 
 
1- a) O resultado foi: (267542, 11), indicando que o conjunto de dados possui 267.542 linhas e 11 
colunas. 
 
b) O resultado indicou que as colunas year_of_reference, month_of_reference, fipe_code, 
authentication, brand, model, fuel, gear, engine_size, year_model e avg_price_brl possuem 65.245 
valores ausentes (aproximadamente 24% dos dados). Tratamento de valores faltantes: Dado que essas 
linhas não continham informações úteis (completamente ausentes), optamos por removê-las da base 
de dados usando o método dropna(). Após a remoção, o novo tamanho da base de dados foi de 202.295 
linhas e 11 colunas. 
 
c) Foram encontradas 2 linhas duplicadas, que foram removidas com o comando drop_duplicates. Após 
a remoção das duplicatas, a base ficou com 202.295 linhas, sem duplicatas. 
 
d) Colunas Numéricas: 
 

QUADRO 1 – COLUNAS NUMÉRICAS 

Estatística year_of_reference engine_size year_model avg_price_brl 

count 202.295 202.295 202.295 202.295 

mean 2.021.564.695 1.822.302 2.011.271.514 52.756,77 

std 0.571904 0.734432 6.376.241 51.628,91 

min 2.021.000.000 1.000.000 2.000.000.000 6.647.000.000 

25% 2.021.000.000 1.400.000 2.006.000.000 22.855.000.000 

50% 2.022.000.000 1.600.000 2.012.000.000 38.027.000.000 

75% 2.022.000.000 2.000.000 2.016.000.000 64.064.000.000 
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max 2.023.000.000 6.200.000 2.023.000.000 979.358.000.000 

FONTE: O autor (2025). 

 

Colunas Categóricas: 
 

QUADRO 2 – COLUNAS CATEGÓRICAS 

Estatísti
ca 

month_of_refer
ence 

fipe_code authenticat
ion 

brand model fuel gear 

count 202.295 202.295 202.295 202.295 202.295 202.295 202.2
95 

unique 12 2.091 425 6 2.112 3 2 

top January 003281-6 cfzlctzfwrcp Fiat Palio 
Week. 
Adv/Adv 

Gasoline Manu
al 

freq 24.260 24.260 16.884 42.260 16.183 168.684 161.8
83 

FONTE: O autor (2025). 

 
e) Marca: 

 

QUADRO 3 – MARCA DOS CARROS 

Marca Valor 

Fiat 0.222260 

VW - VolksWagen 0.219046 

GM - Chevrolet 0.190761 
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Ford 0.163870 

Renault 0.144299 

Nissan 0.059764 

FONTE: O autor (2025). 

 

Modelo: 
 

QUADRO 4 – MODELO DOS CARROS 

Modelo Valor 

Palio Week. Adv/Adv TRYON 1.8 mpi Flex 0.002101 

Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p 0.002101 

Focus 2.0 16V/SE/SE Plus Flex 5p Aut. 0.001977 

Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V 0.001977 

Corvette 5.7/ 6.0, 6.2 Targa/Stingray 0.001854 

STEPWAY Zen Flex 1.0 12V Mec. 0.000010 

Saveiro Robust 1.6 Total Flex 16V CD 0.000010 

Saveiro Robust 1.6 Total Flex 16V 0.000010 

Gol Last Edition 1.0 Flex 12V 5p 0.000010 

Polo Track 1.0 Flex 12V 5p 0.000010 

FONTE: O autor (2025). 
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Os principais resultados observados foram: 
As marcas mais frequentes foram Fiat, VW - VolksWagen, GM - Chevrolet e Ford. 
O modelo de carro mais comum foi o "Palio Week. Adv/Adv TRYON 1.8 mpi Flex", seguido por outros 
modelos da marca Fiat e Ford. 
 
f) Através da análise exploratória, observou-se que a base de dados analisada é composta por 2112 
modelos de carros distintos, com ano de fabricação entre 2000 e 2023. A mediana do preço médio dos 
carros foi de R$38 mil reais, e o modelo mais barato e mais caro custavam respectivamente, R$6,6 mil 
e R$979 mil. A marca mais frequente dos carros cadastrados foi Fiat, 83% dos automóveis são movidos 
à gasolina e 80% do tipo manual. 
 
2- a) Gráfico de quantidade de carros por marca. 

FIGURA 2 – GRÁFICO DE QUANTIDADE DE CARROS POR MARCA 

 
FONTE: O autor (2025). 
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b) Gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro. 
 

FIGURA 3 – GRÁFICO DE QUANTIDADE DE CARROS POR TIPO ENGRENAGEM 

 
FONTE: O autor (2025). 

 

c) Gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 (variável de tempo 
no eixo X). 
 

 

FIGURA 4 – MÉDIA DE PREÇOS DOS CARROS 

 
FONTE: O autor (2025). 
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d) Gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem. 

FIGURA 5 – MÉDIA DE PREÇOS POR MARCA E TIPO DE ENGRENAGEM 

 
FONTE: O autor (2025). 

 
e)  Veículos com transmissão manual são, em média, mais baratos que os veículos com transmissão 
automática. Porém, há uma exceção nos veículos da marca Renault, que o valor médio dos veículos 
com transmissão automática são menores, isso pode ser explicado pelo fato de serem carros mais 
antigos, conforme foi observado quando a mediana do ano dos carros foi consultada. Observou-se 
também que a média de preço dos carros manuais da Fiat é mais baixa do que das demais marcas, 
seguidos pelos carros manuais da VW. Veículos com transmissão manual são, em média, mais baratos 
que os veículos com transmissão automática. Porém, há uma exceção nos veículos da marca Renault, 
que o valor médio dos veículos com transmissão automática são menores, isso pode ser explicado pelo 
fato de serem carros mais antigos, conforme foi observado quando a mediana do ano dos carros foi 
consultada. Observou-se também que a média de preço dos carros manuais da Fiat é mais baixa do 
que das demais marcas, seguidos pelos carros manuais da VW. 
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f) Gráfico da distribuição da média de preço dos carros por marca e tipo de combustível 
 

FIGURA 6 – MÉDIA DE PREÇOS POR MARCA E COMBUSTÍVEL 

 
FONTE: O autor (2025). 

 
g)  Veículos a diesel são, em média, mais caros. Isso pode estar associado ao fato de que esses 
veículos são geralmente de grande porte e que são, intrinsecamente, mais caros. Também observa-se 
que algumas marcas não possuem veículos movidos exclusivamente a álcool, e isso pode ser pelo fato 
de que esse tipo de veículo é mais antigo e que veículos flex na FIPE são contabilizados como movidos 
a gasolina. 
 
3- A partir da base de dados precos_carros_brasil.csv, foram executadas as seguintes tarefas para 
prever o preço médio dos carros: 
 
a)  Foi feita a matriz de correlação entre as variáveis numéricas e observada correlação de 0,56 entre 
ano do modelo do carro e preço médio do veículo, indicando correlação direta e moderada. Também 
foi identificada correlação positiva, porém fraca, phi = 0,46 entre preço médio e tamanho do motor. A 
correlação entre ano de referência e preço médio do veículo foi muito próxima de 0, não demonstrando 
haver correlação entre essas duas variáveis, e por isso não será utilizada no modelo. Também não 
será considerada a variável mês de referência, uma vez que o ano de referência não entra no modelo. 
Para as variáveis categóricas, foi feita a análise gráfica através dos gráficos da parte 2 e dos boxplots 
da variável resposta x variável independente para a seleção. 
 

 
 



29 
 

 

 
 
 

FIGURA 7 – MAPA DE CORRELAÇÃO DAS VARIÁVEIS NUMÉRICAS 

 
FONTE: O autor (2025). 

 

b) Abaixo está o código-fonte feito em python: 
# Importando a função para dividir os dados 

from sklearn.model_selection import train_test_split 

 

# Seleção das variáveis independentes (X) e dependente (Y) 

X = carros_modelo[['brand', 'model', 'fuel', 'gear', 'engine_size', 'year_model']] 

Y = carros_modelo[['avg_price_brl']] 

 

# Divisão dos dados em treino (75%) e teste (25%) 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, 

random_state=42) 

 

c) Abaixo está o código-fonte feito em python: 
# Importando os modelos 

from sklearn.ensemble import RandomForestRegressor 

from xgboost import XGBRegressor 

 

# Modelo Random Forest sem parâmetros 

RF_semParametros = RandomForestRegressor() 

RF_semParametros.fit(X_train, Y_train) 
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# Modelo XGBoost sem parâmetros 

XGBoost_semParametro = XGBRegressor() 

XGBoost_semParametro.fit(X_train, Y_train) 

 

FIGURA 8 – XGBREGRESSOR 

 

 
FONTE: O autor (2025). 

 
O RandomForestRegressor foi treinado com seus parâmetros padrão, enquanto o XGBRegressor 
também foi treinado sem alteração de parâmetros. 
 
d) Abaixo está o código-fonte feito em python: 
# Previsões dos modelos 

Yhat_RF_semParametros = RF_semParametros.predict(X_test) 

Yhat_XG = XGBoost_semParametro.predict(X_test) 

 

As previsões realizadas por ambos os modelos foram armazenadas nas variáveis 
Yhat_RF_semParametros e Yhat_XG, respectivamente. 
 
e) Foram geradas as tabelas de importância das variáveis para ambos os modelos, mostrando quais 
variáveis mais influenciam na previsão do preço médio do carro. 

 
QUADRO 5 – VARIÁVEIS E IMPORTÂNCIA 

 
Variable Importance 

engine_size 0.439257 

fuel 0.205469 
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year_model 0.170392 

gear 0.123404 

brand 0.043103 

model 0.018376 

FONTE: O autor (2025). 

 

f) Nos três modelos a variável engine_size teve maior importância (sempre maior que 0,4). Nos modelos 
de Random Forest, duas variáveis, engine_size e year_model eram as responsáveis por quase 90% 
desse índice em cada ajuste. Apenas no XGBoost year_model não assumiu a segunda posição quanto 
à importância, perdendo para a variável fuel . 

g) Abaixo está o código-fonte feito em python: 

#Avaliação do modelo - MSE mse_md2 = mean_squared_error(Y_test, 

Yhat_RF_comParametros) mse_md2 

Resultado da Saída: 134879179.34676224 
 
#Avaliação do modelo - MAE mae_md2 = mean_absolute_error(Y_test, 

Yhat_RF_comParametros) mae_md2 

 

Resultado da Saída: 5197.4533381621895 
 

 #Avaliação do modelo - R2 r2_score(Y_test, Yhat_RF_comParametros) 

 

Resultado da Saída: 0.9483897141128078 

h) Os três modelos tiveram bom ajuste nos dados, com R2 sempre superior a 0,9. No entanto, a 
Random Forest, sem parâmetros pré-definidos, apresentou MSE e MAE menores do que os demais 
modelos, e teve o melhor valor de R2, 0,98. Com isso, esse modelo, que teve como variáveis 
importantes engine_size (tamanho do motor) e year_model (ano do modelo) foi escolhido como o 
melhor. 
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APÊNDICE 3 – LINGUAGEM R 
 

A – ENUNCIADO 
 
1 Pesquisa com Dados de Satélite (Satellite) 

 
O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma 

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é 
prever esta classificação, dados os valores multiespectrais. 

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) consiste 
em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na 
região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e 
duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a 
preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém 
2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo 
de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3 
completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro 
bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número 
indicando o rótulo de classificação do pixel central. 

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de 
vegetação, solo cinza muito úmido. 

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você 
não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro 
valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores 
espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, 
com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro 
valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode 
usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma 
vizinhança 3x3 atravessa um limite. 

O banco de dados se encontra no pacote mlbench e é completo (não possui dados faltantes). 
Tarefas: 

1. Carregue a base de dados Satellite 
2. Crie partições contendo 80% para treino e 20% para teste 
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.  
4. Escolha o melhor modelo com base em suas matrizes de confusão.  
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada 
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2 Estimativa de Volumes de Árvores 
 

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal 
(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário 
abatê-las. 

O processo é feito pela coleta de dados (dados observados) através do abate de algumas 
árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes 
dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população. 

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em 
regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo 
de Spurr é dado por: 

 
Volume = b0 + b1 * dap2 * Ht 

 
Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários modelos 

alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão 
envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma 
equação que pode ser usada para prever o volume de outras árvores. 

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de 
aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação. 

 
Tarefas 

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv) 
2. Eliminar a coluna NR, que só apresenta um número sequencial 
3. Criar partição de dados: treinamento 80%, teste 20% 
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes 

Neurais (neuralnet) e o modelo alométrico de SPURR 
 

▪ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht 
 

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5)) 
 

5. Efetue as predições nos dados de teste 
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados 

observados 
 

▪ Coeficiente de determinação: R2 

 
onde  é o valor observado,  é o valor predito e  é a média dos valores  observados. 

Quanto mais perto de 1 melhor é o modelo; 
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▪ Erro padrão da estimativa: Syx 

 
 esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo; 
 

▪ Syx% 

 
 
esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo; 
 

7. Escolha o melhor modelo. 
 
 
B – RESOLUÇÃO 
 
1.1- Código fonte feito em R: 
# Definir o mirror do CRAN 

mirror <- "https://cran-r.c3sl.ufpr.br" 

options(repos = mirror) 

 

# Instale o pacote mlbench se ainda não estiver instalado 

install.packages("mlbench") 

 

# Carregue o pacote 

library(mlbench) 

 

# Carregue a base de dados Satellite 

data(Satellite) 

 

# Visualize a estrutura da base de dados 

str(Satellite) 

 

 

 
Resultado da Saída: 'data.frame': $ x.1 : num 92 84 84 80 84 80 76 76 76 76 ... $ x.2 
$ x.3 $ x.4 $ x.5 $ x.6 $ x.7 $ x.8 $ x.9 : num 115 102 102 102 94 94 102 102 89 94 
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... : num 120 106 102 102 102 98 106 106 98 98 ... : num 94 79 83 79 79 76 83 87 76 

76 ... : num 84 84 80 84 80 80 76 80 76 76 ... : num 102 102 102 94 94 102 102 98 

94 98 ... : num 106 102 102 102 98 102 106 106 98 102 ... : num 79 83 79 79 76 79 

87 79 76 72 ... : num 84 80 84 80 80 76 80 76 76 76 ... $ x.10 : num 102 102 94 94 

102 102 98 94 98 94 ... $ x.11 : num 102 102 102 98 102 102 106 102 102 90 ... $ 

x.12 : num 83 79 79 76 79 79 79 76 72 76 ... $ x.13 : num 101 92 84 84 84 76 80 80 

80 76 ... $ x.14 : num 126 112 103 99 99 99 107 112 95 91 ... $ x.15 : num 133 118 

104 104 104 104 118 118 104 104 ... $ x.16 : num 103 85 81 78 81 81 88 88 74 74 ... 

$ x.17 : num 92 84 84 84 76 76 80 80 76 76 ... $ x.18 : num 112 103 99 99 99 99 112 

107 91 95 ... $ x.19 : num 118 104 104 104 104 108 118 113 104 100 ... $ x.20 : num 

85 81 78 81 81 85 88 85 74 78 ... $ x.21 : num 84 84 84 76 76 76 80 80 76 76 ... $ 

x.22 : num 103 99 99 99 99 103 107 95 95 91 ... $ x.23 : num 104 104 104 104 108 

118 113 100 100 100 ... $ x.24 : num 81 78 81 81 85 88 85 78 78 74 ... $ x.25 : num 

102 88 84 84 84 84 79 79 75 75 ... $ x.26 : num 126 121 107 99 99 103 107 103 91 91 

... $ x.27 : num 134 128 113 104 104 104 113 104 96 96 ... $ x.28 : num 104 100 87 

79 79 79 87 83 75 71 ... $ x.29 : num 88 84 84 84 84 79 79 79 75 79 ... $ x.30 : 

num 121 107 99 99 103 107 103 103 91 87 ... $ x.31 : num 128 113 104 104 104 109 

104 104 96 93 ... $ x.32 : num 100 87 79 79 79 87 83 79 71 71 ... $ x.33 : num 84 

84 84 84 79 79 79 79 79 79 ... $ x.34 : num 107 99 99 103 107 107 103 95 87 87 ... 

$ x.35 : num 113 104 104 104 109 109 104 100 93 93 ... $ x.36 : num 87 79 79 79 87 

87 79 79 71 67 ... $ classes: Factor w/ 6 levels "red soil","cotton crop",..: 3 3 3 

3 3 3 3 3 4 4 … 

 

1.2 - Código fonte feito em python: 
# Instale o pacote 'caret' se ainda não o tiver instalado 

install.packages("caret") 

 

# Carregue o pacote 

library(caret) 

 

# Defina a semente para reprodução dos resultados 

set.seed(123) 

 

# Crie a partição dos dados (80% treino, 20% teste) 

particao <- createDataPartition(Satellite$classes, p = 0.8, list = FALSE) 

 

# Separe os dados de treinamento e teste 

dados_treino <- Satellite[particao, ] 

dados_teste <- Satellite[-particao, ] 
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# Verifique o tamanho dos dados de treinamento e teste 

print(paste("Tamanho dos dados de treinamento:", nrow(dados_treino))) 

print(paste("Tamanho dos dados de teste:", nrow(dados_teste))) 

 
Resultado da Saída: [1] "Tamanho dos dados de treinamento: 5151" 
 [1] "Tamanho dos dados de teste: 1284" 

 

1.3 Código fonte feito em R: 
# 3- Treine modelos RandomForest, SVM e RNA para predição destes dados. 

install.packages("neuralnet") 

 

# Carregue os pacotes necessários 

library(randomForest) 

library(e1071) 

library(neuralnet) 

 

# 3.1 Treinamento do modelo Random Forest 

modelo_rf <- randomForest(classes ~ ., data = dados_treino) 

 

# 3.2 Treinamento do modelo SVM 

modelo_svm <- svm(classes ~ ., data = dados_treino) 

 

# 3.3 Treinamento do modelo RNA 

modelo_rna <- neuralnet(classes ~ ., data = dados_treino, hidden = c(5, 2), 

linear.output = FALSE) 

 

# Exiba os modelos treinados 

print(modelo_rf) 

print(modelo_svm) 

print(modelo_rna) 
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Resultado da Saída: 
QUADRO 6 – RESULTADO DOS MODELOS TREINADOS 

 red soil cotton 
crop 

grey soil damp 
grey soil 

vegetatio
n stubble 

very 
damp 
grey soil 

class.erro
r 

red soil 1206 4 13 0 4 0 0.0171 

cotton 
crop 

0 545 1 5 7 5 0.0320 

grey soil 8 1 1044 23 2 9 0.0396 

damp 
grey soil 

5 4 94 293 4 101 0.4152 

vegetatio
n stubble 

22 5 2 3 509 25 0.1007 

very 
damp 
grey soil 

0 0 20 55 24 1108 0.0820 

FONTE: O autor (2025). 

 

.A saída ao executar o print do modelo_rna é extremamente longa. Portanto, somente o começo da 
saída foi adicionada a este documento, conforme a tabela abaixo. 

 
QUADRO 7 – RESULTADO DO MODELO RNA 

 grey soil damp 
grey soil 

vegetation 
stubble 

very damp grey soil 

1 FALSE FALSE TRUE FALSE 

2 FALSE FALSE TRUE FALSE 

3 FALSE FALSE TRUE FALSE 
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4 FALSE FALSE TRUE FALSE 

5 FALSE FALSE TRUE FALSE 

6 FALSE FALSE TRUE FALSE 

7 FALSE FALSE TRUE FALSE 

8 FALSE TRUE FALSE FALSE 

9 FALSE TRUE FALSE FALSE 

10 FALSE TRUE FALSE FALSE 

11 FALSE TRUE FALSE FALSE 

12 FALSE TRUE FALSE FALSE 

13 FALSE TRUE FALSE FALSE 

14 FALSE TRUE FALSE FALSE 

15 FALSE FALSE TRUE FALSE 

16 FALSE FALSE TRUE FALSE 

FONTE: O autor (2025). 
1.4 Código fonte feito em R: 
# 4. Escolha o melhor modelo com base em suas matrizes de confusão. 

# Carregue o pacote 'caret' para calcular a matriz de confusão 

library(caret) 

 

# Função para calcular métricas de desempenho 

calcular_metricas <- function(matriz_confusao) { 

  # Precisão (precision) 

  precisao <- diag(matriz_confusao) / colSums(matriz_confusao) 
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  # Recall 

  recall <- diag(matriz_confusao) / rowSums(matriz_confusao) 

   

  # F1-score 

  f1_score <- 2 * (precisao * recall) / (precisao + recall) 

   

  # Retornar as métricas 

  return(data.frame(precisao = precisao, recall = recall, f1_score = f1_score)) 

} 

 

# Função para imprimir as métricas 

imprimir_metricas <- function(nome_modelo, matriz_confusao) { 

  cat("\nModelo:", nome_modelo, "\n") 

  print(calcular_metricas(matriz_confusao)) 

} 

 

# Função para plotar a matriz de confusão 

plotar_matriz_confusao <- function(nome_modelo, matriz_confusao) { 

  confusionMatrix(matriz_confusao, main = nome_modelo) 

} 

 

# Prever os rótulos usando cada modelo 

predicoes_rf <- predict(modelo_rf, newdata = dados_teste) 

predicoes_svm <- predict(modelo_svm, newdata = dados_teste) 

predicoes_rna <- predict(modelo_rna, newdata = dados_teste) 

 

# Prever as probabilidades usando a RNA 

probabilidades_rna <- predict(modelo_rna, newdata = dados_teste) 

 

# Obter os nomes das classes 

nomes_classes <- levels(dados_teste$classes) 

 

# Transformar probabilidades em rótulos de classe 

predicoes_rna <- apply(probabilidades_rna, 1, function(x) 

nomes_classes[which.max(x)]) 

 

# Converter as predições em fatores 

predicoes_rna <- factor(predicoes_rna, levels = nomes_classes) 
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# Calcular a matriz de confusão para cada modelo 

matriz_confusao_rf <- confusionMatrix(predicoes_rf, dados_teste$classes) 

matriz_confusao_svm <- confusionMatrix(predicoes_svm, dados_teste$classes) 

matriz_confusao_rna <- confusionMatrix(predicoes_rna, dados_teste$classes) 

 

# Imprimir as métricas de desempenho para cada modelo 

imprimir_metricas("Random Forest", matriz_confusao_rf$table) 

imprimir_metricas("SVM", matriz_confusao_svm$table) 

imprimir_metricas("RNA", matriz_confusao_rna$table) 

 

# Plotar as matrizes de confusão 

plotar_matriz_confusao("Random Forest", matriz_confusao_rf$table) 

plotar_matriz_confusao("SVM", matriz_confusao_svm$table) 

plotar_matriz_confusao("RNA", matriz_confusao_rna$table) 

 
Abaixo mostra os resultados de cada modelo começando pelo Random Forest. 
 

QUADRO 8 – RESULTADO DO MODELO RANDOM FOREST 

Class Precisão Recall F1-Score 

red soil 0.9934641 0.9712460 0.9822294 

cotton crop 0.9857143 0.9857143 0.9857143 

grey soil 0.9667897 0.9065744 0.9357143 

damp grey 
soil 

0.7200000 0.8181818 0.7659574 

vegetation 
stubble 

0.8510638 0.9600000 0.9022556 

very damp 
grey soil 

0.9169435 0.8990228 0.9078947 

FONTE: O autor (2025). 
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A seguir, apresenta o resultado do modelo SVM. 

QUADRO 9 – RESULTADO DO MODELO SVM 

Class Precisão Recall F1-Score 

red soil 0.9934641 0.9589905 0.9759230 

cotton crop 0.9785714 0.9785714 0.9785714 

grey soil 0.9667897 0.8704319 0.9160839 

damp grey 
soil 

0.6320000 0.7117117 0.6694915 

vegetation 
stubble 

0.8085106 0.9500000 0.8735632 

very damp 
grey soil 

0.8704319 0.8881356 0.8791946 

FONTE: O autor (2025). 

 

Por último, o resultado do modelo RNA. 
 

QUADRO 9 – RESULTADO DO MODELO RNA 

Class Precisã
o 

Recall F1-Score 

red soil 0 NaN NaN 

cotton crop 0 NaN NaN 

grey soil 0 NaN NaN 
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damp grey 
soil 

1 0.09735202 0.1774308 

vegetation 
stubble 

0 NaN NaN 

very damp 
grey soil 

0 NaN NaN 

FONTE: O autor (2025). 

 

1.5 - Código fonte feito em R: 

# 5 - Indique qual modelo dá o melhor resultado e a métrica utilizada 

 

# Extrair os valores de F1-score para cada modelo 

f1_rf <- calcular_metricas(matriz_confusao_rf$table)$f1_score 

f1_svm <- calcular_metricas(matriz_confusao_svm$table)$f1_score 

f1_rna <- calcular_metricas(matriz_confusao_rna$table)$f1_score 

 

# Criar um data frame com os valores de F1-score 

df_f1 <- data.frame( 

  Modelo = c("Random Forest", "SVM", "RNA"), 

  F1_Score = c(f1_rf, f1_svm, f1_rna) 

) 

 

# Ordenar o data frame pelo F1-score 

df_f1 <- df_f1[order(df_f1$F1_Score, decreasing = TRUE), ] 

 

# Imprimir o data frame 

print(df_f1) 

 

# Identificar o melhor modelo 

melhor_modelo <- df_f1[1, "Modelo"] 

cat("\nO melhor modelo é:", melhor_modelo, "\n") 

 

Resultado da Saída:           
 Modelo  F1_Score 

 2            SVM 0.9857143 

 1  Random Forest 0.9822294 



43 
 

 

 8            SVM 0.9785714 

 7  Random Forest 0.9759230 

 3            RNA 0.9357143 

 9            RNA 0.9160839 

 6            RNA 0.9078947 

 5            SVM 0.9022556 

 12           RNA 0.8791946 

 11           SVM 0.8735632 

 4  Random Forest 0.7659574 

 10 Random Forest 0.6694915 

 16 Random Forest 0.1774308 

 13 Random Forest       NaN 

 14           SVM       NaN 

 15           RNA       NaN 

 17           SVM       NaN 

 18           RNA       NaN 

 O melhor modelo é: SVM 

2.1- Código fonte feito em R: 

# --- 01 Carregar o arquivo Volumes.csv 

(http://www.razer.net.br/datasets/Volumes.csv) -- 

url_dataset <- "http://www.razer.net.br/datasets/Volumes.csv" 

# Carregando a base de dados (ex 1) 

log(paste("Carregando base de dados de volumes de árvores. URL:", url_dataset)) 

dataset <- read.csv2(url_dataset, header = TRUE, sep = ";") 

 
Resultado da Saída:  18-04-2024 08:19:54 - Carregando base de dados de volumes de árvores. URL: 

http://www.razer.net.br/datasets/Volumes.csv 

 

2.2- Código fonte feito em R: 

# --- 02 Eliminar a coluna NR, que só apresenta um número sequencial -- 

dataset <- dataset[, !names(dataset) %in% "NR"] 

# Visualizando a base de dados 

log("Estrutura da base do dataset") 

str(dataset) 

log("Primeiras linhas da base do dataset") 

head(dataset) 

log("Sumário da base do dataset") 
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summary(dataset) 

 

 

 

 

 
FIGURA 9 – VISUALIZAÇÃO DOS DADOS 

 
FONTE: O autor (2025). 

 

2.3- Código fonte em R: 

# --- 03 Criar partição de dados: treinamento 80%, teste 20% --- 

 

# Setando uma semente de aleatoriedade 

set.seed(123) 

 

# Criando índices para o treino 

cat("Particionando dados em treino e teste\n") 

indices <- createDataPartition(dataset$VOL, p = 0.8, list = FALSE) 

 

# Separando dados em treino e teste 

dados_treino <- dataset[indices, ] 

dados_teste <- dataset[-indices, ] 

 

# Verificando quantidade de observações em cada partição 

cat("Observações nos dados de treinamento:", nrow(dados_treino), "\n") 

cat("Observações nos dados de teste:", nrow(dados_teste), "\n") 

 

Resultado da Saída:     
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18-04-2024 08:19:55 - Particionando dados em treino e teste 

[1] "Observações nos dados de treinamento: 80" 

[1] "Observações nos dados de teste: 20" 

 

2.4- Código fonte feito em R: 
# --- 04 Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM 

(svmRadial), 

# O modelo alométrico é dado por: Volume = b0 + b1 * dap ^ 2 * Ht 

 

# Treinando os modelos 

cat("Treinando modelo Random Forest\n") 

rf <- train(VOL ~ ., data = dados_treino, method = "rf") 

 

cat("Treinando modelo SVM\n") 

svm <- train(VOL ~ ., data = dados_treino, method = "svmRadial") 

 

cat("Treinando modelo Neural Network\n") 

rna <- train(VOL ~ ., data = dados_treino, method = "neuralnet") 

 

cat("Treinando modelo Alométrico de SPURR\n") 

alom <- nls( 

  VOL ~ b0 + b1 * (DAP ^ 2) * HT, 

  data = dados_treino, 

  start = list(b0 = 0.5, b1 = 0.01) 

) 

 

Resultado da Saída: 
18-04-2024 08:19:55 - Treinando modelo Random Forest 

note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 

. 

18-04-2024 08:19:57 - Treinando modelo SVM 

18-04-2024 08:19:57 - Treinando modelo Neural Network 

There were 37 warnings (use warnings() to see them) 

18-04-2024 08:21:41 - Treinando modelo Alométrico de SPURR 

 

2.5- Código fonte feito em R: 

# --- 05 Efetue as predições nos dados de teste 

log("Realizando predições") 

predicoes_rf <- predict(rf, dados_teste) 

predicoes_svm <- predict(svm, dados_teste) 
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predicoes_rna <- predict(rna, dados_teste) 

predicoes_alom <- predict(alom, dados_teste) 

 

Resultado da Saída: 18-04-2024 08:21:41 - Realizando predições 
 

2.6- Código fonte feito em R: 
# Função para cálculo do coeficiente de determinação R² 

calcular_coef_r2 <- function(observacoes, predicoes) { 

  return(1 - sum((observacoes - predicoes) ^ 2) / sum((observacoes - 

mean(observacoes)) ^ 2)) 

} 

 

# Função para erro padrão de estimativa: Syx 

calcular_erro_syx <- function(observacoes, predicoes) { 

  return(sqrt(sum((observacoes - predicoes) ^ 2) / (length(observacoes) - 2))) 

} 

 

# Função para o cálculo da porcentagem de erro Syx 

calcular_erro_syx_percent <- function(observacoes, predicoes) { 

  return((calcular_erro_syx(observacoes, predicoes) / mean(observacoes)) * 100) 

} 

 

# Função para calcular um score com base no valor de R² e Syx 

calcular_score <- function(r2, syx) { 

  return((r2 + (1 - syx)) / 2) 

} 

 

# Função para retornar as métricas de avaliação 

calcular_metricas <- function(observacoes, predicoes, nome_modelo) { 

  r2 <- calcular_coef_r2(observacoes, predicoes) 

  syx <- calcular_erro_syx(observacoes, predicoes) 

  syx_percent <- calcular_erro_syx_percent(observacoes, predicoes) 

  score <- calcular_score(r2, syx) 

 

  return(data.frame(model = nome_modelo, r2 = r2, syx = syx, syxPercentage = 

syx_percent, score = score)) 

} 

 

Resultado da Saída: N/A 
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2.7- Código fonte feito em R: 
# --- 07 Escolha o melhor modelo --- 

 

cat("Calculando métricas para os modelos\n") 

 

# Calculando as métricas para cada modelo 

metricas_df <- calcular_metricas(dados_teste$VOL, predicoes_rf, "rf") 

metricas_df <- rbind(metricas_df, calcular_metricas(dados_teste$VOL, 

predicoes_svm, "svm")) 

metricas_df <- rbind(metricas_df, calcular_metricas(dados_teste$VOL, 

predicoes_rna, "rna")) 

metricas_df <- rbind(metricas_df, calcular_metricas(dados_teste$VOL, 

predicoes_alom, "alom")) 

 

# Ordenando as métricas pelo score (do melhor para o pior) 

metricas_df <- metricas_df[order(metricas_df$score, decreasing = TRUE), ] 

 

cat("Métricas com base no score (melhor para o pior):\n") 

print(metricas_df) 

 
Na atividade foram treinados quatro modelos: Random Forest , SVM, Redes Neurais e modelo 

alométrico de SPURR. Após os modelos terem sido treinados, foram realizadas as predições com os 
dados para teste e comparado com os valores observados. Com esses resultados, foram calculadas 
três métricas: 

 

- Coeficiente de determinação (R²)  

- Erro padrão da estimativa (Syx)  
- Porcentagem do erro padrão da estimativa (Syx %) 

 
Para o primeiro valor, quanto mais perto de 1, melhor. Já para o segundo, quanto mais perto 

de 0, melhor. A terceira métrica é derivada da segunda. Por fim foi calculado um score que considera 
o valor de R 2 e o S yx % (considerando o range de valores entre 0 e 1) com a seguinte fórmula:  

 

 

Com esse score foi possível definir qual dos quatro modelos performou melhor, sendo que o 
resultado foi o seguinte (já ordenados do melhor para o pior): 

 
QUADRO 10 – MODELOS COM MELHOR SCORE 

Modelo R² Syx Syx % Score 
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RNA 0.8867930 0.1354473 1.006.305 0.8930813 

Alométrico 0.8694429 0.1454567 1.080.670 0.8806879 

Random 
Forest 

0.8486654 0.1566040 1.163.489 0.8661582 

SVM 0.7900779 0.1844433 1.370.321 0.8265229 

FONTE: O autor (2025). 

 

Portanto, pode-se concluir que o melhor modelo nesse caso é o modelo de Redes Neurais. 
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APÊNDICE 4 – ESTATÍSTICA APLICADA I 
 

A – ENUNCIADO 
 

1) Gráficos e tabelas 
 
(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados 
(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e “husage” 

(idade do marido) e comparar os resultados 
 

2) Medidas de posição e dispersão 
 
(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e 

“husage” (idade do marido) e comparar os resultados 
(15 pontos) Calcular a variância,  desvio padrão e coeficiente de variação das variáveis “age” 

(idade da esposa) e “husage” (idade do marido) e comparar os resultados 
 

3) Testes paramétricos ou não paramétricos 
 
(40 pontos) Testar se as médias (se você escolher o teste paramétrico)  ou as medianas (se 

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do 
marido) são iguais, construir os intervalos de confiança e comparar os resultados. 

Obs:  
Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você 

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique sua 
resposta sobre a escolha. 

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes 
citados no item 1 acima.  

 

B – RESOLUÇÃO 
 

1- Código fonte feito em R: 
library(ggplot2) 

library(dgof) 

 

# Carregar os dados 

load("C:/Users/livia/OneDrive/Documentos/salarios.Rdata") 

dados <- salarios 
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# Criar dataset de teste com idades de esposas e maridos 

dados_teste <- rbind.data.frame( 

  cbind.data.frame(idade = dados$age, gender = rep("esposas", 5634)), 

  cbind.data.frame(idade = dados$husage, gender = rep("maridos", 5634)) 

) 

 

# Plotar histograma da idade das esposas 

ggplot(dados, aes(x = age)) + 

  geom_histogram(binwidth = 0.5) + 

  labs(title = "Histograma idade esposas", x = "Idade", y = "Frequência") 

 

FIGURA 10 – HISTOGRAMA IDADE DAS ESPOSAS 

 

FONTE: O autor (2025). 

 
ggplot(dados, aes(husage)) + 

geom_histogram(binwidth = 0.5)+ 

labs(title = "Histograma idade maridos") 
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FIGURA 11 – HISTOGRAMA IDADE DOS MARIDOS 

 
FONTE: O autor (2025). 

 
ggplot(dados_teste, aes(idade, fill = gender)) + 

geom_histogram(binwidth = 0.5)+ 

labs(title = "Histograma idade esposas x Histograma idade maridos") 

 

FIGURA 12 – HISTOGRAMA IDADE DAS ESPOSAS E DOS MARIDOS

 

FONTE: O autor (2025). 

 

ggplot(dados_teste) + 

geom_boxplot(aes(colour = gender, y = idade))+ 

labs(title = "Boxplot idade esposas x Boxplot idade maridos") 
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FIGURA 13 – BOXPLOT IDADE DAS ESPOSAS E DOS MARIDOS

 

FONTE: O autor (2025). 
 

Observamos que a distribuição das idades das esposas está concentrada entre 30 e 50 anos, 
com idade máxima de 59 anos. Já para as idades dos maridos, observamos nos gráficos, que essa 
medida atinge valores mais altos, mesmo que tenha concentração também em torno de 30 e 50 anos 
e que homens e mulheres tenham mediana de idade similar, observamos que existem maridos com 
idade superior até a 70 anos, que aparecem como outliers no gráfico. 

 
1.2- table(dados$age) 

 

FIGURA 14 – DADOS DAS IDADES

 
FONTE: O autor (2025). 
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prop.table(table(dados$age)) 

 

FIGURA 15 – PROPORÇÃO DAS IDADES

 
FONTE: O autor (2025). 

 
table(dados$husage) 

 

FIGURA 16 – DADOS HUSAGE 

 
FONTE: O autor (2025). 

 
prop.table(table(dados$husage)) 
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FIGURA 17 – PROPORÇÃO DOS DADOS HUSAGE

 
FONTE: O autor (2025). 

 
As tabelas de frequência podem ser analisadas como um complemento aos gráficos anteriores, 

a partir delas, observamos que a idade mínima das esposas é 18 anos (0,2% das mulheres), enquanto 
a idade mínima dos maridos é de 19 anos (0,09% dos homens). As esposas com mais idade na base 
analisada tinham 59 anos (95 mulheres, que corrrespondem a 1,7% da base), enquanto o marido mais 
velho 86 anos, representando 0,01% da base. 
 

2.1- summary(dados$age) 

FIGURA 18 – DADOS DE IDADES 

 
FONTE: O autor (2025). 

 
moda <- sort(table(dados$age), decreasing = T) [1] 

moda 

 

Resultado da Saída: 
# 37 

# 217 
 
summary (dados$husage) 
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FIGURA 19 – DADOS DE HUSAGE 

 

FONTE: O autor (2025). 
 

modah <- sort(table(dados$husage), decreasing = T) [1] 

modah 

 

Resultado da Saída: 
# 44 

# 201 

 

Indo ao encontro do boxplot analisado, observamos que a mediana da idade das mulheres foi 
39 anos e da idade dos homens, 41 anos. Essas medianas são um pouco mais baixas que as médias, 
e isso deve-se por valores mais altos que inflam um pouco a média. Os valores de primeiros quartis de 
idades de homens e mulheres são próximos, assim como os terceiros quartis. No entanto, observamos 
outliers na distribuição da idade dos homens, pelo boxplot analisado acima. 

A moda se dá pelos valores mais frequentes, a moda das idades das mulheres foi de 37 anos, 
enquanto a moda das idades dos homens, 44 anos. 
 
2.2- var(dados$age) 

 

Resultado da Saída: ## [1] 99.75234 
 

sd(dados$age) 

 

Resultado da Saída: ## [1] 9.98761 
 

sd(dados$age)/mean(dados$age)*100 

 

Resultado da Saída: ## [1] 25.33153 
 

var(dados$husage) 

 

Resultado da Saída: ## [1] 126.0717 
 

sd(dados$husage) 
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Resultado da Saída: ## [1] 11.22817 
 

sd(dados$husage)/mean(dados$husage)*100 

 

Resultado da Saída: ## [1] 26.44849 
 

Observamos que o desvio padrão da idade das mulheres é inferior ao desvio padrão das idades 
dos homens, 9,9 e 11,2 respectivamente, assim como o desvio padrão, 25,3% e 26,4% para mulheres 
e homens respectivamente. 
 
3- Teste de normalidade das variáveis age e husage através do teste de kolmogorov. 
 
ks.test(dados$age,"pnorm",mean(dados$age),sd(dados$age)) 

 

Resultado da Saída: 
## 

## One-sample Kolmogorov-Smirnov test 

## 

## data: dados$age 

## D = 0.058909, p-value < 2.2e-16 

## alternative hypothesis: two-sided 

 

ks. test(dados$husage,"pnorm", mean(dados$husage), sd(dados$husage)) 

 

Resultado da Saída: 
## 

## One-sample Kolmogorov-Smirnov test 

## 

## data: dados$husage 

## D = 0.059662, p-value < 2.2e-16 

## alternative hypothesis: two-sided 

 
Analisando o teste de kolmogorov para normalidade dos dados, observamos p-valor abaixo do 

nível de significância de 5%, então rejeitamos a hipótese nula de normalidade dos dados para as 
variáveis age e husage. Como as variáveis age e husage não têm distribuição normal, vamos precisar 
usar um teste não paramétrico. O teste apropriado para testar as medianas de duas amostras, é o teste 
de Mann Whitney. 
 

Teste de Mann Whitney para comparar as medianas: 
H0 : Não existe diferença entre os grupos 
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H1 : Há diferença entre os grupos 
 
teste <- wilcox. test(idade~gender, data = dados_teste, exact=F, conf.int=T) 

teste 

 

FIGURA 20 – TESTE IDADE POR GÊNERO 

 
FONTE: O autor (2025). 

 
O p-valor do teste realizado foi inferior a 5%, com isso, rejeitamos a hipótese nula de que a 

mediana das idades de homens e mulheres são iguais. O intervalo de confiança da diferença entre as 
medianas está entre 2 e 3, com mediana da diferença igual a 3. 
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APÊNDICE 5 – ESTATÍSTICA APLICADA II 
 
A – ENUNCIADO 
 
Regressões Ridge, Lasso e ElasticNet 

 
(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente 

“lwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados 
são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você 
deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2) e 
concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de 
confiança para os seguintes valores: 

husage = 40          (anos – idade do marido) 
husunion = 0        (marido não possui união estável) 
husearns = 600    (US$ renda do marido por semana) 
huseduc = 13       (anos de estudo do marido) 
husblck = 1           (o marido é preto) 
hushisp = 0           (o marido não é hispânico) 
hushrs = 40           (horas semanais de trabalho do marido) 
kidge6 = 1             (possui filhos maiores de 6 anos) 
age = 38                (anos – idade da esposa) 
black = 0               (a esposa não é preta) 
educ = 13              (anos de estudo da esposa) 
hispanic = 1          (a esposa é hispânica) 
union = 0              (esposa não possui união estável) 
exper = 18            (anos de experiência de trabalho da esposa) 
kidlt6 = 1              (possui filhos menores de 6 anos) 
 
obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não 

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para obter 
o resultado da predição.  

 
B – RESOLUÇÃO 
 

Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente "lwage" (salário-
hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados são variáveis 
explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você deve colocar 
a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2 ) e concluir qual o 
melhor modelo entre os três, e mostrar o resultado da predição com intervalos de confiança para os 
seguintes valores: 
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Processamento dos dados. 

 
#install.packages("carData") 

#install.packages("car") 

#install.packages("RcmdrMisc") 

#install.packages("zoo") 

#install.packages("lmtest") 

#install.packages("nortest") 

#install.packages("lmtest") 

#install.packages("sandwich") 

#install.packages("caret") 

#install.packages("glmnet") 

library(carData) 

library(car) 

library(RcmdrMisc) 

library(zoo) 

library(lmtest) 

library(nortest) 

library(lmtest) 

library(sandwich) 

library(caret) 

library(glmnet) 

 
Leitura dos dados. 
 
load("C:/Users/livia/Downloads/Bases de Dados Usadas nas Aulas Praticas 

(2)/trabalhosalarios. 

RData") 

data_salarios <- trabalhosalarios 

data_salarios  
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FIGURA 21 – DADOS DOS SALÁRIOS 

 
FONTE: O autor (2025). 

 
Foi selecionado 80% dos dados de forma aleatória para fazer o treinamento dos modelos. 

 

set.seed(123) 

indice_treino <- sample(1:nrow(data_salarios), 0.8 * nrow(data_salarios)) 

dados_treino <- data_salarios[indice_treino, ] 

dados_teste <- data_salarios[-indice_treino, ] 

 

Padronização das variáveis numéricas. 
 
cols = c('husage', 'husearns', 'huseduc', 'hushrs', 'earns' , 'age' , 'educ' , 

'exper' , 'lwage' ) 

# Padronizando a base de treinamento e teste 

pre_proc_val <- preProcess(dados_treino[,cols], method = c("center", "scale")) 

dados_treino[, cols] = predict(pre_proc_val, dados_treino[,cols]) 

dados_teste[, cols] = predict(pre_proc_val, dados_teste[,cols]) 

 

Análise do Sumário das variáveis. 
 
summary(dados_treino)  
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FIGURA 22 – DADOS DE TREINO 

 
FONTE: O autor (2025). 

 
A seguir podemos visualizar a base de dados para o teste. 
 

FIGURA 23 – DADOS DE TESTE 

 
FONTE: O autor (2025). 

 
Foi feita a padronização dos dados de treino, as médias das variáveis numéricas são iguais a 0. 
 
# Transformar os dados de treinamento e teste usando variáveis fictícias 

train_dummies = predict(dummies, newdata = dados_treino[,cols_reg]) 

test_dummies = predict(dummies, newdata = dados_teste[,cols_reg]) 

print(dim(train_dummies)); print(dim(test_dummies)) 
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Resultado da Saída: 

[1] 2059 16 

[1] 515 16 

 

# Vamos guardar a matriz de dados de treinamento das 

# variáveis explicativas para o modelo em um objeto 

# chamado "x" 

x = as.matrix(train_dummies) 

 

# Vamos guardar o vetor de dados de treinamento da 

# variável dependente para o modelo em um objeto 

# chamado "y_train" 

y_train = dados_treino$lwage 

 

# Vamos guardar o vetor de dados de teste da variável 

# dependente para o modelo em um objeto chamado "y_test" 

y_test = dados_teste$lwage 

 

Métricas de avaliação para os futuros modelos. 
 
# Vamos calcular o R^2 dos valores verdadeiros e 

# preditos conforme a seguinte função: 

eval_results <- function(true, predicted, df) { 

  SSE <- sum((predicted - true)^2) 

  SST <- sum((true - mean(true))^2) 

  R_square <- 1 - SSE / SST 

  RMSE = sqrt(SSE / nrow(df)) 

 

  # As métricas de performance do modelo: 

  data.frame( 

    RMSE = RMSE, 

    Rsquare = R_square 

  ) 

} 

 
Modelo RIDGE 
Cálculo do valor ótimo de lambda. 
lambdas <- 10^seq(2, -3, by = -0.1) 

 

# Calculando o lambda por validação cruzada: 
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ridge_lamb <- cv.glmnet(x, y_train, alpha = 0, lambda = lambdas) 

 

# Vamos ver qual o lambda ótimo 

best_lambda_ridge <- ridge_lamb$lambda.min 

 

# Imprimir o valor ótimo de lambda 

cat('O valor ótimo de lambda foi: \n') 

print(best_lambda_ridge) 

 

Resultado da Saída: [1] 0.02511886 
 

Estimando o modelo: coeficientes. 
# Estimando o modelo Ridge 

ridge_reg = glmnet(x, y_train, nlambda = 25, alpha = 0, 

                   family = 'gaussian', lambda = best_lambda_ridge) 

 

# Exibindo os coeficientes do modelo Ridge 

ridge_reg[["beta"]] 

FIGURA 24 – MODELO RIDGE 

 
FONTE: O autor (2025). 

 
 
No modelo ridge, nenhum coeficiente estimado foi igual a zero. 
 
Predição dos dados de treino (modelo ridge). 
 
# Realizando previsões com o modelo Ridge para os dados de treinamento 
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predictions_train <- predict(ridge_reg, S = best_lambda_ridge, newx = x) 

 

# Calculando as métricas para a base de treinamento 

metricas_ridge_treino <- eval_results(y_train, predictions_train, dados_treino) 

 

# Exibindo as métricas do modelo Ridge na base de treinamento 

metricas_ridge_treino 

 

RMSE   Rsquare 

<dbl>   <dbl> 

0.5595395  0.6867634 

 

Predição dos dados de teste (modelo ridge). 
 
# Predição e avaliação nos dados de teste 

predictions_test <- predict(ridge_reg, s = best_lambda_ridge, newx = x_test) 

 

# Calculando as métricas para a base de teste 

metricas_ridge_teste <- eval_results(y_test, predictions_test, dados_teste) 

 

# Exibindo as métricas do modelo Ridge na base de teste 

metricas_ridge_teste 

 

RMSE   Rsquare 

<dbl>   <dbl> 

0.5375854  0.7007985 

 

Modelo Lasso. 
Cálculo do valor ótimo de lambda. 
 
# Estimando o lambda por validação cruzada para Lasso 

lasso_lamb <- cv.glmnet(x, y_train, alpha = 1, lambda = lambdas, 

                        nfolds = 10, 

                        standardize = TRUE) 

 

# Vamos ver qual o lambda ótimo 

best_lambda_lasso <- lasso_lamb$lambda.min 

 

# Exibindo o valor do melhor lambda 

best_lambda_lasso  # 0.003162278 
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Resultado da Saída:  
[1] 0.006309573 

 

Estimando o modelo : coeficientes. 
lasso_model <- glmnet(x, y_train, alpha = 1, 

                      lambda = best_lambda_lasso, 

                      standardize = TRUE) 

 

lasso_model[["beta"]] 

 

FIGURA 25 – MODELO DE LASSO 

 
FONTE: O autor (2025). 

 
Diferente do modelo Ridge, no modelo Lasso já identificamos alguns parâmetros zerados, das 

variáveis exper e huship. 
 

Predição dos dados de treino (modelo Lasso). 
 
predictions_train_lasso <- predict(lasso_model, 

                                   S = best_lambda_lasso, newx = x) 

 

metricas_lasso_treino <- eval_results(y_train, predictions_train_lasso, 

dados_treino) 

 

metricas_lasso_treino 

RMSE   Rsquare 

<dbl>   <dbl> 

0.5596622  0.6866261 
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Predição dos dados de teste (modelo Lasso). 
# Vamos fazer as predições na base de teste 

predictions_test_lasso <- predict(lasso_model, 

                                   s = best_lambda_lasso, 

                                   newx = x_test) 

 

# As métricas da base de teste são: 

metricas_lasso_teste <- eval_results(y_test, predictions_test_lasso, dados_teste) 

 

metricas_lasso_teste 

 

RMSE   Rsquare 

<dbl>   <dbl> 

0.5340347  0.7047378 

 

Modelo ELASTIC NET 
Cálculo do valor ótimo de lambda e alpha e treinamento do modelo. 
 
train_cont <- trainControl(method = "repeatedcv", 

                            number = 10, 

                            repeats = 5, 

                            search = "random", 

                            verboseIter = FALSE) 

 

elastic_reg <- train(lwage ~ husage + husearns + huseduc + hushrs + earns + age + 

educ + expe + 

                        husunion + husblck + hushisp + kidge6 + black + hispanic + 

union + kidlt6, 

                    data = dados_treino, 

                    method = "glmnet", 

                    tuneLength = 10, 

                    trControl = train_cont) 

 

print('Valores ótimos para alpha e lambda:') 

print(elastic_reg$bestTune) 

 

alpha   lambda 

<dbl>   <dbl> 

0.8528671  0.005336688 
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Predição dos dados de treino (modelo ElasticNet). 
 

predictions_train_elastic <- predict(elastic_reg, x) 

 

# As métricas de performance na base de treinamento 

# são: 

metricas_elastic_treino <- eval_results(y_train, predictions_train_elastic, dados_treino) 

metricas_elastic_treino 

 

RMSE   Rsquare 

<dbl>   <dbl> 

0.5594508  0.6868627 

 
Predição dos dados de teste (modelo ElasticNet). 
# Vamos fazer as previsões na base de teste 

predictions_test_elastic <- predict(elastic_reg, x_test) 

 

# As métricas de performance na base de teste são: 

metricas_elastic_teste <- eval_results(y_test, predictions_test_elastic, 

dados_teste) 

metricas_elastic_teste 

 

RMSE   Rsquare 

<dbl>   <dbl> 

0.5341944  0.7045612 

 
Métricas de qualidade dos modelos. 
 
metricas_unificadas <- rbind.data.frame( 

  metricas_ridge_treino,  

  metricas_lasso_treino,  

  metricas_elastic_treino,  

  metricas_ridge_teste,  

  metricas_lasso_teste,  

  metricas_elastic_teste 

) 

 

row.names(metricas_unificadas) <- c( 

  'RIDGE - TREINO',  

  'LASSO - TREINO',  
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  'ELASTICNET - TREINO',  

  'RIDGE - TESTE',  

  'LASSO - TESTE',  

  'ELASTICNET - TESTE' 

) 

 

metricas_unificadas 

 

QUADRO 11 – MÉTRICAS DE QUALIDADE DOS MODELOS 

 

Modelo RMSE - 
TREINO 

R² - 
TREINO 

RMSE - 
TESTE 

R² - 
TESTE 

RIDGE 0.5595395 0.6867634 0.5375854 0.7007985 

LASSO 0.5596622 0.6866261 0.5340347 0.7047378 

ELASTICNET 0.5594508 0.6868627 0.5341944 0.7045612 

FONTE: O autor (2025). 
 

Predição caso proposto. Entrando com os dados. 
 
# Vamos fazer uma predicao para: 

# husage = 40 (anos - idade do marido) 

# husunion = 0 (marido não possui união estável) 

# husearns = 600 (US$ renda do marido por semana) 

# huseduc = 13 (anos de estudo do marido) 

# husblck = 1 (o marido é preto) 

# hushisp = 0 (o marido não é hispânico) 

# hushrs = 40 (horas semanais de trabalho do marido) 

# kidge6 = 1 (possui filhos maiores de 6 anos) 

# age = 38 (anos - idade da esposa) 

# black = 0 (a esposa não é preta) 

# educ = 13 (anos de estudo da esposa) 

# hispanic = 1 (a esposa é hispânica) 

# union = 0 (esposa não possui união estável) 

# exper = 18 (anos de experiência de trabalho da esposa) 
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# kidlt6 = 1 (possui filhos menores de 6 anos) 

 

husage = (40 - pre_proc_val[["mean"]][["husage"]]) / 

pre_proc_val[["std"]][["husage"]] 

husunion = 0 

# husearns = 600 (rendimento do marido em US$) 

husearns = (600 - pre_proc_val[["mean"]][["husearns"]]) / 

pre_proc_val[["std"]][["husearns"]] 

# huseduc = 13 (anos de estudo do marido) 

huseduc = (13 - pre_proc_val[["mean"]][["huseduc"]]) / 

pre_proc_val[["std"]][["huseduc"]] 

# husblck = 1 (o marido não é preto) 

husblck = 1 

# hushisp = 0 (o marido não é hispânico) 

hushisp = 0 

# hushrs = 40 (o marido trabalha 40 horas semanais) 

hushrs = (40 - pre_proc_val[["mean"]][["hushrs"]]) / 

pre_proc_val[["std"]][["hushrs"]] 

# kidge6 = 1 (não tem filhos maiores de 6 anos) 

kidge6 = 1 

# earns = 355.5 (rendimento da esposa em US$) 

earns = (355.5 - pre_proc_val[["mean"]][["earns"]]) / 

pre_proc_val[["std"]][["earns"]] 

# age = 38 anos (idade da esposa) 

age = (38 - pre_proc_val[["mean"]][["age"]]) / pre_proc_val[["std"]][["age"]] 

# black = 0 (esposa não é preta) 

black = 0 

# educ = 13 (esposa possui 13 anos de estudo) 

educ = (13 - pre_proc_val[["mean"]][["educ"]]) / pre_proc_val[["std"]][["educ"]] 

# hispanic = 1 (esposa é hispânica) 

hispanic = 1 

# union = 0 (o casal não possui união registrada) 

union = 0 

# exper = 18 (anos de experiência de trabalho da esposa) 

exper = (18 - pre_proc_val[["mean"]][["exper"]]) / 

pre_proc_val[["std"]][["exper"]] 

# kidlt6 = 1 (não possui filhos com menos de 6 anos) 

kidlt6 = 1 

 

# Vamos construir uma matriz de dados para a predição 



70 
 

 

our_pred = as.matrix(data.frame( 

  husage = husage, 

  husunion = husunion, 

  husearns = husearns, 

  huseduc = huseduc, 

  husblck = husblck, 

  hushisp = hushisp, 

  hushrs = hushrs, 

  kidge6 = kidge6, 

  earns = earns, 

  age = age, 

  black = black, 

  educ = educ, 

  hispanic = hispanic, 

  union = union, 

  exper = exper, 

  kidlt6 = kidlt6 

)) 

 

n <- nrow(dados_treino) # tamanho da amostra 2059 

S <- pre_proc_val[["std"]][["lwage"]] # desvio padrão 

dam <- S / sqrt(n) # distribuição da amostragem da média 

 

RIDGE 
# Predição com o modelo Ridge 

predict_our_ridge <- predict(ridge_reg, 

                             s = best_lambda_ridge, 

                             newx = our_pred) 

predict_our_ridge 

 

# Resultado: s1 

# [1,] 0.7051145 

 

# O resultado é um valor padronizado, vamos convertê-lo 

# para o valor nominal, consistente com o dataset original 

wage_pred_ridge = (predict_our_ridge * 

                   pre_proc_val[["std"]][["lwage"]]) + 

                  pre_proc_val[["mean"]][["lwage"]] 

# Resultado: s1 

# [1,] 2.56323 
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# Intervalo de confiança RIDGE 

m <- wage_pred_ridge # valor médio predito 

CIlwr_ridge <- m + (qnorm(0.025)) * dam # intervalo inferior 

CIupr_ridge <- m - (qnorm(0.025)) * dam # intervalo superior 

 

# Os valores são: 

CIlwr_ridge # 2.540604 

 

Resultado da Saída: s1 
[1,] 2.540604 

CIupr_ridge # 2.585856 

s1 

[1,] 2.585856 

 

LS_RIDGE <- exp(CIupr_ridge) 

LI_RIDGE <- exp(CIlwr_ridge) 

ESTIMAD_RIDGE <- exp(wage_pred_ridge) 

 

LASSO 
# Predição com o modelo Lasso 

predict_our_lasso <- predict(lasso_model, 

                             s = best_lambda_lasso, 

                             newx = our_pred) 

predict_our_lasso 

 

Resultado da Saída: s1 
[1,] 0.7441195 

 

# O resultado eh um valor padronizado, vamos converte-lo 

# para o valor nominal, consistente com o dataset original 

wage_pred_lasso=(predict_our_lasso* 

pre_proc_val[["std"]][["lwage"]])+ 

pre_proc_val[["mean"]][ ["lwage" ]] 

 

# 0 resultado eh: 

wage_pred_lasso 

 

Resultado da Saída: s1 
[1,] 2.583662 
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# Este é o valor predito do salário por hora (US$), 

# segundo as características que atribuímos 

# s1 

# 2.584648 

 

Intervalo de confiança LASSO. 
# O intervalo de confianca para o nosso exemplo eh: 

m_lasso <- wage_pred_lasso # valor medio predito 

 

CIlwr_lasso <- m_lasso + (qnorm(0.025))*dam # intervalo inferior 

CIupr_lasso <- m_lasso - (qnorm(0.025))*dam # intervalo superior 

 

# Os valores sao: 

CIlwr_lasso # 2.56 

 

Resultado da Saída: s1 
[1,] 2.561036 

 

CIupr_lasso # 2.61 

 

Resultado da Saída: s1 
[1,] 2.606288 

 

LI_LASSO <- exp(CIlwr_lasso) 

LS_LASSO <- exp(CIupr_lasso) 

ESTIMAD_LASSO <- exp(m_lasso) 

 

ELASTIC NET 
# Fazendo a predicao do ELASTICNET: 

predict_our_elastic <- predict(elastic_reg, our_pred) 

predict_our_elastic 

Resultado: [1] -0.03492759 

 

# O resultado eh um valor padronizado, vamos converte-lo 

# para o valor nominal, consistente com o dataset original 

wage_pred_elastic=(predict_our_elastic* 

pre_proc_val[["std"]][["lwage"]])+ 

pre_proc_val[["mean"]][["lwage"]] 
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# O resultado eh: 

wage_pred_elastic 

 

Resultado da Saída: [1] 2.175577 
 

Intervalo de confiança ELASTIC NET. 
 
# O intervalo de confianca para o nosso exemplo eh: 

m_elastic <- wage_pred_elastic # valor medio predito 

 

CIlwr_elastic <- m_elastic + (qnorm(0.025))*dam # intervalo inferior 

CIupr_elastic <- m_elastic - (qnorm(0.025))*dam # intervalo superior 

# Os valores sao: 

CIlwr_elastic # 2.56 

 

Resultado da Saída: [1] 2.152951 
 

CIupr_elastic # 2.61 

Resultado da Saída: [1] 2.198203 
 

LI_ELASTIC <- exp(CIlwr_elastic) 

LS_ELASTIC <- exp(CIupr_elastic) 

ESTIMAD_ELASTIC <- exp(m_elastic) 

 

Valores preditos para pessoa x e intervalos de confiança 
 
# Criando os dataframes para armazenar os resultados de cada modelo 

estimacao_ridge <- cbind.data.frame(LI_RIDGE, ESTIMAD_RIDGE, LS_RIDGE) 

estimacao_lasso <- cbind.data.frame(LI_LASSO, ESTIMAD_LASSO, LS_LASSO) 

estimacao_elastic <- cbind.data.frame(s1 = LI_ELASTIC, s1 = ESTIMAD_ELASTIC, s1 = 

LS_ELASTIC) 

 

# Combinando os resultados de todos os modelos em um único dataframe 

pessoa_x <- rbind(estimacao_ridge, estimacao_lasso, estimacao_elastic) 

 

# Nomeando as colunas 

colnames(pessoa_x) <- c('Limite Inferior IC', 'Valor Estimado', 'Limite Superior 

IC') 

 

# Nomeando as linhas 
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rownames(pessoa_x) <- c('Ridge', 'Lasso', 'ElasticNet') 

 

# Exibindo o resultado final 

pessoa_x 

 

 

FIGURA 26 – VALORES PREDITIVOS 

 
FONTE: O autor (2025). 

 
Foram separados 80% dos dados para treino do modelo e 20% para teste. As bases de treino 

e teste foram as mesmas para os três modelos ajustados. 
Verificamos que os três modelos tiveram métricas muito similares, com R2 em torno de 69% 

para os dados de treino, e 70% para os dados de teste, indicando ausência de overfitting nos modelos. 
Os RMSEs calculados também foram muito similares em torno de 0,56 para os dados de treino e 0,53 
para os dados de teste. 

Analisando os valores de R2 e RMSE, apesar de muito próximos nos três modelos, o Lasso 
tem métricas ligeiramente melhores. O valor do salário por hora estimado para a pessoa simulada foi 
de $13,25 com intervalo de confiança entre $12,95 e $13,55. 
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APÊNDICE 6 – ARQUITETURA DE DADOS 
 
A – ENUNCIADO 
 
1 Construção de Características: Identificador automático de idioma 

 
O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto 

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito. 
 
Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções para 

calcular as diferentes características para o problema da identificação da língua do texto de entrada. 
 
Nessa atividade é para "construir características". 
 
Meta: a acurácia deverá ser maior ou igual a 70%. 
 
Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o notebook 

e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos. 
 

2 Melhore uma base de dados ruim 
 
Escolha uma base de dados pública para problemas de classificação, disponível ou com origem 

na UCI Machine Learning. 
 
Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base. 
 
O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para 

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado. 
 
Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o 

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de 
90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais). 

 
Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente). 
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B – RESOLUÇÃO  
 
Identificador automático de idioma 
Problema: Dados um texto de entrada, é possível identificar em qual língua o texto está escrito? 
Entrada: "texto qualquer" Saída: português ou inglês ou francês ou italiano ou.. 
O processo de Reconhecimento de Padrões 
O objetivo deste trabalho é demonstrar o processo de "construção de atributos" e como ele é 
fundamental para o Reconhecimento de Padrões (RP). 
Primeiro um conjunto de "amostras" previamente conhecido (classificado) 
 
SEED = 42  # Seed para poder debugar os dados. Se colocar None, usa tudo no modo 

aleatório 

 

# Amostras de texto em diferentes línguas 

ingles = [ 

    "Hello, how are you?", 

    "I love to read books.", 

    "The weather is nice today.", 

    "Where is the nearest restaurant?", 

    "What time is it?", 

    "I enjoy playing soccer.", 

    "Can you help me with this?", 

    "I'm going to the movies tonight.", 

    "This is a beautiful place.", 

    "I like listening to music.", 

    "Do you speak English?", 

    "What is your favorite color?", 

    "I'm learning to play the guitar.", 

    "Have a great day!", 

    "I need to buy some groceries.", 

    "Let's go for a walk.", 

    "How was your weekend?", 

    "I'm excited for the concert.", 

    "Could you pass me the salt, please?", 

    "I have a meeting at 2 PM.", 

    "I'm planning a vacation.", 

    "She sings beautifully.", 

    "The cat is sleeping.", 

    "I want to learn French.", 

    "I enjoy going to the beach.", 
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    "Where can I find a taxi?", 

    "I'm sorry for the inconvenience.", 

    "I'm studying for my exams.", 

    "I like to cook dinner at home.", 

    "Do you have any recommendations for restaurants?", 

] 

 

espanhol = [ 

    "Hola, ¿cómo estás?", 

    "Me encanta leer libros.", 

    "El clima está agradable hoy.", 

    "¿Dónde está el restaurante más cercano?", 

    "¿Qué hora es?", 

    "Voy al parque todos los días.", 

    "¿Puedes ayudarme con esto?", 

    "Me gustaría ir de vacaciones.", 

    "Este es mi libro favorito.", 

    "Me gusta bailar salsa.", 

    "¿Hablas español?", 

    "¿Cuál es tu comida favorita?", 

    "Estoy aprendiendo a tocar el piano.", 

    "¡Que tengas un buen día!", 

    "Necesito comprar algunas frutas.", 

    "Vamos a dar un paseo.", 

    "¿Cómo estuvo tu fin de semana?", 

    "Estoy emocionado por el concierto.", 

    "¿Me pasas la sal, por favor?", 

    "Tengo una reunión a las 2 PM.", 

    "Estoy planeando unas vacaciones.", 

    "Ella canta hermosamente.", 

    "El perro está jugando.", 

    "Quiero aprender italiano.", 

    "Disfruto ir a la playa.", 

    "¿Dónde puedo encontrar un taxi?", 

    "Lamento las molestias.", 

    "Estoy estudiando para mis exámenes.", 

    "Me gusta cocinar la cena en casa.", 

    "¿Tienes alguna recomendación de restaurantes?", 

] 
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portugues = [ 

    "Estou indo para o trabalho agora.", 

    "Adoro passar tempo com minha família.", 

    "Preciso comprar leite e pão.", 

    "Vamos ao cinema no sábado.", 

    "Gosto de praticar esportes ao ar livre.", 

    "O trânsito está terrível hoje.", 

    "A comida estava deliciosa!", 

    "Você já visitou o Rio de Janeiro?", 

    "Tenho uma reunião importante amanhã.", 

    "A festa começa às 20h.", 

    "Estou cansado depois de um longo dia de trabalho.", 

    "Vamos fazer um churrasco no final de semana.", 

    "O livro que estou lendo é muito interessante.", 

    "Estou aprendendo a cozinhar pratos novos.", 

    "Preciso fazer exercícios físicos regularmente.", 

    "Vou viajar para o exterior nas férias.", 

    "Você gosta de dançar?", 

    "Hoje é meu aniversário!", 

    "Gosto de ouvir música clássica.", 

    "Estou estudando para o vestibular.", 

    "Meu time de futebol favorito ganhou o jogo.", 

    "Quero aprender a tocar violão.", 

    "Vamos fazer uma viagem de carro.", 

    "O parque fica cheio aos finais de semana.", 

    "O filme que assisti ontem foi ótimo.", 

    "Preciso resolver esse problema o mais rápido possível.", 

    "Adoro explorar novos lugares.", 

    "Vou visitar meus avós no domingo.", 

    "Estou ansioso para as férias de verão.", 

    "Gosto de fazer caminhadas na natureza.", 

    "O restaurante tem uma vista incrível.", 

    "Vamos sair para jantar no sábado.", 

] 

 

A "amostras" de texto precisa ser "transformada" em padrões Um padrão é um conjunto de 
características, geralmente representado por um vetor e um conjunto de padrões no formato de tabela. 
Onde cada linha é um padrão e as colunas as características e, geralmente, na última coluna a classe. 

 

import random 
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# Verifica se a semente está definida 

if SEED is not None: 

    random.seed(SEED) 

 

# Inicializa a lista de frases com as línguas correspondentes 

pre_padroes = [] 

 

# Adiciona frases em inglês 

for frase in ingles: 

    pre_padroes.append([frase, 'inglês']) 

 

# Adiciona frases em espanhol 

for frase in espanhol: 

    pre_padroes.append([frase, 'espanhol']) 

 

# Adiciona frases em português 

for frase in portugues: 

    pre_padroes.append([frase, 'português']) 

 

# Embaralha a lista 

random.shuffle(pre_padroes) 

 

# Importa o pandas para facilitar a visualização 

import pandas as pd 

 

# Cria o DataFrame com os dados 

dados = pd.DataFrame(pre_padroes) 

 

# Exibe o DataFrame 

dados 

  



80 
 

 

FIGURA 27 – DADOS DE AMOSTRAS 

 
FONTE: O autor (2025). 

 
Algoritmo para gerar Stop Words de maneira dinâmica (Não utilizado no resultado final). 
Foram feitos vários destes extratores de features, e um dos que testamos foi utilizar Stop Words 

e Bag of Words. Ele funcionou bem e gerou resultados acima de 90%, porém notamos que no jeito que 
este trabalho está estruturado ocorre overfitting. Logo, decidimos não utilizar nem Stop Words nem Bag 
of Words no resultado final deste trabalho. Deixamos no entanto o código comentado para demonstrar 
a ideia que tentamos e também deixar documentado para possíveis discussões com o grupo ou com o 
professor. 
 
import re 

 

# Função para calcular a frequência de palavras em um dataset 

def calcula_frequencia_no_dataset(elem_list, dataset): 

    for elem in elem_list: 

        if elem not in dataset: 

            dataset[elem] = 1 

        else: 

            dataset[elem] += 1 

    return dataset 

 

# Função para criar o bag of words (BoW) por língua 

def bagOfWords(pre_padroes): 

    bow_por_lingua = {} 

    for texto, lingua in pre_padroes: 
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        pattern_regex = re.compile('[^\w+]', re.UNICODE)  # Regex para identificar 

caracteres não alfanuméricos 

        texto = re.sub(pattern_regex, ' ', texto)  # Substitui todos os caracteres 

não alfanuméricos por espaço 

        texto = texto.lower()  # Converte o texto para minúsculas 

        bow = re.findall(r'\b\w+\b', texto)  # Cria lista de palavras 

 

        # Cria dataset para a língua, se não existir 

        if lingua not in bow_por_lingua: 

            bow_por_lingua[lingua] = {} 

 

        # Atualiza o dataset da língua com a frequência das palavras 

        bow_por_lingua[lingua] = calcula_frequencia_no_dataset(bow, 

bow_por_lingua[lingua]) 

 

    return bow_por_lingua 

 

# Função para encontrar as stopwords por língua 

def stopWords(lista_de_linguas): 

    stopWords_por_lingua = {} 

    for lingua in lista_de_linguas: 

        sorted_dict = sorted(bow_por_lingua[lingua].items(), key=lambda x: x[1], 

reverse=True) 

        stopWords_por_lingua[lingua] = dict(sorted_dict[:5])  # Seleciona as 5 

palavras mais frequentes como stopwords 

    return stopWords_por_lingua 

 

# Gera a lista de línguas presentes em pre_padroes 

lista_de_linguas = set(item[1] for item in pre_padroes) 

 

# Cria o bag of words 

bow_por_lingua = bagOfWords(pre_padroes) 

 

# Encontra as stopwords por língua 

stopWords_por_lingua = stopWords(lista_de_linguas) 

 

# Exibe o Bag of Words 

print('Bag of Words') 

for l in lista_de_linguas: 
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    print(l, list(bow_por_lingua[l].keys())[:20])  # Exibe as 20 palavras mais 

frequentes 

 

# Exibe as stopwords 

print('\nStop Words') 

for l in lista_de_linguas: 

    print(l, list(stopWords_por_lingua[l].keys()))  # Exibe as stopwords 

 
Resultado de Saída: Bag of Words português ['estou', 'indo', 'para', 'o', 'trabalho', 
'agora', 'trânsito', 'está', 'terrível', 'hoj e', 'tenho', 'uma', 'reunião', 

'importante', 'amanhã', 'adoro', 'passar', 'tempo', 'com', 'minha'] inglês ['do', 

'you', 'speak', 'english', 'i', 'love', 'to', 'read', 'books', 'let', 's', 'go', 

'fo r', 'a', 'walk', 'm', 'sorry', 'the', 'inconvenience', 'have'] espanhol ['que', 

'tengas', 'un', 'buen', 'día', 'tienes', 'alguna', 'recomendación', 'de', 'restaura 

ntes', 'cuál', 'es', 'tu', 'comida', 'favorita', 'el', 'clima', 'está', 'agradable', 

'hoy'] Stop Words português ['de', 'o', 'estou', 'para', 'no'] inglês ['i', 'the', 

'to', 'a', 'm'] espanhol ['el', 'me', 'estoy', 'a', 'un'] 

 

Construção dos atributos. 
Esse é o coração desse trabalho e que deverá ser desenvolvido por vocês. Pensem em como 

podemos "medir" cada frase/sentença e extrair características que melhorem o resultado do processo 
de identificação.  

Após a criação de cada novo atributo, execute as etapas seguintes e registre as métricas da 
matriz de confusão. Principalmente acurácia e a precisão. 

 Extratores de Features implementados: 
● tamanhoMedioFrases: Calcula o tamanho médio das palavras na frase. 
● frequenciaCaracteres: Calcula a frequência de ocorrência de cada caractere no texto. 
● frequenciaBigramas: Calcula a frequência de ocorrência de bigramas (pares de caracteres 

consecutivos). 
● frequenciaTrigramas: Calcula a frequência de ocorrência de trigramas (trios de caracteres 

consecutivos). 
● frequenciaAcentuacoes: Calcula a frequência de ocorrência de caracteres acentuados. 
● quantidadeAcentuacoes: Conta o número total de caracteres acentuados 
● bagOfWords: Cria uma lista de palavras conhecidas para cada língua de maneira dinâmica 

(Acabamos não utilizando devido ao overfitting). 
● stopWords: Cria uma lista de ocorrências mais frequentes de palavras nas frases. Elas 

acabam sendo 
● palavras do tipo preposção, artigo, etc (Acabamos não utilizando devido ao overfitting) 

 
# a entrada é o vetor pre_padroes e a saída desse passo deverá ser "padrões" 

import re 
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import numpy as np 

import unicodedata 

 

if SEED is not None: 

    np.random.seed(SEED) 

 

def tamanhoMedioFrases(texto): 

    palavras = re.split("\s", texto) 

    palvras = palavras.remove('')  # Remove palavras vazias 

    # print(palavras) 

    tamanhos = [len(s) for s in palavras if len(s) > 0] 

    # print(tamanhos) 

    soma = 0 

    for t in tamanhos: 

        soma = soma + t 

    return soma / len(tamanhos) 

 

def calcula_frequencia(elem_list): 

    contagem_elementos = {} 

    for elem in elem_list: 

        if elem not in contagem_elementos: 

            contagem_elementos[elem] = 1 

        else: 

            contagem_elementos[elem] += 1 

    total = sum(contagem_elementos.values()) 

    # print(total) 

    # print(contagem_elementos) 

    frequencia_elementos = {} 

    for elem, contagem in contagem_elementos.items(): 

        frequencia_elementos[elem] = contagem / total 

    # print(frequencia_elementos) 

    return frequencia_elementos 

 

def conta_ocorrencia(elem_list): 

    contagem_elementos = {} 

    for elem in elem_list: 

        if elem not in contagem_elementos: 

            contagem_elementos[elem] = 1 

        else: 

            contagem_elementos[elem] += 1 
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    return contagem_elementos 

 

def frequenciaCaracteres(texto): 

    texto = texto.lower() 

    lista_caracteres = [c for c in texto] 

    frequencia_caracteres = conta_ocorrencia(lista_caracteres) 

    sorted_dict = sorted(frequencia_caracteres.items(), key=lambda x: x[1], 

reverse=True) 

    frequencia_caracteres = dict(sorted_dict[:1])  # o mais frequente 

    return frequencia_caracteres 

 

def frequenciaBigramas(texto): 

    texto = texto.lower() 

    texto = re.sub(r'\s+', '', texto)  # Regex para remover todos os espaços do 

texto 

    bigramas = [] 

    for i in range(len(texto)-1): 

        bigramas.append(texto[i] + texto[i+1]) 

    # print(bigramas) 

    frequencia_bigramas = conta_ocorrencia(bigramas) 

    sorted_dict = sorted(frequencia_bigramas.items(), key=lambda x: x[1], 

reverse=True) 

    frequencia_bigramas = dict(sorted_dict[:2])  # o mais frequente 

    # print(frequencia_bigramas) 

    return frequencia_bigramas 

 

def frequenciaTrigramas(texto): 

    texto = texto.lower() 

    texto = re.sub(r'\s+', '', texto)  # Regex para remover todos os espaços do 

texto 

    trigramas = [] 

    for i in range(len(texto)-2): 

        trigramas.append(texto[i:i+3]) 

    # print(trigramas) 

    frequencia_trigramas = conta_ocorrencia(trigramas) 

    sorted_dict = sorted(frequencia_trigramas.items(), key=lambda x: x[1], 

reverse=True) 

    frequencia_trigramas = dict(sorted_dict[:1])  # o mais frequente 

    # print(frequencia_trigramas) 

    return frequencia_trigramas 
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def frequenciaAcentuacoes(texto): 

    texto = texto.lower() 

    lista_caracteres_acentuados = [] 

    for c in texto: 

        if c != unicodedata.normalize('NFKD', c): 

            lista_caracteres_acentuados.append(c) 

    # print(lista_caracteres_acentuados) 

    frequencia_caracteres_acentuados = 

conta_ocorrencia(lista_caracteres_acentuados) 

    sorted_dict = sorted(frequencia_caracteres_acentuados.items(), key=lambda x: 

x[1], reverse=True) 

    frequencia_caracteres_acentuados = dict(sorted_dict[:1])  # o mais frequente 

    return frequencia_caracteres_acentuados 

 

def quantidadeAcentuacoes(texto): 

    texto = texto.lower() 

    qnt = 0 

    for c in texto: 

        if c != unicodedata.normalize('NFKD', c): 

            qnt += 1 

    return qnt 

 

# def bagOfWords(texto, lingua): 

#     texto = texto.lower() 

#     palavras = re.findall(r'\b\w+\b', texto) 

#     qnt = 0 

#     for p in palavras: 

#         if p in list(bow_por_lingua[lingua].keys()): 

#             qnt += 1 

#     return {f'bw_{lingua}': qnt} 

 

# def stopWords(texto, lingua): 

#     texto = texto.lower() 

#     palavras = re.findall(r'\b\w+\b', texto) 

#     qnt = 0 

#     for p in palavras: 

#         if p in list(stopWords_por_lingua[lingua].keys()): 

#             qnt += 1 

#     return {f'sw_{lingua}': qnt} 
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def extraiCaracteristicas(frase): 

    # frase é um vetor [ 'texto', 'lingua' ] 

    texto, lingua = frase 

    pattern_regex = re.compile('[^\w+]', re.UNICODE)  # Regex para identificar 

caracteres que NÃO são 

    texto = re.sub(pattern_regex, ' ', texto)  # Substitui todos os caracteres que 

não são alfanuméricos 

    # print(texto) 

    caracteristica1 = tamanhoMedioFrases(texto) 

    caracteristica2 = frequenciaCaracteres(texto) 

    caracteristica3 = frequenciaBigramas(texto) 

    caracteristica4 = frequenciaTrigramas(texto) 

    caracteristica5 = frequenciaAcentuacoes(texto) 

    caracteristica6 = quantidadeAcentuacoes(texto) 

    # caracteristicaBagOfWords = bagOfWords(texto, lingua) 

    # caracteristicaStopWords = stopWords(texto, lingua) 

    # acrescente as suas funções no vetor padrão 

    padrao = { 

        'tamanhoMedioFrases': caracteristica1, 

        **caracteristica2,  # O ** é um operador "Spread" de dicionários. ele 

retorna todos os itens 

        *caracteristica3, 

        **caracteristica4, 

        **caracteristica5, 

        'qntAcentuacoes': caracteristica6, 

        # **caracteristicaBagOfWords, 

        # **caracteristicaStopWords, 

        'lingua': frase[1] 

    } 

    return padrao 

 

def geraPadroes(frases): 

    padroes = [] 

    for frase in frases: 

        padrao = extraiCaracteristicas(frase) 

        padroes.append(padrao) 

    return padroes 

 

# converte o formato [frase classe] em 



87 
 

 

# [caracteristica_1, caracteristica_2,... caracteristica n, classe] 

padroes = geraPadroes(pre_padroes) 

 

# apenas para visualização 

# print(padroes) 

dados = pd.DataFrame(padroes) 

dados.fillna(0, inplace=True)  # Substitui o que está com NaN para 0 

dados.drop(' ', axis=1, inplace=True)  # Remove algum espaço que tenha ficado 

# print(dict(dados.iloc[0])) 

print(dados.shape) 

Dados 

 

FIGURA 28 – TAMANHO MÉDIO DAS FRASES 

 
FONTE: O autor (2025). 

 
Treinando o modelo com SVM Separando o conjunto de treinamento do conjunto de testes. 

 

from sklearn.model_selection import train_test_split 

 

if SEED is not None:  # Reseta o seed para evitar que de algum valor diferente 

durante os testes 

    np.random.seed(SEED) 

 

# from sklearn.metrics import confusion_matrix 

# vet = np.array(padroes) 

 

classes = np.array(dados['lingua'])  # classes = [p[-1] for p in padroes] 

# print(len(classes), classes) 
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padroes_sem_classe = np.array(dados.drop('lingua', axis=1))  # vet[:,0:-1] 

# print(padroes_sem_classe) 

 

X_train, X_test, y_train, y_test = train_test_split(padroes_sem_classe, classes, 

test_size=0.25) 

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) 

 
Resultado da Saída:  (69, 169) (23, 169) (69,) (23,) 
 

Com os conjuntos separados, podemos "treinar" o modelo usando a SVM. 
from sklearn import svm 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

 

treinador = svm.SVC()  # algoritmo escolhido 

modelo = treinador.fit(X_train, y_train) 

 

# score com os dados de treinamento 

acuracia = modelo.score(X_train, y_train) 

print("Acurácia nos dados de treinamento: {:.2f}%".format(acuracia * 100)) 

 

# melhor avaliar com a matriz de confusão 

y_pred = modelo.predict(X_train) 

cm = confusion_matrix(y_train, y_pred) 

print(cm) 

print(classification_report(y_train, y_pred)) 

 

# com dados de teste que não foram usados no treinamento 

print('Métricas mais confiáveis') 

y_pred2 = modelo.predict(X_test) 

cm = confusion_matrix(y_test, y_pred2) 

print(cm) 

print(classification_report(y_test, y_pred2)) 

 

Acurácia nos dados de treinamento: 82.61% 
 [[11  2  9] 

 [ 0 23  0] 

 [ 0  1 23]] 

 



89 
 

 

QUADRO 12 – RESULTADO DAS CLASSIFICAÇÕES 

Língua Precisão 
(Precision) 

Revocação 
(Recall) 

F1-
Score 

Suporte 
(Support) 

Espanhol 1.00 0.50 0.67 22 

Inglês 0.88 1.00 0.94 23 

Português 0.72 0.96 0.82 24 

Acurácia   0.83 69 

Média 
Macro 

0.87 0.82 0.81 69 

Média 
Ponderada 

0.86 0.83 0.81 69 

 
FONTE: O autor (2025). 

 
Métricas mais confiáveis. 
 [[2 2 4] 

 [1 5 1] 

 [1 1 6]] 
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QUADRO 13 – RESULTADO DAS MÉTRICAS MAIS CONFIÁVEIS 

Língua Precisão 
(Precision) 

Revocação 
(Recall) 

F1-
Score 

Suporte 
(Support) 

Espanhol 0.50 0.25 0.33 8 

Inglês 0.62 0.71 0.67 7 

Português 0.55 0.75 0.63 8 

Acurácia   0.57 23 

Média 
Macro 

0.56 0.57 0.54 23 

Média 
Ponderada 

0.55 0.57 0.54 23 

FONTE: O autor (2025). 
 

Teste de Validação utilizando valores completamente fora do dataset de teste e de treino. 
Dados criados por nós para ver se o modelo realmente acerta e também para simular uma 

aplicação real onde teríamos uma entrada fornecida por uma aplicação para que fosse inferido pelo 
nosso modelo treinado. 

 
testes = [ 

    ['Cuando crezca, ganaré más dinero que mi papá.', 'espanhol'], 

    ['When I grow up I will make more money than my dad.', 'inglês'], 

    ['Quando crescer, quero ter mais dinheiro que meu pai.', 'português'], 

    ["Learning a new language opens doors to new cultures and perspectives.", 

'inglês'], 

    ["Aprender um novo idioma abre portas para novas culturas e perspectivas.", 

'português'], 

    ["Aprender un nuevo idioma abre puertas a nuevas culturas y perspectivas.", 

'espanhol'], 

    ["Waking up early allows you to enjoy the quiet moments of the morning.", 

'inglês'], 
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    ["Acordar cedo permite que você desfrute dos momentos tranquilos da manhã.", 

'português'], 

    ["Levantarse temprano te permite disfrutar de los momentos tranquilos de la 

mañana.", 'espanhol'] 

] 

 

for test in testes: 

    features = extraiCaracteristicas(test) 

    dados.loc[0] = features 

    X_test = dados.drop('lingua', axis=1).loc[0].fillna(0) 

    # dados.fillna(0, inplace=True) 

    X_test = np.array(X_test) 

    X_test = X_test.reshape(1, -1) 

    # print(X_test.shape) 

    y_pred = modelo.predict(X_test) 

    print(f"Predição: {y_pred[0]}->{test[1]} ({'Correto' if y_pred[0] == test[1] 

else 'Incorreto'})") 

 

Resultado da Saída: Predição: português->espanhol (Incorreto) 
Predição: inglês->inglês (Correto) 

Predição: português->português (Correto) 

Predição: inglês->inglês (Correto) 

Predição: português->português (Correto) 

Predição: espanhol->espanhol (Correto) 

Predição: inglês->inglês (Correto) 

Predição: português->português (Correto) 

Predição: português->espanhol (Incorreto) 

 

Resultados e considerações finais 
Com os extratores de features implementados, conseguimos 82,61% de acurácia no 

treinamento com a SEED fixa em 42. Com outros valores de SEED a acurácia varia de 75% a 85%. 
Cremos que cumprimos com a meta do trabalho de obter um resultado acima de 70%.  

Observamos também que a acurácia no conjunto de teste foi consideravelmente menor, de 
57%, sugerindo que o modelo pode estar com overfitting devido a pequena base de dados. Também, 
a precisão, recall e f1 score variam significativamente entre as classes, especialmente para o espanhol, 
onde o recall foi mais baixo no conjunto de teste, demonstrando que o modelo pode vir a ter dificuldades 
identificando espanhol. Por outro lado, o desempenho para inglês foi relativamente melhor, com uma 
precisão e recall mais equilibrados. Para testar isso criamos um pequeno set de validação (na célula 
acima), para podermos colocar dados totalmente diferentes do dataset inicial e ter uma validação a 
mais.  
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Uma solução para esses problemas de acurácia, e overfitting seria usar uma base de dados 
maior, ou reimplementar o código utilizando a nossa proposta de ter um stopwords a bag of words 
dinâmico. 
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APÊNDICE 7 – APRENDIZADO DE MÁQUINA 
 
A – ENUNCIADO 
 
Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo, 
Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher 
os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento. 

 
B – RESOLUÇÃO 
CLASSIFICAÇÃO 
Para o experimento de Classificação: 

• Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor acurácia ficará em primeiro 
na tabela.  
• Após o quadro colocar:  

o Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro 
de maior Acurácia (criar um arquivo com novos casos à sua escolha)  

o A lista de comandos emitidos no RStudio para conseguir os resultados obtidos  
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FIGURA 29 – CLASSIFICAÇÃO PARA VEÍCULO 

 
FONTE: O autor (2025). 

 
A seguir, veremos os novos casos para a classificação de veículos. 
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FIGURA 30 – NOVOS CASOS DE VEÍCULOS 

 
FONTE: O autor (2025). 

 
Comandos executados no RStudio: 
# 1.a veículos (classificação) - Random Forest Hold Out  

install.packages("e1071")  

install.packages("caret")  

library("caret")  

 

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/06veículos")  

 

data <- read.csv("6-veiculos.csv")  

View(data)  

 

data$a <- NULL  

 

any(is.na(data))  

# FALSE  

 

preproc_center_scale <- preProcess(data, method = c("center", "scale"))  

normalized_data <- predict(preproc_center_scale, data)  

# Dados normalizados com média centralizada em 0  

 

View(normalized_data)  

 

set.seed(202493)  

ind <- createDataPartition(normalized_data$tipo, p = 0.8, list = F)  

train <- normalized_data[ind,]  

test <- normalized_data[-ind,]  

# --- Hold out ---  

 

set.seed(202493)  

rf <- train(tipo ~ ., data = normalized_data, method = "rf")  



96 
 

 

rf  

# mtry = 2  

 

predict.rf <- predict(rf, test)  

confusionMatrix(predict.rf, as.factor(test$tipo))  

# Accuracy: 1  

 

# --- Novos casos (usando Hold out) ----  

 

new_data <- read.csv("6-veiculos-novos-dados.csv")  

View(new_data)  

 

new_data$a <- NULL  

 

any(is.na(new_data))  

# FALSE  

 

preproc_center_scale <- preProcess(new_data, method = c("center", "scale"))  

normalized_new_data <- predict(preproc_center_scale, new_data)  

# Dados normalizados com média centralizada em 0  

 

View(normalized_new_data)  

 

predict.rf_new_data <- predict(rf, normalized_new_data)  

# van bus opel  

# Levels: bus opel saab van  

 

new_data$tipo <- NULL  

result <- cbind(new_data, predict.rf_new_data)  

names(result)[names(result) == "predict.rf_new_data"] <- "tipo"  

View(result)  

# Visualização do DF com os novos dados e a predição 
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FIGURA 31 – CLASSIFICAÇÃO PARA DIABETES 

 
FONTE: O autor (2025). 

 
A seguir veremos novos casos para diabetes. 
 

FIGURA 32 – NOVOS CASOS PARA DIABETES 

 
FONTE: O autor (2025). 

 
Comandos executados no RStudio: 
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# 1.b diabetes (classificação) - Random Forest – Hold Out  

install.packages("e1071")  

install.packages("caret")  

library("caret")  

 

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/10diabetes")  

 

data <- read.csv("10-diabetes.csv")  

View(data)  

 

data$num <- NULL  

 

any(is.na(data))  

# FALSE  

 

preproc_center_scale <- preProcess(data, method=c("center", "scale"))  

normalized_data <- predict(preproc_center_scale, data)  

# Dados normalizados com média centralizada em 0  

 

View(normalized_data)  

 

set.seed(202493)  

ind <- createDataPartition(normalized_data$diabetes, p = 0.8, list = FALSE)  

train <- normalized_data[ind,]  

test <- normalized_data[-ind,]  

 

# --- Hold out ---  

 

set.seed(202493)  

rf <- train(diabetes ~ ., data = normalized_data, method = "rf")  

rf  

# mtry = 2  

 

predict.rf <- predict(rf, test)  

confusionMatrix(predict.rf, as.factor(test$diabetes))  

# Accuracy: 1  

 

# --- Novos casos (usando Hold out) ----  
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new_data <- read.csv("10-diabetes-novos-dados.csv")  

View(new_data)  

 

new_data$num <- NULL  

 

any(is.na(new_data))  

# FALSE  

 

preproc_center_scale <- preProcess(new_data, method = c("center", "scale"))  

normalized_new_data <- predict(preproc_center_scale, new_data)  

# Dados normalizados com média centralizada em 0  

 

View(normalized_new_data)  

 

predict.rf_new_data <- predict(rf, normalized_new_data)  

predict.rf_new_data  

# pos neg neg  

# Levels: neg pos  

 

new_data$diabetes <- NULL  

result <- cbind(new_data, predict.rf_new_data)  

names(result)[names(result) == "predict.rf_new_data"] <- "diabetes"  

View(result)  

# Visualização do DF com os novos dados e a predição 

 

REGRESSÃO 
Para o experimento de Regressão:  
• Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em primeiro na tabela.  
• Após o quadro, colocar:  

o Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro de maior 
R2 (criar um arquivo com novos casos à sua escolha)  
o O Gráfico de Resíduos para a técnica/parâmetro de maior R2 o A lista de comandos emitidos 
no RStudio para conseguir os resultados obtidos 
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FIGURA 33 – DADOS DE REGRESSÃO 

 
FONTE: O autor (2025). 

 
Gráfico de resíduos:  
 

FIGURA 34 – GRÁFICO DE RESÍDUOS 

 
FONTE: O autor (2025). 

 
Comandos executados no RStudio:   
# 2.a admissão (regressão) - Random Forest – Hold Out  

install.packages("e1071")  
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install.packages("kernlab")  

install.packages("caret")  

install.packages("mice")  

library("caret")  

library(Metrics)  

library(stats)  

library(mice)  

 

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/09admissão")  

 

data <- read.csv("9-admissao.csv")  

View(data)  

 

data$num <- NULL  

 

any(is.na(data))  

# FALSE  

 

target_data <- data[["ChanceOfAdmit"]]  

predictors <- data[, colnames(data) != "ChanceOfAdmit"]  

 

preproc_center_scale <- preProcess(predictors, method=c("center", "scale"))  

normalized_predictors <- predict(preproc_center_scale, predictors)  

 

normalized_data <- cbind(normalized_predictors, target_data)  

 

names(normalized_data)[names(normalized_data) == "target_data"] <- "ChanceOfAdmit"  

 

View(normalized_data)  

 

set.seed(202493)  

ind <- createDataPartition(normalized_data$ChanceOfAdmit, p = 0.8, list = FALSE)  

train <- normalized_data[ind,]  

test <- normalized_data[-ind,]  

 

# --- Hold out ---  

 

set.seed(202493)  

rf_ho <- train(ChanceOfAdmit ~ ., data = normalized_data, method = "rf")  
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rf_ho  

# mtry = 2  

 

predict.rf_ho <- predict(rf_ho, test)  

 

r2 <- function(predicted, observed) {  

  return (1 - (sum((predicted - observed) ^ 2) / sum((observed - mean(observed)) ^ 

2)))  

}  

 

syx <- function(predicted, observed) {  

  n <- length(observed)  

  syx <- sqrt(sum((observed - predicted)^2) / (n - 2))  

  return(syx)  

}  

 

rmse(test$ChanceOfAdmit, predict.rf_ho)  

# 0.0333386  

 

r2(predict.rf_ho, test$ChanceOfAdmit)  

# 0.9458273  

 

syx(predict.rf_ho, test$ChanceOfAdmit)  

# 0.03368409  

 

cor(test$ChanceOfAdmit, predict.rf_ho) # Pearson (library stats)  

# 0.9746234  

 

mae(test$ChanceOfAdmit, predict.rf_ho)  

# 0.02295854  

 

# --- Novos casos (usando Hold out) ----  

 

new_data <- read.csv("9-admissao-novos-dados.csv")  

View(new_data)  

 

new_data$num <- NULL  

 

any(is.na(new_data))  

# FALSE  
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new_target_data <- new_data[["ChanceOfAdmit"]]  

new_predictors <- new_data[, colnames(new_data) != "ChanceOfAdmit"]  

 

preproc_center_scale <- preProcess(new_predictors, method=c("center", "scale"))  

normalized_new_predictors <- predict(preproc_center_scale, new_predictors)  

 

normalized_new_data <- cbind(normalized_new_predictors, new_target_data) 

names(normalized_new_data)[names(normalized_new_data) == "new_target_data"] <-  

  "ChanceOfAdmit"  

# Dados normalizados com média centralizada em 0  

 

View(normalized_new_data)  

 

predict.rf_ho_new_data <- predict(rf_ho, normalized_new_data)  

predict.rf_ho_new_data  

# 1 2 3  

# 0.6088426 0.7209769 0.7601318  

 

new_data$ChanceOfAdmit <- NULL  

result <- cbind(new_data, predict.rf_ho_new_data)  

names(result)[names(result) == "predict.rf_ho_new_data"] <- "ChanceOfAdmit"  

View(result)  

# Visualização do DF com os novos dados e a predição  

 

# --- Geração do Gráfico de Resíduos com RF Hold Out e Dados de teste ---  

 

test_residuals <- ((test$ChanceOfAdmit - predict.rf_ho) / test$ChanceOfAdmit) * 

100  

 

plot(  

  predict.rf_ho,  

  test_residuals,  

  col = "blue",  

  pch = 20,  

  main = "Resíduos (%) - RF Hold Out (Dados teste)",  

  xlab = "ChanceOfAdmit (estimado)",  

  ylab = "Resíduo (%)",  

  ylim=c(-100, 100)  

)  
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abline(h = 0, col = "gray")  

grid() 

FIGURA 35 – DADOS DE BIOMASSA 

 
FONTE: O autor (2025). 

 
Abaixo temos o gráfico de resíduos e dados de teste. 
 

FIGURA 36 – GRÁFICO DE RESÍDUOS E DADOS DE TESTE 

 
FONTE: O autor (2025). 

 
 

# 2.b biomassa (regressão) - Random Forest – Hold Out  

install.packages("e1071")  
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install.packages("kernlab")  

install.packages("caret")  

install.packages("mice")  

library("caret")  

library(Metrics)  

library(stats)  

library(mice)  

 

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/05biomassa")  

 

data <- read.csv("5-biomassa.csv")  

View(data)  

 

any(is.na(data))  

# FALSE  

 

target_data <- data[["biomassa"]]  

predictors <- data[, colnames(data) != "biomassa"]  

 

preproc_center_scale <- preProcess(predictors, method=c("center", "scale"))  

normalized_predictors <- predict(preproc_center_scale, predictors)  

 

normalized_data <- cbind(normalized_predictors, target_data)  

 

names(normalized_data)[names(normalized_data) == "target_data"] <- "biomassa"  

 

View(normalized_data)  

 

set.seed(202493)  

ind <- createDataPartition(normalized_data$biomassa, p=0.8, list=FALSE)  

train <- normalized_data[ind,]  

test <- normalized_data[-ind,]  

 

# --- Hold out ---  

 

set.seed(202493)  

rf_ho <- train(biomassa ~ ., data = normalized_data, method = "rf")  

rf_ho  

# mtry = 2  
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predict.rf_ho <- predict(rf_ho, test) 

 

r2 <- function(predicted, observed) {  

  return (1 - (sum((predicted - observed) ^ 2) / sum((observed - mean(observed)) ^ 

2)))  

}  

 

syx <- function(predicted, observed) {  

  n <- length(observed)  

  syx <- sqrt(sum((observed - predicted)^2) / (n - 2))  

  return(syx)  

}  

 

rmse(test$biomassa, predict.rf_ho)  

# 123.4682  

 

r2(predict.rf_ho, test$biomassa)  

# 0.9800358  

 

syx(predict.rf_ho, test$biomassa)  

# 125.5789  

 

cor(test$biomassa, predict.rf_ho) # Pearson (library stats)  

# 0.9963851  

 

mae(test$biomassa, predict.rf_ho)  

# 41.88866  

 

# --- Novos casos (usando Hold out) ----  

 

new_data <- read.csv("5-biomassa-novos-dados.csv")  

View(new_data)  

 

any(is.na(new_data))  

# FALSE  

 

new_target_data <- new_data[["biomassa"]]  

new_predictors <- new_data[, colnames(new_data) != "biomassa"]  
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preproc_center_scale <- preProcess(new_predictors, method=c("center", "scale"))  

normalized_new_predictors <- predict(preproc_center_scale, new_predictors)  

 

normalized_new_data <- cbind(normalized_new_predictors, new_target_data)  

 

names(normalized_new_data)[names(normalized_new_data) == "new_target_data"] <-  

  "biomassa"  

 

# Dados normalizados com média centralizada em 0 

 

View(normalized_new_data)  

 

predict.rf_ho_new_data <- predict(rf_ho, normalized_new_data)  

 

predict.rf_ho_new_data  

# 1 2 3   

# 568.6312 73.9615 45.1129  

 

new_data$biomassa <- NULL  

result <- cbind(new_data, predict.rf_new_data)  

names(result)[names(result) == "predict.rf_new_data"] <- "biomassa"  

View(result)  

# Visualização do DF com os novos dados e a predição  

 

# --- Geração do Gráfico de Resíduos com RF Hold Out e Dados de teste ---  

 

test_residuals <- ((test$biomassa - predict.rf_ho) / test$biomassa) * 100  

 

plot(predict.rf_ho, test_residuals,  

     col = "blue", pch = 20,  

     main = "Resíduos (%) - RF Hold Out (Dados teste)",  

     xlab = "biomassa (estimado)", ylab = "Resíduo (%)",  

     ylim=c(-100, 100))  

 

abline(h = 0, col = "gray")  

grid() 

 
AGRUPAMENTO 
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FIGURA 37 – LISTA DE CLUSTERS DE VEÍCULO 

 
FONTE: O autor (2025). 
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FIGURA 38 – VISUALIZAÇÃO DE DADOS DE MUSCULAÇÃO 

 
FONTE: O autor (2025). 
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FIGURA 39 – AVALIAÇÃO DAS REGRAS 

 
FONTE: O autor (2025). 

 
Colocar a lista de comandos emitidos no RStudio para conseguir os resultados obtidos. 
 

FIGURA 40 – COMANDOS EMITIDOS NO RSTUDIO 

 
FONTE: O autor (2025). 
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APÊNDICE 8 – DEEP LEARNING 
 
 
A – ENUNCIADO 
 
1 Classificação de Imagens (CNN) 

 
Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a 

arquitetura CNN vista no curso. 
 

2 Detector de SPAM (RNN) 
 
Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e 

arquitetura de RNN vista no curso. 
 

3 Gerador de Dígitos Fake (GAN) 
 
Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista 

no curso. 
 

4 Tradutor de Textos (Transformer) 
 
Implementar o tradutor de texto do português para o inglês, usando a base de dados e a 

arquitetura Transformer vista no curso. 

 
B – RESOLUÇÃO 
 
 1. Classificação de Imagens (CNN) 

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a 
arquitetura CNN vista no curso. 

Link Google Colab: https://colab.research.google.com/drive/1_z-wM_G7r-
ynSifDmfEYVPunT0JrOLGP?usp=sharing 
# Importar as bibliotecas necessárias 

import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

from tensorflow.keras import datasets, layers, models 

from mlxtend.plotting import plot_confusion_matrix 

from sklearn.metrics import confusion_matrix 

# Carregar o conjunto de dados CIFAR-10 
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(train_images, train_labels), (test_images, test_labels) = 

datasets.cifar10.load_data() 

 

# Normalizar as imagens para o intervalo [0, 1] 

train_images, test_images = train_images / 255.0, test_images / 255.0 

 

train_labels, test_labels = train_labels.flatten(), test_labels.flatten() 

 

print("train_images.shape: ", train_images.shape) 

print("train_labels.shape: ", train_labels.shape) 

print("test_images.shape: ", test_images.shape) 

print("test_labels.shape: ", test_labels.shape) 

 

# Mapear os rótulos para nomes das classes 

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 

'horse', 'ship', 'truck'] 

 
FIGURA 41 – DADOS DE TREINAMENTO E TESTE 

 

 
FONTE: O autor (2025). 

 
# Construir a arquitetura da CNN 

 

# Quantidade de parâmetros de saída com base na quantidade de classes 

k = len(set(train_labels)) 

 

model = models.Sequential([ 

    # Estágio 1 

    layers.Input(shape=train_images[0].shape), 

 

    # Camada convolucional 1 

    layers.Conv2D(32, (3, 3), activation='relu', strides=2), 

 

    # Camada convolucional 2 

    layers.Conv2D(64, (3, 3), activation='relu', strides=2), 
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    # Camada convolucional 3 

    layers.Conv2D(128, (3, 3), activation='relu', strides=2), 

 

    # Camada de flatten e fully connected 

    layers.Flatten(), 

 

    # Estágio 2 

    layers.Dropout(0.5), 

    layers.Dense(1024, activation='relu'), 

    layers.Dropout(0.2), 

    layers.Dense(k, activation='softmax') 

]) 

 

model.summary() 

FIGURA 42 – MODELO SEQUENCIAL 

 
FONTE: O autor (2025). 
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# Compilar o modelo 

model.compile(optimizer='adam', 

              

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 

              metrics=['accuracy']) 

r = model.fit(train_images, train_labels, epochs=15, 

                    validation_data=(test_images, test_labels)) 

FIGURA 43 – CARREGAMENTO DAS IMAGENS 

 
FONTE: O autor (2025). 

 
# Visualizar o desempenho 

 

# Gráfico de acurácia 

plt.plot(r.history['accuracy'], label='accuracy') 

plt.plot(r.history['val_accuracy'], label = 'val_accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend(loc='lower right') 

plt.show() 

 

# Gráfico de perda 

plt.plot(r.history['loss'], label='loss') 

plt.plot(r.history['val_loss'], label = 'val_loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.legend(loc='lower right') 

plt.show() 
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FIGURA 44 – GRÁFICO DE ACURÁCIA 

 
FONTE: O autor (2025). 

 
Abaixo os dados de perda. 

 
FIGURA 45 – GRÁFICO DE PERDA 

 
FONTE: O autor (2025). 

 
# Efetuando a predição 

 

pred_labels = model.predict(test_images).argmax(axis=1) 

 

# Matriz de confusão 

cm = confusion_matrix(test_labels, pred_labels) 

plot_confusion_matrix(conf_mat=cm, figsize=(7, 7), show_normed=True) 
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FIGURA 46 – MATRIZ DE CONFUSÃO 

 
FONTE: O autor (2025). 

 
# Exibindo algumas classificações erradas 

misclassified = np.where(pred_labels != test_labels)[0] 

i = np.random.choice(misclassified) 

 

plt.imshow(test_images[i], cmap="gray") 

plt.title(f"True label: {class_names[test_labels[i]]} Predicted: 

{class_names[pred_labels[i]]}") 
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FIGURA 47 – CLASSIFICAÇÕES ERRADAS 

 
FONTE: O autor (2025). 

 
 2. Detector de SPAM (RNN 

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e 
arquitetura de RNNvista no curso.  

Link Google Colab: 
https://colab.research.google.com/drive/10vDAJzRrQR4xkgujlOKuYvH4okbr8qc6?usp=sharing 
 



118 
 

 

# Importação 

 

import tensorflow as tf 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.layers import Input, Embedding, LSTM, Dense 

from tensorflow.keras.models import Model 

from tensorflow.keras.preprocessing.sequence import pad_sequences 

from tensorflow.keras.preprocessing.text import Tokenizer 

# Carregar base de dados 

 

# Verificar o caminho do arquivo 

df = pd.read_csv("/content/spam.csv", encoding="ISO-8859-1") 

df.head() 

 

# removendo algumas colunas 

df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1) 

df.columns = ["labels", "data"] 

df["b_labels"] = df["labels"].map({ "ham": 0, "spam": 1 }) 

y = df["b_labels"].values 

print(df.head()) 

 
FIGURA 48 – REMOÇÃO DE ALGUMAS COLUNAS

 
FONTE: O autor (2025). 
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# Separação das bases para treinamento e teste 

x_train, x_test, y_train, y_test = train_test_split(df["data"], y, test_size=0.33) 

num_words = 20000 

tokenizer = Tokenizer(num_words=num_words) 

 

tokenizer.fit_on_texts(x_train) 

 

sequences_train = tokenizer.texts_to_sequences(x_train) 

sequences_test = tokenizer.texts_to_sequences(x_test) 

word2index = tokenizer.word_index 

V = len(word2index) 

print(f"{V} tokens") 

 

7126 tokens 

 

# Acertar tamanho das sequências 

 

data_train = pad_sequences(sequences_train) 

 

T = data_train.shape[1] 

data_test = pad_sequences(sequences_test, maxlen=T) 

print("data_train.shape: ", data_train.shape) 

print("data_test.shape: ", data_test.shape) 

 

data_train.shape:  (3733, 189) 

data_test.shape:  (1839, 189) 

 

# Definição do modelo 

 

D = 20 

M = 5 

 

i = Input(shape=(T,)) 

x = Embedding(V + 1, D)(i) 

x = LSTM(M)(x) 

x = Dense(1, activation="sigmoid")(x) 

model = Model(i, x) 

 

model.summary() 
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FIGURA 49 – MODELO FUNCIONAL 

 
FONTE: O autor (2025). 

 
# Compilar o modelo 

model.compile( 

    loss="binary_crossentropy", 

    optimizer="adam", 

    metrics=["accuracy"] 

) 

 

epochs = 5 

 

r = model.fit( 

    data_train, 

    y_train, 

    epochs=epochs, 

    validation_data=(data_test, y_test) 

) 

# Visualizar accuracy e loss 

 

plt.plot(r.history["loss"], label="loss") 

plt.plot(r.history["val_loss"], label="val_loss") 

plt.xlabel("Épocas") 

plt.ylabel("loss") 

plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs + 1)) 

plt.legend() 

plt.show() 

 

plt.plot(r.history["accuracy"], label="accuracy") 

plt.plot(r.history["val_accuracy"], label="val_accuracy") 
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plt.xlabel("Épocas") 

plt.ylabel("accuracy") 

plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs + 1)) 

plt.legend() 

plt.show() 
 
 

FIGURA 50 – ACURÁCIA E PERDA 

 
FONTE: O autor (2025). 

 
A seguir o gráfico de acurácia. 
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FIGURA 51 – GRÁFICO DE ACURÁCIA 

 
FONTE: O autor (2025). 

 
text = "Is your cellphone carrier bad? Check out our free for all plans!. Click the 

link" 

 

seq_texto = tokenizer.texts_to_sequences([text]) 

data_texto = pad_sequences(seq_texto, maxlen = T) 

 

pred = model.predict(data_texto) 

print(pred) 

print("SPAM" if pred >= 0.5 else "OK") 

 

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 102ms/step 

[[0.5963417]] 

SPAM 

 

 
3. Gerador de Dígitos Fake (GAN) 

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista 
no curso. 

Link Google Colab:  
https://colab.research.google.com/drive/1Qdws2GSR3Q1ePH-ln27KZeujp5fvudXW?usp=sharing 
# Para Gerar os GIFs 

!pip install imageio 

!pip install git+https://github.com/tensorflow/docs 

# Importações 
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import tensorflow as tf 

import glob 

import imageio 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

import PIL 

from tensorflow.keras import layers 

import time 

from IPython import display 

# Carrega a base de dados MNIST 

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data() 

# Normalização 

train_images = train_images.reshape(train_images.shape[0], 28, 28, 

1).astype('float32') 

# Normaliza entre [-1, 1] 

train_images = (train_images - 127.5) / 127.5 

# Gera o banco em partes e randomiza 

BUFFER_SIZE = 60000 

BATCH_SIZE = 256 

# Cria o dataset (from_tensor_slices) 

# Randomiza (shuffle) 

# Combina elementos consecutivos em lotes (batch) 

train_dataset = 

tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_

SIZE) 

# Cria o GERADOR 

def make_generator_model(): 

  # Modelo sequencial 

  # Camada de entrada 

  # Camada de batch normalization 

  # Camada de ativação 

  model = tf.keras.Sequential() 

  model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) 

  model.add(layers.BatchNormalization()) 

  model.add(layers.LeakyReLU()) 

 

  # Camada de reshape 

  model.add(layers.Reshape((7, 7, 256))) 

  assert model.output_shape == (None, 7, 7, 256) 
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  # Camada de convolução transposta 

  model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', 

use_bias=False)) 

  assert model.output_shape == (None, 7, 7, 128) 

 

  model.add(layers.BatchNormalization()) 

  model.add(layers.LeakyReLU()) 

 

  model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', 

use_bias=False)) 

  assert model.output_shape == (None, 14, 14, 64) 

  model.add(layers.BatchNormalization()) 

  model.add(layers.LeakyReLU()) 

 

  model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', 

use_bias=False, activation='tanh')) 

  # Camada de batch normalization 

  assert model.output_shape == (None, 28, 28, 1) 

 

  return model 

# Teste do GERADOR, ainda não treinado 

# Cria um modelo 

generator = make_generator_model() 

 

# Gera uma imagem 

noise = tf.random.normal([1, 100]) 

generated_image = generator(noise, training=False) 

 

# Plota a imagem 

plt.imshow(generated_image[0, :, :, 0], cmap='gray') 
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FIGURA 52 – GERANDO IMAGEM 

 
FONTE: O autor (2025). 

 
# Cria o DISCRIMADOR 

def make_discriminator_model(): 

  model = tf.keras.Sequential() 

  model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',  

input_shape=[28, 28, 1])) 

  model.add(layers.LeakyReLU()) 

  model.add(layers.Dropout(0.3)) 

 

  model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) 

  model.add(layers.LeakyReLU()) 

  model.add(layers.Dropout(0.3)) 

 

  model.add(layers.Flatten()) 

  model.add(layers.Dense(1)) 

 

  return model 

# Teste do DISCRIMINADOR, ainda não treinado 

discriminator = make_discriminator_model() 

decision = discriminator(generated_image) 

print (decision) 

# Perda binária cruzada 

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) 
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# Função que calcula a perda do discriminador 

def discriminator_loss(real_output, fake_output): 

  # Calcula a perda do real 

  real_loss = cross_entropy(tf.ones_like(real_output), real_output) 

  # Calcula a perda do fake 

  fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) 

  # Calcula a perda total 

  total_loss = real_loss + fake_loss 

  return total_loss 

 

# Função que calcula a perda do gerador 

def generator_loss(fake_output): 

  # Calcula a perda do fake 

  return cross_entropy(tf.ones_like(fake_output), fake_output) 

# Cria os otimizadores para o gerador e discriminador 

generator_optimizer = tf.keras.optimizers.Adam(1e-4) 

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) 

# Cria checkpoints para salvar modelos ao longo do tempo 

# Úteis em tarefas longas, para se recuperar de um desligamento 

# ou interrupção abrupta 

checkpoint_dir = './training_checkpoints' 

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") 

checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, 

discriminator_optimizer=discriminator_optimizer, generator=generator, 

discriminator=discriminator) 

# Configura o Loop de treinamento 

# Parâmetros 

EPOCHS = 100 

noise_dim = 100 

num_examples_to_generate = 16 

# You will reuse this seed overtime (so it's easier) 

# to visualize progress in the animated GIF) 

seed = tf.random.normal([num_examples_to_generate, noise_dim]) 

# Função que faz um passo de treinamento 

# É uma `tf.function`, que compila essa função 

# para um código mais rápido quando chamada 

@tf.function 

def train_step(images): 

  # Gerar ruído 
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  noise = tf.random.normal([BATCH_SIZE, noise_dim]) 

  # Treinar 

  with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: 

    generated_images = generator(noise, training=True) 

    # Treinar o discriminador 

    real_output = discriminator(images, training=True) 

    fake_output = discriminator(generated_images, training=True) 

    # Calcular a perda 

    gen_loss = generator_loss(fake_output) 

    disc_loss = discriminator_loss(real_output, fake_output) 

  # Calcular os gradientes 

  gradients_of_generator = gen_tape.gradient(gen_loss, 

generator.trainable_variables) 

  gradients_of_discriminator = disc_tape.gradient(disc_loss, 

discriminator.trainable_variables) 

  # Aplicar os gradientes 

  generator_optimizer.apply_gradients(zip(gradients_of_generator, 

generator.trainable_variables)) 

  discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, 

discriminator.trainable_variables)) 

# Treinamento completo/laço 

# Função que treina o modelo 

def train(dataset, epochs): 

  for epoch in range(epochs): 

    start = time.time() 

 

    for image_batch in dataset: 

      train_step(image_batch) 

  # Produce images for the GIF as you go 

    display.clear_output(wait=True) 

    generate_and_save_images(generator, epoch + 1, seed) 

  # Save the model every 15 epochs 

    if (epoch + 1) % 15 == 0: 

      checkpoint.save(file_prefix = checkpoint_prefix) 

 

    print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start)) 

# Generate after the final epoch 

  display.clear_output(wait=True) 

  generate_and_save_images(generator, epochs, seed) 

# Gerar e salvar imagens 
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def generate_and_save_images(model, epoch, test_input): 

# Notice `training` is set to False. 

# This is so all layers run in inference mode (batchnorm). 

  predictions = model(test_input, training=False) 

  fig = plt.figure(figsize=(4, 4)) 

 

  for i in range(predictions.shape[0]): 

    plt.subplot(4, 4, i+1) 

    plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') 

    plt.axis('off') 

 

  plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) 

  plt.show() 

# Treinar o modelo e restaurar o último ponto de verificação 

train(train_dataset, EPOCHS) 

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) 

 
 

FIGURA 53 – TREINANDO O MODELO 

 
FONTE: O autor (2025). 

 
# Criar um GIF 

# Display a single image using the epoch number 

def display_image(epoch_no): 

    return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no)) 
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display_image(EPOCHS) 

 

anim_file = 'dcgan.gif' 

 

with imageio.get_writer(anim_file, mode='I') as writer: 

  filenames = glob.glob('image*.png') 

  filenames = sorted(filenames) 

  for filename in filenames: 

    image = imageio.imread(filename) 

    writer.append_data(image) 

  image = imageio.imread(filename) 

  writer.append_data(image) 

 

import tensorflow_docs.vis.embed as embed 

embed.embed_file(anim_file) 
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FIGURA 54 – CRIANDO UM GIF DE IMAGEM 

 
FONTE: O autor (2025). 

 
Implementar o tradutor de texto do português para o inglês, usando a base de dados e a 

arquitetura Transformer vista no curso. 
Link Google Colab: https://colab.research.google.com/drive/1nl2rBx2wwPHIomhOpX5wyd9-

AyId4D0t?usp=sharing 
!pip uninstall tensorflow 

!pip install tensorflow==2.15.0 

!pip install tensorflow_datasets 

!pip install -U tensorflow-text==2.15.0 

import collections 

import logging 

import os 

import pathlib 

import re 

import string 

import sys 

import time 

 

import numpy as np 

import matplotlib.pyplot as plt 

 

import tensorflow_datasets as tfds 



131 
 

 

import tensorflow_text as text 

import tensorflow as tf 

 

logging.getLogger('tensorflow').setLevel(logging.ERROR) # remover warnings 

examples, metadata = tfds.load( 

    'ted_hrlr_translate/pt_to_en', 

    with_info=True, 

    as_supervised=True 

) 

train_examples, val_examples = examples['train'], examples['validation'] 

for pt_examples, en_examples in train_examples.batch(3).take(1): 

  for pt in pt_examples.numpy(): 

    print(pt.decode('utf-8')) 

 

  print() 

 

  for en in en_examples.numpy(): 

    print(en.decode('utf-8')) 

e quando melhoramos a procura , tiramos a única vantagem da impressão , que é a 

serendipidade . 

mas e se estes fatores fossem ativos ? 

mas eles não tinham a curiosidade de me testar . 

 

and when you improve searchability , you actually take away the one advantage of 

print , which is serendipity . 

but what if it were active ? 

but they did n't test for curiosity . 

 

model_name = "ted_hrlr_translate_pt_en_converter" 

 

tf.keras.utils.get_file( 

    f"{model_name}.zip", 

    

f"https://storage.googleapis.com/download.tensorflow.org/models/{model_name}.zip", 

    cache_dir='.', 

    cache_subdir='', 

    extract=True 

) 

 

tokenizers = tf.saved_model.load(model_name) 
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def tokenize_pairs(pt, en): 

  pt = tokenizers.pt.tokenize(pt) 

  pt = pt.to_tensor() 

 

  en = tokenizers.en.tokenize(en) 

  en = en.to_tensor() 

  return pt, en 

 

BUFFER_SIZE = 20000 

BATCH_SIZE = 64 

 

def make_batches(ds): 

  return ( 

      ds 

      .cache() 

      .shuffle(BUFFER_SIZE) 

      .batch(BATCH_SIZE) 

      .map(tokenize_pairs, num_parallel_calls=tf.data.AUTOTUNE) 

      .prefetch(tf.data.AUTOTUNE) 

  ) 

 

train_batches = make_batches(train_examples) 

val_batches = make_batches(val_examples) 

def get_angles(pos, i, d_model): 

  angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model)) 

  return pos * angle_rates 

 

def positional_encoding(position, d_model): 

  angle_rads = get_angles( 

      np.arange(position)[:, np.newaxis], 

      np.arange(d_model)[np.newaxis, :], 

      d_model 

  ) 

  angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) 

  angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) 

 

  pos_encoding = angle_rads[np.newaxis, ...] 

  return tf.cast(pos_encoding, dtype=tf.float32) 

 

n, d = 2048, 512 
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pos_encoding = positional_encoding(n, d) 

print(pos_encoding.shape) 

pos_encoding = pos_encoding[0] 

 

pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2)) 

pos_encoding = tf.transpose(pos_encoding, (2, 1, 0)) 

pos_encoding = tf.reshape(pos_encoding, (d, n)) 

 

# o plot a seguir não é necessário 

# plt.pcolormesh(pos_encoding, cmap='RdBu') 

# plt.ylabel('Depth') 

# plt.xlabel('Position') 

# plt.colorbar() 

# plt.show() 

 

def create_padding_mask(seq): 

  seq = tf.cast(tf.math.equal(seq, 0), tf.float32) 

  return seq[:, tf.newaxis, tf.newaxis, :] 

 

def create_look_ahead_mask(size): 

  mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0) 

  return mask 

def scaled_dot_product_attention(q, k, v, mask): 

  # Q * K ^ T 

  matmul_qk = tf.matmul(q, k, transpose_b=True) 

  dk = tf.cast(tf.shape(k)[-1], tf.float32) 

 

  # / por sqrt(dk) 

  scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) 

 

  if mask is not None: 

    scaled_attention_logits += (mask * -1e9) 

 

  attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) 

  output = tf.matmul(attention_weights, v) 

  return output, attention_weights 

 

# Atenção Multi-cabeças 

class MultiHeadAttention(tf.keras.layers.Layer): 

  def __init__(self, d_model, num_heads): 
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    super().__init__() 

    self.num_heads = num_heads 

    self.d_model = d_model 

 

    assert d_model % self.num_heads == 0 

 

    self.depth = d_model // self.num_heads 

 

    self.wq = tf.keras.layers.Dense(d_model) 

    self.wk = tf.keras.layers.Dense(d_model) 

    self.wv = tf.keras.layers.Dense(d_model) 

    self.dense = tf.keras.layers.Dense(d_model) 

 

  def split_heads(self, x, batch_size): 

    x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) 

    return tf.transpose(x, perm=[0, 2, 1, 3]) 

 

  def call(self, v, k, q, mask): 

    batch_size = tf.shape(q)[0] 

 

    q = self.wq(q) 

    k = self.wk(k) 

    v = self.wv(v) 

 

    q = self.split_heads(q, batch_size) 

    k = self.split_heads(k, batch_size) 

    v = self.split_heads(v, batch_size) 

 

    scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, 

mask) 

    scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) 

    concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) 

 

    output = self.dense(concat_attention) 

 

    return output, attention_weights 

 

def point_wise_feed_forward_network(d_model, dff): 

  return tf.keras.Sequential([ 

      tf.keras.layers.Dense(dff, activation='relu'), 
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      tf.keras.layers.Dense(d_model) 

  ]) 

class EncoderLayer(tf.keras.layers.Layer): 

  def __init__(self, d_model, num_heads, dff, rate = 0.1): 

    super().__init__() 

 

    self.mha = MultiHeadAttention(d_model, num_heads) 

    self.ffn = point_wise_feed_forward_network(d_model, dff) 

 

    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon = 1e-6) 

    self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon = 1e-6) 

 

    self.dropout1 = tf.keras.layers.Dropout(rate) 

    self.dropout2 = tf.keras.layers.Dropout(rate) 

 

  def call(self, x, training, mask): 

    attn_output, _ = self.mha(x, x, x, mask) 

    attn_output = self.dropout1(attn_output, training = training) 

    out1 = self.layernorm1(x + attn_output) 

 

    ffn_output = self.ffn(out1) 

    ffn_output = self.dropout2(ffn_output, training = training) 

    out2 = self.layernorm2(out1 + ffn_output) 

 

    return out2 

class DecoderLayer(tf.keras.layers.Layer): 

  def __init__(self, d_model, num_heads, dff, rate = 0.1): 

    super().__init__() 

 

    self.mha1 = MultiHeadAttention(d_model, num_heads) 

    self.mha2 = MultiHeadAttention(d_model, num_heads) 

 

    self.ffn = point_wise_feed_forward_network(d_model, dff) 

 

    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon = 1e-6) 

    self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon = 1e-6) 

    self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon = 1e-6) 

 

    self.dropout1 = tf.keras.layers.Dropout(rate) 

    self.dropout2 = tf.keras.layers.Dropout(rate) 
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    self.dropout3 = tf.keras.layers.Dropout(rate) 

 

  def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 

    attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask) 

    attn1 = self.dropout1(attn1, training = training) 

    out1 = self.layernorm1(attn1 + x) 

 

    attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1, 

padding_mask) 

    attn2 = self.dropout2(attn2, training = training) 

    out2 = self.layernorm2(attn2 + out1) 

 

    ffn_output = self.ffn(out2) 

    ffn_output = self.dropout3(ffn_output, training = training) 

    out3 = self.layernorm3(ffn_output + out2) 

 

    return out3, attn_weights_block1, attn_weights_block2 

 

class Encoder(tf.keras.layers.Layer): 

  def __init__( 

      self, 

      num_layers, 

      d_model, 

      num_heads, 

      dff, 

      input_vocab_size, 

      maximum_position_encoding, 

      rate = 0.1 

  ): 

    super().__init__() 

 

    self.d_model = d_model 

    self.num_layers = num_layers 

    self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) 

    self.pos_encoding = positional_encoding(maximum_position_encoding, 

self.d_model) 

    self.enc_layers = [ 

        EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers) 

    ] 

    self.dropout = tf.keras.layers.Dropout(rate) 



137 
 

 

 

  def call(self, x, training, mask): 

    seq_len = tf.shape(x)[1] 

    x = self.embedding(x) 

    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 

    x += self.pos_encoding[:, :seq_len, :] 

    x = self.dropout(x, training=training) 

    for i in range(self.num_layers): 

      x = self.enc_layers[i](x, training, mask) 

    return x 

class Decoder(tf.keras.layers.Layer): 

  def __init__( 

      self, 

      num_layers, 

      d_model, 

      num_heads, 

      dff, 

      target_vocab_size, 

      maximum_position_encoding, 

      rate = 0.1): 

    super().__init__() 

    self.d_model = d_model 

    self.num_layers = num_layers 

    self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model) 

    self.pos_encoding = positional_encoding(maximum_position_encoding, d_model) 

    self.dec_layers = [ 

        DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers) 

    ] 

    self.dropout = tf.keras.layers.Dropout(rate) 

 

  def call(self, x, enc_output, training, look_ahead_mask, padding_mask): 

    seq_len = tf.shape(x)[1] 

    attention_weights = {} 

 

    x = self.embedding(x) 

    x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) 

    x += self.pos_encoding[:, :seq_len, :] 

 

    x = self.dropout(x, training=training) 

    for i in range(self.num_layers): 
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      x, block1, block2 = self.dec_layers[i]( 

          x, 

          enc_output, 

          training, 

          look_ahead_mask, 

          padding_mask 

      ) 

      attention_weights[f'decoder_layer{i+1}_block1'] = block1 

      attention_weights[f'decoder_layer{i+1}_block2'] = block2 

 

    return x, attention_weights 

class Transformer(tf.keras.Model): 

  def __init__( 

      self, 

      num_layers, 

      d_model, 

      num_heads, 

      dff, 

      input_vocab_size, 

      target_vocab_size, 

      pe_input, 

      pe_target, 

      rate = 0.1 

  ): 

    super().__init__() 

    self.encoder = Encoder( 

        num_layers, 

        d_model, 

        num_heads, 

        dff, 

        input_vocab_size, 

        pe_input, 

        rate 

    ) 

    self.decoder = Decoder( 

        num_layers, 

        d_model, 

        num_heads, 

        dff, 

        target_vocab_size, 
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        pe_target, 

        rate 

    ) 

    self.final_layer = tf.keras.layers.Dense(target_vocab_size) 

 

  def call(self, inputs, training): 

    print('inputs:', inputs) 

    print('training:', training) 

    inp, tar = inputs 

    enc_padding_mask, look_ahead_mask, dec_padding_mask = self.create_masks(inp, 

tar) 

    enc_output = self.encoder(inp, training, enc_padding_mask) 

    dec_output, attention_weights = self.decoder( 

        tar, 

        enc_output, 

        training, 

        look_ahead_mask, 

        dec_padding_mask 

    ) 

    final_output = self.final_layer(dec_output) 

 

    return final_output, attention_weights 

 

  def create_masks(self, inp, tar): 

    enc_padding_mask = create_padding_mask(inp) 

    dec_padding_mask = create_padding_mask(inp) 

    look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1]) 

    dec_target_padding_mask = create_padding_mask(tar) 

    look_ahead_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) 

 

    return enc_padding_mask, look_ahead_mask, dec_padding_mask 

 

num_layers = 4 

d_model = 128 

dff = 512 

num_heads = 8 

dropout_rate = 0.1 

 

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): 

  def __init__(self, d_model, warmup_steps = 4000): 
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    super().__init__() 

    self.d_model = d_model 

    self.d_model = tf.cast(self.d_model, tf.float32) 

    self.warmup_steps = warmup_steps 

 

  def __call__(self, step): 

    step = tf.cast(step, tf.float32) 

    arg1 = tf.math.rsqrt(step) 

    arg2 = step * (self.warmup_steps ** -1.5) 

 

    return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) 

 

learning_rate = CustomSchedule(d_model) 

optimizer = tf.keras.optimizers.Adam( 

    learning_rate, 

    beta_1 = 0.9, 

    beta_2 = 0.98, 

    epsilon = 1e-9 

) 

loss_object = tf.keras.losses.SparseCategoricalCrossentropy( 

    from_logits = True, 

    reduction = 'none' 

) 

 

def loss_function(real, pred): 

  mask = tf.math.logical_not(tf.math.equal(real, 0)) 

  loss_ = loss_object(real, pred) 

  mask = tf.cast(mask, dtype = loss_.dtype) 

  loss_ *= mask 

 

  return tf.reduce_sum(loss_) / tf.reduce_sum(mask) 

 

def accuracy_function(real, pred): 

  accuracies = tf.equal(real, tf.argmax(pred, axis = 2)) 

  mask = tf.math.logical_not(tf.math.equal(real, 0)) 

  accuracies = tf.math.logical_and(mask, accuracies) 

  accuracies = tf.cast(accuracies, dtype = tf.float32) 

  mask = tf.cast(mask, dtype = tf.float32) 

 

  return tf.reduce_sum(accuracies) / tf.reduce_sum(mask) 
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train_loss = tf.keras.metrics.Mean(name = 'train_loss') 

train_accuracy = tf.keras.metrics.Mean(name = 'train_accuracy') 

 

transformer = Transformer( 

    num_layers = num_layers, 

    d_model = d_model, 

    num_heads = num_heads, 

    dff = dff, 

    input_vocab_size = tokenizers.pt.get_vocab_size().numpy(), 

    target_vocab_size = tokenizers.en.get_vocab_size().numpy(), 

    pe_input = 1000, 

    pe_target = 1000, 

    rate = dropout_rate 

) 

EPOCHS = 25 

train_step_signature = [ 

    tf.TensorSpec(shape = (None, None), dtype = tf.int64), 

    tf.TensorSpec(shape = (None, None), dtype=tf.int64) 

] 

 

@tf.function(input_signature = train_step_signature) 

def train_step(inp, tar): 

  tar_inp = tar[:, :-1] 

  tar_real = tar[:, 1:] 

 

  with tf.GradientTape() as tape: 

    predictions, _ = transformer([inp, tar_inp], training = True) 

    loss = loss_function(tar_real, predictions) 

 

  gradients = tape.gradient(loss, transformer.trainable_variables) 

  optimizer.apply_gradients(zip(gradients, transformer.trainable_variables)) 

  train_loss(loss) 

  train_accuracy(accuracy_function(tar_real, predictions)) 

 

for epoch in range(EPOCHS): 

  start = time.time() 

  train_loss.reset_state() 

  train_accuracy.reset_state() 

  epoch_count = epoch + 1 
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  for (batch, (inp, tar)) in enumerate(train_batches): 

    train_step(inp, tar) 

 

    if batch % 50 == 0: 

      print(f"Epoch {epoch + 1} Batch {batch} Loss {train_loss.result():.4f} 

Accuracy {train_accuracy.result():.4f}") 

 

  if epoch_count % 5 == 0: 

    ckpt_save_path = ckpt_manager.save() 

    print(f"Saving checkpoint for epoch {epoch_count} at {ckpt_save_path}") 

 

  print(f"Epoch {epoch_count} Loss {train_loss.result():.4f} Accuracy 

{train_accuracy.result():.4f}") 

  print(f"Time taken for epoch {epoch_count}: {time.time() - start:.2f} secs\n") 

 

Epoch 1 Batch 0 Loss 8.8324 Accuracy 0.0022 

Epoch 1 Batch 50 Loss 8.7743 Accuracy 0.0079 

Epoch 1 Batch 100 Loss 8.6878 Accuracy 0.0256 

Epoch 1 Batch 150 Loss 8.5781 Accuracy 0.0359 

Epoch 1 Batch 200 Loss 8.4368 Accuracy 0.0428 

Epoch 1 Batch 250 Loss 8.2663 Accuracy 0.0487 

Epoch 1 Batch 300 Loss 8.0755 Accuracy 0.0582 

Epoch 1 Batch 350 Loss 7.8788 Accuracy 0.0660 

Epoch 1 Batch 400 Loss 7.6913 Accuracy 0.0730 

Epoch 1 Batch 450 Loss 7.5252 Accuracy 0.0792 

Epoch 1 Batch 500 Loss 7.3793 Accuracy 0.0851 

Epoch 1 Batch 550 Loss 7.2447 Accuracy 0.0916 

Epoch 1 Batch 600 Loss 7.1197 Accuracy 0.0985 

Epoch 1 Batch 650 Loss 7.0035 Accuracy 0.1051 

Epoch 1 Batch 700 Loss 6.8972 Accuracy 0.1112 

Epoch 1 Batch 750 Loss 6.7963 Accuracy 0.1170 

Epoch 1 Batch 800 Loss 6.7057 Accuracy 0.1223 

Epoch 1 Loss 6.6897 Accuracy 0.1233 

Time taken for epoch 1: 171.75 secs 

 

Epoch 25 Batch 0 Loss 1.3378 Accuracy 0.6965 

Epoch 25 Batch 50 Loss 1.2698 Accuracy 0.7064 

Epoch 25 Batch 100 Loss 1.2818 Accuracy 0.7054 

Epoch 25 Batch 150 Loss 1.2908 Accuracy 0.7041 
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Epoch 25 Batch 200 Loss 1.2908 Accuracy 0.7043 

Epoch 25 Batch 250 Loss 1.2914 Accuracy 0.7042 

Epoch 25 Batch 300 Loss 1.2943 Accuracy 0.7042 

Epoch 25 Batch 350 Loss 1.2969 Accuracy 0.7037 

Epoch 25 Batch 400 Loss 1.3001 Accuracy 0.7031 

Epoch 25 Batch 450 Loss 1.3048 Accuracy 0.7024 

Epoch 25 Batch 500 Loss 1.3072 Accuracy 0.7020 

Epoch 25 Batch 550 Loss 1.3089 Accuracy 0.7016 

Epoch 25 Batch 600 Loss 1.3096 Accuracy 0.7018 

Epoch 25 Batch 650 Loss 1.3128 Accuracy 0.7012 

Epoch 25 Batch 700 Loss 1.3153 Accuracy 0.7010 

Epoch 25 Batch 750 Loss 1.3201 Accuracy 0.7002 

Epoch 25 Batch 800 Loss 1.3243 Accuracy 0.6995 

Saving checkpoint for epoch 25 at ./checkpoints/train/ckpt-5 

Epoch 25 Loss 1.3248 Accuracy 0.6994 

Time taken for epoch 25: 97.99 secs 

 

class Translator(tf.Module): 

  def __init__(self, tokenizers, transformer): 

    self.tokenizers = tokenizers 

    self.transformer = transformer 

 

  def __call__(self, sentence, max_length = 20): 

    assert isinstance(sentence, tf.Tensor) 

    if len(sentence.shape) == 0: 

      sentence = sentence[tf.newaxis] 

    sentence = self.tokenizers.pt.tokenize(sentence).to_tensor() 

    encoder_input = sentence 

 

    start_end = self.tokenizers.en.tokenize([''])[0] 

    start = start_end[0][tf.newaxis] 

    end = start_end[1][tf.newaxis] 

 

    output_array = tf.TensorArray(dtype = tf.int64, size = 0, dynamic_size = True) 

    output_array = output_array.write(0, start) 

 

    for i in tf.range(max_length): 

 

      output = tf.transpose(output_array.stack()) 

      predictions, _ = self.transformer([encoder_input, output], training=False) 
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      predictions = predictions[:, -1:, :] 

      predicted_id = tf.argmax(predictions, axis = -1) 

      output_array = output_array.write(i + 1, predicted_id[0]) 

 

      if predicted_id == end: 

        break 

 

    output = tf.transpose(output_array.stack()) 

    text = tokenizers.en.detokenize(output)[0] 

    tokens = tokenizers.en.lookup(output)[0] 

    _, attention_weights = self.transformer([encoder_input, output[:, :-1]], 

training = False) 

 

    return text, tokens, attention_weights 

 

translator = Translator(tokenizers, transformer) 

 

sentence = "vamos testar o tradutor." 

 

translated_text, translated_tokens, attention_weights = translator( 

    tf.constant(sentence) 

) 

 

print(f"{'Original':15s} {sentence}") 

print(f"{'Prediction':15s} {translated_text}") 

 

Original        vamos testar o tradutor. 

Prediction      b"let ' s test the translator ." 
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APÊNDICE 9 – BIG DATA 
 
A – ENUNCIADO 
 

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de 
uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL). 
Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de 
dados empregados. 

 
B – RESOLUÇÃO 

 
Título: IMPLEMENTAÇÃO DE APLICAÇÃO DE BIG DATA: ESTUDO DE CASO COM NOSQL E 
NEWSQL  
 
RESUMO: A crescente geração e complexidade dos dados impulsionam a necessidade de novas 
abordagens para o gerenciamento de Big Data. Este trabalho explora a implementação de uma 
aplicação de e-commerce utilizando tecnologias NoSQL e NewSQL para otimizar o armazenamento e 
processamento de grandes volumes de dados. O estudo de caso apresenta o uso de MongoDB para 
dados semi-estruturados e logs, Cassandra para dados de transações e CockroachDB para dados 
estruturados e transações ACID. A análise destaca as características de cada tecnologia, a modelagem 
necessária e a eficácia em diferentes cenários de dados. A combinação dessas ferramentas permite 
uma solução robusta, escalável e eficiente, adequando se às necessidades específicas da aplicação 
de e-commerce.  
Palavras-chave: Big Data. NoSQL. NewSQL. MongoDB. Modelagem de Dados.  

 
ABSTRACT: The growing generation and complexity of data drive the need for new approaches to Big 
Data management. This paper explores the implementation of an e-commerce application using NoSQL 
and NewSQL technologies to optimize the storage and processing of large data volumes. The case 
study presents the use of MongoDB for semi-structured data and logs, Cassandra for transaction data, 
and CockroachDB for structured data and ACID transactions. The analysis highlights the characteristics 
of each technology, the necessary modeling, and effectiveness in different data scenarios. The 
combination of these tools enables a robust, scalable, and efficient solution, tailored to the specific 
needs of the e-commerce application.  
Keywords: Big Data. NoSQL. NewSQL. MongoDB. Data Modeling. 

 
1 INTRODUÇÃO  

Com o crescimento exponencial dos dados gerados por empresas e usuários, as soluções 
tradicionais de banco de dados relacional se tornaram insuficientes para atender às demandas de 
escalabilidade, desempenho e flexibilidade. Este documento explora a implementação de uma 
aplicação de Big Data, focando em como ferramentas NoSQL e NewSQL podem ser usadas para 
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gerenciar grandes volumes de dados. O estudo de caso apresentado envolve uma plataforma de e-
commerce que utiliza essas tecnologias para melhorar sua eficiência e experiência do usuário.  
 
2 CARACTERIZAÇÃO DOS DADOS  
Na aplicação de e-commerce, os dados são variados e incluem:  
• Dados de Transações: Informações sobre compras, pagamentos e devoluções. 
• Dados de Usuários: Perfis de clientes, histórico de navegação e preferências. 
• Dados de Produtos: Detalhes dos produtos, categorias e avaliações.  
• Dados de Logs: Registros de atividades dos usuários e do sistema. 
 

Esses dados têm diferentes características e exigem modelos de armazenamento e 
processamento específicos. Por exemplo, os dados de transações são estruturados e frequentemente 
consultados, enquanto os dados de logs são semiestruturados e precisam ser processados 
rapidamente para análise em tempo real. 

 
3 FERRAMENTAS UTILIZADAS  
1. NoSQL 

1.1. MongoDB 
Modelo de Dados: Documentos JSON 
Características: Alta escalabilidade e flexibilidade. Ideal para dados semiestruturados e não-

estruturados, como logs de atividades e perfis de usuários. 
Modelagem: Os dados de usuários e produtos são armazenados em coleções de documentos. 

Isso permite consultas rápidas e escalabilidade horizontal. 
 
1.2. Cassandra 
  Modelo de Dados: Colunas. 

Características: Alta disponibilidade e desempenho para grandes volumes de dados. Adequado 
para dados de transações e logs, onde a escrita e leitura rápida são essenciais. 

Modelagem: Os dados de transações são modelados como linhas em uma tabela de colunas, 
permitindo consultas rápidas e eficientes.  
 
2. NewSQL  
2.1. CockroachDB 
 Modelo de Dados: Relacional com suporte a SQL.  
 Características: Combina a escalabilidade horizontal dos bancos NoSQL com a consistência e 
a robustez dos bancos de dados relacionais.  
 Modelagem: Os dados de produtos e transações são armazenados em tabelas relacionais, 
garantindo consistência e integridade referencial, enquanto suportam grandes volumes e alta 
concorrência. 
 
4 MODELAGEM DE DADOS  
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Para a implementação da aplicação, a modelagem de dados foi adaptada conforme o modelo 
de banco de dados escolhido: 
 
1. NoSQL (MongoDB e Cassandra):  

Modelagem de Documentos (MongoDB): Os dados são armazenados em documentos JSON, 
permitindo a inclusão de campos aninhados e flexíveis, o que é ideal para perfis de usuários e logs de 
atividades.  

Modelagem de Colunas (Cassandra): As tabelas são desenhadas para suportar grandes 
volumes de dados com alta taxa de escrita, como as transações de e-commerce.   
 
2. NewSQL (CockroachDB):  

Modelagem Relacional: Dados estruturados são armazenados em tabelas com esquemas 
fixos, proporcionando consistência e suporte a transações ACID. Isso é ideal para dados críticos de 
produtos e transações financeiras.  

 
5 CONSIDERAÇÕES FINAIS  

A escolha entre NoSQL e NewSQL depende das necessidades específicas da aplicação. 
NoSQL é excelente para flexibilidade e escalabilidade em dados semi estruturados e não-estruturados, 
enquanto NewSQL oferece o melhor dos dois mundos com escalabilidade e consistência para dados 
estruturados. A combinação dessas tecnologias pode proporcionar uma solução robusta e eficiente 
para aplicações de Big Data.  

 
REFERÊNCIAS 
Documentação oficial do MongoDB, Cassandra e CockroachDB.  
Artigos e estudos de caso sobre implementação de Big Data com NoSQL e NewSQL. 
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APÊNDICE 10 – VISÃO COMPUTACIONAL 
 

A – ENUNCIADO 
 

1) Extração de Características  
  
Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno-

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas 
em diretórios.  O objetivo é classificar as imagens nas categorias correspondentes. Uma base de 
imagens será utilizada para o treinamento e outra para o teste do treino.  

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging) 
disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão 
XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada. 
Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não 
utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de 
treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última 
camada de classificação e armazene os valores da penúltima camada como um vetor de 
características. Após o treinamento, os modelos treinados devem ser validados na base de teste.  

  
Tarefas:  
a) Carregue a base de dados de Treino.  
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).  
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada 

extrator).  
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.  
e) Carregue a base de Teste e execute a tarefa 3 nesta base.  
f) Aplique os modelos treinados nos dados de treino  
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.  
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada  
  

2) Redes Neurais  
  
Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais 

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully 

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data 

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem 
224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será 
necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation 
cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.  

  
Tarefas:  

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício 
anterior  

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation  
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c) Aplique os modelos treinados nas imagens da base de Teste  
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas 

matrizes de confusão.  
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada  

  

 
 
B – RESOLUÇÃO 
 
1- Extração de características 
 Métricas dos modelos: 
 Random Forest- Sensitivity: 0.91, Specificity: 0.39, F1-Score: 0.65 
 SVM-Sensitivity: 1.00, Specificity: 0.00, F1-Score: 0.52 
 RNA- Sensitivity: 1.00, Specificity: 0.00, F1-Score: 0.51 

 
Conclusão: 

Entre os três modelos, o Random Forest parece ser a melhor opção. Ele tem uma sensibilidade 
de 0.91, o que significa que consegue identificar bem as imagens da classe positiva, e uma 
especificidade de 0.39, mostrando que, mesmo que não seja perfeito, ainda consegue diferenciar as 
classes negativas. Já o SVM e o RNA têm uma sensibilidade de 1.00, o que parece muito bom, mas a 
especificidade deles é 0.00, ou seja, eles falham completamente em identificar corretamente as classes 
negativas. Além disso, o F1-Score do Random Forest é o mais alto (0.65), o que indica que ele oferece 
um melhor equilíbrio geral entre precisão e recall, sendo, no fim, o modelo mais confiável para essa 
tarefa. 

 
2- Redes Neurais 
Avaliação do VGG16 (sem augmentation): 
Matriz de confusão: 
  0     1   2    3 
0 [29 13 34 25] 
1 [27 16 33 14] 
2 [30   6 30 24] 
3 [37 12 24 17]  
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FIGURA 55 – AVALIAÇÃO DO VGG16 (SEM ARGUMENTAÇÃO) 

 
FONTE: O autor (2025). 

 
 Avaliação do VGG16 (com augmentation): 
Matriz de confusão: 

0     1   2    3 
0 [33 15 28 25] 
1 [35 10 29 16] 
2 [35 12 29 14] 
3 [20 10 35 25] 
 

FIGURA 56 – AVALIAÇÃO DO VGG16 (COM ARGUMENTAÇÃO) 

 
FONTE: O autor (2025). 

 
Avaliação do ResNet50 (sem augmentation): 
Matriz de confusão: 

0     1   2    3 
0 [67  0  30   4] 
1 [61  0  19 10] 
2 [61  0   22  7] 
3 [58  0   24  8] 
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FIGURA 57 – AVALIAÇÃO DO RESNET50 (SEM ARGUMENTAÇÃO) 

 
FONTE: O autor (2025). 

 
Avaliação do ResNet50 (com augmentation):  

0     1   2    3 
0 [64  0  28   9] 
1 [63  0   21  6] 
2 [59  0   24  7] 
3 [61  0   22   7] 
 

FIGURA 58 – AVALIAÇÃO DO RESNET50 (COM ARGUMENTAÇÃO) 

 
FONTE: O autor (2025). 

 
Conclusão: 

Após a avaliação dos modelos VGG16 e ResNet50, ambos apresentaram desempenhos 
semelhantes, com uma acurácia de 26.15% para o VGG16 e 25.61% para o ResNet50 com Data 
Augmentation. No entanto, o VGG16 teve um desempenho superior, especialmente na classe 0, com 
uma sensibilidade de 66%, enquanto a ResNet50 teve dificuldades em classificar corretamente a classe 
1, resultando em um recall de 0%. 
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 Logo, considerando as métricas de precisão, recall e F1-score, o VGG16 se destaca como a 
melhor escolha devido à sua capacidade mais consistente de identificar as classes, especialmente a 
classe 0. Assim, o VGG16 é o modelo recomendado para a classificação das imagens. 
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APÊNDICE 11 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA 
 

A – ENUNCIADO 
 
Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT" 
 
Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06) 
integrantes. 
 
Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e 
propor soluções responsáveis para lidar com esses dilemas. 
Parâmetros para elaboração do Trabalho: 
 
1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da 
inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas 
éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como usuários, 
desenvolvedores e a sociedade em geral. 
2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do 
ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a 
disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso, 
devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade. 
3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções 
responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas, 
regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. Eles 
devem considerar como essas soluções podem equilibrar os interesses de diferentes partes 
interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade. 
4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os 
alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões 
informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como 
um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais 
aprendidos ao analisar um caso concreto. 
5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500 
e 3000 palavras. 
6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução, 
desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas, 
com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento. 
7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o 
comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em 
informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise. 
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8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições 
desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir 
suas mensagens de maneira sucinta.  
9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com 
as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve-
se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp- 
content/uploads/2022/03/template-artigo-de-periodico.docx 

 
B – RESOLUÇÃO 
 
1 INTRODUÇÃO 
 

Com o avanço da inteligência artificial (IA), assistentes virtuais como o ChatGPT têm sido cada 
vez mais integrados em diferentes setores, incluindo o campo do aconselhamento psicológico online. 
Esta aplicação levanta questões profundas sobre ética, especialmente relacionadas à privacidade dos 
dados dos usuários, qualidade do aconselhamento oferecido, viés algorítmico e responsabilidade ética. 
Este estudo de caso explora essas implicações éticas específicas, oferecendo uma análise crítica do 
uso do ChatGPT em um contexto sensível como o suporte emocional e aconselhamento psicológico 
online. 

 
2 PRIVACIDADE E CONFIDENCIALIDADE  
 

A privacidade e a confidencialidade são preocupações centrais no uso de assistentes virtuais 
como o ChatGPT para aconselhamento psicológico. A natureza sensível das informações 
compartilhadas pelos usuários exige medidas rigorosas para proteger seus dados pessoais contra 
acesso não autorizado e violações de privacidade. Floridi (2020) discute que a proteção de dados é 
essencial para manter a confiança dos usuários e garantir o cumprimento de regulamentações de 
privacidade, como o GDPR. 

Plataformas que implementam ChatGPT devem adotar políticas claras de privacidade e 
segurança de dados, incluindo criptografia robusta, armazenamento seguro e protocolos de acesso 
restrito. É fundamental que os usuários sejam informados de maneira transparente sobre como seus 
dados serão usados e protegidos ao interagir com o assistente virtual. 
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3 QUALIDADE DO ACONSELHAMENTO E RESPONSABILIDADE 
 

Um aspecto crítico do uso do ChatGPT em aconselhamento psicológico é a avaliação da 
qualidade do serviço oferecido em comparação com o fornecido por profissionais humanos. Bostrom e 
Yudkowsky (2014) destacam a importância de avaliar a competência da IA em lidar com questões 
complexas e sensíveis, como as encontradas na psicologia clínica. 

Embora o ChatGPT possa oferecer respostas rápidas e acessíveis, há limitações significativas 
em sua capacidade de compreender nuances emocionais, contexto individual e dinâmicas interativas 
que são essenciais para o aconselhamento eficaz. Isso levanta questões sobre a responsabilidade 
ética das plataformas que oferecem serviços de aconselhamento baseados em IA. Os desenvolvedores 
e os provedores de serviços devem estabelecer diretrizes claras para o uso responsável do ChatGPT 
em contextos terapêuticos, garantindo que o bem-estar dos usuários seja priorizado acima de 
considerações comerciais. 

 
4 VIÉS ALGORÍTMICO E DISCRIMINAÇÃO 
 

A questão do viés algorítmico é um desafio significativo em qualquer aplicação de IA, incluindo 
o aconselhamento psicológico. Mittelstadt et al. (2016) discutem como algoritmos de IA podem 
inadvertidamente perpetuar vieses culturais, raciais ou de gênero, impactando negativamente certos 
grupos demográficos. 

No contexto do ChatGPT, é fundamental implementar técnicas avançadas de mitigação de viés 
algorítmico, como a diversificação dos conjuntos de dados de treinamento, a revisão humana de 
interações críticas e o monitoramento contínuo das respostas geradas pelo assistente virtual. Além 
disso, políticas de inclusão e diversidade devem orientar o desenvolvimento e a implementação de 
algoritmos para evitar discriminações injustas ou prejudiciais. 
 
5 TOMADA DE DECISÃO ÉTICA  

A tomada de decisão ética envolve determinar quando e como o ChatGPT pode ser utilizado 
de maneira ética no aconselhamento psicológico. Jobin et al. (2019) destacam a importância de 
diretrizes éticas robustas que orientem o uso responsável da IA em contextos sensíveis, como saúde 
mental. 

É essencial que as plataformas que oferecem aconselhamento baseado em ChatGPT 
forneçam transparência aos usuários sobre os limites e as capacidades do assistente virtual. Isso inclui 
educar os usuários sobre a natureza da IA, seus propósitos e as expectativas realistas quanto ao tipo 
de suporte emocional que pode ser oferecido. Além disso, é necessário estabelecer procedimentos 
claros para encaminhar usuários para serviços profissionais de saúde mental sempre que necessário, 
garantindo uma abordagem integrada e ética ao cuidado psicológico.  

 
6 PROPOSTA E SOLUÇÕES RESPONSÁVEIS 

Para enfrentar esses desafios éticos, é fundamental implementar soluções responsáveis que 
promovam o uso ético do ChatGPT no aconselhamento psicológico online: 
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1. Políticas Claras de Privacidade e Segurança de Dados: Desenvolver e aplicar políticas 
robustas de privacidade que garantam a proteção adequada dos dados dos usuários. 

2. Diretrizes Éticas Específicas: Estabelecer diretrizes éticas específicas para o uso de IA em 
aconselhamento psicológico, com ênfase na transparência, responsabilidade e respeito aos direitos 
dos usuários. 

3. Mitigação de Viés Algorítmico: Implementar medidas eficazes para identificar e mitigar 
viéses algorítmicos, incluindo revisão humana e diversificação dos conjuntos de dados de 
treinamento. 

4.  Educação e Conscientização dos Usuários: Educar os usuários sobre as capacidades e 
limitações do ChatGPT, promovendo uma compreensão informada do uso de IA no suporte 
emocional.  

5. Integração de Supervisão Humana: Integrar supervisão humana qualificada para monitorar 
e revisar interações críticas, garantindo uma abordagem ética ao aconselhamento psicológico. 
 
7 CONSIDERAÇÕES FINAIS 

Em resumo, o uso do ChatGPT em aconselhamento psicológico online apresenta benefícios 
potenciais significativos, como a expansão do acesso a serviços de suporte emocional. No entanto, 
também levanta desafios éticos complexos que exigem uma abordagem cuidadosa e responsável. Ao 
enfrentar questões de privacidade dos dados, qualidade do serviço, viés algorítmico e tomada de 
decisão ética, é possível desenvolver práticas que promovam o uso ético da IA no cuidado psicológico. 

As propostas de soluções responsáveis destacadas neste estudo de caso são essenciais para 
orientar o desenvolvimento e a implementação de sistemas de IA que  respeitem os princípios éticos 
fundamentais, protegendo o bem-estar dos usuários e promovendo uma sociedade digital mais justa e 
inclusiva.  
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APÊNDICE 12 – GESTÃO DE PROJETOS DE IA 
 

A – ENUNCIADO 
 

1 Objetivo 
 
Individualmente, ler e resumir – seguindo  o template fornecido – um dos artigos abaixo: 
 

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements 
practices and gaps when engineering human-centered Artificial Intelligence systems. Applied 
Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421 

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems: 
Challenges, best practices, and design decisions. The Journal of Systems & Software. 207. 
2024. DOI https://doi.org/10.1016/j.jss.2023.111860  

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for 
machine learning – Adoption, effects, and team assessment. The Journal of Systems & 
Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907  

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development 
of artificial intelligence models – Current state of research and practice. The Journal of 
Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss.2023.111615  

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML? 
Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on 
Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI 
https://doi.org/10.1145/3411764.3445306  

 
2 Orientações adicionais 

 
Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para 

entender o conteúdo dos artigos – caso precise, mas escreva o resumo em língua portuguesa e nas 
suas palavras.  

 
Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo 

escolhido. 
 
No template, você deverá responder às seguintes questões: 

● Qual o objetivo do estudo descrito pelo artigo? 
● Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo? 
● Qual a metodologia que os autores usaram para obter e analisar as informações do estudo? 
● Quais os principais resultados obtidos pelo estudo? 

 
Responda cada questão utilizando o espaço fornecido no template, sem alteração do tamanho 

da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0). 
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Não altere as questões do template. 
 
Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o 

trabalho em PDF. 
 

 
B – RESOLUÇÃO 
 
Qual o objetivo do estudo descrito pelo artigo?  

O objetivo principal do estudo descrito no artigo é abordar uma lacuna significativa na pesquisa 
sobre as práticas recomendadas e os desafios envolvidos no design de arquiteturas para sistemas 
habilitados para aprendizado de máquina (ML). A pesquisa busca compreender, em profundidade, os 
principais obstáculos enfrentados pelos profissionais durante o desenvolvimento desses sistemas, as 
práticas de design mais eficazes e as decisões arquiteturais críticas que impactam diretamente a 
performance e a adaptabilidade dos sistemas de ML. 
 
Qual o problema/oportunidade/situação que levou à necessidade de realização desse estudo? 

O aumento expressivo do uso de soluções de aprendizado de máquina (ML) em diversos 
campos, como defesa cibernética, biologia computacional, robótica e veículos autônomos, tem gerado 
uma demanda crescente e complexa por sistemas de software projetados especificamente para 
suportar ML. Contudo, persiste uma lacuna significativa na compreensão de como os profissionais da 
área percebem e aplicam as decisões de design na arquitetura desses sistemas, bem como nos 
critérios que influenciam essas escolhas. Esse cenário torna-se ainda mais desafiador quando se 
considera a complexidade intrínseca do design arquitetônico de sistemas de ML, que exige o equilíbrio 
de múltiplas qualidades, como desempenho, escalabilidade, segurança e manutenibilidade, além da 
necessidade de integrar perfeitamente os componentes de ML com outros sistemas operacionais e de 
software convencionais.  
 
Qual a metodologia que os autores usaram para obter e analisar as informações do estudo? 

A metodologia do estudo foi cuidadosamente planejada para assegurar uma análise rigorosa e 
abrangente dos dados, combinando várias abordagens metodológicas para reforçar a robustez do 
processo. O estudo foi conduzido em três fases principais: planejamento, condução e documentação, 
cada uma projetada para garantir a validade e a confiabilidade dos resultados. 
 
Quais os principais resultados obtidos pelo estudo? 
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Os principais resultados do estudo revelam correlações detalhadas entre desafios, melhores 
práticas e decisões de design em seis áreas cruciais: arquitetura, dados, evolução, garantia de 
qualidade (QA), modelo e ciclo de vida de desenvolvimento de software (SDLC). Estes achados 
oferecem uma visão aprofundada sobre as especificidades e complexidades do desenvolvimento de 
sistemas habilitados para aprendizado de máquina (ML). Arquitetura: A adoção de padrões e estilos 
arquitetônicos, como a arquitetura de microsserviços, mostrou-se vantajosa ao promover a 
manutenibilidade e a flexibilidade dos sistemas de ML. Dados: Nessa categoria, o estudo identificou 
nove desafios específicos, relacionados a aspectos como o gerenciamento, a visualização e a 
privacidade dos dados. Problemas de qualidade e precisão dos dados, fundamentais para o 
desempenho dos modelos de ML, emergem como áreas em que ainda faltam diretrizes bem definidas 
e práticas de mitigação robustas. Evolução: O estudo destaca a importância de práticas de evolução 
contínua em sistemas ML, enfatizando a necessidade de atualizações regulares dos modelos e do 
pipeline de dados para manter a acurácia e a relevância do sistema ao longo do tempo. Garantia de 
Qualidade (QA): A complexidade dos sistemas ML exige uma abordagem de QA abrangente que 
aborde não apenas a funcionalidade, mas também a confiabilidade e a segurança dos modelos. 
Modelo: A seleção e otimização de modelos de ML é um desafio central identificado no estudo. A 
escolha de algoritmos e frameworks, como TensorFlow e PyTorch, deve ser guiada não apenas pelos 
requisitos do domínio, mas também pelas necessidades específicas de escalabilidade e eficiência do 
sistema. 
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APÊNDICE 13 – FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL 
 
A – ENUNCIADO 
 
1 Classificação (RNA) 

 
Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a 

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação. 
Além disso, fazer uma breve explicação dos seguintes resultados:  

- Gráficos de perda e de acurácia; 
-  Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula 

prática. 
Informações: 

● Base de dados: Fashion MNIST Dataset  
● Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de vestuário. 

É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de dígitos. 
● Tamanho: 70.000 amostras, 784 features (28x28 pixels). 
● Importação do dataset: Copiar código abaixo. 

 

data = tf.keras.datasets.fashion_mnist  

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() 

 

2 Regressão (RNA) 
 
Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a arquitetura 

RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão. Além disso, 
fazer uma breve explicação dos seguintes resultados:  

● Gráficos de avaliação do modelo (loss); 
● Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R²). 

Informações: 

● Base de dados: Wine Quality 
● Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas 

características químicas. A variável target (y) neste exemplo será o score de qualidade do 
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade) 

● Tamanho: 1599 amostras, 12 features. 
● Importação: Copiar código abaixo. 

 

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-

quality/winequality-red.csv" 

data = pd.read_csv(url, delimiter=';') 
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Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para 

português, dessa forma: 

 

data.columns = [ 

    'acidez_fixa',            # fixed acidity 

    'acidez_volatil',         # volatile acidity 

    'acido_citrico',          # citric acid 

    'acucar_residual',        # residual sugar 

    'cloretos',               # chlorides 

    'dioxido_de_enxofre_livre', # free sulfur dioxide 

    'dioxido_de_enxofre_total', # total sulfur dioxide 

    'densidade',              # density 

    'pH',                     # pH 

    'sulfatos',               # sulphates 

    'alcool',                 # alcohol 

    'score_qualidade_vinho'               # quality 

] 

 

Dica 2. Separe os dados (x e y) de tal forma que a última coluna (índice 

-1), chamada score_qualidade_vinho, seja a variável target (y) 

 
3 Sistemas de Recomendação 

 
Implementar o exemplo de Sistemas de Recomendação usando a base de dados 

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de Sistemas 
de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados: 

● Gráficos de avaliação do modelo (loss); 
● Exemplo de recomendação de livro para determinado Usuário. 

Informações: 

● Base de dados: Base_livros.csv 
● Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas), 

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario) 
● Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros 

(formato .csv). 

 

4 Deepdream 
 



162 
 

 

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de um 
felino  - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - Prática 
Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:  

● Imagem onírica obtida por Main Loop; 
● Imagem onírica obtida ao levar o modelo até uma oitava; 
● Diferenças entre imagens oníricas obtidas com  Main Loop e levando o modelo até a oitava. 

Informações: 

● Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg 
● Importação da imagem: Copiar código abaixo. 

 

url = 

"https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-

cat_on_snow.jpg" 

 

Dica: Para exibir a imagem utilizando display (display.html) use o link 

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg 

 

 
B – RESOLUÇÃO 
 
1- Classificação (RNA) 
### 1 Classificação (RNA) 

 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Carregar a base de dados Fashion MNIST 

data = tf.keras.datasets.fashion_mnist 

(x_train, y_train), (x_test, y_test) = data.load_data() 

 

# Normalizar as imagens de 0-255 para 0-1 

x_train, x_test = x_train / 255.0, x_test / 255.0 

 

# Definir o modelo da rede neural 

model = tf.keras.Sequential([ 

    tf.keras.layers.Flatten(input_shape=(28, 28)),  # Flatten a imagem 28x28 para 

um vetor 1D 
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    tf.keras.layers.Dense(128, activation='relu'),  # Camada densa com 128 neurônios 

e ReLU 

    tf.keras.layers.Dropout(0.2),  # Dropout para evitar overfitting 

    tf.keras.layers.Dense(10, activation='softmax')  # Camada de saída com 10 

classes (uma para cada categoria) 

]) 

 

# Compilar o modelo 

model.compile(optimizer='adam', 

              

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 

              metrics=['accuracy']) 

 

# Treinar o modelo 

history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test)) 

 

# Avaliar o modelo no conjunto de teste 

test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2) 

print('\nTest accuracy:', test_acc) 

 

# Gráficos de perda e acurácia durante o treinamento 

# Plotando a acurácia de treino e validação 

plt.figure(figsize=(12, 6)) 

 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Treinamento') 

plt.plot(history.history['val_accuracy'], label='Validação') 

plt.title('Acurácia durante o treinamento') 

plt.xlabel('Épocas') 

plt.ylabel('Acurácia') 

plt.legend() 

 

# Plotando a perda de treino e validação 

plt.subplot(1, 2, 2) 

plt.plot(history.history['loss'], label='Treinamento') 

plt.plot(history.history['val_loss'], label='Validação') 

plt.title('Perda durante o treinamento') 

plt.xlabel('Épocas') 

plt.ylabel('Perda') 

plt.legend() 
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plt.show() 

 

# Mostrar algumas classificações erradas 

predictions = model.predict(x_test) 

incorrect_indices = np.where(np.argmax(predictions, axis=1) != y_test)[0] 

 

# Exibir 5 classificações erradas 

for i in range(5): 

    index = incorrect_indices[i] 

    plt.imshow(x_test[index], cmap=plt.cm.binary) 

    plt.title(f"Predição: {np.argmax(predictions[index])}, Verdadeiro: 

{y_test[index]}") 

    plt.show() 

 
FIGURA 59 – ACURÁCIA E PERDA DURANTE O TREINAMENTO 

 
FONTE: O autor (2025). 

 
A seguir são exibidas 5 imagens com classificações erradas.  
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FIGURA 60 – IMAGENS ERRADAS 

 
FONTE: O autor (2025). 

 
Com base nos gráficos de acurácia e função de perda é possível verificar que o treinamento 

trouxe bons resultados para o modelo, sendo que a acurácia ficou em torno de 88% e a função de 
perda foi reduzida para um valor em torno de 0,34. Observando o gráfico da função de perda, é possível 
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ver que a queda no valor de perda dos dados de validação começa a reduzir, o que pode significar que, 
se o treino fosse realizado com mais épocas, possivelmente teríamos um cenário de overfitting. 

Por fim, visto que o modelo, apesar de ter uma acurácia alta, ainda assim pode cometer erros, 
como é o caso das imagens que foram preditas erradas e estão sendo exibidas na útlima seção do 
caderno, no qual tem a classe que foi predita e a classe real da imagem. 

 
 2- Regressão (RNA) 
import tensorflow as tf 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error, r2_score 

from math import sqrt 

 

#importação dos dados 

 

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-

quality/winequality-red.csv" 

data = pd.read_csv(url, delimiter=';') 

 

data.head() 

 
FIGURA 61 – DADOS DE REGRESSÃO (RNA) 

 
FONTE: O autor (2025). 

 
#mudando nome das colunas 

data.columns = [ 

'acidez_fixa', # fixed acidity 

'acidez_volatil', # volatile acidity 

'acido_citrico', # citric acid 

'acucar_residual', # residual sugar 

'cloretos', # chlorides 

'dioxido_de_enxofre_livre', # free sulfur dioxide 
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'dioxido_de_enxofre_total', # total sulfur dioxide 

'densidade', # density 

'pH', # pH 

'sulfatos', # sulphates 

'alcool', # alcohol 

'score_qualidade_vinho' # quality 

] 

 

data.head() 

 
FIGURA 62 – ALTERAÇÃO DOS NOMES DAS COLUNAS 

 
FONTE: O autor (2025). 

 
print(data.shape) 

(1599, 12) 

 

#separa variáveis explicativas da variável resposta 

x = data[['acidez_fixa', 

'acidez_volatil', 

'acido_citrico', 

'acucar_residual', 

'cloretos', 

'dioxido_de_enxofre_livre', 

'dioxido_de_enxofre_total', 

'densidade', 

'pH', 

'sulfatos', 

'alcool']].values.astype(float) 

 

y = data['score_qualidade_vinho'].values.astype(float) 

 

print(type(x)) 

print(type(y)) 

 

<class 'numpy.ndarray'> 

<class 'numpy.ndarray'> 
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#verificando dados faltantes ou infinito 

 

print(np.isnan(x).any(),np.isnan(y).any()) 

print(np.isinf(x).any(),np.isinf(y).any()) 

 

False False 

False False 

 

#normalização dos dados 

from sklearn.preprocessing import StandardScaler 

 

scaler_x = StandardScaler() 

x = scaler_x.fit_transform(x) 

 

scaler_y = StandardScaler() 

y = scaler_y.fit_transform(y.reshape(-1, 1))  # Para regressão 

 

 

#separando base de treino e teste 

 

x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.3, 

random_state=308) 

 

x_teste 

 

array([[-0.29854743,  0.51495855, -1.13471997, ..., -0.13679827, 

        -0.16611498, -1.05411336], 

       [-1.04543701,  0.57082331,  0.30309297, ...,  0.3167512 , 

        -0.10710191, -0.30317536], 

       [-1.27524919,  0.98980905, -0.87796766, ...,  1.87177795, 

         0.01092425, -0.20930812], 

       ..., 

       [ 0.21852997, -0.65820153,  0.71389667, ..., -0.46076217, 

         0.66006809,  2.04350586], 

       [-1.6774205 , -0.60233677, -0.0050098 , ...,  3.03804801, 

        -0.10710191,  1.76190411], 

       [ 0.27598301,  0.12390519, -1.18607043, ..., -0.65514052, 

        -0.34315421,  0.44776263]]) 
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#criação do modelo 

i = tf.keras.layers.Input(shape=(11,)) 

m = tf.keras.layers.Dense(70, activation='relu')(i) 

m = tf.keras.layers.Dense(1)(m) 

 

modelo_1 = tf.keras.models.Model(inputs=i, outputs=m) 

 

from keras import backend 

 

#funções para r2 e rmse 

def rmse(y_true, y_pred): 

    return 

tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.square(y_pred - 

y_true))) 

 

def r2(y_true, y_pred): 

    media = tf.keras.backend.mean(y_true) 

    ss_res = tf.keras.backend.sum(tf.keras.backend.square(y_true - y_pred)) 

    ss_tot = tf.keras.backend.sum(tf.keras.backend.square(y_true - media)) 

    return (1-ss_res/(ss_tot)) 

 

#ajuste do modelo 

 

optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) 

 

modelo_1.compile(optimizer=optimizer, loss='mse', metrics=[rmse,r2]) 

 

#stops para epocas 

 

early_stops = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, 

restore_best_weights=True) 

 

#treinamento do modelo 

treino_modelo = 

modelo_1.fit(x_treino,y_treino,epochs=1000,validation_data=(x_teste,y_teste),callb

acks = [early_stops]) 

#avaliação do modelo 

plt.plot(modelo_1.history.history['loss'], label='loss') 

plt.plot(modelo_1.history.history['val_loss'], label='val_loss') 

plt.legend() 
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FIGURA 63 – AVALIAÇÃO DO MODELO 

 
FONTE: O autor (2025). 

 
O gráfico acima representa a evolução da função de perda conforme o número de épocas 

aumenta. Observamos queda na função de perda conforme aumenta o número de épocas, o que é 
esperado, indicando que o modelo está aprendendo a minimizar o erro. 
 

#RMSE 

PLT.PLOT(MODELO_1.HISTORY.HISTORY['RMSE'], LABEL='RMSE') 

PLT.PLOT(MODELO_1.HISTORY.HISTORY['VAL_RMSE'], LABEL='VAL_RMSE') 

PLT.LEGEND() 

 
FIGURA 64 – AVALIAÇÃO DO MODELO RMSE 

 
FONTE: O autor (2025). 

 



171 
 

 

O RMSE, também uma medida de erro, diminui a medida que a quantidade de épocas aumenta. 

#plotando r2 

plt.plot(modelo_1.history.history['r2'], label='r2') 

plt.plot(modelo_1.history.history['val_r2'], label='val_r2') 

plt.legend() 

 
FIGURA 65 – AVALIAÇÃO DO MODELO R2 

 

FONTE: O autor (2025). 
O R2 é uma medida de acurácia do modelo, e quanto mais próximo de 1 melhor. Nas primeiras 

épocas ela é bem baixa e vai aumentando conforme a quantidade de épocas aumenta. 

y_hat = modelo_1.predict(x_teste).flatten() 

mse = mean_squared_error(y_teste,y_hat) 

rmse = sqrt(mse) 

r2 = r2_score(y_teste,y_hat) 

print(f'MSE: {mse}') 

print(f'RMSE: {rmse}') 

print(f'R2: {r2}') 

MSE: 0.6280485759170473 
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RMSE: 0.7924951582924954 

R2: 0.3915046095974757 

 
Utilizando os dados de teste, observamos um R2, técnica de acurácia, de 39%, próximo aos 

valores analisados no gráfico de R2 versus épocas para os valores preditos no ajuste do modelo. 
Tentamos ajustar um modelo com métricas de desempenho melhores, através do aumento de 
neurônios, mudança da função de ativação para linear, mudança no parâmetro de patience na técnica 
de early stopping, no entanto não obtivemos melhores resultados. 

 
3- Sistema de recomendação 
csv_path = '/content/base-livros.csv' 

K = 25 

epochs = 50 

batch_size = 1024 

 

# 1. Importação das bibliotecas 

import tensorflow as tf 

from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, Concatenate 

from tensorflow.keras.models import Model 

from tensorflow.keras.optimizers import SGD 

 

from sklearn.utils import shuffle 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# 2.1 Carregamento dos dados no dataframe 

df = pd.read_csv(csv_path) 

 

# 2.2 Visualização básica dos dados 

print(df.dtypes) 

print('-----') 

print('Menor nota: ', df.Notas.min()) 

print('Maior nota: ', df.Notas.max()) 

print('-----') 

print('Shape: ', df.shape) 

df.head() 
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FIGURA 66 – VISUALIZAÇÃO BÁSICA DOS DADOS 

 
FONTE: O autor (2025). 

 
# 3.1 Conversão de tipos de valores para embeddings 

# Converter o ISBN e o ID_usuario para valores categóricos (Embeddings) 

 

df.ISBN = pd.Categorical(df.ISBN) 

df['isbn_cat_codes'] = df.ISBN.cat.codes 

 

 

df.ID_usuario = pd.Categorical(df.ID_usuario) 

df['id_usuario_cat_codes'] = df.ID_usuario.cat.codes 

 

df.Notas = df.Notas.astype(np.float32) 

 

print(df.dtypes) 

df.head() 

 
FIGURA 67 – VALORES CATEGÓRICOS 
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FONTE: O autor (2025). 

 
# 3.2 Conversão de dimensões 

# Obter tamanho das listas de ISBN e ID_usuario únicos 

N = len(set(df.id_usuario_cat_codes)) 

M = len(set(df.isbn_cat_codes)) 

 

print(f"Número de usuários únicos: {N}") 

print(f"Número de livros únicos: {M}") 

 

Número de usuários únicos: 11987 

Número de livros únicos: 128894 

 

# 4.1 Criação de camadas referentes ao usuario 

u = Input(shape=(1, )) 

u_emb = Embedding(N, K)(u) 

u_emb = Flatten()(u_emb) 

 

# 4.2 Criação das camadas referentes ao ISBN 

i = Input(shape=(1, )) 

i_emb = Embedding(M, K)(i) 

i_emb = Flatten()(i_emb) 

 

# Junção dos conjuntos de camadas 

x = Concatenate()([u_emb, i_emb]) 

x = Dense(K, activation='relu')(x) 

x = Dense(1)(x) 

 

model = Model(inputs=[u, i], outputs=x) 

 

# 5.1 Compilar o modelo 

model.compile( 

    loss='mse', 

    optimizer=SGD(learning_rate=0.07, momentum=0.5) 

) 

 

# 5.2 Sumário do modelo 

model.summary() 
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FIGURA 68 – SUMÁRIO DO MODELO 

 
FONTE: O autor (2025). 

 
# 6.1 Separar os dados em treino e teste 

id_usuarios, isbns, notas = shuffle(df.id_usuario_cat_codes, df.isbn_cat_codes, 

df.Notas) 

print("Usuarios: ", len(id_usuarios), " - ", id_usuarios[:10]) 

print("ISBNs: ", len(isbns), " - ", isbns[:10]) 

print("Notas: ", len(notas), " - ", notas[:10]) 

 

n_train = int(0.8 * len(notas)) 

 

train_usuarios = id_usuarios[:n_train] 

train_isbns = isbns[:n_train] 

train_notas = notas[:n_train] 

 

test_usuarios = id_usuarios[n_train:] 

test_isbns = isbns[n_train:] 

test_notas = notas[n_train:] 
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FIGURA 69 – SEPARAÇÃO DOS DADOS DE TREINO E TESTE 

 
FONTE: O autor (2025). 

 
# 6.2 Pré-processamento dos dados de treino e teste 

# Centralização das notas com base na média 

avg_notas = round(notas.mean(), 1) 

train_notas = train_notas - avg_notas 

test_notas = test_notas - avg_notas 

 

print("Média das notas: ", avg_notas) 

print("Notas para treino: ", train_notas) 

print("Notas para teste: ", test_notas) 
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FIGURA 70 – MÉDIA DAS NOTAS DE TREINO E TESTE 

 
FONTE: O autor (2025). 

 
# 7. Treinar o modelo 

x_train = [train_usuarios, train_isbns] 

y_train = train_notas 

 

x_test = [test_usuarios, test_isbns] 

y_test = test_notas 

 

r = model.fit( 

    x=x_train, 

    y=y_train, 

    epochs=epochs, 

    batch_size=batch_size, 

    verbose=2, 

    validation_data=(x_test, y_test) 

) 

# 8. Plotar a função de perda 

plt.plot(r.history['loss'], label='Loss') 

plt.plot(r.history['val_loss'], label='Validation Loss') 

plt.legend() 

plt.show() 
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FIGURA 71 – GRÁFICO DA FUNÇÃO DE PERDA 

 
FONTE: O autor (2025). 

 
# 9.1 Gerar um array com usuário único 

input_usuario = np.repeat(a=203, repeats=M) 

books = np.array(list(set(isbns))) 

 

print("input_usuario: ", input_usuario) 

print("books: ", books) 

print("len input_user: ", len(input_usuario)) 

print("len books: ", len(books)) 

 

input_usuario:  [203 203 203 ... 203 203 203] 

books:  [     0      1      2 ... 128891 128892 128893] 

len input_user:  128894 

len books:  128894 

 

# 9.3 Tratamento da predição 

notas_finais = preds.flatten() + avg_notas 

 

max_idx = np.argmax(notas_finais) 

result = df[df.isbn_cat_codes == books[max_idx]] 

print(f"Recomendação: {result.Titulo.values[0]} por {result.Autor.values[0]}. Nota: 

{round(notas_finais[max_idx], 1)} ") 

 

Recomendação: The Outside Dog (I Can Read Book 3) por Charlotte Pomerantz. Nota: 

10.300000190734863  
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Conclusões: 
Com base no gráfico de perda aparentemente pode estar ocorrendo um overfitting (por volta 

da epoch 10 em que a função de perda dos dados de treino começa a cair ao passo que a função de 
perda dos dados de validação começam a subir). Foram realizados testes alterando diversos 
parâmtros, como o tamanho do embedding, batch size, learning rate, momentum, função de ativação e 
atributo utilizado para o treino (título do livro ao invés de ISBN). Em geral o mesmo comportamento foi 
observado, sendo que em alguns casos acabava levando mais epochs para se notar uma redução 
significativa na função de perda. 
 
4- Deepdream 
## 1. Importação das bibliotecas 

 

import tensorflow as tf 

import numpy as np 

import matplotlib as mpl 

import IPython.display as display 

import PIL.Image 

 

## 2. Importação da imagem 

 

url = 'https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-

cat_on_snow.jpg' 

 

# Download da imagem e gravação em array Numpy 

def download(url, max_dim=None): 

  name = url.split('/')[-1] 

  image_path = tf.keras.utils.get_file(name, origin=url) 

  img = PIL.Image.open(image_path) 

  if max_dim: 

    img.thumbnail((max_dim, max_dim)) 

  return np.array(img) 

 

# Normalização da imagem 

def deprocess(img): 

  img = 255*(img + 1.0)/2.0 

  return tf.cast(img, tf.uint8) 

 

# Mostra a imagem 

def show(img): 

  display.display(PIL.Image.fromarray(np.array(img))) 
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# Redução do tamanho da imagem para facilitar o trabalho da RNN 

original_img = download(url, max_dim=500) 

show(original_img) 

display.display(display.HTML('Image cc-by: <a 

"href=https://commons.wikimedia.org/wiki/File:Felis_catus-

cat_on_snow.jpg">Von.grzanka</a>')) 

 
FIGURA 72 – DEEPDREAM 

 
FONTE: O autor (2025). 

 
## 3. Preparar o modelo de extração de recursos 

base_model = tf.keras.applications.InceptionV3(include_top=False, 

weights='imagenet') 

 

# Maximizando as ativações das camadas 

names = ['mixed6', 'mixed8'] 

layers = [base_model.get_layer(name).output for name in names] 

 

# Criação do modelo 

dream_model = tf.keras.Model(inputs=base_model.input, outputs=layers) 

 

## 4. Cálculo da perda (loss) 
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def calc_loss(img, model): 

  # Passe a imagem pelo modelo para recuperar as ativações. 

  # Converte a imagem em um batch de tamanho 1. 

  img_batch = tf.expand_dims(img, axis=0) 

  layer_activations = model(img_batch) 

  if len(layer_activations) == 1: 

    layer_activations = [layer_activations] 

 

  losses = [] 

  for act in layer_activations: 

    loss = tf.math.reduce_mean(act) 

    losses.append(loss) 

 

  return  tf.reduce_sum(losses) 

## 5. Subida de gradiente (Gradient ascent) 

 

class DeepDream(tf.Module): 

  def __init__(self, model): 

    self.model = model 

 

  @tf.function( 

      input_signature=( 

        tf.TensorSpec(shape=[None,None,3], dtype=tf.float32), 

        tf.TensorSpec(shape=[], dtype=tf.int32), 

        tf.TensorSpec(shape=[], dtype=tf.float32),) 

  ) 

  def __call__(self, img, steps, step_size): 

      print("Tracing") 

      loss = tf.constant(0.0) 

 

      for n in tf.range(steps): 

        with tf.GradientTape() as tape: 

          # Gradientes relativos a img 

          tape.watch(img) 

          loss = calc_loss(img, self.model) 

 

        # Calculo do gradiente da perda em relação aos pixels da imagem de entrada. 

        gradients = tape.gradient(loss, img) 

 

        # Normalizacao dos gradintes 
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        gradients /= tf.math.reduce_std(gradients) + 1e-8 

 

        # Na subida gradiente, a "perda" é maximizada. 

        # Você pode atualizar a imagem adicionando diretamente os gradientes (porque 

eles têm o mesmo formato!) 

        img = img + gradients*step_size 

        img = tf.clip_by_value(img, -1, 1) 

 

      return loss, img 

 

deepdream = DeepDream(dream_model) 

 

## 6. Circuito princial (Main Loop) 

def run_deep_dream_simple(img, steps=100, step_size=0.01): 

 

  img = tf.keras.applications.inception_v3.preprocess_input(img) 

  img = tf.convert_to_tensor(img) 

  step_size = tf.convert_to_tensor(step_size) 

  steps_remaining = steps 

  step = 0 

  while steps_remaining: 

    if steps_remaining>100: 

      run_steps = tf.constant(100) 

    else: 

      run_steps = tf.constant(steps_remaining) 

    steps_remaining -= run_steps 

    step += run_steps 

 

    loss, img = deepdream(img, run_steps, tf.constant(step_size)) 

 

    display.clear_output(wait=True) 

    show(deprocess(img)) 

    print ("Step {}, loss {}".format(step, loss)) 

 

 

  result = deprocess(img) 

  display.clear_output(wait=True) 

  show(result) 

 

  return result 
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dream_img = run_deep_dream_simple(img=original_img, 

                                  steps=100, step_size=0.01) 

 
FIGURA 73 – RESULTADO DO DEEPDREAM 

 
FONTE: O autor (2025). 

 
## 7. Levando o modelo até um oitava 

import time 

start = time.time() 

 

OCTAVE_SCALE = 1.30 

 

img = tf.constant(np.array(original_img)) 

base_shape = tf.shape(img)[:-1] 

float_base_shape = tf.cast(base_shape, tf.float32) 

 

for n in range(-2, 3): 

  new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.int32) 

 

  img = tf.image.resize(img, new_shape).numpy() 

 

  img = run_deep_dream_simple(img=img, steps=50, step_size=0.01) 

 

display.clear_output(wait=True) 
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img = tf.image.resize(img, base_shape) 

img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8) 

show(img) 

 

end = time.time() 

end-start 

 
FIGURA 74 – RESULTADO DO DEEPDREAM ATÉ UM OITAVA 

 
FONTE: O autor (2025). 

 
Imagem onírica obtida por Main Loop; 

Após o processamento pelo Main Loop com camadas Mixed6 e Mixed8, que são partes da rede 
neural Inception (usada no treinamento de visão computacional), padrões visuais abstratos e 
psicodélicos surgem sobre a imagem. Esses padrões geralmente lembram estruturas orgânicas como 
olhos, espirais ou texturas semelhantes a folhas e animais. 

A técnica funciona "exagerando" características que a rede neural detecta, criando esse efeito 
de sonho surrealista, como se a máquina estivesse projetando sua própria interpretação da imagem. 
 
Imagem onírica obtida ao levar o modelo até uma oitava; 

Após o processamento com a técnica de oitavas, como resultado a imagem original do felino 
em um cenário de neve foi transformada em uma versão onírica com padrões ainda mais visíveis e 
elaborados. Nessa versão, há a impressão de múltiplas texturas e formas, como olhos e detalhes 
geométricos, espalhados de maneira fractal sobre a pelagem do animal e o ambiente ao redor. 

Esse efeito mais refinado e detalhado é característico do uso das oitavas, pois ele permite que 
a rede neural detecte e realce padrões tanto em níveis macro (grandes formas) quanto micro (detalhes 
finos), gerando uma aparência mais complexa e psicodélica. 
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Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava. 

Main Loop: Foca no processamento direto da imagem em uma única etapa ou em camadas 
específicas da rede neural (ex. Mixed6, Mixed8). Os padrões visuais oníricos surgem de forma mais 
sutil e menos detalhada. As formas, como olhos, espirais ou texturas, aparecem mais uniformemente 
distribuídas pela imagem, mas com menos refinamento em pequenas escalas. 

Levando o modelo até a oitava: A imagem é processada em múltiplas resoluções (oitavas), 
começando em baixa resolução e refinando progressivamente até atingir a imagem completa. O 
resultado é mais detalhado e complexo, com padrões em múltiplas escalas (macro e micro), criando 
uma aparência mais fractal e elaborada. Formas como olhos e texturas são mais visíveis, sobrepostas 
e densamente distribuídas, dando um aspecto mais psicodélico. 

Resumo: A técnica de oitavas gera imagens mais detalhadas e refinadas ao realçar padrões 
em várias escalas, enquanto o Main Loop tende a produzir um efeito mais sutil e homogêneo. 
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APÊNDICE 14 – VISUALIZAÇÃO DE DADOS E STORYTELLING 
 
A – ENUNCIADO 
 

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que 
possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e 
com a ferramenta de sua escolha) 

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os 
conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu 
possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam, 
quais possíveis ações podem ser feitas com base neles.  

Entregue em um PDF: 

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que possa 
ser melhorada); 

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que será 
desenvolvido; 

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de 
sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos) 

B – RESOLUÇÃO 
. 

O conjunto de dados brutos: 
Visualização de dados a ser melhorada, gráfico apresentado no aplicativo de monitoramento 

de atividades físicas Samsung Health. 
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FIGURA 75 – GRÁFICO ATUAL MONITORAMENTO SAMSUNG HEALTH 

 
FONTE: O autor (2025). 

 
Explicação do contexto: 
Esta visualização é voltada para indivíduos interessados em saúde e bem-estar, pessoas que 

querem compreender melhor seus padrões diários e adotar mudanças positivas. Também é útil para 
treinadores, profissionais de saúde e pesquisadores em busca de dados para auxiliar em programas 
de saúde personalizados. A visualização de dados apresentada é uma ferramenta poderosa para 
interpretar padrões de atividade física ao longo de um dia típico. Com três gráficos de barras ilustrando 
os "Passos", o "Tempo ativo" e as "Calorias da atividade", essa narrativa oferece insights sobre 
comportamento, saúde e potencial de melhoria. De forma geral, essa narrativa destaca como pequenas 
mudanças baseadas na análise de dados podem levar a grandes transformações no estilo de vida e 
na saúde geral. 
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FIGURA 76 – NOVO GRÁFICO DE MONITORAMENTO PROPOSTO 

 
FONTE: O autor (2025). 

 
Escolha sobre o tipo de visualização: 

A escolha pelo gráfico de barras se dá pelo fato da visualização ser clara, direta e intuitiva, 
sendo considerado uma das melhores opções para interpretar dados. Abaixo vou elencar alguns pontos 
que corroboram com essa afirmação: 

Comparação simples: Os gráficos de barras permitem uma fácil comparação entre diferentes 
categorias ou conjuntos de dados. As alturas ou comprimentos das barras oferecem uma representação 
visual que é rapidamente compreendida.  

Versatilidade: Eles são adequados tanto para dados quantitativos quanto qualitativos, 
tornando-os uma escolha flexível para uma ampla gama de cenários.  

Leitura rápida: Nosso cérebro processa tamanhos e comprimentos com facilidade, permitindo 
que os dados sejam interpretados rapidamente sem a necessidade de cálculos adicionais.  
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Detectar tendências: Com gráficos de barras, é fácil identificar tendências, como a categoria 
com maior ou menor valor.  

Clareza visual: Em comparação com outros tipos de gráficos, como os de pizza, que podem se 
tornar confusos com muitas categorias, os gráficos de barras mantêm sua clareza mesmo com mais 
dados. 
Escolha sobre a ferramenta utilizada: 

O Infogram é amplamente reconhecido como uma das melhores ferramentas para 
desenvolvimento de gráficos devido à sua combinação de simplicidade, versatilidade e recursos 
avançados. Ele combina uma interface intuitiva onde é projetado para ser fácil de usar, mesmo para 
quem não tem experiência em design ou análise de dados. Variedade de opções com uma ampla gama 
de tipos de gráficos, como barras, linhas, pizza, mapas de calor e nuvens de palavras. Interatividade 
onde encontramos a capacidade de criar gráficos interativos, que engajam o público e tornam a 
apresentação de dados mais dinâmica. Outros pontos fortes da ferramenta também combinam 
integração de dados, permitindo importar dados de várias fontes, como planilhas, bancos de dados e 
até mesmo atualizações em tempo real, facilitando a criação de visualizações precisas e atualizadas. 
Personalização, os usuários podem ajustar cores, fontes, rótulos e outros elementos visuais para 
alinhar os gráficos à identidade visual de sua marca ou projeto e o compartilhamento onde os gráficos 
criados podem ser incorporados em sites, compartilhados em redes sociais ou exportados em formatos 

como imagens ou vídeos. 
Descrição da narrativa/storytelling dessa visualização de dados: 
Objetivo da visualização: 

O propósito central é entender a rotina física diária de uma pessoa, identificando momentos 
de maior e menor atividade. Isso serve como base para decisões informadas que promovam um estilo 
de vida mais saudável e equilibrado. 
O que esses dados significam? 

1. Passos: Este gráfico evidencia os períodos de maior locomoção. Os picos observados 
podem sugerir deslocamentos como caminhar para o trabalho, fazer exercícios ou realizar tarefas do 
dia a dia. 

2. Tempo ativo / Minutos: Ele complementa o gráfico de passos ao demonstrar não apenas a 
movimentação, mas a duração dela. Este dado ressalta momentos de maior continuidade na atividade 
física. 

3. Calorias da atividade: Aqui, o impacto do esforço físico é traduzido em energia consumida, 
mostrando o resultado direto dos movimentos do dia.  
Possíveis ações com base nos dados: 

����  Planejamento otimizado de exercícios: Identificar os horários em que a pessoa já é mais 
ativa pode ajudar a criar rotinas de treino eficazes nesses períodos. 

���  Redução da inatividade: Se houver momentos de baixa atividade, isso pode ser um gatilho 
para adicionar pausas para alongamento ou pequenas caminhadas. 

����  Monitoramento de progresso: Com comparações ao longo do tempo, é possível avaliar 
melhorias e redirecionar metas de atividade física. 
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APÊNDICE 15 – TÓPICOS EM INTELIGÊNCIA ARTIFICIAL 
 
A – ENUNCIADO 
 
1) Algoritmo Genético 

 
Problema do Caixeiro Viajante 
 
A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab, 

ou em C ou em Java. 
 
Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita 

simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida). 
 
Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades 

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso 
de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem. 

 
Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas 

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado 
de 100 por 100 pixels. 

 
O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na 

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações. 
Gere as imagens em 2d dos pontos (cidades) e do caminho. 

 
Sugestão:  

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida 
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas posições 
de 1 a 99 deverão ser definidas pelo algoritmo genético. 

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos). 
(3) Utilize no mínimo uma população com 100 indivíduos; 
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação; 
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento (crossover-

ox); 
(6) Preserve sempre a melhor solução de uma geração para outra. 

 
Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”. 
 

2) Compare a representação de dois modelos vetoriais 
 
Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que 

poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de 
palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão 
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produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e 
objetiva. 

 
O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após 

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a 
PCA. 

 
O PDF deverá conter o código-fonte e as imagens obtidas. 

 
B – RESOLUÇÃO 
 
1- Algoritmo Genético 

import numpy as np 

import matplotlib.pyplot as plt 

import random 

from itertools import permutations 

from sklearn.decomposition import PCA 

 

# Definição dos parâmetros do problema 

NUM_CIDADES = 100 

ESPACO_LIMITE = 100 

POPULACAO_SIZE = 100 

GERACOES = 1000 

MUTACAO_RATE = 0.01 

CROSSOVER_RATE = 0.9 

 

# Gerar coordenadas aleatórias para as cidades 

cidades = np.random.rand(NUM_CIDADES, 2) * ESPACO_LIMITE 

 

# Função de cálculo da distância euclidiana 

def calcular_distancia(percurso): 

    distancia = 0 

    for i in range(len(percurso) - 1): 

        distancia += np.linalg.norm(cidades[percurso[i]] - cidades[percurso[i + 

1]]) 

    distancia += np.linalg.norm(cidades[percurso[-1]] - cidades[percurso[0]])  # 

Retorno à cidade inicial 

    return distancia 

 

# Inicializar população aleatória 
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def inicializar_populacao(): 

    populacao = [] 

    for _ in range(POPULACAO_SIZE): 

        percurso = list(range(NUM_CIDADES)) 

        random.shuffle(percurso) 

        populacao.append(percurso) 

    return populacao 

 

# Função de seleção por torneio 

def selecao(populacao): 

    candidatos = random.sample(populacao, 5) 

    return min(candidatos, key=calcular_distancia) 

 

# Operador de crossover OX (Order Crossover) 

def crossover(pai1, pai2): 

    tamanho = len(pai1) 

    inicio, fim = sorted(random.sample(range(tamanho), 2)) 

    filho = [-1] * tamanho 

    filho[inicio:fim] = pai1[inicio:fim] 

    ptr = fim 

    for gene in pai2: 

        if gene not in filho: 

            if ptr >= tamanho: 

                ptr = 0 

            filho[ptr] = gene 

            ptr += 1 

    return filho 

 

# Operador de mutação (swap entre duas cidades) 

def mutacao(percurso): 

    if random.random() < MUTACAO_RATE: 

        i, j = random.sample(range(len(percurso)), 2) 

        percurso[i], percurso[j] = percurso[j], percurso[i] 

    return percurso 

 

# Algoritmo Genético 

def algoritmo_genetico(): 

    populacao = inicializar_populacao() 

    melhor_percurso = min(populacao, key=calcular_distancia) 

    melhor_distancia = calcular_distancia(melhor_percurso) 
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    for _ in range(GERACOES): 

        nova_populacao = [] 

        for _ in range(int(POPULACAO_SIZE * CROSSOVER_RATE)): 

            pai1, pai2 = selecao(populacao), selecao(populacao) 

            filho = crossover(pai1, pai2) 

            filho = mutacao(filho) 

            nova_populacao.append(filho) 

        while len(nova_populacao) < POPULACAO_SIZE: 

            nova_populacao.append(selecao(populacao)) 

        populacao = nova_populacao 

        melhor_atual = min(populacao, key=calcular_distancia) 

        melhor_atual_distancia = calcular_distancia(melhor_atual) 

        if melhor_atual_distancia < melhor_distancia: 

            melhor_percurso, melhor_distancia = melhor_atual, 

melhor_atual_distancia 

 

    return melhor_percurso, melhor_distancia 

 

# Função para plotar um percurso 

def plotar_percurso(percurso, titulo): 

    plt.figure(figsize=(8, 8)) 

    caminho = cidades[percurso + [percurso[0]]] 

    plt.plot(caminho[:, 0], caminho[:, 1], 'bo-') 

    plt.title(titulo) 

    plt.show() 

 

# Primeira solução aleatória 

populacao = inicializar_populacao() 

solucao_inicial = populacao[0] 

distancia_inicial = calcular_distancia(solucao_inicial) 

plotar_percurso(solucao_inicial, f'Solução Inicial - Distância: 

{distancia_inicial:.2f}') 

 

# Melhor solução após evolução 

melhor_percurso, melhor_distancia = algoritmo_genetico() 

plotar_percurso(melhor_percurso, f'Melhor Solução - Distância: 

{melhor_distancia:.2f}') 

 

# Aplicação da PCA em modelos vetoriais de um texto 
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def aplicar_pca(modelo1, modelo2): 

    dados = np.vstack((modelo1, modelo2)) 

    pca = PCA(n_components=2) 

    resultado_pca = pca.fit_transform(dados) 

    plt.figure(figsize=(8, 6)) 

    plt.scatter(resultado_pca[:len(modelo1), 0], resultado_pca[:len(modelo1), 1], 

label='Modelo 1', alpha=0.7) 

    plt.scatter(resultado_pca[len(modelo1):, 0], resultado_pca[len(modelo1):, 1], 

label='Modelo 2', alpha=0.7) 

    plt.legend() 

    plt.title("Visualização com PCA") 

    plt.show() 

 

# Exemplo de uso 

modelo1 = np.random.rand(50, 300)  # Exemplo de embeddings de palavras 

modelo2 = np.random.rand(50, 300) 

aplicar_pca(modelo1, modelo2) 

FIGURA 77 – SOLUÇÃO INICIAL  

 
FONTE: O autor (2025). 

 
A seguir temos a melhor solução. 
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FIGURA 78 – MELHOR SOLUÇÃO 

 
FONTE: O autor (2025). 

FIGURA 79 – VISUALIZAÇÃO COM PCA 

 
FONTE: O autor (2025). 

 
2- Compare a representação de dois modelos vetoriais 
import matplotlib.pyplot as plt 

from sklearn.decomposition import PCA 

from sklearn.feature_extraction.text import TfidfVectorizer 

 

# Aplicação da PCA em representações vetoriais de textos 

textos = [ 

    "O cachorro correu pelo parque e brincou com a bola.", 

    "O gato dormiu no sofá durante a tarde inteira.", 

    "As crianças brincaram no parque e correram felizes.", 

    "O leão é um animal selvagem que vive na savana.", 

    "O cachorro e o gato dormiram juntos na cama.", 
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    "O parque estava cheio de crianças brincando e correndo." 

] 

 

# Converter textos para vetores usando TF-IDF 

vectorizer = TfidfVectorizer() 

vetores_texto = vectorizer.fit_transform(textos).toarray() 

 

# Aplicar PCA 

pca = PCA(n_components=2) 

resultado_pca = pca.fit_transform(vetores_texto) 

 

# Plotar os vetores projetados 

plt.figure(figsize=(8, 6)) 

plt.scatter(resultado_pca[:, 0], resultado_pca[:, 1], color='blue', alpha=0.7) 

for i, txt in enumerate(textos): 

    plt.annotate(f'T{i+1}', (resultado_pca[i, 0], resultado_pca[i, 1])) 

 

plt.title("Visualização com PCA de Representações Textuais") 

plt.xlabel("Componente Principal 1") 

plt.ylabel("Componente Principal 2") 

plt.show() 

 

FIGURA 80 – VISUALIZAÇÃO COM PCA DE REPRESENTAÇÕES TEXTUAIS 

 
FONTE: O autor (2025). 


