
UNIVERSIDADE FEDERAL DO PARANÁ

VINICIUS SILVA FIGUEREDO

BOUNDARY LAYER PREDICTION AND STABILITY ANALYSIS USING

PHYSICS-INFORMED NEURAL NETWORKS

CURITIBA/PR

2025



VINICIUS SILVA FIGUEREDO

BOUNDARY LAYER PREDICTION AND STABILITY ANALYSIS USING
PHYSICS-INFORMED NEURAL NETWORKS

Dissertação de mestrado apresentada ao Pro-
grama de Pós-Graduação em Engenharia Me-
cânica da Universidade Federal do Paraná,
como requisito parcial para a obtenção do
título de Mestre em Ciências da Engenharia
Mecânica.

Orientador: Prof. Dr. Luciano Kiyoshi Araki
Coorientador: Prof. Dr. Gustavo Luiz Oliche-
vis Halila

CURITIBA/PR

2025





MINISTÉRIO DA EDUCAÇÃO
SETOR DE TECNOLOGIA
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO ENGENHARIA
MECÂNICA - 40001016040P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação ENGENHARIA MECÂNICA da

Universidade Federal do Paraná foram convocados para realizar a arguição da Dissertação de Mestrado de VINICIUS SILVA

FIGUEREDO, intitulada: BOUNDARY LAYER PREDICTION AND STABILITY ANALYSIS USING PHYSICS-INFORMED NEURAL

NETWORKS, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito

de defesa.

A outorga do título de mestre está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 12 de Novembro de 2025.

Assinatura Eletrônica

13/11/2025 12:27:57.0

GUSTAVO LUIZ OLICHEVIS HALILA

Presidente da Banca Examinadora

Assinatura Eletrônica

15/11/2025 16:05:56.0

JOSÉ MESSIAS MAGALHÃES JÚNIOR

Avaliador Externo (GEORGIA INSTITUTE OF TECHNOLOGY)

Assinatura Eletrônica

14/11/2025 00:48:05.0

JOAO LUIZ FILGUEIRAS DE AZEVEDO

Avaliador Externo (INSTITUTO DE AERONáUTICA E ESPAçO)

Centro Politécnico - CURITIBA - Paraná - Brasil
CEP 81531980 - Tel: 41 3361-3701 - E-mail: pgmec@ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 497738

Para autenticar este documento/assinatura, acesse https://siga.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 497738



To my parents, for their unconditional support and for always encouraging me to pursue
my dreams. To Raquel, for her constant love, care, and affection, which made this journey

lighter and more meaningful.



ACKNOWLEDGMENTS

I would first like to thank my parents for their continuous support and for always
encouraging me to give my best. To my partner Raquel, for her affection, understanding,
and companionship throughout this journey, whose support made everything possible. I am
also grateful to my aunt and uncle, Lêda and Otacílio, for their constant encouragement
and assistance.

I would like to express my gratitude to my advisors, Prof. Dr. Gustavo Halila and
Prof. Dr. Luciano Araki, for their patience, guidance, and valuable contributions during
the development of this work. In particular, I thank Prof. Dr. Gustavo Halila for his
dedication and generosity in sharing his knowledge.

I am also thankful to Prof. Dr. José M. Magalhães Júnior for his support throughout
this research and for his teachings, which helped me achieve the results presented here.

I would like to give special thanks to Prof. Dr. Nuccia Carla Arruda de Sousa, who
introduced me to the path of scientific research and has become a major reference in my
academic and professional life.

This work was financially supported by the Coordination for the Improvement of
Higher Education Personnel (CAPES), to whom I extend my sincere thanks.



RESUMO

A modelagem de escoamentos baseada em dados e informada por física oferece uma
abordagem eficiente e facilmente automatizável para a simulação de diversos problemas
em mecânica dos fluidos. Tais modelos podem ser facilmente integrados a outros códigos
para solução de escoamentos, constituindo uma alternativa prática às redes neurais padrão
utilizadas como substitutas em simulações de dinâmica dos fluidos computacional (CFD).
Enquanto redes neurais convencionais exigem grandes volumes de dados e elevado tempo
computacional para o treinamento, além de poderem produzir erros inaceitáveis em
certos cenários , as redes neurais informadas por física (PINNs) aproveitam as leis físicas
subjacentes, representadas por equações diferenciais parciais, para acelerar o treinamento e
aprimorar a acurácia da modelagem. Neste trabalho, as PINNs são aplicadas ao problema
da camada limite laminar sobre uma placa plana, recuperando com sucesso métricas
fundamentais, como perfis de velocidade e a evolução espacial da espessura da camada
limite. A abordagem é também estendida para investigar a evolução espacial de modos
de perturbação sobrepostos a uma camada limite laminar. Um código de estabilidade de
escoamentos baseado nas equações de estabilidade parabolizadas (PSE) é utilizado para
gerar os dados empregados nessas investigações de estabilidade espacial. Os resultados
correspondentes mostram que abordagens baseadas em dados e informadas por física
podem representar, de forma confiável, fenômenos oscilatórios em escoamentos limitados
por paredes, fornecendo previsões acuradas dos modos de estabilidade em uma formulação
não local e não paralela de análise de estabilidade de escoamentos.

Palavras-chave: Rede neural informada por física, Camada limite laminar, Escoamento
limitado por parede, Modelagem orientada por dados.



ABSTRACT

Physics-informed data-driven modeling of fluid flows provides an efficient and easily
automatable approach to simulate a variety of fluid mechanics problems. Such models can
be seamlessly integrated with other flow solvers, offering a practical alternative to standard
neural networks as surrogates for computational fluid dynamics (CFD) simulations. While
conventional neural networks require large volumes of data and computational time for
training and may produce unacceptable errors in certain scenarios, physics-informed neural
networks (PINNs) leverage the underlying flow physics, represented by partial differential
equations, to accelerate training and enhance modeling accuracy. In this work, PINNs
are applied to a laminar flat plate boundary layer problem, successfully recovering key
metrics such as velocity profiles and the boundary layer thickness evolution. The approach
is further extended to investigate the spatial evolution of boundary layer disturbance
modes. A flow stability solver based on the parabolized stability equations (PSE) is used
to generate the data for the spatial stability investigations. The corresponding results show
that physics-informed, data-driven approaches can reliably represent wave-like phenomena
in wall-bounded flows, providing accurate predictions of flow stability modes in a nonlocal,
nonparallel flow stability framework.

Keywords: Physics-informed neural networks, Laminar boundary layer, Wall-bounded
flows, Data-driven modeling.
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1 Introduction

The study of fluid dynamics plays a central role in engineering and applied sciences,
as it encompasses problems of practical and theoretical interest such as aerodynamics,
turbomachinery, and energy conversion. Among the many phenomena investigated within
this field, the transition from laminar to turbulent flow represents one of the most
challenging and relevant issues, directly impacting drag prediction, heat transfer rates,
and overall system efficiency [1, 2]. Understanding and predicting such phenomena require
advanced tools that can model the governing equations of fluid motion while maintaining
computational feasibility.

Traditionally, the modeling of flows has been based on the solution of the Navier–
Stokes equations, which are nonlinear partial differential equations (PDEs) governing
continuum incompressible and compressible flows. While direct numerical simulation
(DNS) provides a reference solution to these equations, the associated computational cost
is prohibitive for most practical problems, especially at high Reynolds numbers [3]. Reduced-
order models, linear stability theory (LST), and the Parabolized Stability Equations (PSE)
have been introduced to mitigate this challenge, enabling the study of instabilities in
boundary layers and the prediction of transition [4, 5]. Nonetheless, these approaches
still involve significant computational expense and exhibit limitations, such as sensitivity
to spurious modes and difficulties in handling three-dimensional or highly non-parallel
flows [6].

1.1 Machine learning and PINNs in fluid dynamics
Over the past decade, the use of data-driven modeling combined with machine

learning has gained increasing relevance in computational fluid dynamics (CFD). Techniques
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
autoencoders have been applied to flow prediction, turbulence modeling, and shape
optimization [7, 8, 9]. Despite their success, purely data-driven models often require
large training datasets and may lack physical consistency when extrapolating beyond the
training regime.

To overcome these limitations, Physics-Informed Neural Networks (PINNs) have
been introduced as a powerful alternative [10, 11, 12, 13, 14, 15]. PINNs integrate the
governing equations of a physical system—expressed as PDEs—directly into the training
process, reducing the dependency on large labeled datasets while ensuring that the model
respects the underlying physics. As a result, PINNs are particularly well suited to fluid
dynamics problems, where nonlinearities, high-dimensional spaces, and the scarcity of
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reliable data poses challenges to standard machine learning methods. Its high capacity
to handle problems with large numbers of variables makes it a viable solution method,
as observed in [16] and [17]. Its ability to solve nonlinear partial differential equations is
reported in the work of Yuan et al. [18], in which the technique is applied to the modified
nonlinear Schrödinger equation (MNLS). Physics-informed neural networks can be applied
to various mathematical models of fluid dynamics where conventional numerical methods
face challenges [19]. Essentially, PINNs employ a given problem’s underlying physics, known
through governing equations written as partial differential equations (PDEs), to accelerate
the training process. In general, an increased accuracy is also observed in the numerical
results generated by the trained model when compared with standard neural network
approaches. Smaller training data sets, when compared to standard neural networks, might
be enough to accurately represent the desired physics. In CFD, the application of physics-
informed neural networks primarily targets the Navier–Stokes equations. Therefore, PINNs
are emerging as an alternative to the main numerical methods currently being used, such as
CFD solvers based on the finite volume and the finite element methods [20]. Applications
in aerodynamics and shape optimization are examples of the use of PINNs in applied fluid
mechanics problems. Li et al. [8] demonstrate the applicability and prospects of machine
learning applied to shape optimization, noting the advantages of some techniques and
difficulties for large-scale optimization due to the high learning cost. Thus, PINNs present
themselves as an alternative to overcoming this obstacle.

Different architectures of physics-informed neural networks are found in the li-
terature. For instance, in [21] the authors proposed the Element Spatial Convolution
Neural Network (ESCNN). The ESCNN technique exhibits superior learning performance
compared to the state-of-the-art neural networks with fewer input parameters and better
approximations in their results. The ESCNN approach uses the concept of convolutional
neural networks. Through its application to an aerodynamic analysis problem, Gu et al. [9]
demonstrate the ESCNN’s ability to learn the physical laws governing the flow around an
airfoil. Through its application, the learning of the Kutta condition, as well as the lift and
drag coefficients prediction, is achieved. The numerical results were compared with those
obtained through the panel method [22].

Another relevant extension of the PINN framework is the Variational Physics-
Informed Neural Network (VPINN) [23]. This architecture is based on a Petrov–Galerkin
formulation, in which the trial space is represented by neural networks and the test space
by Legendre polynomials. By incorporating the variational form of the PDE into the loss
function and integrating by parts, VPINNs reduce the order of differential operators that
the neural network needs to approximate. As a result, this approach significantly decreases
the training cost while improving accuracy compared to standard PINNs, as demonstrated
in benchmark problems.
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To address the spectral bias that is inherent in standard PINNs, the Multi-Scale
Spatio-Temporal Fourier Features PINN (MS-ST-FF-PINN) has been proposed [24]. This
architecture leverages Fourier feature embeddings to enhance the network’s ability to
capture both low- and high-frequency components of the solution. By doing so, MS-ST-FF-
PINNs overcome the tendency of PINNs to converge only to low-frequency modes when
dealing with problems characterized by multi-frequency spatial or temporal dynamics.
Applications to canonical PDEs, such as the Poisson, wave, and Gray–Scott equations, as
well as to the incompressible Navier—Stokes equations, demonstrate superior accuracy
and faster convergence compared to standard PINNs, particularly in flows with periodic
and turbulent features.

1.2 Problem statement and motivation
The accurate prediction of boundary layer development and the subsequent stability

analysis are critical to understanding transition mechanisms. Classical approaches such as
Blasius’s similarity solution for flat plate boundary layers provide a theoretical foundation,
while numerical methods based on finite differences and Runge–Kutta schemes enable
accurate integration of base flows.

In the context of flow stability, LST and PSE methods have been extensively used
to investigate the amplification of disturbances. Although PSE represents a significant
advancement compared to LST, by accounting for non-parallel effects and allowing three-
dimensional extensions, it still relies on complex numerical frameworks and is prone to
numerical difficulties related to the computation of neutral points and the control of
spurious modes [4, 6].

Given these challenges, there is strong motivation to investigate whether physics-
informed neural networks can act as surrogate models for boundary layer and stability
problems. If PINNs are capable of accurately reproducing base flow solutions and capturing
disturbance evolution predicted by PSE, they may provide a computationally efficient,
automated alternative to classical CFD solvers. Such models would be valuable not only
for research but also for industrial applications in aerodynamics and flow control.

1.3 Objectives
The main goal of this dissertation is to explore the use of Physics-Informed Neural

Networks in the modeling of laminar boundary layer flows and in flow stability analysis
based on the parabolized stability equations. Specifically, this work implements a PINN fra-
mework for the solution of the flat-plate laminar boundary layer problem and compares its
results with those obtained using a laminar boundary layer solver; assesses the performance
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of PINNs in reproducing laminar boundary layer velocity profiles and the spatial evolution
of the boundary layer relative to standard neural networks; investigates the application
of PINNs to reconstruct pressure and velocity disturbances obtained from a nonlocal,
nonparallel flow stability solver based on the parabolized stability equations; evaluates the
ability of PINNs to reconstruct nonlocal, nonparallel stability-analysis eigenfunction fields
in a sparse-data scenario; and employs the disturbance fields generated by the PINN to
compute relevant metrics such as the energy-based disturbance growth rate (σE) and the
N -factor.

1.4 Contributions
The main contributions of this work are as follows. First, it employs computational

fluid dynamics solvers to generate training datasets for PINNs in boundary-layer and flow-
stability problems, considering flows with low Reynolds numbers. Second, it evaluates the
accuracy and efficiency of PINNs, compared to standard neural networks, in reconstructing
base-flow solutions. Another important contribution is the investigation of PINNs for
flow stability analysis using the PSE formulation, which has not yet been explored in
the literature. Finally, this work provides insights into the potential of physics-informed
machine learning techniques as alternatives to traditional CFD tools.

1.5 Dissertation overview
This dissertation is organized as follows. Chapter 2 presents the theoretical back-

ground of artificial neural networks, including the definitions of the artificial neuron,
activation functions, weights, and optimizers. The concept of feedforward neural networks,
which serve as the foundation for PINNs, is also introduced. Finally, the classical formula-
tion of PINNs is presented, illustrated through an application to a problem governed by
the Navier–Stokes equations. Chapter 3 presents a background on laminar boundary layer
theory, including the Blasius similarity solution, as well as the numerical methods employed
to generate the dataset used for training PINNs. Chapter 4 discusses the fundamentals of
fluid flow stability, focusing on modal analysis, the Linear Stability Theory (LST), and
the Parabolized Stability Equations (PSE). Chapter 5 introduces the Physics-Informed
Neural Networks framework, describing the implementation adopted in this work and its
application to the boundary layer and PSE problems. Chapter 6 presents the numerical
results obtained, comparing PINNs with standard neural networks and reference solvers.
Chapter 7 summarizes the conclusions of this research and outlines suggestions for future
work.
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2 Neural network theory

In this chapter, the basic concepts associated to neural networks in general are
addressed, as well as a detailed explanation of the functioning of a feedforward neural
network. We will also cover the theoretical formulation of the physics-informed neural
network, which can be defined as a neural network that leverages the advantages of
automatic differentiation to solve the governing equations of the physical problem being
addressed.

2.1 Basics concepts of artificial neural network
In the field of machine learning, artificial neural networks are one of the most

powerful tools for discovering patterns and information from data. Machine learning can be
divided into three main groups: unsupervised learning, where information is extracted from
unlabeled training data, semi-supervised learning, based on partially labeled training data
or reinforcement learning, and finally, the group used in this work, supervised learning, in
which the training data is labeled, that is, the network’s outputs are then compared with
the labeled data and are then optimized in order to decrease the error between them [7].

The first idea of an artificial neural network dates back to the 1940s, when McCulloch
e Pitts [25] created the first mathematical representation of how a biological neuron
functions. This concept is based on the idea that a biological neuron acts, in a simplified
manner, as a computational element that can be described by propositional logic, operating
in an "all-or-none" principle, a binary characteristic. Thus, artificial neural networks are
generalizations of mathematical models that describe human cognition. The first example
of an artificial neuron was developed by Rosenblatt [26], consisting of an input layer
connected by paths to association neurons. The weights on these paths are adjusted
iteratively until the problem under analysis is solved, meaning the network correctly
reproduces the training inputs and outputs. In Figure 1, one can see the representation
of a biological neuron and its counterpart, the artificial neuron. A neural network is
characterized as a composition of several artificial neurons, also known as nodes, units,
or cells. Each neuron is directly connected to other neurons through connection links,
which have an associated weight, w. These weights are manipulated during training, being
continuously adjusted in order to solve the problem. Each neuron in a network has an
activation, also known as an activity level, which is a function of that neuron’s inputs.
This activation is then passed individually to other neurons through its connections, with
signals being sent out one at a time [27].



Chapter 2. Neural network theory 21

Figure 1 – Representation of biological (left) and artificial (right) neurons.

Source: Adapted from [27]

2.1.1 Single layer networks

The most basic form of a neural network is composed of just a single layer connected
by weights to the output. The input layer is responsible for receiving external information,
that is, data originating from images, tables, and other sources. Data is transmitted through
weighted connections to the output layer, which represents the network’s response to the
input data, indicating whether or not the network has learned the problem at hand [28].
In Figure 2, one can observe the representation of a single-layer neural network. This type

Figure 2 – Single layer neural network representation.

Source: The author (2025)

of neural network is simpler and requires less computational power when compared with
multi-layer neural networks. Single layer networks are frequently used for problems such
as simple image recognition, embedded systems applications, digital logic, and especially,
educational applications.

2.1.2 Multiple layer networks

Neural networks with more than one layer represent greater computational power
and encompass broader applications in complex problems. The intermediate layers located
between the input and output layers lead to a more challenging training process. On the
other hand, multiple layer networks make it possible to recognize more complex patterns
and achieve higher success rates in problem-solving [28]. A representation of a neural
network with an intermediate layer is shown in Figure 3.
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Figure 3 – Representation of a neural network with an intermediate layer.

Source: The author (2025)

2.2 Activation function
The activation function is a crucial part of a neural network’s learning process,

enabling better training, learning, and predictive capabilities. It acts directly on each
neuron along with the weights and bias, which will be discussed in more detail in subsequent
sections. There are various activation functions, each with different implementations and
ways of operating within the network. They exhibit different characteristics that make
them suitable for specific types of problems, and they often must be tested to evaluate
improvements in the network’s generalization [29]. Some of the main types of activation
functions used in the literature are presented below.

ReLU - Rectified Linear Units, is a type of activation function widely used in convolutional
neural networks. It does not suffer from the vanishing gradient problem like the tanh
and sigmoid activation functions. It can present the problem of dying neurons, i.e.,
neurons that become inactive throughout the entire training, instead of becoming
inactive on specific occasions for the proper training of the network [30]. The ReLu
activation function is expressed as:

FReLU = x+ = max(0, x). (2.1)

Sigmoid - The Sigmoid activation function is mainly used for multi-class classification,
mapping any value to an interval bounded by [0, 1] [31]. Its mathematical expression
is given by:

Fsigmoid = σ(x) = 1
1 + e−x

(2.2)

SiLU - Sigmoid Linear Unit is a recently developed type of activation function that shows
good performance in deep neural networks. It combines the simplicity of the ReLU
activation function with the smoothness of the Sigmoid [32]. It is represented by the
equation:

Fsilu = x ∗ σ(x). (2.3)



Chapter 2. Neural network theory 23

Tanh - This activation function is a rescaled and centered version of the sigmoid function,
mapping values to the interval [-1, 1] [33]. It is one of the most widely used activation
functions in neural networks. Its formulation is as follows:

FT anh = ex − e−x

ex + e−x
. (2.4)

2.3 Weight initialization
For proper training of the neural network, weight initialization is key. Indeed,

during weight initialization the entire efficiency of the training is defined. Therefore, the
choice of an appropriate weight initialization function must be made carefully, as the
whole convergence and generalization capacity of the model depend on this initial step.
For deep feedforward and recurrent neural networks, the most commonly recommended
weight initialization schemes are Glorot/Xavier (normal or uniform) [34]. This method
takes into account the number of input and output neurons of the network, ensuring that
the variance of the activations in the forward pass and the variance of the gradients in the
backward pass remain consistent across the layers. This initialization seeks to mitigate
the problem of vanishing or exploding gradients during training, mainly caused when the
weights are initialized randomly, which strongly harms the model’s learning ability and
generalization.

The technique can be addressed in two ways. In the first, called Glorot normal, the
weights are defined through a normal distribution with mean 0 and standard deviation
given by:

σ =
√

2
nin + nout

. (2.5)

The second is known as Glorot uniform, where the weights are defined from a uniform
distribution in an interval [−x, +x] given by:

x =
√

6
nin + nout

. (2.6)

In Eqns. (2.5) and (2.6), nin and nout represent the numbers of neurons in the input and
output layers, respectively.

2.4 Optimizers in neural networks
Optimizers are an essential component in neural networks and are responsible for

the weight update in the training process. They act in search of the best set of weights
that minimize the loss function. The choice of the best optimizer depends on the neural
network model being used [35]. Some optimizers are more utilized in neural networks, such
as the Stochastic Gradient Descent (SGD) [36], which updates the model parameters in the
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opposite direction of the gradient, calculating on a small sample of the data (mini-batch)
at each iteration. It uses a single learning rate, which is constant and needs to be manually
adjusted. The learning rate is a hyperparameter that controls the size of the steps taken by
the optimizer during training, determining how quickly or slowly a neural network updates
its parameters in response to the computed gradients. Another widely used optimizer is
ADAGRAD, Adaptive Gradient [37], which is an optimizer that adapts the learning rate
for each parameter individually. It does so by accumulating the squares of past gradients
and decreasing the learning rate for parameters that receive frequent and large updates.
The ADADELTA optimization method is an extension of ADAGRAD [38]designed to
address the vanishing learning rate problem. Instead of accumulating all past gradients, it
considers only a window of recent gradients. One of its main features is that it eliminates
the need to define a global learning rate.

The optimizer used in this work is ADAM, which stands for Adaptive Moment
Estimation, one of the most common models used in neural networks, developed by Kingma
and Ba [39]. ADAM is an algorithm for first-order gradient-based optimization of stochastic
objective functions. It is designed to be straightforward to implement, computationally
efficient, and requires little memory. The method is particularly well-suited for problems
that are large in terms of data or parameters and can handle non-stationary objectives
and noisy and/or sparse gradients. The core idea of Adam is to combine the advantages
of two other popular optimization methods: ADAGRAD, which works well with sparse
gradients, and RMSProp, which performs well in online and non-stationary settings.
The ADAM optimizer achieves this by computing individual adaptive learning rates for
different parameters from estimates of the first and second moments of the gradients. The
algorithm’s primary function is to minimize the expected value of a stochastic objective
function, E[f(θ)], with respect to its parameters θ. At each timestep t, it receives a gradient
vector gt = ∇θft(θ), which is the vector of partial derivatives of the objective function at
that step. Adam maintains two exponential moving averages, one for the gradient itself,
the first moment, mt, and one for the squared gradient, the second raw moment, vt. These
moving averages are controlled by the hyperparameter decay rates β1 and β2, respectively.

The first step of the algorithm is the update of the biased first moment estimate,
in which the algorithm updates the moving average of the gradient. This acts like a
momentum term, smoothing the updates and accelerating convergence in a consistent
direction.

mt ←− β1mt−1 + (1 − β1)gt. (2.7)

The second step is the update of the biased second raw moment estimate; it updates
the moving average of the element-wise squared gradient. This term helps to adapt the
learning rate for each parameter individually.

vt ←− β2vt−1 + (1 − β2)g2
t . (2.8)
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The third step is to compute bias-corrected moment estimates. Because the moment
vectors m0 and v0 are initialized as vectors of zeros, the estimates in the first few steps are
biased towards zero. Adam introduces a crucial step to correct for this initialization bias.

m̂t ←− mt

1 − βt
1
, (2.9)

v̂t ←− vt

1 − βt
2
. (2.10)

Finally, the parameters are updated using the bias-corrected moment estimates.
The update is scaled by the square root of the second moment, which effectively creates a
per-parameter learning rate.

θt ←− θt−1 − α
m̂t√
v̂t + ε

, (2.11)

where α is the learning rate and ε is a small constant added for numerical stability.
For a wide range of machine learning problems, the default, recommended values are:
ε = 1 × 10−8 [39].

The ADAM’s main difference when compared against other algorithms like RMS-
Prop is the bias correction step. The update rule for the second moment, vt, can be
expanded as a sum of all past squared gradients, weighted by the decay factor:

vt = (1 − β2)
t∑

i=1
βt−i

2 g2
i . (2.12)

To quantify the discrepancy between the estimated moment vt and the true second
moment, we analyze its expected value, E[vt]. Assuming a stationary true second moment,
E[g2

i ] = E[g2
t ] for all i = 1, ..., t, we can take the expectation of Eq. 2.12:

E[vt] = E

[
(1 − β2)

t∑
i=1

βt−i
2 g2

i

]
= E[g2

t ](1 − β2)
t∑

i=1
βt−i

2 = E[g2
t ](1 − βt

2) (2.13)

The result in Eq. 2.13 demonstrates that the expected value of the second moment
estimate is the true moment scaled by a factor of (1 − βt

2). This term is the source of the
aforementioned initialization bias. To obtain a bias-corrected estimate, v̂t, we therefore
divide the computed estimate, vt, by this factor. The same correction is applied to the
first moment, yielding the bias-corrected estimates used in the final parameter update
rule, in Eqs. 2.9 and 2.10. This correction is of significant practical relevance. In scenarios
involving sparse gradients, a high value for β2 is necessary to reliably estimate the second
moment by averaging over a larger number of gradients. It is precisely in this case that the
lack of bias correction would lead to substantially larger initial steps, potentially causing
algorithmic instability or divergence.
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2.5 Feedfoward neural network
The general model of a feedforward neural network is composed of an input layer,

one or more hidden layers, and an output layer. These components work together to learn
the relationship between input and output data by adjusting their parameters (weights
and biases). Each layer is composed of multiple neurons, which receive outputs from the
previous layers (or the raw inputs, in the case of the first hidden layer) and calculate a
weighted sum of these inputs, add an offset (bias), and then apply an activation function
to produce its own output. Each hidden layer is formed by multiple neurons; each neuron
receives one or more inputs with a certain weight and performs a mathematical operation,
leading to an output [7]. In the context of model training, the sample can be defined as a
pair (x, y) and the input vector is:

x = (x1, x2, ..., xm)T , (2.14)

where the subscript m is the input layer dimension and vector y represents the correspon-
ding target outputs or labels that the neural network aims to predict. The output vector
generated by the neural network is:

f = (f1, f2, ..., fc)T , (2.15)

where c is the neural network output layer dimension [40]. Considering that the number of
hidden layers is (k = 1, 2, ..., L), where L is the number of layers, with nk neurons, one
can demonstrate that the corresponding hidden layer vector is given by:

h = (h1, h2, ..., hk)T .Wk = (wk
ij)nk×nk−1 , (2.16)

where Wk is the weight of matrices between the (k − 1)th and kth hidden layers. The
weight matrix for the output layer can be represented by:

WL+1 = (wL+1
ij )c×nL

. (2.17)

The output of each layer can be represented by:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1 = σh1(W1x + a1),

hk = σhk
(Wkhk−1 + ak),

f = σc(WL+1hR + aL+1),

(2.18)

where a is the offset, or bias, vector and σ is the activation function [41]. In this work, we
use the Tanh activation function, given by Eq. 2.4.

In neural network design for regression, the definition of the loss function goes
beyond an empirical choice. Alternatives such as Mean Absolute Error (MAE) or Huber
Loss exist, frequently cited for their robustness with noisy data. However, this work uses



Chapter 2. Neural network theory 27

Mean Squared Error (MSE) as the primary metric. The use of MSE is not arbitrary, it
represents the direct application of the Maximum Likelihood principle under the assumption
that the target variable follows a normal (Gaussian) distribution [42]. This statistical
property, coupled with the fact that MSE provides more informative gradients when the
error is large, makes it the ideal choice for fitting continuous physical fields and ensuring
the satisfaction of conservation laws:

E = 1
N

N∑
i=1

|y − f |2, (2.19)

The weight W and the offset a are updated in order to minimize the errors in the prediction
through the equations below:

Wk = Wk − η
∂E

∂Wk , (2.20)

and
ak = ak − η

∂E

∂ak
, (2.21)

where η is the learning rate [41].

2.6 Physics-informed neural network
The architecture and theory of physics-informed neural networks were developed by

Raissi et al. [13], aiming to address nonlinear problems without the need for linearizations
or adjustments at local temporal instances. These neural networks can be constrained
according to the relevant physical laws, as dictated by the time-dependent, nonlinear
partial differential equations governing the phenomenon of interest.

Initially, the problem of computing data-driven solutions for partial differential
equations in its general form is defined,

γt + N [γ; λ] = 0, x ∈ Ω, t ∈ [0, T ], (2.22)

where γ(t, x) is the latent solution, N [·] is a nonlinear differential operator parametrized
by λ, and Ω is a subspace of RD. By making f(t, x) equal to the left side of equation (2.22),
one gets,

f = γt + N [γ; λ]. (2.23)

Through the definition in Eq. (2.23), we have a physics-informed neural network,
approximating f(t, x) by a deep neural network. One can apply the chain rule to this neural
network for a composition of differential functions through automatic differentiation [43],
as described in Ref. [44].

To illustrate this approach for a fluid mechanics problem, the author presents an
application of physics-informed neural networks to a problem involving the Navier-Stokes
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equations, which describe a range of physical problems of engineering interest. Considering
the two-dimensional incompressible Navier-Stokes equations, we have:

ut + λ1(uux + vux) = −px + λ2(uxx + uyy), (2.24)

ut + λ1(uvx + vvx) = −py + λ2(vxx + vyy), (2.25)

where u and v denote the velocity components aligned with the x and y axes, respectively,
p is the pressure, and the subscripts represent derivative terms. For this case, λ = (λ1, λ2)
are unknown parameters.

The last equation to complete the system is the conservation of mass for incom-
pressible flow, represented by:

ux + vy = 0. (2.26)

Assuming that a stream function exists such that:

u = ψy, v = −ψx, (2.27)

the continuity equation, 2.26, will be automatically satisfied. The unknown parameters, λ,
and pressure, p, are the variables learned by the neural network. We then define f(t, x, y)
and g(t, x, y) as:

f = ut + λ1(uux + vux) + px − λ2(uxx + uyy), (2.28)

g = ut + λ1(uvx + vvx) + py − λ2(vxx + vyy). (2.29)

The neural network is then trained to learn these two output parameters, ψ(t, x, y) and
p(t, x, y). Based on the definitions given in Eqs. 2.27, 2.28, and 2.29, the physics-informed
neural network is defined. In this formulation, f and g act on the neural network and are
minimized through the loss function computed using the mean square error:

MSE = 1
N

N∑
i=1

(|u(ti, xi, yi)−ui|2+|v(ti, xi, yi)−vi|2)+ 1
N

N∑
i=1

(|f(ti, xi, yi)|2+|g(ti, xi, yi)|2).
(2.30)

This approach is then applied to flow around a cylinder, a typical problem in fluid
mechanics.

2.7 Machine learning frameworks used in this work
The implementation of the neural network models in this work was developed using

high-level deep learning libraries in Python. The choice of the computational framework is a
fundamental step, as it dictates the flexibility and implementation capability of the proposed
models. Initially, the chosen framework for development was SciANN [45], a Python package
specifically designed for scientific computing and physics-informed deep learning (PINN).
SciANN acts as a high-level wrapper for the Keras and TensorFlow libraries, aiming to
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abstract the construction of neural networks for the solution and discovery of partial
differential equations (PDEs). This tool inherits important functionalities from its backends,
such as batch optimization, model reuse for transfer learning, and, crucially, graph-based
automatic differentiation. Although SciANN provides a powerful abstraction for PINN
architectures, limitations were found in adapting its code to the specific requirements and
complexity of the present study. To achieve greater flexibility and finer control over the
model architecture and training cycle, it was decided to implement the models directly using
the underlying libraries. Thus, the final implementation was developed with TensorFlow
2 [46] and its official high-level API, Keras [47]. TensorFlow is an open-source platform for
large-scale machine learning, offering a comprehensive ecosystem of tools and libraries. Its
main strength lies in high-performance numerical computation, with support for CPU/GPU
parallelization, and its robust automatic differentiation engine, essential for gradient-based
optimization. Keras, in turn, serves as the high-level interface of TensorFlow, designed to
allow rapid prototyping and intuitive, modular model construction. The combination of
these two tools provided the ideal balance between low-level control and the flexibility
of TensorFlow with the ease of use and development speed of Keras, being the definitive
choice for the implementation in this work.
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3 The laminar boundary layer

In this chapter, the theoretical background of the laminar boundary layer over
a flat plate is presented, as well as the numerical solution developed for the generation
of the dataset used to train the neural network. This chapter includes, therefore, the
laminar boundary layer equations for incompressible two-dimensional flow and the finite
difference-based discretization employed for the numerical solution of the boundary layer
equations. This chapter also details the boundary layer initialization through Blasius
velocity profiles.

3.1 Laminar boundary layer equations
Boundary layers form in regions adjacent to surface walls as a result of viscous

effects. In Fig. 4, one observes the development of a boundary layer over a flat plate. The
freestream velocity is U∞. The boundary layer thickness, represented by δ in Fig. 4, is the
most commonly used quantity to describe the boundary layer extent. The boundary layer
thickness is defined as the distance y = δ from the surface where the local velocity, u(y),
reaches 99% of the free-stream velocity [48].

Figure 4 – Boundary layer development over a flat plate.

Source: The author (2025).

This section is devoted to deriving the governing equations of the flow within the
boundary layer starting from the Navier-–Stokes equations. The derivation may proceed
along two paths: a physically based argument, originally employed by Prandtl, or a
mathematical limiting procedure. The present text follows the physical approach, as it
provides clearer intuition regarding the simplifications introduced [48].

The analysis is based on a boundary layer configuration over a flat surface or one
with gentle curvature, where the boundary layer thickness, δ, is very small compared to
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the radius of curvature. In such problems, the main geometric length scale is the distance
x from the leading edge of the surface. A fundamental premise is that, except very close
to the leading edge, the boundary layer thickness is much smaller than the distance x, i.e.,
δ/x � 1.

Prandtl’s physical derivation is based on an order-of-magnitude analysis of the
terms in the Navier–Stokes equations. Within the boundary layer, the following orders of
magnitude are established:

• The velocity component in the x-direction, u, is of the order of the external flow
velocity, U :

u ∼ U

• The variation in the x-direction, ∂/∂x, is of the order of 1/x:

∂

∂x
∼ 1

x

• From the continuity equation, ∂v/∂y must be of the same order as ∂u/∂x, i.e., U/x.

• Since the variation in the y-direction, ∂/∂y, is much larger than in the x-direction
(of the order of 1/δ), the velocity component v must be of the order of Uδ/x:

v ∼ U
δ

x
and ∂

∂y
∼ 1

δ

The Navier-–Stokes equations for a two-dimensional steady flow are given by:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂x2 + ν
∂2u

∂y2 . (3.1)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

∂2v

∂x2 + ν
∂2v

∂y2 . (3.2)

Applying the order-of-magnitude analysis to each term of the equation in the
x-direction, we obtain:

U2

x
+ U2

x
= −1

ρ

∂p

∂x
+ ν

U

x2 + ν
U

δ2 .

Based on this balance, the second viscous term (ν∂2u/∂y2) is much larger than the first
(ν∂2u/∂x2), allowing the latter to be neglected. It is assumed that, due to the presence of
strong viscous effects and particle acceleration, the dominant viscous term must have the
same order of magnitude as the inertia terms. This leads to the important relation:

U2

x
∼ ν

U

δ2 ⇒ δ ∼
√

νx

U
.

This reasoning, purely based on order-of-magnitude analysis, indicates that the boundary
layer thickness grows with

√
x. Furthermore, the initial premise that δ/x � 1 is equivalent

to the condition that the Reynolds number, Re = Ux/ν, is large (Re 
 1).
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With these considerations in mind, the x-component of the Navier-–Stokes equations
is approximated, for a boundary layer, by:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2 . (3.3)

For the equation in the y-direction, the analysis shows that both inertia and viscous terms
are of an order of magnitude δ/x smaller than their counterparts in the x-direction, and
can, therefore, be neglected. The equation then reduces to:

0 = −1
ρ

∂p

∂y
. (3.4)

This implies that the pressure, p, is independent of the wall-normal coordinate y inside the
boundary layer, being only a function of x, that is, p = p(x). Therefore, the incompressible
boundary layer governing equations are:

∂u

∂x
+ ∂v

∂y
= 0. (3.5)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ ν

∂2u

∂y2 . (3.6)

∂p

∂y
= 0. (3.7)

Since the pressure p depends only on x, and the pressure gradient in the normal direction,
∂p
∂y

, vanishes within the boundary layer, its distribution along the boundary layer is identical
to that of the external inviscid flow. For incompressible flows, such as those considered in
this work, the region outside the boundary-layer edge behaves as an irrotational (potential)
flow. Therefore, in this region, Bernoulli’s equation is valid [49]:

p

ρ
+ 1

2U2 = constant. (3.8)

Differentiating this equation with respect to x, we obtain an expression for the pressure
gradient:

−1
ρ

dp

dx
= Ue

dUe

dx
, (3.9)

where Ue is the velocity at the boundary layer edge. By substituting this result into
Eq. (3.6), we arrive at an alternative form of Prandtl’s boundary layer equation:

u
∂u

∂x
+ v

∂u

∂y
= Ue

dUe

dx
+ ν

∂2u

∂y2 . (3.10)

The boundary layer equations must be solved with a set of boundary conditions that
ensure the no-slip condition at the surface and the matching with the external flow velocity
far from the surface.

The set of equations obtained above is known as the incompressible boundary layer
equations, which capture the essential physics of such flows [2, 50],

∂u

∂x
+ ∂v

∂y
= 0, (3.11)
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u
∂u

∂x
+ v

∂u

∂y
= Ue

∂Ue

∂x
+ ν

∂2u

∂y2 , (3.12)

∂p

∂y
= 0. (3.13)

The boundary layer momentum equation in the streamwise direction is parabolic in
nature. Therefore, its numerical solution can be performed through a spatial marching
scheme. This aspect will be further discussed in Sec. 3.2. The boundary conditions for
Eqns. (3.11), (3.12), and (3.13) are:

No slip at the wall: y = 0, u(x, 0) = v(x, 0) = 0,

Far from the wall: y = ∞, u(x, ∞) = U∞, v(x, ∞) = 0
Inflow conditions: x = 0, u(0, y) = u0(0, y), v(0, y) = 0

where U∞ is the freestream velocity and u0 is the inflow velocity profile. The outer boundary
condition, u(x, ∞) = U∞, couples the internal boundary-layer solution to the external flow.
Therefore, the external potential-flow solution must be known before the boundary-layer
equations can be solved..

3.2 Boundary layer numerical solution
The numerical solution of the boundary layer is obtained in the computational

domain illustrated in Fig. 4. As the inlet condition at x0, the velocity profile from the
Blasius similarity solution is adopted. This profile serves as the starting point for the
numerical method, which advances the solution using a second-order finite difference
scheme.

3.2.1 Similarity velocity profiles

An exact solution to the boundary layer equations, shown in Eqs. (3.11) and (3.12),
was obtained by Blasius [51]. He proposed that the problem admits a self-similar solution.
This means that the velocity profiles at different positions x along the plate are geometrically
similar and can be simplified into a single universal curve if the variables are properly
scaled. To reduce Eqs. (3.11) and (3.12) to a single ordinary differential equation, the
stream function is defined as:

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (3.14)

This satisfies the continuity equation for all stream functions ψ and yields the following
boundary layer equation [48]:

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2 = ν
∂3ψ

∂y3 . (3.15)
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The similarity solution for this problem then assumes the form:

ψ(x, y) ≈ f(η), (3.16)

where η is given by:
η = y√

νx/U∞
, (3.17)

the coefficients ν and U∞ make the variable η dimensionless. Physically, since the boundary
layer thickness grows proportionally to

√
x, the stream function must also incorporate this

term to ensure that the velocity profiles are self-similar, while also guaranteeing that ψ is,
indeed, dimensionless. Thus, the stream function assumes the form:

ψ(x, y) =
√

νU∞xf(η). (3.18)

Substituting this definition into the derivative terms that compose the boundary layer
equation, Eq. (3.15), we obtain:

∂ψ

∂x
= −1

2

√
νU∞

x
ηf ′ + 1

2

√
νU∞

x
f, (3.19)

∂ψ

∂y
= Uf ′, (3.20)

∂2ψ

∂x∂y
= −U∞

2x
ηf ′′, (3.21)

∂2ψ

∂y2 = U∞

√
U∞
νx

f ′′, (3.22)

∂3ψ

∂y3 = U2
∞

νx
f ′′′. (3.23)

The resulting ordinary differential equation, after substituting the derivative terms, is:

f ′′′ + 1
2ff ′′ = 0, (3.24)

which must satisfy the following boundary conditions [49]:

f(0) = f ′(0) = 0, (3.25)
f ′(η) −→ 1 as η −→ ∞. (3.26)

The methodology used to solve the Blasius equation is a combination of three
numerical techniques that constitute the shooting method. First, since the Blasius equation
is a Boundary Value Problem (BVP) with an unknown boundary condition, (f ′′(0)), the
strategy is to transform the problem into an equivalent Initial Value Problem (IVP). This
is done by estimating a value for f ′′(0). With a complete set of initial conditions, the
Blasius equation is then solved numerically using a robust integrator, which in this case is
the 4th-order Runge—Kutta method. After the integration, the computed value at the
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other boundary, f ′(ηmax), is compared with the target value, and the difference constitutes
an error. To intelligently correct the initial estimate and converge quickly to the solution,
a root-finding algorithm is employed, specifically, the secant method. This method uses
the results of previous shots to systematically refine the estimate of f ′′(0), repeating the
process until the error is minimized and the boundary condition is satisfied with the
desired accuracy.

The pseudocode in Algorithm 1 summarizes the shooting method numerical proce-
dure as applied to the Blasius boundary layer problem. The algorithm starts by guessing
an initial value for the unknown boundary condition, f ′′(0), and solving the resulting
initial value problem with the Runge–Kutta method. The discrepancy between the compu-
ted solution at the farfield boundary and the expected asymptotic condition defines the
residual error. To update the guess efficiently, the secant method is employed, combining
information from successive iterations to approximate the root of the residual function.
This iterative loop continues until the error falls below a prescribed tolerance, ensuring
convergence to the correct similarity solution.

Algorithm 1: Shooting Method for Boundary Value Problems
� Input: Boundary conditions y(x0) = y0, y(xf ) = yf; initial guesses

s0, s1

sold ← s0
s ← s1
� Solve IVP for initial guesses to start the secant method

Solve f ′′′ + 1
2ff ′′ = 0 with y(x0) = y0, y′(x0) = sold

Rold ← y(xf ; sold) − yf

Solve f ′′′ + 1
2ff ′′ = 0 with y(x0) = y0, y′(x0) = s

R ← y(xf ; s) − yf

while |R| > tolerance do
snew ← s − R s−sold

R−Rold
� Update slope with the secant method

sold ← s
s ← snew
Rold ← R
� Solve the BVP with the new slope guess

Solve f ′′′ + 1
2ff ′′ = 0 with y(x0) = y0, y′(x0) = s

R ← y(xf ; s) − yf

� Output: The converged solution y(x) for the final slope s



Chapter 3. The laminar boundary layer 36

3.2.2 Finite differences aproximation

To develop a numerical solution for the laminar boundary layer, we employ a second-
order finite difference scheme on a uniform grid for the derivative terms, as described in
Ref. [50]. The velocity derivatives are computed as follows:

∂u

∂x
≈ 1.5un+1

j − 2un
j + 0.5un−1

j

Δx
+ O(Δx2),

∂u

∂y
≈ un+1

j+1 − un+1
j−1

2Δy
+ O(Δy2),

∂2u

∂y2 ≈ un+1
j−1 − 2un+1

j + un+1
j+1

Δy2 + O(Δy2),

(3.27)

where j represents the wall-normal index and n represents the flow direction index. Notice
that, because the boundary layer problem is parabolic, it is solved through a marching
numerical scheme, hence the choice of n for the streamwise index counter, following
Ref. [50].

In Eq. (3.12), the velocity components that appear undifferentiated, u and v, are
extrapolated in the streamwise (marching) direction as follows:

un+1
j ≈ 2un

j − un−1
j + O(Δx2),

vn+1
j ≈ 2vn

j − vn−1
j + O(Δx2).

(3.28)

where the superscript n denotes the grid line in the streamwise direction. By replacing the
undifferentiated velocities at n + 1 with the extrapolated values in (3.28), the momentum
equation becomes linear in the unknowns u n+1, and a linear system for the vector u n+1

(assembled over all j) can be formed and solved. Note that this explicit extrapolation is
second-order accurate in Δx and may affect numerical stability, appropriate stabilization
or step-size control may therefore be required.

The previous expressions are then substituted back into Eqs. (3.12), and subse-
quently rearranged to generate a tridiagonal system of equations associated with the grid
line n + 1 through the boundary layer:

aju
n+1
j−1 + bju

n+1
j + cju

n+1
j+1 = dj,

aj = − Δx

2Δy
(2vn

j − vn−1
j ) − ν

Δx

Δy2 ,

bj = 1.5(2un
j − un−1

j ) − 2ν
Δx

Δy2 ,

cj = Δx

2Δy
(2vn

j − vn−1
j ) − ν

Δx

Δy2 ,

dj = (2un
j − un−1

j )(2un
j − 0.5un−1

j ) + Δx

(
Ue

dUe

dx

)n+1

,

(3.29)

Since the boundary layer code is formulated for a zero-pressure-gradient flow, the last
term of the in dj in Eq. (3.29) is neglected. From Eq. (3.11) it is possible to obtain vn+1

j ,
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since un+1
j is calculated from the solution of the tridiagonal system in Eq. (3.29):

vn+1
j = vn+1

j−1 − 0.5Δy

Δx
[(1.5un+1

j − 2un
j + 0.5un−1

j ) + (1.5un+1
j−1 − 2un

j−1 + 0.5un−1
j−1 )], (3.30)

where for the first element of the grid in normal direction, j = 1, vn+1
1 = 0. Although the

velocity components u and v are explicitly extrapolated to construct the coefficients of the
discretized equations, the scheme remains implicit because the unknown un+1 is obtained
from the solution of a tridiagonal system that couples the values un+1

j−1 , un+1
j , and un+1

j+1 .
Therefore, the formulation is implicit in the wall-normal direction. The resulting linear
system is solved using a tridiagonal matrix algorithm [52]. The length of the domain in
the direction normal to the flow, y, is defined through the following expression [2]:

δ99 = 5
√

νx

U∞
, (3.31)

making ymax equal to 1.5δ99.

The pseudocode in Algorithm 2 summarizes the numerical methodology used to
approximate the two-dimensional boundary layer development over a flat plate. The
algorithm begins by defining the Reynolds number, cinematic viscosity, and discretized
computational domain in the streamwise and wall-normal directions. At the inlet, the
velocity profiles are initialized based on the Blasius solution to provide a realistic starting
condition. The governing equations are then discretized and solved iteratively. The u-
velocity component is obtained from the discretized momentum equation using a tridiagonal
matrix system solved by forward elimination and back substitution, while the v-velocity
component is computed from the continuity equation in its discrete form. This marching
procedure in the x-direction allows the algorithm to progressively build the velocity field
along the plate. The methodology combines analytical insights from the similarity solution
with numerical stability provided by implicit finite-difference schemes, ensuring an accurate
representation of the boundary layer growth.
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Algorithm 2: Boundary Layer Computation
� Input: Flow parameters U∞, ν; computational domain xmesh, ymesh

u, v ← 0 � Initialize velocity fields

� Set inlet profiles at n=0 and n=1 using Blasius solution

u0, v0 ← Blasius Solution(ymesh, U∞, ν)
u1, v1 ← Blasius Solution(ymesh, U∞, ν)
for each streamwise station n from 2 to nmax − 1 do

� Solve the discretized momentum equation for un+1

aju
n+1
j−1 + bju

n+1
j + cju

n+1
j+1 = dj � for j = 1, . . . , jmax

� Update vn+1 from the discretized continuity equation

vn+1
j ← vn+1

j−1 − 0.5Δy
Δx

[(1.5un+1
j − 2un

j + 0.5un−1
j ) + . . . ]

� Output: Discretized velocity fields u and v over the domain



39

4 Linear stability analysis

The study of flow stability is relevant, among others, in the analysis of the transi-
tion from laminar to turbulent regimes, considered one of the central problems in fluid
mechanics [1]. The analysis of instabilities in flows is generally carried out using the
modal approach [5], with the classical theory being the Linear Stability Theory (LST),
based on the Orr–Sommerfeld equation (OSE) [2]. LST has been widely used to predict
transition [53], but it presents limitations since it does not directly account for boundary
layer growth, non-parallel effects, or curvature. Practical transition prediction methods,
such as the eN method, were introduced by Smith and Gamberoni [54] and Van Ingen [55],
showing good agreement with experiments [56, 57].

To overcome the limitations of Linear Stability Theory, nonlocal and nonparallel sta-
bility analyses were developed, such as solutions based on the Wentzel–Kramers–Brillouin
-Jeffreys approximation, WKJB [58], and the multiple scales method (MS) [59, 60], which
incorporates nonparallel effects in the boundary layer arising from the fact that the
wall-normal velocity component is nonzero. Another important advancement in stability
analysis are the Parabolized Stability Equations (PSE) [61, 4], a nonlocal and nonparallel
method capable of modeling the evolution of convectively unstable disturbances in boun-
dary layers, including curvature effects. The classical PSE formulation is of the 2.5D type,
which means that the base flow exhibits slow variations in the spanwise direction.

For cases in which the variation in the spanwise direction is considerably larger, the
fully 3D PSE formulation should be employed [62]. The PSE approach has a computational
cost comparable to that of LST, but with results close to DNS, although at a cost two orders
of magnitude lower [5]. By using PSE, growth rates are obtained from the superimposed
disturbances for a given base flow; this growth rate then results, through integration,
in the N -factor, which is used to predict the transition region [55] in the eN method.
The widespread use of PSE, particularly in industry, still presents some challenges. For
instance, the correct computation of the N-envelope using PSE depends on the knowledge
of the neutral point location for each disturbance mode considered in the integration.
Another challenge is that, depending on the strategy adopted for mode generation, spurious
disturbance modes can lead to unbounded amplification in PSE calculations [6].

4.1 Modal linear stability analysis
In modal linear stability theory, the stability problem is solved using a set of wave

modes, where each mode is analyzed independently. Both Linear Stability Theory (LST)
and the Parabolized Stability Equations (PSE) are examples of modal linear stability
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methods.

The fundamental principle is based on the decomposition of any flow property, q,
into a steady base state, q, and an unsteady perturbation component, q̃. This decomposition
is expressed as [5]:

q(x, t) = q(x) + εq̃(x, t), (4.1)

where x is the spatial coordinate vector, t is time, and q is the flow state vector containing
properties such as velocity components, and pressure, q = (u, v, w, p).

In the context of linear stability, the perturbations have small amplitudes, so
that ε � 1. By applying this approach to the Navier–Stokes equations, a linearization is
performed by neglecting terms of order O(ε2) or higher. Next, the equations for the steady
flow are subtracted, resulting in the Linearized Navier–Stokes Equations (LNSE). The
linearization is valid only while the perturbation amplitude remains small, such that the
nonlinear terms are negligible. It is important to note that a real nonlinear system can
exhibit unstable behavior for finite-amplitude perturbations, even under conditions where
the linearized system remains stable.

If the base flow q is steady, the time and spatial dependencies can be separated. A
Fourier decomposition in time can be introduced using the form q̃ = q̂e−iωt, where ω is
the angular frequency. In general, in modal stability analysis, the perturbation term is
written as the product of an amplitude q̂ and a phase function Θ:

q̃ = q̂eiΘ. (4.2)

Different stability methods, such as LST and PSE, rely on distinct assumptions
regarding the topology of the base flow q and the fluctuation q̃. The main differences
between the LST and PSE approaches are detailed in Tab. 1, where α = 2π/Lx is the
streamwise wave number, β = 2π/Lz is the spanwise wave number, with Lx and Lz the
wavelengths in the streamwise (x) and spanwise (z) directions, respectively. Also, ω is
the angular frequency, and x∗ represents the base flow slow variation properties in the
streamwise direction. The wall-normal direction is denoted by y.

Table 1 – Classification of stability analysis theory [5].

Method Assumption Base flow Amplitude Phase Θ
PSE ∂xq � ∂yq; ∂zq = 0 q̄(x∗, y) q̂(x∗, y)

∫
α(x′)dx′ + (βz − ωt)

LST ∂xq = ∂zq = 0 q̄(y) q̂(y) αx + (βz − ωt)

4.1.1 Linear stability theory

The Linear Stability Theory (LST) approach represents the solution of the Orr–Sommerfeld
equation and considers the assumption of a local and parallel base flow. The main assump-
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tions of LST are:

• Base flow: The flow is considered parallel, i.e., its derivatives in the streamwise
(x) and spanwise (z) directions are zero (∂xq = ∂zq = 0), depending only on the
wall-normal coordinate, q(y).

• Amplitude: The perturbation amplitude also varies only in the wall-normal direction,
q̂(y).

• Phase: The phase function is linear in the spatial coordinates, Θ = αx + βz − ωt.

Due to the assumption of local flow, non-local effects, such as derivatives of the base
flow in the streamwise direction, are not considered, and the stability problem becomes an
eigenvalue problem. Curvature effects are also not included [63].

The LST equation for compressible flows can be expressed in a compact form as:

d2q̂
dy2 + AL

dq̂
dy

+ BLq̂ = ωCLq̂ (4.3)

where AL, BL, and CL are operators related to the base flow parameters and the wave-
numbers α and β.

To solve the problem, it is advantageous to consider the temporal formulation
rather than the spatial one. In the spatial problem, the streamwise wavenumber, α, is
complex (α = αr + iαi), while the angular frequency, ω, is real [60]. In the temporal
problem, α is real and ω is complex (ω = ωr + iωi). Gaster transformation [64] is then used
to convert temporal-domain results to the spatial domain, which is required to initialize
the PSE method. In the spatial frame, the wave growth rate, σ, is defined as σ = −αi.
The neutral point corresponds to the location where the stability mode has zero growth
rate, i.e., αi = 0. The neutral point location can be determined by starting a calculation
within the unstable region (where αi < 0) and marching upstream until the condition
αi = 0 is satisfied.

The Gaster transformation associates wave numbers as obtained in the temporal
(subscript T ) and spatial (subscript S) theories as follows

αr,S ≈ αr,T , (4.4)
ωr,S ≈ ωr,T , (4.5)

ωi,T

αi,S

≈ −∂ωr

∂αr

, (4.6)

where the subscripts r and i denote the real and imaginary parts, respectively. In the
spatial framework, the parallel, local wave mode growth rate, σ, is equivalent to the
imaginary part of the streamwise wavenumber with a switch in sign: σ = −αi. The neutral
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point corresponds to the position where the stability mode has zero growth rate. It is
possible to determine the neutral point location by starting a computation inside the
unstable region, where αi < 0, and move upstream until αi = 0, defining the neutral point.

4.1.2 PSE theory

The PSE method is appropriate for the analysis of streamwise disturbance growth
in slowly varying shear flows such as boundary layers [65, 66, 4]. Mathematically, this is
expressed as

∂xq̄ � ∂yq̄; ∂zq̄ = 0, (4.7)
q̄(x) = q̄(x∗, y), (4.8)

where x∗ is a scaled version of x used to represent the base flow slow variation in the x

direction.

The base flow velocity components ū and v̄, aligned with the streamwise and
wall-normal directions, respectively, exhibit small variations in the streamwise (x) direction
and are constant along the spanwise (z) direction. We introduce the local Reynolds number,
Reδc = Ueδc(x)/ν where ν is the kinematic viscosity and δc(x) is a length scale proportional
to the boundary layer thickness, δc(x) =

√
νx/Ue, where Ue is the unperturbed boundary

layer edge velocity. The length scale, δc(x), is typically used in PSE analysis [58, 5]. The
reference length scale used to nondimensionalize the equations is δc evaluated at the first
marching streamwise coordinate [65]. The wall-normal component, v̄, is nonzero and scales
with 1/Re. Formally defining the slowly varying scale x∗ = x/Reδc , the scalings are:

w̄ ∼ 1
Reδc

,

∂

∂x∗ ∼ 1
Reδc

,

α = α (x∗) ,

q̂ = q̂ (x∗, y) .

(4.9)

In a linear PSE analysis, the perturbation vector is expanded in terms of a single
mode, truncated Fourier component assuming time-periodicity,

q̃(x, y, x, t) = q̂(x, y) exp
[
i

(∫
x

α (x′) dx′ + βz − ωt
)]

, (4.10)

where q̂(x, y) has a slow variation in x. The flow disturbance amplitudes, q̂, present the
three velocity components even when a two-dimensional base flow is considered.

To obtain the linear PSE equations, we replace the flow state vector decomposition,
q(x, t) = q̄(x) + εq̃(x, t), in the linearized Navier–Stokes equations and neglect terms of
O(ε2). We also consider the scaling from Eq. (4.9) and neglect higher derivatives with
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respect to x in the viscous terms (noting that ∂
∂x

1
Reδc

∼ ε2). The resulting linear PSE
equations, in compact form, read

Aq̂ + B
1
hy

∂q̂
∂y

+ C
1
h2

y

∂2q̂
∂y2 + D

1
hx

∂q̂
∂x

= 0, (4.11)

where hx and hy are curvature metrics. The entries for the compressible PSE operators A,
B, C, and D are detailed by Hanifi et al. [58]. The boundary conditions are:

û = v̂ = ŵ = 0 at y = 0, (4.12)
û = v̂ = ŵ = 0 as y → ∞. (4.13)

In the PSE framework, changes in amplitude along the slowly varying spatial
direction are contained both in the amplitude function q̂ and in the phase function defined
in Eq. (4.10). To remove such ambiguity, a normalization condition is required. One
possibility for the normalization is to impose that the total kinetic energy of the shape
function be independent of x so that fast disturbance variations in the streamwise direction
are absorbed into the phase function [4],

∫ ∞

0
û† ∂û

∂x
dy = 0, (4.14)

where the superscript † represents the complex conjugate. This normalization condition
also ensures an assumed scaling of ∂q̂/∂x with 1/Re. The disturbance kinetic energy is
used to measure the disturbance growth,

E(x) = 1
2

∫ ∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
dy. (4.15)

The disturbance kinetic energy-based disturbance growth ratio reads

σE = −αi + d

dx
ln

√
E(x). (4.16)

To compute the onset of the transition region, the eN method is usually employed,
where N is the amplification factor, or N -factor, defined as

N = ln
(

A

A0

)
=

∫ xn

x0
σE(x) dx, (4.17)

where A0 is the disturbance amplitude at the first neutral-stability point location, denoted
by x0, and xn the final station. The N -factor envelope is obtained as the superposition
of different N -factor curves at each station, computed by the PSE code for a range of
frequencies and spanwise wavenumbers.

Transition to turbulence is assumed to occur when the N -factor reaches a critical
value, Ncrit. For Tollmien–Schlichting waves, this critical threshold is given by Mack’s
correlation [56]:

Ncrit,T S = −8.43 − 2.4 ln(Tu), (4.18)
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where Tu is the turbulence intensity. This correlation is valid within the range 0.001 <

Tu < 0.01.

The linear PSE (4.11) are intended to be parabolic. Therefore, it is possible to treat
the streamwise direction as a pseudo-time and then to implement a marching strategy
in this spatial direction. Numerical instabilities appear when the streamwise integration
step is too small [5]. The reason for that, as explained by Herbert [4], is that there are
traces of ellipticity that inject ill-posed characteristics. One remedy for this is the use of a
first-order backward difference scheme with a lower integration step limit Δx > 1/|αr|.
To relax this limit, Andersson et. al. [67] propose a stabilization procedure leading to
Δx > 1/|αr| − 2s, where s is a small number.

Due to the predominantly parabolic character of the linear PSE (4.11), the distur-
bance evolution is influenced by both local and upstream flow information and, therefore,
the PSE method is recognized as a nonlocal approach, in contrast to, for instance, the
Orr–Sommerfeld equation, which is a local formulation.

4.2 PSE solver implementation details
We use the incompressible PSE flow solver introduced in Ref. [5]. Spectral collocation

points are used for the wall-normal discretization of Eq. (4.11). The Chebyshev nodes are
defined as follows,

ycheb,i = cos
(

πi

Ny

)
, (4.19)

where Ny is the number of points in the wall-normal direction. A Chebyshev spectral
differentiation matrix can be used to compute the derivative of vector q̂ through a
matrix-vector product,

dq̂
dy

= D1,chebq̂T . (4.20)

The entries for the Chebyshev spectral differentiation matrix read [68],

(D1,cheb)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2N2
y +1
6 for i = j = 0,

−2N2
y +1
6 for i = j = Ny,

−ycheb,i

2(1−y2
cheb,i)

for i = j, 1 ≤ j ≤ Ny − 1,

ci

cj

(−1)i+j

ycheb,i−ycheb,j
for i �= j,

(4.21)

where

ci =

⎧⎪⎨
⎪⎩

2 for i = 0 or i = Ny,

1 for 1 ≤ i ≤ Ny − 1.
(4.22)

The second-derivative Chebyshev differentiation matrix is simply

D2,cheb = D1,chebD1,cheb. (4.23)
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A mapping to the physical domain, yphys, is used to cluster points close to the wall
to capture the wave mode activity in the near-wall region. Suitable mappings between the
Chebyshev and physical spaces for incompressible and compressible flows are available in
the literature [69, 70]. The mapping between the spectral and physical spaces reads, for
subsonic flows,

yphys,i = a

(
1 + ycheb,i

b − ycheb,i

)
. (4.24)

The coefficients a and b are,
a = yhymax

ymax − 2yh

. (4.25)

where yh denotes the wall-normal coordinate up to which half of the nodes are distributed
in the case of low Mach number (M). For M > 0.5, yh indicates the position away from the
wall where a fraction c of the total number of points are located. In our implementation,
we use yh = 0.4 and c = 0.4. Term b in Eq. (4.25) is defined as,

b = 1 +
(

2a

ymax

)
. (4.26)

The spectral differentiation matrix is also mapped to the physical space,

(D1,phys) = (D1,cheb) dyphys

dycheb
. (4.27)

For the second-derivative matrix,

(D2,phys) = (D1,cheb) d2yphys

dy2
cheb

+ (D2,cheb)
(

dyphys

dycheb

)2

. (4.28)

The semi-discrete counterpart of Eq. (4.11) becomes,

Aq̂ + 1
hy

BD1,physq̂ + 1
h2

y

CD2,physq̂ + D
1
hx

∂q̂
∂x

= 0. (4.29)

A fully-discrete version of Eq. (4.29) is obtained by replacing the streamwise coordinate
derivative with a first or second-order backwards Euler marching scheme, in a way that x

can be interpreted as a pseudo time.

To determine the initial solution, two approaches are available. It is possible to use
an LST method to compute the initial solution after the Gaster transformation is applied
to the temporal problem, leading to a solution in the spatial framework. Another approach
modifies the original PSE equations to yield a local, parallel problem that is solved in the
initial marching station in a way that a previous LST solution is not used. In this case, we
modify the PSE operators defined in Eq. (4.11) to reflect the nature of a parallel problem.
To do this, derivatives in the streamwise direction are excluded and the base flow velocity
in this direction is set to zero. To obtain a local problem, meaning that the flow stability
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problem in each station is independent of the previous ones, we set the D matrix to zero,
and Eq. (4.11) becomes:

Ap,lq̂ + Bp,l
1
hy

∂q̂
∂y

+ Cp,l
1
h2

y

∂2q̂
∂y2 = 0, (4.30)

where the subscript p, l indicates the local, parallel solution obtained through the modified
PSE equation. The discrete counterpart of Eq. (4.30) is,

Ap,lq̂1 + 1
hy

Bp,lD1,physq̂1 + 1
h2

y

Cp,lD2,physq̂1 = 0. (4.31)

We solve Eq. (4.31) iteratively in an inexpensive way to avoid the computation of the entire
eigenmode space that results from the solution of the local, parallel problem through a
standard eigenvalue solver. Further details regarding the eigenmode initialization procedure
can be found in Ref. [6]. The steps followed in the PSE calculation are summarized in
Algorithm 3, adapted from Ref. [6].
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Algorithm 3: PSE computation
q̂1 ← 0 � Initialize local solution

α1 ← α0 � Initialize local wavenumber

while v̂wall > 2 × 10−8 do

Ap,lq̂1 + 1
hy

Bp,lD1,physq̂1 + 1
h2

y

Cp,lD2,physq̂1 = 0 � Solve the local problem

ζ ← ŵwall

αn ← αn−1 − ζ(αn−1)
αn−1 − αn−2

ζ(αn−1) − ζ(αn−2)
� Wavenumber update

Γ ← 106 � Initialize normalization condition to a large number

for i in nstations do
while Γ > 10−8 do

Aq̂ + 1
hy

BD1,physq̂ + 1
h2

y

CD2,physq̂ + D
1
hx

∂q̂
∂x

= 0 � Solve PSE problem

Γ ←
∫ ∞

0
û† ∂û

∂x
dy � Compute the normalization condition

ζ ← Γ
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5 PINN reconstruction

This chapter details the physics-informed neural network (PINN) formulation
employed in this work. The formulation is first applied to the flat plate laminar boundary
layer problem and subsequently to flow-stability analysis based on the Parabolized Stability
Equations (PSE).

5.1 PINN formulation for boundary layer flows
Using the concept of PINN and considering a two-dimensional boundary layer, we

approximate the solution of the laminar boundary layer equations with a deep-neural
network to predict (u, v) for a given (ν, x, y) set, where ν is the kinematic viscosity. Here,
x and y represent the domain coordinates in the streamwise and wall-normal directions,
respectively. Figure 6, which was adapted from Ref. [13], describes the structure of the
PINN used in this work, which consists of a fully-connected network and the residual
networks. The activation function, σ, is select to be the hyperbolic tangent function, tanh.

Figure 5 – Physics-informed neural network for an incompressible laminar boundary layer
flow.

Source: The author (2025).

To address the phenomenon of interest, the boundary layer momentum equations
can be written as,

uux + vuy = UeUex + ν(uyy), (5.1)

py = 0, (5.2)

where subscripts indicate differentiation. Here, since we are dealing with flow without a
pressure gradient, the term UeUex will be equal to zero.
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The equation of mass conservation for incompressible boundary layer flows reads

ux + vy = 0. (5.3)

We assume that a latent function ψ(x, y) exists such that,

u = ψy, v = −ψx. (5.4)

When a latent function ψ exists and Eq. (5.3) is satisfied, even if noise measurements
occur, the continuity equation is met.

Given noisy measurements of the velocity field expressed by,

{xi, yi, ui, vi}N
i=1, (5.5)

we are interested in learning the velocity field u(x, y) and v(x, y). We then define f(x, y)
and g(x, y),

f := ux + vy, (5.6)

g := uux + vuy − UeUex − ν(uyy), (5.7)

Eqns. (5.6) and (5.7), along with the assumptions made above, result in the physics-
informed neural network, which can be trained by minimizing the mean squared error
loss,

MSE := 1
N

N∑
i=1

(|u(xi, yi) − ui|2 + |v(xi, yi) − vi|2) + 1
N

N∑
i=1

(|f(xi, yi)|2 + |g(xi, yi)|2). (5.8)

To train the neural network, we initially use SciANN [45], a library specifically designed
for physics-informed neural networks (PINNs). The network architecture and training
parameters were meticulously defined to ensure accurate learning. Specifically, we use the
ADAM optimizer [39], a popular first-order gradient-based optimization algorithm, to
minimize the error in the loss function. The learning rate is set to 1 × 10−4 to balance
convergence speed and training stability, and the activation function used for all of our
results is the hyperbolic tangent. The training dataset obtained from SciANN comprises
velocity profiles, including both the u and v velocity fields, generated by the boundary
layer code. After the data filtering mentioned above, the dataset consists of 45,232 points.
In our implementation of PINNs for boundary layer flows in TensorFlow, we use 20,000
data points without applying any filtering. These data points serve as inputs and targets
for the neural network.
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5.2 PINN formulation for PSE
In this work, is consider a two-dimensional, incompressible base flow over a flat

plate. Considering the incompressible PSE operators A, B, C, and D, given by [5]:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

iα 0 iβ 0
ζ + ∂U

∂x
∂U
∂y

0 iα

0 ζ + ∂V
∂y

0 0
∂W
∂x

∂W
∂y

ζ iβ

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
V 0 0 0
0 V 0 1
0 0 V 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
− 1

Reδc
0 0 0

0 − 1
Reδc

0 0
0 0 − 1

Reδc
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
U 0 0 1
0 U 0 0
0 0 U 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where
ζ = −iω + iαU + iβW + 1

Reδc

(α2 + β2), (5.9)

and assuming unitary curvature metrics, hx = hy = 1 , Eq. (4.11) are written as:

iαû + iβŵ + ∂û

∂x
+ ∂v̂

∂y
= 0, (5.10)

(
ζ + ∂U

∂x

)
û + ∂U

∂y
v̂ + iαp̂ + V

∂û

∂y
− 1

Re

∂2û

∂y2 + U
∂û

∂x
+ ∂p̂

∂x
= 0, (5.11)

(
ζ + ∂V

∂y

)
v̂ + V

∂û

∂y
− 1

Re

∂2v̂

∂y2 + U
∂v̂

∂x
+ ∂p̂

∂y
= 0, (5.12)

∂W

∂x
û + ∂W

∂y
v̂ + ζŵ + iβp̂ + V

∂ŵ

∂y
− 1

Re

∂2ŵ

∂y2 + U
∂ŵ

∂x
= 0. (5.13)

In Eqs. (5.11) to (5.9), U , V , and W are the base flow velocity components in the x, y,
and z directions, respectively, i is the imaginary unit, α is the streamwise wave number, ω

is the angular frequency, and β is the spanwise wave number.

Using the concept of PINN and considering a PSE-based flow stability analysis, we
approximate the PSE solution with a deep-neural network to predict (û, v̂, ŵ, p̂, α) for a
given (x, y, Re, ω, β, U, V, W, Ux, Uy, Vy, Wx, Wy) set, where subscripts denote differentiation.
Figure 6, which was adapted from Ref. [13], describes the structure of the PINN used in
this work, which consists of a fully-connected network and the residual networks. The
activation function σ is the hyperbolic tangent function, tanh.

We rewrite the PSE equations as:

iαû + iβŵ + ûx + v̂y = 0, (5.14)

(ζ + Ux)û + Uyv̂ + iαp̂ + V ûy − Re−1ûyy + Uûx + p̂x = 0, (5.15)
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Figure 6 – Physics-informed neural network for parabolized stablity equations.

(ζ + Vy)v̂ + V ûy − Re−1v̂yy + Uv̂x + p̂y = 0, (5.16)

Wxû + Wyv̂ + ζŵ + iβp̂ + V ŵy − Re−1ŵyy + Uŵx = 0, (5.17)

where subscripts indicate differentiation. The base flow velocity gradients, Ux, Uy, Vy, Wx, Wy,
are directly computed within the PSE flow solver [5]. These base flow velocity gradients
are then directly fed into a neural network. We are interested in learning the disturbance’s
amplitude field û(x, y), v̂(x, y), and ŵ(x, y), as well as the streamwise wavenumber, α(x).
We then define the residual equations, R1, R2, R3 and R4,

R1 := iαû + iβŵ + ûx + v̂y, (5.18)

R2 := (ζ + Ux)û + Uyv̂ + iαp̂ + V ûy − Re−1ûyy + Uûx + p̂x, (5.19)

R3 := (ζ + Vy)v̂ + V ûy − Re−1v̂yy + Uv̂x + p̂y, (5.20)

R4 := Wxû + Wyv̂ + ζŵ + iβp̂ + V ŵy − Re−1ŵyy + Uŵx. (5.21)

As previously described, the perturbation fields (û, v̂, ŵ, p̂) and the streamwise wavenumber
α are complex-valued quantities. To handle these variables within the neural network
framework, each partial differential equation that is part of the PSE system is decomposed
into real and imaginary parts. Specifically, the residuals of the PSE, R1, R2, R3, and R4,
are split into:

Rk = Re(Rk) + i Im(Rk), k = 1, 2, 3, 4. (5.22)

This allows the network to predict both real and imaginary parts of the perturbation
fields independently while ensuring that the full complex equations are satisfied. During
training, the loss function accounts for both components simultaneously, minimizing the
squared residuals of the real and imaginary parts, which enforces the physics embedded in
the PSE on the neural network solution in a consistent manner.
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Equations (5.18), (5.19), (5.20) and (5.21), along with the assumptions made above,
result in the physics-informed neural network mathematical formulation, which can be
trained by minimizing the mean squared error loss,

MSE := 1
Nd

Nd∑
k=1

(|ûk
ref − ûk

pred|2 + |v̂k
ref − v̂k

pred|2 + |ŵk
ref − ŵk

pred|2 + |p̂k
ref − p̂k

pred|2

+|αk
ref − αk

pred|2) + 1
Nc

Nc∑
k=1

(|Rk
1|2 + |Rk

2|2 + |Rk
3|2 + |Rk

4|2),
(5.23)

where the subscripts d and c indicate the training data and collocation points, respectively.
To ensure that the neural network solution obeys the governing physical laws, even in
regions where no training data are available, the concept of collocation points is used. These
are coordinate points sampled throughout the problem domain at which the exact solution
is unknown. The purpose of these points is to force the network to satisfy the Parabolized
Stability Equations (PSE). In practice, for each collocation point, the neural network
output is used to compute the residuals of the PDEs, Eqs. (5.18) to (5.21). These residuals
form the second term of the loss function, Eq. (5.23), which is minimized during training
together with the data error. This process acts as a strong physics-based regularizer,
enabling the model to learn a physically consistent solution and to generalize well, even
from a sparse training dataset, a capability demonstrated in the results of Section 6.3.2.



53

6 Numerical results

In this chapter, incompressible flat plate boundary layer flows with zero pressure
gradient are investigated. Both standard and physics-informed neural networks are trained
and assessed for their ability to recover boundary layer velocity profiles. Flow stability
analysis based on a nonlocal, nonparallel approach is also considered, comparing the
performance of PINNs with the results obtained from standard feedforward neural networks
in a sparse data scenario.

6.1 Results: Boundary layer flow prediction with SciANN
Flat plate boundary layer investigations are initiated based on training performed

using SciANN. Results obtained with the trained models are compared with those obtained
directly from the boundary layer solver.

6.1.1 Data generation

To generate the training dataset for the neural network in SciANN, we focus on
flat plate boundary layers with zero pressure gradient. The flow is assumed to be laminar
and subject to a uniform free stream velocity of U∞ = 1.00 m/s, with a Reynolds number
based on the flat plate length of 250,000. The computational domain of the boundary
layer code extends from x = 0.25 m to x = 1.00 m, with a grid of 300 points in both
x- and y-directions to ensure a high-quality solution. The dataset used for the neural
network training consists of both u and v velocity fields, covering the length from x = 0.50
m to x = 1.00 m. A manipulation of the dataset is applied to ensure effective training
of the neural network. This manipulation is divided into two main steps. The first step
consists of removing data points where the velocity component u is greater than 0.9999,
which corresponds to the value of the velocity outside the boundary layer region, where
the flow is uniform and u ≈ 1. The motivation for this removal is to avoid redundancy,
since in the free-stream region all points carry the same information. Keeping these points
does not provide any new learning for the neural network and unnecessarily increases the
computational cost of training. This filtering ensures that the network focuses only on the
region of interest, where velocity variations occur. Another motivation for this filtering is
to avoid zero gradients during training. Neural networks learn by computing gradients, i.e.,
rates of change in the data. In regions where the flow is constant, the gradient is effectively
zero, meaning the network cannot extract useful error information, which hinders the
weight update process and slows down training, making it inefficient. The second step
of the manipulation involves scaling the velocity component v by a factor of 300. This
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step aims to balance the magnitudes of the velocity components. In a flow over a flat
plate, the wall-normal velocity component v has a significantly smaller magnitude than
the streamwise component u. This imbalance causes the neural network to give much more
importance to variations in u at the expense of v, simply because u has a much larger
magnitude. By multiplying v by 300, its value is amplified, approaching the magnitude of
u, thereby balancing the relative importance of both components during training. The
factor magnitude was chosen based on the theoretical relation v ∼ u/

√
Re. The steps

described above ensure that the network is fed with clean, well-normalized data, promoting
proper behavior and efficient learning during training. Since the flow develops mainly in
the x-direction, the velocity values in the y-direction are much smaller than the u-velocity.
This scaling improves the efficiency of the optimization algorithm by producing more
uniform gradients in both velocity fields. The testing dataset spans from x = 0.25 m to
x = 1.00 m. The error estimates presented here are based on streamwise positions ranging
from x = 0.50 m to x = 1.00 m, while the velocity field reconstructions presented later in
this section consider positions from x = 0.25 m to x = 1.00 m.

6.1.2 Results: boundary layer prediction with SciANN

To determine the optimal configuration that minimizes error, we test various
combinations of numbers of layers and neurons, as shown in Table 2. The simulations
presented here were performed on a machine equipped with a ninth-generation Intel
i5-9400F processor, featuring 6 cores and 6 threads, operating at a frequency of 4.10 GHz.
The system also has 16 GB of DDR4-2666 RAM. By varying the network architectures, we
observe the behavior of errors in the u and v velocity fields, as well as the computational
time required to reach a loss function threshold of 1 × 10−4. The prediction errors for the
velocity components u and v are quantified using the L2 norm. For this initial training, we
use a total of 44,000 data points, and the remaining 1,232 points are used for testing the
trained models. The testing set corresponds to streamwise locations beyond the mid-chord
position, where x = 0.50 m. Inspection of Table 2 reveals that 40 layers and 40 neurons per

Table 2 – Comparison of errors between PINN and standard neural network for different
architectures.

Layers Neurons PINN Standard N. N.
Error u (%) Error v (%) time (s) Error u (%) Error v (%) time (s)

30 30 1.9320 2.3219 4078 0.9721 0.6199 1985
40 40 0.2491 0.7063 16748 0.4690 0.7469 1630
50 50 0.9458 0.8868 29154 1.0176 0.5083 4590

layer represent the architecture that leads to minimum errors in the u velocity component
for both standard and physics-informed neural networks. We select this architecture for
our next investigations because, in agreement with boundary layer theory, the u velocity
component is expected to present larger magnitudes and gradients than the wall-normal
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velocity component, v. This configuration significantly reduced the error for both fields,
leading to 0.2491% and 0.4690% errors in u for the PINN and the standard neural network,
respectively. However, it is worth mentioning that the training time for the PINN is
substantially higher compared to the one corresponding to the standard neural network.
The increased computational overhead of evaluating PDE residuals, imposing physical
constraints, and calculating derivatives makes the training process for PINNs more time-
intensive than for standard neural networks for the same network architecture and training
set. Nonetheless, this additional time is often justified by the superior generalization and
adherence to physical laws offered by PINNs, as discussed later in this section.

Both neural networks are also compared, standard and physics-informed, by varying
the dataset sizes while maintaining the same number of neurons and layers for both models,
as shown in Table 3:

Table 3 – Comparison of errors between PINN and standard neural networks for different
training datasets.

Cases Train.
data

Test
data

PINN Standard N. N.

Error u (%) Error v (%) time (s) Error u (%) Error v (%) time (s)
Case 1 44,000 1,232 0.2491 0.7063 16,748 0.4690 0.7469 1,630
Case 2 22,000 23,232 0.7018 0.7175 5,453 1.0367 0.7174 2,948
Case 3 11,000 34,232 0.6412 1.2744 5,116 0.8291 0.8563 1,950

The incorporation of physical knowledge through differential equations reduces
errors in both the u and v fields. This is especially evident when the number of training
data points is limited, demonstrating the superior generalization capability of PINNs under
data-scarce conditions. For instance, in case 2, with only 22,000 data points for training,
the PINN achieves substantially lower errors compared to the standard neural network. In
this specific case, the error in the u velocity component is as low as 0.7018% for the PINN,
while the standard neural network delivers an error, for the same velocity component, of
1.0367%. For the reduced training data sets, comprising 22,000 and 11,000 data points,
the PINN training times are of the same order as those for the standard neural network,
although still higher for the physics-informed approach.

Considering all three cases, with training data sets from 11 to 44 thousand points,
we can perform an error analysis for both the PINN and the standard neural network, as
seen in Fig. 7. This error is calculated by computing the difference between the test data
and the predicted data, u(xi, yi) − ui and v(xi, yi) − vi, for the same points. Both the test
and training data are sourced from the region starting at x = 0.50 m to the end of the
flat plate, which is located at x = 1.00 m. Inspection of Figure 7 indicates that, for the
training set composed of 11,000 data points, both mean and median are smaller for the
PINN than for the standard neural network. The opposite is observed for a training set
with 22,000 data points, with equivalent error mean and median for the PINN and the
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Figure 7 – Error histograms for the streamwise velocity component, u, for varying training
data set sizes.

(a) PINN - Case 1 (b) Standard neural network - Case 1

(c) PINN - Case 2 (d) Standard neural network - Case 2

(e) PINN - Case 3 (f) Standard neural network - Case 3

standard neural network when the training set has 44,000 points.

Figures 8 to 10 present detailed comparisons of the velocity profiles at four different
streamwise positions, namely, x = 0.30, 0.50, 0.75, and 1.00 m. The u velocity component
profiles as obtained by the boundary layer solver and as predicted by both the standard
and the physics-informed neural networks are compared. For Case 1, which considers
44,000 data points for training, an analysis of Figure 8a indicates that, in the region
predicted without reference data, both predictions, PINN and Standard NN, exhibit small
deviations from the reference solution obtained from the boundary layer solver. Near the
wall, there is a discrepancy for both networks. However, in the region close to the edge
of the boundary layer, it can be observed that the standard neural network struggles to
predict the velocity component u, whereas the PINN demonstrates higher accuracy with
respect to the reference solution. For the remaining regions shown in Figs. 8b, 8c, 8d, it
is possible to observe that both networks provide predictions equivalent to the reference
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solution, with small variations favoring the PINN. For instance, at x = 1.00 m, a minor
prediction error by the standard neural network can be observed near the wall. This
superior performance highlights the advantage of incorporating physical laws into the
neural network, allowing for more accurate and reliable predictions, especially in critical
regions where precise modeling is essential. This is relevant when performing flow stability
computations, for which the quality of the velocity profiles and gradients directly impacts
the accuracy of the computations.

Figure 8 – Streamwise velocity component, u, profiles as predicted by the boundary layer
solver and both standard and physics-informed neural networks for 44,000
training data points (case 1).

(a) x = 0.30 m (b) x = 0.50 m

(c) x = 0.75 m (d) x = 1.00 m
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The velocity profiles at the selected streamwise locations for case 2, which is based
on a training data set with 22,000 points, are inspected in Fig. 9. For this case, a behavior
similar to the previous one can be observed. At the location x = 0.30 m, both networks
encounter difficulties in predicting the velocity component in the streamwise direction.
Near the wall, prediction errors are present in both the PINN and the Standard Neural
Network (SNN). However, in the region close to the boundary layer edge, the PINN once
again provides a significantly more accurate prediction compared to the standard neural
network. In Figures 9c and 9d, the difficulties of the standard neural network are evident,
especially in predicting the flow close to the wall.

Figure 9 – Streamwise velocity component, u, profiles as predicted by the boundary layer
solver and both standard and physics-informed neural networks for for 22,000
training data points (case 2).

(a) x = 0.30 m (b) x = 0.50 m

(c) x = 0.75 m (d) x = 1.00 m

The streamwise velocity component profiles for Case 3, with 11,000 training data
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points, are also examined in Fig. 10. For the first streamwise position at x = 0.30 m,
shown in Fig. 10a, the PINN clearly demonstrates higher accuracy compared to the
prediction made by the SNN at this location, particularly in the near-wall region. This
behavior is consistent with the previous cases, where the standard neural network fails to
provide an accurate prediction near the boundary layer edge. For the positions x = 0.50 m
and x = 0.75 m, illustrated in Figs. 10b and 10c, respectively, both networks deliver
similar results, with good agreement with the reference solution in both the near-wall and
boundary layer edge regions. This indicates that, when sufficient data is available, the
SNN can achieve reasonable accuracy; however, the PINN continues to match or slightly
improve upon these results. At the last position, x = 1.00 m (Fig. 10d), the standard
neural network once again exhibits lower accuracy close to the wall. A small deviation is
also observed at the boundary layer edge, reinforcing the advantage of the PINN in these
scenarios. Overall, these findings emphasize that the PINN maintains superior accuracy,
especially in cases with reduced data availability for training. This robustness highlights
the capability of PINNs to generalize more effectively than standard neural networks,
ensuring better prediction quality even under sparse-data conditions.

Streamwise velocity component contours, as predicted by the boundary layer solver
and both standard and physics-informed neural networks, are depicted in Fig. 11. For
this investigation, our flowfield predictions correspond to streamwise positions ranging
from x = 0.25 m to x = 1.00 m. Because the training dataset extends from x = 0.50 m
to x = 1.00 m, these predictions include regions that were not used to train the neural
networks. We observe that, for our three training datasets, whose dimensionality spans
from 11,000 to 44,000 points, the PINN provides a superior estimation of the velocity field,
closely reproducing the results generated with the boundary layer flow solver. Conversely,
the results from the standard neural network are less satisfactory for the same training data
sets, showing noticeable deviations, particularly in regions with higher velocity gradients.
For cases 2 and 3, which consider reduced training data sets, the boundary layer edge
presents a linear evolution in the standard neural network predictions, which does not
represent the true physics. The PINN results, on the other hand, indicate a boundary
layer edge that retains the boundary layer flow features and compare favorably with the
results obtained with the boundary layer flow solver. This represents the physics-informed
approach’s ability to generalize from a limited training dataset.

The present results underscore the superiority of the PINN in terms of accuracy
and adherence to physical constraints, highlighting its potential application in simulations
where the fidelity of physical models is crucial. Additionally, once trained, the PINN model
can be easily coupled with other flow solvers, which results in less complex and more
effective flow simulation frameworks.



Chapter 6. Numerical results 60

Figure 10 – Streamwise velocity component, u, profiles as predicted by the boundary layer
solver and both standard and physics-informed neural networks for for 11,000
training data points (case 3).

(a) x = 0.30 m (b) x = 0.50 m

(c) x = 0.75 m (d) x = 1.00 m

6.2 Boundary layer flow prediction with TensorFlow
Due to certain limitations encountered while using SciANN, particularly regarding

the flexibility to modify network architecture, loss functions, and other custom features
required for the PSE problem, we implement a custom Physics-Informed Neural Network
code using TensorFlow 2. The SciANN library, while convenient for standard PINN
implementations, presented challenges when adapting the code to specific features without
modifying its internal structure, which could risk breaking the library’s functionality. By
using TensorFlow 2, we gained greater control and customization capabilities, allowing us
to directly adjust the network architecture, tailor the loss function to our problem, and
implement additional features as needed. Furthermore, this implementation facilitated
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Figure 11 – Streamwise velocity, u, contours as predicted by the boundary layer solver
and both standard and physics-informed neural networks, for all training data
sets considered here, obtained using SciANN.

(a) Boundary layer code (b) PINN - Case 1 (c) Standard NN - Case 1

(d) Boundary layer code (e) PINN - Case 2 (f) Standard NN - Case 2

(g) Boundary layer code (h) PINN - Case 3 (i) Standard NN - Case 3

systematic experiments, such as comparing prediction accuracy across different training
data volumes and evaluating the mean squared error (MSE) of the PINN predictions.
In the following sections, we demonstrate that the TensorFlow implementation achieves
results that are at least as accurate as those obtained with SciANN, while providing
enhanced flexibility and maintainability for further modifications.

6.2.1 Data generation

For our PINN implementation, the training dataset is obtained by running the
boundary layer code detailed in Sec. 3.2. We use a computational domain with 100 points
in both x- and y-directions. This discretization generates a dataset consisting of 10,000
points for each velocity component, namely u and v. The present investigation focuses
on flat plate boundary layers under conditions of zero pressure gradient. The freestream
velocity is defined as U∞ = 1.00 m/s, and the flow is considered laminar, with a Reynolds
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number of 250,000 based on the length of the flat plate. The computational domain spans
from x = 0.25 to x = 1.00 m. Although the v-velocity component values were significantly
smaller than the u-velocity component, as expected in boundary layer flows, no scaling
was applied as it proved unnecessary. Therefore, the total training dataset consists of
20,000 points, with 60% of the data points allocated for training the neural network,
corresponding to 12,000 data points. The remaining 8,000 points were reserved for model
testing.

6.2.2 Results: boundary layer flow prediction with TensorFlow

For the TensorFlow implementation, the network is configured with an architecture
consisting of 8 hidden layers, each containing 40 neurons, and trained using a learning rate
of 0.001. In Fig. 12, the streamwise velocity component flow field indicates how well the
PINN predicts both the magnitudes of velocity and the boundary layer topology. However,
in the initial portion of the domain, one can observe a slight discrepancy in magnitude.

Figure 12 – Streamwise velocity component, u, contours as predicted by the boundary layer
code (a) and by the physics-informed neural network (b) with TensorFlow.

(a) Boundary Layer code (b) PINN

This discrepancy in the initial flat plate positions can be more thoroughly analyzed
in Fig. 13a, which highlights the regions with the least accurate flow field reproductions.
The observed differences in the velocity profile at x = 0.25 m arise from the characteristics
of the boundary layer code, which utilizes a marching technique due to the parabolic
nature of the boundary layer equations. To initialize the boundary layer solution, the first
two stations are necessary because the marching scheme relies on a second-order accurate
method. The solution at these initial locations is derived from the Blasius similarity
solution, presented in Sec. 3.2.1. As the marching progresses in the x-direction, the errors
originating from the initial two stations estimation gradually diminish, leading to a more
accurate solution. Consequently, the predictions from the PINN and the results from the
boundary layer code converge as x approaches 1.00 m. By evaluating the test dataset
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Figure 13 – Streamwise velocity component, u, profiles as predicted by the boundary layer
solver and physics-informed neural networks with TensorFlow.

(a) x = 0.25 m (b) x = 0.50 m

(c) x = 0.75 m (d) x = 1.00 m

against the model’s predictions, we calculate the mean squared error (MSE) for both
the u and v velocity components. The MSE for the streamwise velocity component, u,
is computed as 5.5818 × 10−6, whereas for the wall-normal velocity component, v, the
MSE is 2.6271 × 10−7. These findings highlight the high accuracy of the PINN-based
model in predicting the boundary layer flow field, particularly for the wall-normal velocity
component, which exhibits significantly lower errors. The small magnitude of the MSE
values further confirms that the model successfully captures the essential characteristics of
the boundary layer flow.

6.3 Flow stability analysis results based on the parabolized stability
equations
In this section, physics-informed neural networks, implemented using the Tensor-

Flow framework, are trained to recover the physical behavior of spatially-evolving flow
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modes that are typical in boundary layer flow stability investigations. To recover boundary
layer-like behavior, focus is directed toward nonparallel, nonlocal stability analysis based
on the parabolized stability equations (PSE).

6.3.1 Data generation for flow stability analysis

The training dataset is obtained from the PSE code generated with 80 points in the
x-direction and 250 points, which are clustered near the wall, in the y-direction, forming a
training dataset of 20,000 data points for each perturbation component, û, v̂, ŵ, and p̂.
More details on the incompressible PSE code can be found in Ref. [5]. We also predict
the streamwise wave number, α. The streamwise wavenumber represents a prediction
challenge for both SNN and PINN approaches. We are currently focusing on enhancing
the neural network’s ability to accurately recover the streamwise wavenumber spatial
evolution, as originally predicted by the PSE solver. We focus on disturbances aligned with
the streamwise direction (β = 0), thereby disregarding the spanwise disturbance velocity
component, ŵ, which is, in this case, zero. The flow conditions are characterized by the
local Reynolds number, which is based on the characteristic length scale, δ, at the first
and last x-stations, with values of 400 and 1,000, respectively. The base flow represents a
zero pressure gradient flat plate boundary layer flow.

6.3.2 Results of PINNs for the PSE

In this section, numerical results for the PINN-based disturbance field reconstruction
are presented. The PINN-based predictions are compared with those obtained by using a
standard neural network. The architecture and training parameters of the PINN code are
designed to ensure accurate learning while minimizing computational cost. The ADAM
optimizer, presented in Sec. 2.4, a widely used first-order stochastic gradient descent method,
is employed to minimize the loss function. To approximate the reference solution, an
architecture consisting of 5 hidden layers with 100 neurons each was employed. Compared to
other tested configurations, this specific architecture yielded better predictive performance
without significantly increasing training time. The hyperbolic tangent activation function
is used, and the learning rate is set to present an exponential decay, starting from 0.001.

Initial results are obtained considering a sparse training set of 1,000 data points
generated by the PSE solver. This dataset is supplemented with 20,000 collocation points,
which are used to enforce the PDE residuals within the loss function. The total loss
function, shown in Fig. 14, displays an error reduction as the number of epochs increases,
with the maximum set at 100,000 epochs. The loss function in Fig. 14 consists of the first
term of Eq. (5.8), where the neural network adjusts its output to the input data (observed
data), and the second term, which is related to the parabolized stability equations.
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Figure 14 – PINN loss function.

Figure 15 illustrates the comparison between the results obtained with the PINN
and a standard neural network (SNN). The standard neural network was trained using the
same number of points as the PINN, 1,000 points. It can be observed that the PINN shows
a better fit to the PSE data. Indeed, inspection of Fig. 15 indicates that the relative L2

norm error for streamwise stations 20, 60, and 80 is smaller for the PINN when compared
to the SNN. The SNN’s limitation is most apparent at station 80, which is located at the
end of domain, where it is unable to accurately capture the solution’s complex behavior
within the region of maximum amplitude, failing to reproduce the multiple inflection
points present in the true solution.

For the v̂-eigenfunction, displayed in Fig. 16, both the PINN and the SNN yield
comparable predictions. However, a closer analysis of the relative error reveals that the
SNN performs better at earlier stations (1 and 20), whereas the PINN outperforms the SNN
at downstream stations (60 and 80). When investigating the pressure eigenfuncion, p̂, one
can see that, indeed, the PINN outperforms the SNN. As illustrated in Fig. 17, the PINN
consistently surpasses the SNN by yielding lower relative errors and more accurate near-
wall predictions. The SNN presents difficulties in recovering the eigenfunction smoothness
close to the wall in all streamwise flow stations, even in the one in which its relative error
reaches its lowest value.

The following results assess the differences in predictions made by both PINN and
SNN of for a training performed under a more data-sparse condition. For this case, both
models are trained using only 500 data points generated with the PSE solver. To evaluate
the PINN performance with varying levels of physical information, we test two scenarios
using 10,000 and 30,000 collocation points, respectively. This setup allows us to assess
the PINNs ability to accurately predict the solution fields when fewer data points are
known but more collocation points are used to enforce the governing physics. The results
in Fig. 18 show that increasing the number of collocation points significantly improves the
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Figure 15 – Eigenfunction û absolute values in different flat plate streamwise stations.

(a) Station 1 (b) Station 20

(c) Station 60 (d) Station 80

PINNs accuracy. The configuration with 500 data points and 30,000 collocation points
yields more accurate predictions than both a PINN with only 10,000 collocation points
and a standard neurl network trained solely on the 500 data points from the PSE solver. A
visual inspection of the eigenfunction predictions confirms that the PINN provides a better
fit, while the SNN produces noisier spatial amplitude distributions. This characteristic
highlights how enforcing the differential equations at the collocation points acts as a strong
regularizer during training, guiding the model toward a physically meaningful solution.

The analysis of the v̂-eigenfunction, as seen in Fig. 19, further reveals the limitations
of the standard neural network. The SNN’s prediction deviates significantly from the true
PSE solution and displays non-physical behaviors. Conversely, the PINN models provide a
much better fit, an advantage that is most evident at station 80. Here, both the 30,000 and
10,000 PINN collocation point configurations demonstrate the advantages of considering
the governing partial differential equations in the training. For the p̂-eigenfunction, Fig. 20
shows that the PINN predictions are indeed more accurate than those of the SNN. The
relative L2 error values, which are presented in Fig. 20, confirm that the configuration
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Figure 16 – Eigenfunction v̂ absolute values in different flat plate streamwise stations.

(a) Station 1 (b) Station 20

(c) Station 60 (d) Station 80

with 30,000 collocation points yields the most satisfactory results. Furthermore, the SNN
struggles to predict the near-wall regions, where it exhibits non-physical oscillations that
are inconsistent with the underlying physics.

Predictions of the streamwise wavenumber, α, were also carried out, allowing us to
assess the accuracy of the models by analyzing both the real and imaginary parts of the
wavenumber. As shown in Fig. 21, the results indicate that the PINN-based predictions
are significantly more accurate, while the standard neural network exhibits a response that
deviates substantially from the expected reference behavior. It can also be observed that
increasing the number of collocation points leads to a reduction in the prediction error
for both components of α. This highlights the importance of data density in the training
process. Nevertheless, even in cases where the amount of training data is limited, the PINN
is able to maintain a high level of accuracy. This is primarily due to the incorporation of
the governing equations of the problem into its training, which provides additional physical
constraints and compensates for the data sparsity. These results emphasize the inherent
robustness of PINNs compared to conventional neural networks. While standard networks
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Figure 17 – Eigenfunction p̂ absolute values in different flat plate streamwise stations.

(a) Station 1 (b) Station 20

(c) Station 60 (d) Station 80

strongly depend on the availability of large amounts of data to achieve reliable predictions,
PINNs are capable of delivering accurate results even under sparse-data conditions, making
them a powerful tool for flow stability analysis.

Based on the previously obtained results for the disturbance fields and the stre-
amwise wavenumber, α, it is possible to evaluate key transition prediction metrics, such
as the growth rate based on kinetic energy and the N -factor, as introduced in Sec. 4.1.2.
Figure 22 shows the energy-based growth rate predictions provided by each network in
comparison with the reference results obtained from the PSE code. The curve predicted
by the standard neural network (SNN) proves insufficient for analyzing this metric when
trained with only 500 points, whereas the PINN yields a prediction much closer to the
reference curve, using the same number of training points. By analyzing the relative L2

error for both curves, it becomes clear that the SNN produces inadequate predictions,
with an error of 2.9360 × 10−1, while the PINN achieves a significantly lower error of
3.6790 × 10−2. For the N -factor, as shown in Fig. 23, the inability of the SNN to provide
satisfactory results under sparse-data conditions is again evident. In contrast, the PINN
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Figure 18 – Eigenfunction û absolute values for 500 data points in different flat plate
streamwise stations.

(a) Station 1 (b) Station 20

(c) Station 60 (d) Station 80

delivers a much more accurate prediction, proving effective in sparse-data scenarios and
suitable for transition-to-turbulence prediction. The superiority of the PINN over the
SNN becomes even more evident when examining the relative errors associated with these
curves: the PINN achieves a relative error of 3.9036 × 10−2, whereas the SNN yields a
considerably larger error of 3.4581 × 10−1.

Assessing the PINN eigenfunction predictions against the disturbance field ge-
nerated by the PSE solver is essential for understanding and improving the machine
learning model. This analysis allows the evaluation and adjustment of model parameters,
aiming at progressively more accurate predictions. In this context, PINNs emerge as an
important approach for the analysis of complex fluid flow phenomena, such as transition
and turbulence. The current improved eigenfunction predictions, when compared against
those obtained with standard neural networks, combined with a reduced computational
cost, render PINNs a suitable approach to investigate flow stability problems. The choice
of the number of collocation points in a PINN architecture represents a critical trade-off
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Figure 19 – Eigenfunction v̂ absolute values for 500 data points in different flat plate
streamwise stations.

(a) Station 1 (b) Station 20

(c) Station 60 (d) Station 80

between accuracy and computational cost.

The network’s training time is directly proportional to the number of points used,
since each additional point requires the calculation of the PDE residual and the subsequent
backpropagation of its gradients. Increasing the number of collocation points from 10,000
to 30,000 results in an increase in training time from 298 to 352 minutes on a machine
equipped with a ninth-generation Intel i5-9400F processor, featuring 6 cores and 6 threads,
operating at a frequency of 4.10 GHz. The system also has 16 GB of DDR4-2666 RAM.
Additionally, the PINN’s ease of operation, when contrasted with full-order flow solvers,
which require in-depth operational knowledge, equips the researcher and the practitioner
alike with a powerful analysis tool.
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Figure 20 – Eigenfunction p̂ absolute values in different flat plate streamwise stations.

(a) Station 1 (b) Station 20

(c) Station 60 (d) Station 80

Figure 21 – Real and imaginary streamwise wavenumber parts as predicted by neural
networks and the PSE code.

(a) Real component. (b) Imaginary component.
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Figure 22 – Energy-based growth rates as predicted by neural networks and the PSE code.

Figure 23 – N -factor as predicted by neural networks and the PSE code.
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7 Conclusions

This work explored physics-informed, data-driven strategies for modeling laminar
boundary layer flows and for the reconstruction of disturbance fields relevant to flow
stability analysis. A numerical framework for generating reference datasets, including
baseflow solutions from a boundary layer solver and disturbance fields obtained with a
PSE-based solver, was developed and used to train and evaluate both standard neural
networks (SNNs) and physics-informed neural networks (PINNs).

7.1 Final remarks
The results reported in Chapter 6 indicate that PINNs deliver improved accuracy in

reproducing velocity profiles and boundary layer metrics when compared with conventional
data-driven models, while presenting a favorable trade-off between data requirements and
model accuracy. The numerical results presented here also show that PINNs are capable
of reconstructing both eigenfunction and streamwise wavenumber spatial evolutions even
when only sparse training data are available. Taken together, these outcomes demonstrate
the potential of PINNs as automated surrogate tools that can complement classical CFD
and stability solvers in studies of wall-bounded flows.

Regarding the main technical contributions and lessons learned, a modular PINN
architecture was developed and trained using collocation strategies tailored to the boundary
layer problem, supported by a consistent procedure to generate training and test datasets
from the reference solvers, thus enabling fair comparisons between PINNs and SNNs.
For the flat plate case analyzed here, the PINNs consistently recovered velocity profiles
and the spatial evolution of boundary layer thickness with higher accuracy than SNNs,
particularly in near-wall regions and under reduced-data scenarios. The results also reveal
that PINNs can reconstruct eigenfunction-like disturbance fields and capture wave-like
features characteristic of Tollmien–Schlichting wave dynamics, suggesting a practical
pathway for integrating data-driven models with modal stability analysis. Furthermore, the
study shows that the number of collocation points and the choice of PINN hyperparameters
have a critical impact: while larger collocation sets improve accuracy, they substantially
increase training time, underscoring the importance of adaptive sampling strategies and
computational acceleration for extending PINN applicability to larger-scale problems.
In addition, the strong ability of PINNs to reproduce disturbance fields and streamwise
wavenumbers led to markedly more accurate estimates of key transition metrics such as
the growth rate and the N -factor, reinforcing their suitability for reliable prediction of
transition regions.
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The superiority of the physics-informed approach over standard neural networks
was quantitatively demonstrated, especially in data-scarce scenarios. In the stability
analysis using only 500 training points, the PINN reduced the prediction error of the
disturbance growth rate (σE) from 2.936 × 10−1 (SNN) to 3.679 × 10−2, an improvement of
approximately eight times. Similarly, for the computation of the N-factor, which is crucial
for predicting the laminar-turbulent transition, the PINN presented a relative error of
only 3.90 × 10−2, in contrast to the error of 3.45 × 10−1 obtained by the SNN. Regarding
the boundary layer prediction, the PINN demonstrated greater robustness, maintaining
errors for the streamwise velocity component (u) below 0.71% even when the training
dataset was reduced by half (22,000 points), whereas the SNN exhibited a performance
degradation exceeding 1%.

Despite the promising results, certain limitations were identified. The current PINN
implementations require careful hyperparameter tuning, including network size, collocation
density, and loss weighting—to prevent nonphysical oscillations and ensure stable training.
Moreover, the present analysis is restricted to two-dimensional, laminar boundary layer
configurations over a flat plate, and further studies are needed to extend the approach to
three-dimensional, curved, or strongly nonparallel flows.

Overall, this work demonstrates that physics-informed machine learning methods
offer a promising route to reducing the computational and data demands associated
with baseflow reconstruction and preliminary stability analyses. By combining physical
constraints with the flexibility of data-driven models, PINNs provide a framework capable
of accelerating the development of surrogate models for engineering applications while
preserving interpretability through explicit PDE residuals and boundary conditions.

7.2 Future work
Based on the results obtained so far, several additional aspects will be investigated

in future work, with the aim of enhancing the generalization and robustness of the
approach. A first essential step is to complete the coupling between the PINN-generated
baseflows and the PSE stability solver, creating an automated interface that allows the
disturbance growth rates and neutral point locations predicted by the PINN–PSE workflow
to be validated against the reference PSE solution and, when available, against DNS or
experimental data. Following this, a systematic parametric study across a wide range of
Reynolds numbers should be performed to assess the robustness of the PINN formulation,
identify performance regimes, and compute N -factor envelopes relevant to transition
prediction.

Another important line of investigation involves implementing adaptive collocation
strategies, such as error-based refinement or active learning, to concentrate collocation
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points in regions where the PDE residual is largest, typically near the wall or within
shear layers. This approach can reduce overall training cost while maintaining the desired
accuracy. In parallel, incorporating uncertainty quantification through Bayesian PINNs
or ensemble methods will be crucial to estimate predictive uncertainty; propagating
uncertainties in inputs such as inflow profiles or viscosity will allow confidence intervals to
be assigned to predicted growth rates.

Hybrid PINN–CFD workflows also represent a promising avenue, where PINNs
can accelerate specific portions of a traditional CFD pipeline, such as near-wall resolution,
while a conventional solver ensures global consistency, enabling an evaluation of potential
speedups and accuracy gains. Extending the present formulation to three-dimensional
boundary layers and flows over curved surfaces is likewise a necessary step to assess
scalability and applicability to realistic aerodynamic configurations. Finally, a detailed
investigation of normalization strategies and loss-weighting approaches tailored to flow-
stability problems, such as phase-fixing or energy normalization techniques commonly
used in PSE, will be essential to guarantee consistent training behavior and physically
meaningful disturbance reconstructions.

Taken together, these research directions will transform the current methodological
framework into a mature and versatile toolset for boundary-layer prediction and stability
analysis. Prioritizing adaptive sampling, uncertainty quantification, and thorough numerical
and experimental validation will be fundamental to establishing PINNs as reliable surrogate
models in transition studies and aerodynamic design.
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