A web application solver in Python for the
Vehicle Routing Problem with Time Windows
(VRPTW)

Ana Carolina Bergamasco Perez?, Alexandre Checoli Choueiri!

aIndustrial Engineering, Universidade Federal do Parana - UFPR

Abstract

This study presents a web application developed in Python to solve the
Vehicle Routing Problem with Time Windows (VRPTW). The solver em-
ploys a greedy algorithm to generate the solution, and based on the
user’s uploaded customer list and vehicle fleet details, it provides the
route planning for the set of customers. The system utilizes external
APIs for geolocation and distance matrix calculations, ensuring accu-
rate and efficient routing. Developed to be accessible and democratize
vehicle routing optimization solutions for medium and small organiza-
tions, the tool offers satisfactory results for real-life datasets, helping
to enhance efficiency and reduce logistics-related operational costs.

Keywords:
VRPTW, Python, Operational research, API

1. Introduction

The post-pandemic logistic industry has undergone significant changes
driven by digitization, automation, sustainability and the growth of e-
commerce business. The field that studies all the activities related to
freight movement in a city is called Urban Logistics, which involves the
analysis, planning, maintenance, and improvement of logistics activi-
ties [[1]]. Technology is an important fuel for those improvements, as
it increases competitive advantage, enabling cost reduction in logistics
operations.

In a large city, one of the main challenges for Urban logistics is the route
planning of delivery/pickup services in a way that minimizes transporta-
tion costs and the time spent in the process. The Vehicle Routing Prob-

Preprint submitted to SoftwareX July 10, 2025

lem (VRP) is a problem in operational research that searches for a so-
lution to this challenge.

The VRP consists in defining routes for a fleet of vehicles departing from
a central warehouse (depot) to serve a set of clients. One extension
for this problem is the Vehicle Routing Problem with Time Windows
(VRPTW), which includes time windows as constraints for client service.
Thus, the vehicle can only collect/deliver the product within the time
interval established by the client.

This paper aims to develop an open-source web application to provide a
solution for the VRPTW. The coding language used was Python, that can
be understood and modified by medium-level programmers. That way,
medium and small organizations can also have access to an optimization
tool, to leverage their business and improve their service. The users of
the tool can upload their clients’ list and receive as an output a set of
routes that serve all clients.

The remainder of this paper is organized as follows: a literature review
on the VRP is provided in Section [2| Section 3] describes the algorithm
used to optimize the VRPTW, as well as the necessary APIs used to
extract external data, and how they all connect to each other. Finally,
in Section [4| we show the software UI and the conclusion is presented
in[Bl

2. Literature review

As previously mentioned, the VRP is an optimization problem that aims
to reduce transportation costs and time spent in logistic operations by
defining optimal routes to serve a set of clients [2]]. It was introduced
as a generalized problem of the Travelling Salesman Problem (TPS) in
1959 by Dantzig and Ramser [3] [4], and it has been wildly studied and
applied since then, not only in theory, but also in real scenarios. One of
its main variants is known as VRPTW, which incorporates time intervals
to the set of hard constraints. It can be defined as follow:

Let G = (V, A) be a graph where V' = 1,...,n is a set of vertices repre-
senting geographically dispersed clients, where V1 is the depot, and A
is a set of arcs. For every arc (i, j) where i <> j there is a cost C;; asso-
ciated. This cost can be interpreted as the transportation cost, but also
as the travel time (¢;;) between clients. The service time for each client
is also included in ¢;;. Each client is visited only once, and the vehicle
route must start and end at the depot (Figure [I| displays a solution for

a VRP). For the VRPTW, there is a time window assigned to each client,
and if the vehicle arrives before the time window opens, it needs to
wait to start the service. If it arrives when the time window has already
closed, then the solution becomes unfeasible. The objective of the prob-
lem, in most cases, is to minimize the number of routes used, the time
spent, or the distance traveled to serve all clients, while adhering to the
constraints established during the problem formulation.

VRP

Figure 1: Feasible solution for the VRP

The VRP and its variants are considered to be an NP-hard problem due
to its complexity, and although there are exact algorithms that provide
an optimal solution, like the Branch and Bound method utilized by [5] or
the column generation method proposed in [6] , the computational cost
required is high and the solution is limited to simpler problems [2]]. As a
result, researchers prefer to study the application of heuristic methods,
which, although there is no guarantee that an optimal solution will be
reached, present satisfactory results for medium and large complexity
problems at a much lower computational cost.

In the literature, many heuristic and metaheuristic methods for solv-
ing the Vehicle Routing Problem with Time Windows (VRPTW) can be
found, as per example: Tabu Search (TS) [7], Ant Colonization Optimiza-
tion (ACO) and variants, such as Hybrid Ant Colonization Optimization
(HACO) [8], Genetic Algorithm (GA), Harmony Search Algorithm (HSA)
hybridized with local search algorithms (such as Simulated Annealing-
SA, Great Deluge-GD, and Hill Climbing-HC) [9], Particle Swarm Opt-
mization (PSO) [[10]], among various others.

In [11], the authors introduced a variable iterated greedy algorithm to
solve the Traveling Salesman Problem with time windows (TSPTW). The
greedy algorithm is hybridize with a Variable Neighborhood Search Al-
gorithm (VNS), which improves solution quality by altering neighboring

solutions through the destruction and reconstruction of solution com-
ponents, employing 1-Opt local searches. The results obtained demon-
strate that the hybrid greedy algorithm performs competitively in solv-
ing route planning-related problems compared to other existing algo-
rithms.

In this context, various solutions to the VRPTW are documented in the
literature, implementing diverse algorithms to achieve the most advan-
tageous outcomes. The relevance of these solutions is underscored by
the numerous vehicle routing optimization challenges in the logistics
and transportation sectors, particularly in operations within large cities
[12].

Companies can benefit from employing vehicle routing problem solvers
in last-mile deliveries [12][2]. Despite the availability of numerous VRP-
solving software solutions on the market, they are often not accessible
to smaller companies and individual entrepreneurs. This situation un-
derscores the need for developing affordable tools, making it a relevant
area of study for the sector. Open-source applications are particularly
useful in broadening the accessibility of VRPTW solvers [2]]. Python is
especially advantageous for creating such products due to its versatil-
ity, readability, and extensive ecosystem of libraries and frameworks.
Furthermore, Python’s compatibility with multiple platforms and its
strong support for integration with other technologies make it ideal
for building cross-platform open-source applications.

3. Development

This section describes the main components of the project and how
they work. To facilitate the structuring and organization of the project,
the components were grouped into three different modules: the Python
script, the user interface (Streamlit), and the external connections (APIs).
The software architecture in Figure [2| defines the overall organization
of the system, including its main components and the interactions be-
tween them. This approach makes it easier to implement changes with-
out negatively impacting the development of the project.

3.1. Greedy algorithm

The present paper utilizes the greedy algorithm, a constructive heuris-
tic, to generate an outcome for the VRPTW. It is known as “construc-
tive” because it starts from an empty solution, building the solution in

OpenStreetMap OSRM API
API
|- - - - - = T 777777777 I - - - - - 77 - - - 19" -~ -~"-—"—-—"—-—"—-——-——-—-~—-=- 7777 -0 -0 - - - -~
‘ Streamht re?;;leSt oordinates coorﬁirtwtes d;?;?ﬁie
. . No
Clients list All coordinates |y, Get distance
- Address provided? matrix
- Demand

- Time window

opensource_api()

get_timematrix()

Vehicle fleet Greedy
info algorithm
vrpfw()
Google Maps
link
- Route plan
Complete CSV
file

Gantt chart

Figure 2: Simplified software architecture

parts, with each iteration, and as “greedy” because the decision in each
iteration is based on the most advantageous available choice.

This algorithm is usually used to generate an initial solution for opti-
mization problems, and then other optimization methods are used to
improve the existing solution.

For this study, the greedy algorithm was fed with a list of customers
containing the demand, the time windows and the service time for each
client, the distance matrix, and the vehicle capacity. Based on those
details, in each iteration, the algorithm selects the client whose time
window closes the earliest, adhering to the vehicle’s capacity and time
window constraints.

The execution of the algorithm is defined using two while loop struc-
tures: one that ensures all clients on the list are visited, and the other

Algorithm 1: Greedy algorithm for the VRPTW

Input : Clients list C' with the demand d[i] and timewindows
[s[i], e[i]] for each client, distance matrix 77[i|[j], service
time m[i], and vehicle capacity @

Output: Set of routes R

1 R« 0;

2 clients < Earliest(C'); // Sort the clients list based on
timewindow closing time

3 clients < {clients \ clients|0]};

4 while length(clients) # 0 do

5 | route < C0]; // The route starts from the depot
6 end_service <— C[s][0] ; // The vehicle leaves the depot
the moment it opens
7 load < 0;
8 j <+ 0;
9 1+ 0;
10 while (load < Q)and(i <= length(clients)) do
11 if (C[d][clients|i]] + load < @) and
(end_service + T[route[jl|[clients]i]] < Cle][clients[i]]) then
12 route <— route + clients[il;
13 load < load + C[d][clients][i]];
14 if (end service + T[route[j]][clients[i]] < C[s][[clients[i]])
then
15 ‘ end_service <— C|s][clients]i]] + C[m][clients]i]];
16 else
17 end_service <
end_service + T'[routelj]][clients[i]] + C[m][clients][i]];
18 end
19 clients < {clients \ clients[i|};
20 j—i+1
21 1+ 0;
22 else
23 141+ 1;
24 end
25 end
26 | route < route + C[0]; // The vehicle must return to the
depot
27 R < R Uroute;
28 end

29 return R;

()]

one for determining the routes, as in algorithm number

Initially, the clients list is sorted based on the end time of the time win-
dow. This way, the list is organized from the customer whose time win-
dow closes earliest to the customer whose time window closes latest.
Then, the first while loop initiates, and the route commences with client
0, representing the depot (the vehicle always starts the route from the
depot and concludes by returning to it). Subsequently, the while loop
in line 10 along with the if statement in line 11 start to increase the
route, adding more customers to it. The criteria for adding a client to
the route are as follows:

* The client has not been visited previously;

¢ The client’s demand, when combined with the current load in the
vehicle, does not exceed the vehicle’s capacity;

¢ The vehicle’s arrival time at the client (defined in line 11 as the
sum between the time that the vehicle left the previous customer
and the travel duration between the previous customer and the
next one) must be within their respective time window.

If all conditions are met, the client is incorporated into the route. Upon
selecting the next client, it is essential to update the vehicle’s available
capacity and the timestamps associated with the service at the client’s
location, to ensure that the vehicle can serve all clients on the route
while adhering to all time windows.

There are three key timestamps for the service: the arrival time of the
vehicle at the client’s location, the moment when the service begins,
and the moment it ends (the moment the vehicle leaves the location —
this one being the most important). The arrival time is determined by
adding the departure time from the previous client to the travel dura-
tion between the previous client and the next one. The moment the
service starts depends on whether the vehicle arrives within the desig-
nated time window or before it opens. If the arrival time falls within the
time window, the service can start immediately (arrival time = service
start time) (see line 17 of algorithm [I)); otherwise, the service starts the
moment the time window opens (see line 15 of algorithm[I)). The end of
the service is defined by adding the duration of the service to the start
time.

Once the timestamps are calculated, the newly incorporated client is re-
moved from the clients list, and the variables i and j are updated (lines
20 and 21 of algorithm [I). The variable i is utilized to iterate through
the clients list, whereas the variable j is utilized to iterate through the
current route.

When no further candidates are available to form a route (when one of
the aforementioned constraints is not met), the current route is final-
ized by returning the vehicle to the depot and is appended to the set
of generated routes. If clients remain to be visited, a new route is ini-
tiated, provided there are available vehicles to undertake the journey.
Once all clients have been visited, the stop condition of the while loop
is satisfied, terminating the execution of the greedy algorithm.

3.2. APIs

To begin solving the VRPTW, the user must upload a list of clients (in
a CSV file). Initially, the list must contain the address, demand, and
service’s time window for each client. From the uploaded list, there are
two paths that can be taken, depending on whether or not the coordi-
nates (latitude and longitude) of each address were provided. Once the
code starts, it checks if all coordinates have been provided. If not, the
opensource api() function is called. After the coordinates are retrieved,
the code uses the get timematrix() function to generate the distance
matrix between each customer in order to start the greedy algorithm
solution. Both the opensource api() function and the get timematrix()
function request data from an API.

An API (Application Programming Interface) is an interface that al-
lows systems to communicate (share data) through a "requests and re-
sponse" dynamic. APIs are widely used in software development, as
they help to simplify and speed up the development process, allowing
existing solutions to be used in the creation of a new application.

3.2.1. opensource api() function

One of the APIs utilized for the development of this work is the Open-
StreetMap API, an open-source API that provides map data, allowing
for location searches based on addresses.

The function opensource api() makes requests to this Search API in or-
der to obtain the latitude and longitude of the addresses provided by
the user. The following request format was used to obtain the coordi-
nates:

https://nominatim.openstreetmap.org/search?<params>&format=jsonv2]

A request is made for each address in the list. The API returns a re-
sponse in JSON format (JavaScript Object Notation), a lightweight for-
mat for data interchange. The code uses the json library to decode the
data structure into a dictionary, making it easier to extract the data of
interest (latitude and longitude). Using the address "RUA LAUDELINO
FERREIRA LOPES,229,NOVO MUNDQO,Curitiba,Parana,Brasil" as an ex-
ample, the request URL and the JSON output are as follows:

https://nominatim.openstreetmap.org/search?q=RUA LAUDELINO
FERREIRA LOPES,229,NOVO
MUNDO, Curitiba,Parana,Brasil&format=jsonv2

After decoding the JSON output as in Figure (3] into a Python dictio-
nary, it is easy to access and extract the latitude ("lat") and longitude
("lon") data. The opensource api() function returns a list containing the
coordinates in the format required to be used in the get timematrix()
function, as well as inserts the coordinate data into the spreadsheet
provided by the user.

3.2.2. get timematrix() function

This function utilizes the OSMR (Open Source Routing Machine) API to
generate the distance matrix that will be used in the greedy algorithm
solution. This API offers different services related to route planning.
Among them, the Table service was chosen for the application, as it
provides the duration and/or distance of the fastest route between two
pairs of coordinates. The request was made as follow:

http://router.project-
osrm.org/table/v1/driving/<coordinates>?sources=str(j)

Initially, a for loop is used to set up the link for the request, using the
list of coordinates (in string format) generated in the opensource api()
function. The <coordinates> parameter is filled in with all the coordi-
nate pairs. Given 3 pairs of coordinates: [-49.2882727,-25.4589783],
[-49.3045595,-25.5068925], and [-49.2234297,-25.4766991], the URL
request is set as follows:

W N e

© o N o v

10
11
12
13
14
15

16

17
18

"place_id": 38809267,
"licence": "Data OpenStreetMap contributors, ODbL 1.0.
http://osm.org/copyright",

"osm_type": "way",
"osm_id": 33068435,
"lat": "-25.5068925",
"lon": "-49.3045595",

"category": "highway",
"type": "tertiary",
"place_rank": 26,
"importance": 0.10001,

"addresstype": "road",
"name": "Rua Laudelino Ferreira Lopes",
"display_name": "Rua Laudelino Ferreira Lopes, Capao

Raso, Curitiba, Regiao Geografica Imediata de
Curitiba, Regiao Metropolitana de Curitiba, Regiao
Geografica Intermediaria de Curitiba, Parana, Regiao
Sul, 81150-120, Brasil",

"boundingbox":["-25.5204931","-25.4926184","-49.3051507"
,"-49.3043058"]

Figure 3: OpenStreetMap API JSON output

https://router.project-osrm.org/table/v1/driving/-49.2882727,-
25.4589783;-49.3045595,-25.5068925;-49.2234297 ,-
25.47669917?sources=0

The API has a limit of 512 requests per connection. Therefore, for lists
with numerous clients, it would not be possible to generate the entire
matrix with just one request. This problem was solved by making a
request for each client. The <source> parameter is used to indicate
which pair of coordinates is used as the reference point to calculate
the distance. The variable j traverses the list of coordinates (j=0,...,
len(coordinates)), being incremented with each iteration. Thus, in each

10

© 0 N o U s W N e

_ =
=)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

{
"code": "Ok",
"destinations": [
{
"distance": 14.470048621,
"name": "Rua Murilo do Amaral Ferreira",
"location": [-49.288259, -25.458848]
L
{
"distance": 0,
“name": "Rua Desembargador Ernani Guarita Cartaxo /
Rua Laudelino Ferreira Lopes",
"location": [-49.30456, -25.506893]
1
{
"distance": 9.182194123,
"name": "Rua Araticum",
"location": [-49.22334, -25.476685]
}
1,
"durations": [[0, 684.3, 822.9]1,
"sources": [
{
"distance": 14.470048621,
"name": "Rua Murilo do Amaral Ferreira",
"location": [-49.288259, -25.458848]
}
]
}

Figure 4: OSRM API JSON output

request, the distance of a pair of coordinates relative to all others is
requested (1-to-many dynamic). In the example above, the 'source’ pa-
rameter is set '0’, i.e., the API will return the duration, in seconds, to
reach coordinates 2 and 3, starting from the first coordinate.

This API also returns a JSON format response, as in Figure 4] that con-
tains, in line 20, a 1 x n duration matrix (where n is the number of

11

clients). After the decoding, the duration matrix is retrieved as a list.
When all positions in the coordinates list have been traversed, the du-
ration lists are appended into a dataframe, thus forming the distance
matrix.

3.3. Streamlit

To facilitate communication between the Python script and the user,
an interface was created using the Streamlit library. Streamlit is a
package that transforms Python scripts into websites without the need
to use front-end languages.

The developed interface presented in Figure [5| allows the user to input
information related to their business, such as their customer list and
vehicle fleet.

Vehicle Routing Website

Quantity of available vehicles:

]

Vehicles capacity

0

Upload your file

Select a file

Browse files

@) Drag and drop file here

Limit 200MB per file s CSV

Fill in coordinates

Generate routes

Gantt Chart

Google Maps link

Figure 5: Initializing the interface

Once the necessary information is entered, the user can generate routes
to serve their set of customers. Additionally, it is possible to download
a spreadsheet containing information on latitude and longitude, routes,
and the start and end times of service. To offer a more interactive and

12

user-friendly visualization of the results, a Google Maps link with the
route and a Gantt chart, which shows which customers are visited on
each route and at what times the service is performed, are also gener-
ated.

One important point to highlight is the use of the session.state feature,
which allows data to persist across reruns of the application. Every time
a button is pressed, Streamlit reruns the entire Python script, causing
the state of the utilized variables to reset. To circumvent this issue,
variables used by more than one object and that needed to maintain
their state after a rerun (variables entered by the user) were stored in
session.state.

4. Results

In this section, the results of the VRPTW solver implemented in Python
are presented. To evaluate the performance of the interface and the
effectiveness of the developed greedy algorithm, tests were conducted
using lists of customers of varying sizes. The experiments were exe-
cuted on a laptop computer with the following specifications: an Intel
i3 CPU running at 2 GHz and 12 GB of RAM. This configuration rep-
resents a modest processing capacity and reflects the computers that
would be used in practice, ensuring that the implementation was eval-
uated in a typical development environment.

Due to the necessity of interacting with external APIs, an internet con-
nection was essential for proper request functionality. This allowed for
real-time data acquisition and the use of external services crucial for
route validation and geographic data collection from customers.

For benchmark, a real world VRP instance was utilized for the tests,
and four datasets were extracted from it, containing 10, 30, 70, and
100 customer addresses, respectively. The time windows and demands
of each customer were randomly generated within predefined intervals.
The time windows ranged from 8:00 to 17:00, corresponding to the
warehouse’s operating hours, while the demands were allocated within
the range of 1 to 20 units. Table[I|presents the execution times for each
dataset.

For each test, the fleet size was defined to match the number of cus-
tomers in the list, ensuring that the number of vehicles available was
sufficient to serve all customers and that the problem’s solution would
be feasible. The vehicle capacity was kept constant across all scenar-

13

Instances VRPTW Solver
Number of) Vehicle | Generated Execution time
. Fleet size .
clients capacity routes (seconds)

10 10 45 4 40

30 30 45 8 180

70 70 45 17 720
100 100 45 26 1,320

Table 1: Computational results on benchmark instances

Client Name Address Number Neighborhood City State

0 ADEMIR]OSE VIEIRA RUA LAUDELINO FERREIRA LOPES 229 NOVO MUNDO Curitiba Parana
8 ALIATAR SILVA NETO RUA JULIA WANDERLEY 57 MERCES Curitiba Parana
1 ADRIANE ANGERER ULIANA RUA MURILO DO AMARAL FERREIRA 72 AGUA VERDE Curitiba Parana
6 ALEXANDRE SHIGUERU ARAKI AVENIDA SILVA JARDIM 1364 REBOUCAS Curitiba Parana
9 ALVARO FONSECA KAMINSKI AVENIDA REPUBLICA ARGENTINA 357 AGUA VERDE Curitiba Parana
7 ALEXANDRINA ZAPOCTOCZNY BERTAPELI RUA ANTONIO TURIBIO TEIXEIRA BRAGA 280 BUTIATUVINHA Curitiba Parana
2 ALESSANDRO DA SILVA RUA ARATICUM 214 UBERABA Curitiba Parana
3 ALEXANDRE ALMEIDA BLITZKOW RUA ALFERES ANGELO SAMPAIO 1495 BATEL Curitiba Parana
4 ALEXANDRE AUGUSTO LEAL RUA JOAO GUARIZA 522 SAO LOURENGO Curitiba Parana
5 ALEXANDRE FRIEDRICH ALLAGE RUA ENGENHEIRO IVAN RIGOMERO CECCON 239 JARDIM SOCIAL Curitiba Parana

Table 2: Output table Part 1

ios, allowing for fair and consistent comparisons between different cus-
tomer list sizes.

The execution times in Table [I] indicates that the solver is capable of
planning routes efficiently for up to 100 customers within a reasonable
time frame. Additionally, the tests were conducted with pre-filled coor-
dinates in the spreadsheet to reduce processing time. The coordinates
for the 100 addresses were obtained through the solver prior to testing,
with a processing time of 100 seconds. This additional time for obtain-
ing the coordinates did not significantly impact overall performance,
highlighting the solver’s efficiency in both generating the coordinates
and planning the subsequent routes.

4.1. Interface functionalities

The developed interface offers different functionalities that facilitate
the use of the algorithm and the analysis of the results:

e Spreadsheet Download: Users can download a spreadsheet con-
taining the coordinates of each address. Additionally, a final spread-
sheet can be generated, showing the routes and the timestamps
of service for each customer, as in Tables [2]and [3]

14

Country Lat Long S. t-window E. t-window Service time Demand Arrival S. service E. service

Brasil -25.5068925 -49.3045595 08:00 17:00 0

Brazil -25.422665 -49.2853795 08:00 08:57 600 18 08:17:00 08:17:00 08:27:00
Brazil -25.4589783 -49.2882727 13:28 13:47 600 18 08:36:00 13:28:00 13:38:00
Brazil -25.4416931 -49.2741144423068 14:25 14:44 600 18 08:14:00 14:25:00 14:35:00
Brazil -25.4495105 -49.2878217 14:30 15:07 600 12 14:38:00 14:38:00 14:48:00
Brazil -25.4030067 -49.3476178 14:12 16:10 600 12 15:03:00 15:03:00 15:13:00
Brazil -25.4766991 -49.2234297 12:35 16:04 600 19 08:18:00 12:35:00 12:45:00
Brazil -25.4404982 -49.2843453 15:46 16:35 600 18 12:58:00 15:46:00 15:56:00
Brazil -25.3911545 -49.2657273 16:08 16:38 600 11 08:24:00 16:08:00 16:18:00
Brazil -25.4128549 -49.2354046 16:11 16:56 600 17 16:25:00 16:25:00 16:35:00

Table 3: Output table part 2

* Graphical Visualization: For more intuitive results, the interface
allows the generation of Gantt charts as in Figure [6] that display
the customers in each route and the service times. This visualiza-
tion aids in analyzing the temporal distribution of service.

ADEMIR JOSEVIEIRA

ALIATAR SILVA NETO

ADRIANE ANGERER ULIANA

ALEXANDRE SHIGUERU ARAKI

ALVARO FONSECA KAMINSKI
ALEXANDRINA ZAPOCTOCZNY BERTAPEL
ALESSANDRO DA'S

ALEXANDRE ALMEIDA BLITZKOW
ALEXANDRE AUGUSTO LEAL

ALEXANDRE FRIEDRICH ALLAGE

Timestamp

Figure 6: Gantt chart (routes x time)

* Google Maps Integration: An URL to Google Maps is generated,
enabling the geo-spatial visualization of the planned routes, as
in Figure which allows a practical and visual analysis of the
solver’s output.

5. Conclusions

In this study, we presented the development and evaluation of a solver
in Python for the Vehicle routing problem with time windows. The cho-
sen algorithm to generate the routes was the Greedy algorithm, consid-

15

ampo-nManra — - ooy HOSACHIT - ||

=] E ® 0?0 X Pt Q, Pesquisar no trajeto B Postos de gasolina B¢ Carregamento de VE [L>
1h13 &h 2h24 vae oa musica -~ .
min

PILARZINHO

.)| BACACHERI £
Y, Rua Antonio Turibio [L7E)
“eixeira Braga, 280...
0 \

o] | R. Laudelino Ferreira Lopes, 229 - Novo I

o] | Av. Silva Jardim, 1364 - Rebougas, Curitil

o] | Av. Rep. Argentina, 357 - Agua Verde, Cu

“Curitiba=———

V4

N il
o, Avenida Silva Yardim,
%1364 - Rebougass.

~_BIGTRR{LHO

d

o} | R. Antonio Turibio Teixeira Braga, 280 - B

0] | R. Laudelino Ferreira Lopes, 229 - Novo I

.

Avenida Rep. Argentina, e
357 - Agua Verde®r'f\

@ Adicionar destino '1_1_~ CAJURI

Opgoes de trajeto Fechar
fite/do @
Evitar Unidades de distancia sauna
. FAZENDINHA
O rodovias (®) Automitico /
. . #§oVO MINDO
[J Pedégios O milnas LD L RN deline 4 - UBERAB.
1N D USRI & Ferreira Lopes, 229
[] balsas O km DE CURITIBA 5 229.... Re
$ Camadas leze) Goofle BOQUEIRAOD
SAD MIGUEL | i

Figure 7: Map visualization for one of the routes

ering its ease of implementation and low computational cost. Addition-
ally, the Python programming language was chosen for development
due to its clear and intuitive syntax and its support in different plat-
forms, which is particularly beneficial for open source projects. Fur-
thermore, Python offers a vast collection of libraries and modules that
can be re-utilized in new projects.

The application was tested using datasets of different sizes, and its per-
formance was measured in terms of execution time. The results demon-
strated the solver’s ability to effectively generate feasible routes within
a reasonable time frame, even for larger datasets.

The developed interface enhances the practical utility of the algorithm
by offering various functionalities such as the ability to download de-
tailed spreadsheets with customer coordinates, route information, and
service timestamps, as well as an user-friendly visualization of the re-
sults with Gantt charts and routes map. These make the tool accessible
and useful for practical applications.

To mention improving points, there are several areas for future work in
the algorithm and the interface. Implementing post-optimization meth-
ods is a key next step to improve the quality of the routing solutions,
potentially reducing costs and travel times. Additionally, integrating

16

more comprehensive APIs will enhance the accuracy and efficiency of
the system by providing access to more extensive data sets. Developing
an internal database to store previously used addresses will streamline
future queries and improve the algorithm’s efficiency.

To broaden the accessibility and usability of the application, there are
plans to develop the code on an online code hosting platform such as
GitHub. This will allow a wider community of users to benefit from the
tool and contribute to its ongoing development and improvement.

In summary, the combination of the greedy algorithm with a user-centric
interface has shown to be effective for solving routing problems in a
practical setting, offering a significantly better approach than manu-
ally planning the routes. The proposed future directions aim to further
enhance the functionality and efficiency of the tool, making it a robust
solution for real-world applications in logistics and transportation man-
agement.

References

[1] Giilgin Biiyiikézkan and Oykii Ilicak. Smart urban logistics: Lit-
erature review and future directions. Socio-Economic Planning
Sciences, 81:101197, 2022.

[2] Glines Erdogan. An open source spreadsheet solver for vehicle
routing problems. Computers & operations research, 84:62-72,
2017.

[3] George B Dantzig and John H Ramser. The truck dispatching prob-
lem. Management science, 6(1):80-91, 1959.

[4] Mourad Zirour. Vehicle routing problem: models and solutions.
Journal of Quality Measurement and Analysis JQMA, 4(1):205-218,
2008.

[5] Antoon W] Kolen, AHG Rinnooy Kan, and Harry WJM Trienekens.
Vehicle routing with time windows. Operations Research,
35(2):266-273, 1987.

[6] Jacques Desrosiers, Francgois Soumis, and Martin Desrochers.
Routing with time windows by column generation. Networks,
14(4):545-565, 1984.

17

[7]

[8]

[9]

[10]

[11]

[12]

Abdel-Rahman Hedar and Mohammed Abdallah Bakr. Three
strategies tabu search for vehicle routing problem with time win-
dows. Computer Science and Information Technology, 2(2):108-
119, 2014.

Qiulei Ding, Xiangpei Hu, Lijun Sun, and Yunzeng Wang. An im-
proved ant colony optimization and its application to vehicle rout-
ing problem with time windows. Neurocomputing, 98:101-107,
2012.

Esam Taha Yassen, Masri Ayob, Mohd Zakree Ahmad Nazri,
and Nasser R Sabar. An adaptive hybrid algorithm for vehicle
routing problems with time windows. Computers & Industrial
Engineering, 113:382-391, 2017.

Qichao Wu, Xuewen Xia, Haojie Song, Hui Zeng, Xing Xu, Yinglong
Zhang, Fei Yu, and Hongrun Wu. A neighborhood comprehensive
learning particle swarm optimization for the vehicle routing prob-
lem with time windows. Swarm and Evolutionary Computation,
84:101425, 2024.

Korhan Karabulut and M Fatih Tasgetiren. A variable iterated
greedy algorithm for the traveling salesman problem with time
windows. Information Sciences, 279:383-395, 2014.

Oskari Lahdeaho and Olli-Pekka Hilmola. An exploration of quanti-
tative models and algorithms for vehicle routing optimization and
traveling salesman problems. Supply Chain Analytics, 5:100056,
2024.

18

	Introduction
	Literature review
	Development
	Greedy algorithm
	APIs
	opensource_api() function
	get_timematrix() function

	Streamlit

	Results
	Interface functionalities

	Conclusions

