

UNIVERSIDADE FEDERAL DO PARANÁ

EVERTON BELARMINO DA SILVA

MEMORIAL DE PROJETOS: EXTRAÇÃO DE ATRIBUTOS EM VISÃO
COMPUTACIONAL

CURITIBA
2025

EVERTON BELARMINO DA SILVA

MEMORIAL DE PROJETOS: EXTRAÇÃO DE ATRIBUTOS EM VISÃO
COMPUTACIONAL

Memorial de Projetos apresentado ao curso de
Especialização em Inteligência Artificial Aplicada,
Setor de Educação Profissional e Tecnológica,
Universidade Federal do Paraná, como requisito
parcial à obtenção do título de Especialista em
Inteligência Artificial Aplicada.

Orientador: Prof. Dr. Razer Anthom Nizer Rojas
Montaño

CURITIBA
2025

AGRADECIMENTOS

A realização deste trabalho acadêmico representa a concretização de um ciclo
de muito aprendizado e dedicação, e seria impossível sem o apoio e a contribuição
de pessoas essenciais.

Primeiramente, desejo expressar minha profunda gratidão à minha família. Seu
amor incondicional, compreensão e incentivo constante foram o alicerce fundamental
para que eu pudesse superar os desafios e manter o foco em meus objetivos. A
paciência e o suporte nos momentos de maior exigência foram inestimáveis.

Aos meus professores, que com sua paixão pelo ensino, conhecimento vasto
e orientação precisa, guiaram-me ao longo desta jornada acadêmica. Em especial,
agradeço ao Professor Dr. Razer Anthom N. R. Montaño, pela confiança depositada
em meu trabalho, pela valiosa mentoria e pelas discussões enriquecedoras que foram
cruciais para o desenvolvimento deste estudo. Seu direcionamento foi um pilar
fundamental.

Por fim, estendo meus agradecimentos aos colegas de trabalho e colegas de
sala pelo ambiente colaborativo e pelas trocas de ideias que tanto agregaram que, de
diversas formas, contribuíram para o sucesso deste projeto. A colaboração e o apoio
de todos foram indispensáveis para a conclusão bem-sucedida deste trabalho.

A cada um de vocês, meu sincero muito obrigado.

RESUMO

A extração de atributos é um pilar da Visão Computacional, servindo como uma
ponte que transforma dados brutos de imagem — volumosos e não estruturados —
em representações compactas e significativas. Este processo é essencial para que as
máquinas possam executar tarefas complexas como reconhecimento de objetos,
segmentação e navegação autônoma. A principal motivação para essa extração é a
maldição da dimensionalidade, um fenômeno onde a altíssima dimensão dos dados
de imagem prejudica a eficiência dos algoritmos de aprendizado de máquina, tornando
os dados esparsos e os modelos menos precisos. Historicamente, a área evoluiu de
métodos manuais e heurísticos para abordagens automáticas impulsionadas pelo
Deep Learning, que representou uma revolução. As redes neurais profundas são
capazes de aprender hierarquias de características ricas e complexas diretamente dos
dados, superando as limitações dos métodos antigos que descartavam muita
informação para manter a tratabilidade computacional. No entanto, o poder e a escala
das técnicas modernas de Deep Learning trazem desafios éticos e práticos
significativos e interconectados. Questões como o viés algorítmico (importado de
grandes conjuntos de dados), a privacidade, a segurança contra ataques adversariais,
a falta de interpretabilidade dos modelos (o problema da caixa-preta) e o alto consumo
de energia formam uma teia complexa de consequências. A busca por maior precisão
muitas vezes agrava esses outros problemas. Portanto, embora a evolução da
extração de atributos represente um notável avanço tecnológico, ela impõe a
responsabilidade de gerenciar suas profundas e interligadas consequências sociais e
técnicas.

Palavras-chave: visão computacional; pixel; extração de atributos; aprendizagem
profunda; maldição da dimensionalidade.

ABSTRACT

Feature extraction is a cornerstone of Computer Vision, serving as a bridge that
transforms raw image data — which is bulky and unstructured — into compact and
meaningful representations. This process is essential for machines to perform complex
tasks such as object recognition, segmentation, and autonomous navigation. The
primary motivation for this extraction is the "curse of dimensionality," a phenomenon
where the extremely high dimension of image data impairs the efficiency of machine
learning algorithms, making the data sparse and the models less accurate. Historically,
the field has evolved from manual and heuristic methods to automated approaches
driven by Deep Learning, which marked a revolution. Deep neural networks are
capable of learning rich and complex hierarchies of features directly from data,
overcoming the limitations of older methods that discarded too much information to
maintain computational tractability. However, the power and scale of modern Deep
Learning techniques bring significant and interconnected ethical and practical
challenges. Issues such as algorithmic bias (imported from large datasets), privacy,
security against adversarial attacks, the lack of model interpretability (the "black box"
problem), and high energy consumption form a complex web of consequences. The
pursuit of greater accuracy often exacerbates these other problems. Therefore,
although the evolution of feature extraction represents a remarkable technological
advancement, it imposes the responsibility of managing its profound and interlinked
social and technical consequences.

Keywords: computer vision; pixel; feature extraction; deep learning; curse of
dimensionality.

SUMÁRIO

1 PARECER TÉCNICO .. 8
REFERÊNCIAS .. 12
APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 13
APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA 20
APÊNDICE 3 – LINGUAGEM R .. 32
APÊNDICE 4 – ESTATÍSTICA APLICADA I .. 49
APÊNDICE 5 – ESTATÍSTICA APLICADA II ... 58
APÊNDICE 6 – ARQUITETURA DE DADOS ... 75
APÊNDICE 7 – APRENDIZADO DE MÁQUINA .. 93
APÊNDICE 8 – DEEP LEARNING .. 111
APÊNDICE 9 – BIG DATA .. 145
APÊNDICE 10 – VISÃO COMPUTACIONAL ... 148
APÊNDICE 11 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA 153
APÊNDICE 12 – GESTÃO DE PROJETOS DE IA .. 157
APÊNDICE 13 – FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL 160
APÊNDICE 14 – VISUALIZAÇÃO DE DADOS E STORYTELLING 186
APÊNDICE 15 – TÓPICOS EM INTELIGÊNCIA ARTIFICIAL 190

8

1 PARECER TÉCNICO

A extração de atributos constitui um pilar fundamental na Visão Computacional,
servindo como a ponte conceitual e algorítmica entre os dados brutos de imagem,
inerentemente não estruturados e de alta dimensionalidade, e as representações
significativas e de alto nível que permitem a compreensão computacional (Szeliski,
2022). Esta etapa é crucial para a capacidade dos sistemas de entender o mundo
visual, possibilitando a execução de tarefas complexas como reconhecimento de
objetos, detecção de padrões, segmentação de imagens e navegação autônoma
(Forsyth; Ponce, 2012).

Historicamente, a área evoluiu de métodos manuais e heurísticos, que
demandavam grande expertise humana para o design de características, para
abordagens automáticas e hierárquicas impulsionadas pelo Deep Learning. Essa
transição marcou uma revolução na forma como as máquinas interpretam o conteúdo
visual, expandindo significativamente as fronteiras da aplicabilidade da Visão
Computacional em diversos setores, desde a medicina à automação industrial
(Szeliski, 2022).

Na sua essência, a Visão Computacional busca desenvolver os métodos
algorítmicos e as representações que permitem a uma máquina adquirir, processar,
analisar e compreender dados visuais para produzir representações, descrições e
interpretações significativas do mundo (Szeliski, 2022). Os dados brutos, na forma de
imagens digitais, são matrizes de valores de pixel que, embora contenham toda a
informação visual, são excessivamente volumosos e redundantes para uso direto em
tarefas de alto nível (Bishop, 2006). A extração de atributos é, portanto, o processo
transformacional que converte esses dados brutos em um formato mais compacto,
informativo e tratável computacionalmente.

9

Este processo pode ser formalmente entendido como um passo de
concentração de informação (Bishop, 2006). Ele visa reduzir a dimensionalidade
massiva dos dados de imagem para um conjunto gerenciável de vetores de atributos,
descartando informações redundantes e focando em entidades que são invariantes a
condições variáveis, como ponto de vista e iluminação (Forsyth; Ponce, 2012). Esta
transformação é o que permite que sistemas computacionais realizem tarefas de nível
médio e alto, como segmentação, descrição de objetos e reconhecimento de cenas,
que estão no cerne da Visão Computacional (Szeliski, 2022). Sem essa etapa de
abstração, os algoritmos de aprendizado de máquina seriam sobrecarregados pela
complexidade e pela escala dos dados de pixel brutos, tornando tarefas como o
reconhecimento de objetos praticamente inviáveis.

A principal motivação teórica para a extração de atributos reside no fenômeno
conhecido como a maldição da dimensionalidade (curse of dimensionality) (Liu; Lin,
2023). Este termo descreve uma série de problemas que surgem ao trabalhar com
dados em espaços de alta dimensão. O espaço de todas as imagens possíveis é um
exemplo primordial de um espaço de altíssima dimensão; uma imagem modesta de
256x256 pixels em tons de cinza já corresponde a um ponto em um espaço com
65.536 dimensões. Nesses espaços vastos, os dados tornam-se inerentemente
esparsos (Liu; Lin, 2023). A distância entre quaisquer dois pontos tende a se tornar
quase uniforme, tornando ineficazes os métodos baseados em vizinhança como o k-
NN, além disso a quantidade de dados necessária para cobrir adequadamente o
espaço e treinar um modelo generalizável cresce exponencialmente com o número de
dimensões.

Na prática, isso significa que, à medida que a dimensionalidade dos dados
aumenta, o desempenho dos classificadores e de outros modelos de aprendizado de
máquina pode se degradar, um fenômeno contraintuitivo que destaca a necessidade
de uma representação mais eficiente (Van Der Maaten; Postma; Van Den Herik,
2009). A extração de atributos aborda diretamente essa maldição, seu objetivo é
mapear os dados de um espaço de alta dimensão para um espaço de baixa dimensão
que seja mais eficaz para a tarefa em questão, eliminando informações redundantes
ou irrelevantes e preservando as características mais salientes e discriminativas (Van
Der Maaten; Postma; Van Den Herik, 2009). Ao fazer isso, não apenas se reduz o
custo computacional e de armazenamento, mas também melhora a eficiência e a
precisão dos algoritmos subsequentes, tornando o aprendizado de máquina em dados
visuais uma tarefa tratável.

10

A extração de atributos é um processo que cria um novo conjunto de atributos
a partir do conjunto original, isso é feito derivando informações do conjunto de
características existente para construir um novo subespaço de atributos de menor
dimensão (Raschka; Mirjalili, 2017). As novas características são tipicamente
combinações ou transformações das características originais, este processo de
transformação visa capturar a essência da informação em uma forma mais compacta.

A trajetória histórica da extração de atributos pode ser interpretada como uma
busca contínua para otimizar a tensão fundamental entre a preservação da informação
e a tratabilidade computacional. Os primeiros métodos, desenvolvidos em uma era de
recursos computacionais limitados, focavam intensamente na criação de
representações extremamente compactas. Isso era alcançado através de heurísticas
e modelos matemáticos que, por necessidade, descartavam informações visuais que
eram difíceis de modelar ou computacionalmente caras para processar. A revolução
do Deep Learning, impulsionada pelo poder computacional massivo dos GPUs,
representa uma mudança fundamental neste equilíbrio. Em vez de descartar a
complexidade, as redes neurais profundas são capazes de aprender transformações
muito mais ricas e sutis diretamente dos dados, preservando uma quantidade de
informação que antes era inacessível. Essa evolução não é apenas sobre novos
algoritmos, mas sobre uma mudança filosófica no que é considerado
computacionalmente viável preservar do sinal visual original de alta dimensão.

Os avanços técnicos na extração de atributos, especialmente aqueles
impulsionados pelo Deep Learning, não existem em um vácuo. Eles têm um impacto
profundo e transformador no mundo real, impulsionando inovações em setores
críticos. No entanto, o poder sem precedentes dessas tecnologias também traz
consigo um conjunto de desafios éticos, sociais e práticos significativos que exigem
uma análise cuidadosa, como as questões de viés algorítmico, privacidade, segurança
e os custos ocultos de interpretabilidade e consumo de energia. Estes desafios não
são problemas independentes, mas sim facetas profundamente interconectadas de
uma mesma questão central: as consequências de construir sistemas poderosos,
escaláveis, mas fundamentalmente opacos e famintos por dados. Uma solução de um
determinado domínio muitas vezes exacerba um problema em outro, criando um
complexo problema de otimização multiobjetivo para o campo como um todo.

11

A busca pela precisão levou ao aumento da escala dos modelos em conjuntos
de dados massivos; esse aumento de escala leva diretamente a custos energéticos
mais altos (Strubell; Ganesh; Mccallum, 2019). O uso de conjuntos de dados massivos
coletados da web melhora a generalização, mas também importa vieses sociais em
escala (Mehrabi et al., 2021) e cria enormes desafios de privacidade (Liu et al., 2021).

A complexidade que permite alta precisão torna os modelos caixas-pretas,
criando o problema da interpretabilidade (Guidotti et al., 2018), e essa falta de
interpretabilidade torna mais difícil diagnosticar e mitigar o viés. As mesmas fronteiras
de decisão complexas e não lineares que tornam os modelos precisos também criam
a vulnerabilidade a ataques adversariais, com a intenção de explorar pequenas
lacunas não intuitivas para humanos na compreensão do modelo (Liu et al., 2020).

Portanto, é inadequado tratar essas questões como uma lista de verificação de
problemas separados, elas formam uma teia de consequências interconectadas que
derivam da própria natureza do paradigma do Deep Learning. A jornada da extração
de atributos em Visão Computacional é uma narrativa notável de evolução científica e
tecnológica, ela traça um caminho desde os primeiros dias de engenharia meticulosa
e manual, onde a inteligência humana era diretamente codificada em heurísticas para
extrair características como bordas e cantos, até a era atual do Deep Learning, onde
representações visuais ricas e hierárquicas são aprendidas automaticamente a partir
de vastas quantidades de dados, no entanto, este poder recém-descoberto não vem
sem responsabilidades e desafios profundos.

12

REFERÊNCIAS

BISHOP, C. M. Pattern Recognition and Machine Learning. New York: Springer,
2006.

FORSYTH, D. A.; PONCE, J. Computer Vision: A Modern Approach. 2. ed. New
Jersey: Pearson, 2012.

GUIDOTTI, R. et al. A survey of methods for explaining black box models. ACM
Computing Surveys (CSUR), v. 51, n. 5, p. 1-42, 2018.

LIU, B; LIN, Y. Robust meta gradient learning for high-dimensional data with
noisy-label ignorance. PLOS ONE, v. 18, n. 12, p. e0295678, 2023.

LIU, B. et al. When machine learning meets privacy: A survey and outlook. ACM
Computing Surveys (CSUR), v. 54, n. 2, p. 1-36, 2021.

LIU, N. et al. Adversarial attacks and defenses: An interpretation perspective.
SIGKDD Explorations, v. 22, n. 2, p. 28-40, 2020.

MEHRABI, N. et al. A Survey on Bias and Fairness in Machine Learning. ACM
Computing Surveys, v. 54, n. 6, p. 1-35, 2021.

RASCHKA, S.; MIRJALILI, V. Python Machine Learning. 2. ed. Birmingham: Packt
Publishing, 2017.

STRUBELL, E; GANESH, A; MCCALLUM, A. Energy and policy considerations
for deep learning in NLP. In: ANNUAL MEETING OF THE ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS (ACL), 57., 2019, Florence. Proceedings [...].
Florence: ACL, 2019. p. 3645-3650.

SZELISKI, R. Computer Vision: Algorithms and Applications. 2. ed. New York:
Springer, 2022.

VAN DER MAATEN, L; POSTMA, E; VAN DEN HERIK, J. Dimensionality
Reduction: A Comparative Review. Journal of Machine Learning Research, v. 10,
p. 66-71, 2009.

13

APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL

A – ENUNCIADO

1 ChatGPT
a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
b) (6,25 pontos) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas

em sala. Explique o porquê.
c) (6,25 pontos) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio

ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
d) (6,25 pontos) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4

abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A* para encontrar o melhor caminho para chegar a
Bucharest partindo de Lugoj. Construa a árvore de busca criada pela execução do algoritmo
apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha reta,
que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde

que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi
apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um
formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

14

3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come
Se a raposa as come, então estão maduras
As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas

práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem
q: a raposa come as uvas
r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R1:

R2:

R3:

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com

essas três primeiras sentenças devemos derivar . Cuidado com a ordem em que as fórmulas

são geradas.

Equivalência Implicação: () equivale a (¬)

Silogismo Hipotético: ,

Conjunção: ,

15

Equivalência Bicondicional: () equivale a () ()

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato
apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão descritas
acima e no material.

4 Redes Neurais Artificiais

Seja a RNA da figura abaixo.

Os neurônios N1, N2 e N3 possuem função de ativação linear. Já N4 possui função de ativação
tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada x1=-3, x2=1, dê:

a) (6,25 pontos) Valor de saída do neurônio N1
b) (6,25 pontos) Valor de saída do neurônio N2
c) (6,25 pontos) Valor de saída do neurônio N3
d) (6,25 pontos) Valor de saída da rede como um todo

16

B – RESOLUÇÃO

1- a) Inteligência Artificial (IA) é um campo da ciência da computação que se concentra no
desenvolvimento de sistemas e algoritmos que podem realizar tarefas que normalmente exigiria
inteligência humana. Isso inclui habilidades como aprendizado, raciocínio, resolução de problemas,
reconhecimento de padrões, compreensão de linguagem natural e tomada de decisões. Os sistemas
de IA são projetados para processar grandes quantidades de dados, identificar padrões e tomar
decisões ou realizar ações com base nesses padrões. Eles podem usar uma variedade de técnicas,
incluindo aprendizado de máquina, redes neurais, lógica simbólica, algoritmos de otimização e muito
mais. A IA tem aplicações em uma ampla gama de áreas, incluindo reconhecimento de fala, visão
computacional, processamento de linguagem natural, diagnóstico médico, automação industrial,
finanças, jogos, entretenimento e muito mais. Nos últimos anos, tem havido avanços significativos na
IA, impulsionados pelo aumento da capacidade computacional, melhores algoritmos e grandes
conjuntos de dados disponíveis para treinamento de modelos de IA.

b) Pensar como humanos: Com base na resposta fornecida pelo ChatGPT, a partir das IAs são
implementados sistemas que visam realizar tarefas que exigem inteligência humana: "(...) podem
realizar tarefas que normalmente exigiriam inteligência humana. Isso inclui habilidades como
aprendizado, raciocínio, resolução de problemas, reconhecimento de padrões, compreensão de
linguagem natural e tomada de decisões.". A ideia de implementar uma inteligência humana pode
implicar em pensar como humanos.

Agir racionalmente: Na resposta é mencionado que IAs são projetadas para processar grande volumes
de dados e a partir deles tomar decisões ou realizar ações: "Os sistemas de IA são projetados para
processar grandes quantidades de dados, identificar padrões e tomar decisões ou realizar ações com
base nesses padrões.". Portanto, uma IA vai dar um resultado conforme os dados que foram utilizados
para análise e aprendizado, sendo adaptável conforme a situação.

Pensar racionalmente: Na resposta do ChatGPT, é citada a possibilidade de aplicação em diversas
áreas e como os avanços obtidos nos últimos anos vão de encontro a melhores algoritmos e aumento
da capacidade computacional, pode-se relacionar à abordagem de pensar racionalmente. Nessa
abordagem, a IA busca modelar o processo de raciocínio correto e depende de poder computacional,
premissas corretas e algoritmos que consigam resolver os problemas para um resultado logicamente
certo.

Agir como humanos: Apesar de o ChatGPT falar em uso de inteligência humana nas IAs levando à
abordagem de pensar como humanos “(...) podem realizar tarefas que normalmente exigiria inteligência
humana”, para que uma IA pense como humano, todo o processo de pensamento deve ser mapeado:
introspecção, experimentos psicológicos, imagens cerebrais e ainda o fator pessoal. Quando todo esse
processo for determinado, então poderemos ter IAs com pensamento humano. Com isso, podemos
dizer que as IAs existentes, por mais que consigam realizar tarefas humanas, não pensam como
humanos, e sim imitam seu comportamento.

17

c) ChatGPT é um aplicativo desenvolvido pela OpenAI. Usando os modelos de linguagem GPT, ele
pode responder suas perguntas, escrever textos, redigir e-mails, manter uma conversa, explicar código
em diferentes linguagens de programação, traduzir linguagem natural em código e muito mais- ou pelo
menos tentar- tudo baseado na linguagem natural em que você o alimenta.

ChatGPT usa aprendizado profundo, um subconjunto de aprendizado de máquina, para produzir texto
semelhante ao humano por meio de redes neurais transformadoras. O transformador prevê o texto–
incluindo a próxima palavra, frase ou parágrafo– com base na sequência típica de seus dados de
treinamento. O treinamento começa com dados genéricos e depois passa para dados mais
personalizados para uma tarefa específica. O ChatGPT foi treinado com texto online para aprender a
linguagem humana e, em seguida, usou transcrições para aprender o básico das conversas.

O ChatGPT é ajustado a partir do GPT-3.5, um modelo de linguagem treinado para produzir texto. Foi
otimizado para diálogo usando Aprendizado por Reforço com Feedback Humano (RLHF)– um método
que usa demonstrações humanas e comparações de preferências para orientar o modelo em direção
ao comportamento desejado.

Os treinadores humanos fornecem conversas e classificam as respostas. Esses modelos de
recompensa ajudam a determinar as melhores respostas. Para continuar treinando o chatbot, os
usuários podem votar positivamente ou negativamente em sua resposta clicando nos ícones de polegar
para cima ou polegar para baixo ao lado da resposta. Os usuários também podem fornecer feedback
adicional por escrito para melhorar e ajustar o diálogo futuro.

Referências:

GUINNESS, Harris. How does ChatGPT work?. 2023. Disponível em Acesso em 20 fev. 2024.

HETLER, Amanda. Definition: ChatGPT. 2023. Disponível em Acesso em 22 fev. 2024.

OPENAI. What is ChatGPT?. 2024. Disponível em Acesso em 23 fev. 2024.

d) Agir como Humanos: Essa abordagem se enquadra com a forma como o ChatGPT funciona, pois o
objetivo não é definir o que é pensamento nem implementar algum processo cognitivo, já que não é
necessário verificar respostas corretas, basta que ele consiga imitar o comportamento humano, além
de utilizar habilidades como aprendizado, raciocínio e linguagem natural, sendo esta última a principal
utilizada por ele gerando respostas plausíveis e que podem facilmente serem identificadas como
"escritas por um ser humano".

Agir racionalmente: O ChatGPT também pode ser classificado dentro dessa abordagem, pois tem como
objetivo implementar agentes que respondem a situações e buscam o melhor resultado possível, isso
pode ser demonstrado na representação do conhecimento e raciocínio para que tome boas decisões
além das habilidades descritas como resoluções de problemas, reconhecimento de padrões e tomada
de decisões. O ChatGPT, sendo um sistema treinado com uma base de dados, consegue utilizar esse
arcabouço de informações para gerar respostas, na grande maioria das vezes, corretas.

18

2- a) Abaixo está a melhor rota escolhida pelo algoritmo de busca heurística aplicando o algoritmo A*,
representada em azul.

FIGURA 1 – RESULTADO DA BUSCA HEURÍSTICA

FONTE: O autor (2025).

3- Legenda:

: Uvas caem

: Raposa come as uvas

 : Uvas estão maduras

 Base de Conhecimento (BC):

1: (Se as uvas caem, então a raposa as come)

2: (Se a raposa as come, então estão maduras)

3: ¬ (As uvas estão verdes ou as uvas caem)

4: COND, R3

5: SH, R2, R4

19

6: () () CONJ, R5, R1

7:) BICOND, R6

Logo, (A raposa come as uvas se e somente se as uvas caem) pode ser derivado a partir da

base de conhecimento (BC).

4- Os neurônios N1, N2 e N3 possuem função de ativação linear. Já o N4 possui função de ativação
tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada x1=-3, x2=1, dê:

a)

b)

20

APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA

A – ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv

Informações sobre a base de dados:
Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021,

de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A base
original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser
utilizada no presente exercício.

Observação: As variáveis fuel, gear e engine_size foram extraídas dos valores da coluna
model, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores
do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém todos
os dados originais da tabela FIPE.

Metadados:

Nome do campo Descrição

year_of_reference O preço médio corresponde a um
mês de ano de referência

month_of_reference O preço médio corresponde a um
mês de referência, ou seja, a FIPE atualiza

sua tabela mensalmente

fipe_code Código único da FIPE

authentication Código de autenticação único para
consulta no site da FIPE

brand Marca do carro

model Modelo do carro

fuel Tipo de combustível do carro

gear Tipo de engrenagem do carro

engine_size Tamanho do motor em centímetros
cúbicos

year_model Ano do modelo do carro. Pode não

21

corresponder ao ano de fabricação

avg_price Preço médio do carro, em reais

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato

que será considerado correto na resolução do exercício.

1 Análise Exploratória dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:
a. Carregue a base de dados media_precos_carros_brasil.csv
b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o

problema de valores faltantes
c. Verifique se há dados duplicados nos dados
d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de

informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados

na Análise Exploratória dos dados

2 Visualização dos dados

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:
a. Gere um gráfico da distribuição da quantidade de carros por marca
b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022

(variável de tempo no eixo X)
d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem
e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível
g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

A partir da base de dados precos_carros_brasil.csv, execute as seguintes tarefas:
a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis

independentes do modelo.A variável target é avg_price. Observação: caso julgue necessário,
faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo.
Indique quais variáveis foram transformadas e como foram transformadas

b. Crie partições contendo 75% dos dados para treino e 25% para teste
c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca

XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário,
mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram
inputados e indique o treinamento de cada modelo

d. Grave os valores preditos em variáveis criadas
e. Realize a análise de importância das variáveis para estimar a variável target, para cada

modelo treinado
f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na

análise de importância de variáveis
g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R²

22

h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor
resultado e a métrica de avaliação utilizada

B - RESOLUÇÃO

1- a) O resultado foi: (267542, 11), indicando que o conjunto de dados possui 267.542 linhas e 11
colunas.

b) O resultado indicou que as colunas year_of_reference, month_of_reference, fipe_code,
authentication, brand, model, fuel, gear, engine_size, year_model e avg_price_brl possuem 65.245
valores ausentes (aproximadamente 24% dos dados). Tratamento de valores faltantes: Dado que essas
linhas não continham informações úteis (completamente ausentes), optamos por removê-las da base
de dados usando o método dropna(). Após a remoção, o novo tamanho da base de dados foi de 202.295
linhas e 11 colunas.

c) Foram encontradas 2 linhas duplicadas, que foram removidas com o comando drop_duplicates. Após
a remoção das duplicatas, a base ficou com 202.295 linhas, sem duplicatas.

d) Colunas Numéricas:

QUADRO 1 – COLUNAS NUMÉRICAS

Estatística year_of_reference engine_size year_model avg_price_brl

count 202.295 202.295 202.295 202.295

mean 2.021.564.695 1.822.302 2.011.271.514 52.756,77

std 0.571904 0.734432 6.376.241 51.628,91

min 2.021.000.000 1.000.000 2.000.000.000 6.647.000.000

25% 2.021.000.000 1.400.000 2.006.000.000 22.855.000.000

50% 2.022.000.000 1.600.000 2.012.000.000 38.027.000.000

75% 2.022.000.000 2.000.000 2.016.000.000 64.064.000.000

23

max 2.023.000.000 6.200.000 2.023.000.000 979.358.000.000

FONTE: O autor (2025).

Colunas Categóricas:

QUADRO 2 – COLUNAS CATEGÓRICAS

Estatísti
ca

month_of_refer
ence

fipe_code authenticat
ion

brand model fuel gear

count 202.295 202.295 202.295 202.295 202.295 202.295 202.2
95

unique 12 2.091 425 6 2.112 3 2

top January 003281-6 cfzlctzfwrcp Fiat Palio
Week.
Adv/Adv

Gasoline Manu
al

freq 24.260 24.260 16.884 42.260 16.183 168.684 161.8
83

FONTE: O autor (2025).

e) Marca:

QUADRO 3 – MARCA DOS CARROS

Marca Valor

Fiat 0.222260

VW - VolksWagen 0.219046

GM - Chevrolet 0.190761

24

Ford 0.163870

Renault 0.144299

Nissan 0.059764

FONTE: O autor (2025).

Modelo:

QUADRO 4 – MODELO DOS CARROS

Modelo Valor

Palio Week. Adv/Adv TRYON 1.8 mpi Flex 0.002101

Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p 0.002101

Focus 2.0 16V/SE/SE Plus Flex 5p Aut. 0.001977

Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V 0.001977

Corvette 5.7/ 6.0, 6.2 Targa/Stingray 0.001854

STEPWAY Zen Flex 1.0 12V Mec. 0.000010

Saveiro Robust 1.6 Total Flex 16V CD 0.000010

Saveiro Robust 1.6 Total Flex 16V 0.000010

Gol Last Edition 1.0 Flex 12V 5p 0.000010

Polo Track 1.0 Flex 12V 5p 0.000010

FONTE: O autor (2025).

25

Os principais resultados observados foram:
As marcas mais frequentes foram Fiat, VW - VolksWagen, GM - Chevrolet e Ford.
O modelo de carro mais comum foi o "Palio Week. Adv/Adv TRYON 1.8 mpi Flex", seguido por outros
modelos da marca Fiat e Ford.

f) Através da análise exploratória, observou-se que a base de dados analisada é composta por 2112
modelos de carros distintos, com ano de fabricação entre 2000 e 2023. A mediana do preço médio dos
carros foi de R$38 mil reais, e o modelo mais barato e mais caro custavam respectivamente, R$6,6 mil
e R$979 mil. A marca mais frequente dos carros cadastrados foi Fiat, 83% dos automóveis são movidos
à gasolina e 80% do tipo manual.

2- a) Gráfico de quantidade de carros por marca.

FIGURA 2 – GRÁFICO DE QUANTIDADE DE CARROS POR MARCA

FONTE: O autor (2025).

26

b) Gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro.

FIGURA 3 – GRÁFICO DE QUANTIDADE DE CARROS POR TIPO ENGRENAGEM

FONTE: O autor (2025).

c) Gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 (variável de tempo
no eixo X).

FIGURA 4 – MÉDIA DE PREÇOS DOS CARROS

FONTE: O autor (2025).

27

d) Gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem.

FIGURA 5 – MÉDIA DE PREÇOS POR MARCA E TIPO DE ENGRENAGEM

FONTE: O autor (2025).

e) Veículos com transmissão manual são, em média, mais baratos que os veículos com transmissão
automática. Porém, há uma exceção nos veículos da marca Renault, que o valor médio dos veículos
com transmissão automática são menores, isso pode ser explicado pelo fato de serem carros mais
antigos, conforme foi observado quando a mediana do ano dos carros foi consultada. Observou-se
também que a média de preço dos carros manuais da Fiat é mais baixa do que das demais marcas,
seguidos pelos carros manuais da VW. Veículos com transmissão manual são, em média, mais baratos
que os veículos com transmissão automática. Porém, há uma exceção nos veículos da marca Renault,
que o valor médio dos veículos com transmissão automática são menores, isso pode ser explicado pelo
fato de serem carros mais antigos, conforme foi observado quando a mediana do ano dos carros foi
consultada. Observou-se também que a média de preço dos carros manuais da Fiat é mais baixa do
que das demais marcas, seguidos pelos carros manuais da VW.

28

f) Gráfico da distribuição da média de preço dos carros por marca e tipo de combustível

FIGURA 6 – MÉDIA DE PREÇOS POR MARCA E COMBUSTÍVEL

FONTE: O autor (2025).

g) Veículos a diesel são, em média, mais caros. Isso pode estar associado ao fato de que esses
veículos são geralmente de grande porte e que são, intrinsecamente, mais caros. Também observa-se
que algumas marcas não possuem veículos movidos exclusivamente a álcool, e isso pode ser pelo fato
de que esse tipo de veículo é mais antigo e que veículos flex na FIPE são contabilizados como movidos
a gasolina.

3- A partir da base de dados precos_carros_brasil.csv, foram executadas as seguintes tarefas para
prever o preço médio dos carros:

a) Foi feita a matriz de correlação entre as variáveis numéricas e observada correlação de 0,56 entre
ano do modelo do carro e preço médio do veículo, indicando correlação direta e moderada. Também
foi identificada correlação positiva, porém fraca, phi = 0,46 entre preço médio e tamanho do motor. A
correlação entre ano de referência e preço médio do veículo foi muito próxima de 0, não demonstrando
haver correlação entre essas duas variáveis, e por isso não será utilizada no modelo. Também não
será considerada a variável mês de referência, uma vez que o ano de referência não entra no modelo.
Para as variáveis categóricas, foi feita a análise gráfica através dos gráficos da parte 2 e dos boxplots
da variável resposta x variável independente para a seleção.

29

FIGURA 7 – MAPA DE CORRELAÇÃO DAS VARIÁVEIS NUMÉRICAS

FONTE: O autor (2025).

b) Abaixo está o código-fonte feito em python:
Importando a função para dividir os dados

from sklearn.model_selection import train_test_split

Seleção das variáveis independentes (X) e dependente (Y)

X = carros_modelo[['brand', 'model', 'fuel', 'gear', 'engine_size', 'year_model']]

Y = carros_modelo[['avg_price_brl']]

Divisão dos dados em treino (75%) e teste (25%)

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,

random_state=42)

c) Abaixo está o código-fonte feito em python:
Importando os modelos

from sklearn.ensemble import RandomForestRegressor

from xgboost import XGBRegressor

Modelo Random Forest sem parâmetros

RF_semParametros = RandomForestRegressor()

RF_semParametros.fit(X_train, Y_train)

30

Modelo XGBoost sem parâmetros

XGBoost_semParametro = XGBRegressor()

XGBoost_semParametro.fit(X_train, Y_train)

FIGURA 8 – XGBREGRESSOR

FONTE: O autor (2025).

O RandomForestRegressor foi treinado com seus parâmetros padrão, enquanto o XGBRegressor
também foi treinado sem alteração de parâmetros.

d) Abaixo está o código-fonte feito em python:
Previsões dos modelos

Yhat_RF_semParametros = RF_semParametros.predict(X_test)

Yhat_XG = XGBoost_semParametro.predict(X_test)

As previsões realizadas por ambos os modelos foram armazenadas nas variáveis
Yhat_RF_semParametros e Yhat_XG, respectivamente.

e) Foram geradas as tabelas de importância das variáveis para ambos os modelos, mostrando quais
variáveis mais influenciam na previsão do preço médio do carro.

QUADRO 5 – VARIÁVEIS E IMPORTÂNCIA

Variable Importance

engine_size 0.439257

fuel 0.205469

31

year_model 0.170392

gear 0.123404

brand 0.043103

model 0.018376

FONTE: O autor (2025).

f) Nos três modelos a variável engine_size teve maior importância (sempre maior que 0,4). Nos modelos
de Random Forest, duas variáveis, engine_size e year_model eram as responsáveis por quase 90%
desse índice em cada ajuste. Apenas no XGBoost year_model não assumiu a segunda posição quanto
à importância, perdendo para a variável fuel .

g) Abaixo está o código-fonte feito em python:

#Avaliação do modelo - MSE mse_md2 = mean_squared_error(Y_test,

Yhat_RF_comParametros) mse_md2

Resultado da Saída: 134879179.34676224

#Avaliação do modelo - MAE mae_md2 = mean_absolute_error(Y_test,

Yhat_RF_comParametros) mae_md2

Resultado da Saída: 5197.4533381621895

 #Avaliação do modelo - R2 r2_score(Y_test, Yhat_RF_comParametros)

Resultado da Saída: 0.9483897141128078

h) Os três modelos tiveram bom ajuste nos dados, com R2 sempre superior a 0,9. No entanto, a
Random Forest, sem parâmetros pré-definidos, apresentou MSE e MAE menores do que os demais
modelos, e teve o melhor valor de R2, 0,98. Com isso, esse modelo, que teve como variáveis
importantes engine_size (tamanho do motor) e year_model (ano do modelo) foi escolhido como o
melhor.

32

APÊNDICE 3 – LINGUAGEM R

A – ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma

imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é
prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (Multispectral Scanner System) consiste
em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na
região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e
duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a
preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém
2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo
de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3
completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro
bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número
indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de
vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você
não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro
valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores
espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante,
com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro
valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode
usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma
vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote mlbench e é completo (não possui dados faltantes).
Tarefas:

1. Carregue a base de dados Satellite
2. Crie partições contendo 80% para treino e 20% para teste
3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
4. Escolha o melhor modelo com base em suas matrizes de confusão.
5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

33

2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal
(mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário
abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas
árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes
dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em
regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo
de Spurr é dado por:

Volume = b0 + b1 * dap2 * Ht

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários modelos

alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão
envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma
equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo Volumes.csv, que contém os dados de observação, escolha um modelo de
aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
2. Eliminar a coluna NR, que só apresenta um número sequencial
3. Criar partição de dados: treinamento 80%, teste 20%
4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes

Neurais (neuralnet) e o modelo alométrico de SPURR

▪ O modelo alométrico é dado por: Volume = b0 + b1 * dap2 * Ht

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5))

5. Efetue as predições nos dados de teste
6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados

observados

▪ Coeficiente de determinação: R2

onde é o valor observado, é o valor predito e é a média dos valores observados.

Quanto mais perto de 1 melhor é o modelo;

34

▪ Erro padrão da estimativa: Syx

 esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;

▪ Syx%

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

B – RESOLUÇÃO

1.1- Código fonte feito em R:
Definir o mirror do CRAN

mirror <- "https://cran-r.c3sl.ufpr.br"

options(repos = mirror)

Instale o pacote mlbench se ainda não estiver instalado

install.packages("mlbench")

Carregue o pacote

library(mlbench)

Carregue a base de dados Satellite

data(Satellite)

Visualize a estrutura da base de dados

str(Satellite)

Resultado da Saída: 'data.frame': $ x.1 : num 92 84 84 80 84 80 76 76 76 76 ... $ x.2
$ x.3 $ x.4 $ x.5 $ x.6 $ x.7 $ x.8 $ x.9 : num 115 102 102 102 94 94 102 102 89 94

35

... : num 120 106 102 102 102 98 106 106 98 98 ... : num 94 79 83 79 79 76 83 87 76

76 ... : num 84 84 80 84 80 80 76 80 76 76 ... : num 102 102 102 94 94 102 102 98

94 98 ... : num 106 102 102 102 98 102 106 106 98 102 ... : num 79 83 79 79 76 79

87 79 76 72 ... : num 84 80 84 80 80 76 80 76 76 76 ... $ x.10 : num 102 102 94 94

102 102 98 94 98 94 ... $ x.11 : num 102 102 102 98 102 102 106 102 102 90 ... $

x.12 : num 83 79 79 76 79 79 79 76 72 76 ... $ x.13 : num 101 92 84 84 84 76 80 80

80 76 ... $ x.14 : num 126 112 103 99 99 99 107 112 95 91 ... $ x.15 : num 133 118

104 104 104 104 118 118 104 104 ... $ x.16 : num 103 85 81 78 81 81 88 88 74 74 ...

$ x.17 : num 92 84 84 84 76 76 80 80 76 76 ... $ x.18 : num 112 103 99 99 99 99 112

107 91 95 ... $ x.19 : num 118 104 104 104 104 108 118 113 104 100 ... $ x.20 : num

85 81 78 81 81 85 88 85 74 78 ... $ x.21 : num 84 84 84 76 76 76 80 80 76 76 ... $

x.22 : num 103 99 99 99 99 103 107 95 95 91 ... $ x.23 : num 104 104 104 104 108

118 113 100 100 100 ... $ x.24 : num 81 78 81 81 85 88 85 78 78 74 ... $ x.25 : num

102 88 84 84 84 84 79 79 75 75 ... $ x.26 : num 126 121 107 99 99 103 107 103 91 91

... $ x.27 : num 134 128 113 104 104 104 113 104 96 96 ... $ x.28 : num 104 100 87

79 79 79 87 83 75 71 ... $ x.29 : num 88 84 84 84 84 79 79 79 75 79 ... $ x.30 :

num 121 107 99 99 103 107 103 103 91 87 ... $ x.31 : num 128 113 104 104 104 109

104 104 96 93 ... $ x.32 : num 100 87 79 79 79 87 83 79 71 71 ... $ x.33 : num 84

84 84 84 79 79 79 79 79 79 ... $ x.34 : num 107 99 99 103 107 107 103 95 87 87 ...

$ x.35 : num 113 104 104 104 109 109 104 100 93 93 ... $ x.36 : num 87 79 79 79 87

87 79 79 71 67 ... $ classes: Factor w/ 6 levels "red soil","cotton crop",..: 3 3 3

3 3 3 3 3 4 4 …

1.2 - Código fonte feito em python:
Instale o pacote 'caret' se ainda não o tiver instalado

install.packages("caret")

Carregue o pacote

library(caret)

Defina a semente para reprodução dos resultados

set.seed(123)

Crie a partição dos dados (80% treino, 20% teste)

particao <- createDataPartition(Satellite$classes, p = 0.8, list = FALSE)

Separe os dados de treinamento e teste

dados_treino <- Satellite[particao,]

dados_teste <- Satellite[-particao,]

36

Verifique o tamanho dos dados de treinamento e teste

print(paste("Tamanho dos dados de treinamento:", nrow(dados_treino)))

print(paste("Tamanho dos dados de teste:", nrow(dados_teste)))

Resultado da Saída: [1] "Tamanho dos dados de treinamento: 5151"
 [1] "Tamanho dos dados de teste: 1284"

1.3 Código fonte feito em R:
3- Treine modelos RandomForest, SVM e RNA para predição destes dados.

install.packages("neuralnet")

Carregue os pacotes necessários

library(randomForest)

library(e1071)

library(neuralnet)

3.1 Treinamento do modelo Random Forest

modelo_rf <- randomForest(classes ~ ., data = dados_treino)

3.2 Treinamento do modelo SVM

modelo_svm <- svm(classes ~ ., data = dados_treino)

3.3 Treinamento do modelo RNA

modelo_rna <- neuralnet(classes ~ ., data = dados_treino, hidden = c(5, 2),

linear.output = FALSE)

Exiba os modelos treinados

print(modelo_rf)

print(modelo_svm)

print(modelo_rna)

37

Resultado da Saída:
QUADRO 6 – RESULTADO DOS MODELOS TREINADOS

 red soil cotton
crop

grey soil damp
grey soil

vegetatio
n stubble

very
damp
grey soil

class.erro
r

red soil 1206 4 13 0 4 0 0.0171

cotton
crop

0 545 1 5 7 5 0.0320

grey soil 8 1 1044 23 2 9 0.0396

damp
grey soil

5 4 94 293 4 101 0.4152

vegetatio
n stubble

22 5 2 3 509 25 0.1007

very
damp
grey soil

0 0 20 55 24 1108 0.0820

FONTE: O autor (2025).

.A saída ao executar o print do modelo_rna é extremamente longa. Portanto, somente o começo da
saída foi adicionada a este documento, conforme a tabela abaixo.

QUADRO 7 – RESULTADO DO MODELO RNA

 grey soil damp
grey soil

vegetation
stubble

very damp grey soil

1 FALSE FALSE TRUE FALSE

2 FALSE FALSE TRUE FALSE

3 FALSE FALSE TRUE FALSE

38

4 FALSE FALSE TRUE FALSE

5 FALSE FALSE TRUE FALSE

6 FALSE FALSE TRUE FALSE

7 FALSE FALSE TRUE FALSE

8 FALSE TRUE FALSE FALSE

9 FALSE TRUE FALSE FALSE

10 FALSE TRUE FALSE FALSE

11 FALSE TRUE FALSE FALSE

12 FALSE TRUE FALSE FALSE

13 FALSE TRUE FALSE FALSE

14 FALSE TRUE FALSE FALSE

15 FALSE FALSE TRUE FALSE

16 FALSE FALSE TRUE FALSE

FONTE: O autor (2025).
1.4 Código fonte feito em R:
4. Escolha o melhor modelo com base em suas matrizes de confusão.

Carregue o pacote 'caret' para calcular a matriz de confusão

library(caret)

Função para calcular métricas de desempenho

calcular_metricas <- function(matriz_confusao) {

 # Precisão (precision)

 precisao <- diag(matriz_confusao) / colSums(matriz_confusao)

39

 # Recall

 recall <- diag(matriz_confusao) / rowSums(matriz_confusao)

 # F1-score

 f1_score <- 2 * (precisao * recall) / (precisao + recall)

 # Retornar as métricas

 return(data.frame(precisao = precisao, recall = recall, f1_score = f1_score))

}

Função para imprimir as métricas

imprimir_metricas <- function(nome_modelo, matriz_confusao) {

 cat("\nModelo:", nome_modelo, "\n")

 print(calcular_metricas(matriz_confusao))

}

Função para plotar a matriz de confusão

plotar_matriz_confusao <- function(nome_modelo, matriz_confusao) {

 confusionMatrix(matriz_confusao, main = nome_modelo)

}

Prever os rótulos usando cada modelo

predicoes_rf <- predict(modelo_rf, newdata = dados_teste)

predicoes_svm <- predict(modelo_svm, newdata = dados_teste)

predicoes_rna <- predict(modelo_rna, newdata = dados_teste)

Prever as probabilidades usando a RNA

probabilidades_rna <- predict(modelo_rna, newdata = dados_teste)

Obter os nomes das classes

nomes_classes <- levels(dados_teste$classes)

Transformar probabilidades em rótulos de classe

predicoes_rna <- apply(probabilidades_rna, 1, function(x)

nomes_classes[which.max(x)])

Converter as predições em fatores

predicoes_rna <- factor(predicoes_rna, levels = nomes_classes)

40

Calcular a matriz de confusão para cada modelo

matriz_confusao_rf <- confusionMatrix(predicoes_rf, dados_teste$classes)

matriz_confusao_svm <- confusionMatrix(predicoes_svm, dados_teste$classes)

matriz_confusao_rna <- confusionMatrix(predicoes_rna, dados_teste$classes)

Imprimir as métricas de desempenho para cada modelo

imprimir_metricas("Random Forest", matriz_confusao_rf$table)

imprimir_metricas("SVM", matriz_confusao_svm$table)

imprimir_metricas("RNA", matriz_confusao_rna$table)

Plotar as matrizes de confusão

plotar_matriz_confusao("Random Forest", matriz_confusao_rf$table)

plotar_matriz_confusao("SVM", matriz_confusao_svm$table)

plotar_matriz_confusao("RNA", matriz_confusao_rna$table)

Abaixo mostra os resultados de cada modelo começando pelo Random Forest.

QUADRO 8 – RESULTADO DO MODELO RANDOM FOREST

Class Precisão Recall F1-Score

red soil 0.9934641 0.9712460 0.9822294

cotton crop 0.9857143 0.9857143 0.9857143

grey soil 0.9667897 0.9065744 0.9357143

damp grey
soil

0.7200000 0.8181818 0.7659574

vegetation
stubble

0.8510638 0.9600000 0.9022556

very damp
grey soil

0.9169435 0.8990228 0.9078947

FONTE: O autor (2025).

41

A seguir, apresenta o resultado do modelo SVM.

QUADRO 9 – RESULTADO DO MODELO SVM

Class Precisão Recall F1-Score

red soil 0.9934641 0.9589905 0.9759230

cotton crop 0.9785714 0.9785714 0.9785714

grey soil 0.9667897 0.8704319 0.9160839

damp grey
soil

0.6320000 0.7117117 0.6694915

vegetation
stubble

0.8085106 0.9500000 0.8735632

very damp
grey soil

0.8704319 0.8881356 0.8791946

FONTE: O autor (2025).

Por último, o resultado do modelo RNA.

QUADRO 9 – RESULTADO DO MODELO RNA

Class Precisã
o

Recall F1-Score

red soil 0 NaN NaN

cotton crop 0 NaN NaN

grey soil 0 NaN NaN

42

damp grey
soil

1 0.09735202 0.1774308

vegetation
stubble

0 NaN NaN

very damp
grey soil

0 NaN NaN

FONTE: O autor (2025).

1.5 - Código fonte feito em R:

5 - Indique qual modelo dá o melhor resultado e a métrica utilizada

Extrair os valores de F1-score para cada modelo

f1_rf <- calcular_metricas(matriz_confusao_rf$table)$f1_score

f1_svm <- calcular_metricas(matriz_confusao_svm$table)$f1_score

f1_rna <- calcular_metricas(matriz_confusao_rna$table)$f1_score

Criar um data frame com os valores de F1-score

df_f1 <- data.frame(

 Modelo = c("Random Forest", "SVM", "RNA"),

 F1_Score = c(f1_rf, f1_svm, f1_rna)

)

Ordenar o data frame pelo F1-score

df_f1 <- df_f1[order(df_f1$F1_Score, decreasing = TRUE),]

Imprimir o data frame

print(df_f1)

Identificar o melhor modelo

melhor_modelo <- df_f1[1, "Modelo"]

cat("\nO melhor modelo é:", melhor_modelo, "\n")

Resultado da Saída:
 Modelo F1_Score

 2 SVM 0.9857143

 1 Random Forest 0.9822294

43

 8 SVM 0.9785714

 7 Random Forest 0.9759230

 3 RNA 0.9357143

 9 RNA 0.9160839

 6 RNA 0.9078947

 5 SVM 0.9022556

 12 RNA 0.8791946

 11 SVM 0.8735632

 4 Random Forest 0.7659574

 10 Random Forest 0.6694915

 16 Random Forest 0.1774308

 13 Random Forest NaN

 14 SVM NaN

 15 RNA NaN

 17 SVM NaN

 18 RNA NaN

 O melhor modelo é: SVM

2.1- Código fonte feito em R:

--- 01 Carregar o arquivo Volumes.csv

(http://www.razer.net.br/datasets/Volumes.csv) --

url_dataset <- "http://www.razer.net.br/datasets/Volumes.csv"

Carregando a base de dados (ex 1)

log(paste("Carregando base de dados de volumes de árvores. URL:", url_dataset))

dataset <- read.csv2(url_dataset, header = TRUE, sep = ";")

Resultado da Saída: 18-04-2024 08:19:54 - Carregando base de dados de volumes de árvores. URL:

http://www.razer.net.br/datasets/Volumes.csv

2.2- Código fonte feito em R:

--- 02 Eliminar a coluna NR, que só apresenta um número sequencial --

dataset <- dataset[, !names(dataset) %in% "NR"]

Visualizando a base de dados

log("Estrutura da base do dataset")

str(dataset)

log("Primeiras linhas da base do dataset")

head(dataset)

log("Sumário da base do dataset")

44

summary(dataset)

FIGURA 9 – VISUALIZAÇÃO DOS DADOS

FONTE: O autor (2025).

2.3- Código fonte em R:

--- 03 Criar partição de dados: treinamento 80%, teste 20% ---

Setando uma semente de aleatoriedade

set.seed(123)

Criando índices para o treino

cat("Particionando dados em treino e teste\n")

indices <- createDataPartition(dataset$VOL, p = 0.8, list = FALSE)

Separando dados em treino e teste

dados_treino <- dataset[indices,]

dados_teste <- dataset[-indices,]

Verificando quantidade de observações em cada partição

cat("Observações nos dados de treinamento:", nrow(dados_treino), "\n")

cat("Observações nos dados de teste:", nrow(dados_teste), "\n")

Resultado da Saída:

45

18-04-2024 08:19:55 - Particionando dados em treino e teste

[1] "Observações nos dados de treinamento: 80"

[1] "Observações nos dados de teste: 20"

2.4- Código fonte feito em R:
--- 04 Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM

(svmRadial),

O modelo alométrico é dado por: Volume = b0 + b1 * dap ^ 2 * Ht

Treinando os modelos

cat("Treinando modelo Random Forest\n")

rf <- train(VOL ~ ., data = dados_treino, method = "rf")

cat("Treinando modelo SVM\n")

svm <- train(VOL ~ ., data = dados_treino, method = "svmRadial")

cat("Treinando modelo Neural Network\n")

rna <- train(VOL ~ ., data = dados_treino, method = "neuralnet")

cat("Treinando modelo Alométrico de SPURR\n")

alom <- nls(

 VOL ~ b0 + b1 * (DAP ^ 2) * HT,

 data = dados_treino,

 start = list(b0 = 0.5, b1 = 0.01)

)

Resultado da Saída:
18-04-2024 08:19:55 - Treinando modelo Random Forest

note: only 2 unique complexity parameters in default grid. Truncating the grid to 2

.

18-04-2024 08:19:57 - Treinando modelo SVM

18-04-2024 08:19:57 - Treinando modelo Neural Network

There were 37 warnings (use warnings() to see them)

18-04-2024 08:21:41 - Treinando modelo Alométrico de SPURR

2.5- Código fonte feito em R:

--- 05 Efetue as predições nos dados de teste

log("Realizando predições")

predicoes_rf <- predict(rf, dados_teste)

predicoes_svm <- predict(svm, dados_teste)

46

predicoes_rna <- predict(rna, dados_teste)

predicoes_alom <- predict(alom, dados_teste)

Resultado da Saída: 18-04-2024 08:21:41 - Realizando predições

2.6- Código fonte feito em R:
Função para cálculo do coeficiente de determinação R²

calcular_coef_r2 <- function(observacoes, predicoes) {

 return(1 - sum((observacoes - predicoes) ^ 2) / sum((observacoes -

mean(observacoes)) ^ 2))

}

Função para erro padrão de estimativa: Syx

calcular_erro_syx <- function(observacoes, predicoes) {

 return(sqrt(sum((observacoes - predicoes) ^ 2) / (length(observacoes) - 2)))

}

Função para o cálculo da porcentagem de erro Syx

calcular_erro_syx_percent <- function(observacoes, predicoes) {

 return((calcular_erro_syx(observacoes, predicoes) / mean(observacoes)) * 100)

}

Função para calcular um score com base no valor de R² e Syx

calcular_score <- function(r2, syx) {

 return((r2 + (1 - syx)) / 2)

}

Função para retornar as métricas de avaliação

calcular_metricas <- function(observacoes, predicoes, nome_modelo) {

 r2 <- calcular_coef_r2(observacoes, predicoes)

 syx <- calcular_erro_syx(observacoes, predicoes)

 syx_percent <- calcular_erro_syx_percent(observacoes, predicoes)

 score <- calcular_score(r2, syx)

 return(data.frame(model = nome_modelo, r2 = r2, syx = syx, syxPercentage =

syx_percent, score = score))

}

Resultado da Saída: N/A

47

2.7- Código fonte feito em R:
--- 07 Escolha o melhor modelo ---

cat("Calculando métricas para os modelos\n")

Calculando as métricas para cada modelo

metricas_df <- calcular_metricas(dados_teste$VOL, predicoes_rf, "rf")

metricas_df <- rbind(metricas_df, calcular_metricas(dados_teste$VOL,

predicoes_svm, "svm"))

metricas_df <- rbind(metricas_df, calcular_metricas(dados_teste$VOL,

predicoes_rna, "rna"))

metricas_df <- rbind(metricas_df, calcular_metricas(dados_teste$VOL,

predicoes_alom, "alom"))

Ordenando as métricas pelo score (do melhor para o pior)

metricas_df <- metricas_df[order(metricas_df$score, decreasing = TRUE),]

cat("Métricas com base no score (melhor para o pior):\n")

print(metricas_df)

Na atividade foram treinados quatro modelos: Random Forest , SVM, Redes Neurais e modelo

alométrico de SPURR. Após os modelos terem sido treinados, foram realizadas as predições com os
dados para teste e comparado com os valores observados. Com esses resultados, foram calculadas
três métricas:

- Coeficiente de determinação (R²)

- Erro padrão da estimativa (Syx)
- Porcentagem do erro padrão da estimativa (Syx %)

Para o primeiro valor, quanto mais perto de 1, melhor. Já para o segundo, quanto mais perto

de 0, melhor. A terceira métrica é derivada da segunda. Por fim foi calculado um score que considera
o valor de R 2 e o S yx % (considerando o range de valores entre 0 e 1) com a seguinte fórmula:

Com esse score foi possível definir qual dos quatro modelos performou melhor, sendo que o
resultado foi o seguinte (já ordenados do melhor para o pior):

QUADRO 10 – MODELOS COM MELHOR SCORE

Modelo R² Syx Syx % Score

48

RNA 0.8867930 0.1354473 1.006.305 0.8930813

Alométrico 0.8694429 0.1454567 1.080.670 0.8806879

Random
Forest

0.8486654 0.1566040 1.163.489 0.8661582

SVM 0.7900779 0.1844433 1.370.321 0.8265229

FONTE: O autor (2025).

Portanto, pode-se concluir que o melhor modelo nesse caso é o modelo de Redes Neurais.

49

APÊNDICE 4 – ESTATÍSTICA APLICADA I

A – ENUNCIADO

1) Gráficos e tabelas

(15 pontos) Elaborar os gráficos box-plot e histograma das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados
(15 pontos) Elaborar a tabela de frequencias das variáveis “age” (idade da esposa) e “husage”

(idade do marido) e comparar os resultados

2) Medidas de posição e dispersão

(15 pontos) Calcular a média, mediana e moda das variáveis “age” (idade da esposa) e

“husage” (idade do marido) e comparar os resultados
(15 pontos) Calcular a variância, desvio padrão e coeficiente de variação das variáveis “age”

(idade da esposa) e “husage” (idade do marido) e comparar os resultados

3) Testes paramétricos ou não paramétricos

(40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se

você escolher o teste não paramétrico) das variáveis “age” (idade da esposa) e “husage” (idade do
marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:
Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você

deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique sua
resposta sobre a escolha.

Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes
citados no item 1 acima.

B – RESOLUÇÃO

1- Código fonte feito em R:
library(ggplot2)

library(dgof)

Carregar os dados

load("C:/Users/livia/OneDrive/Documentos/salarios.Rdata")

dados <- salarios

50

Criar dataset de teste com idades de esposas e maridos

dados_teste <- rbind.data.frame(

 cbind.data.frame(idade = dados$age, gender = rep("esposas", 5634)),

 cbind.data.frame(idade = dados$husage, gender = rep("maridos", 5634))

)

Plotar histograma da idade das esposas

ggplot(dados, aes(x = age)) +

 geom_histogram(binwidth = 0.5) +

 labs(title = "Histograma idade esposas", x = "Idade", y = "Frequência")

FIGURA 10 – HISTOGRAMA IDADE DAS ESPOSAS

FONTE: O autor (2025).

ggplot(dados, aes(husage)) +

geom_histogram(binwidth = 0.5)+

labs(title = "Histograma idade maridos")

51

FIGURA 11 – HISTOGRAMA IDADE DOS MARIDOS

FONTE: O autor (2025).

ggplot(dados_teste, aes(idade, fill = gender)) +

geom_histogram(binwidth = 0.5)+

labs(title = "Histograma idade esposas x Histograma idade maridos")

FIGURA 12 – HISTOGRAMA IDADE DAS ESPOSAS E DOS MARIDOS

FONTE: O autor (2025).

ggplot(dados_teste) +

geom_boxplot(aes(colour = gender, y = idade))+

labs(title = "Boxplot idade esposas x Boxplot idade maridos")

52

FIGURA 13 – BOXPLOT IDADE DAS ESPOSAS E DOS MARIDOS

FONTE: O autor (2025).

Observamos que a distribuição das idades das esposas está concentrada entre 30 e 50 anos,
com idade máxima de 59 anos. Já para as idades dos maridos, observamos nos gráficos, que essa
medida atinge valores mais altos, mesmo que tenha concentração também em torno de 30 e 50 anos
e que homens e mulheres tenham mediana de idade similar, observamos que existem maridos com
idade superior até a 70 anos, que aparecem como outliers no gráfico.

1.2- table(dados$age)

FIGURA 14 – DADOS DAS IDADES

FONTE: O autor (2025).

53

prop.table(table(dados$age))

FIGURA 15 – PROPORÇÃO DAS IDADES

FONTE: O autor (2025).

table(dados$husage)

FIGURA 16 – DADOS HUSAGE

FONTE: O autor (2025).

prop.table(table(dados$husage))

54

FIGURA 17 – PROPORÇÃO DOS DADOS HUSAGE

FONTE: O autor (2025).

As tabelas de frequência podem ser analisadas como um complemento aos gráficos anteriores,

a partir delas, observamos que a idade mínima das esposas é 18 anos (0,2% das mulheres), enquanto
a idade mínima dos maridos é de 19 anos (0,09% dos homens). As esposas com mais idade na base
analisada tinham 59 anos (95 mulheres, que corrrespondem a 1,7% da base), enquanto o marido mais
velho 86 anos, representando 0,01% da base.

2.1- summary(dados$age)

FIGURA 18 – DADOS DE IDADES

FONTE: O autor (2025).

moda <- sort(table(dados$age), decreasing = T) [1]

moda

Resultado da Saída:
37

217

summary (dados$husage)

55

FIGURA 19 – DADOS DE HUSAGE

FONTE: O autor (2025).

modah <- sort(table(dados$husage), decreasing = T) [1]

modah

Resultado da Saída:
44

201

Indo ao encontro do boxplot analisado, observamos que a mediana da idade das mulheres foi
39 anos e da idade dos homens, 41 anos. Essas medianas são um pouco mais baixas que as médias,
e isso deve-se por valores mais altos que inflam um pouco a média. Os valores de primeiros quartis de
idades de homens e mulheres são próximos, assim como os terceiros quartis. No entanto, observamos
outliers na distribuição da idade dos homens, pelo boxplot analisado acima.

A moda se dá pelos valores mais frequentes, a moda das idades das mulheres foi de 37 anos,
enquanto a moda das idades dos homens, 44 anos.

2.2- var(dados$age)

Resultado da Saída: ## [1] 99.75234

sd(dados$age)

Resultado da Saída: ## [1] 9.98761

sd(dados$age)/mean(dados$age)*100

Resultado da Saída: ## [1] 25.33153

var(dados$husage)

Resultado da Saída: ## [1] 126.0717

sd(dados$husage)

56

Resultado da Saída: ## [1] 11.22817

sd(dados$husage)/mean(dados$husage)*100

Resultado da Saída: ## [1] 26.44849

Observamos que o desvio padrão da idade das mulheres é inferior ao desvio padrão das idades
dos homens, 9,9 e 11,2 respectivamente, assim como o desvio padrão, 25,3% e 26,4% para mulheres
e homens respectivamente.

3- Teste de normalidade das variáveis age e husage através do teste de kolmogorov.

ks.test(dados$age,"pnorm",mean(dados$age),sd(dados$age))

Resultado da Saída:

One-sample Kolmogorov-Smirnov test

data: dados$age

D = 0.058909, p-value < 2.2e-16

alternative hypothesis: two-sided

ks. test(dados$husage,"pnorm", mean(dados$husage), sd(dados$husage))

Resultado da Saída:

One-sample Kolmogorov-Smirnov test

data: dados$husage

D = 0.059662, p-value < 2.2e-16

alternative hypothesis: two-sided

Analisando o teste de kolmogorov para normalidade dos dados, observamos p-valor abaixo do

nível de significância de 5%, então rejeitamos a hipótese nula de normalidade dos dados para as
variáveis age e husage. Como as variáveis age e husage não têm distribuição normal, vamos precisar
usar um teste não paramétrico. O teste apropriado para testar as medianas de duas amostras, é o teste
de Mann Whitney.

Teste de Mann Whitney para comparar as medianas:
H0 : Não existe diferença entre os grupos

57

H1 : Há diferença entre os grupos

teste <- wilcox. test(idade~gender, data = dados_teste, exact=F, conf.int=T)

teste

FIGURA 20 – TESTE IDADE POR GÊNERO

FONTE: O autor (2025).

O p-valor do teste realizado foi inferior a 5%, com isso, rejeitamos a hipótese nula de que a

mediana das idades de homens e mulheres são iguais. O intervalo de confiança da diferença entre as
medianas está entre 2 e 3, com mediana da diferença igual a 3.

58

APÊNDICE 5 – ESTATÍSTICA APLICADA II

A – ENUNCIADO

Regressões Ridge, Lasso e ElasticNet

(100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente

“lwage” (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados
são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você
deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2) e
concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de
confiança para os seguintes valores:

husage = 40 (anos – idade do marido)
husunion = 0 (marido não possui união estável)
husearns = 600 (US$ renda do marido por semana)
huseduc = 13 (anos de estudo do marido)
husblck = 1 (o marido é preto)
hushisp = 0 (o marido não é hispânico)
hushrs = 40 (horas semanais de trabalho do marido)
kidge6 = 1 (possui filhos maiores de 6 anos)
age = 38 (anos – idade da esposa)
black = 0 (a esposa não é preta)
educ = 13 (anos de estudo da esposa)
hispanic = 1 (a esposa é hispânica)
union = 0 (esposa não possui união estável)
exper = 18 (anos de experiência de trabalho da esposa)
kidlt6 = 1 (possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente “lwage” já está em logarítmo, portanto voçê não

precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para obter
o resultado da predição.

B – RESOLUÇÃO

Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente "lwage" (salário-
hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados são variáveis
explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você deve colocar
a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R2) e concluir qual o
melhor modelo entre os três, e mostrar o resultado da predição com intervalos de confiança para os
seguintes valores:

59

Processamento dos dados.

#install.packages("carData")

#install.packages("car")

#install.packages("RcmdrMisc")

#install.packages("zoo")

#install.packages("lmtest")

#install.packages("nortest")

#install.packages("lmtest")

#install.packages("sandwich")

#install.packages("caret")

#install.packages("glmnet")

library(carData)

library(car)

library(RcmdrMisc)

library(zoo)

library(lmtest)

library(nortest)

library(lmtest)

library(sandwich)

library(caret)

library(glmnet)

Leitura dos dados.

load("C:/Users/livia/Downloads/Bases de Dados Usadas nas Aulas Praticas

(2)/trabalhosalarios.

RData")

data_salarios <- trabalhosalarios

data_salarios

60

FIGURA 21 – DADOS DOS SALÁRIOS

FONTE: O autor (2025).

Foi selecionado 80% dos dados de forma aleatória para fazer o treinamento dos modelos.

set.seed(123)

indice_treino <- sample(1:nrow(data_salarios), 0.8 * nrow(data_salarios))

dados_treino <- data_salarios[indice_treino,]

dados_teste <- data_salarios[-indice_treino,]

Padronização das variáveis numéricas.

cols = c('husage', 'husearns', 'huseduc', 'hushrs', 'earns' , 'age' , 'educ' ,

'exper' , 'lwage')

Padronizando a base de treinamento e teste

pre_proc_val <- preProcess(dados_treino[,cols], method = c("center", "scale"))

dados_treino[, cols] = predict(pre_proc_val, dados_treino[,cols])

dados_teste[, cols] = predict(pre_proc_val, dados_teste[,cols])

Análise do Sumário das variáveis.

summary(dados_treino)

61

FIGURA 22 – DADOS DE TREINO

FONTE: O autor (2025).

A seguir podemos visualizar a base de dados para o teste.

FIGURA 23 – DADOS DE TESTE

FONTE: O autor (2025).

Foi feita a padronização dos dados de treino, as médias das variáveis numéricas são iguais a 0.

Transformar os dados de treinamento e teste usando variáveis fictícias

train_dummies = predict(dummies, newdata = dados_treino[,cols_reg])

test_dummies = predict(dummies, newdata = dados_teste[,cols_reg])

print(dim(train_dummies)); print(dim(test_dummies))

62

Resultado da Saída:

[1] 2059 16

[1] 515 16

Vamos guardar a matriz de dados de treinamento das

variáveis explicativas para o modelo em um objeto

chamado "x"

x = as.matrix(train_dummies)

Vamos guardar o vetor de dados de treinamento da

variável dependente para o modelo em um objeto

chamado "y_train"

y_train = dados_treino$lwage

Vamos guardar o vetor de dados de teste da variável

dependente para o modelo em um objeto chamado "y_test"

y_test = dados_teste$lwage

Métricas de avaliação para os futuros modelos.

Vamos calcular o R^2 dos valores verdadeiros e

preditos conforme a seguinte função:

eval_results <- function(true, predicted, df) {

 SSE <- sum((predicted - true)^2)

 SST <- sum((true - mean(true))^2)

 R_square <- 1 - SSE / SST

 RMSE = sqrt(SSE / nrow(df))

 # As métricas de performance do modelo:

 data.frame(

 RMSE = RMSE,

 Rsquare = R_square

)

}

Modelo RIDGE
Cálculo do valor ótimo de lambda.
lambdas <- 10^seq(2, -3, by = -0.1)

Calculando o lambda por validação cruzada:

63

ridge_lamb <- cv.glmnet(x, y_train, alpha = 0, lambda = lambdas)

Vamos ver qual o lambda ótimo

best_lambda_ridge <- ridge_lamb$lambda.min

Imprimir o valor ótimo de lambda

cat('O valor ótimo de lambda foi: \n')

print(best_lambda_ridge)

Resultado da Saída: [1] 0.02511886

Estimando o modelo: coeficientes.
Estimando o modelo Ridge

ridge_reg = glmnet(x, y_train, nlambda = 25, alpha = 0,

 family = 'gaussian', lambda = best_lambda_ridge)

Exibindo os coeficientes do modelo Ridge

ridge_reg[["beta"]]

FIGURA 24 – MODELO RIDGE

FONTE: O autor (2025).

No modelo ridge, nenhum coeficiente estimado foi igual a zero.

Predição dos dados de treino (modelo ridge).

Realizando previsões com o modelo Ridge para os dados de treinamento

64

predictions_train <- predict(ridge_reg, S = best_lambda_ridge, newx = x)

Calculando as métricas para a base de treinamento

metricas_ridge_treino <- eval_results(y_train, predictions_train, dados_treino)

Exibindo as métricas do modelo Ridge na base de treinamento

metricas_ridge_treino

RMSE Rsquare

<dbl> <dbl>

0.5595395 0.6867634

Predição dos dados de teste (modelo ridge).

Predição e avaliação nos dados de teste

predictions_test <- predict(ridge_reg, s = best_lambda_ridge, newx = x_test)

Calculando as métricas para a base de teste

metricas_ridge_teste <- eval_results(y_test, predictions_test, dados_teste)

Exibindo as métricas do modelo Ridge na base de teste

metricas_ridge_teste

RMSE Rsquare

<dbl> <dbl>

0.5375854 0.7007985

Modelo Lasso.
Cálculo do valor ótimo de lambda.

Estimando o lambda por validação cruzada para Lasso

lasso_lamb <- cv.glmnet(x, y_train, alpha = 1, lambda = lambdas,

 nfolds = 10,

 standardize = TRUE)

Vamos ver qual o lambda ótimo

best_lambda_lasso <- lasso_lamb$lambda.min

Exibindo o valor do melhor lambda

best_lambda_lasso # 0.003162278

65

Resultado da Saída:
[1] 0.006309573

Estimando o modelo : coeficientes.
lasso_model <- glmnet(x, y_train, alpha = 1,

 lambda = best_lambda_lasso,

 standardize = TRUE)

lasso_model[["beta"]]

FIGURA 25 – MODELO DE LASSO

FONTE: O autor (2025).

Diferente do modelo Ridge, no modelo Lasso já identificamos alguns parâmetros zerados, das

variáveis exper e huship.

Predição dos dados de treino (modelo Lasso).

predictions_train_lasso <- predict(lasso_model,

 S = best_lambda_lasso, newx = x)

metricas_lasso_treino <- eval_results(y_train, predictions_train_lasso,

dados_treino)

metricas_lasso_treino

RMSE Rsquare

<dbl> <dbl>

0.5596622 0.6866261

66

Predição dos dados de teste (modelo Lasso).
Vamos fazer as predições na base de teste

predictions_test_lasso <- predict(lasso_model,

 s = best_lambda_lasso,

 newx = x_test)

As métricas da base de teste são:

metricas_lasso_teste <- eval_results(y_test, predictions_test_lasso, dados_teste)

metricas_lasso_teste

RMSE Rsquare

<dbl> <dbl>

0.5340347 0.7047378

Modelo ELASTIC NET
Cálculo do valor ótimo de lambda e alpha e treinamento do modelo.

train_cont <- trainControl(method = "repeatedcv",

 number = 10,

 repeats = 5,

 search = "random",

 verboseIter = FALSE)

elastic_reg <- train(lwage ~ husage + husearns + huseduc + hushrs + earns + age +

educ + expe +

 husunion + husblck + hushisp + kidge6 + black + hispanic +

union + kidlt6,

 data = dados_treino,

 method = "glmnet",

 tuneLength = 10,

 trControl = train_cont)

print('Valores ótimos para alpha e lambda:')

print(elastic_reg$bestTune)

alpha lambda

<dbl> <dbl>

0.8528671 0.005336688

67

Predição dos dados de treino (modelo ElasticNet).

predictions_train_elastic <- predict(elastic_reg, x)

As métricas de performance na base de treinamento

são:

metricas_elastic_treino <- eval_results(y_train, predictions_train_elastic, dados_treino)

metricas_elastic_treino

RMSE Rsquare

<dbl> <dbl>

0.5594508 0.6868627

Predição dos dados de teste (modelo ElasticNet).
Vamos fazer as previsões na base de teste

predictions_test_elastic <- predict(elastic_reg, x_test)

As métricas de performance na base de teste são:

metricas_elastic_teste <- eval_results(y_test, predictions_test_elastic,

dados_teste)

metricas_elastic_teste

RMSE Rsquare

<dbl> <dbl>

0.5341944 0.7045612

Métricas de qualidade dos modelos.

metricas_unificadas <- rbind.data.frame(

 metricas_ridge_treino,

 metricas_lasso_treino,

 metricas_elastic_treino,

 metricas_ridge_teste,

 metricas_lasso_teste,

 metricas_elastic_teste

)

row.names(metricas_unificadas) <- c(

 'RIDGE - TREINO',

 'LASSO - TREINO',

68

 'ELASTICNET - TREINO',

 'RIDGE - TESTE',

 'LASSO - TESTE',

 'ELASTICNET - TESTE'

)

metricas_unificadas

QUADRO 11 – MÉTRICAS DE QUALIDADE DOS MODELOS

Modelo RMSE -
TREINO

R² -
TREINO

RMSE -
TESTE

R² -
TESTE

RIDGE 0.5595395 0.6867634 0.5375854 0.7007985

LASSO 0.5596622 0.6866261 0.5340347 0.7047378

ELASTICNET 0.5594508 0.6868627 0.5341944 0.7045612

FONTE: O autor (2025).

Predição caso proposto. Entrando com os dados.

Vamos fazer uma predicao para:

husage = 40 (anos - idade do marido)

husunion = 0 (marido não possui união estável)

husearns = 600 (US$ renda do marido por semana)

huseduc = 13 (anos de estudo do marido)

husblck = 1 (o marido é preto)

hushisp = 0 (o marido não é hispânico)

hushrs = 40 (horas semanais de trabalho do marido)

kidge6 = 1 (possui filhos maiores de 6 anos)

age = 38 (anos - idade da esposa)

black = 0 (a esposa não é preta)

educ = 13 (anos de estudo da esposa)

hispanic = 1 (a esposa é hispânica)

union = 0 (esposa não possui união estável)

exper = 18 (anos de experiência de trabalho da esposa)

69

kidlt6 = 1 (possui filhos menores de 6 anos)

husage = (40 - pre_proc_val[["mean"]][["husage"]]) /

pre_proc_val[["std"]][["husage"]]

husunion = 0

husearns = 600 (rendimento do marido em US$)

husearns = (600 - pre_proc_val[["mean"]][["husearns"]]) /

pre_proc_val[["std"]][["husearns"]]

huseduc = 13 (anos de estudo do marido)

huseduc = (13 - pre_proc_val[["mean"]][["huseduc"]]) /

pre_proc_val[["std"]][["huseduc"]]

husblck = 1 (o marido não é preto)

husblck = 1

hushisp = 0 (o marido não é hispânico)

hushisp = 0

hushrs = 40 (o marido trabalha 40 horas semanais)

hushrs = (40 - pre_proc_val[["mean"]][["hushrs"]]) /

pre_proc_val[["std"]][["hushrs"]]

kidge6 = 1 (não tem filhos maiores de 6 anos)

kidge6 = 1

earns = 355.5 (rendimento da esposa em US$)

earns = (355.5 - pre_proc_val[["mean"]][["earns"]]) /

pre_proc_val[["std"]][["earns"]]

age = 38 anos (idade da esposa)

age = (38 - pre_proc_val[["mean"]][["age"]]) / pre_proc_val[["std"]][["age"]]

black = 0 (esposa não é preta)

black = 0

educ = 13 (esposa possui 13 anos de estudo)

educ = (13 - pre_proc_val[["mean"]][["educ"]]) / pre_proc_val[["std"]][["educ"]]

hispanic = 1 (esposa é hispânica)

hispanic = 1

union = 0 (o casal não possui união registrada)

union = 0

exper = 18 (anos de experiência de trabalho da esposa)

exper = (18 - pre_proc_val[["mean"]][["exper"]]) /

pre_proc_val[["std"]][["exper"]]

kidlt6 = 1 (não possui filhos com menos de 6 anos)

kidlt6 = 1

Vamos construir uma matriz de dados para a predição

70

our_pred = as.matrix(data.frame(

 husage = husage,

 husunion = husunion,

 husearns = husearns,

 huseduc = huseduc,

 husblck = husblck,

 hushisp = hushisp,

 hushrs = hushrs,

 kidge6 = kidge6,

 earns = earns,

 age = age,

 black = black,

 educ = educ,

 hispanic = hispanic,

 union = union,

 exper = exper,

 kidlt6 = kidlt6

))

n <- nrow(dados_treino) # tamanho da amostra 2059

S <- pre_proc_val[["std"]][["lwage"]] # desvio padrão

dam <- S / sqrt(n) # distribuição da amostragem da média

RIDGE
Predição com o modelo Ridge

predict_our_ridge <- predict(ridge_reg,

 s = best_lambda_ridge,

 newx = our_pred)

predict_our_ridge

Resultado: s1

[1,] 0.7051145

O resultado é um valor padronizado, vamos convertê-lo

para o valor nominal, consistente com o dataset original

wage_pred_ridge = (predict_our_ridge *

 pre_proc_val[["std"]][["lwage"]]) +

 pre_proc_val[["mean"]][["lwage"]]

Resultado: s1

[1,] 2.56323

71

Intervalo de confiança RIDGE

m <- wage_pred_ridge # valor médio predito

CIlwr_ridge <- m + (qnorm(0.025)) * dam # intervalo inferior

CIupr_ridge <- m - (qnorm(0.025)) * dam # intervalo superior

Os valores são:

CIlwr_ridge # 2.540604

Resultado da Saída: s1
[1,] 2.540604

CIupr_ridge # 2.585856

s1

[1,] 2.585856

LS_RIDGE <- exp(CIupr_ridge)

LI_RIDGE <- exp(CIlwr_ridge)

ESTIMAD_RIDGE <- exp(wage_pred_ridge)

LASSO
Predição com o modelo Lasso

predict_our_lasso <- predict(lasso_model,

 s = best_lambda_lasso,

 newx = our_pred)

predict_our_lasso

Resultado da Saída: s1
[1,] 0.7441195

O resultado eh um valor padronizado, vamos converte-lo

para o valor nominal, consistente com o dataset original

wage_pred_lasso=(predict_our_lasso*

pre_proc_val[["std"]][["lwage"]])+

pre_proc_val[["mean"]][["lwage"]]

0 resultado eh:

wage_pred_lasso

Resultado da Saída: s1
[1,] 2.583662

72

Este é o valor predito do salário por hora (US$),

segundo as características que atribuímos

s1

2.584648

Intervalo de confiança LASSO.
O intervalo de confianca para o nosso exemplo eh:

m_lasso <- wage_pred_lasso # valor medio predito

CIlwr_lasso <- m_lasso + (qnorm(0.025))*dam # intervalo inferior

CIupr_lasso <- m_lasso - (qnorm(0.025))*dam # intervalo superior

Os valores sao:

CIlwr_lasso # 2.56

Resultado da Saída: s1
[1,] 2.561036

CIupr_lasso # 2.61

Resultado da Saída: s1
[1,] 2.606288

LI_LASSO <- exp(CIlwr_lasso)

LS_LASSO <- exp(CIupr_lasso)

ESTIMAD_LASSO <- exp(m_lasso)

ELASTIC NET
Fazendo a predicao do ELASTICNET:

predict_our_elastic <- predict(elastic_reg, our_pred)

predict_our_elastic

Resultado: [1] -0.03492759

O resultado eh um valor padronizado, vamos converte-lo

para o valor nominal, consistente com o dataset original

wage_pred_elastic=(predict_our_elastic*

pre_proc_val[["std"]][["lwage"]])+

pre_proc_val[["mean"]][["lwage"]]

73

O resultado eh:

wage_pred_elastic

Resultado da Saída: [1] 2.175577

Intervalo de confiança ELASTIC NET.

O intervalo de confianca para o nosso exemplo eh:

m_elastic <- wage_pred_elastic # valor medio predito

CIlwr_elastic <- m_elastic + (qnorm(0.025))*dam # intervalo inferior

CIupr_elastic <- m_elastic - (qnorm(0.025))*dam # intervalo superior

Os valores sao:

CIlwr_elastic # 2.56

Resultado da Saída: [1] 2.152951

CIupr_elastic # 2.61

Resultado da Saída: [1] 2.198203

LI_ELASTIC <- exp(CIlwr_elastic)

LS_ELASTIC <- exp(CIupr_elastic)

ESTIMAD_ELASTIC <- exp(m_elastic)

Valores preditos para pessoa x e intervalos de confiança

Criando os dataframes para armazenar os resultados de cada modelo

estimacao_ridge <- cbind.data.frame(LI_RIDGE, ESTIMAD_RIDGE, LS_RIDGE)

estimacao_lasso <- cbind.data.frame(LI_LASSO, ESTIMAD_LASSO, LS_LASSO)

estimacao_elastic <- cbind.data.frame(s1 = LI_ELASTIC, s1 = ESTIMAD_ELASTIC, s1 =

LS_ELASTIC)

Combinando os resultados de todos os modelos em um único dataframe

pessoa_x <- rbind(estimacao_ridge, estimacao_lasso, estimacao_elastic)

Nomeando as colunas

colnames(pessoa_x) <- c('Limite Inferior IC', 'Valor Estimado', 'Limite Superior

IC')

Nomeando as linhas

74

rownames(pessoa_x) <- c('Ridge', 'Lasso', 'ElasticNet')

Exibindo o resultado final

pessoa_x

FIGURA 26 – VALORES PREDITIVOS

FONTE: O autor (2025).

Foram separados 80% dos dados para treino do modelo e 20% para teste. As bases de treino

e teste foram as mesmas para os três modelos ajustados.
Verificamos que os três modelos tiveram métricas muito similares, com R2 em torno de 69%

para os dados de treino, e 70% para os dados de teste, indicando ausência de overfitting nos modelos.
Os RMSEs calculados também foram muito similares em torno de 0,56 para os dados de treino e 0,53
para os dados de teste.

Analisando os valores de R2 e RMSE, apesar de muito próximos nos três modelos, o Lasso
tem métricas ligeiramente melhores. O valor do salário por hora estimado para a pessoa simulada foi
de $13,25 com intervalo de confiança entre $12,95 e $13,55.

75

APÊNDICE 6 – ARQUITETURA DE DADOS

A – ENUNCIADO

1 Construção de Características: Identificador automático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto

de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções para

calcular as diferentes características para o problema da identificação da língua do texto de entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o notebook

e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com origem

na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para

melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o

percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de
90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).

76

B – RESOLUÇÃO

Identificador automático de idioma
Problema: Dados um texto de entrada, é possível identificar em qual língua o texto está escrito?
Entrada: "texto qualquer" Saída: português ou inglês ou francês ou italiano ou..
O processo de Reconhecimento de Padrões
O objetivo deste trabalho é demonstrar o processo de "construção de atributos" e como ele é
fundamental para o Reconhecimento de Padrões (RP).
Primeiro um conjunto de "amostras" previamente conhecido (classificado)

SEED = 42 # Seed para poder debugar os dados. Se colocar None, usa tudo no modo

aleatório

Amostras de texto em diferentes línguas

ingles = [

 "Hello, how are you?",

 "I love to read books.",

 "The weather is nice today.",

 "Where is the nearest restaurant?",

 "What time is it?",

 "I enjoy playing soccer.",

 "Can you help me with this?",

 "I'm going to the movies tonight.",

 "This is a beautiful place.",

 "I like listening to music.",

 "Do you speak English?",

 "What is your favorite color?",

 "I'm learning to play the guitar.",

 "Have a great day!",

 "I need to buy some groceries.",

 "Let's go for a walk.",

 "How was your weekend?",

 "I'm excited for the concert.",

 "Could you pass me the salt, please?",

 "I have a meeting at 2 PM.",

 "I'm planning a vacation.",

 "She sings beautifully.",

 "The cat is sleeping.",

 "I want to learn French.",

 "I enjoy going to the beach.",

77

 "Where can I find a taxi?",

 "I'm sorry for the inconvenience.",

 "I'm studying for my exams.",

 "I like to cook dinner at home.",

 "Do you have any recommendations for restaurants?",

]

espanhol = [

 "Hola, ¿cómo estás?",

 "Me encanta leer libros.",

 "El clima está agradable hoy.",

 "¿Dónde está el restaurante más cercano?",

 "¿Qué hora es?",

 "Voy al parque todos los días.",

 "¿Puedes ayudarme con esto?",

 "Me gustaría ir de vacaciones.",

 "Este es mi libro favorito.",

 "Me gusta bailar salsa.",

 "¿Hablas español?",

 "¿Cuál es tu comida favorita?",

 "Estoy aprendiendo a tocar el piano.",

 "¡Que tengas un buen día!",

 "Necesito comprar algunas frutas.",

 "Vamos a dar un paseo.",

 "¿Cómo estuvo tu fin de semana?",

 "Estoy emocionado por el concierto.",

 "¿Me pasas la sal, por favor?",

 "Tengo una reunión a las 2 PM.",

 "Estoy planeando unas vacaciones.",

 "Ella canta hermosamente.",

 "El perro está jugando.",

 "Quiero aprender italiano.",

 "Disfruto ir a la playa.",

 "¿Dónde puedo encontrar un taxi?",

 "Lamento las molestias.",

 "Estoy estudiando para mis exámenes.",

 "Me gusta cocinar la cena en casa.",

 "¿Tienes alguna recomendación de restaurantes?",

]

78

portugues = [

 "Estou indo para o trabalho agora.",

 "Adoro passar tempo com minha família.",

 "Preciso comprar leite e pão.",

 "Vamos ao cinema no sábado.",

 "Gosto de praticar esportes ao ar livre.",

 "O trânsito está terrível hoje.",

 "A comida estava deliciosa!",

 "Você já visitou o Rio de Janeiro?",

 "Tenho uma reunião importante amanhã.",

 "A festa começa às 20h.",

 "Estou cansado depois de um longo dia de trabalho.",

 "Vamos fazer um churrasco no final de semana.",

 "O livro que estou lendo é muito interessante.",

 "Estou aprendendo a cozinhar pratos novos.",

 "Preciso fazer exercícios físicos regularmente.",

 "Vou viajar para o exterior nas férias.",

 "Você gosta de dançar?",

 "Hoje é meu aniversário!",

 "Gosto de ouvir música clássica.",

 "Estou estudando para o vestibular.",

 "Meu time de futebol favorito ganhou o jogo.",

 "Quero aprender a tocar violão.",

 "Vamos fazer uma viagem de carro.",

 "O parque fica cheio aos finais de semana.",

 "O filme que assisti ontem foi ótimo.",

 "Preciso resolver esse problema o mais rápido possível.",

 "Adoro explorar novos lugares.",

 "Vou visitar meus avós no domingo.",

 "Estou ansioso para as férias de verão.",

 "Gosto de fazer caminhadas na natureza.",

 "O restaurante tem uma vista incrível.",

 "Vamos sair para jantar no sábado.",

]

A "amostras" de texto precisa ser "transformada" em padrões Um padrão é um conjunto de
características, geralmente representado por um vetor e um conjunto de padrões no formato de tabela.
Onde cada linha é um padrão e as colunas as características e, geralmente, na última coluna a classe.

import random

79

Verifica se a semente está definida

if SEED is not None:

 random.seed(SEED)

Inicializa a lista de frases com as línguas correspondentes

pre_padroes = []

Adiciona frases em inglês

for frase in ingles:

 pre_padroes.append([frase, 'inglês'])

Adiciona frases em espanhol

for frase in espanhol:

 pre_padroes.append([frase, 'espanhol'])

Adiciona frases em português

for frase in portugues:

 pre_padroes.append([frase, 'português'])

Embaralha a lista

random.shuffle(pre_padroes)

Importa o pandas para facilitar a visualização

import pandas as pd

Cria o DataFrame com os dados

dados = pd.DataFrame(pre_padroes)

Exibe o DataFrame

dados

80

FIGURA 27 – DADOS DE AMOSTRAS

FONTE: O autor (2025).

Algoritmo para gerar Stop Words de maneira dinâmica (Não utilizado no resultado final).
Foram feitos vários destes extratores de features, e um dos que testamos foi utilizar Stop Words

e Bag of Words. Ele funcionou bem e gerou resultados acima de 90%, porém notamos que no jeito que
este trabalho está estruturado ocorre overfitting. Logo, decidimos não utilizar nem Stop Words nem Bag
of Words no resultado final deste trabalho. Deixamos no entanto o código comentado para demonstrar
a ideia que tentamos e também deixar documentado para possíveis discussões com o grupo ou com o
professor.

import re

Função para calcular a frequência de palavras em um dataset

def calcula_frequencia_no_dataset(elem_list, dataset):

 for elem in elem_list:

 if elem not in dataset:

 dataset[elem] = 1

 else:

 dataset[elem] += 1

 return dataset

Função para criar o bag of words (BoW) por língua

def bagOfWords(pre_padroes):

 bow_por_lingua = {}

 for texto, lingua in pre_padroes:

81

 pattern_regex = re.compile('[^\w+]', re.UNICODE) # Regex para identificar

caracteres não alfanuméricos

 texto = re.sub(pattern_regex, ' ', texto) # Substitui todos os caracteres

não alfanuméricos por espaço

 texto = texto.lower() # Converte o texto para minúsculas

 bow = re.findall(r'\b\w+\b', texto) # Cria lista de palavras

 # Cria dataset para a língua, se não existir

 if lingua not in bow_por_lingua:

 bow_por_lingua[lingua] = {}

 # Atualiza o dataset da língua com a frequência das palavras

 bow_por_lingua[lingua] = calcula_frequencia_no_dataset(bow,

bow_por_lingua[lingua])

 return bow_por_lingua

Função para encontrar as stopwords por língua

def stopWords(lista_de_linguas):

 stopWords_por_lingua = {}

 for lingua in lista_de_linguas:

 sorted_dict = sorted(bow_por_lingua[lingua].items(), key=lambda x: x[1],

reverse=True)

 stopWords_por_lingua[lingua] = dict(sorted_dict[:5]) # Seleciona as 5

palavras mais frequentes como stopwords

 return stopWords_por_lingua

Gera a lista de línguas presentes em pre_padroes

lista_de_linguas = set(item[1] for item in pre_padroes)

Cria o bag of words

bow_por_lingua = bagOfWords(pre_padroes)

Encontra as stopwords por língua

stopWords_por_lingua = stopWords(lista_de_linguas)

Exibe o Bag of Words

print('Bag of Words')

for l in lista_de_linguas:

82

 print(l, list(bow_por_lingua[l].keys())[:20]) # Exibe as 20 palavras mais

frequentes

Exibe as stopwords

print('\nStop Words')

for l in lista_de_linguas:

 print(l, list(stopWords_por_lingua[l].keys())) # Exibe as stopwords

Resultado de Saída: Bag of Words português ['estou', 'indo', 'para', 'o', 'trabalho',
'agora', 'trânsito', 'está', 'terrível', 'hoj e', 'tenho', 'uma', 'reunião',

'importante', 'amanhã', 'adoro', 'passar', 'tempo', 'com', 'minha'] inglês ['do',

'you', 'speak', 'english', 'i', 'love', 'to', 'read', 'books', 'let', 's', 'go',

'fo r', 'a', 'walk', 'm', 'sorry', 'the', 'inconvenience', 'have'] espanhol ['que',

'tengas', 'un', 'buen', 'día', 'tienes', 'alguna', 'recomendación', 'de', 'restaura

ntes', 'cuál', 'es', 'tu', 'comida', 'favorita', 'el', 'clima', 'está', 'agradable',

'hoy'] Stop Words português ['de', 'o', 'estou', 'para', 'no'] inglês ['i', 'the',

'to', 'a', 'm'] espanhol ['el', 'me', 'estoy', 'a', 'un']

Construção dos atributos.
Esse é o coração desse trabalho e que deverá ser desenvolvido por vocês. Pensem em como

podemos "medir" cada frase/sentença e extrair características que melhorem o resultado do processo
de identificação.

Após a criação de cada novo atributo, execute as etapas seguintes e registre as métricas da
matriz de confusão. Principalmente acurácia e a precisão.

 Extratores de Features implementados:
● tamanhoMedioFrases: Calcula o tamanho médio das palavras na frase.
● frequenciaCaracteres: Calcula a frequência de ocorrência de cada caractere no texto.
● frequenciaBigramas: Calcula a frequência de ocorrência de bigramas (pares de caracteres

consecutivos).
● frequenciaTrigramas: Calcula a frequência de ocorrência de trigramas (trios de caracteres

consecutivos).
● frequenciaAcentuacoes: Calcula a frequência de ocorrência de caracteres acentuados.
● quantidadeAcentuacoes: Conta o número total de caracteres acentuados
● bagOfWords: Cria uma lista de palavras conhecidas para cada língua de maneira dinâmica

(Acabamos não utilizando devido ao overfitting).
● stopWords: Cria uma lista de ocorrências mais frequentes de palavras nas frases. Elas

acabam sendo
● palavras do tipo preposção, artigo, etc (Acabamos não utilizando devido ao overfitting)

a entrada é o vetor pre_padroes e a saída desse passo deverá ser "padrões"

import re

83

import numpy as np

import unicodedata

if SEED is not None:

 np.random.seed(SEED)

def tamanhoMedioFrases(texto):

 palavras = re.split("\s", texto)

 palvras = palavras.remove('') # Remove palavras vazias

 # print(palavras)

 tamanhos = [len(s) for s in palavras if len(s) > 0]

 # print(tamanhos)

 soma = 0

 for t in tamanhos:

 soma = soma + t

 return soma / len(tamanhos)

def calcula_frequencia(elem_list):

 contagem_elementos = {}

 for elem in elem_list:

 if elem not in contagem_elementos:

 contagem_elementos[elem] = 1

 else:

 contagem_elementos[elem] += 1

 total = sum(contagem_elementos.values())

 # print(total)

 # print(contagem_elementos)

 frequencia_elementos = {}

 for elem, contagem in contagem_elementos.items():

 frequencia_elementos[elem] = contagem / total

 # print(frequencia_elementos)

 return frequencia_elementos

def conta_ocorrencia(elem_list):

 contagem_elementos = {}

 for elem in elem_list:

 if elem not in contagem_elementos:

 contagem_elementos[elem] = 1

 else:

 contagem_elementos[elem] += 1

84

 return contagem_elementos

def frequenciaCaracteres(texto):

 texto = texto.lower()

 lista_caracteres = [c for c in texto]

 frequencia_caracteres = conta_ocorrencia(lista_caracteres)

 sorted_dict = sorted(frequencia_caracteres.items(), key=lambda x: x[1],

reverse=True)

 frequencia_caracteres = dict(sorted_dict[:1]) # o mais frequente

 return frequencia_caracteres

def frequenciaBigramas(texto):

 texto = texto.lower()

 texto = re.sub(r'\s+', '', texto) # Regex para remover todos os espaços do

texto

 bigramas = []

 for i in range(len(texto)-1):

 bigramas.append(texto[i] + texto[i+1])

 # print(bigramas)

 frequencia_bigramas = conta_ocorrencia(bigramas)

 sorted_dict = sorted(frequencia_bigramas.items(), key=lambda x: x[1],

reverse=True)

 frequencia_bigramas = dict(sorted_dict[:2]) # o mais frequente

 # print(frequencia_bigramas)

 return frequencia_bigramas

def frequenciaTrigramas(texto):

 texto = texto.lower()

 texto = re.sub(r'\s+', '', texto) # Regex para remover todos os espaços do

texto

 trigramas = []

 for i in range(len(texto)-2):

 trigramas.append(texto[i:i+3])

 # print(trigramas)

 frequencia_trigramas = conta_ocorrencia(trigramas)

 sorted_dict = sorted(frequencia_trigramas.items(), key=lambda x: x[1],

reverse=True)

 frequencia_trigramas = dict(sorted_dict[:1]) # o mais frequente

 # print(frequencia_trigramas)

 return frequencia_trigramas

85

def frequenciaAcentuacoes(texto):

 texto = texto.lower()

 lista_caracteres_acentuados = []

 for c in texto:

 if c != unicodedata.normalize('NFKD', c):

 lista_caracteres_acentuados.append(c)

 # print(lista_caracteres_acentuados)

 frequencia_caracteres_acentuados =

conta_ocorrencia(lista_caracteres_acentuados)

 sorted_dict = sorted(frequencia_caracteres_acentuados.items(), key=lambda x:

x[1], reverse=True)

 frequencia_caracteres_acentuados = dict(sorted_dict[:1]) # o mais frequente

 return frequencia_caracteres_acentuados

def quantidadeAcentuacoes(texto):

 texto = texto.lower()

 qnt = 0

 for c in texto:

 if c != unicodedata.normalize('NFKD', c):

 qnt += 1

 return qnt

def bagOfWords(texto, lingua):

texto = texto.lower()

palavras = re.findall(r'\b\w+\b', texto)

qnt = 0

for p in palavras:

if p in list(bow_por_lingua[lingua].keys()):

qnt += 1

return {f'bw_{lingua}': qnt}

def stopWords(texto, lingua):

texto = texto.lower()

palavras = re.findall(r'\b\w+\b', texto)

qnt = 0

for p in palavras:

if p in list(stopWords_por_lingua[lingua].keys()):

qnt += 1

return {f'sw_{lingua}': qnt}

86

def extraiCaracteristicas(frase):

 # frase é um vetor ['texto', 'lingua']

 texto, lingua = frase

 pattern_regex = re.compile('[^\w+]', re.UNICODE) # Regex para identificar

caracteres que NÃO são

 texto = re.sub(pattern_regex, ' ', texto) # Substitui todos os caracteres que

não são alfanuméricos

 # print(texto)

 caracteristica1 = tamanhoMedioFrases(texto)

 caracteristica2 = frequenciaCaracteres(texto)

 caracteristica3 = frequenciaBigramas(texto)

 caracteristica4 = frequenciaTrigramas(texto)

 caracteristica5 = frequenciaAcentuacoes(texto)

 caracteristica6 = quantidadeAcentuacoes(texto)

 # caracteristicaBagOfWords = bagOfWords(texto, lingua)

 # caracteristicaStopWords = stopWords(texto, lingua)

 # acrescente as suas funções no vetor padrão

 padrao = {

 'tamanhoMedioFrases': caracteristica1,

 **caracteristica2, # O ** é um operador "Spread" de dicionários. ele

retorna todos os itens

 *caracteristica3,

 **caracteristica4,

 **caracteristica5,

 'qntAcentuacoes': caracteristica6,

 # **caracteristicaBagOfWords,

 # **caracteristicaStopWords,

 'lingua': frase[1]

 }

 return padrao

def geraPadroes(frases):

 padroes = []

 for frase in frases:

 padrao = extraiCaracteristicas(frase)

 padroes.append(padrao)

 return padroes

converte o formato [frase classe] em

87

[caracteristica_1, caracteristica_2,... caracteristica n, classe]

padroes = geraPadroes(pre_padroes)

apenas para visualização

print(padroes)

dados = pd.DataFrame(padroes)

dados.fillna(0, inplace=True) # Substitui o que está com NaN para 0

dados.drop(' ', axis=1, inplace=True) # Remove algum espaço que tenha ficado

print(dict(dados.iloc[0]))

print(dados.shape)

Dados

FIGURA 28 – TAMANHO MÉDIO DAS FRASES

FONTE: O autor (2025).

Treinando o modelo com SVM Separando o conjunto de treinamento do conjunto de testes.

from sklearn.model_selection import train_test_split

if SEED is not None: # Reseta o seed para evitar que de algum valor diferente

durante os testes

 np.random.seed(SEED)

from sklearn.metrics import confusion_matrix

vet = np.array(padroes)

classes = np.array(dados['lingua']) # classes = [p[-1] for p in padroes]

print(len(classes), classes)

88

padroes_sem_classe = np.array(dados.drop('lingua', axis=1)) # vet[:,0:-1]

print(padroes_sem_classe)

X_train, X_test, y_train, y_test = train_test_split(padroes_sem_classe, classes,

test_size=0.25)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

Resultado da Saída: (69, 169) (23, 169) (69,) (23,)

Com os conjuntos separados, podemos "treinar" o modelo usando a SVM.
from sklearn import svm

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

treinador = svm.SVC() # algoritmo escolhido

modelo = treinador.fit(X_train, y_train)

score com os dados de treinamento

acuracia = modelo.score(X_train, y_train)

print("Acurácia nos dados de treinamento: {:.2f}%".format(acuracia * 100))

melhor avaliar com a matriz de confusão

y_pred = modelo.predict(X_train)

cm = confusion_matrix(y_train, y_pred)

print(cm)

print(classification_report(y_train, y_pred))

com dados de teste que não foram usados no treinamento

print('Métricas mais confiáveis')

y_pred2 = modelo.predict(X_test)

cm = confusion_matrix(y_test, y_pred2)

print(cm)

print(classification_report(y_test, y_pred2))

Acurácia nos dados de treinamento: 82.61%
 [[11 2 9]

 [0 23 0]

 [0 1 23]]

89

QUADRO 12 – RESULTADO DAS CLASSIFICAÇÕES

Língua Precisão
(Precision)

Revocação
(Recall)

F1-
Score

Suporte
(Support)

Espanhol 1.00 0.50 0.67 22

Inglês 0.88 1.00 0.94 23

Português 0.72 0.96 0.82 24

Acurácia 0.83 69

Média
Macro

0.87 0.82 0.81 69

Média
Ponderada

0.86 0.83 0.81 69

FONTE: O autor (2025).

Métricas mais confiáveis.
 [[2 2 4]

 [1 5 1]

 [1 1 6]]

90

QUADRO 13 – RESULTADO DAS MÉTRICAS MAIS CONFIÁVEIS

Língua Precisão
(Precision)

Revocação
(Recall)

F1-
Score

Suporte
(Support)

Espanhol 0.50 0.25 0.33 8

Inglês 0.62 0.71 0.67 7

Português 0.55 0.75 0.63 8

Acurácia 0.57 23

Média
Macro

0.56 0.57 0.54 23

Média
Ponderada

0.55 0.57 0.54 23

FONTE: O autor (2025).

Teste de Validação utilizando valores completamente fora do dataset de teste e de treino.
Dados criados por nós para ver se o modelo realmente acerta e também para simular uma

aplicação real onde teríamos uma entrada fornecida por uma aplicação para que fosse inferido pelo
nosso modelo treinado.

testes = [

 ['Cuando crezca, ganaré más dinero que mi papá.', 'espanhol'],

 ['When I grow up I will make more money than my dad.', 'inglês'],

 ['Quando crescer, quero ter mais dinheiro que meu pai.', 'português'],

 ["Learning a new language opens doors to new cultures and perspectives.",

'inglês'],

 ["Aprender um novo idioma abre portas para novas culturas e perspectivas.",

'português'],

 ["Aprender un nuevo idioma abre puertas a nuevas culturas y perspectivas.",

'espanhol'],

 ["Waking up early allows you to enjoy the quiet moments of the morning.",

'inglês'],

91

 ["Acordar cedo permite que você desfrute dos momentos tranquilos da manhã.",

'português'],

 ["Levantarse temprano te permite disfrutar de los momentos tranquilos de la

mañana.", 'espanhol']

]

for test in testes:

 features = extraiCaracteristicas(test)

 dados.loc[0] = features

 X_test = dados.drop('lingua', axis=1).loc[0].fillna(0)

 # dados.fillna(0, inplace=True)

 X_test = np.array(X_test)

 X_test = X_test.reshape(1, -1)

 # print(X_test.shape)

 y_pred = modelo.predict(X_test)

 print(f"Predição: {y_pred[0]}->{test[1]} ({'Correto' if y_pred[0] == test[1]

else 'Incorreto'})")

Resultado da Saída: Predição: português->espanhol (Incorreto)
Predição: inglês->inglês (Correto)

Predição: português->português (Correto)

Predição: inglês->inglês (Correto)

Predição: português->português (Correto)

Predição: espanhol->espanhol (Correto)

Predição: inglês->inglês (Correto)

Predição: português->português (Correto)

Predição: português->espanhol (Incorreto)

Resultados e considerações finais
Com os extratores de features implementados, conseguimos 82,61% de acurácia no

treinamento com a SEED fixa em 42. Com outros valores de SEED a acurácia varia de 75% a 85%.
Cremos que cumprimos com a meta do trabalho de obter um resultado acima de 70%.

Observamos também que a acurácia no conjunto de teste foi consideravelmente menor, de
57%, sugerindo que o modelo pode estar com overfitting devido a pequena base de dados. Também,
a precisão, recall e f1 score variam significativamente entre as classes, especialmente para o espanhol,
onde o recall foi mais baixo no conjunto de teste, demonstrando que o modelo pode vir a ter dificuldades
identificando espanhol. Por outro lado, o desempenho para inglês foi relativamente melhor, com uma
precisão e recall mais equilibrados. Para testar isso criamos um pequeno set de validação (na célula
acima), para podermos colocar dados totalmente diferentes do dataset inicial e ter uma validação a
mais.

92

Uma solução para esses problemas de acurácia, e overfitting seria usar uma base de dados
maior, ou reimplementar o código utilizando a nossa proposta de ter um stopwords a bag of words
dinâmico.

93

APÊNDICE 7 – APRENDIZADO DE MÁQUINA

A – ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo,
Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher
os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento.

B – RESOLUÇÃO
CLASSIFICAÇÃO
Para o experimento de Classificação:

• Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor acurácia ficará em primeiro
na tabela.
• Após o quadro colocar:

o Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro
de maior Acurácia (criar um arquivo com novos casos à sua escolha)

o A lista de comandos emitidos no RStudio para conseguir os resultados obtidos

94

FIGURA 29 – CLASSIFICAÇÃO PARA VEÍCULO

FONTE: O autor (2025).

A seguir, veremos os novos casos para a classificação de veículos.

95

FIGURA 30 – NOVOS CASOS DE VEÍCULOS

FONTE: O autor (2025).

Comandos executados no RStudio:
1.a veículos (classificação) - Random Forest Hold Out

install.packages("e1071")

install.packages("caret")

library("caret")

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/06veículos")

data <- read.csv("6-veiculos.csv")

View(data)

data$a <- NULL

any(is.na(data))

FALSE

preproc_center_scale <- preProcess(data, method = c("center", "scale"))

normalized_data <- predict(preproc_center_scale, data)

Dados normalizados com média centralizada em 0

View(normalized_data)

set.seed(202493)

ind <- createDataPartition(normalized_data$tipo, p = 0.8, list = F)

train <- normalized_data[ind,]

test <- normalized_data[-ind,]

--- Hold out ---

set.seed(202493)

rf <- train(tipo ~ ., data = normalized_data, method = "rf")

96

rf

mtry = 2

predict.rf <- predict(rf, test)

confusionMatrix(predict.rf, as.factor(test$tipo))

Accuracy: 1

--- Novos casos (usando Hold out) ----

new_data <- read.csv("6-veiculos-novos-dados.csv")

View(new_data)

new_data$a <- NULL

any(is.na(new_data))

FALSE

preproc_center_scale <- preProcess(new_data, method = c("center", "scale"))

normalized_new_data <- predict(preproc_center_scale, new_data)

Dados normalizados com média centralizada em 0

View(normalized_new_data)

predict.rf_new_data <- predict(rf, normalized_new_data)

van bus opel

Levels: bus opel saab van

new_data$tipo <- NULL

result <- cbind(new_data, predict.rf_new_data)

names(result)[names(result) == "predict.rf_new_data"] <- "tipo"

View(result)

Visualização do DF com os novos dados e a predição

97

FIGURA 31 – CLASSIFICAÇÃO PARA DIABETES

FONTE: O autor (2025).

A seguir veremos novos casos para diabetes.

FIGURA 32 – NOVOS CASOS PARA DIABETES

FONTE: O autor (2025).

Comandos executados no RStudio:

98

1.b diabetes (classificação) - Random Forest – Hold Out

install.packages("e1071")

install.packages("caret")

library("caret")

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/10diabetes")

data <- read.csv("10-diabetes.csv")

View(data)

data$num <- NULL

any(is.na(data))

FALSE

preproc_center_scale <- preProcess(data, method=c("center", "scale"))

normalized_data <- predict(preproc_center_scale, data)

Dados normalizados com média centralizada em 0

View(normalized_data)

set.seed(202493)

ind <- createDataPartition(normalized_data$diabetes, p = 0.8, list = FALSE)

train <- normalized_data[ind,]

test <- normalized_data[-ind,]

--- Hold out ---

set.seed(202493)

rf <- train(diabetes ~ ., data = normalized_data, method = "rf")

rf

mtry = 2

predict.rf <- predict(rf, test)

confusionMatrix(predict.rf, as.factor(test$diabetes))

Accuracy: 1

--- Novos casos (usando Hold out) ----

99

new_data <- read.csv("10-diabetes-novos-dados.csv")

View(new_data)

new_data$num <- NULL

any(is.na(new_data))

FALSE

preproc_center_scale <- preProcess(new_data, method = c("center", "scale"))

normalized_new_data <- predict(preproc_center_scale, new_data)

Dados normalizados com média centralizada em 0

View(normalized_new_data)

predict.rf_new_data <- predict(rf, normalized_new_data)

predict.rf_new_data

pos neg neg

Levels: neg pos

new_data$diabetes <- NULL

result <- cbind(new_data, predict.rf_new_data)

names(result)[names(result) == "predict.rf_new_data"] <- "diabetes"

View(result)

Visualização do DF com os novos dados e a predição

REGRESSÃO
Para o experimento de Regressão:
• Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em primeiro na tabela.
• Após o quadro, colocar:

o Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro de maior
R2 (criar um arquivo com novos casos à sua escolha)
o O Gráfico de Resíduos para a técnica/parâmetro de maior R2 o A lista de comandos emitidos
no RStudio para conseguir os resultados obtidos

100

FIGURA 33 – DADOS DE REGRESSÃO

FONTE: O autor (2025).

Gráfico de resíduos:

FIGURA 34 – GRÁFICO DE RESÍDUOS

FONTE: O autor (2025).

Comandos executados no RStudio:
2.a admissão (regressão) - Random Forest – Hold Out

install.packages("e1071")

101

install.packages("kernlab")

install.packages("caret")

install.packages("mice")

library("caret")

library(Metrics)

library(stats)

library(mice)

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/09admissão")

data <- read.csv("9-admissao.csv")

View(data)

data$num <- NULL

any(is.na(data))

FALSE

target_data <- data[["ChanceOfAdmit"]]

predictors <- data[, colnames(data) != "ChanceOfAdmit"]

preproc_center_scale <- preProcess(predictors, method=c("center", "scale"))

normalized_predictors <- predict(preproc_center_scale, predictors)

normalized_data <- cbind(normalized_predictors, target_data)

names(normalized_data)[names(normalized_data) == "target_data"] <- "ChanceOfAdmit"

View(normalized_data)

set.seed(202493)

ind <- createDataPartition(normalized_data$ChanceOfAdmit, p = 0.8, list = FALSE)

train <- normalized_data[ind,]

test <- normalized_data[-ind,]

--- Hold out ---

set.seed(202493)

rf_ho <- train(ChanceOfAdmit ~ ., data = normalized_data, method = "rf")

102

rf_ho

mtry = 2

predict.rf_ho <- predict(rf_ho, test)

r2 <- function(predicted, observed) {

 return (1 - (sum((predicted - observed) ^ 2) / sum((observed - mean(observed)) ^

2)))

}

syx <- function(predicted, observed) {

 n <- length(observed)

 syx <- sqrt(sum((observed - predicted)^2) / (n - 2))

 return(syx)

}

rmse(test$ChanceOfAdmit, predict.rf_ho)

0.0333386

r2(predict.rf_ho, test$ChanceOfAdmit)

0.9458273

syx(predict.rf_ho, test$ChanceOfAdmit)

0.03368409

cor(test$ChanceOfAdmit, predict.rf_ho) # Pearson (library stats)

0.9746234

mae(test$ChanceOfAdmit, predict.rf_ho)

0.02295854

--- Novos casos (usando Hold out) ----

new_data <- read.csv("9-admissao-novos-dados.csv")

View(new_data)

new_data$num <- NULL

any(is.na(new_data))

FALSE

103

new_target_data <- new_data[["ChanceOfAdmit"]]

new_predictors <- new_data[, colnames(new_data) != "ChanceOfAdmit"]

preproc_center_scale <- preProcess(new_predictors, method=c("center", "scale"))

normalized_new_predictors <- predict(preproc_center_scale, new_predictors)

normalized_new_data <- cbind(normalized_new_predictors, new_target_data)

names(normalized_new_data)[names(normalized_new_data) == "new_target_data"] <-

 "ChanceOfAdmit"

Dados normalizados com média centralizada em 0

View(normalized_new_data)

predict.rf_ho_new_data <- predict(rf_ho, normalized_new_data)

predict.rf_ho_new_data

1 2 3

0.6088426 0.7209769 0.7601318

new_data$ChanceOfAdmit <- NULL

result <- cbind(new_data, predict.rf_ho_new_data)

names(result)[names(result) == "predict.rf_ho_new_data"] <- "ChanceOfAdmit"

View(result)

Visualização do DF com os novos dados e a predição

--- Geração do Gráfico de Resíduos com RF Hold Out e Dados de teste ---

test_residuals <- ((test$ChanceOfAdmit - predict.rf_ho) / test$ChanceOfAdmit) *

100

plot(

 predict.rf_ho,

 test_residuals,

 col = "blue",

 pch = 20,

 main = "Resíduos (%) - RF Hold Out (Dados teste)",

 xlab = "ChanceOfAdmit (estimado)",

 ylab = "Resíduo (%)",

 ylim=c(-100, 100)

)

104

abline(h = 0, col = "gray")

grid()

FIGURA 35 – DADOS DE BIOMASSA

FONTE: O autor (2025).

Abaixo temos o gráfico de resíduos e dados de teste.

FIGURA 36 – GRÁFICO DE RESÍDUOS E DADOS DE TESTE

FONTE: O autor (2025).

2.b biomassa (regressão) - Random Forest – Hold Out

install.packages("e1071")

105

install.packages("kernlab")

install.packages("caret")

install.packages("mice")

library("caret")

library(Metrics)

library(stats)

library(mice)

setwd("/Users/cassi/dev/_estudos/pos-iaa/IAA008-aprendizado-maquina/bases-de-

dados/05biomassa")

data <- read.csv("5-biomassa.csv")

View(data)

any(is.na(data))

FALSE

target_data <- data[["biomassa"]]

predictors <- data[, colnames(data) != "biomassa"]

preproc_center_scale <- preProcess(predictors, method=c("center", "scale"))

normalized_predictors <- predict(preproc_center_scale, predictors)

normalized_data <- cbind(normalized_predictors, target_data)

names(normalized_data)[names(normalized_data) == "target_data"] <- "biomassa"

View(normalized_data)

set.seed(202493)

ind <- createDataPartition(normalized_data$biomassa, p=0.8, list=FALSE)

train <- normalized_data[ind,]

test <- normalized_data[-ind,]

--- Hold out ---

set.seed(202493)

rf_ho <- train(biomassa ~ ., data = normalized_data, method = "rf")

rf_ho

mtry = 2

106

predict.rf_ho <- predict(rf_ho, test)

r2 <- function(predicted, observed) {

 return (1 - (sum((predicted - observed) ^ 2) / sum((observed - mean(observed)) ^

2)))

}

syx <- function(predicted, observed) {

 n <- length(observed)

 syx <- sqrt(sum((observed - predicted)^2) / (n - 2))

 return(syx)

}

rmse(test$biomassa, predict.rf_ho)

123.4682

r2(predict.rf_ho, test$biomassa)

0.9800358

syx(predict.rf_ho, test$biomassa)

125.5789

cor(test$biomassa, predict.rf_ho) # Pearson (library stats)

0.9963851

mae(test$biomassa, predict.rf_ho)

41.88866

--- Novos casos (usando Hold out) ----

new_data <- read.csv("5-biomassa-novos-dados.csv")

View(new_data)

any(is.na(new_data))

FALSE

new_target_data <- new_data[["biomassa"]]

new_predictors <- new_data[, colnames(new_data) != "biomassa"]

107

preproc_center_scale <- preProcess(new_predictors, method=c("center", "scale"))

normalized_new_predictors <- predict(preproc_center_scale, new_predictors)

normalized_new_data <- cbind(normalized_new_predictors, new_target_data)

names(normalized_new_data)[names(normalized_new_data) == "new_target_data"] <-

 "biomassa"

Dados normalizados com média centralizada em 0

View(normalized_new_data)

predict.rf_ho_new_data <- predict(rf_ho, normalized_new_data)

predict.rf_ho_new_data

1 2 3

568.6312 73.9615 45.1129

new_data$biomassa <- NULL

result <- cbind(new_data, predict.rf_new_data)

names(result)[names(result) == "predict.rf_new_data"] <- "biomassa"

View(result)

Visualização do DF com os novos dados e a predição

--- Geração do Gráfico de Resíduos com RF Hold Out e Dados de teste ---

test_residuals <- ((test$biomassa - predict.rf_ho) / test$biomassa) * 100

plot(predict.rf_ho, test_residuals,

 col = "blue", pch = 20,

 main = "Resíduos (%) - RF Hold Out (Dados teste)",

 xlab = "biomassa (estimado)", ylab = "Resíduo (%)",

 ylim=c(-100, 100))

abline(h = 0, col = "gray")

grid()

AGRUPAMENTO

108

FIGURA 37 – LISTA DE CLUSTERS DE VEÍCULO

FONTE: O autor (2025).

109

FIGURA 38 – VISUALIZAÇÃO DE DADOS DE MUSCULAÇÃO

FONTE: O autor (2025).

110

FIGURA 39 – AVALIAÇÃO DAS REGRAS

FONTE: O autor (2025).

Colocar a lista de comandos emitidos no RStudio para conseguir os resultados obtidos.

FIGURA 40 – COMANDOS EMITIDOS NO RSTUDIO

FONTE: O autor (2025).

111

APÊNDICE 8 – DEEP LEARNING

A – ENUNCIADO

1 Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a

arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e

arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista

no curso.

4 Tradutor de Textos (Transformer)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a

arquitetura Transformer vista no curso.

B – RESOLUÇÃO

 1. Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a
arquitetura CNN vista no curso.

Link Google Colab: https://colab.research.google.com/drive/1_z-wM_G7r-
ynSifDmfEYVPunT0JrOLGP?usp=sharing
Importar as bibliotecas necessárias

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from tensorflow.keras import datasets, layers, models

from mlxtend.plotting import plot_confusion_matrix

from sklearn.metrics import confusion_matrix

Carregar o conjunto de dados CIFAR-10

112

(train_images, train_labels), (test_images, test_labels) =

datasets.cifar10.load_data()

Normalizar as imagens para o intervalo [0, 1]

train_images, test_images = train_images / 255.0, test_images / 255.0

train_labels, test_labels = train_labels.flatten(), test_labels.flatten()

print("train_images.shape: ", train_images.shape)

print("train_labels.shape: ", train_labels.shape)

print("test_images.shape: ", test_images.shape)

print("test_labels.shape: ", test_labels.shape)

Mapear os rótulos para nomes das classes

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',

'horse', 'ship', 'truck']

FIGURA 41 – DADOS DE TREINAMENTO E TESTE

FONTE: O autor (2025).

Construir a arquitetura da CNN

Quantidade de parâmetros de saída com base na quantidade de classes

k = len(set(train_labels))

model = models.Sequential([

 # Estágio 1

 layers.Input(shape=train_images[0].shape),

 # Camada convolucional 1

 layers.Conv2D(32, (3, 3), activation='relu', strides=2),

 # Camada convolucional 2

 layers.Conv2D(64, (3, 3), activation='relu', strides=2),

113

 # Camada convolucional 3

 layers.Conv2D(128, (3, 3), activation='relu', strides=2),

 # Camada de flatten e fully connected

 layers.Flatten(),

 # Estágio 2

 layers.Dropout(0.5),

 layers.Dense(1024, activation='relu'),

 layers.Dropout(0.2),

 layers.Dense(k, activation='softmax')

])

model.summary()

FIGURA 42 – MODELO SEQUENCIAL

FONTE: O autor (2025).

114

Compilar o modelo

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

 metrics=['accuracy'])

r = model.fit(train_images, train_labels, epochs=15,

 validation_data=(test_images, test_labels))

FIGURA 43 – CARREGAMENTO DAS IMAGENS

FONTE: O autor (2025).

Visualizar o desempenho

Gráfico de acurácia

plt.plot(r.history['accuracy'], label='accuracy')

plt.plot(r.history['val_accuracy'], label = 'val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend(loc='lower right')

plt.show()

Gráfico de perda

plt.plot(r.history['loss'], label='loss')

plt.plot(r.history['val_loss'], label = 'val_loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.legend(loc='lower right')

plt.show()

115

FIGURA 44 – GRÁFICO DE ACURÁCIA

FONTE: O autor (2025).

Abaixo os dados de perda.

FIGURA 45 – GRÁFICO DE PERDA

FONTE: O autor (2025).

Efetuando a predição

pred_labels = model.predict(test_images).argmax(axis=1)

Matriz de confusão

cm = confusion_matrix(test_labels, pred_labels)

plot_confusion_matrix(conf_mat=cm, figsize=(7, 7), show_normed=True)

116

FIGURA 46 – MATRIZ DE CONFUSÃO

FONTE: O autor (2025).

Exibindo algumas classificações erradas

misclassified = np.where(pred_labels != test_labels)[0]

i = np.random.choice(misclassified)

plt.imshow(test_images[i], cmap="gray")

plt.title(f"True label: {class_names[test_labels[i]]} Predicted:

{class_names[pred_labels[i]]}")

117

FIGURA 47 – CLASSIFICAÇÕES ERRADAS

FONTE: O autor (2025).

 2. Detector de SPAM (RNN

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e
arquitetura de RNNvista no curso.

Link Google Colab:
https://colab.research.google.com/drive/10vDAJzRrQR4xkgujlOKuYvH4okbr8qc6?usp=sharing

118

Importação

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import Input, Embedding, LSTM, Dense

from tensorflow.keras.models import Model

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

Carregar base de dados

Verificar o caminho do arquivo

df = pd.read_csv("/content/spam.csv", encoding="ISO-8859-1")

df.head()

removendo algumas colunas

df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)

df.columns = ["labels", "data"]

df["b_labels"] = df["labels"].map({ "ham": 0, "spam": 1 })

y = df["b_labels"].values

print(df.head())

FIGURA 48 – REMOÇÃO DE ALGUMAS COLUNAS

FONTE: O autor (2025).

119

Separação das bases para treinamento e teste

x_train, x_test, y_train, y_test = train_test_split(df["data"], y, test_size=0.33)

num_words = 20000

tokenizer = Tokenizer(num_words=num_words)

tokenizer.fit_on_texts(x_train)

sequences_train = tokenizer.texts_to_sequences(x_train)

sequences_test = tokenizer.texts_to_sequences(x_test)

word2index = tokenizer.word_index

V = len(word2index)

print(f"{V} tokens")

7126 tokens

Acertar tamanho das sequências

data_train = pad_sequences(sequences_train)

T = data_train.shape[1]

data_test = pad_sequences(sequences_test, maxlen=T)

print("data_train.shape: ", data_train.shape)

print("data_test.shape: ", data_test.shape)

data_train.shape: (3733, 189)

data_test.shape: (1839, 189)

Definição do modelo

D = 20

M = 5

i = Input(shape=(T,))

x = Embedding(V + 1, D)(i)

x = LSTM(M)(x)

x = Dense(1, activation="sigmoid")(x)

model = Model(i, x)

model.summary()

120

FIGURA 49 – MODELO FUNCIONAL

FONTE: O autor (2025).

Compilar o modelo

model.compile(

 loss="binary_crossentropy",

 optimizer="adam",

 metrics=["accuracy"]

)

epochs = 5

r = model.fit(

 data_train,

 y_train,

 epochs=epochs,

 validation_data=(data_test, y_test)

)

Visualizar accuracy e loss

plt.plot(r.history["loss"], label="loss")

plt.plot(r.history["val_loss"], label="val_loss")

plt.xlabel("Épocas")

plt.ylabel("loss")

plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs + 1))

plt.legend()

plt.show()

plt.plot(r.history["accuracy"], label="accuracy")

plt.plot(r.history["val_accuracy"], label="val_accuracy")

121

plt.xlabel("Épocas")

plt.ylabel("accuracy")

plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs + 1))

plt.legend()

plt.show()

FIGURA 50 – ACURÁCIA E PERDA

FONTE: O autor (2025).

A seguir o gráfico de acurácia.

122

FIGURA 51 – GRÁFICO DE ACURÁCIA

FONTE: O autor (2025).

text = "Is your cellphone carrier bad? Check out our free for all plans!. Click the

link"

seq_texto = tokenizer.texts_to_sequences([text])

data_texto = pad_sequences(seq_texto, maxlen = T)

pred = model.predict(data_texto)

print(pred)

print("SPAM" if pred >= 0.5 else "OK")

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 102ms/step

[[0.5963417]]

SPAM

3. Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos fake usando a base de dados MNIST e arquitetura GAN vista
no curso.

Link Google Colab:
https://colab.research.google.com/drive/1Qdws2GSR3Q1ePH-ln27KZeujp5fvudXW?usp=sharing
Para Gerar os GIFs

!pip install imageio

!pip install git+https://github.com/tensorflow/docs

Importações

123

import tensorflow as tf

import glob

import imageio

import matplotlib.pyplot as plt

import numpy as np

import os

import PIL

from tensorflow.keras import layers

import time

from IPython import display

Carrega a base de dados MNIST

(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()

Normalização

train_images = train_images.reshape(train_images.shape[0], 28, 28,

1).astype('float32')

Normaliza entre [-1, 1]

train_images = (train_images - 127.5) / 127.5

Gera o banco em partes e randomiza

BUFFER_SIZE = 60000

BATCH_SIZE = 256

Cria o dataset (from_tensor_slices)

Randomiza (shuffle)

Combina elementos consecutivos em lotes (batch)

train_dataset =

tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_

SIZE)

Cria o GERADOR

def make_generator_model():

 # Modelo sequencial

 # Camada de entrada

 # Camada de batch normalization

 # Camada de ativação

 model = tf.keras.Sequential()

 model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))

 model.add(layers.BatchNormalization())

 model.add(layers.LeakyReLU())

 # Camada de reshape

 model.add(layers.Reshape((7, 7, 256)))

 assert model.output_shape == (None, 7, 7, 256)

124

 # Camada de convolução transposta

 model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same',

use_bias=False))

 assert model.output_shape == (None, 7, 7, 128)

 model.add(layers.BatchNormalization())

 model.add(layers.LeakyReLU())

 model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same',

use_bias=False))

 assert model.output_shape == (None, 14, 14, 64)

 model.add(layers.BatchNormalization())

 model.add(layers.LeakyReLU())

 model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same',

use_bias=False, activation='tanh'))

 # Camada de batch normalization

 assert model.output_shape == (None, 28, 28, 1)

 return model

Teste do GERADOR, ainda não treinado

Cria um modelo

generator = make_generator_model()

Gera uma imagem

noise = tf.random.normal([1, 100])

generated_image = generator(noise, training=False)

Plota a imagem

plt.imshow(generated_image[0, :, :, 0], cmap='gray')

125

FIGURA 52 – GERANDO IMAGEM

FONTE: O autor (2025).

Cria o DISCRIMADOR

def make_discriminator_model():

 model = tf.keras.Sequential()

 model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',

input_shape=[28, 28, 1]))

 model.add(layers.LeakyReLU())

 model.add(layers.Dropout(0.3))

 model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

 model.add(layers.LeakyReLU())

 model.add(layers.Dropout(0.3))

 model.add(layers.Flatten())

 model.add(layers.Dense(1))

 return model

Teste do DISCRIMINADOR, ainda não treinado

discriminator = make_discriminator_model()

decision = discriminator(generated_image)

print (decision)

Perda binária cruzada

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

126

Função que calcula a perda do discriminador

def discriminator_loss(real_output, fake_output):

 # Calcula a perda do real

 real_loss = cross_entropy(tf.ones_like(real_output), real_output)

 # Calcula a perda do fake

 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

 # Calcula a perda total

 total_loss = real_loss + fake_loss

 return total_loss

Função que calcula a perda do gerador

def generator_loss(fake_output):

 # Calcula a perda do fake

 return cross_entropy(tf.ones_like(fake_output), fake_output)

Cria os otimizadores para o gerador e discriminador

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

Cria checkpoints para salvar modelos ao longo do tempo

Úteis em tarefas longas, para se recuperar de um desligamento

ou interrupção abrupta

checkpoint_dir = './training_checkpoints'

checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")

checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,

discriminator_optimizer=discriminator_optimizer, generator=generator,

discriminator=discriminator)

Configura o Loop de treinamento

Parâmetros

EPOCHS = 100

noise_dim = 100

num_examples_to_generate = 16

You will reuse this seed overtime (so it's easier)

to visualize progress in the animated GIF)

seed = tf.random.normal([num_examples_to_generate, noise_dim])

Função que faz um passo de treinamento

É uma `tf.function`, que compila essa função

para um código mais rápido quando chamada

@tf.function

def train_step(images):

 # Gerar ruído

127

 noise = tf.random.normal([BATCH_SIZE, noise_dim])

 # Treinar

 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

 generated_images = generator(noise, training=True)

 # Treinar o discriminador

 real_output = discriminator(images, training=True)

 fake_output = discriminator(generated_images, training=True)

 # Calcular a perda

 gen_loss = generator_loss(fake_output)

 disc_loss = discriminator_loss(real_output, fake_output)

 # Calcular os gradientes

 gradients_of_generator = gen_tape.gradient(gen_loss,

generator.trainable_variables)

 gradients_of_discriminator = disc_tape.gradient(disc_loss,

discriminator.trainable_variables)

 # Aplicar os gradientes

 generator_optimizer.apply_gradients(zip(gradients_of_generator,

generator.trainable_variables))

 discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator,

discriminator.trainable_variables))

Treinamento completo/laço

Função que treina o modelo

def train(dataset, epochs):

 for epoch in range(epochs):

 start = time.time()

 for image_batch in dataset:

 train_step(image_batch)

 # Produce images for the GIF as you go

 display.clear_output(wait=True)

 generate_and_save_images(generator, epoch + 1, seed)

 # Save the model every 15 epochs

 if (epoch + 1) % 15 == 0:

 checkpoint.save(file_prefix = checkpoint_prefix)

 print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))

Generate after the final epoch

 display.clear_output(wait=True)

 generate_and_save_images(generator, epochs, seed)

Gerar e salvar imagens

128

def generate_and_save_images(model, epoch, test_input):

Notice `training` is set to False.

This is so all layers run in inference mode (batchnorm).

 predictions = model(test_input, training=False)

 fig = plt.figure(figsize=(4, 4))

 for i in range(predictions.shape[0]):

 plt.subplot(4, 4, i+1)

 plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')

 plt.axis('off')

 plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))

 plt.show()

Treinar o modelo e restaurar o último ponto de verificação

train(train_dataset, EPOCHS)

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

FIGURA 53 – TREINANDO O MODELO

FONTE: O autor (2025).

Criar um GIF

Display a single image using the epoch number

def display_image(epoch_no):

 return PIL.Image.open('image_at_epoch_{:04d}.png'.format(epoch_no))

129

display_image(EPOCHS)

anim_file = 'dcgan.gif'

with imageio.get_writer(anim_file, mode='I') as writer:

 filenames = glob.glob('image*.png')

 filenames = sorted(filenames)

 for filename in filenames:

 image = imageio.imread(filename)

 writer.append_data(image)

 image = imageio.imread(filename)

 writer.append_data(image)

import tensorflow_docs.vis.embed as embed

embed.embed_file(anim_file)

130

FIGURA 54 – CRIANDO UM GIF DE IMAGEM

FONTE: O autor (2025).

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a

arquitetura Transformer vista no curso.
Link Google Colab: https://colab.research.google.com/drive/1nl2rBx2wwPHIomhOpX5wyd9-

AyId4D0t?usp=sharing
!pip uninstall tensorflow

!pip install tensorflow==2.15.0

!pip install tensorflow_datasets

!pip install -U tensorflow-text==2.15.0

import collections

import logging

import os

import pathlib

import re

import string

import sys

import time

import numpy as np

import matplotlib.pyplot as plt

import tensorflow_datasets as tfds

131

import tensorflow_text as text

import tensorflow as tf

logging.getLogger('tensorflow').setLevel(logging.ERROR) # remover warnings

examples, metadata = tfds.load(

 'ted_hrlr_translate/pt_to_en',

 with_info=True,

 as_supervised=True

)

train_examples, val_examples = examples['train'], examples['validation']

for pt_examples, en_examples in train_examples.batch(3).take(1):

 for pt in pt_examples.numpy():

 print(pt.decode('utf-8'))

 print()

 for en in en_examples.numpy():

 print(en.decode('utf-8'))

e quando melhoramos a procura , tiramos a única vantagem da impressão , que é a

serendipidade .

mas e se estes fatores fossem ativos ?

mas eles não tinham a curiosidade de me testar .

and when you improve searchability , you actually take away the one advantage of

print , which is serendipity .

but what if it were active ?

but they did n't test for curiosity .

model_name = "ted_hrlr_translate_pt_en_converter"

tf.keras.utils.get_file(

 f"{model_name}.zip",

f"https://storage.googleapis.com/download.tensorflow.org/models/{model_name}.zip",

 cache_dir='.',

 cache_subdir='',

 extract=True

)

tokenizers = tf.saved_model.load(model_name)

132

def tokenize_pairs(pt, en):

 pt = tokenizers.pt.tokenize(pt)

 pt = pt.to_tensor()

 en = tokenizers.en.tokenize(en)

 en = en.to_tensor()

 return pt, en

BUFFER_SIZE = 20000

BATCH_SIZE = 64

def make_batches(ds):

 return (

 ds

 .cache()

 .shuffle(BUFFER_SIZE)

 .batch(BATCH_SIZE)

 .map(tokenize_pairs, num_parallel_calls=tf.data.AUTOTUNE)

 .prefetch(tf.data.AUTOTUNE)

)

train_batches = make_batches(train_examples)

val_batches = make_batches(val_examples)

def get_angles(pos, i, d_model):

 angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))

 return pos * angle_rates

def positional_encoding(position, d_model):

 angle_rads = get_angles(

 np.arange(position)[:, np.newaxis],

 np.arange(d_model)[np.newaxis, :],

 d_model

)

 angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])

 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

 pos_encoding = angle_rads[np.newaxis, ...]

 return tf.cast(pos_encoding, dtype=tf.float32)

n, d = 2048, 512

133

pos_encoding = positional_encoding(n, d)

print(pos_encoding.shape)

pos_encoding = pos_encoding[0]

pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2))

pos_encoding = tf.transpose(pos_encoding, (2, 1, 0))

pos_encoding = tf.reshape(pos_encoding, (d, n))

o plot a seguir não é necessário

plt.pcolormesh(pos_encoding, cmap='RdBu')

plt.ylabel('Depth')

plt.xlabel('Position')

plt.colorbar()

plt.show()

def create_padding_mask(seq):

 seq = tf.cast(tf.math.equal(seq, 0), tf.float32)

 return seq[:, tf.newaxis, tf.newaxis, :]

def create_look_ahead_mask(size):

 mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)

 return mask

def scaled_dot_product_attention(q, k, v, mask):

 # Q * K ^ T

 matmul_qk = tf.matmul(q, k, transpose_b=True)

 dk = tf.cast(tf.shape(k)[-1], tf.float32)

 # / por sqrt(dk)

 scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

 if mask is not None:

 scaled_attention_logits += (mask * -1e9)

 attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)

 output = tf.matmul(attention_weights, v)

 return output, attention_weights

Atenção Multi-cabeças

class MultiHeadAttention(tf.keras.layers.Layer):

 def __init__(self, d_model, num_heads):

134

 super().__init__()

 self.num_heads = num_heads

 self.d_model = d_model

 assert d_model % self.num_heads == 0

 self.depth = d_model // self.num_heads

 self.wq = tf.keras.layers.Dense(d_model)

 self.wk = tf.keras.layers.Dense(d_model)

 self.wv = tf.keras.layers.Dense(d_model)

 self.dense = tf.keras.layers.Dense(d_model)

 def split_heads(self, x, batch_size):

 x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))

 return tf.transpose(x, perm=[0, 2, 1, 3])

 def call(self, v, k, q, mask):

 batch_size = tf.shape(q)[0]

 q = self.wq(q)

 k = self.wk(k)

 v = self.wv(v)

 q = self.split_heads(q, batch_size)

 k = self.split_heads(k, batch_size)

 v = self.split_heads(v, batch_size)

 scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v,

mask)

 scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])

 concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))

 output = self.dense(concat_attention)

 return output, attention_weights

def point_wise_feed_forward_network(d_model, dff):

 return tf.keras.Sequential([

 tf.keras.layers.Dense(dff, activation='relu'),

135

 tf.keras.layers.Dense(d_model)

])

class EncoderLayer(tf.keras.layers.Layer):

 def __init__(self, d_model, num_heads, dff, rate = 0.1):

 super().__init__()

 self.mha = MultiHeadAttention(d_model, num_heads)

 self.ffn = point_wise_feed_forward_network(d_model, dff)

 self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon = 1e-6)

 self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon = 1e-6)

 self.dropout1 = tf.keras.layers.Dropout(rate)

 self.dropout2 = tf.keras.layers.Dropout(rate)

 def call(self, x, training, mask):

 attn_output, _ = self.mha(x, x, x, mask)

 attn_output = self.dropout1(attn_output, training = training)

 out1 = self.layernorm1(x + attn_output)

 ffn_output = self.ffn(out1)

 ffn_output = self.dropout2(ffn_output, training = training)

 out2 = self.layernorm2(out1 + ffn_output)

 return out2

class DecoderLayer(tf.keras.layers.Layer):

 def __init__(self, d_model, num_heads, dff, rate = 0.1):

 super().__init__()

 self.mha1 = MultiHeadAttention(d_model, num_heads)

 self.mha2 = MultiHeadAttention(d_model, num_heads)

 self.ffn = point_wise_feed_forward_network(d_model, dff)

 self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon = 1e-6)

 self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon = 1e-6)

 self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon = 1e-6)

 self.dropout1 = tf.keras.layers.Dropout(rate)

 self.dropout2 = tf.keras.layers.Dropout(rate)

136

 self.dropout3 = tf.keras.layers.Dropout(rate)

 def call(self, x, enc_output, training, look_ahead_mask, padding_mask):

 attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)

 attn1 = self.dropout1(attn1, training = training)

 out1 = self.layernorm1(attn1 + x)

 attn2, attn_weights_block2 = self.mha2(enc_output, enc_output, out1,

padding_mask)

 attn2 = self.dropout2(attn2, training = training)

 out2 = self.layernorm2(attn2 + out1)

 ffn_output = self.ffn(out2)

 ffn_output = self.dropout3(ffn_output, training = training)

 out3 = self.layernorm3(ffn_output + out2)

 return out3, attn_weights_block1, attn_weights_block2

class Encoder(tf.keras.layers.Layer):

 def __init__(

 self,

 num_layers,

 d_model,

 num_heads,

 dff,

 input_vocab_size,

 maximum_position_encoding,

 rate = 0.1

):

 super().__init__()

 self.d_model = d_model

 self.num_layers = num_layers

 self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)

 self.pos_encoding = positional_encoding(maximum_position_encoding,

self.d_model)

 self.enc_layers = [

 EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)

]

 self.dropout = tf.keras.layers.Dropout(rate)

137

 def call(self, x, training, mask):

 seq_len = tf.shape(x)[1]

 x = self.embedding(x)

 x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))

 x += self.pos_encoding[:, :seq_len, :]

 x = self.dropout(x, training=training)

 for i in range(self.num_layers):

 x = self.enc_layers[i](x, training, mask)

 return x

class Decoder(tf.keras.layers.Layer):

 def __init__(

 self,

 num_layers,

 d_model,

 num_heads,

 dff,

 target_vocab_size,

 maximum_position_encoding,

 rate = 0.1):

 super().__init__()

 self.d_model = d_model

 self.num_layers = num_layers

 self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)

 self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)

 self.dec_layers = [

 DecoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)

]

 self.dropout = tf.keras.layers.Dropout(rate)

 def call(self, x, enc_output, training, look_ahead_mask, padding_mask):

 seq_len = tf.shape(x)[1]

 attention_weights = {}

 x = self.embedding(x)

 x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))

 x += self.pos_encoding[:, :seq_len, :]

 x = self.dropout(x, training=training)

 for i in range(self.num_layers):

138

 x, block1, block2 = self.dec_layers[i](

 x,

 enc_output,

 training,

 look_ahead_mask,

 padding_mask

)

 attention_weights[f'decoder_layer{i+1}_block1'] = block1

 attention_weights[f'decoder_layer{i+1}_block2'] = block2

 return x, attention_weights

class Transformer(tf.keras.Model):

 def __init__(

 self,

 num_layers,

 d_model,

 num_heads,

 dff,

 input_vocab_size,

 target_vocab_size,

 pe_input,

 pe_target,

 rate = 0.1

):

 super().__init__()

 self.encoder = Encoder(

 num_layers,

 d_model,

 num_heads,

 dff,

 input_vocab_size,

 pe_input,

 rate

)

 self.decoder = Decoder(

 num_layers,

 d_model,

 num_heads,

 dff,

 target_vocab_size,

139

 pe_target,

 rate

)

 self.final_layer = tf.keras.layers.Dense(target_vocab_size)

 def call(self, inputs, training):

 print('inputs:', inputs)

 print('training:', training)

 inp, tar = inputs

 enc_padding_mask, look_ahead_mask, dec_padding_mask = self.create_masks(inp,

tar)

 enc_output = self.encoder(inp, training, enc_padding_mask)

 dec_output, attention_weights = self.decoder(

 tar,

 enc_output,

 training,

 look_ahead_mask,

 dec_padding_mask

)

 final_output = self.final_layer(dec_output)

 return final_output, attention_weights

 def create_masks(self, inp, tar):

 enc_padding_mask = create_padding_mask(inp)

 dec_padding_mask = create_padding_mask(inp)

 look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])

 dec_target_padding_mask = create_padding_mask(tar)

 look_ahead_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)

 return enc_padding_mask, look_ahead_mask, dec_padding_mask

num_layers = 4

d_model = 128

dff = 512

num_heads = 8

dropout_rate = 0.1

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):

 def __init__(self, d_model, warmup_steps = 4000):

140

 super().__init__()

 self.d_model = d_model

 self.d_model = tf.cast(self.d_model, tf.float32)

 self.warmup_steps = warmup_steps

 def __call__(self, step):

 step = tf.cast(step, tf.float32)

 arg1 = tf.math.rsqrt(step)

 arg2 = step * (self.warmup_steps ** -1.5)

 return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)

learning_rate = CustomSchedule(d_model)

optimizer = tf.keras.optimizers.Adam(

 learning_rate,

 beta_1 = 0.9,

 beta_2 = 0.98,

 epsilon = 1e-9

)

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(

 from_logits = True,

 reduction = 'none'

)

def loss_function(real, pred):

 mask = tf.math.logical_not(tf.math.equal(real, 0))

 loss_ = loss_object(real, pred)

 mask = tf.cast(mask, dtype = loss_.dtype)

 loss_ *= mask

 return tf.reduce_sum(loss_) / tf.reduce_sum(mask)

def accuracy_function(real, pred):

 accuracies = tf.equal(real, tf.argmax(pred, axis = 2))

 mask = tf.math.logical_not(tf.math.equal(real, 0))

 accuracies = tf.math.logical_and(mask, accuracies)

 accuracies = tf.cast(accuracies, dtype = tf.float32)

 mask = tf.cast(mask, dtype = tf.float32)

 return tf.reduce_sum(accuracies) / tf.reduce_sum(mask)

141

train_loss = tf.keras.metrics.Mean(name = 'train_loss')

train_accuracy = tf.keras.metrics.Mean(name = 'train_accuracy')

transformer = Transformer(

 num_layers = num_layers,

 d_model = d_model,

 num_heads = num_heads,

 dff = dff,

 input_vocab_size = tokenizers.pt.get_vocab_size().numpy(),

 target_vocab_size = tokenizers.en.get_vocab_size().numpy(),

 pe_input = 1000,

 pe_target = 1000,

 rate = dropout_rate

)

EPOCHS = 25

train_step_signature = [

 tf.TensorSpec(shape = (None, None), dtype = tf.int64),

 tf.TensorSpec(shape = (None, None), dtype=tf.int64)

]

@tf.function(input_signature = train_step_signature)

def train_step(inp, tar):

 tar_inp = tar[:, :-1]

 tar_real = tar[:, 1:]

 with tf.GradientTape() as tape:

 predictions, _ = transformer([inp, tar_inp], training = True)

 loss = loss_function(tar_real, predictions)

 gradients = tape.gradient(loss, transformer.trainable_variables)

 optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))

 train_loss(loss)

 train_accuracy(accuracy_function(tar_real, predictions))

for epoch in range(EPOCHS):

 start = time.time()

 train_loss.reset_state()

 train_accuracy.reset_state()

 epoch_count = epoch + 1

142

 for (batch, (inp, tar)) in enumerate(train_batches):

 train_step(inp, tar)

 if batch % 50 == 0:

 print(f"Epoch {epoch + 1} Batch {batch} Loss {train_loss.result():.4f}

Accuracy {train_accuracy.result():.4f}")

 if epoch_count % 5 == 0:

 ckpt_save_path = ckpt_manager.save()

 print(f"Saving checkpoint for epoch {epoch_count} at {ckpt_save_path}")

 print(f"Epoch {epoch_count} Loss {train_loss.result():.4f} Accuracy

{train_accuracy.result():.4f}")

 print(f"Time taken for epoch {epoch_count}: {time.time() - start:.2f} secs\n")

Epoch 1 Batch 0 Loss 8.8324 Accuracy 0.0022

Epoch 1 Batch 50 Loss 8.7743 Accuracy 0.0079

Epoch 1 Batch 100 Loss 8.6878 Accuracy 0.0256

Epoch 1 Batch 150 Loss 8.5781 Accuracy 0.0359

Epoch 1 Batch 200 Loss 8.4368 Accuracy 0.0428

Epoch 1 Batch 250 Loss 8.2663 Accuracy 0.0487

Epoch 1 Batch 300 Loss 8.0755 Accuracy 0.0582

Epoch 1 Batch 350 Loss 7.8788 Accuracy 0.0660

Epoch 1 Batch 400 Loss 7.6913 Accuracy 0.0730

Epoch 1 Batch 450 Loss 7.5252 Accuracy 0.0792

Epoch 1 Batch 500 Loss 7.3793 Accuracy 0.0851

Epoch 1 Batch 550 Loss 7.2447 Accuracy 0.0916

Epoch 1 Batch 600 Loss 7.1197 Accuracy 0.0985

Epoch 1 Batch 650 Loss 7.0035 Accuracy 0.1051

Epoch 1 Batch 700 Loss 6.8972 Accuracy 0.1112

Epoch 1 Batch 750 Loss 6.7963 Accuracy 0.1170

Epoch 1 Batch 800 Loss 6.7057 Accuracy 0.1223

Epoch 1 Loss 6.6897 Accuracy 0.1233

Time taken for epoch 1: 171.75 secs

Epoch 25 Batch 0 Loss 1.3378 Accuracy 0.6965

Epoch 25 Batch 50 Loss 1.2698 Accuracy 0.7064

Epoch 25 Batch 100 Loss 1.2818 Accuracy 0.7054

Epoch 25 Batch 150 Loss 1.2908 Accuracy 0.7041

143

Epoch 25 Batch 200 Loss 1.2908 Accuracy 0.7043

Epoch 25 Batch 250 Loss 1.2914 Accuracy 0.7042

Epoch 25 Batch 300 Loss 1.2943 Accuracy 0.7042

Epoch 25 Batch 350 Loss 1.2969 Accuracy 0.7037

Epoch 25 Batch 400 Loss 1.3001 Accuracy 0.7031

Epoch 25 Batch 450 Loss 1.3048 Accuracy 0.7024

Epoch 25 Batch 500 Loss 1.3072 Accuracy 0.7020

Epoch 25 Batch 550 Loss 1.3089 Accuracy 0.7016

Epoch 25 Batch 600 Loss 1.3096 Accuracy 0.7018

Epoch 25 Batch 650 Loss 1.3128 Accuracy 0.7012

Epoch 25 Batch 700 Loss 1.3153 Accuracy 0.7010

Epoch 25 Batch 750 Loss 1.3201 Accuracy 0.7002

Epoch 25 Batch 800 Loss 1.3243 Accuracy 0.6995

Saving checkpoint for epoch 25 at ./checkpoints/train/ckpt-5

Epoch 25 Loss 1.3248 Accuracy 0.6994

Time taken for epoch 25: 97.99 secs

class Translator(tf.Module):

 def __init__(self, tokenizers, transformer):

 self.tokenizers = tokenizers

 self.transformer = transformer

 def __call__(self, sentence, max_length = 20):

 assert isinstance(sentence, tf.Tensor)

 if len(sentence.shape) == 0:

 sentence = sentence[tf.newaxis]

 sentence = self.tokenizers.pt.tokenize(sentence).to_tensor()

 encoder_input = sentence

 start_end = self.tokenizers.en.tokenize([''])[0]

 start = start_end[0][tf.newaxis]

 end = start_end[1][tf.newaxis]

 output_array = tf.TensorArray(dtype = tf.int64, size = 0, dynamic_size = True)

 output_array = output_array.write(0, start)

 for i in tf.range(max_length):

 output = tf.transpose(output_array.stack())

 predictions, _ = self.transformer([encoder_input, output], training=False)

144

 predictions = predictions[:, -1:, :]

 predicted_id = tf.argmax(predictions, axis = -1)

 output_array = output_array.write(i + 1, predicted_id[0])

 if predicted_id == end:

 break

 output = tf.transpose(output_array.stack())

 text = tokenizers.en.detokenize(output)[0]

 tokens = tokenizers.en.lookup(output)[0]

 _, attention_weights = self.transformer([encoder_input, output[:, :-1]],

training = False)

 return text, tokens, attention_weights

translator = Translator(tokenizers, transformer)

sentence = "vamos testar o tradutor."

translated_text, translated_tokens, attention_weights = translator(

 tf.constant(sentence)

)

print(f"{'Original':15s} {sentence}")

print(f"{'Prediction':15s} {translated_text}")

Original vamos testar o tradutor.

Prediction b"let ' s test the translator ."

145

APÊNDICE 9 – BIG DATA

A – ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de
uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL).
Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de
dados empregados.

B – RESOLUÇÃO

Título: IMPLEMENTAÇÃO DE APLICAÇÃO DE BIG DATA: ESTUDO DE CASO COM NOSQL E
NEWSQL

RESUMO: A crescente geração e complexidade dos dados impulsionam a necessidade de novas
abordagens para o gerenciamento de Big Data. Este trabalho explora a implementação de uma
aplicação de e-commerce utilizando tecnologias NoSQL e NewSQL para otimizar o armazenamento e
processamento de grandes volumes de dados. O estudo de caso apresenta o uso de MongoDB para
dados semi-estruturados e logs, Cassandra para dados de transações e CockroachDB para dados
estruturados e transações ACID. A análise destaca as características de cada tecnologia, a modelagem
necessária e a eficácia em diferentes cenários de dados. A combinação dessas ferramentas permite
uma solução robusta, escalável e eficiente, adequando se às necessidades específicas da aplicação
de e-commerce.
Palavras-chave: Big Data. NoSQL. NewSQL. MongoDB. Modelagem de Dados.

ABSTRACT: The growing generation and complexity of data drive the need for new approaches to Big
Data management. This paper explores the implementation of an e-commerce application using NoSQL
and NewSQL technologies to optimize the storage and processing of large data volumes. The case
study presents the use of MongoDB for semi-structured data and logs, Cassandra for transaction data,
and CockroachDB for structured data and ACID transactions. The analysis highlights the characteristics
of each technology, the necessary modeling, and effectiveness in different data scenarios. The
combination of these tools enables a robust, scalable, and efficient solution, tailored to the specific
needs of the e-commerce application.
Keywords: Big Data. NoSQL. NewSQL. MongoDB. Data Modeling.

1 INTRODUÇÃO

Com o crescimento exponencial dos dados gerados por empresas e usuários, as soluções
tradicionais de banco de dados relacional se tornaram insuficientes para atender às demandas de
escalabilidade, desempenho e flexibilidade. Este documento explora a implementação de uma
aplicação de Big Data, focando em como ferramentas NoSQL e NewSQL podem ser usadas para

146

gerenciar grandes volumes de dados. O estudo de caso apresentado envolve uma plataforma de e-
commerce que utiliza essas tecnologias para melhorar sua eficiência e experiência do usuário.

2 CARACTERIZAÇÃO DOS DADOS
Na aplicação de e-commerce, os dados são variados e incluem:
• Dados de Transações: Informações sobre compras, pagamentos e devoluções.
• Dados de Usuários: Perfis de clientes, histórico de navegação e preferências.
• Dados de Produtos: Detalhes dos produtos, categorias e avaliações.
• Dados de Logs: Registros de atividades dos usuários e do sistema.

Esses dados têm diferentes características e exigem modelos de armazenamento e
processamento específicos. Por exemplo, os dados de transações são estruturados e frequentemente
consultados, enquanto os dados de logs são semiestruturados e precisam ser processados
rapidamente para análise em tempo real.

3 FERRAMENTAS UTILIZADAS
1. NoSQL

1.1. MongoDB
Modelo de Dados: Documentos JSON
Características: Alta escalabilidade e flexibilidade. Ideal para dados semiestruturados e não-

estruturados, como logs de atividades e perfis de usuários.
Modelagem: Os dados de usuários e produtos são armazenados em coleções de documentos.

Isso permite consultas rápidas e escalabilidade horizontal.

1.2. Cassandra
 Modelo de Dados: Colunas.

Características: Alta disponibilidade e desempenho para grandes volumes de dados. Adequado
para dados de transações e logs, onde a escrita e leitura rápida são essenciais.

Modelagem: Os dados de transações são modelados como linhas em uma tabela de colunas,
permitindo consultas rápidas e eficientes.

2. NewSQL
2.1. CockroachDB
 Modelo de Dados: Relacional com suporte a SQL.
 Características: Combina a escalabilidade horizontal dos bancos NoSQL com a consistência e
a robustez dos bancos de dados relacionais.
 Modelagem: Os dados de produtos e transações são armazenados em tabelas relacionais,
garantindo consistência e integridade referencial, enquanto suportam grandes volumes e alta
concorrência.

4 MODELAGEM DE DADOS

147

Para a implementação da aplicação, a modelagem de dados foi adaptada conforme o modelo
de banco de dados escolhido:

1. NoSQL (MongoDB e Cassandra):

Modelagem de Documentos (MongoDB): Os dados são armazenados em documentos JSON,
permitindo a inclusão de campos aninhados e flexíveis, o que é ideal para perfis de usuários e logs de
atividades.

Modelagem de Colunas (Cassandra): As tabelas são desenhadas para suportar grandes
volumes de dados com alta taxa de escrita, como as transações de e-commerce.

2. NewSQL (CockroachDB):

Modelagem Relacional: Dados estruturados são armazenados em tabelas com esquemas
fixos, proporcionando consistência e suporte a transações ACID. Isso é ideal para dados críticos de
produtos e transações financeiras.

5 CONSIDERAÇÕES FINAIS

A escolha entre NoSQL e NewSQL depende das necessidades específicas da aplicação.
NoSQL é excelente para flexibilidade e escalabilidade em dados semi estruturados e não-estruturados,
enquanto NewSQL oferece o melhor dos dois mundos com escalabilidade e consistência para dados
estruturados. A combinação dessas tecnologias pode proporcionar uma solução robusta e eficiente
para aplicações de Big Data.

REFERÊNCIAS
Documentação oficial do MongoDB, Cassandra e CockroachDB.
Artigos e estudos de caso sobre implementação de Big Data com NoSQL e NewSQL.

148

APÊNDICE 10 – VISÃO COMPUTACIONAL

A – ENUNCIADO

1) Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno-

histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas
em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma base de
imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging)
disponibilizada pela Universidade de Warwick (link). A nomenclatura das imagens segue o padrão
XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada.
Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não
utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de
treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última
camada de classificação e armazene os valores da penúltima camada como um vetor de
características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:
a) Carregue a base de dados de Treino.
b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada

extrator).
d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
e) Carregue a base de Teste e execute a tarefa 3 nesta base.
f) Aplique os modelos treinados nos dados de treino
g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas

matrizes de confusão.
h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2) Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais

VGG16 e a Resnet50. Utilize os pesos pré-treinados (Transfer Learning), refaça as camadas Fully

Connected para o problema de 4 classes. Compare os treinos de 15 épocas com e sem Data

Augmentation. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem
224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será
necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o Data Augmentation
cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.

Tarefas:

a) Utilize a base de dados de Treino já separadas em treino e validação do exercício
anterior

b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation

149

c) Aplique os modelos treinados nas imagens da base de Teste
d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas

matrizes de confusão.
e) Indique qual modelo dá o melhor o resultado e a métrica utilizada

B – RESOLUÇÃO

1- Extração de características
 Métricas dos modelos:
 Random Forest- Sensitivity: 0.91, Specificity: 0.39, F1-Score: 0.65
 SVM-Sensitivity: 1.00, Specificity: 0.00, F1-Score: 0.52
 RNA- Sensitivity: 1.00, Specificity: 0.00, F1-Score: 0.51

Conclusão:

Entre os três modelos, o Random Forest parece ser a melhor opção. Ele tem uma sensibilidade
de 0.91, o que significa que consegue identificar bem as imagens da classe positiva, e uma
especificidade de 0.39, mostrando que, mesmo que não seja perfeito, ainda consegue diferenciar as
classes negativas. Já o SVM e o RNA têm uma sensibilidade de 1.00, o que parece muito bom, mas a
especificidade deles é 0.00, ou seja, eles falham completamente em identificar corretamente as classes
negativas. Além disso, o F1-Score do Random Forest é o mais alto (0.65), o que indica que ele oferece
um melhor equilíbrio geral entre precisão e recall, sendo, no fim, o modelo mais confiável para essa
tarefa.

2- Redes Neurais
Avaliação do VGG16 (sem augmentation):
Matriz de confusão:
 0 1 2 3
0 [29 13 34 25]
1 [27 16 33 14]
2 [30 6 30 24]
3 [37 12 24 17]

150

FIGURA 55 – AVALIAÇÃO DO VGG16 (SEM ARGUMENTAÇÃO)

FONTE: O autor (2025).

 Avaliação do VGG16 (com augmentation):
Matriz de confusão:

0 1 2 3
0 [33 15 28 25]
1 [35 10 29 16]
2 [35 12 29 14]
3 [20 10 35 25]

FIGURA 56 – AVALIAÇÃO DO VGG16 (COM ARGUMENTAÇÃO)

FONTE: O autor (2025).

Avaliação do ResNet50 (sem augmentation):
Matriz de confusão:

0 1 2 3
0 [67 0 30 4]
1 [61 0 19 10]
2 [61 0 22 7]
3 [58 0 24 8]

151

FIGURA 57 – AVALIAÇÃO DO RESNET50 (SEM ARGUMENTAÇÃO)

FONTE: O autor (2025).

Avaliação do ResNet50 (com augmentation):

0 1 2 3
0 [64 0 28 9]
1 [63 0 21 6]
2 [59 0 24 7]
3 [61 0 22 7]

FIGURA 58 – AVALIAÇÃO DO RESNET50 (COM ARGUMENTAÇÃO)

FONTE: O autor (2025).

Conclusão:

Após a avaliação dos modelos VGG16 e ResNet50, ambos apresentaram desempenhos
semelhantes, com uma acurácia de 26.15% para o VGG16 e 25.61% para o ResNet50 com Data
Augmentation. No entanto, o VGG16 teve um desempenho superior, especialmente na classe 0, com
uma sensibilidade de 66%, enquanto a ResNet50 teve dificuldades em classificar corretamente a classe
1, resultando em um recall de 0%.

152

 Logo, considerando as métricas de precisão, recall e F1-score, o VGG16 se destaca como a
melhor escolha devido à sua capacidade mais consistente de identificar as classes, especialmente a
classe 0. Assim, o VGG16 é o modelo recomendado para a classificação das imagens.

153

APÊNDICE 11 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA

A – ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06)
integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e
propor soluções responsáveis para lidar com esses dilemas.
Parâmetros para elaboração do Trabalho:

1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da
inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas
éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como usuários,
desenvolvedores e a sociedade em geral.
2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do
ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a
disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso,
devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.
3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções
responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas,
regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. Eles
devem considerar como essas soluções podem equilibrar os interesses de diferentes partes
interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.
4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os
alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões
informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como
um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais
aprendidos ao analisar um caso concreto.
5. Limite de Palavras: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500
e 3000 palavras.
6. Estruturação Adequada: O trabalho siga uma estrutura adequada, incluindo introdução,
desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporcional do total de páginas,
com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.
7. Controle de Informações: Evitar incluir informações desnecessárias que possam aumentar o
comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em
informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.

154

8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições
desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir
suas mensagens de maneira sucinta.
9. Formatação Adequada: O trabalho deverá ser apresentado nas normas da ABNT de acordo com
as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve-
se seguir o seguinte template de arquivo: hfps://bibliotecas.ufpr.br/wp-
content/uploads/2022/03/template-artigo-de-periodico.docx

B – RESOLUÇÃO

1 INTRODUÇÃO

Com o avanço da inteligência artificial (IA), assistentes virtuais como o ChatGPT têm sido cada
vez mais integrados em diferentes setores, incluindo o campo do aconselhamento psicológico online.
Esta aplicação levanta questões profundas sobre ética, especialmente relacionadas à privacidade dos
dados dos usuários, qualidade do aconselhamento oferecido, viés algorítmico e responsabilidade ética.
Este estudo de caso explora essas implicações éticas específicas, oferecendo uma análise crítica do
uso do ChatGPT em um contexto sensível como o suporte emocional e aconselhamento psicológico
online.

2 PRIVACIDADE E CONFIDENCIALIDADE

A privacidade e a confidencialidade são preocupações centrais no uso de assistentes virtuais
como o ChatGPT para aconselhamento psicológico. A natureza sensível das informações
compartilhadas pelos usuários exige medidas rigorosas para proteger seus dados pessoais contra
acesso não autorizado e violações de privacidade. Floridi (2020) discute que a proteção de dados é
essencial para manter a confiança dos usuários e garantir o cumprimento de regulamentações de
privacidade, como o GDPR.

Plataformas que implementam ChatGPT devem adotar políticas claras de privacidade e
segurança de dados, incluindo criptografia robusta, armazenamento seguro e protocolos de acesso
restrito. É fundamental que os usuários sejam informados de maneira transparente sobre como seus
dados serão usados e protegidos ao interagir com o assistente virtual.

155

3 QUALIDADE DO ACONSELHAMENTO E RESPONSABILIDADE

Um aspecto crítico do uso do ChatGPT em aconselhamento psicológico é a avaliação da
qualidade do serviço oferecido em comparação com o fornecido por profissionais humanos. Bostrom e
Yudkowsky (2014) destacam a importância de avaliar a competência da IA em lidar com questões
complexas e sensíveis, como as encontradas na psicologia clínica.

Embora o ChatGPT possa oferecer respostas rápidas e acessíveis, há limitações significativas
em sua capacidade de compreender nuances emocionais, contexto individual e dinâmicas interativas
que são essenciais para o aconselhamento eficaz. Isso levanta questões sobre a responsabilidade
ética das plataformas que oferecem serviços de aconselhamento baseados em IA. Os desenvolvedores
e os provedores de serviços devem estabelecer diretrizes claras para o uso responsável do ChatGPT
em contextos terapêuticos, garantindo que o bem-estar dos usuários seja priorizado acima de
considerações comerciais.

4 VIÉS ALGORÍTMICO E DISCRIMINAÇÃO

A questão do viés algorítmico é um desafio significativo em qualquer aplicação de IA, incluindo
o aconselhamento psicológico. Mittelstadt et al. (2016) discutem como algoritmos de IA podem
inadvertidamente perpetuar vieses culturais, raciais ou de gênero, impactando negativamente certos
grupos demográficos.

No contexto do ChatGPT, é fundamental implementar técnicas avançadas de mitigação de viés
algorítmico, como a diversificação dos conjuntos de dados de treinamento, a revisão humana de
interações críticas e o monitoramento contínuo das respostas geradas pelo assistente virtual. Além
disso, políticas de inclusão e diversidade devem orientar o desenvolvimento e a implementação de
algoritmos para evitar discriminações injustas ou prejudiciais.

5 TOMADA DE DECISÃO ÉTICA

A tomada de decisão ética envolve determinar quando e como o ChatGPT pode ser utilizado
de maneira ética no aconselhamento psicológico. Jobin et al. (2019) destacam a importância de
diretrizes éticas robustas que orientem o uso responsável da IA em contextos sensíveis, como saúde
mental.

É essencial que as plataformas que oferecem aconselhamento baseado em ChatGPT
forneçam transparência aos usuários sobre os limites e as capacidades do assistente virtual. Isso inclui
educar os usuários sobre a natureza da IA, seus propósitos e as expectativas realistas quanto ao tipo
de suporte emocional que pode ser oferecido. Além disso, é necessário estabelecer procedimentos
claros para encaminhar usuários para serviços profissionais de saúde mental sempre que necessário,
garantindo uma abordagem integrada e ética ao cuidado psicológico.

6 PROPOSTA E SOLUÇÕES RESPONSÁVEIS

Para enfrentar esses desafios éticos, é fundamental implementar soluções responsáveis que
promovam o uso ético do ChatGPT no aconselhamento psicológico online:

156

1. Políticas Claras de Privacidade e Segurança de Dados: Desenvolver e aplicar políticas
robustas de privacidade que garantam a proteção adequada dos dados dos usuários.

2. Diretrizes Éticas Específicas: Estabelecer diretrizes éticas específicas para o uso de IA em
aconselhamento psicológico, com ênfase na transparência, responsabilidade e respeito aos direitos
dos usuários.

3. Mitigação de Viés Algorítmico: Implementar medidas eficazes para identificar e mitigar
viéses algorítmicos, incluindo revisão humana e diversificação dos conjuntos de dados de
treinamento.

4. Educação e Conscientização dos Usuários: Educar os usuários sobre as capacidades e
limitações do ChatGPT, promovendo uma compreensão informada do uso de IA no suporte
emocional.

5. Integração de Supervisão Humana: Integrar supervisão humana qualificada para monitorar
e revisar interações críticas, garantindo uma abordagem ética ao aconselhamento psicológico.

7 CONSIDERAÇÕES FINAIS

Em resumo, o uso do ChatGPT em aconselhamento psicológico online apresenta benefícios
potenciais significativos, como a expansão do acesso a serviços de suporte emocional. No entanto,
também levanta desafios éticos complexos que exigem uma abordagem cuidadosa e responsável. Ao
enfrentar questões de privacidade dos dados, qualidade do serviço, viés algorítmico e tomada de
decisão ética, é possível desenvolver práticas que promovam o uso ético da IA no cuidado psicológico.

As propostas de soluções responsáveis destacadas neste estudo de caso são essenciais para
orientar o desenvolvimento e a implementação de sistemas de IA que respeitem os princípios éticos
fundamentais, protegendo o bem-estar dos usuários e promovendo uma sociedade digital mais justa e
inclusiva.

REFERÊNCIAS
Floridi, L. (2020). "Soft Ethics, the Governance of the Digital and the General Data Protection
Regulation: Developing a Data Ethics Framework." Philosophy & Technology, 33(2), 179-185.
Turilli, M., & Floridi, L. (2009). "The Ethics of Information Transparency." Ethics and Information
Technology, 11(2), 105-112.
Bostrom, N., & Yudkowsky, E. (2014). "The Ethics of Artificial Intelligence." In E. Frankish & W. M.
Ramsey (Eds.), The Cambridge Handbook of Artificial Intelligence (pp. 316-334). Cambridge University
Press.
Jobin, A., Ienca, M., & Vayena, E. (2019). "The Global Landscape of AI Ethics Guidelines." Nature
Machine Intelligence, 1(9), 389-399.
Bryson, J. J. (2018). "Patient data and artificial intelligence." Nature Biomedical Engineering, 2(5), 293-
293.
Taddeo, M., & Floridi, L. (2018). "How AI Can Be a Force for Good." Science, 361(6404), 751-752.
Mittelstadt, B. D., et al. (2016). "The Ethics of Algorithms: Mapping the Debate." Big Data & Society,
3(2), 2053951716679679.
Jobin, A., et al. (2019). "Artificial Intelligence: The Ambiguity of Ethics and Intelligence." Nature,
568(7750), 626-628.

157

APÊNDICE 12 – GESTÃO DE PROJETOS DE IA

A – ENUNCIADO

1 Objetivo

Individualmente, ler e resumir – seguindo o template fornecido – um dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements
practices and gaps when engineering human-centered Artificial Intelligence systems. Applied
Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems:
Challenges, best practices, and design decisions. The Journal of Systems & Software. 207.
2024. DOI https://doi.org/10.1016/j.jss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for
machine learning – Adoption, effects, and team assessment. The Journal of Systems &
Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development
of artificial intelligence models – Current state of research and practice. The Journal of
Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss.2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML?
Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on
Human Factors in Computing Systems (CHI’21), Maio 8-13, 2021, Yokohama, Japão. DOI
https://doi.org/10.1145/3411764.3445306

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para

entender o conteúdo dos artigos – caso precise, mas escreva o resumo em língua portuguesa e nas
suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo

escolhido.

No template, você deverá responder às seguintes questões:

● Qual o objetivo do estudo descrito pelo artigo?
● Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?
● Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
● Quais os principais resultados obtidos pelo estudo?

Responda cada questão utilizando o espaço fornecido no template, sem alteração do tamanho

da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

158

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entregue o

trabalho em PDF.

B – RESOLUÇÃO

Qual o objetivo do estudo descrito pelo artigo?

O objetivo principal do estudo descrito no artigo é abordar uma lacuna significativa na pesquisa
sobre as práticas recomendadas e os desafios envolvidos no design de arquiteturas para sistemas
habilitados para aprendizado de máquina (ML). A pesquisa busca compreender, em profundidade, os
principais obstáculos enfrentados pelos profissionais durante o desenvolvimento desses sistemas, as
práticas de design mais eficazes e as decisões arquiteturais críticas que impactam diretamente a
performance e a adaptabilidade dos sistemas de ML.

Qual o problema/oportunidade/situação que levou à necessidade de realização desse estudo?

O aumento expressivo do uso de soluções de aprendizado de máquina (ML) em diversos
campos, como defesa cibernética, biologia computacional, robótica e veículos autônomos, tem gerado
uma demanda crescente e complexa por sistemas de software projetados especificamente para
suportar ML. Contudo, persiste uma lacuna significativa na compreensão de como os profissionais da
área percebem e aplicam as decisões de design na arquitetura desses sistemas, bem como nos
critérios que influenciam essas escolhas. Esse cenário torna-se ainda mais desafiador quando se
considera a complexidade intrínseca do design arquitetônico de sistemas de ML, que exige o equilíbrio
de múltiplas qualidades, como desempenho, escalabilidade, segurança e manutenibilidade, além da
necessidade de integrar perfeitamente os componentes de ML com outros sistemas operacionais e de
software convencionais.

Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?

A metodologia do estudo foi cuidadosamente planejada para assegurar uma análise rigorosa e
abrangente dos dados, combinando várias abordagens metodológicas para reforçar a robustez do
processo. O estudo foi conduzido em três fases principais: planejamento, condução e documentação,
cada uma projetada para garantir a validade e a confiabilidade dos resultados.

Quais os principais resultados obtidos pelo estudo?

159

Os principais resultados do estudo revelam correlações detalhadas entre desafios, melhores
práticas e decisões de design em seis áreas cruciais: arquitetura, dados, evolução, garantia de
qualidade (QA), modelo e ciclo de vida de desenvolvimento de software (SDLC). Estes achados
oferecem uma visão aprofundada sobre as especificidades e complexidades do desenvolvimento de
sistemas habilitados para aprendizado de máquina (ML). Arquitetura: A adoção de padrões e estilos
arquitetônicos, como a arquitetura de microsserviços, mostrou-se vantajosa ao promover a
manutenibilidade e a flexibilidade dos sistemas de ML. Dados: Nessa categoria, o estudo identificou
nove desafios específicos, relacionados a aspectos como o gerenciamento, a visualização e a
privacidade dos dados. Problemas de qualidade e precisão dos dados, fundamentais para o
desempenho dos modelos de ML, emergem como áreas em que ainda faltam diretrizes bem definidas
e práticas de mitigação robustas. Evolução: O estudo destaca a importância de práticas de evolução
contínua em sistemas ML, enfatizando a necessidade de atualizações regulares dos modelos e do
pipeline de dados para manter a acurácia e a relevância do sistema ao longo do tempo. Garantia de
Qualidade (QA): A complexidade dos sistemas ML exige uma abordagem de QA abrangente que
aborde não apenas a funcionalidade, mas também a confiabilidade e a segurança dos modelos.
Modelo: A seleção e otimização de modelos de ML é um desafio central identificado no estudo. A
escolha de algoritmos e frameworks, como TensorFlow e PyTorch, deve ser guiada não apenas pelos
requisitos do domínio, mas também pelas necessidades específicas de escalabilidade e eficiência do
sistema.

160

APÊNDICE 13 – FRAMEWORKS DE INTELIGÊNCIA ARTIFICIAL

A – ENUNCIADO

1 Classificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a

arquitetura RNA vista na aula FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação.
Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção “Mostrar algumas classificações erradas”, apresentada na aula

prática.
Informações:

● Base de dados: Fashion MNIST Dataset
● Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de vestuário.

É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de dígitos.
● Tamanho: 70.000 amostras, 784 features (28x28 pixels).
● Importação do dataset: Copiar código abaixo.

data = tf.keras.datasets.fashion_mnist

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a arquitetura

RNA vista na aula FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão. Além disso,
fazer uma breve explicação dos seguintes resultados:

● Gráficos de avaliação do modelo (loss);
● Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R²).

Informações:

● Base de dados: Wine Quality
● Descrição: O objetivo deste dataset prever a qualidade dos vinhos com base em suas

características químicas. A variável target (y) neste exemplo será o score de qualidade do
vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)

● Tamanho: 1599 amostras, 12 features.
● Importação: Copiar código abaixo.

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-

quality/winequality-red.csv"

data = pd.read_csv(url, delimiter=';')

161

Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para

português, dessa forma:

data.columns = [

 'acidez_fixa', # fixed acidity

 'acidez_volatil', # volatile acidity

 'acido_citrico', # citric acid

 'acucar_residual', # residual sugar

 'cloretos', # chlorides

 'dioxido_de_enxofre_livre', # free sulfur dioxide

 'dioxido_de_enxofre_total', # total sulfur dioxide

 'densidade', # density

 'pH', # pH

 'sulfatos', # sulphates

 'alcool', # alcohol

 'score_qualidade_vinho' # quality

]

Dica 2. Separe os dados (x e y) de tal forma que a última coluna (índice

-1), chamada score_qualidade_vinho, seja a variável target (y)

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados

Base_livos.csv e a arquitetura vista na aula FRA - Aula 22 - 4.3 Resolução do Exercício de Sistemas
de Recomendação. Além disso, fazer uma breve explicação dos seguintes resultados:

● Gráficos de avaliação do modelo (loss);
● Exemplo de recomendação de livro para determinado Usuário.

Informações:

● Base de dados: Base_livros.csv
● Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas),

nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
● Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros

(formato .csv).

4 Deepdream

162

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de um
felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula FRA - Aula 23 - Prática
Deepdream. Além disso, fazer uma breve explicação dos seguintes resultados:

● Imagem onírica obtida por Main Loop;
● Imagem onírica obtida ao levar o modelo até uma oitava;
● Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

Informações:

● Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
● Importação da imagem: Copiar código abaixo.

url =

"https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-

cat_on_snow.jpg"

Dica: Para exibir a imagem utilizando display (display.html) use o link

https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg

B – RESOLUÇÃO

1- Classificação (RNA)
1 Classificação (RNA)

import tensorflow as tf

import matplotlib.pyplot as plt

import numpy as np

Carregar a base de dados Fashion MNIST

data = tf.keras.datasets.fashion_mnist

(x_train, y_train), (x_test, y_test) = data.load_data()

Normalizar as imagens de 0-255 para 0-1

x_train, x_test = x_train / 255.0, x_test / 255.0

Definir o modelo da rede neural

model = tf.keras.Sequential([

 tf.keras.layers.Flatten(input_shape=(28, 28)), # Flatten a imagem 28x28 para

um vetor 1D

163

 tf.keras.layers.Dense(128, activation='relu'), # Camada densa com 128 neurônios

e ReLU

 tf.keras.layers.Dropout(0.2), # Dropout para evitar overfitting

 tf.keras.layers.Dense(10, activation='softmax') # Camada de saída com 10

classes (uma para cada categoria)

])

Compilar o modelo

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

 metrics=['accuracy'])

Treinar o modelo

history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

Avaliar o modelo no conjunto de teste

test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)

print('\nTest accuracy:', test_acc)

Gráficos de perda e acurácia durante o treinamento

Plotando a acurácia de treino e validação

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], label='Treinamento')

plt.plot(history.history['val_accuracy'], label='Validação')

plt.title('Acurácia durante o treinamento')

plt.xlabel('Épocas')

plt.ylabel('Acurácia')

plt.legend()

Plotando a perda de treino e validação

plt.subplot(1, 2, 2)

plt.plot(history.history['loss'], label='Treinamento')

plt.plot(history.history['val_loss'], label='Validação')

plt.title('Perda durante o treinamento')

plt.xlabel('Épocas')

plt.ylabel('Perda')

plt.legend()

164

plt.show()

Mostrar algumas classificações erradas

predictions = model.predict(x_test)

incorrect_indices = np.where(np.argmax(predictions, axis=1) != y_test)[0]

Exibir 5 classificações erradas

for i in range(5):

 index = incorrect_indices[i]

 plt.imshow(x_test[index], cmap=plt.cm.binary)

 plt.title(f"Predição: {np.argmax(predictions[index])}, Verdadeiro:

{y_test[index]}")

 plt.show()

FIGURA 59 – ACURÁCIA E PERDA DURANTE O TREINAMENTO

FONTE: O autor (2025).

A seguir são exibidas 5 imagens com classificações erradas.

165

FIGURA 60 – IMAGENS ERRADAS

FONTE: O autor (2025).

Com base nos gráficos de acurácia e função de perda é possível verificar que o treinamento

trouxe bons resultados para o modelo, sendo que a acurácia ficou em torno de 88% e a função de
perda foi reduzida para um valor em torno de 0,34. Observando o gráfico da função de perda, é possível

166

ver que a queda no valor de perda dos dados de validação começa a reduzir, o que pode significar que,
se o treino fosse realizado com mais épocas, possivelmente teríamos um cenário de overfitting.

Por fim, visto que o modelo, apesar de ter uma acurácia alta, ainda assim pode cometer erros,
como é o caso das imagens que foram preditas erradas e estão sendo exibidas na útlima seção do
caderno, no qual tem a classe que foi predita e a classe real da imagem.

 2- Regressão (RNA)
import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, r2_score

from math import sqrt

#importação dos dados

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-

quality/winequality-red.csv"

data = pd.read_csv(url, delimiter=';')

data.head()

FIGURA 61 – DADOS DE REGRESSÃO (RNA)

FONTE: O autor (2025).

#mudando nome das colunas

data.columns = [

'acidez_fixa', # fixed acidity

'acidez_volatil', # volatile acidity

'acido_citrico', # citric acid

'acucar_residual', # residual sugar

'cloretos', # chlorides

'dioxido_de_enxofre_livre', # free sulfur dioxide

167

'dioxido_de_enxofre_total', # total sulfur dioxide

'densidade', # density

'pH', # pH

'sulfatos', # sulphates

'alcool', # alcohol

'score_qualidade_vinho' # quality

]

data.head()

FIGURA 62 – ALTERAÇÃO DOS NOMES DAS COLUNAS

FONTE: O autor (2025).

print(data.shape)

(1599, 12)

#separa variáveis explicativas da variável resposta

x = data[['acidez_fixa',

'acidez_volatil',

'acido_citrico',

'acucar_residual',

'cloretos',

'dioxido_de_enxofre_livre',

'dioxido_de_enxofre_total',

'densidade',

'pH',

'sulfatos',

'alcool']].values.astype(float)

y = data['score_qualidade_vinho'].values.astype(float)

print(type(x))

print(type(y))

<class 'numpy.ndarray'>

<class 'numpy.ndarray'>

168

#verificando dados faltantes ou infinito

print(np.isnan(x).any(),np.isnan(y).any())

print(np.isinf(x).any(),np.isinf(y).any())

False False

False False

#normalização dos dados

from sklearn.preprocessing import StandardScaler

scaler_x = StandardScaler()

x = scaler_x.fit_transform(x)

scaler_y = StandardScaler()

y = scaler_y.fit_transform(y.reshape(-1, 1)) # Para regressão

#separando base de treino e teste

x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.3,

random_state=308)

x_teste

array([[-0.29854743, 0.51495855, -1.13471997, ..., -0.13679827,

 -0.16611498, -1.05411336],

 [-1.04543701, 0.57082331, 0.30309297, ..., 0.3167512 ,

 -0.10710191, -0.30317536],

 [-1.27524919, 0.98980905, -0.87796766, ..., 1.87177795,

 0.01092425, -0.20930812],

 ...,

 [0.21852997, -0.65820153, 0.71389667, ..., -0.46076217,

 0.66006809, 2.04350586],

 [-1.6774205 , -0.60233677, -0.0050098 , ..., 3.03804801,

 -0.10710191, 1.76190411],

 [0.27598301, 0.12390519, -1.18607043, ..., -0.65514052,

 -0.34315421, 0.44776263]])

169

#criação do modelo

i = tf.keras.layers.Input(shape=(11,))

m = tf.keras.layers.Dense(70, activation='relu')(i)

m = tf.keras.layers.Dense(1)(m)

modelo_1 = tf.keras.models.Model(inputs=i, outputs=m)

from keras import backend

#funções para r2 e rmse

def rmse(y_true, y_pred):

 return

tf.keras.backend.sqrt(tf.keras.backend.mean(tf.keras.backend.square(y_pred -

y_true)))

def r2(y_true, y_pred):

 media = tf.keras.backend.mean(y_true)

 ss_res = tf.keras.backend.sum(tf.keras.backend.square(y_true - y_pred))

 ss_tot = tf.keras.backend.sum(tf.keras.backend.square(y_true - media))

 return (1-ss_res/(ss_tot))

#ajuste do modelo

optimizer = tf.keras.optimizers.Adam(learning_rate=0.05)

modelo_1.compile(optimizer=optimizer, loss='mse', metrics=[rmse,r2])

#stops para epocas

early_stops = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50,

restore_best_weights=True)

#treinamento do modelo

treino_modelo =

modelo_1.fit(x_treino,y_treino,epochs=1000,validation_data=(x_teste,y_teste),callb

acks = [early_stops])

#avaliação do modelo

plt.plot(modelo_1.history.history['loss'], label='loss')

plt.plot(modelo_1.history.history['val_loss'], label='val_loss')

plt.legend()

170

FIGURA 63 – AVALIAÇÃO DO MODELO

FONTE: O autor (2025).

O gráfico acima representa a evolução da função de perda conforme o número de épocas

aumenta. Observamos queda na função de perda conforme aumenta o número de épocas, o que é
esperado, indicando que o modelo está aprendendo a minimizar o erro.

#RMSE

PLT.PLOT(MODELO_1.HISTORY.HISTORY['RMSE'], LABEL='RMSE')

PLT.PLOT(MODELO_1.HISTORY.HISTORY['VAL_RMSE'], LABEL='VAL_RMSE')

PLT.LEGEND()

FIGURA 64 – AVALIAÇÃO DO MODELO RMSE

FONTE: O autor (2025).

171

O RMSE, também uma medida de erro, diminui a medida que a quantidade de épocas aumenta.

#plotando r2

plt.plot(modelo_1.history.history['r2'], label='r2')

plt.plot(modelo_1.history.history['val_r2'], label='val_r2')

plt.legend()

FIGURA 65 – AVALIAÇÃO DO MODELO R2

FONTE: O autor (2025).
O R2 é uma medida de acurácia do modelo, e quanto mais próximo de 1 melhor. Nas primeiras

épocas ela é bem baixa e vai aumentando conforme a quantidade de épocas aumenta.

y_hat = modelo_1.predict(x_teste).flatten()

mse = mean_squared_error(y_teste,y_hat)

rmse = sqrt(mse)

r2 = r2_score(y_teste,y_hat)

print(f'MSE: {mse}')

print(f'RMSE: {rmse}')

print(f'R2: {r2}')

MSE: 0.6280485759170473

172

RMSE: 0.7924951582924954

R2: 0.3915046095974757

Utilizando os dados de teste, observamos um R2, técnica de acurácia, de 39%, próximo aos

valores analisados no gráfico de R2 versus épocas para os valores preditos no ajuste do modelo.
Tentamos ajustar um modelo com métricas de desempenho melhores, através do aumento de
neurônios, mudança da função de ativação para linear, mudança no parâmetro de patience na técnica
de early stopping, no entanto não obtivemos melhores resultados.

3- Sistema de recomendação
csv_path = '/content/base-livros.csv'

K = 25

epochs = 50

batch_size = 1024

1. Importação das bibliotecas

import tensorflow as tf

from tensorflow.keras.layers import Input, Dense, Embedding, Flatten, Concatenate

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import SGD

from sklearn.utils import shuffle

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

2.1 Carregamento dos dados no dataframe

df = pd.read_csv(csv_path)

2.2 Visualização básica dos dados

print(df.dtypes)

print('-----')

print('Menor nota: ', df.Notas.min())

print('Maior nota: ', df.Notas.max())

print('-----')

print('Shape: ', df.shape)

df.head()

173

FIGURA 66 – VISUALIZAÇÃO BÁSICA DOS DADOS

FONTE: O autor (2025).

3.1 Conversão de tipos de valores para embeddings

Converter o ISBN e o ID_usuario para valores categóricos (Embeddings)

df.ISBN = pd.Categorical(df.ISBN)

df['isbn_cat_codes'] = df.ISBN.cat.codes

df.ID_usuario = pd.Categorical(df.ID_usuario)

df['id_usuario_cat_codes'] = df.ID_usuario.cat.codes

df.Notas = df.Notas.astype(np.float32)

print(df.dtypes)

df.head()

FIGURA 67 – VALORES CATEGÓRICOS

174

FONTE: O autor (2025).

3.2 Conversão de dimensões

Obter tamanho das listas de ISBN e ID_usuario únicos

N = len(set(df.id_usuario_cat_codes))

M = len(set(df.isbn_cat_codes))

print(f"Número de usuários únicos: {N}")

print(f"Número de livros únicos: {M}")

Número de usuários únicos: 11987

Número de livros únicos: 128894

4.1 Criação de camadas referentes ao usuario

u = Input(shape=(1,))

u_emb = Embedding(N, K)(u)

u_emb = Flatten()(u_emb)

4.2 Criação das camadas referentes ao ISBN

i = Input(shape=(1,))

i_emb = Embedding(M, K)(i)

i_emb = Flatten()(i_emb)

Junção dos conjuntos de camadas

x = Concatenate()([u_emb, i_emb])

x = Dense(K, activation='relu')(x)

x = Dense(1)(x)

model = Model(inputs=[u, i], outputs=x)

5.1 Compilar o modelo

model.compile(

 loss='mse',

 optimizer=SGD(learning_rate=0.07, momentum=0.5)

)

5.2 Sumário do modelo

model.summary()

175

FIGURA 68 – SUMÁRIO DO MODELO

FONTE: O autor (2025).

6.1 Separar os dados em treino e teste

id_usuarios, isbns, notas = shuffle(df.id_usuario_cat_codes, df.isbn_cat_codes,

df.Notas)

print("Usuarios: ", len(id_usuarios), " - ", id_usuarios[:10])

print("ISBNs: ", len(isbns), " - ", isbns[:10])

print("Notas: ", len(notas), " - ", notas[:10])

n_train = int(0.8 * len(notas))

train_usuarios = id_usuarios[:n_train]

train_isbns = isbns[:n_train]

train_notas = notas[:n_train]

test_usuarios = id_usuarios[n_train:]

test_isbns = isbns[n_train:]

test_notas = notas[n_train:]

176

FIGURA 69 – SEPARAÇÃO DOS DADOS DE TREINO E TESTE

FONTE: O autor (2025).

6.2 Pré-processamento dos dados de treino e teste

Centralização das notas com base na média

avg_notas = round(notas.mean(), 1)

train_notas = train_notas - avg_notas

test_notas = test_notas - avg_notas

print("Média das notas: ", avg_notas)

print("Notas para treino: ", train_notas)

print("Notas para teste: ", test_notas)

177

FIGURA 70 – MÉDIA DAS NOTAS DE TREINO E TESTE

FONTE: O autor (2025).

7. Treinar o modelo

x_train = [train_usuarios, train_isbns]

y_train = train_notas

x_test = [test_usuarios, test_isbns]

y_test = test_notas

r = model.fit(

 x=x_train,

 y=y_train,

 epochs=epochs,

 batch_size=batch_size,

 verbose=2,

 validation_data=(x_test, y_test)

)

8. Plotar a função de perda

plt.plot(r.history['loss'], label='Loss')

plt.plot(r.history['val_loss'], label='Validation Loss')

plt.legend()

plt.show()

178

FIGURA 71 – GRÁFICO DA FUNÇÃO DE PERDA

FONTE: O autor (2025).

9.1 Gerar um array com usuário único

input_usuario = np.repeat(a=203, repeats=M)

books = np.array(list(set(isbns)))

print("input_usuario: ", input_usuario)

print("books: ", books)

print("len input_user: ", len(input_usuario))

print("len books: ", len(books))

input_usuario: [203 203 203 ... 203 203 203]

books: [0 1 2 ... 128891 128892 128893]

len input_user: 128894

len books: 128894

9.3 Tratamento da predição

notas_finais = preds.flatten() + avg_notas

max_idx = np.argmax(notas_finais)

result = df[df.isbn_cat_codes == books[max_idx]]

print(f"Recomendação: {result.Titulo.values[0]} por {result.Autor.values[0]}. Nota:

{round(notas_finais[max_idx], 1)} ")

Recomendação: The Outside Dog (I Can Read Book 3) por Charlotte Pomerantz. Nota:

10.300000190734863

179

Conclusões:
Com base no gráfico de perda aparentemente pode estar ocorrendo um overfitting (por volta

da epoch 10 em que a função de perda dos dados de treino começa a cair ao passo que a função de
perda dos dados de validação começam a subir). Foram realizados testes alterando diversos
parâmtros, como o tamanho do embedding, batch size, learning rate, momentum, função de ativação e
atributo utilizado para o treino (título do livro ao invés de ISBN). Em geral o mesmo comportamento foi
observado, sendo que em alguns casos acabava levando mais epochs para se notar uma redução
significativa na função de perda.

4- Deepdream
1. Importação das bibliotecas

import tensorflow as tf

import numpy as np

import matplotlib as mpl

import IPython.display as display

import PIL.Image

2. Importação da imagem

url = 'https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-

cat_on_snow.jpg'

Download da imagem e gravação em array Numpy

def download(url, max_dim=None):

 name = url.split('/')[-1]

 image_path = tf.keras.utils.get_file(name, origin=url)

 img = PIL.Image.open(image_path)

 if max_dim:

 img.thumbnail((max_dim, max_dim))

 return np.array(img)

Normalização da imagem

def deprocess(img):

 img = 255*(img + 1.0)/2.0

 return tf.cast(img, tf.uint8)

Mostra a imagem

def show(img):

 display.display(PIL.Image.fromarray(np.array(img)))

180

Redução do tamanho da imagem para facilitar o trabalho da RNN

original_img = download(url, max_dim=500)

show(original_img)

display.display(display.HTML('Image cc-by: <a

"href=https://commons.wikimedia.org/wiki/File:Felis_catus-

cat_on_snow.jpg">Von.grzanka'))

FIGURA 72 – DEEPDREAM

FONTE: O autor (2025).

3. Preparar o modelo de extração de recursos

base_model = tf.keras.applications.InceptionV3(include_top=False,

weights='imagenet')

Maximizando as ativações das camadas

names = ['mixed6', 'mixed8']

layers = [base_model.get_layer(name).output for name in names]

Criação do modelo

dream_model = tf.keras.Model(inputs=base_model.input, outputs=layers)

4. Cálculo da perda (loss)

181

def calc_loss(img, model):

 # Passe a imagem pelo modelo para recuperar as ativações.

 # Converte a imagem em um batch de tamanho 1.

 img_batch = tf.expand_dims(img, axis=0)

 layer_activations = model(img_batch)

 if len(layer_activations) == 1:

 layer_activations = [layer_activations]

 losses = []

 for act in layer_activations:

 loss = tf.math.reduce_mean(act)

 losses.append(loss)

 return tf.reduce_sum(losses)

5. Subida de gradiente (Gradient ascent)

class DeepDream(tf.Module):

 def __init__(self, model):

 self.model = model

 @tf.function(

 input_signature=(

 tf.TensorSpec(shape=[None,None,3], dtype=tf.float32),

 tf.TensorSpec(shape=[], dtype=tf.int32),

 tf.TensorSpec(shape=[], dtype=tf.float32),)

)

 def __call__(self, img, steps, step_size):

 print("Tracing")

 loss = tf.constant(0.0)

 for n in tf.range(steps):

 with tf.GradientTape() as tape:

 # Gradientes relativos a img

 tape.watch(img)

 loss = calc_loss(img, self.model)

 # Calculo do gradiente da perda em relação aos pixels da imagem de entrada.

 gradients = tape.gradient(loss, img)

 # Normalizacao dos gradintes

182

 gradients /= tf.math.reduce_std(gradients) + 1e-8

 # Na subida gradiente, a "perda" é maximizada.

 # Você pode atualizar a imagem adicionando diretamente os gradientes (porque

eles têm o mesmo formato!)

 img = img + gradients*step_size

 img = tf.clip_by_value(img, -1, 1)

 return loss, img

deepdream = DeepDream(dream_model)

6. Circuito princial (Main Loop)

def run_deep_dream_simple(img, steps=100, step_size=0.01):

 img = tf.keras.applications.inception_v3.preprocess_input(img)

 img = tf.convert_to_tensor(img)

 step_size = tf.convert_to_tensor(step_size)

 steps_remaining = steps

 step = 0

 while steps_remaining:

 if steps_remaining>100:

 run_steps = tf.constant(100)

 else:

 run_steps = tf.constant(steps_remaining)

 steps_remaining -= run_steps

 step += run_steps

 loss, img = deepdream(img, run_steps, tf.constant(step_size))

 display.clear_output(wait=True)

 show(deprocess(img))

 print ("Step {}, loss {}".format(step, loss))

 result = deprocess(img)

 display.clear_output(wait=True)

 show(result)

 return result

183

dream_img = run_deep_dream_simple(img=original_img,

 steps=100, step_size=0.01)

FIGURA 73 – RESULTADO DO DEEPDREAM

FONTE: O autor (2025).

7. Levando o modelo até um oitava

import time

start = time.time()

OCTAVE_SCALE = 1.30

img = tf.constant(np.array(original_img))

base_shape = tf.shape(img)[:-1]

float_base_shape = tf.cast(base_shape, tf.float32)

for n in range(-2, 3):

 new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.int32)

 img = tf.image.resize(img, new_shape).numpy()

 img = run_deep_dream_simple(img=img, steps=50, step_size=0.01)

display.clear_output(wait=True)

184

img = tf.image.resize(img, base_shape)

img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8)

show(img)

end = time.time()

end-start

FIGURA 74 – RESULTADO DO DEEPDREAM ATÉ UM OITAVA

FONTE: O autor (2025).

Imagem onírica obtida por Main Loop;

Após o processamento pelo Main Loop com camadas Mixed6 e Mixed8, que são partes da rede
neural Inception (usada no treinamento de visão computacional), padrões visuais abstratos e
psicodélicos surgem sobre a imagem. Esses padrões geralmente lembram estruturas orgânicas como
olhos, espirais ou texturas semelhantes a folhas e animais.

A técnica funciona "exagerando" características que a rede neural detecta, criando esse efeito
de sonho surrealista, como se a máquina estivesse projetando sua própria interpretação da imagem.

Imagem onírica obtida ao levar o modelo até uma oitava;

Após o processamento com a técnica de oitavas, como resultado a imagem original do felino
em um cenário de neve foi transformada em uma versão onírica com padrões ainda mais visíveis e
elaborados. Nessa versão, há a impressão de múltiplas texturas e formas, como olhos e detalhes
geométricos, espalhados de maneira fractal sobre a pelagem do animal e o ambiente ao redor.

Esse efeito mais refinado e detalhado é característico do uso das oitavas, pois ele permite que
a rede neural detecte e realce padrões tanto em níveis macro (grandes formas) quanto micro (detalhes
finos), gerando uma aparência mais complexa e psicodélica.

185

Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

Main Loop: Foca no processamento direto da imagem em uma única etapa ou em camadas
específicas da rede neural (ex. Mixed6, Mixed8). Os padrões visuais oníricos surgem de forma mais
sutil e menos detalhada. As formas, como olhos, espirais ou texturas, aparecem mais uniformemente
distribuídas pela imagem, mas com menos refinamento em pequenas escalas.

Levando o modelo até a oitava: A imagem é processada em múltiplas resoluções (oitavas),
começando em baixa resolução e refinando progressivamente até atingir a imagem completa. O
resultado é mais detalhado e complexo, com padrões em múltiplas escalas (macro e micro), criando
uma aparência mais fractal e elaborada. Formas como olhos e texturas são mais visíveis, sobrepostas
e densamente distribuídas, dando um aspecto mais psicodélico.

Resumo: A técnica de oitavas gera imagens mais detalhadas e refinadas ao realçar padrões
em várias escalas, enquanto o Main Loop tende a produzir um efeito mais sutil e homogêneo.

186

APÊNDICE 14 – VISUALIZAÇÃO DE DADOS E STORYTELLING

A – ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que
possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e
com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os
conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu
possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam,
quais possíveis ações podem ser feitas com base neles.

Entregue em um PDF:

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que possa
ser melhorada);

- Explicação do contexto e o publico-alvo da visualização de dados e do storytelling que será
desenvolvido;

- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de
sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos)

B – RESOLUÇÃO
.

O conjunto de dados brutos:
Visualização de dados a ser melhorada, gráfico apresentado no aplicativo de monitoramento

de atividades físicas Samsung Health.

187

FIGURA 75 – GRÁFICO ATUAL MONITORAMENTO SAMSUNG HEALTH

FONTE: O autor (2025).

Explicação do contexto:
Esta visualização é voltada para indivíduos interessados em saúde e bem-estar, pessoas que

querem compreender melhor seus padrões diários e adotar mudanças positivas. Também é útil para
treinadores, profissionais de saúde e pesquisadores em busca de dados para auxiliar em programas
de saúde personalizados. A visualização de dados apresentada é uma ferramenta poderosa para
interpretar padrões de atividade física ao longo de um dia típico. Com três gráficos de barras ilustrando
os "Passos", o "Tempo ativo" e as "Calorias da atividade", essa narrativa oferece insights sobre
comportamento, saúde e potencial de melhoria. De forma geral, essa narrativa destaca como pequenas
mudanças baseadas na análise de dados podem levar a grandes transformações no estilo de vida e
na saúde geral.

188

FIGURA 76 – NOVO GRÁFICO DE MONITORAMENTO PROPOSTO

FONTE: O autor (2025).

Escolha sobre o tipo de visualização:

A escolha pelo gráfico de barras se dá pelo fato da visualização ser clara, direta e intuitiva,
sendo considerado uma das melhores opções para interpretar dados. Abaixo vou elencar alguns pontos
que corroboram com essa afirmação:

Comparação simples: Os gráficos de barras permitem uma fácil comparação entre diferentes
categorias ou conjuntos de dados. As alturas ou comprimentos das barras oferecem uma representação
visual que é rapidamente compreendida.

Versatilidade: Eles são adequados tanto para dados quantitativos quanto qualitativos,
tornando-os uma escolha flexível para uma ampla gama de cenários.

Leitura rápida: Nosso cérebro processa tamanhos e comprimentos com facilidade, permitindo
que os dados sejam interpretados rapidamente sem a necessidade de cálculos adicionais.

189

Detectar tendências: Com gráficos de barras, é fácil identificar tendências, como a categoria
com maior ou menor valor.

Clareza visual: Em comparação com outros tipos de gráficos, como os de pizza, que podem se
tornar confusos com muitas categorias, os gráficos de barras mantêm sua clareza mesmo com mais
dados.
Escolha sobre a ferramenta utilizada:

O Infogram é amplamente reconhecido como uma das melhores ferramentas para
desenvolvimento de gráficos devido à sua combinação de simplicidade, versatilidade e recursos
avançados. Ele combina uma interface intuitiva onde é projetado para ser fácil de usar, mesmo para
quem não tem experiência em design ou análise de dados. Variedade de opções com uma ampla gama
de tipos de gráficos, como barras, linhas, pizza, mapas de calor e nuvens de palavras. Interatividade
onde encontramos a capacidade de criar gráficos interativos, que engajam o público e tornam a
apresentação de dados mais dinâmica. Outros pontos fortes da ferramenta também combinam
integração de dados, permitindo importar dados de várias fontes, como planilhas, bancos de dados e
até mesmo atualizações em tempo real, facilitando a criação de visualizações precisas e atualizadas.
Personalização, os usuários podem ajustar cores, fontes, rótulos e outros elementos visuais para
alinhar os gráficos à identidade visual de sua marca ou projeto e o compartilhamento onde os gráficos
criados podem ser incorporados em sites, compartilhados em redes sociais ou exportados em formatos

como imagens ou vídeos.
Descrição da narrativa/storytelling dessa visualização de dados:
Objetivo da visualização:

O propósito central é entender a rotina física diária de uma pessoa, identificando momentos
de maior e menor atividade. Isso serve como base para decisões informadas que promovam um estilo
de vida mais saudável e equilibrado.
O que esses dados significam?

1. Passos: Este gráfico evidencia os períodos de maior locomoção. Os picos observados
podem sugerir deslocamentos como caminhar para o trabalho, fazer exercícios ou realizar tarefas do
dia a dia.

2. Tempo ativo / Minutos: Ele complementa o gráfico de passos ao demonstrar não apenas a
movimentação, mas a duração dela. Este dado ressalta momentos de maior continuidade na atividade
física.

3. Calorias da atividade: Aqui, o impacto do esforço físico é traduzido em energia consumida,
mostrando o resultado direto dos movimentos do dia.
Possíveis ações com base nos dados:

���� Planejamento otimizado de exercícios: Identificar os horários em que a pessoa já é mais
ativa pode ajudar a criar rotinas de treino eficazes nesses períodos.

��� Redução da inatividade: Se houver momentos de baixa atividade, isso pode ser um gatilho
para adicionar pausas para alongamento ou pequenas caminhadas.

���� Monitoramento de progresso: Com comparações ao longo do tempo, é possível avaliar
melhorias e redirecionar metas de atividade física.

190

APÊNDICE 15 – TÓPICOS EM INTELIGÊNCIA ARTIFICIAL

A – ENUNCIADO

1) Algoritmo Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab,

ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita

simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades

diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso
de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas

(aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado
de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na

geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações.
Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

(1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida
aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas posições
de 1 a 99 deverão ser definidas pelo algoritmo genético.

(2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
(3) Utilize no mínimo uma população com 100 indivíduos;
(4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
(5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento (crossover-

ox);
(6) Preserve sempre a melhor solução de uma geração para outra.

Importante: A solução deverá implementar os operadores de “cruzamento” e “mutação”.

2) Compare a representação de dois modelos vetoriais

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que

poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de
palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão

191

produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e
objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após

obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a
PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B – RESOLUÇÃO

1- Algoritmo Genético

import numpy as np

import matplotlib.pyplot as plt

import random

from itertools import permutations

from sklearn.decomposition import PCA

Definição dos parâmetros do problema

NUM_CIDADES = 100

ESPACO_LIMITE = 100

POPULACAO_SIZE = 100

GERACOES = 1000

MUTACAO_RATE = 0.01

CROSSOVER_RATE = 0.9

Gerar coordenadas aleatórias para as cidades

cidades = np.random.rand(NUM_CIDADES, 2) * ESPACO_LIMITE

Função de cálculo da distância euclidiana

def calcular_distancia(percurso):

 distancia = 0

 for i in range(len(percurso) - 1):

 distancia += np.linalg.norm(cidades[percurso[i]] - cidades[percurso[i +

1]])

 distancia += np.linalg.norm(cidades[percurso[-1]] - cidades[percurso[0]]) #

Retorno à cidade inicial

 return distancia

Inicializar população aleatória

192

def inicializar_populacao():

 populacao = []

 for _ in range(POPULACAO_SIZE):

 percurso = list(range(NUM_CIDADES))

 random.shuffle(percurso)

 populacao.append(percurso)

 return populacao

Função de seleção por torneio

def selecao(populacao):

 candidatos = random.sample(populacao, 5)

 return min(candidatos, key=calcular_distancia)

Operador de crossover OX (Order Crossover)

def crossover(pai1, pai2):

 tamanho = len(pai1)

 inicio, fim = sorted(random.sample(range(tamanho), 2))

 filho = [-1] * tamanho

 filho[inicio:fim] = pai1[inicio:fim]

 ptr = fim

 for gene in pai2:

 if gene not in filho:

 if ptr >= tamanho:

 ptr = 0

 filho[ptr] = gene

 ptr += 1

 return filho

Operador de mutação (swap entre duas cidades)

def mutacao(percurso):

 if random.random() < MUTACAO_RATE:

 i, j = random.sample(range(len(percurso)), 2)

 percurso[i], percurso[j] = percurso[j], percurso[i]

 return percurso

Algoritmo Genético

def algoritmo_genetico():

 populacao = inicializar_populacao()

 melhor_percurso = min(populacao, key=calcular_distancia)

 melhor_distancia = calcular_distancia(melhor_percurso)

193

 for _ in range(GERACOES):

 nova_populacao = []

 for _ in range(int(POPULACAO_SIZE * CROSSOVER_RATE)):

 pai1, pai2 = selecao(populacao), selecao(populacao)

 filho = crossover(pai1, pai2)

 filho = mutacao(filho)

 nova_populacao.append(filho)

 while len(nova_populacao) < POPULACAO_SIZE:

 nova_populacao.append(selecao(populacao))

 populacao = nova_populacao

 melhor_atual = min(populacao, key=calcular_distancia)

 melhor_atual_distancia = calcular_distancia(melhor_atual)

 if melhor_atual_distancia < melhor_distancia:

 melhor_percurso, melhor_distancia = melhor_atual,

melhor_atual_distancia

 return melhor_percurso, melhor_distancia

Função para plotar um percurso

def plotar_percurso(percurso, titulo):

 plt.figure(figsize=(8, 8))

 caminho = cidades[percurso + [percurso[0]]]

 plt.plot(caminho[:, 0], caminho[:, 1], 'bo-')

 plt.title(titulo)

 plt.show()

Primeira solução aleatória

populacao = inicializar_populacao()

solucao_inicial = populacao[0]

distancia_inicial = calcular_distancia(solucao_inicial)

plotar_percurso(solucao_inicial, f'Solução Inicial - Distância:

{distancia_inicial:.2f}')

Melhor solução após evolução

melhor_percurso, melhor_distancia = algoritmo_genetico()

plotar_percurso(melhor_percurso, f'Melhor Solução - Distância:

{melhor_distancia:.2f}')

Aplicação da PCA em modelos vetoriais de um texto

194

def aplicar_pca(modelo1, modelo2):

 dados = np.vstack((modelo1, modelo2))

 pca = PCA(n_components=2)

 resultado_pca = pca.fit_transform(dados)

 plt.figure(figsize=(8, 6))

 plt.scatter(resultado_pca[:len(modelo1), 0], resultado_pca[:len(modelo1), 1],

label='Modelo 1', alpha=0.7)

 plt.scatter(resultado_pca[len(modelo1):, 0], resultado_pca[len(modelo1):, 1],

label='Modelo 2', alpha=0.7)

 plt.legend()

 plt.title("Visualização com PCA")

 plt.show()

Exemplo de uso

modelo1 = np.random.rand(50, 300) # Exemplo de embeddings de palavras

modelo2 = np.random.rand(50, 300)

aplicar_pca(modelo1, modelo2)

FIGURA 77 – SOLUÇÃO INICIAL

FONTE: O autor (2025).

A seguir temos a melhor solução.

195

FIGURA 78 – MELHOR SOLUÇÃO

FONTE: O autor (2025).

FIGURA 79 – VISUALIZAÇÃO COM PCA

FONTE: O autor (2025).

2- Compare a representação de dois modelos vetoriais
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.feature_extraction.text import TfidfVectorizer

Aplicação da PCA em representações vetoriais de textos

textos = [

 "O cachorro correu pelo parque e brincou com a bola.",

 "O gato dormiu no sofá durante a tarde inteira.",

 "As crianças brincaram no parque e correram felizes.",

 "O leão é um animal selvagem que vive na savana.",

 "O cachorro e o gato dormiram juntos na cama.",

196

 "O parque estava cheio de crianças brincando e correndo."

]

Converter textos para vetores usando TF-IDF

vectorizer = TfidfVectorizer()

vetores_texto = vectorizer.fit_transform(textos).toarray()

Aplicar PCA

pca = PCA(n_components=2)

resultado_pca = pca.fit_transform(vetores_texto)

Plotar os vetores projetados

plt.figure(figsize=(8, 6))

plt.scatter(resultado_pca[:, 0], resultado_pca[:, 1], color='blue', alpha=0.7)

for i, txt in enumerate(textos):

 plt.annotate(f'T{i+1}', (resultado_pca[i, 0], resultado_pca[i, 1]))

plt.title("Visualização com PCA de Representações Textuais")

plt.xlabel("Componente Principal 1")

plt.ylabel("Componente Principal 2")

plt.show()

FIGURA 80 – VISUALIZAÇÃO COM PCA DE REPRESENTAÇÕES TEXTUAIS

FONTE: O autor (2025).

