UNIVERSIDADE FEDERAL DO PARANÁ HIDERALDO LUÍS SIMON JÚNIOR MEMORIAL DE PROJETOS: ESTUDO SOBRE MÉTRICAS DE AVALIAÇÃO EM MODELOS DE INTELIGÊNCIA ARTIFICIAL GENERATIVA CURITIBA

2025

HIDERALDO LUÍS SIMON JÚNIOR

MEMORIAL DE PROJETOS: ESTUDO SOBRE MÉTRICAS DE AVALIAÇÃO EM MODELOS DE INTELIGÊNCIA ARTIFICIAL GENERATIVA

Memorial de Projetos apresentado ao curso de Especialização em Inteligência Artificial Aplicada, Setor de Educação Profissional e Tecnológica, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Especialista em Inteligência Artificial Aplicada.

Orientadora: Prof^a Dr^a Rafaela Mantovani Fontana

CURITIBA

MINISTÉRIO DA EDUCAÇÃO
SETOR DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PÓS-GRADUAÇÃO
CURSO DE PÓS-GRADUAÇÃO INTELIGÊNCIA ARTIFICIAL
APLICADA - 40001016399E1

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação Inteligência Artificial Aplicada da Universidade Federal do Paraná foram convocados para realizar a arguição da Monografia de Especialização de HIDERALDO LUÍS SIMON JÚNIOR, intitulada: MEMORIAL DE PROJETOS: ESTUDO SOBRE MÉTRICAS DE AVALIAÇÃO EM MODELOS DE INTELIGÊNCIA ARTIFICIAL GENERATIVA, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua aprovação no rito de defesa.

A outorga do título de especialista está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

Curitiba, 15 de Outubro de 2025.

RAFAELA MANTOVANI FONTANA

Presidente da Banca Examinadora

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

AGRADECIMENTOS

Agradeço a minha noiva Camilla pelo apoio e compreensão durante a realização deste trabalho mesmo em meio a todas as mudanças que estão ocorrendo em nossas vidas. À família por me ensinarem a seguir buscando o melhor de mim. E aos colegas que dividiram suas experiências e conhecimentos, contribuindo para o enriquecimento desta jornada.

RESUMO

Este parecer técnico explora as métricas de avaliação de modelos de inteligência artificial generativa. Desde o lançamento do ChatGPT presenciou-se um ritmo de adoção de tecnologia jamais visto. De um dia para o outro, usuários do mundo todo, tiveram acesso a uma ferramenta de grande potencial de geração de conteúdo em poucos comandos. Com tamanho poder e tamanha adoção na rotina das pessoas, é necessário que esses modelos sejam minuciosamente validados para que suas respostas sejam adequadas. Sendo imprescindível avaliações não somente de qualidade como, também, de confiabilidade dos textos, imagens ou códigos gerados. O estudo apresenta as principais métricas (comparação lexical, qualidade semântica e segurança e ética), bem como alguns algoritmos e validadores, além de exemplos de uso. Também pontuando os riscos críticos referentes a não adoção das métricas citadas. Por fim, o documento apresenta os resultados dos trabalhos desenvolvidos ao longo das disciplinas, demonstrando como cada aprendizado foi incorporado na elaboração deste parecer técnico.

Palavras-chaves: inteligência artificial generativa; métricas de avaliação; algoritmos; validadores.

ABSTRACT

This technical report explores the evaluation metrics for generative artificial intelligence models. Since the launch of ChatGPT, we've witnessed an unprecedented rate of technology adoption. Overnight, users all over the world gained access to a powerful tool capable of generating content with just a few prompts. With such power and widespread adoption in people's daily lives, it is necessary that these models be thoroughly validated to ensure their responses are appropriate. It is therefore essential to conduct assessments not only of quality but also of the reliability of the generated texts, images, or code. The study presents the main metrics (lexical comparison, semantic quality, and safety and ethics), along with some algorithms and validators, as well as use cases. It also highlights the critical risks associated with the non-adoption of these metrics. Finally, the document presents the results of the work developed throughout the coursework, demonstrating how each learning outcome was incorporated into the preparation of this technical report.

Keywords: generative artificial intelligence; evaluation metrics; algorithms; validators.

LISTA DE QUADROS

QUADRO 1 – SEGURANÇA E PROTEÇÃO	1
---------------------------------	---

SUMÁRIO

1	PARECER TÉCNICO	9
	REFERÊNCIAS	13
	APÊNDICE 1 – INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL	14
	APÊNDICE 2 – LINGUAGEM DE PROGRAMAÇÃO APLICADA	23
	APÊNDICE 3 – LINGUAGEM R	42
	APÊNDICE 4 – ESTATÍSTICA APLICADA I	51
	APÊNDICE 5 – ESTATÍSTICA APLICADA II	61
	APÊNDICE 6 – ARQUITETURA DE DADOS	69
	APÊNDICE 7 – ASPECTOS FILOSÓFICOS E ÉTICOS DA IA	83
	APÊNDICE 8 – APRENDIZADO DE MÁQUINA	93
	APÊNDICE 9 – DEEP LEARNING	112
	APÊNDICE 10-BIG DATA	143
	APÊNDICE 11-VISÃO COMPUTACIONAL	148
	APÊNDICE 12-GESTÃO DE PROJETOS DE IA	180
	APÊNDICE 13-FRAMEWORKS DE IA	185
	APÊNDICE 14-VISUALIZAÇÃO DE DADOS E STORYTELLING . 2	214
	APÊNDICE 15-TÓPICOS EM IA	216

1 PARECER TÉCNICO

Desde novembro de 2022, com o lançamento do ChatGPT pela OpenAI (OpenAI, 2022) a ascensão da inteligência artificial generativa alcançou uma velocidade de adoção jamais vista. Impulsionada pelos *Large Language Models* (LLMs), a capacidade de produzir conteúdo que aparenta ser de criação humana se tornou uma ferramenta disponível no dia a dia de milhões de pessoas pelo mundo. Logo, diante de capacidades tão deslumbrantes se fazem necessárias validações ainda mais exigentes destes modelos. A complexidade de avaliar tanto a qualidade, quanto a confiabilidade de textos, imagens ou códigos gerados torna obrigatória uma abordagem multidimensional. Essa avaliação robusta é sustentada por três pilares:

- Métricas de comparação lexical: medem a similaridade de palavras para garantir fluência e proximidade com referências (Melo et al., 2014);
- Métricas de qualidade semântica: avaliam o sentido, a coerência e a veracidade factual, combatendo as chamadas alucinações (Real et al., 2025);
- Métricas de segurança e ética: garantem que o sistema seja responsável, justo e livre de conteúdo prejudicial (Microsoft, 2025, p. 1).

Segundo Microsoft (2025, p. 1), uma das maiores empresas de tecnologia do mundo, que vem investindo pesadamente em inteligência artificial generativa, a avaliação eficaz desses modelos deve ir além das métricas tradicionais de *Machine Learning*. A empresa propõe um *framework* abrangente que incorpora as três categorias de métricas mencionadas acima, enfatizando a importância de uma abordagem holística para garantir que os sistemas de inteligência artificial generativa sejam não apenas tecnicamente competentes, mas também seguros e éticos.

As métricas de comparação lexical focam essencialmente na sobreposição de palavras entre o texto gerado e um texto de referência (*ground truth*). Segundo Melo *et al.* (2014) e Feltrin *et al.* (2023), algoritmos como BLEU (*Bilingual Evaluation Understudy*) e ROUGE (*Recall-Oriented Understudy for Gisting Evaluation*) calculam a similaridade superficial, medindo a frequência e o comprimento de n-grams (sequências contínuas de palavras) compartilhados. Há um número significativo de métricas de comparação lexical e novas constantemente sendo criadas.

Segundo Melo *et al.* (2014), o algoritmo BLEU visa avaliar a qualidade do texto traduzido automaticamente a partir de uma linguagem natural para outra. O resultado evidencia a correspondência entre a saída da tradução automática e a tradução de referência produzida por um intérprete. Essa métrica avalia as traduções automáticas através da precisão das sequências de n letras ou palavras, denominadas n-gramas. Quanto maior a assertividade das n-gramas entre a sentença gerada pela inteligência

artificial e a sentença referência, maior a pontuação.

Há também vários estudos que avaliam a performance dessas métricas entre si, como Feltrin *et al.* (2023), que comparou cinco métricas para sumarização de acórdãos do Superior Tribunal de Justiça (ROUGE, BERTScore, BARTScore, BLEURT e MoverScore) utilizando um *dataset* composto por 892 acórdãos do Superior Tribunal de Justiça como base. Após o experimento terminado com cada uma das métricas, chegou-se a conclusão de que, das cinco métricas avaliadas, apenas o ROUGE e o BERTScore podem, até certo ponto, capturar a alta qualidade das ementas. As outras métricas utilizadas no experimento, BARTScore, BLEURT e MoverScore, falharam completamente ao avaliar resumos no domínio jurídico em português.

Embora sejam rápidas, transparentes e amplamente utilizadas como baseline, as métricas de comparação lexical possuem uma limitação crítica: elas não avaliam o significado ou a qualidade semântica. Ou seja, um texto pode obter uma pontuação lexical alta por ter palavras idênticas, mas ser gramaticalmente incorreto ou, pior, factualmente incorreto se a inteligência artificial tiver trocado a ordem das ideias. Evidenciando a necessidade de métricas semânticas e contextuais complementares.

Segundo Real *et al.* (2025), a infinidade de respostas válidas que esses modelos podem, potencialmente, gerar para cada entrada necessitam de métricas além das avaliações lexicais. É necessário ir além do cálculo de correspondências entre *strings* para alcançar abordagens que consideram a qualidade linguística, contextual e interpretativa da saída. Buscando sempre um maior alinhamento com a percepção humana. Porém, diante da inviabilidade de inserir a percepção humana real (uma pessoa avaliando cada resultado da inteligência artificial) é necessário criar algoritmos escaláveis para esta função, como o *LLM-as-a-judge*.

Segundo Zaniboni (2025), *LLM-as-a-Judge* (LLM-como-juiz) tem se destacado como uma abordagem para avaliação automatizada de respostas geradas por modelos de linguagem, atuando como juízes imparciais, avaliando a qualidade, coerência e precisão de saídas textuais em diversas tarefas, como sumarização, resposta a perguntas e geração de diálogos.

Por sua vez, as métricas de segurança e ética representam a camada de avaliação mais crítica e socialmente relevante da inteligência artificial generativa, pois seu foco é mitigar os potenciais danos do modelo em ambientes reais. Estas métricas vão além da precisão técnica para auditar o comportamento do sistema conforme cita Microsoft (2025, p. 1):

sem uma avaliação rigorosa, os sistemas de IA podem produzir conteúdo que é: Fabricado ou sem base na realidade; Irrelevante ou incoerente às necessidades do usuário; Prejudicial na perpetuação de riscos e estereótipos de conteúdo; Perigoso na disseminação de de-

sinformação; e/ou Vulnerável a explorações de segurança (Microsoft, 2025, p. 1).

Seguindo este ensejo, o Plano Brasileiro de Inteligência Artificial (PBIA) 2024-2028, lançado durante a 5ª Conferência Nacional de Ciência, Tecnologia e Inovação, em julho de 2024, traz em seu primeiro eixo que a IA deve ser centrada no ser humano além de "acessível a todos, fundamentada no respeito à dignidade, aos direitos sociais, à diversidade cultural, regional e dos povos, e à valorização do trabalho e dos trabalhadores, prevenindo a desigualdade e vieses discriminatórios" (CCT, 2025, p. 15).

É necessário que os desenvolvedores protejam os usuários e a sociedade contra a desinformação e a discriminação. E, para dirimir os riscos, a Microsoft (2025, p. 1) mantém diversos avaliadores disponíveis em sua plataforma. Desde avaliadores de conteúdo de ódio, injustiça, sexual ou violência; passando por avaliadores de vulnerabilidade de código e direitos autorais; até avaliadores de informações fabricadas e alucinações, conforme mostra o QUADRO 1.

QUADRO 1 - SEGURANÇA E PROTEÇÃO

Avaliador	Propósito	Entradas
Ódio e Injustiça	Identifica conteúdo tendencioso, discriminatório ou odioso.	Consulta, resposta
Sexual	Identifica conteúdo sexual inadequado.	Consulta, resposta
Violência	Detecta conteúdo violento ou incitação.	Consulta, resposta
Automutilação	Detecta conteúdo que promove ou descreve a automutilação.	Consulta, resposta
Segurança do conteúdo	Avaliação abrangente de várias questões de segurança.	Consulta, resposta
Materiais protegidos	Detecta o uso não autorizado de conteúdo protegido ou protegido por direitos autorais.	Consulta, resposta
Vulnerabilidade de código	ldentifica problemas de segurança no código gerado.	Consulta, resposta
Atributos sem base	Detecta informações fabricadas ou alucinadas inferidas das interações do usuário.	Consulta, contexto, resposta

FONTE: Adaptado de Microsoft (2025, p. 1).

Em suma, o advento da inteligência artificial generativa, liderada por modelos

como os LLMs, trouxe um potencial enorme para o dia a dia das pessoas. Com isso, as métricas de avaliação não podem ser tratadas como mero detalhe técnico, mas sim a ponte entre a capacidade impressionante de geração e a implementação responsável no mundo real. Ao adotarmos as métricas citadas, garantimos que a inteligência artificial generativa avance de forma confiável, podendo aplicarmos em escala, seguros de que os benefícios da inovação superem os riscos da irresponsabilidade.

REFERÊNCIAS

CCT. Plano Brasileiro de Inteligência Artificial (PBIA) 2024-2028. *In:* p. 15. Acesso em 30/09/2025. Disponível em: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/noticias/2024/07/plano-brasileiro-de-ia-tera-supercomputador-e-investimento-de-r-23-bilhoes-em-quatro-anos/ia_para_o_bem_de_todos.pdf/view.

FELTRIN, G.; VIANNA, D.; SILVA, A. da. Um Estudo Sobre Métricas de Avaliação para Sumarização de Acórdãos. *In:* ANAIS do XXXVIII Simpósio Brasileiro de Bancos de Dados. Belo Horizonte/MG: SBC, 2023. p. 295–305.

MELO, F. R. de; OLIVEIRA MATOS, H. C. de; DIAS, E. R. B. Aplicação da métrica bleu para avaliação comparativa dos tradutores automáticos bing tradutor e google tradutor. *In:* REVISTA e-scrita: Revista do Curso de Letras da UNIABEU. Belford Roxo/RJ: [s. n.], 2014. p. 33–45.

MICROSOFT. Observabilidade na lA generativa. *In:* p. 1. Acesso em 30/09/2025. Disponível em:

https://learn.microsoft.com/pt-br/azure/ai-foundry/concepts/observability.

OPENAI. Introducing ChatGPT. *In:* p. 1. Acesso em 30/09/2025. Disponível em: hhttps://openai.com/index/chatgpt/.

REAL, L.; VIANNA, D.; CARVALHO, A. L.; SILVA, A. da. LLMs Não São Garantido - Avaliando LLMs: Métricas, Benchmarks, Técnicas Automáticas e Considerações Éticas. *In:* ANAIS Estendidos do XL Simpósio Brasileiro de Bancos de Dados. Fortaleza/CE: SBC, 2025. p. 203–207.

ZANIBONI, J. V. N. Integrando Técnicas de Geração Aumentada por Recuperação e Grandes Modelos de Linguagem para Auxílio ao Diagnóstico Médico. *In:* p. 1.

APÊNDICE 1 - INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL

A - ENUNCIADO

1 ChatGPT

- a) (6,25 pontos) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.
- b) **(6,25 pontos)** Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas em sala. Explique o porquê.
- c) **(6,25 pontos)** Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.
- d) **(6,25 pontos)** Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 abordagens vistas em sala. Explique o porquê.

2 Busca Heurística

Realize uma busca utilizando o algoritmo A^* para encontrar o melhor caminho para chegar a **Bucharest** partindo de **Lugoj**. Construa a árvore de busca criada pela execução do algoritmo apresentando os valores de f(n), g(n) e h(n) para cada nó. Utilize a heurística de distância em linha reta, que pode ser observada na tabela abaixo.

Essa tarefa pode ser feita em uma ferramenta de desenho, ou até mesmo no papel, desde que seja digitalizada (foto) e convertida para PDF.

a) (25 pontos) Apresente a árvore final, contendo os valores, da mesma forma que foi apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um formato em blocos, planilha, ou qualquer outra representação.

NÃO É NECESSÁRIO IMPLEMENTAR O ALGORITMO.

75 Zerind 151

Arad 140 Sibiu 99 Fagaras 92

Timisoara 146 101 85 Urziceni 86

Dobreta 120 Craiova Giurgiu Fforie

FIGURA 1 - Rotas Lugoj-Bucharest

Fonte: IAA UFPR (2025).

FIGURA 2 - Distâncias em linha reta para a cidade de Bucharest

Arad	366	Mehadia	241
Bucareste	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Fonte: IAA UFPR (2025).

3 Lógica

Verificar se o argumento lógico é válido.

Se as uvas caem, então a raposa as come Se a raposa as come, então estão maduras As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

Deve ser apresentada uma prova, no mesmo formato mostrado nos conteúdos de aula e nas práticas.

Dicas:

1. Transformar as afirmações para lógica:

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

2. Transformar as três primeiras sentenças para formar a base de conhecimento

R1: $p \rightarrow q$ R2: $q \rightarrow r$ R3: $\neg r \lor p$

3. Aplicar equivalências e regras de inferência para se obter o resultado esperado. Isto é, com essas três primeiras sentenças devemos derivar $q \leftrightarrow p$. Cuidado com a ordem em que as fórmulas são geradas.

Equivalência Implicação: $(\alpha \to \beta)$ equivale a $(\neg \alpha \lor \beta)$

Silogismo Hipotético: $\alpha \to \beta$, $\beta \to \gamma \vdash \alpha \to \gamma$

Conjunção: α , $\beta \vdash \alpha \land \beta$

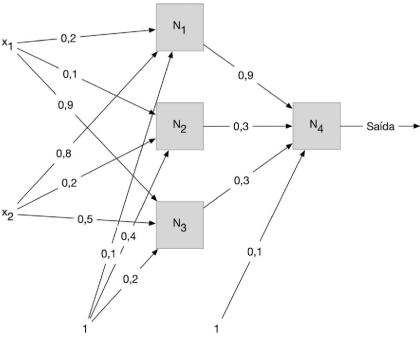
Equivalência Bicondicional: $(\alpha \leftrightarrow \beta)$ equivale a $(\alpha \to \beta) \land (\beta \to \alpha)$

a) (25 pontos) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato apresentado nas aulas e nas práticas. As equivalências e regras necessárias estão descritas acima e no material.

4 Redes Neurais Artificiais

Seja a RNA da figura abaixo.

FIGURA 3 - Rede Neural Artificial exercício 4



Fonte: IAA UFPR (2025).

Os neurônios N_1 , N_2 e N_3 possuem função de ativação linear. Já N_4 possui função de ativação tangente hiperbólica (pesquise a fórmula e aplique).

Dada a entrada $x_1 = -3$, $x_2 = 1$, dê:

- a) (6,25 pontos) Valor de saída do neurônio N1
- b) (6,25 pontos) Valor de saída do neurônio N2
- c) (6,25 pontos) Valor de saída do neurônio N3
- d) (6,25 pontos) Valor de saída da rede como um todo

B-RESOLUÇÃO

1 ChatGPT

a) Pergunte ao ChatGPT o que é Inteligência Artificial e cole aqui o resultado.

Inteligência Artificial (IA) refere-se à capacidade de um sistema ou programa de computador realizar tarefas que normalmente exigiriam inteligência humana. Essas tarefas incluem raciocínio, aprendizado, percepção visual, reconhecimento de fala, compreensão de linguagem natural, tomada de decisões e resolução de problemas.

Os sistemas de IA são projetados para imitar certos aspectos da inteligência humana, utilizando algoritmos e modelos matemáticos para processar dados, aprender padrões e tomar decisões. Existem dois tipos principais de IA:

- 1. IA Fraca (ou Estreita): Refere-se a sistemas de IA especializados em tarefas específicas. Eles são limitados ao escopo de suas programações e não têm a capacidade de realizar tarefas além do que foram projetados para fazer. Exemplos incluem reconhecimento de voz, chatbots e carros autônomos.
- 2. IA Forte (ou Geral): Envolve sistemas que têm a capacidade de realizar qualquer tarefa cognitiva que um ser humano pode fazer. Este nível de IA ainda não foi totalmente alcançado e é um campo de pesquisa em desenvolvimento.

Algoritmos de aprendizado de máquina (Machine Learning) são frequentemente usados na implementação de sistemas de IA. Eles permitem que a IA melhore seu desempenho em uma tarefa específica à medida que é exposta a mais dados, sem ser explicitamente programada.

A Inteligência Artificial tem aplicações em uma variedade de setores, como medicina, finanças, automação industrial, reconhecimento de padrões, entretenimento e muito mais. É uma área de rápido avanço e continua a desempenhar um papel significativo na transformação de várias indústrias.

b) Dada essa resposta do ChatGPT, classifique usando as 4 abordagens vistas em sala. Explique o porquê.

A definição dada pelo ChatGPT menciona que sistemas de Inteligência Artificial são projetados para "imitar certos aspectos da inteligência humana", o que parece se assemelhar mais à definição de Pensar como Humanos ou Agir como Humanos.

c) Pesquise sobre o funcionamento do ChatGPT (sem perguntar ao próprio ChatGPT) e escreva um texto contendo no máximo 5 parágrafos. Cite as referências.

O ChatGPT pode se entendido como uma extrapolação de uma classe de modelos de aprendizagem de máquina chamados Large Language Models (LLMs), que são modelos de Processamento de Linguagem Natural. Esse tipo de modelo consegue processar grandes quantidades de texto e inferir relações entre palavras dentro do texto. A capacidade dos LLMs cresce conforme aumenta o tamanho e variedade de parâmetros da base de dados. (Ruby, 2023)

Segundo o que é disponibilidado pelo OpenAI (OpenAI, 2024), ele é baseado na arquitetura GPT (Generative Pre-trained Transformer), um modelo Transformer, que é uma rede neural capaz de aprender o contexto dado e gerar um novo texto a partir disso. A rede foi otimizada para usar um método de treinamento chamado Reinforcement Learning with Human Feedback (RLHF), que usa demonstrações humanas para guiar seu comportamento, de forma a alcançar o desejável.

Segundo Rama Ramakrishnan, professor do MIT (MIT, 2023), o modelo precedente, GPT-3, foi treinado com cerca de 30 bilhões de frases retiradas de livros e da internet, para uma única tarefa: prever a palavra seguinte em uma frase, dadas as palavras usadas anteriormente. Ele calcula uma tabela de probabilidades para possíveis palavras a serem usadas e usa a que tem a melhor probabilidade, quase como um sistema de autocomplete. Para formar frases completas, a cada palavra escolhida, ele adiciona ela à frase e refaz o processo de cálculo das probabilidades para escolher a próxima palavra. Já a versão 3.5 foi treinada para seguir instruções dadas por humanos, utilizando uma base de dados contendo pares de exemplos de instruções e respostas de alta qualidade para tais instruções. O modelo treinado a partir dessa base de dados foi então utilizado para gerar múltiplas respostas para cada uma das instruções e essas respostas foram categorizadas por humanos de mais útil a menos útil. A partir desses novos dados, foi possível treinar um "modelo de recompensa", que avalia a qualidade das respostas geradas pelo GPT-3.5 e retorna uma "nota" de avaliação para o GPT-3.5, assim ele passa por um fine tuning para melhorar suas respostas com reinforcement learning. Na transição do GPT-3.5 para o ChatGPT foi usado um processo similar, mas desta vez utilizando conversas inteiras para o treinamento.

Ele é treinado usando textos escritos por humanos, incluindo conversações, de

forma a conseguir imitar o estilo de comunicação humano). Assim, de acordo com os dados utilizados para treinamento, ele pode, inclusive, produzir textos com conteúdo enviesado.

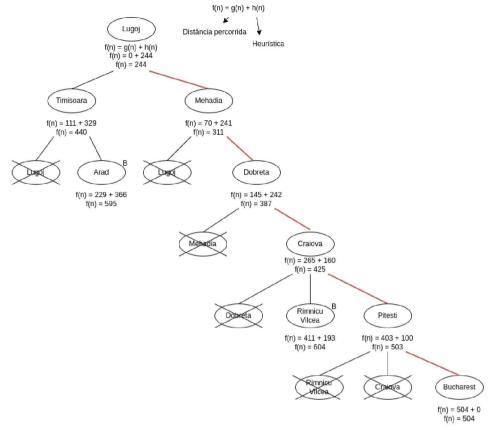
d) Entendendo o que é o ChatGPT, classifique o próprio ChatGPT usando as 4 abordagens vistas em sala. Explique o porquê.

De acordo com o comportamento, que se baseia em aprender e imitar como humanos se comunicam, ele parece se encaixar na definição da abordagem Agir como Humanos. Essa conclusão pode ser atingida considerando-se que o ChatGPT encontra padrões nos textos, que são dados produzidos (majoritariamente) por humanos, e com isso aprende contextos, mas não é totalmente consciente sobre o seu conteúdo, e não usa um processo cognitivo, apenas os sintetiza conforme foram fornecidos a ele. Como exemplo, se o ChatGPT fosse treinado com textos com um viés racista, ele poderia reproduzir textos racistas, já que não tem a capacidade de ponderar se racismo é correto ou não de um ponto de vista racional, ou seja, ele não toma decisões racionais baseadas no contexto que é apresentado a ele, apenas busca imitar a forma como humanos se comunicam.

2 Busca Heurística

a) Apresente a árvore final, contendo os valores, da mesma forma que foi apresentado na disciplina e nas práticas. Use o formato de árvore, não será permitido um formato em blocos, planilha, ou qualquer outra representação.

FIGURA 4 – Árvore final



Fonte: O autor (2025).

 $Lugoj \Rightarrow Mehadia \Rightarrow Dobreta \Rightarrow Craiova \Rightarrow Pitesti \Rightarrow Bucharest = 504$

3 Lógica

Se as uvas caem, então a raposa as come Se a raposa as come, então estão maduras As uvas estão verdes ou caem

Logo

A raposa come as uvas se e somente se as uvas caem

p: as uvas caem

q: a raposa come as uvas

r: as uvas estão maduras

 $R1:p\Rightarrow q$

 $R2: q \Rightarrow r$

 $R3: \neg r \lor p$

objetivo:

$$q \Leftrightarrow p$$

a) Deve-se mostrar todos os passos e regras aplicadas, no mesmo formato apresentado nas aulas e nas práticas.

$$R1: p \Rightarrow q$$
$$R2: q \Rightarrow r$$
$$R3: \neg r \lor p$$

$$R4:r\Rightarrow p$$

Equivalência Implicação, R3

$$R5:q\Rightarrow p$$

SH, R2, R4

$$R6: p \Rightarrow q \land q \Rightarrow p$$

CONJ, R1, R5

$$R7:q\Leftrightarrow p$$

BICOND, R6

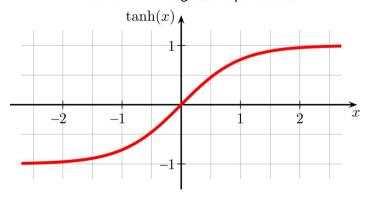
4 Redes Neurais Artificiais

$$x1=-3, x2=1$$

N1, N2, N3: função de ativação linear (mantém o valor)

N4: função de ativação tangente (produz valores no intervalo [-1,1])

FIGURA 5 - Tangente Hiperbólica



Fonte: O autor (2025).

a) Valor de saída do neurônio N1

$$(-3) \times 0.2 + 1 \times 0.8 + 1 \times 0.1 = 0.3$$

b) Valor de saída do neurônio N2

$$(-3) \times 0.1 + 1 \times 0.2 + 1 \times 0.4 = 0.3$$

c) Valor de saída do neurônio N3

$$(-3) \times 0.9 + 1 \times 0.5 + 1 \times 0.2 = -2$$

d) Valor de saída da rede como um todo

$$tanh(0.3\times0.9+0.3\times0.3+(-2)\times0.3+1\times0.1) = tanh(0.27+0.09-0.6+0.1) = -0.13909 \approx -0.14$$

APÊNDICE 2 - LINGUAGEM DE PROGRAMAÇÃO APLICADA

A - ENUNCIADO

Nome da base de dados do exercício: precos_carros_brasil.csv Informações sobre a base de dados:

Dados dos preços médios dos carros brasileiros, das mais diversas marcas, no ano de 2021, de acordo com dados extraídos da tabela FIPE (Fundação Instituto de Pesquisas Econômicas). A base original foi extraída do site Kaggle (Acesse aqui a base original). A mesma foi adaptada para ser utilizada no presente exercício.

Observação: As variáveis *fuel*, *gear* e *engine_size* foram extraídas dos valores da coluna *model*, pois na base de dados original não há coluna dedicada a esses valores. Como alguns valores do modelo não contêm as informações do tamanho do motor, este conjunto de dados não contém todos os dados originais da tabela FIPE.

Metadados:

TABELA 2 – Metadados da Tabela FIPE

Nome do campo	Descrição
year_of_reference	O preço médio corresponde a um mês do ano
	de referência
month_of_reference	O preço médio corresponde a um mês especí-
	fico, pois a FIPE atualiza mensalmente
fipe_code	Código único da FIPE
authentication	Código único de autenticação para consulta
	FIPE
brand	Marca do carro
model	Modelo do carro
fuel	Tipo de combustível
gear	Tipo de engrenagem
engine_size	Tamanho do motor em centímetros cúbicos
year_model	Ano do modelo (pode ser diferente do ano de
	fabricação)
avg_price	Preço médio do carro em reais

Fonte: IAA UFPR (2025).

Atenção: ao fazer o download da base de dados, selecione o formato .csv. É o formato que será considerado correto na resolução do exercício.

1 Análise Exploratória dos dados

A partir da base de dados **precos_carros_brasil.csv**, execute as seguintes tarefas:

- a. Carregue a base de dados media precos carros brasil.csv
- b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o problema de valores faltantes
- verifique se há dados duplicados nos dados
- d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de informações das variáveis numéricas e categóricas (estatística descritiva dos dados)
- e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)
- f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados na Análise Exploratória dos dados

2 Visualização dos dados

A partir da base de dados **precos_carros_brasil.csv**, execute as seguintes tarefas:

- a. Gere um gráfico da distribuição da quantidade de carros por marca
- b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro
- Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 (variável de tempo no eixo X)
- d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem
- e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d
- f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível
- g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

A partir da base de dados **precos_carros_brasil.csv**, execute as seguintes tarefas:

- a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis independentes do modelo. A variável target é avg_price. Observação: caso julgue necessário, faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo. Indique quais variáveis foram transformadas e como foram transformadas
- b. Crie partições contendo 75% dos dados para treino e 25% para teste
- c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca XGBRegressor) para predição dos preços dos carros. **Observação**: caso julgue necessário, mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram inputados e indique o treinamento de cada modelo
- d. Grave os valores preditos em variáveis criadas
- e. Realize a análise de importância das variáveis para estimar a variável target, **para** cada modelo treinado
- f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na análise de importância de variáveis
- g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R2
- Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor resultado e a métrica de avaliação utilizada

B - RESOLUÇÃO

1 Análise Exploratória dos dados

a. Carregue a base de dados media precos carros brasil.csv

```
import numpy as np
import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import RandomizedSearchCV

# Métricas de avaliação dos modelos
from sklearn.metrics import mean_squared_error,
    mean_absolute_error, r2_score

dados = pd.read_csv('precos_carros_brasil.csv')
dados.head()
```

year_ref	month	fipe_code	auth	brand	model	fuel	gear	engine	year	price
2021.0	January	004001-0	cfzlctzfwrcp	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2002.0	9162.0
2021.0	January	004001-0	cdqwxwpw3y2p	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2001.0	8832.0
2021.0	January	004001-0	cb1t3xwwj1xp	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Gasoline	manual	1	2000.0	8388.0
2021.0	January	004001-0	cb9gct6j65r0	GM - Chevrolet	Corsa Wind 1.0 MPFI / EFI 2p	Alcohol	manual	1	2000.0	8453.0
2021.0	January	004003-7	g15wg0gbz1fx	GM - Chevrolet	Corsa Pick-Up GL/ Champ 1.6 MPFI / EFI	Gasoline	manual	1.6	2001.0	12525.0

b. Verifique se há valores faltantes nos dados. Caso haja, escolha uma tratativa para resolver o problema de valores faltantes

```
year_of_reference False
month_of_reference False
fipe_code False
authentication False
brand False
model False
```

```
fuel False
gear False
engine_size False
year_model False
avg_price_brl False
dtype: bool
```

Não há valores faltantes.

c. Verifique se há dados duplicados nos dados

```
# Verificando se temos valores duplicados
dados.duplicated().sum()
2
# Removendo valores duplicados
dados.drop duplicates(inplace=True)
depois = dados.shape
# Verifica diferença após a normalização dos dados
diff linhas = depois[0] - antes[0]
diff colunas = depois[1] - antes[1]
print("Linhas:\n Antes {} x Depois {} = Diff {}".format(antes[0], depois
   [0], diff linhas))
print("Colunas:\n Antes {} x Depois {} = Diff {}".format(antes[1],
   depois[1], diff_colunas))
Linhas:
Antes 202297 x Depois 202295 = Diff -2
Colunas:
 Antes 11 x Depois 11 = Diff 0
```

2 linhas duplicadas excluídas.

d. Crie duas categorias, para separar colunas numéricas e categóricas. Imprima o resumo de informações das variáveis numéricas e categóricas (estatística descritiva dos dados)

```
categoricas_cols = [col for col in dados.columns if dados[col].
    dtype == 'object']

# Resumo das variáveis numéricas - Imprime alguns valores de
    medidas de tendências centrais
dados[numericas_cols].describe()
```

	year_of_reference	year_model	avg_price_brl
count	202295.000000	202295.000000	202295.000000
mean	2021.564695	2011.271514	52756.765713
std	0.571904	6.376241	51628.912116
min	2021.000000	2000.000000	6647.000000
25%	2021.000000	2006.000000	22855.000000
50%	2022.000000	2012.000000	38027.000000
75%	2022.000000	2016.000000	64064.000000
max	2023.000000	2023.000000	979358.000000

e. Imprima a contagem de valores por modelo (model) e marca do carro (brand)

```
# Contagem de valores por categoria de 'Modelo'
dados['model'].value_counts()
```

```
Palio Week. Adv/Adv TRYON 1.8 mpi Flex
                                          425
Focus 1.6 S/SE/SE Plus Flex 8V/16V 5p
                                          425
Focus 2.0 16V/SE/SE Plus Flex 5p Aut.
                                          400
Saveiro 1.6 Mi/ 1.6 Mi Total Flex 8V
                                          400
Corvette 5.7/ 6.0, 6.2 Targa/Stingray
                                          375
STEPWAY Zen Flex 1.0 12V Mec.
                                            2
Saveiro Robust 1.6 Total Flex 16V CD
                                            2
Saveiro Robust 1.6 Total Flex 16V
                                            2
Gol Last Edition 1.0 Flex 12V 5p
                                            2
Polo Track 1.0 Flex 12V 5p
Name: model, Length: 2112, dtype: int64
```

```
# Contagem de valores por categoria de 'Marca'
dados['brand'].value_counts()
```

```
Fiat 44962

VW - VolksWagen 44312

GM - Chevrolet 38590

Ford 33150
```

```
Renault 29191
Nissan 12090
Name: brand, dtype: int64
```

f. Dê um breve explicação (máximo de quatro linhas) sobre os principais resultados encontrados na Análise Exploratória dos dados

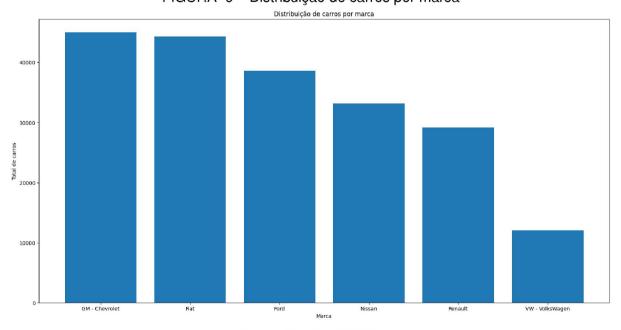
Na Análise Exploratória dos Dados pudemos observar que o conjunto de dados possui 11 colunas e nenhuma delas possui dados faltantes. Ao observarmos valores duplicados, apenas 2 linhas estavam duplicadas. Das 11 colunas, apenas 3 são numéricas. Porém, as colunas brand e model podem ser facilmente convertidas para númericas.

2 Visualização dos dados

a. Gere um gráfico da distribuição da quantidade de carros por marca

```
# Gráfico da distribuição por marca
plt.figure(figsize=(20,10))
plt.bar(dados['brand'].unique(), dados['brand'].value_counts())
plt.title('Distribuição de carros por marca')
plt.ylabel('Total de carros')
plt.xlabel('Marca')
```

FIGURA 6 - Distribuição de carros por marca

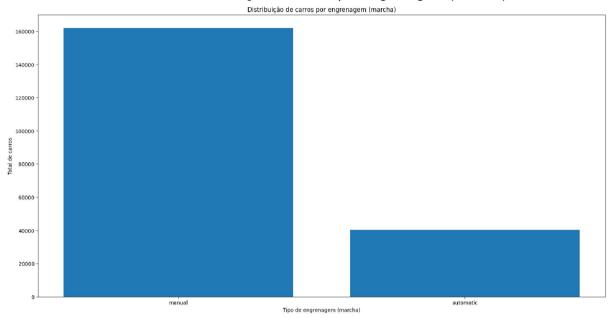


Fonte: O autor (2025).

b. Gere um gráfico da distribuição da quantidade de carros por tipo de engrenagem do carro

```
# Gráfico da distribuição por engrenagem (tipo de marcha)
plt.figure(figsize=(20,10))
plt.bar(dados['gear'].unique(), dados['gear'].value_counts())
plt.title('Distribuição de carros por engrenagem (marcha)')
plt.ylabel('Total de carros')
plt.xlabel('Tipo de engrenagem (marcha)')
```

FIGURA 7 – Distribuição de carros por engrenagem (marcha)



c. Gere um gráfico da evolução da média de preço dos carros ao longo dos meses de 2022 (variável de tempo no eixo X)

```
df_media_precos_mes = df_media_precos_mes.sort_values(by=['index'
])
df_media_precos_mes.head(12)
```

Index	Order	Year	Month	Average Price (BRL)
4	0	2022.0	January	54840.0
3	1	2022.0	February	55825.0
7	2	2022.0	March	56849.0
0	3	2022.0	April	57150.0
8	4	2022.0	May	57800.0
6	5	2022.0	June	58066.0
5	6	2022.0	July	57894.0
1	7	2022.0	August	57924.0
11	8	2022.0	September	58199.0
10	9	2022.0	October	58227.0
9	10	2022.0	November	58216.0
2	11	2022.0	December	57997.0

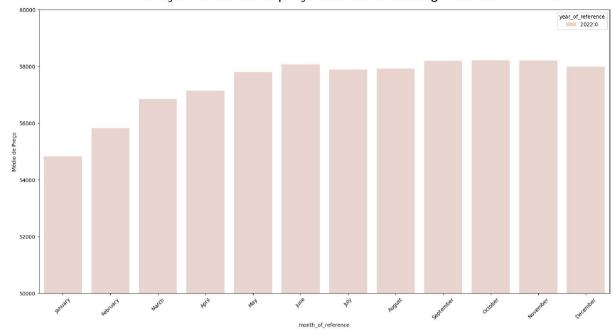


FIGURA 8 – Evolução da média de preço dos carros ao longo dos meses de 2022

d. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de engrenagem

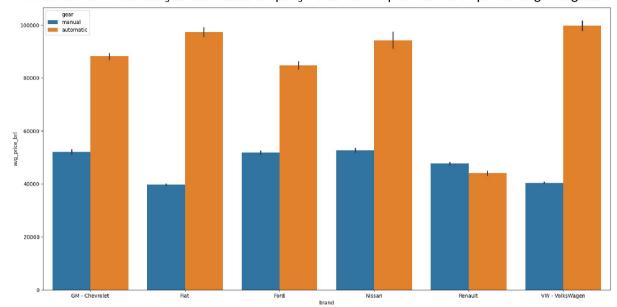


FIGURA 9 – Distribuição da média de preço dos carros por marca e tipo de engrenagem

e. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item d

O preço médio de carros com engrenagem (marcha) automática é superior aos com engrenagem manual em 5 das 6 marcas. Somente a Renault tem preços médios com ligeira superioridade nos carros com engrenagem manual. Nas marcas Fiat e Volkswagem os carro com engrenagem automática tem preço médio maiores do que o dobro dos carros com engrenagem manual.

f. Gere um gráfico da distribuição da média de preço dos carros por marca e tipo de combustível

```
print(dados["fuel"].unique()) # verificar os valores da coluna
    fuel

['Gasoline' 'Alcohol' 'Diesel']

plt.figure(figsize=(20,10))
sns.barplot(x='brand', y='avg_price_brl', hue='fuel', data=dados,
    hue_order=['Diesel', 'Gasoline', 'Alcohol'])
```

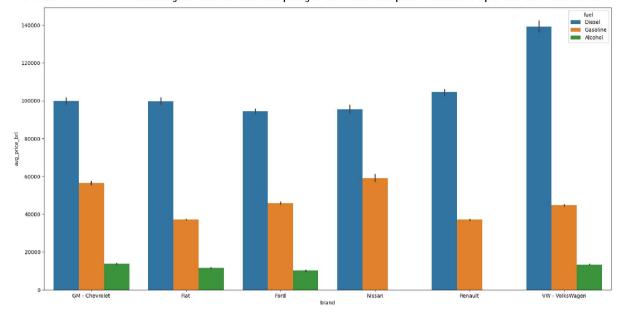


FIGURA 10 - Distribuição da média de preço dos carros por marca e tipo de combustível

g. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados gerados no item f

Carros com o combustível Diesel tem os maiores preços médios em todas as marcas. O que faz sentido haja visto que motores a Diesel são comumente encontrados em carros maiores e de maiores valores. Veículos a Gasolina são os segundos com maiores preços médios em todas as marcas. Vale salientar que, nesta base, os veículos Flex (que podem consumir álcool e gasolina) estão categorizados como Gasolina. Veículos a Álcool tem os menores preços médios nas marcas GM, Fiat, Ford e VM. As marcas Nissan e Renault não apresentaram veículos com combustível álcool.

3 Aplicação de modelos de machine learning para prever o preço médio dos carros

a. Escolha as variáveis numéricas (modelos de Regressão) para serem as variáveis independentes do modelo. A variável target é avg_price. Observação: caso julgue necessário, faça a transformação de variáveis categóricas em variáveis numéricas para inputar no modelo. Indique quais variáveis foram transformadas e como foram transformadas

sns.boxplot(dados['avg_price_brl']).set_title("Distribuição dos
preços dos carros")

Distribuição dos preços dos carros 1e6 1.0 0.8 avg_price_brl 0.6 0.4 0.2

FIGURA 11 – Distribuição dos preços dos carros

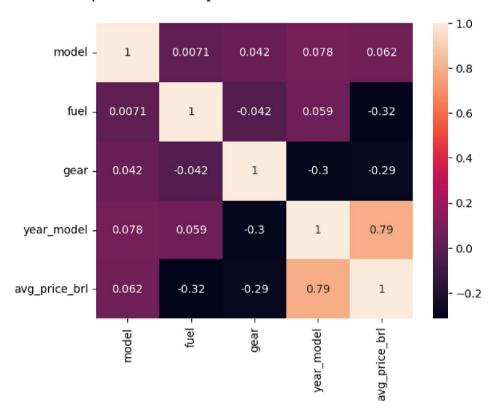
0.0

Transformação da coluna modelo (model) de categórica para numé rica dados['model'] = LabelEncoder().fit_transform(dados['model']) # Transformação da coluna engrenagem (gear) de categórica para numérica dados['gear'] = LabelEncoder().fit_transform(dados['gear']) dados.head() # Transformação da coluna combustível (fuel) de categórica para numérica dados['fuel'] = LabelEncoder().fit_transform(dados['fuel']) dados.head()

ID	Year	Month	FIPE Code	Auth	Brand	Model	Fuel	Gear	Engine	Year Model	Avg. Price (BRL)
0	2021.0	January	004001-0	cfzlctzfwrcp	GM - Chevrolet	297	2	1	1	2002.0	9162.0
1	2021.0	January	004001-0	cdqwxwpw3y2p	GM - Chevrolet	297	2	1	1	2001.0	8832.0
2	2021.0	January	004001-0	cb1t3xwwj1xp	GM - Chevrolet	297	2	1	1	2000.0	8388.0
3	2021.0	January	004001-0	cb9gct6j65r0	GM - Chevrolet	297	0	1	1	2000.0	8453.0
4	2021.0	January	004003-7	g15wg0gbz1fx	GM - Chevrolet	260	2	1	1,6	2001.0	12525.0

[#] Variável dados_num contém apenas variáveis numéricas de interesse (exclui o restante)

FIGURA 12 – Mapa de Correlação das Variáveis Numéricas Mapa de Correlação das Variáveis Numéricas



Fonte: O autor (2025).

```
# Variável X contém apenas variáveis numéricas de interesse para
    a análise, excluindo a variável target
X = dados_num.drop(['avg_price_brl'],axis = 1)
Y = dados_num['avg_price_brl']
```

b. Crie partições contendo 75% dos dados para treino e 25% para teste

```
# Divisão: 30% dos dados são de teste e 70% de treinamento
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
    test_size = 0.25, random_state = 42)
```

c. Treine modelos RandomForest (biblioteca RandomForestRegressor) e XGBoost (biblioteca XGBRegressor) para predição dos preços dos carros. Observação: caso julgue necessário, mude os parâmetros dos modelos e rode novos modelos. Indique quais parâmetros foram inputados e indique o treinamento de cada modelo

```
#RandomForest
model_rf = RandomForestRegressor()
model_rf.fit(X_train, Y_train)
#RandomForest com parâmetros
n_estimators = [5,20,50,100] # number of trees in the random
   forest
max_features = ['auto', 'sqrt'] # number of features in
   consideration at every split
max_depth = [int(x) for x in np.linspace(10, 120, num = 12)] #
   maximum number of levels allowed in each decision tree
min_samples_split = [2, 6, 10] # minimum sample number to split a
    node
min_samples_leaf = [1, 3, 4] # minimum sample number that can be
   stored in a leaf node
bootstrap = [True, False] # method used to sample data points
random_grid = {'n_estimators': n_estimators, 'max_features':
   max_features, 'max_depth': max_depth, 'min_samples_split':
   min_samples_split,
               'min_samples_leaf': min_samples_leaf, 'bootstrap':
    bootstrap}
rf = RandomForestRegressor()
rf_random = RandomizedSearchCV(estimator = rf,param_distributions
    = random_grid,
               n_iter = 100, cv = 5, verbose=2, random_state=35,
   n_{jobs} = -1
rf_random.fit(X_train, Y_train)
# Utilizando os melhores parâmetros encontrados
model_rf_parametros = RandomForestRegressor(max_depth=70,
   min_samples_leaf=1, min_samples_split=2, n_estimators=20,
   random_state=80)
```

```
model_rf_parametros.fit(X_train, Y_train)

#XGBoost

model_xgboost = XGBRegressor()

model_xgboost.fit(X_train, Y_train)
```

d. Grave os valores preditos em variáveis criadas

```
#RandomForest
valores_preditos_rf = model_rf.predict(X_test)
valores_preditos_rf

#RandomForest com parâmetros
valores_preditos_rf_parametros = model_rf_parametros.predict(
    X_test)
valores_preditos_rf_parametros

#XGBoost
valores_preditos_xgboost = model_xgboost.predict(X_test)
valores_preditos_xgboost
```

e. Realize a análise de importância das variáveis para estimar a variável target, para cada modelo treinado

```
#RandomForest
model_rf.feature_importances_
feature_importances_rf = pd.DataFrame(model_rf.
    feature_importances_, index = X_train.columns, columns=['
    importance']).sort_values('importance', ascending = False)
feature_importances_rf
```

```
        Feature
        Importance

        model
        0.439964

        year_model
        0.358480

        fuel
        0.179241

        gear
        0.022315
```

```
#RandomForest com parâmetros
model_rf_parametros.feature_importances_
feature_importances_rf_param = pd.DataFrame(model_rf_parametros.
    feature_importances_, index = X_train.columns, columns=['
    importance']).sort_values('importance', ascending = False)
```

```
feature_importances_rf_param
```

```
        Feature
        Importance

        model
        0.442857

        year_model
        0.356757

        fuel
        0.178231

        gear
        0.022155
```

```
#XGBoost
model_xgboost.feature_importances_
feature_importances_x = pd.DataFrame(model_xgboost.
    feature_importances_, index = X_train.columns, columns=['
    importance']).sort_values('importance', ascending = False)
feature_importances_x
```

Feature	Importance
fuel	0.699523
year_model	0.160642
model	0.088919
gear	0.050917

f. Dê uma breve explicação (máximo de quatro linhas) sobre os resultados encontrados na análise de importância de variáveis

Tanto no modelo Random Forest, quando no modelo Random Forest com parâmetros, as variáveis mais importantes foram modelo e ano do modelo (model e year_model) com quse 80% de importância. Somando a combustível (fuel) chegamos a 97% de importância. Tornando quase irrelevante a variável engrenagem (gear). Para o modelo XGBoost temos como variável mais importante o combustível (fuel) com aproximadamente 70% e seguido de ano do modelo com 16%. Modelo e engrenagem (model e gear) aparecem com menos de 10% cada.

g. Escolha o melhor modelo com base nas métricas de avaliação MSE, MAE e R²

```
#RandomForest
mse_rf = mean_squared_error(Y_test, valores_preditos_rf)
mae_rf = mean_absolute_error(Y_test, valores_preditos_rf)
r2_rf = r2_score(Y_test, valores_preditos_rf)
mse_rf
```

```
mae_rf
r2_rf
```

```
54633997.34991135
4215.705784378993
0.97969945241549
```

```
#RandomForest com parâmetros
mse_rf_param = mean_squared_error(Y_test,
    valores_preditos_rf_parametros)
mae_rf_param = mean_absolute_error(Y_test,
    valores_preditos_rf_parametros)
r2_rf_param = r2_score(Y_test, valores_preditos_rf_parametros)
mse_rf_param
mae_rf_param
r2_rf_param
```

```
54716253.201698475
4216.618281471371
0.9796688883177797
```

```
#XGBoost

mse_x = mean_squared_error(Y_test, valores_preditos_xgboost)

mae_x = mean_absolute_error(Y_test, valores_preditos_xgboost)

r2_x = r2_score(Y_test, valores_preditos_xgboost)

mse_x

mae_x

r2_x
```

```
297039446.66991967
6429.30300193814
0.8896280024509496
```

h. Dê uma breve explicação (máximo de quatro linhas) sobre qual modelo gerou o melhor resultado e a métrica de avaliação utilizada

Levando em conta a acurácia resultante da métrica R2, temos os seguintes resultados:

- Random Forest: 98%
- Random Forest com parâmetros: 98%
- XGBoost: 89%

Desta forma, temos um empate entre Random Forest e Random Forest com parâmetros. Para fins de entendimento, trazemos a comparação dos resultados de MSE e MAE (quanto menores, melhores os resultados):

• MSE

Random Forest: 54.622.503

- Random Forest com parâmetros: 54.716.253

• MAE

- Random Forest: 4215

- Random Forest com parâmetros: 4217

Como podemos ver, há uma ligeira vantagem no uso do Random Forest, sem parâmetros. Assim sendo, concluímos que o melhor resultado preditivo foi obtido através do modelo Random Forest.

APÊNDICE 3 - LINGUAGEM R

A - ENUNCIADO

1 Pesquisa com Dados de Satélite (Satellite)

O banco de dados consiste nos valores multiespectrais de pixels em vizinhanças 3x3 em uma imagem de satélite, e na classificação associada ao pixel central em cada vizinhança. O objetivo é prever esta classificação, dados os valores multiespectrais.

Um quadro de imagens do Satélite Landsat com MSS (*Multispectral Scanner System*) consiste em quatro imagens digitais da mesma cena em diferentes bandas espectrais. Duas delas estão na região visível (correspondendo aproximadamente às regiões verde e vermelha do espectro visível) e duas no infravermelho (próximo). Cada pixel é uma palavra binária de 8 bits, com 0 correspondendo a preto e 255 a branco. A resolução espacial de um pixel é de cerca de 80m x 80m. Cada imagem contém 2340 x 3380 desses pixels. O banco de dados é uma subárea (minúscula) de uma cena, consistindo de 82 x 100 pixels. Cada linha de dados corresponde a uma vizinhança quadrada de pixels 3x3 completamente contida dentro da subárea 82x100. Cada linha contém os valores de pixel nas quatro bandas espectrais (convertidas em ASCII) de cada um dos 9 pixels na vizinhança de 3x3 e um número indicando o rótulo de classificação do pixel central.

As classes são: solo vermelho, colheita de algodão, solo cinza, solo cinza úmido, restolho de vegetação, solo cinza muito úmido.

Os dados estão em ordem aleatória e certas linhas de dados foram removidas, portanto você não pode reconstruir a imagem original desse conjunto de dados. Em cada linha de dados, os quatro valores espectrais para o pixel superior esquerdo são dados primeiro, seguidos pelos quatro valores espectrais para o pixel superior central e, em seguida, para o pixel superior direito, e assim por diante, com os pixels lidos em sequência, da esquerda para a direita e de cima para baixo. Assim, os quatro valores espectrais para o pixel central são dados pelos atributos 17, 18, 19 e 20. Se você quiser, pode usar apenas esses quatro atributos, ignorando os outros. Isso evita o problema que surge quando uma vizinhança 3x3 atravessa um limite.

O banco de dados se encontra no pacote **mibench** e é completo (não possui dados faltantes).

Tarefas:

- 1. Carregue a base de dados Satellite
- 2. Crie partições contendo 80% para treino e 20% para teste
- 3. Treine modelos RandomForest, SVM e RNA para predição destes dados.
- 4. Escolha o melhor modelo com base em suas matrizes de confusão.
- 5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

2 Estimativa de Volumes de Árvores

Modelos de aprendizado de máquina são bastante usados na área da engenharia florestal (mensuração florestal) para, por exemplo, estimar o volume de madeira de árvores sem ser necessário abatê-las.

O processo é feito pela coleta de dados (dados observados) através do abate de algumas árvores, onde sua altura, diâmetro na altura do peito (dap), etc, são medidos de forma exata. Com estes dados, treina-se um modelo de AM que pode estimar o volume de outras árvores da população.

Os modelos, chamados alométricos, são usados na área há muitos anos e são baseados em regressão (linear ou não) para encontrar uma equação que descreve os dados. Por exemplo, o modelo de Spurr é dado por:

Volume =
$$b0 + b1 * dap^2* Ht$$

Onde dap é o diâmetro na altura do peito (1,3metros), Ht é a altura total. Tem-se vários modelos alométricos, cada um com uma determinada característica, parâmetros, etc. Um modelo de regressão envolve aplicar os dados observados e encontrar b0 e b1 no modelo apresentado, gerando assim uma equação que pode ser usada para prever o volume de outras árvores.

Dado o arquivo **Volumes.csv**, que contém os dados de observação, escolha um modelo de aprendizado de máquina com a melhor estimativa, a partir da estatística de correlação.

Tarefas

- 1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)
- 2. Eliminar a coluna NR, que só apresenta um número sequencial
- 3. Criar partição de dados: treinamento 80%, teste 20%
- Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes Neurais (neuralnet) e o modelo alométrico de SPURR

• O modelo alométrico é dado por: Volume = b0 + b1 * dap2* Ht

alom <- nls(VOL ~ b0 + b1*DAP*DAP*HT, dados, start=list(b0=0.5, b1=0.5))

- 5. Efetue as predições nos dados de teste
- 6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados observados

Coeficiente de determinação: R^2

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y_{i}})^{2}}{\sum_{i=1}^{n} (y_{i} - \widehat{y_{i}})^{2}}$$

onde y_i é o valor observado, $\widehat{y_i}$ é o valor predito e \overline{y} é a média dos valores y_i observados. Quanto mais perto de 1 melhor é o modelo;

• Erro padrão da estimativa: Syx

$$S_{yx} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \widehat{y_i})^2}{n-2}}$$

esta métrica indica erro, portanto quanto mais perto de 0 melhor é o modelo;

· Syx%

$$S_{yx}\% = \frac{S_{yx}}{v} * 100$$

esta métrica indica porcentagem de erro, portanto quanto mais perto de 0 melhor é o modelo;

7. Escolha o melhor modelo.

B-RESOLUÇÃO

1 Pesquisa com Dados de Satélite (Satellite)

1. Carregue a base de dados Satellite

```
install.packages("e1071")
install.packages("randomForest")
install.packages("kernlab")
install.packages("mlbench")
install.packages("caret")
install.packages("RSNNS")

sink("./output.txt", append = T)

library(mlbench)
library(caret)
library(RSNNS)

data("Satellite")
df <- Satellite[,17:20]
df$classes <- Satellite$classes
```

2. Crie partições contendo 80% para treino e 20% para teste

```
set.seed(7)
indices <- createDataPartition(df$classes, p=0.8, list=FALSE)
treino <- df[indices, ]
teste <- df[-indices, ]
```

3. Treine modelos RandomForest, SVM e RNA para predição destes dados.

```
print(">> Iniciando treinamento rf...")
rf <- caret::train(classes~., data=treino, method="rf")
predicoes.rf <- predict(rf, teste)
confusion.rf <- caret::confusionMatrix(predicoes.rf, teste$classes)

print(">> Iniciando treinamento svm...")
svm <- caret::train(classes~., data=treino, method="svmRadial")
predicoes.svm <- predict(svm, teste)
confusion.svm <- caret::confusionMatrix(predicoes.svm, teste$classes)

print(">> Iniciando treinamento rna...")
rna <- caret::train(classes~., data=treino, method="nnet")</pre>
```

```
predicoes.rna <- predict(rna, teste)
confusion.rna <- caret::confusionMatrix(predicoes.rna, teste$classes)
```

4. Escolha o melhor modelo com base em suas matrizes de confusão.

```
print(">>> Iniciando Análises de Matrizes de Confusão...")
print(confusion.rf) #acuracia = 84%
print(confusion.svm) #acuracia = 87%
print(confusion.rna) #acuracia = 80%
```

5. Indique qual modelo dá o melhor o resultado e a métrica utilizada

A métrica escolhida para comparação é a acurácia. A acurácia dos modelos são:

RandomForest: 84%

• SVM: 87%

• RNA: 80%

O modelo de melhor acurácia é o SVM com 87%.

2 Estimativa de Volumes de Árvores

1. Carregar o arquivo Volumes.csv (http://www.razer.net.br/datasets/Volumes.csv)

```
install.packages("mlbench")
install.packages("caret")
install.packages("RSNNS")
install.packages("kernlab")
install.packages("randomForest")

sink("./output.txt", append = T)

library(mlbench)
library(caret)
library(RSNNS)

# load dataset
df <- read.csv("./Volumes.csv", header=TRUE, sep=";")</pre>
```

2. Eliminar a coluna NR, que só apresenta um número sequencial

```
df$DAP <- as.numeric(sub(",", ".", df$DAP, fixed = TRUE))
df$HT <- as.numeric(sub(",", ".", df$HT, fixed = TRUE))
df$HP <- as.numeric(sub(",", ".", df$HP, fixed = TRUE))
df$VOL <- as.numeric(sub(",", ".", df$VOL, fixed = TRUE))
df$NR <- NULL
summary(df)</pre>
```

3. Criar partição de dados: treinamento 80%, teste 20%

```
df[c(1, 2, 3)] <- lapply(df[c(1, 2, 3)], function(x) c(scale(x)))

indices <- createDataPartition(df$VOL, p=0.80, list=FALSE)

traindf <- df[indices,]

testdf <- df[-indices,]

str(df)
```

4. Usando o pacote "caret", treinar os modelos: Random Forest (rf), SVM (svmRadial), Redes Neurais (neuralnet) e o modelo alométrico de SPURR

```
# modelo alométrico de SPURR

alom <- nls(VOL ~ b0 + b1 * DAP * DAP * HT, traindf, start=list(b0=0.5, b1 =0.5))
summary(alom)
str(alom)

predictalom <- predict(alom, testdf)
print(predictalom)

train_control <- trainControl(method = "cv", number = 10)

rf <- caret::train(VOL~., data=traindf, method="rf", trainControl=trainControl)

svm <- caret::train(VOL~., data=traindf, method="svmRadial", trainControl=trainControl)

rna <- caret::train(VOL~., data=traindf, method="nnet", trainControl=trainControl)
```

5. Efetue as predições nos dados de teste

```
predictionsrf <- predict(rf, testdf)
predictionssvm <- predict(svm, testdf)
predictionsrna <- predict(rna, testdf)
```

6. Crie suas próprias funções (UDF) e calcule as seguintes métricas entre a predição e os dados observados

```
RSQUARE = function(y_actual,y_predict){
 cor(y actual,y predict)^2
LR_R = RSQUARE(testdf[,4], predictionsrf)
LR R = RSQUARE(testdf[,4], predictionssvm)
LR_R = RSQUARE(testdf[,4], predictionsrna)
LR R = RSQUARE(testdf[,4], predictalom)
syx <- function(vol, pred) {</pre>
 residual <- vol - pred
 sse <- sum(residual^2)
 n \leftarrow length(vol) - 2
 syx <- sqrt(sse / n)
 return(syx)
syx_r <- syx(testdf[,4], predictionsrf)</pre>
syx r <- syx(testdf[,4], predictionssvm)
syx_r <- syx(testdf[,4], predictionsrna)</pre>
syx_r <- syx(testdf[,4], predictalom)</pre>
syx_percentual <- function(vol, pred) {</pre>
 syx v <- syx(vol, pred)
 media_dados <- mean(vol)</pre>
 syx percentual <- (syx v / media dados) * 100
 return(syx_percentual)
syxp r <- syx percentual(testdf[,4], predictionsrf)</pre>
syxp_r <- syx_percentual(testdf[,4], predictionssvm)</pre>
syxp_r <- syx_percentual(testdf[,4], predictionsrna)</pre>
syxp_r <- syx_percentual(testdf[,4], predictalom)</pre>
```

49

7. Escolha o melhor modelo.

Três métricas foram calculadas para os modelos. São elas, Coeficiente de determinação R2, Erro padrão da estimativa Syx, e porcentagem de Syx. A seguir os valores obtivos pelas métricas em cada um dos modelos.

R2 (Quanto mais perto de 1 melhor)

RandomForest: 0.8589349

SVM: 0.856365

NNET: NA

SSPUR: 0.8546826

SYX (Quanto mais perto de 0 melhor)

• RandomForest: 0.1445527

SVM: 0.1470481

NNET: 0.49606

SSPUR: 0.1574296

SYX% (Quanto mais perto de 0 melhor)

RandomForest: 11.07658%

• SVM: 11.2678%

• NNET: 38.01139%

• SSPUR: 12.0633%

Como forma de melhorar os resultados, tentamos fazer a normalização dos dados como etapa de pré-processamento. Essa etapa de "dimensionamento" assegura que os dados de todas as colunas estejam dentro do mesmo intervalo de valores, [-2,2]. Isso evita que a rede possa acabar "perdendo" *features* com valores muito pequenos, e que seriam relevantes durante o treinamento, em seus cálculos, privilegiando *features* com valores muito mais altos.

Após realizar a normalização e padronização dos dados, com a aplicação da função **scale** nas colunas DAP, HP e HT da base de dados, pudemos observar uma

leve melhora em algumas métricas, mas principalmente, conseguimos um resultado muito mais expressivo para o treinamento da RNA.

Ao mesmo tempo, o resultado do modelo alométrico de SPURR teve uma grande piora na métrica R2, provavelmente porque ele funciona através de uma aproximação à função de volume e a mudança dos valores interfira nos cálculos.

R2

• RandomForest: 0.8601537 1

SVM: 0.856365

• NNET: 0.4843006 1

• SSPUR: 0.5317544 🞩

SYX

RandomForest: 0.1438805

SVM: 0.1470481

• NNET: 0.4960265 **—**

• SSPUR: 0.3854788 1

SYX%

RandomForest: 11.02507%

• SVM: 11.2678%

• NNET: 38.00883% 🚚

• SSPUR: 29.53794% 👚

Escolhemos o modelo RandomForest como melhor por ter se saído ligeiramente melhor em todas as métricas calculadas.

APÊNDICE 4 - ESTATÍSTICA APLICADA I

A - ENUNCIADO

1 Gráficos e tabelas

- a) **(15 pontos)** Elaborar os gráficos box-plot e histograma das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados
- b) **(15 pontos)** Elaborar a tabela de frequencias das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados

2 Medidas de posição e dispersão

- a) **(15 pontos)** Calcular a média, mediana e moda das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados
- b) **(15 pontos)** Calcular a variância, desvio padrão e coeficiente de variação das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados

3 Testes paramétricos ou não paramétricos

a) (40 pontos) (40 pontos) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se você escolher o teste não paramétrico) das variáveis "age" (idade da esposa) e "husage" (idade do marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Obs:

- Você deve fazer os testes necessários (e mostra-los no documento pdf) para saber se você deve usar o unpaired test (paramétrico) ou o teste U de Mann-Whitney (não paramétrico), justifique sua resposta sobre a escolha.
- 2) Lembre-se de que os intervalos de confiança já são mostrados nos resultados dos testes citados no item 1 acima.

B-RESOLUÇÃO

1 Gráficos e tabelas

a) Elaborar os gráficos box-plot e histograma das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados

```
install.packages("car")
install.packages("fdth")
library(car)
library(fdth)

load("salarios.RData")

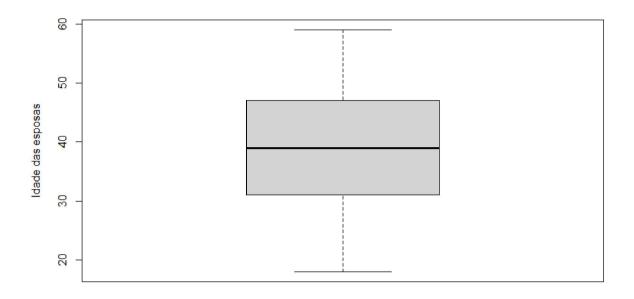
# Boxplots

Boxplot(salarios$age, data=salarios, id=list(method="y"), ylab="ldade das esposas")

Boxplot(salarios$husage, data=salarios, id=list(method="y"), ylab="ldade dos maridos")

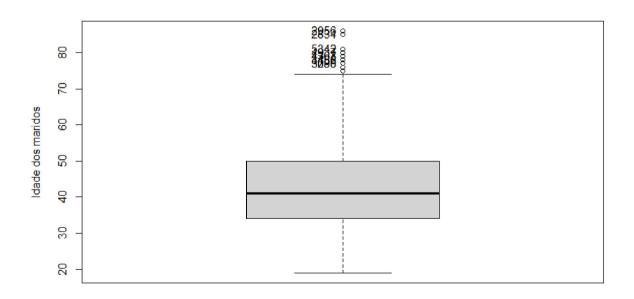
# Histogramas
hist(salarios$age, breaks = 5, xlab="ldade das esposas", ylab = "Frequency")
hist(salarios$husage, breaks = 5, xlab="ldade dos maridos", ylab = "Frequency")
```

FIGURA 13 – Boxplot Idade das esposas



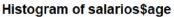
Fonte: O autor (2025).

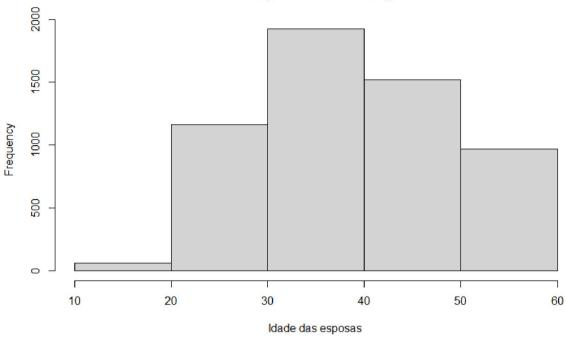
FIGURA 14 - Boxplot Idade das maridos



Fonte: O autor (2025).

FIGURA 15 – Histograma Idade das esposas

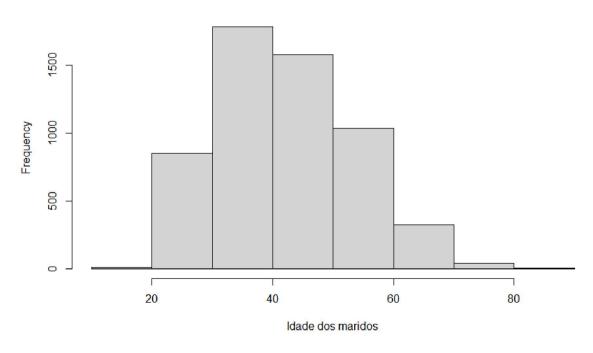




Fonte: O autor (2025).

FIGURA 16 – Histogram Idade das maridos

Histogram of salarios\$husage



Fonte: O autor (2025).

Analisando os gráficos box-plot podemos observar que as medianas das esposas

e dos maridos parecem iguais, mas os limites superiores e inferiores diferem bastante, assim como a amplitude interquartílica. No caso o gráfico dos maridos possui o limite superior maior que as esposas além de possuir outliers. Já o gráfico das esposas tem maior amplitude interquartílica que o dos maridos.

Analisando os histogramas, observamos que há uma presença maior de esposas e maridos com idades entre 20 e 50 anos. À partir deste recorte a quantidade dos maridos cai drasticamente, porém, se alongando até acima de 80 anos. Já as mulheres, tem presença considerável até 60 anos e nenhum elemento acima desta idade.

b) Elaborar a tabela de frequencias das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados

```
# TABELA DE FREQUENCIA DA VARIAVEL AGE (IDADE DA ESPOSA)
table_esposas <- fdt(salarios$age)
```

```
Class limits f rf rf(%) cf cf(%)
[17.82,20.804) 61 0.01 1.08 61
                                  1.08
[20.804,23.787) 161 0.03 2.86 222 3.94
[23.787,26.771) 312 0.06 5.54 534 9.48
[26.771,29.754) 505 0.09 8.96 1039 18.44
[29.754,32.738) 562 0.10 9.98 1601 28.42
[32.738,35.721) 571 0.10 10.13 2172 38.55
[35.721,38.705) 624 0.11 11.08 2796 49.63
[38.705,41.689) 510 0.09 9.05 3306 58.68
[41.689,44.672) 542 0.10 9.62 3848 68.30
[44.672,47.656) 432 0.08 7.67 4280 75.97
[47.656,50.639) 389 0.07 6.90 4669 82.87
[50.639,53.623) 358 0.06 6.35 5027 89.23
[53.623,56.606) 304 0.05 5.40 5331 94.62
[56.606,59.59) 303 0.05 5.38 5634 100.00
```

TABELA DE FREQUENCIA DA VARIAVEL HUSAGE (IDADE DO MARIDO)

table_maridos <- fdt(salarios\$husage)</pre>

```
Class limits f rf rf(%) cf cf(%)
[18.81,23.671) 102 0.02 1.81 102 1.81
[23.671,28.531) 466 0.08 8.27 568 10.08
[28.531,33.392) 809 0.14 14.36 1377 24.44
[33.392,38.253) 895 0.16 15.89 2272 40.33
[38.253,43.114) 917 0.16 16.28 3189 56.60
[43.114,47.974) 629 0.11 11.16 3818 67.77
[47.974,52.835) 649 0.12 11.52 4467 79.29
```

```
[52.835,57.696) 541 0.10 9.60 5008 88.89

[57.696,62.556) 394 0.07 6.99 5402 95.88

[62.556,67.417) 152 0.03 2.70 5554 98.58

[67.417,72.278) 51 0.01 0.91 5605 99.49

[72.278,77.139) 21 0.00 0.37 5626 99.86

[77.139,81.999) 6 0.00 0.11 5632 99.96

[81.999,86.86) 2 0.00 0.04 5634 100.00
```

Comparando as tabelas de frequência, podemos observar que as classes de frequências mais populosas para as esposas são de 29 a 35 anos e para os maridos de 33 a 43 anos. E a dispersão de idades é maior entre os maridos.

2 Medidas de posição e dispersão

a) Calcular a média, mediana e moda das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados

```
# MEDIA
mean(salarios$age) # 39.42758
mean(salarios$husage) # 42.45296
((39.42758/42.45296)-1)*100 # -7.126429
# A media das idades das esposas eh de aproximadamente
# 7% menor do que dos maridos.
# MEDIANA
median(salarios$age) # 39
median(salarios$husage) # 41
((39/41)-1)*100 # -4.878049
# A mediana das idades das esposas eh de aproximadamente
# 5% menor do que dos maridos.
# MODA
table(salarios$age)
subset(table(salarios$age),
  table(salarios$age) == max(table(salarios$age))) # 37
table(salarios$husage)
subset(table(salarios$husage),
  table(salarios$husage) == max(table(salarios$husage))) # 44
```

```
# A moda da idade das esposa eh de 37 anos, com 217 pessoas.
# A moda da idade dos maridos eh de 44 anos, com 201 pessoas.

((37/44)-1)*100 # -15.90909

# A moda de idade das esposas eh aproximadamente
# 16% menor do que dos maridos.
```

b) Calcular a variância, desvio padrão e coeficiente de variação das variáveis "age" (idade da esposa) e "husage" (idade do marido) e comparar os resultados

```
# VARIANCIA
var(salarios$age)
var(salarios$husage)
# A variancia das idades das esposas eh 99.75234
# A variancia das idades dos maridos en 126.0717
((99.75234/126.0717)-1)*100 # -20.8765
# A variancia das idades das esposas eh aproximadamente
# 21% menor do que a variancia das idades dos maridos
# DESVIO PADRAO
sd(salarios$age)
sd(salarios$husage)
# O desvio padrao das idades das esposas eh 9.98761
# O desvio padrao das idades dos maridos eh 11.22817
((9.98761/11.22817)-1)*100 # -11.04864
# O desvio padrao das idades das esposas eh aproximadamente
# 11% menor que dos maridos
# COEFICIENTE DE VARIACAO DAS VARIAVEIS
meanE <- mean(salarios$age)</pre>
meanM <- mean(salarios$husage)</pre>
sdE <- sd(salarios$age)
sdM <- sd(salarios$husage)</pre>
cvM <- (sdM/meanM)*100 # 26.44849
```

```
cvM
cvE <- (sdE/meanE)*100 # 25.33153
cvE

# O coeficiente de variacao do rendimento das esposas
# eh de aproximadamente 26% e dos maridos eh de
# aproximadamente 25%.
# Ambos possuem dispersao media.
```

3 Testes paramétricos ou não paramétricos

a) Testar se as médias (se você escolher o teste paramétrico) ou as medianas (se você escolher o teste não paramétrico) das variáveis "age" (idade da esposa) e "husage" (idade do marido) são iguais, construir os intervalos de confiança e comparar os resultados.

Checagens preliminares para verificar as exigências do teste: 1) Amostras independentes, 2) normalidade e 3) homogeneidade das variâncias entre grupos 4) outliers

- 1) Amostras independentes: Sim, pois os grupos de esposas e maridos provêm de indivíduos distintos.
- 2) Normalidade: Não, utilizando a regra de bolso, como o p-value eh inferior a 0.05, a variavel "idade" NÃO é normalmente distribuída.

```
# Executanto teste de normalidade de Kolmogorov-Smirnov
lillie.test(idades$idade)
# p-value = 0.0000000000000022
```

3) Homogeneidade das variâncias: Não. Conforme observa-se no teste abaixo, o valor da estatística F calculada é 0.79123. Como esse valor se encontra na região de rejeição de H0, então rejeitamos a hipótese de que as variâncias são estatisticamente iguais.

```
# Vamos usar o teste F com as seguintes hipoteses:

# H0: As variancias sao estatisticamente iguais(homogeneas)

# HA: As variancias nao sao estatisticamente iguais(homogeneas)

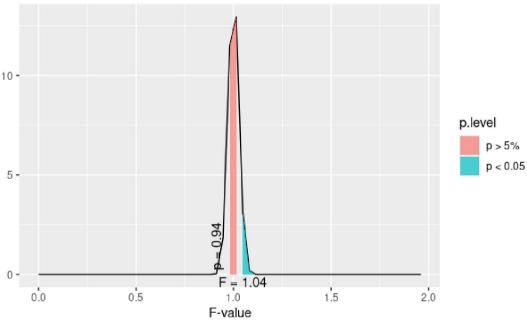
# Executando o teste F
```

```
res.ftest <- var.test(idade ~ group, data = idades)
res.ftest

# Obtendo o valor tabelado da distribuicao F
qf(0.95, 5633, 5633)
# temos F=1,04
# para a outra cauda temos:
1/1.04
# F = 0,96

# Vamos construir o grafico:
dist_f(f = 1.04, deg.f1 = 5633, deg.f2 = 5633)
dist_f(f = 0.96, deg.f1 = 5633, deg.f2 = 5633)
```

FIGURA 17 – Gráfico da distribuição F



Fonte: O autor (2025).

4) Outliers: Sim. Ao observar o boxplot dos maridos percebe-se alguns outliers.

Dada as checagens anteriores de que a distribuição da variável idade NÃO é normalmente distribuída, as variâncias não serem estatisticamente iguais e também haverem outliers, não podemos usar um teste paramétrico para testar os dados, portanto utilizaremos o teste não paramétrico Mann Whitney U Test.

Queremos saber se a idade mediana das esposas difere da idade mediana dos maridos. Portanto, testando se a idade mediana dos maridos é igual a idade mediana das esposas temos as seguintes hipóteses:

- H0: A idade mediana dos maridos é estatisticamente igual a idade mediana das esposas
- Ha: A idade mediana dos maridos n\u00e3o \u00e9 estatisticamente igual a idade mediana das esposas

```
# Executando o teste Mann Whitney U Test

res <- wilcox.test(idade ~ group, data = idades,

exact = FALSE, conf.int=TRUE)

res
```

```
Wilcoxon rank sum test with continuity correction

data: idade by group

W = 13619912, p-value < 0.0000000000000022

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-3.000024 -2.000033

sample estimates:

difference in location

-2.999966
```

O p-value do teste eh 0.00000000000000022, que eh menor que o nivel de significancia 0,05. Podemos concluir que a idade mediana dos maridos é estatisticamente diferente da idade mediana das esposas (rejeitamos H0). O intervalo de confianca da diferenca entre as medianas esta entre 3.000024 e 2.000033, com uma mediana de 2.999966.

APÊNDICE 5 - ESTATÍSTICA APLICADA II

A - ENUNCIADO

1 Regressões Ridge, Lasso e ElasticNet

a) (100 pontos) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente "lwage" (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa). No pdf você deve colocar a rotina utilizada, mostrar em uma tabela as estatísticas dos modelos (RMSE e R²) e concluir qual o melhor modelo entre os três, e mostrar o resultado da predição com intervalos de confiança para os seguintes valores:

husage = 40(anos – idade do marido) (marido não possui união estável) husunion = 0husearns = 600(US\$ renda do marido por semana) huseduc = 13(anos de estudo do marido) husblck = 1(o marido é preto) hushisp = 0(o marido não é hispânico) hushrs = 40(horas semanais de trabalho do marido) kidge6 = 1(possui filhos maiores de 6 anos) age = 38(anos – idade da esposa) black = 0(a esposa não é preta) educ = 13(anos de estudo da esposa) hispanic = 1(a esposa é hispânica) union = 0(esposa não possui união estável) exper = 18(anos de experiência de trabalho da esposa) kidlt6 = 1(possui filhos menores de 6 anos)

obs: lembre-se de que a variável dependente "lwage" já está em logarítmo, portanto voçê não precisa aplicar o logaritmo nela para fazer as regressões, mas é necessário aplicar o antilog para obter o resultado da predição.

B-RESOLUÇÃO

a) Fazer as regressões Ridge, Lasso e ElasticNet com a variável dependente "lwage" (salário-hora da esposa em logaritmo neperiano) e todas as demais variáveis da base de dados são variáveis explicativas (todas essas variáveis tentam explicar o salário-hora da esposa).

PADRONIZAÇÃO DOS DADOS

```
cols = c('husage', 'husearns', 'huseduc', 'hushrs', 'earns', 'age', 'educ', '
    exper', 'lwage')
pre_proc_val <- preProcess(train[,cols], method = c("center", "scale"))
train[,cols] = predict(pre_proc_val, train[,cols])
test[,cols] = predict(pre proc val, test[,cols])
cols_reg = c('husage', 'husunion', 'husearns', 'huseduc', 'husblck', 'hushisp',
    'hushrs'.
'kidge6', 'age', 'black', 'educ', 'hispanic', 'union', 'exper', 'kidlt6', 'lwage')
dummies <- dummy Vars(Iwage~husage+husunion+husearns+huseduc+
    husblck+
hushisp+hushrs+kidge6+age+black+educ+hispanic+union+exper+kidlt6,
data = dat[,cols reg])
train_dummies = predict(dummies, newdata = train[,cols_reg])
test_dummies = predict(dummies, newdata = test[,cols_reg])
x train = as.matrix(train dummies)
y train = train$lwage
x test = as.matrix(test dummies)
y test = test$lwage
```

REGRESSÃO RIDGE

Visualizando o resultado da estimativa dos coeficientes percebemos que nem todas as variáveis explicam a variável dependente. Infelizmente as que explicam tem valor explicativo muito baixo, sendo somente as com certa relevância "husearns", "husblck", "hushisp", "kidge6", "black", "educ" e "union".

```
15 x 1 sparse Matrix of class "dgCMatrix"
                 s0
         0.02651324
husage
husunion -0.04174920
husearns 0.23671354
huseduc 0.04804650
husblck 0.24319544
hushisp 0.11457810
hushrs -0.07293064
kidge6
        -0.16442536
age
         0.04466390
black
        -0.29066663
         0.30859463
educ
hispanic -0.09979930
union
        0.41614645
exper
        -0.01411404
kidlt6 -0.02475760
```

REGRESSÃO LASSO

```
lambdas <- 10^seq(5, -5, by = -.1)

lasso_lamb <- cv.glmnet(x_train, y_train, alpha = 1, lambda = lambdas, standardize = TRUE, nfolds = 10)
```

Visualizando o resultado da estimativa dos coeficientes percebemos que nem todas as variáveis explicam a variável dependente. Infelizmente as que explicam tem valor explicativo muito baixo, sendo somente as com certa relevância "husearns", "husblck", "hushisp", "kidge6", "black", "educ" e "union". Enquanto a variável "exper" teve tão pouco valor explicativo que foi a zero.

```
15 x 1 sparse Matrix of class "dgCMatrix"
husage
          0.02406805
husunion -0.04144957
husearns 0.23903324
huseduc 0.04539082
husblck 0.26797943
hushisp 0.11329929
hushrs
         -0.07369940
kidge6
        -0.16534640
age
         0.03331493
black
         -0.31556379
educ
          0.31552507
hispanic -0.09716331
union
          0.41807407
exper
kidlt6
        -0.02464497
```

REGRESSÃO ELASTICNET

```
train_cont <- trainControl(method = "repeatedcv", number = 10,
```

```
repeats = 5,
                search = "random",
                verboselter = FALSE)
elastic reg <- train(lwage~husage+husunion+husearns+huseduc+husblck+
    hushisp+
hushrs+kidge6+age+black+educ+hispanic+union+exper+kidlt6,
            data = train,
            method = "glmnet",
            tuneLength = 20,
            trControl = train_cont)
# O melhor parametro alpha escolhido eh:
     alpha
              lambda
#15 0.8015939 0.01293922
elastic reg$bestTune
# E os parametros sao:
#elastic_reg[["finalModel"]][["beta"]]
predictions_train_elasticnet <- predict(elastic_reg, x_train)</pre>
```

COMPARANDO RESULTADOS

```
eval_results <- function(true, predicted, df) {
    SSE <- sum((predicted - true)^2)
    SST <- sum((true - mean(true))^2)
    R_square <- 1 - SSE / SST
    RMSE = sqrt(SSE/nrow(df))

# As metricas de performace do modelo:
    data.frame(
    RMSE = RMSE,
    Rsquare = R_square
    )
}

eval_with_params <- function(model, best_lambda = NULL) {
    husage = (40-pre_proc_val[["mean"]][["husage"]])/pre_proc_val[["std"]][["husage"]])
    husunion = 0
```

```
husearns = (600-pre_proc_val[["mean"]][["husearns"]])/
pre_proc_val[["std"]][["husearns"]]
huseduc = (13-pre proc val[["mean"]][["huseduc"]])/pre proc val[["std"]][["
  huseduc"]]
husblck = 1
hushisp = 0
hushrs = (40-pre_proc_val[["mean"]][["hushrs"]])/pre_proc_val[["std"]][["
  hushrs"]]
kidge6 = 1
age = (38-pre_proc_val[["mean"]][["age"]])/pre_proc_val[["std"]][["age"]]
black = 0
educ = (13-pre_proc_val[["mean"]][["educ"]])/pre_proc_val[["std"]][["educ"]]
hispanic = 1
union = 0
exper = (18-pre_proc_val[["mean"]][["exper"]])/pre_proc_val[["std"]][["exper
  "]]
kidlt6 = 1
our_pred = as.matrix(data.frame(husage=husage,
                    husunion=husunion,
                    husearns=husearns,
                    huseduc=huseduc,
                    husblck=husblck,
                    hushisp=hushisp,
                    hushrs=hushrs,
                    kidge6=kidge6,
                    age=age,
                    black=black,
                    educ=educ,
                    hispanic=hispanic,
                    union=union,
                    exper=exper,
                    kidlt6=kidlt6))
prediction <- predict(model, s = best_lambda, newx = our_pred)</pre>
if (is.null(best_lambda)) {
 prediction <- predict(model, our_pred)</pre>
}
wage_pred=(prediction*pre_proc_val[["std"]][["lwage"]])+
pre_proc_val[["mean"]][["lwage"]]
```

```
cat("Predicao: ", wage_pred, "\n")
 cat("Predicao exp: ", exp(wage_pred), "\n")
 return(wage_pred)
show_values <- function(wage_pred) {</pre>
 # O intervalo de confianca
 n <- nrow(train)
 m <- wage_pred
 s <- pre_proc_val[["std"]][["lwage"]]
 dam <- s/sqrt(n)
 Cllwr <- m + (qnorm(0.025))∗dam # intervalo inferior
 Clupr <- m - (qnorm(0.025))*dam # intervalo superior
 cat("Intervalo inferior: ", Cllwr, "\n")
 cat("Intervalo superior: ", Clupr, "\n")
 cat("Intervalo inferior exp: ", exp(Cllwr), "\n")
 cat("Intervalo superior exp: ", exp(Clupr), "\n")
# ----- RIDGE ----- #
eval_results(y_train, predictions_train_ridge, train)
predictions_test <- predict(ridge_reg, s = best_lambda_ridge, newx = x_
    test)
eval_results(y_test, predictions_test, test)
predict_our_ridge <- eval_with_params(ridge_reg, best_lambda = best_</pre>
    lambda_ridge)
show_values(predict_our_ridge)
# ----- LASSO ----- #
eval_results(y_train, predictions_train_lasso, train)
```

Observando a Tabela 3 abaixo observamos que os valores para as métricas de todos os modelos são muito próximas e também não muito boas, não descartando a hipótese de overfitting ou underfitting. Mesmo assim, a título de comparação observamos que o modelo Lasso se saiu ligeiraimente melhor do que os outros para o conjunto de dados de treinamento, enquanto o modelo Ridge se saiu ligeiramente melhor nos dados de teste.

TABELA 3 – Tabela de métricas dos modelos

	Treinamento		Teste	
	RMSE	Rsquare	RMSE	Rsquare
Ridge	0.8485564	0.2796022	0.8488229	0.3004756
Lasso	0.8485375	0.2796343	0.8488541	0.3004242
ElasticNet	0.8495878	0.2778498	0.8490653	0.3000762

Fonte: O autor (2025).

Na Tabela 4 pode-se observar os valores preditos pelos modelos para as váriaveis especificadas inicialmente.

TABELA 4 – Tabela de Predição e Intervalos de Confiança

	Predição	Intervalos de Confiança
Ridge	8.633904	8.442068 8.8301
Lasso	8.746603	8.552263 8.945359
ElasticNet	8.160874	7.979548 8.34632

Fonte: O autor (2025).

APÊNDICE 6 - ARQUITETURA DE DADOS

A - ENUNCIADO

1 Construção de Características: Identificador automático de idioma

O problema consiste em criar um modelo de reconhecimento de padrões que dado um texto de entrada, o programa consegue classificar o texto e indicar a língua em que o texto foi escrito.

Parta do exemplo (notebook produzido no Colab) que foi disponibilidade e crie as funções para calcular as diferentes características para o problema da identificação da língua do texto de entrada.

Nessa atividade é para "construir características".

Meta: a acurácia deverá ser maior ou igual a 70%.

Essa tarefa pode ser feita no Colab (Google) ou no Jupiter, em que deverá exportar o notebook e imprimir o notebook para o formato PDF. Envie no UFPR Virtual os dois arquivos.

2 Melhore uma base de dados ruim

Escolha uma base de dados pública para problemas de classificação, disponível ou com origem na UCI Machine Learning.

Use o mínimo de intervenção para rodar a SVM e obtenha a matriz de confusão dessa base.

O trabalho começa aqui, escolha as diferentes tarefas discutidas ao longo da disciplina, para melhorar essa base de dados, até que consiga efetivamente melhorar o resultado.

Considerando a acurácia para bases de dados balanceadas ou quase balanceadas, se o percentual da acurácia original estiver em até 85%, a meta será obter 5%. Para bases com mais de 90% de acurácia, a meta será obter a melhora em pelo menos 2 pontos percentuais (92% ou mais).

Nessa atividade deverá ser entregue o script aplicado (o notebook e o PDF correspondente).

B - RESOLUÇÃO

1 Construção de Características: Identificador automático de idioma

Identificador automático de idioma

Problema: Dados um texto de entrada, é possível identificar em qual língua o texto está escrito?

Entrada: "texto qualquer"

Saída: português ou inglês ou francês ou italiano ou...

O processo de Reconhecimento de Padrões

O objetivo desse trabalho é demonstrar o processo de "construção de atributos" e como ele é fundamental para o **Reconhecimento de Padrões (RP)**.

Primeiro um conjunto de "amostras" previamente conhecido (classificado).

```
#
# amostras de texto em diferentes línguas
ingles = [
"Hello, how are you?",
"I love to read books.",
"The weather is nice today.",
"Where is the nearest restaurant?",
"What time is it?",
"I enjoy playing soccer.",
"Can you help me with this?",
"I'm going to the movies tonight.",
"This is a beautiful place.",
"I like listening to music.",
"Do you speak English?",
"What is your favorite color?",
"I'm learning to play the guitar.",
"Have a great day!",
"I need to buy some groceries.",
"Let's go for a walk.",
"How was your weekend?",
"I'm excited for the concert.",
"Could you pass me the salt, please?",
"I have a meeting at 2 PM.",
"I'm planning a vacation.",
"She sings beautifully.",
"The cat is sleeping.",
"I want to learn French.",
"I enjoy going to the beach.",
"Where can I find a taxi?",
```

```
"I'm sorry for the inconvenience.",
"I'm studying for my exams.",
"I like to cook dinner at home.",
"Do you have any recommendations for restaurants?",
٦
espanhol = [
"Hola, ¿cómo estás?",
"Me encanta leer libros.",
"El clima está agradable hoy.",
"¿Dónde está el restaurante más cercano?",
"¿Qué hora es?",
"Voy al parque todos los días.",
"¿Puedes ayudarme con esto?",
"Me gustaría ir de vacaciones.",
"Este es mi libro favorito.",
"Me gusta bailar salsa.",
"; Hablas español?",
"¿Cuál es tu comida favorita?",
"Estoy aprendiendo a tocar el piano.",
"Que tengas un buen día!",
"Necesito comprar algunas frutas.",
"Vamos a dar un paseo.",
"¿Cómo estuvo tu fin de semana?",
"Estoy emocionado por el concierto.",
"¿Me pasas la sal, por favor?",
"Tengo una reunión a las 2 PM.",
"Estoy planeando unas vacaciones.",
"Ella canta hermosamente.",
"El perro está jugando.",
"Quiero aprender italiano.",
"Disfruto ir a la playa.",
";Dónde puedo encontrar un taxi?",
"Lamento las molestias.",
"Estoy estudiando para mis exámenes.",
"Me gusta cocinar la cena en casa.",
"¿Tienes alguna recomendación de restaurantes?",
]
portugues = [
"Estou indo para o trabalho agora.",
"Adoro passar tempo com minha família.",
```

```
"Preciso comprar leite e pão.",
"Vamos ao cinema no sábado.",
"Gosto de praticar esportes ao ar livre.",
"O trânsito está terrível hoje.",
"A comida estava deliciosa!",
"Você já visitou o Rio de Janeiro?",
"Tenho uma reunião importante amanhã.",
"A festa começa às 20h.",
"Estou cansado depois de um longo dia de trabalho.",
"Vamos fazer um churrasco no final de semana.",
"O livro que estou lendo é muito interessante.",
"Estou aprendendo a cozinhar pratos novos.",
"Preciso fazer exercícios físicos regularmente.",
"Vou viajar para o exterior nas férias.",
"Você gosta de dançar?",
"Hoje é meu aniversário!",
"Gosto de ouvir música clássica.",
"Estou estudando para o vestibular.",
"Meu time de futebol favorito ganhou o jogo.",
"Quero aprender a tocar violão.",
"Vamos fazer uma viagem de carro.",
"O parque fica cheio aos finais de semana.",
"O filme que assisti ontem foi ótimo.",
"Preciso resolver esse problema o mais rápido possível.",
"Adoro explorar novos lugares.",
"Vou visitar meus avós no domingo.",
"Estou ansioso para as férias de verão.",
"Gosto de fazer caminhadas na natureza.",
"O restaurante tem uma vista incrível.",
"Vamos sair para jantar no sábado.",
```

A "amostras" de texto precisa ser "transformada" em padrões.

Um padrão é um conjunto de características, geralmente representado por um vetor e um conjunto de padrões no formato de tabela. Onde cada linha é um padrão e as colunas as características e, geralmente, na última coluna a classe.

```
import random

pre_padroes = []

for frase in ingles:
    pre_padroes.append( [frase, 'inglês'])
```

```
for frase in espanhol:
    pre_padroes.append( [frase, 'espanhol'])

for frase in portugues:
    pre_padroes.append( [frase, 'português'])

random.shuffle(pre_padroes)

import pandas as pd
dados = pd.DataFrame(pre_padroes)
dados
```

TABELA 5 – Frases com seus respectivos idiomas

ID	Frase	ldioma
0	Me gusta cocinar la cena en casa.	espanhol
1	Vamos fazer uma viagem de carro.	português
2	Do you have any recommendations for restau-	inglês
	rants?	
3	Quero aprender a tocar violão.	português
4	Hola, ¿cómo estás?	espanhol

87	Vamos sair para jantar no sábado.	português
88	Estoy emocionado por el concierto.	espanhol
89	Estoy aprendiendo a tocar el piano.	espanhol
90	Preciso fazer exercícios físicos regularmente.	português
91	Quiero aprender italiano.	espanhol

Construção dos atributos

Esse é o coração desse trabalho e que deverá ser desenvolvido por vocês. Pensem em como podemos "medir"cadas frase/sentença e extrair características que melhorem o resultado do processo de identificação.

Após a criação de cada novo atributo, execute as etapas seguintes e registre as métricas da matriz de confusão. Principalmente acurácia e a precisão.

```
# a entrada é o vetor pre_padroes e a saída desse passo deverá
    ser "padrões"
import re
from sklearn.feature_extraction.text import CountVectorizer

def tamanhoMedioFrases(texto):
  palavras = re.split("\s",texto)
```

```
#print(palavras)
  tamanhos = [len(s) for s in palavras if len(s)>0]
  #print(tamanhos)
  soma = 0
  for t in tamanhos:
    soma=soma+t
  return soma / len(tamanhos)
def temCaractere(texto, simbolo):
  return int(simbolo in texto)
def gerarNGrams(list_textos, n, max_f):
  vec = CountVectorizer(analyzer='char', ngram_range=(n,n),
   max_features=max_f)
  ngrams = vec.fit_transform(list_textos)
  feature_names = vec.get_feature_names_out()
  return feature_names
def extraiCaracteristicas(frase):
  # frase é um vetor [ 'texto', 'lingua']
  texto = frase[0]
 pattern_regex = re.compile('[^\w+]', re.UNICODE)
  texto = re.sub(pattern_regex,' ',texto)
  #print(texto)
  caracteristica1=tamanhoMedioFrases(texto)
  #ESTRATEGIA 1: buscando caracteres especiais
  caracteristica2=temCaractere(texto, 'c')
  caracteristica3=temCaractere(texto, '\tilde{n}')
  caracteristica12=temCaractere(texto, 'a')
  caracteristica13=temCaractere(texto, 'on')
  caracteristica14=temCaractere(texto, 'a')
  caracteristica15=temCaractere(texto, 'ay')
  caracteristica16=temCaractere(texto, 'yo')
  #ESTRATEGIA 2: buscando caracteres iguais sucessivos
  caracteristica4=temCaractere(texto, 'cc')
  caracteristica5=temCaractere(texto, 'oo')
  caracteristica6=temCaractere(texto, '11')
  caracteristica7=temCaractere(texto, 'ss')
  caracteristica8=temCaractere(texto, 'mm')
```

```
caracteristica9=temCaractere(texto, 'nn')
  caracteristica10=temCaractere(texto, 'rr')
  caracteristica11=temCaractere(texto, 'ee')
  #ESTRATEGIA 3: buscando ocorrencia dos ngrams mais frequentes
   por lingua
  features_ngrams = []
  for n in ngrams_populares_p_lingua:
    features_ngrams.append(int(n in texto))
  # acrescente as suas funcoes no vetor padrao
  padrao = [caracteristica1, caracteristica2, caracteristica3,
            caracteristica4, caracteristica5, caracteristica6,
            caracteristica7, caracteristica8, caracteristica9,
            caracteristica10, caracteristica11,
            caracteristica12, caracteristica13, caracteristica14,
    caracteristica15, caracteristica16,
            *features_ngrams,
            frase[1]]
  return padrao
def geraPadroes(frases):
 padroes = []
  for frase in frases:
   padrao = extraiCaracteristicas(frase)
   padroes.append(padrao)
  return padroes
#GERA 88 1,2,3,4-GRAMS MAIS COMUNS PARA CADA LINGUA
#set para evitar repetidos
ngrams_populares_p_lingua = set()
max_features = 38 # ou 88
for nsize in range(1, 5): # ou 4
  ngrams_populares_p_lingua.update(gerarNGrams(portugues, nsize,
   max_features))
 ngrams_populares_p_lingua.update(gerarNGrams(ingles, nsize,
   max_features))
 ngrams_populares_p_lingua.update(gerarNGrams(espanhol, nsize,
   max_features))
```

Treinando o modelo com SVM

Separando o conjunto de treinamento do conjunto de testes

```
from sklearn.model_selection import train_test_split
import numpy as np

#from sklearn.metrics import confusion_matrix

vet = np.array(padroes)
classes = vet[:,-1]  # classes = [p[-1] for p in padroes]
#print(classes)
padroes_sem_classe = vet[:,0:-1]
#print(padroes_sem_classe)

X_train, X_test, y_train, y_test = train_test_split(
    padroes_sem_classe, classes, test_size=0.20, stratify=classes
    )
```

Com os conjuntos separados, podemos "treinar"o modelo usando a SVM.

```
from sklearn import svm
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report

treinador = svm.SVC() #algoritmo escolhido
modelo = treinador.fit(X_train, y_train)
```

Acuracia nos ([24 0 0] [0 24 0] [1 0 24]]	dados de tre	inamento:	98.63%		
	precision	recall	f1-score	support	
espanhol	0.96	1.00	0.98	24	
ingles	1.00	1.00	1.00	24	
portugues	1.00	0.96	0.98	25	
accuracy			0.99	73	
macro avg	0.99	0.99	0.99	73	
weighted avg	0.99	0.99	0.99	73	
metricas mais [[6 0 0] [0 5 1] [4 0 3]]	confiaveis				
[0 0]	precision	recall	f1-score	support	
espanhol	0.60	1.00	0.75	6	

ingles	1.00	0.83	0.91	6	
portugues	0.75	0.43	0.55	7	
accuracy			0.74	19	
macro avg	0.78	0.75	0.73	19	
weighted avg	0.78	0.74	0.72	19	

2 Melhore uma base de dados ruim

```
import numpy as np
import pandas as pd

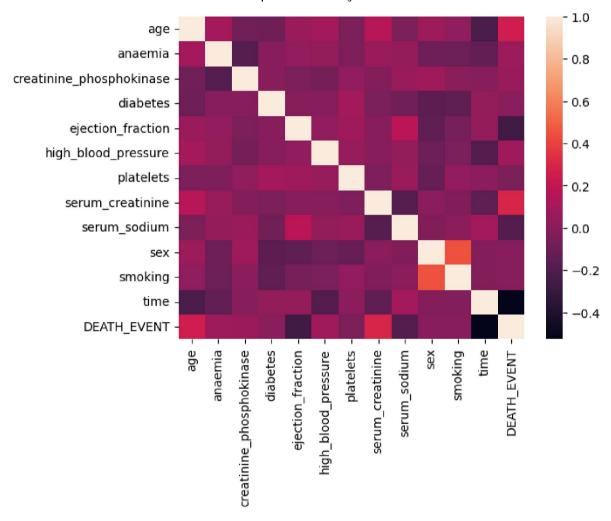
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.preprocessing import scale
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import StandardScaler

df = pd.read_csv('heart_failure_clinical_records_dataset.csv')
df.describe()
```

Stat	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets
count	299.000	299.000	299.000	299.000	299.000	299.000	299.000
mean	60.834	0.431	581.839	0.418	38.084	0.351	263358.029
std	11.895	0.496	970.288	0.494	11.835	0.478	97804.237
min	40.000	0.000	23.000	0.000	14.000	0.000	25100.000
25%	51.000	0.000	116.500	0.000	30.000	0.000	212500.000
50%	60.000	0.000	250.000	0.000	38.000	0.000	262000.000
75%	70.000	1.000	582.000	1.000	45.000	1.000	303500.000
max	95.000	1.000	7861.000	1.000	80.000	1.000	850000.000

Stat	serum_creatinine	serum_sodium	sex	smoking	time	DEATH_EVENT
count	299.000	299.000	299.000	299.000	299.000	299.000
mean	1.394	136.625	0.649	0.321	130.261	0.321
std	1.035	4.412	0.478	0.468	77.614	0.468
min	0.500	113.000	0.000	0.000	4.000	0.000
25%	0.900	134.000	0.000	0.000	73.000	0.000
50%	1.100	137.000	1.000	0.000	115.000	0.000
75%	1.400	140.000	1.000	1.000	203.000	1.000
max	9.400	148.000	1.000	1.000	285.000	1.000

FIGURA 18 - Mapa de correlação dados clínicos



```
X_orig = df.iloc[:,:-1]
y_orig = df['DEATH_EVENT']

X_train_orig, X_test_orig, y_train, y_test = train_test_split(
    X_orig, y_orig, test_size=0.20, stratify=y_orig,random_state
    =10)

treinador = svm.SVC() #algoritmo escolhido
```

Matriz de co	onfusao - com	os dados	ORIGINAIS	usados no	TREINAMENTO
	precision	recall	f1-score	support	
C	0.68	1.00	0.81	162	
1	0.00	0.00	0.00	77	
accuracy	,		0.68	239	
macro avg	0.34	0.50	0.40	239	
weighted avg	0.46	0.68	0.55	239	
Matriz de co	onfusao - com	os dados	ORIGINAIS	usados par	ra TESTES
	precision	recall	f1-score	support	
C	0.68	1.00	0.81	41	
1	0.00	0.00	0.00	19	
accuracy	•		0.68	60	
macro avg	0.34	0.50	0.41	60	
weighted avg	0.47	0.68	0.55	60	

```
y = df['DEATH_EVENT']
X = df.drop(['diabetes', 'time', 'DEATH_EVENT'],axis = 1)
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
   test_size=0.20, stratify=y_orig,random_state=10)
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
treinador = svm.SVC() #algoritmo escolhido
modelo_orig = treinador.fit(X_train_scaled, y_train)
# predição com os mesmos dados usados para treinar
y_pred = modelo_orig.predict(X_train_scaled)
cm_orig_train = confusion_matrix(y_train, y_pred)
print('Matriz de confusao - com os dados escalonados e de alta
   correlação usados no TREINAMENTO')
#print(cm_orig_train)
print(classification_report(y_train, y_pred, ))
# predição com os mesmos dados usados para testar
y2_pred = modelo_orig.predict(X_test_scaled)
cm_orig_test = confusion_matrix(y_test, y2_pred)
print('Matriz de confusao - com os dados escalonados e de alta
   correlacao usados no TESTE')
#print(cm_orig_test)
print(classification_report(y_test, y2_pred))
```

Matriz de con	fusao – com o	s dados	escalonados	e de alta
correlacao	usados no Tl	REINAMEN	TO	
	precision	recall	f1-score	support
_				
0	0.83	0.96	0.89	162
1	0.88	0.60	0.71	77
accuracy			0.85	239
macro avg	0.86	0.78	0.80	239
weighted avg	0.85	0.85	0.84	239
Matriz de con	fusao - com o	s dados	escalonados	e de alta
correlacao	usados no Tl	ESTE		
	precision	recall	f1-score	support

0	0.78	0.85	0.81	41	
1	0.60	0.47	0.53	19	
accuracy			0.73	60	
macro avg	0.69	0.66	0.67	60	
weighted avg	0.72	0.73	0.72	60	

APÊNDICE 7 - ASPECTOS FILOSÓFICOS E ÉTICOS DA IA

A - ENUNCIADO

Título do Trabalho: "Estudo de Caso: Implicações Éticas do Uso do ChatGPT"

Trabalho em Grupo: O trabalho deverá ser realizado em grupo de alunos de no máximo seis (06) integrantes.

Objetivo do Trabalho: Investigar as implicações éticas do uso do ChatGPT em diferentes contextos e propor soluções responsáveis para lidar com esses dilemas.

Parâmetros para elaboração do Trabalho:

- 1. Relevância Ética: O trabalho deve abordar questões éticas significativas relacionadas ao uso da inteligência artificial, especialmente no contexto do ChatGPT. Os alunos devem identificar dilemas éticos relevantes e explorar como esses dilemas afetam diferentes partes interessadas, como usuários, desenvolvedores e a sociedade em geral.
- 2. Análise Crítica: Os alunos devem realizar uma análise crítica das implicações éticas do uso do ChatGPT em estudos de caso específicos. Eles devem examinar como o algoritmo pode influenciar a disseminação de informações, a privacidade dos usuários e a tomada de decisões éticas. Além disso, devem considerar possíveis vieses algorítmicos, discriminação e questões de responsabilidade.
- 3. Soluções Responsáveis: Além de identificar os desafios éticos, os alunos devem propor soluções responsáveis e éticas para lidar com esses dilemas. Isso pode incluir sugestões para políticas, regulamentações ou práticas de design que promovam o uso responsável da inteligência artificial. Eles devem considerar como essas soluções podem equilibrar os interesses de diferentes partes interessadas e promover valores éticos fundamentais, como transparência, justiça e privacidade.
- 4. Colaboração e Discussão: O trabalho deve envolver discussões em grupo e colaboração entre os alunos. Eles devem compartilhar ideias, debater diferentes pontos de vista e chegar a conclusões informadas através do diálogo e da reflexão mútua. O estudo de caso do ChatGPT pode servir como um ponto de partida para essas discussões, incentivando os alunos a aplicar conceitos éticos e legais aprendidos ao analisar um caso concreto.
- **5. Limite de Palavras**: O trabalho terá um limite de 6 a 10 páginas teria aproximadamente entre 1500 e 3000 palavras.
- **6. Estruturação Adequada**: O trabalho siga uma estrutura adequada, incluindo introdução, desenvolvimento e conclusão. Cada seção deve ocupar uma parte proporci-

onal do total de páginas, com a introdução e a conclusão ocupando menos espaço do que o desenvolvimento.

- **7. Controle de Informações**: Evitar incluir informações desnecessárias que possam aumentar o comprimento do trabalho sem contribuir significativamente para o conteúdo. Concentre-se em informações relevantes, argumentos sólidos e evidências importantes para apoiar sua análise.
- 8. Síntese e Clareza: O trabalho deverá ser conciso e claro em sua escrita. Evite repetições desnecessárias e redundâncias. Sintetize suas ideias e argumentos de forma eficaz para transmitir suas mensagens de maneira sucinta.
- **9. Formatação Adequada**: O trabalho deverá ser apresentado nas normas da ABNT de acordo com as diretrizes fornecidas, incluindo margens, espaçamento, tamanho da fonte e estilo de citação. Deve-se seguir o seguinte template de arquivo: https://bibliotecas.ufpr.br/wp-content/uploads/2022/03/template-artigo-de-periodico.docx

B-RESOLUÇÃO

Estudo de Caso: Implicações Éticas do Uso do ChatGPT

RESUMO

O rápido avanço da inteligência artificial (IA) levou ao desenvolvimento de modelos de linguagem sofisticados como o ChatGPT. Este trabalho explora as implicações éticas do uso de tal ferramenta, focando em seu impacto em áreas como educação, ambiente de trabalho e meio artístico. Ao examinar tais estudos de caso específicos, este trabalho identificou alguns dilemas éticos significativos e analisou seus efeitos sobre diferentes partes interessadas. Além disso, o presente trabalho propõe algumas possíveis soluções responsáveis para que esses dilemas sejam superados, promovendo um uso mais positivo para a sociedade em geral. O objetivo é fornecer uma compreensão abrangente do panorama ético em torno do ChatGPT e sugerir políticas que garantam seu uso benéfico e equitativo na sociedade.

Palavras-chave: Ética. ChatGPT. Inteligência artificial. Análise crítica. Soluções responsáveis.

ABSTRACT

The rapid advance of artificial intelligence (AI) has led to the development of sophisticated language models such as ChatGPT. This paper explores the ethical implications of using such a tool, focusing on its impact in areas such as education, the workplace and the arts. By examining such specific case studies, this paper has identified some significant ethical dilemmas and analyzed their effects on different

stakeholders. In addition, this paper proposes some possible responsible solutions so that these dilemmas can be overcome, promoting a more positive use for society in general. The aim is to provide a comprehensive understanding of the ethical landscape surrounding ChatGPT and to suggest policies that ensure its beneficial and equitable use in society.

Keywords: Ethics. ChatGPT. Artificial intelligence. Critical analysis. Responsible solutions.

1 INTRODUÇÃO

A inteligência artificial (IA) tem evoluído rapidamente e ganhado muita popularidade recentemente. Hoje em dia, falar sobre IA é um assunto muito comum, diferente de alguns poucos anos atrás, e grande parte das pessoas acaba por utilizar serviços que utilizam inteligência artificial de alguma forma ou de outra mesmo sem saber.

Esse rápido avanço abre espaço para discussões éticas e filosóficas de como essa tecnologia pode e poderá afetar a vida das pessoas no futuro. Uma das aplicações recentes mais notáveis é o ChatGPT, uma tecnologia de IA capaz de gerar textos e realizar conversas de maneira natural.

Este trabalho tem como objetivo explorar algumas implicações éticas do uso do ChatGPT em diversos cenários, tais como na educação, no ambiente de trabalho e também no meio artístico. Além de explorar tais implicações também investigar alguns dos dilemas que a inteligência artificial em geral apresenta hoje e por fim propor algumas soluções responsáveis para os problemas identificados.

A análise será estruturada em duas seções principais: análise crítica, onde abordaremos estudos de casos específicos para ilustrar os impactos éticos da tecnologia; e soluções responsáveis, onde serão propostas medidas para mitigar os desafios identificados e promover o uso junto e transparente do ChatGPT em tais estudos de caso. Ao realizar essa análise, esperamos contribuir para um entendimento mais profundo das implicações éticas da inteligência artificial e para o desenvolvimento de boas práticas que garantam o seu uso benéfico na sociedade, minimizando os potenciais usos negativos.

1.1 CHATGPT

O ChatGPT é um modelo de inteligência artificial que pode entender e gerar textos como se fosse uma pessoal real. Ele foi criado para conversar com as pessoas, responder perguntas, fornecer informações e até mesmo ajudar em algumas tarefas. A tecnologia de inteligência artificial permite que o ChatGPT aprenda com diversos exemplos de conversas e textos, o que o ajuda a fornecer respostas úteis e em grande parte também corretas.

De maneira mais técnica, o ChatGPT é um modelo de linguagem treinando para gerar texto e foi otimizado para diálogos, utilizando aprendizado por reforço, com feedback humano, um método que utiliza demonstrações humanas e comparações de preferências para orientar o modelo em direção ao comportamento desejado o (OpenAI, 2024).

2 ANÁLISE CRÍTICA

2.1 ESTUDO DE CASO 1: USO NA EDUCAÇÃO

No contexto educacional o ChatGPT pode ser uma ferramenta valiosa para auxiliar professores no ensino dos alunos. Tal ferramenta é capaz de gerar respostas de forma rápida e diferentes, ajudando na resolução de problemas. Entretanto, há preocupações em relação ao seu uso, tanto para os corpo docente como para o discente, possibilitando a geração de um determinado nível de dependência dessa tecnologia, podendo comprometer suas capacidades intelectuais, pensamento crítico e criatividade, sem o uso da ferramenta. O processo de transformação, principalmente o digital, exige dos profissionais envolvidos com a educação, um olhar diferenciado nos planejamentos e suas respectivas aplicações, pois há muitos que são analfabetos funcionais em conduzir determinadas metodologias no processo ensino-aprendizagem, um exemplo, são as metodologias ativas, em que há uma interpretação equivocada entre gamificação e jogos.

Nesse processo, o papel do professor não será como o de outrora em que tal personagem era a única fonte de conhecimento. Hoje e no futuro se desenham cenários em que a docência exercerá muito mais o papel de mediação pedagógica entre os objetos de conhecimento e os estudantes. Por isso, o educar pela pesquisa e extensão se tornam tão significativos (Cassol, 2023).

Para que se tenha uma qualidade na construção do saber, a entrada das informações, que devem ser interativas e desafiadoras para o aluno em desenvolvimento para se tornar um estudante, o professor deverá estar em prontidão, não utilizando a ferramenta como "bengala" para conduzir suas aulas, bem como oferecer um suporte com maior qualidade e orientações possibilitando uma diversidade de caminhos para explorar o mundo dos saberes com consciência. Em relação aos discentes, respeitando o seu tempo de maturação na forma de perceber o mundo, fomentá-los por meio da disciplina em realizar as tarefas propostas, iniciando com uma boa orientação, sobre como aplicar a ferramenta nas determinadas áreas, utilizando a transdisciplinaridade e autoconhecimento para a ampliação da base de informações a serem utilizados na construção do pensamento crítico, sendo mais assertivo nas perguntas à serem realizadas, aumentado a probabilidade de obter melhores respostas, e na sua interpretação e execução, obter um resultado mais original, personalizado; não necessitando se utilizar

do plágio ou qualquer outro artifício que não contribua com a melhoria contínua do ChatGPT, no contexto escolar e outras áreas.

2.2 ESTUDO DE CASO 2: USO NO AMBIENTE DE TRABALHO

No ambiente de trabalho, o uso de inteligências artificiais promete trazer um grande aumento da produtividade e precisão, além da simplificação de tarefas, o que permitiria liberar tempo para tarefas que exigem mais criatividade e pensamento crítico. O ChatGPT, nesse contexto, vem sendo visto como uma ótima ferramenta para análise de dados, organização de informações, automatização de tarefas repetitivas e geração de código, e já é amplamente popular em diversas áreas, principalmente dentro do mundo corporativo. Segundo Lopes (2024), 89% dos profissionais de TI e 86% do setor de marketing, já adotaram o uso do ChatGPT numa frequência, ao menos, mensal.

Apesar dos benefícios da introdução do ChatGPT no ambiente de trabalho, surgem, a partir disso, uma série de questionamentos e preocupações a respeito das mudanças que essa tecnologia pode causar.

Uma das áreas a serem afetadas seria o mercado de trabalho, já que um dos principais questionamentos é se a ferramenta poderia ser capaz de causar a extinção de algumas carreiras. O ChatGPT parece ter o potencial de substituir pessoas na realização de algumas tarefas, como por exemplo: revisão de contratos, resumo de textos, criação de apresentações, desenvolvimento de código, organização de cadeias de produção; afetando assim profissões como direito, jornalismo, engenharia de software e magistério (Sutto, 2023). Apenas a remota possibilidade de que isso aconteça, poderia ser a causa do aumento do nível de ansiedade de muitos trabalhadores, talvez, gerando um problema de saúde pública. Contudo, ao mesmo tempo, há a expectativa de que surjam novas áreas de trabalho, para profissionais especializados no uso da ferramenta, que sejam capazes de integrá-la em diferentes setores.

Além do mercado de trabalho, é válido buscar entender o efeito que o uso de ferramentas como o ChatGPT teria sobre o perfil dos trabalhadores. É importante cogitar que a intensificação do uso do ChatGPT poderá afetar as habilidades dos trabalhadores, no sentido de que ao depender muito da ferramenta como uma "muleta", os profissionais acabem "atrofiando" suas habilidades. Poderia haver diminuição na habilidade de comunicação escrita, pois o uso da IA para gerar conteúdos textuais em alta frequência reduz o não aprimoramento e o esquecimento de técnicas de escrita. Por sua vez, a redução da habilidade de comunicação escrita também tem impacto na comunicação verbal, pois afeta a habilidade de formulação de argumentos e organização de idéias, e então pode ser a causa de mais problemas de comunicação no ambiente de trabalho.

A inibição da criatividade também poderia ser uma outra consequência, visto que

o uso do ChatGPT ajuda na otimização de produção de texto inédito porém não gera conhecimento novo, considerando que é treinado com conhecimento produzido no passado. A tendência é que o conteúdo produzido pelo uso recorrente do ChatGPT gere uma repetição ou reprodução de informações entre os profissionais, em variados setores e sem avanço ou melhoria. Em nome da otimização do tempo, a inovação é inibida e se diminui o hábito e o exercício da criatividade.

Surge também a dúvida sobre até que ponto uma inteligência artificial pode ser utilizada em tarefas que dependem de pesquisa e consulta a informações verdadeiras. Com uma compreensão mais aprofundada do funcionamento de inteligências artificiais, sabe-se que elas não são capazes de raciocinar, compreender o contexto e aspectos humanos relacionados, apenas são capazes de abstrair dados e são capazes de gerar dados fictícios quando não possuem as informações verdadeiras. Porém ferramentas como o ChatGPT passaram a ser usadas por muitos como uma fonte fácil de conhecimento verdadeiro, o que gera a necessidade de treinar profissionais para aprender a usar a ferramenta e analisar criticamente se o conteúdo gerado é válido ou não.

O aspecto da experiência do usuário também passa a ser afetado, devido ao aumento de ferramentas automatizadas para atendimento aos clientes. Não é incomum, ao acessar o site de uma empresa e ao se direcionar para o serviço de atendimento ao cliente, o mesmo ser redirecionado para uma conversa com robôs. Tais robôs em grande maioria se utilizam de ferramentas geradoras de textos como o ChatGPT para se comunicarem e auxiliarem na resolução de problemas comuns entre clientes de uma determinada empresa. Isso de certa forma pode melhorar a eficiência de diversos atendimentos, fornecendo respostas rápidas e quase sempre precisas. Entretanto, embora leve a um aumento na eficiência operacional do atendimento, muitas pessoas reclamam da "desumanização" nesses processos, onde os clientes geralmente sentem falta de interações humanas autênticas, principalmente se tratando de problemas mais complexos que nem sempre os robôs conseguem ajudar.

2.3 ESTUDO DE CASO 3: USO NO MEIO ARTÍSTICO

A inteligência artificial tem sido cada vez mais utilizada em diversas áreas criativas para a produção de novas artes, desde músicas até pinturas ou histórias. O ChatGPT em específico com sua enorme capacidade em gerar textos pode ser utilizado para criação de livros, roteiros, poesias, letras de músicas e até mesmo colaborar criativamente na criação de outros tipos de obras de arte. Para fins de simplicidade no texto chamaremos qualquer produção artística de obra.

Apesar dos erros e falhas ainda presentes, a habilidade já demonstrada pelo chat e seu potencial de se aprimorar ainda mais no futuro vem gerando não apenas admiração, mas também alguns receios (Suzuki, 2023). Este estudo de caso examina

as implicações éticas do uso do ChatGPT no meio artístico, analisando como tal tecnologia influencia a criatividade humana, a originalidade, os direitos autorais e a autenticidade das obras de artes.

Conforme brevemente citado anteriormente, o ChatGPT pode ser utilizado no meio artístico para várias finalidades como:

- Criação de histórias e roteiros: Escritores ou até mesmo cineastas podem utilizar a ferramenta para gerar diálogos, desenvolver roteiros e histórias, séries ou peças de teatro.
- Poesia e literatura: Poetas e escritores podem obter auxílio do ChatGPT para criar poemas, contos e romances.
- Composição musical: Músicos podem utilizar a ferramentas para escrever letras de música ou até mesmo compor melodias.
- Artes visuais: Artistas podem utilizar de um auxílio criativo do chat para gerar descrições e conceitos de obras de artes que podem ser transformados em arte visual.

A principal preocupação ética relacionada ao uso de inteligência artificial no meio artístico é a respeito da originalidade dos conteúdos gerados. A arte tradicionalmente valoriza a expressão individual e criativa que existe em cada ser humano, o uso de um modelo de inteligência artificial que é treinado a partir de obras já existentes rompe com essa tradição. Se uma obra é criada totalmente ou com certa assistência do ChatGPT, até que ponto ela pode ser considerada uma expressão genuína de um artista humano?

Partindo da preocupação anterior, além da originalidade artística, outro ponto a se considerar é o dos direitos autorais. Tais obras geradas criam enormes desafios para a determinação de autoria de propriedade intelectual. De maneira geral, se uma IA contribui para a criação de uma obra, quem deve ser creditado como autor? O desenvolvedor da IA, o usuário que a utilizou, ambos, ou os autores a qual o modelo se baseou durante o treinamento?

Além dessa preocupação com direitos autorais na criação de uma obra nova, também há a preocupação sobre a violação de direitos autorais sobre obras já existentes, tendo em vista que os modelos são treinados sobre um conjunto já existente de obras. Isso levanta a questão de possível infração de direito autoral já que o modelo pode gerar conteúdo semelhante a essas obras. E neste caso novamente fica a pergunta, quem deve ser responsabilizado? Em várias partes do mundo cresce um movimento que defende mudanças nas leis de direitos autorais para que elas passem a proteger as obras dos artistas humanos das obras geradas por inteligência artificial (Prado, 2023).

3 SOLUÇÕES RESPONSÁVEIS

3.1 PRIVACIDADE

Como toda tecnologia emergente, na Inteligência Artificial Generativa existem riscos em sua utilização. Uma das preocupações do uso generalizado desta tecnologia é o impacto na privacidade de dados. Desta forma, "para colher os benefícios dessa tecnologia inovadora, é crucial construir uma relação de confiança com o mercado e com os diversos *stakeholders*, diminuindo preocupações a respeito de como os dados serão utilizados." (KPMG, 2024)

O movimento de órgãos reguladores é essencial para balizar o uso e definir os direitos e deveres. Por exemplo, o Parlamento Europeu publicou, em 2023, o Al Act e no Brasil estamos discutindo através do Projeto de Lei nº 2338, de 2023 (https://www25.senado.leg.br/web/atividade/materias/-/materia/157233). Com os balizadores criados diminui-se as preocupações, tanto dos usuários, quanto dos stackholders. Garantindo aos usuários o controle e a consciência de como seus dados serão utilizados e possibilitando o crescimento exponencial no uso da tecnologia.

3.2 TRANSPARÊNCIA

Embora alguns modelos tenham uma certa natureza imprevisível, a transparência dos processos que ocorrem durante o treinamento e utilização de modelos geradores de texto são essenciais para construir a confiança dos usuários.

As empresas que desenvolvem esse tipo de tecnologia devem ser transparentes quanto a como seus modelos funcionam, incluindo detalhes sobre os dados utilizados para treinamento e os processos de tomada de decisão.

Utilizando como exemplo a Al Act, publicada em 2023, pelo Parlamento Europeu, temos a seguinte diretriz:

"A IA generativa, como o ChatGPT, não será classificada como de alto risco, mas terá que cumprir os requisitos de transparência e a lei de direitos autorais da UE:

- Divulgar que o conteúdo foi gerado por IA.
- Projetar o modelo para evitar a geração de conteúdo ilegal.
- Publicação de resumos de dados protegidos por direitos autorais usados para treinamento (EP, 2023).

Para o uso de transparência nos modelos, existem projetos open sources que facilitam a implantação, como o TrustyAl (https://github.com/trustyai-explainability).

3.3 VIESES

O viés de IA é como chamamos a ocorrência de resultados tendenciosos devido a vieses que distorcem os dados de treinamentos levando a resultados distorcidos. Na prática, os modelos absorvem preconceitos humanos, através das bases de treinamento, e os reproduzem em seus resultados.

Há uma série de vieses possíveis em um modelo de IA. Segundo o artigo "O que é viés de IA?" (IBM, 2023) temos os seguintes tipos:

- Viés do algoritmo
- Viés cognitivo
- Viés de confirmação
- Viés de exclusão
- · Viés de medição
- Viés de homogeneidade fora do grupo
- Viés de preconceito
- Viés de recordação
- Viés de amostragem/seleção
- Viés de estereótipo

Para que a IA não possua vieses é necessário analisar os dados de treinamentos e tomar medidas para a diversidade dos dados, garantindo dados completos, imparciais e sem preconceitos.

4 CONCLUSÃO

A inteligência artificial representa um grande avanço tecnológico para a humanidade. O uso do ChatGPT em específico trouxe inúmeros benefícios capazes de transformar diversos setores da nossa sociedade, desde ambientes educacionais até meios artísticos. No entanto, com grandes poderes vêm grandes responsabilidades, e essa ferramenta poderosa também levanta questões éticas importantes a serem discutidas.

Ao longo deste trabalho exploramos somente algumas dessas implicações éticas, e analisamos como essas implicações afetam diferentes partes interessadas, desde usuários, desenvolvedores e a sociedade em geral. Além disso, propusemos algumas

soluções que podem ajudar a mitigar os problemas apresentados, promovendo um uso mais positivo, justo, transparente e ético da tecnologia.

É essencial que continuemos discutindo e desenvolvendo políticas, visando a garantia que a evolução da inteligência artificial esteja sempre alinhada com princípios éticos, tendo em vista a forte tendência de que a velocidade da evolução aumente cada vez mais. Somente assim poderemos, como sociedade, aproveitar todo o potencial que essa tecnologia tem a oferecer.

APÊNDICE 8 - APRENDIZADO DE MÁQUINA

A - ENUNCIADO

Para cada uma das tarefas abaixo (Classificação, Regressão etc.) e cada base de dados (Veículo, Diabetes etc.), fazer os experimentos com todas as técnicas solicitadas (KNN, RNA etc.) e preencher os quadros com as estatísticas solicitadas, bem como os resultados pedidos em cada experimento.

B-RESOLUÇÃO

Classificação

Para o experimento de Classificação:

- Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor acurácia ficará em primeiro na tabela.
- · Após o quadro colocar:
 - Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro de maior Acurácia (criar um arquivo com novos casos à sua escolha)
 - A lista de comandos emitidos no RStudio para conseguir os resultados obtidos

Veículo

TABELA 6 - Resultados da classificação na base de veículos

Técnica	Parâmetro	Acurácia	Matriz de Confusão
SVM - CV	C=100 Sigma=0.015	0.8623	Reference Prediction bus opel saab van bus 41 0 1 0 opel 0 33 9 2 saab 0 7 33 0 van 2 2 0 37 Overall Statistics Accuracy: 0.8623

Técnica	Parâmetro	Acurácia	Matriz de Confusão
RNA - CV	size=31 decay=0.4	0.8443	Reference Prediction bus opel saab van bus 39 0 1 0 opel 1 34 12 1 saab 1 7 30 0 van 2 1 0 38 Overall Statistics Accuracy: 0.8443
SVM - Hold-out	C=1 Sigma= 0.0661018	0.7665	Reference Prediction bus opel saab van bus 40 1 1 0 opel 0 21 13 0 saab 0 17 28 0 van 3 3 1 39 Overall Statistics Accuracy: 0.7665
RF - CV	mtry=5	0.7964	Reference Prediction bus opel saab van bus 42 1 1 0 opel 0 23 12 0 saab 0 16 29 0 van 1 2 1 39 Overall Statistics Accuracy: 0.7964
RF - Hold-out	mtry=2	0.7844	Reference Prediction bus opel saab van bus 43 1 0 0 opel 0 19 12 0 saab 0 18 30 0 van 0 4 1 39 Overall Statistics Accuracy: 0.7844

Técnica	Parâmetro	Acurácia	Matriz de Confusão
KNN	k=3	0.7	Reference Prediction bus opel saab van bus 38 3 3 1 opel 5 17 12 1 saab 3 22 26 0 van 0 0 1 38 Overall Statistics Accuracy: 0.7
RNA - Hold-out	size=3 decay=0.1	0.6287	Reference Prediction bus opel saab van bus 36 2 2 0 opel 0 30 38 2 saab 3 6 3 1 van 4 4 0 36 Overall Statistics Accuracy: 0.6287

Predição novos casos (SVM - CV)

TABELA 7 - Resultados predição novos casos (SVM - CV) - Parte 1

Comp	Circ	DCirc	RadRa	PrAxisRa	MaxLRa	ScatRa	Elong	PrAxisRect	MaxLRect
84	53	89	170	75	7	153	45	20	165
87	35	90	450	57	8	160	50	15	165
100	40	100	205	60	11	210	35	30	165

Fonte: O autor (2025).

TABELA 8 - Resultados predição novos casos (SVM - CV) - Parte 2

ScVarMaxis	ScVarmaxis	RaGyr	SkewMaxis	Skewmaxis	Kurtmaxis	KurtMaxis	HollRa	svm
170	350	180	65	8	15	180	197	van
170	315	154	55	10	12	190	196	opel
220	625	200	75	11	10	185	195	saab

Fonte: O autor (2025).

Lista de comandos (SVM - CV)

install.packages("e1071")
install.packages("caret")

install.packages("mlbench")

```
install.packages("mice")
install.packages("Metrics")
install.packages("kernlab")
library("caret")
library("mlbench")
library("mice")
library("Metrics")
setwd("/content")
seed padrao <- 202412
dados <- read.csv("6 - Veiculos - Dados.csv")
dados$a <- NULL
View(dados)
set.seed(seed_padrao)
indices <- createDataPartition(dados$tipo, p=0.80, list=FALSE)
treino <- dados[indices,]
teste <- dados[-indices,]
ctrl <- trainControl(method = "cv", number = 10)
grid <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015,
0.2))
set.seed(seed_padrao)
svm <- train(form = tipo~., data = treino, method = "svmRadial",
tuneGrid = grid, trControl = ctrl)
svm
predict.svm <- predict(svm, teste)</pre>
confusionMatrix(predict.svm, as.factor(teste$tipo))
dados_novos_casos <- read.csv("6 - Veiculos - Dados - Novos
Casos.csv")
dados novos casos$a <- NULL
View(dados_novos_casos)
predict.svm <- predict(svm, dados_novos_casos)</pre>
resultado <- cbind(dados novos casos, predict.svm)
resultado$tipo <- NULL
View(resultado)
```

Diabetes

TABELA 9 – Resultados da classificação na base de diabetes

Técnica	Parâmetro	Acurácia	Matriz de Confusão
SVM Hold-out	C=0.5 Sigma= 0.1219692	0.7843	Confusion Matrix and Statistics Reference Prediction neg pos neg 90 23 pos 10 30 Accuracy: 0.7843
SVM - CV	C=0.5 Sigma= 0.1219692	0.7843	Confusion Matrix and Statistics Reference Prediction neg pos neg 90 23 pos 10 30 Accuracy: 0.7843
RNA - CV	size=11 decay=0.4	0.7778	Confusion Matrix and Statistics Reference Prediction neg pos neg 86 20 pos 14 33 Accuracy: 0.7778
KNN	k=9	0.7727	Confusion Matrix and Statistics Reference Prediction neg pos neg 93 22 pos 13 26 Accuracy: 0.7727
RF - Hold-out	mtry=2	0.7647	Confusion Matrix and Statistics Reference Prediction neg pos neg 86 22 pos 14 31 Accuracy: 0.7647
RF - CV	mtry=8	0.7582	Confusion Matrix and Statistics Reference Prediction neg pos neg 86 23 pos 14 30 Accuracy : 0.7582

Técnica	Parâmetro	Acurácia	Matriz de Confusão
			Confusion Matrix and Statistics Reference
RNA Hold-out	size=5 decay=0.1	0.7386	Prediction neg pos neg 83 23 pos 17 30 Accuracy : 0.7386

Predição novos casos (SVM Hold-out)

TABELA 10 – Resultados da predição novos casos (SVM Hold-out)

preg0nt	glucose	pressure	triceps	insulin	mass	pedigree	age	predict.svm
8	140	80	30	0	40.5	500	45	neg
8	120	50	40	0	20.7	625	35	neg
2	50	60	25	0	30.3	544	32	neg

Fonte: O autor (2025).

Lista de comandos (SVM Hold-out)

```
install.packages("e1071")
install.packages("caret")
install.packages("mlbench")
install.packages("mice")
install.packages("Metrics")
install.packages("kernlab")
library("caret")
library("mlbench")
library("mice")
library("Metrics")
setwd("/content")
seed_padrao <- 202412
temp_dados <- read.csv("10 - Diabetes - Dados.csv")
temp dados$num <- NULL
imp <- mice(temp_dados)</pre>
dados <- complete(imp, 1)
View(dados)
set.seed(seed_padrao)
indices <- createDataPartition(dados$diabetes, p=0.80,list=FALSE)
```

```
treino <- dados[indices,]

teste <- dados[-indices,]

set.seed(seed_padrao)

svm <- train(diabetes~., data=treino, method="svmRadial")

svm

predict.svm <- predict(svm, teste)

confusionMatrix(predict.svm, as.factor(teste$diabetes))

dados_novos_casos <- read.csv("10 - Diabetes - Dados - Novos

Casos.csv")

dados_novos_casos$num <- NULL

View(dados_novos_casos)

predict.svm <- predict(svm, dados_novos_casos)

resultado <- cbind(dados_novos_casos, predict.svm)

resultado$diabetes <- NULL

View(resultado)
```

Regressão

Para o experimento de Regressão:

- Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em primeiro na tabela.
- · Após o quadro colocar:
 - Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro de maior R2 (criar um arquivo com novos casos à sua escolha)
 - O Gráfico de Resíduos para a técnica/parâmetro de maior R2
 - A lista de comandos emitidos no RStudio para conseguir os resultados obtidos

Admissão

TABELA 11 - Resultados da regressão na base de admissão

Técnica	Parâmetro	R2	Syx	Pearson	Rmse	MAE
SVM - CV	C=2 Sigma=0.01	0.8882	0.0463	0.9427	0.0442	0.0332
SVM - Hold-out	SVM - Hold-out		0.0504	0.9317	0.0480	0.0362
RF - Hold-out	mtry=2	0.8609	0.0517	0.9309	0.0492	0.0368
RF - CV	mtry=2	0.8609	0.0517	0.9309	0.0492	0.0368
RNA - CV	size=5 decay=0.1	0.8392	0.0556	0.9193	0.0529	0.0436
RNA - Hold-out size=5 decay=0.1		0.8294	0.0572	0.9149	0.0545	0.0454
KNN	,		0.0654	0.8835	0.0623	0.0482

Fonte: O autor (2025).

Predição novos casos (SVM - CV)

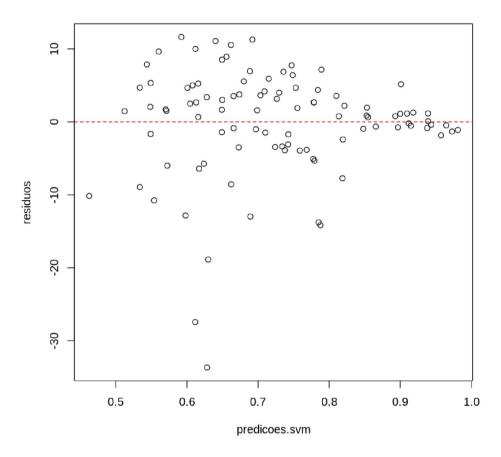
TABELA 12 – Resultados da predição novos casos (SVM - CV)

GRE.S	TOEFL.S	University.R	SOP	LOR	CGPA	Research	predict
300	125	3	4.5	4.5	8.87	1	0.7948
350	99	4	3.0	3.0	9.00	1	0.8113
325	85	4	4.5	3.5	8.75	1	0.7042

Fonte: O autor (2025).

Gráfico de resíduos (SVM - CV)

FIGURA 19 - Gráfico de resíduos (SVM - CV)



Lista de comandos (SVM - CV)

```
install.packages("e1071")
install.packages("caret")
install.packages("mlbench")
install.packages("mice")
install.packages("Metrics")
install.packages("kernlab")
library("caret")
library("mlbench")
library("mice")
library("Metrics")

setwd("/content")
seed_padrao <- 202412

dados <- read.csv("9 - Admissao - Dados.csv", header=T)
```

```
dados$num <- NULL
View(dados)
set.seed(seed_padrao)
indices <- createDataPartition(dados$ChanceOfAdmit, p=0.80,
list=FALSE)
treino <- dados[indices,]
teste <- dados[-indices,]
control <- trainControl(method = "cv", number = 10)</pre>
tuneGrid <- expand.grid(C=c(1, 2, 10, 50, 100), sigma=c(.01, .015,
0.2))
set.seed(seed_padrao)
svm <- train(ChanceOfAdmit~., data=treino, method="svmRadial",
trainControl=control, tuneGrid=tuneGrid)
svm
predicoes.svm <- predict(svm, teste)</pre>
print("RMSE")
rmse(teste$ChanceOfAdmit, predicoes.svm)
print("R2")
r2 <- function(predito, observado) {
return(1 - (sum((predito-observado)^2) /
sum((observado-mean(observado))^2)))
r2(predicoes.svm,teste$ChanceOfAdmit)
print("SYX")
syx <- function(predito, observado, n, p)</pre>
sqrt((sum((observado-predito)^2))/(n-p-1))
syx(predicoes.svm,teste$ChanceOfAdmit, nrow(teste), ncol(teste))
print("PEARSON")
pearson <- function(predito, observado) {</pre>
n <- length(predito)
predito_media <- mean(predito)</pre>
observado_media <- mean(observado)
num <- sum((predito - predito_media) * (observado -
```

```
observado media))
denom <- sqrt(sum((predito - predito_media)^2) * sum((observado -
observado media)^2))
r <- num / denom
return(r)
pearson(predicoes.svm, teste$ChanceOfAdmit)
print("MAE")
mae <- function(predito, observado)
error = observado-predito
mean(abs(error))
mae(predicoes.svm, teste$ChanceOfAdmit)
residuos <- ((teste$ChanceOfAdmit -
predicoes.svm)/teste$ChanceOfAdmit)*100
plot(residuos ~ predicoes.svm)
abline(h = 0, lty = 2, col = "red")
dados_novos_casos <- read.csv("9 - Admissao - Dados - Novos
Casos.csv")
dados novos casos$num <- NULL
View(dados_novos_casos)
predict.svm <- predict(svm, dados_novos_casos)</pre>
resultado <- cbind(dados_novos_casos, predict.svm)
resultado$ChanceOfAdmit <- NULL
View(resultado)
```

Biomassa

TABELA 13 – Resultados da regressão na base de biomassa

Técnica	Parâmetro	\mathbb{R}^2	Syx	Pearson	RMSE	MAE
RNA CV	size=3 decay=0.1	0.9051	385.7903	0.9882	369.3660	109.9805
RNA Hold-out	size=3 decay=0.1	0.8993	397.4928	0.9751	380.5704	256.7893
RF Hold-out	mtry=2	0.8869	421.2733	0.9852	403.3385	102.0527
RF CV	mtry=2	0.8869	421.2733	0.9852	403.3385	102.0527
SVM CV	C=100 Sigma=0.01	0.8091	547.3479	0.9605	524.0457	154.5247
KNN	K=1	0.7776	590.7204	0.9471	565.5717	128.5157
SVM Hold-out	C=1 Sigma=0.8644	0.4750	907.7681	0.8535	869.1218	199.1633

Predição novos casos (RNA - CV)

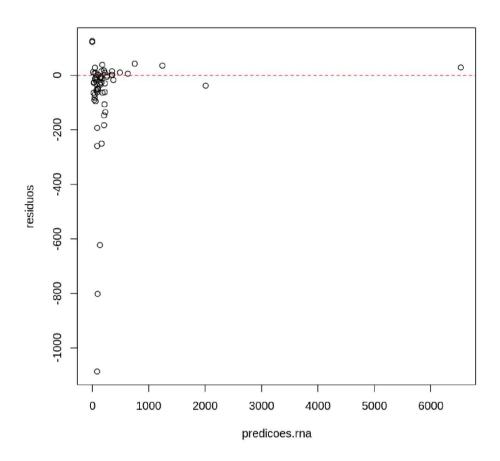
TABELA 14 – Resultado da predição novos casos (RNA - CV)

dap	h	Ме	predict.rna							
7.0	4.0	1.04	82.9916							
8.2	6.0	1.04	109.7899							
7.5	5.5	1.04	98.4963							

Fonte: O autor (2025).

Gráfico de resíduos (RNA - CV)

FIGURA 20 – Gráfico de resíduos (RNA - CV)



Lista de comandos (RNA - CV)

```
install.packages("e1071")
install.packages("caret")
install.packages("mlbench")
install.packages("mice")
install.packages("Metrics")
library("caret")
library("mlbench")
library("mice")
library("Metrics")

setwd("/content")
seed_padrao <- 202412

dados <- read.csv("5 - Biomassa - Dados.csv")
View(dados)
```

```
set.seed(seed_padrao)
ind <- createDataPartition(dados$biomassa, p=0.80, list = FALSE)
treino <- dados[ind,]
teste <- dados[-ind,]
control <- trainControl(method = "cv", number = 10)</pre>
set.seed(seed_padrao)
rna <- train(biomassa~., data=treino, method="nnet",
trainControl=control, linout=T, MaxNWts=10000, maxit=2000, trace=F)
rna
predicoes.rna <- predict(rna, teste)</pre>
print("RMSE")
rmse(teste$biomassa, predicoes.rna)
print("R2")
r2 <- function(predito, observado) {
return(1 - (sum((predito-observado)^2) /
sum((observado-mean(observado))^2)))
r2(predicoes.rna,teste$biomassa)
print("SYX")
syx <- function(predito, observado, n, p)
sqrt((sum((observado-predito)^2))/(n-p-1))
syx(predicoes.rna,teste$biomassa, nrow(teste), ncol(teste))
print("PEARSON")
pearson <- function(predito, observado) {</pre>
n <- length(predito)
predito_media <- mean(predito)</pre>
observado_media <- mean(observado)
num <- sum((predito - predito media) * (observado -
observado_media))
denom <- sqrt(sum((predito - predito_media)^2) * sum((observado -
observado_media)^2))
r <- num / denom
```

```
return(r)
pearson(predicoes.rna, teste$biomassa)
print("MAE")
mae <- function(predito, observado)
error = observado-predito
mean(abs(error))
mae(predicoes.rna, teste$biomassa)
residuos <- ((teste$biomassa - predicoes.rna)/teste$biomassa)*100
plot(residuos ~ predicoes.rna)
abline(h = 0, lty = 2, col = "red")
dados_novos_casos <- read.csv("5 - Biomassa - Dados - Novos
Casos.csv")
View(dados_novos_casos)
predict.rna <- predict(rna, dados_novos_casos)</pre>
resultado <- cbind(dados_novos_casos, predict.rna)
resultado$biomassa <- NULL
View(resultado)
```

Agrupamento

Veículo

TABELA 15 - Clusters gerados - Parte 1

Cluster	Comp	Circ	DCirc	Rad	Ra	PraxisRa	MaxLRa
1	85	43	70	120	56	7	149
2	104	54	101	189	57	11	222
3	89	45	72	166	59	7	154
4	89	41	66	162	58	7	150
5	90	37	74	169	59	7	157
6	88	40	69	146	58	9	133
7	101	53	108	197	60	11	214
8	93	39	66	133	59	8	130
9	85	36	51	116	57	6	122
10	100	47	105	209	64	10	201

Fonte: O autor (2025).

TABELA 16 - Clusters gerados - Parte 2

				J			
Cluster	ScatRa	Elong	PraxisRect	MaxLRect	ScVarMaxis	ScVarmxis	RaGyr
1	45	19	143	170	327	171	81
2	30	25	173	225	706	216	72
3	44	19	144	174	347	174	69
4	45	19	144	169	331	161	64
5	43	20	131	189	363	186	72
6	50	18	135	202	259	151	66
7	31	24	162	226	661	214	71
8	52	18	134	159	246	139	63
9	57	17	125	137	196	123	85
10	33	23	147	214	586	201	67

TABELA 17 - Clusters gerados - Parte 3

Cluster	SkewMaxis	Skewmaxis	Kurtmaxis	KurtMaxis	Tipo
1	6	11	180	184	bus
2	0	11	187	198	opel
3	5	2	190	196	opel
4	4	0	188	197	van
5	1	7	196	202	bus
6	0	21	193	200	opel
7	0	24	188	199	saab
8	5	7	183	194	van
9	1	5	180	183	saab
10	2	13	192	198	bus

Fonte: O autor (2025).

10 primeiras linhas do arquivo com o cluster correspondente:

TABELA 18 – Resumo do cluster correspondente - Parte 1

Cluster	Comp	Circ	DCirc	Rad	Ra	PraxisRa	MaxLRa
4	95	48	83	178	72	10	162
1	91	41	84	141	57	9	149
10	104	50	106	209	66	10	207
4	93	41	82	159	63	9	144
1	85	44	70	205	103	52	149
9	107	57	106	172	50	6	255
1	97	43	73	173	65	6	153
8	90	43	66	157	65	9	137
9	86	34	62	140	61	7	122
7	93	44	98	197	62	11	183

TABELA 19 - Resumo do cluster correspondente - Parte 2

Cluster	ScatRa	Elong	PraxisRect	MaxLRect	ScVarMaxis	ScVarmxis	RaGyr
4	42	20	159	176	379	184	70
1	45	19	143	170	330	158	72
10	32	23	158	223	635	220	73
4	46	19	143	160	309	127	63
1	45	19	144	241	325	188	127
9	26	28	169	280	957	264	85
1	42	19	143	176	361	172	66
8	48	18	146	162	281	164	67
9	54	17	127	141	223	112	64
7	36	22	146	202	505	152	64

TABELA 20 - Resumo do cluster correspondente - Parte 3

Cluster	SkewMaxis	Skewmaxis	Kurtmaxis	KurtMaxis	Tipo
4	6	16	187	197	van
1	9	14	189	199	van
10	14	9	188	196	saab
4	6	10	199	207	van
1	9	11	180	183	bus
9	5	9	181	183	bus
1	13	1	200	204	bus
8	3	3	193	202	van
9	2	14	200	208	van
7	4	14	195	204	saab

Fonte: O autor (2025).

Lista de comandos emitidos

```
install.packages("klaR")
library(klaR)

setwd("/content")
seed_padrao <- 202412

dados <- read.csv("6 - Veiculos - Dados.csv")
dados$a <- NULL
View(dados)

set.seed(seed_padrao)
cluster.results <- kmodes(dados, 10, iter.max = 10, weighted = FALSE)
cluster.results
```

```
resultado <- cbind(dados, cluster.results$cluster)
resultado
```

Regras de associação

Musculação

Regras geradas com uma configuração de Suporte e Confiança.

FIGURA 21 – Resultados regras de associação

```
lhs
                                                                support confidence coverage
      {Agachamento}
                                            => {LegPress} 0.31 1.00
                                                                                        0.31
[2]
      {Afundo}
                                            => {Gemeos}
                                                               0.35
                                                                         1.00
                                                                                        0.35
   {Arundo} => {Gemeos} 0.35 1.00
{AgachamentoSmith, Bicicleta} => {Extensor} 0.31 1.00
{Bicicleta, Esteira} => {Extensor} 0.38 1.00
{Extensor} => {Bicicleta} 0.46 0.92
{Esteira} => {Extensor} 0.42 0.92
{Esteira, Extensor} => {Bicicleta} 0.38 0.91
{AgachamentoSmith} => {Extensor} 0.35 0.90
                                                                                        0.31
                                                                                        0.38
[4]
[5]
                                                                                        0.50
[6]
                                                                                        0.46
                                                                                        0.42
[7]
                                                                                        0.38
[8]
      {AgachamentoSmith, Extensor} => {Bicicleta} 0.31 0.89
[9]
                                                                                        0.35
[10] {Bicicleta}
                                           => {Extensor} 0.46 0.86
                                                                                        0.54
[11] {Extensor}
                                           => {Esteira} 0.42
                                                                         0.85
                                                                                        0.50
                                           => {Bicicleta} 0.38 0.83
[12] {Esteira}
                                                                                        0.46
[13] {Bicicleta, Extensor} => {Esteira} 0.38
                                                                          0.83
                                                                                        0.46
[14] {AgachamentoSmith}
                                                                          0.80
                                            => {Esteira}
                                                              0.31
                                                                                         0.38
[15] {AgachamentoSmith}
                                       => {Bicicleta} 0.31 0.80
                                                                                         0.38
```

Fonte: O autor (2025).

Lista de comandos emitidos

```
install.packages('arules', dep=T)
library(arules)
library(datasets)

setwd("/content")
seed_padrao <- 202412

dados <- read.transactions(file="2 - Musculacao - Dados.csv",
format="basket", sep=";")
inspect(dados[1:4])

set.seed(seed_padrao)
rules <- apriori(dados, parameter = list(supp = 0.3, conf = 0.75, minlen = 2))
summary(rules)</pre>
```

```
options(digits=2)
inspect(sort(rules, by="confidence"))
```

APÊNDICE 9 - DEEP LEARNING

A - ENUNCIADO

1 Classificação de Imagens (CNN)

Implementar o exemplo de classificação de objetos usando a base de dados CIFAR10 e a arquitetura CNN vista no curso.

2 Detector de SPAM (RNN)

Implementar o detector de spam visto em sala, usando a base de dados SMS Spam e arquitetura de RNN vista no curso.

3 Gerador de Dígitos Fake (GAN)

Implementar o gerador de dígitos *fake*usando a base de dados MNIST e arquitetura GAN vista no curso.

4 Tradutor de Textos (Transformer)

Implementar o tradutor de texto do português para o inglês, usando a base de dados e a arquitetura Transformer vista no curso.

B - RESOLUÇÃO

1 Classificação de Imagens (CNN)

```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten
    , Dropout
from tensorflow.keras.models import Model
from mlxtend.plotting import plot_confusion_matrix
from sklearn.metrics import confusion_matrix

# Carga da base
cifar10 = tf.keras.datasets.cifar10
# Já está separado em dados de treino e teste
# Não precisa separar
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
```

```
# Normalização os dados
# Imagens em pixels de 0 - 255
# / 255.0 transforma em 0 - 1
x_{train}, x_{test} = x_{train} / 255.0, x_{test} / 255.0
# O dado y é a classe a qual faz parte
# O flattem torna os dados vetorizados
y_train, y_test = y_train.flatten(), y_test.flatten()
K = len(set(y_train))
# Aqui começa o Estágio 1
i = Input(shape=x_train[0].shape)
x = Conv2D(32, (3, 3), strides=2, activation="relu")(i)
x = Conv2D(64, (3, 3), strides=2, activation="relu")(x)
x = Conv2D(128, (3, 3), strides=2, activation="relu")(x)
# Todas as imagens são do mesmo tamanho, não precisa de Global
   Pooling
x = Flatten()(x)
# Aqui começa o Estágio 2
x = Dropout(0.5)(x)
x = Dense(1024, activation="relu")(x)
x = Dropout(0.2)(x)
x = Dense(K, activation="softmax")(x)
# Model (lista entrada, lista saída)
model = Model(i, x)
model.summary()
```

Model: "functional"

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 32, 32, 3)	0
conv2d (Conv2D)	(None, 15, 15, 32)	896
conv2d_1 (Conv2D)	(None, 7, 7, 64)	18,496
conv2d_2 (Conv2D)	(None, 3, 3, 128)	73,856
flatten (Flatten)	(None, 1152)	0
dropout (Dropout)	(None, 1152)	0
dense (Dense)	(None, 1024)	1,180,672
dropout_1 (Dropout)	(None, 1024)	0
dense_1 (Dense)	(None, 10)	10,250

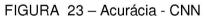
Total params: 1,284,170 (4.90 MB)
Trainable params: 1,284,170 (4.90 MB)

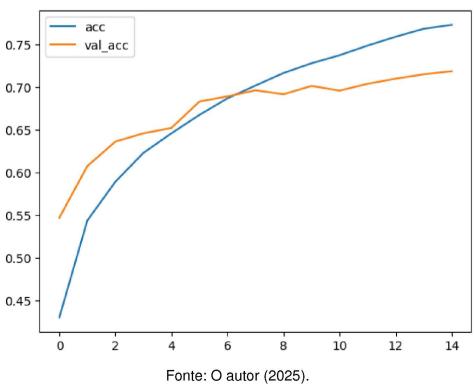
Non-trainable params: 0 (0.00 B)

```
# Compilar o modelo
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy", metrics=["accuracy"])
# Treinar o modelo
r = model.fit(x_train, y_train, validation_data=(x_test, y_test),
epochs=15)
# Plotar a função de perda, treino e validação
plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.legend()
plt.show()
# Plotar acurácia, treino e validação
plt.plot(r.history["accuracy"], label="acc")
plt.plot(r.history["val_accuracy"], label="val_acc")
plt.legend()
plt.show()
```

1.6 | loss | val_loss | val_loss

FIGURA 22 - Função de perda - CNN





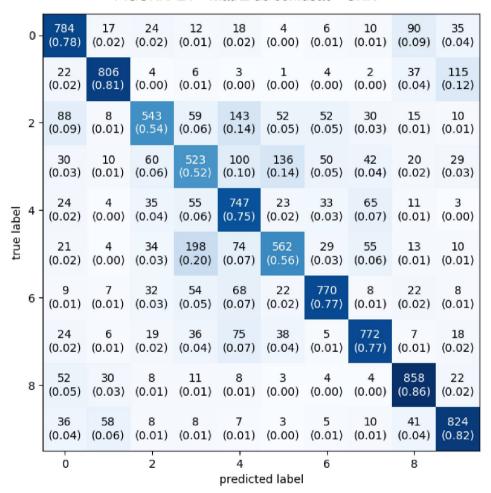
[#] Efetuar predições na base de teste

[#] argmax é usado pois a função de ativação da saída é softmax

[#] argmax pega o neurônio que deu o maior resultado, isto é,

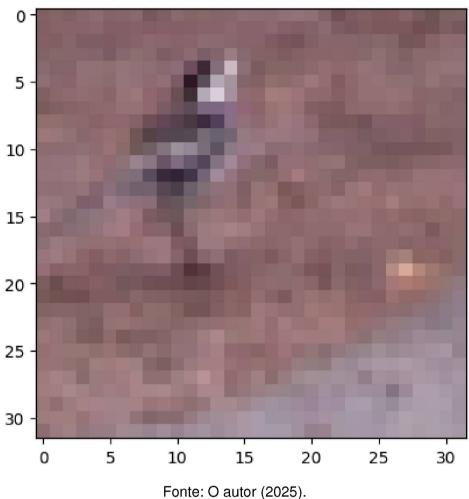
```
# a maior probabilidade de saída
y_pred = model.predict(x_test).argmax(axis=1)
# Mostrar a matriz de confusão
cm = confusion_matrix(y_test, y_pred)
plot_confusion_matrix(conf_mat=cm, figsize=(7, 7),
show_normed=True)
```

FIGURA 24 - Matriz de confusão - CNN



```
# Mostrar algumas classificações erradas
labels= ["airplane", "automobile", "bird", "cat", "deer", "dog",
"frog", "horse", "ship", "truck"]
misclassified = np.where(y_pred != y_test)[0]
i = np.random.choice(misclassified)
plt.imshow(x_test[i], cmap="gray")
plt.title("True label: %s Predicted: %s" % (labels[y_test[i]],
labels[y_pred[i]]))
```

FIGURA 25 - Classificação errada - CNN



2 Detector de SPAM (RNN)

```
# Importação das Bibliotecas
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Input, Embedding, LSTM, Dense
from tensorflow.keras.layers import GlobalMaxPooling1D
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer

# carrega e arruma a base
!wget http://www.razer.net.br/datasets/spam.csv
```

```
# !wget https://www.kaggle.com/datasets/uciml/sms-spam-collection
   -dataset
df = pd.read_csv("spam.csv", encoding="ISO-8859-1")
df.head()
df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)
df.columns = ["labels", "data"]
df["b_labels"] = df["labels"].map({ "ham": 0, "spam": 1})
y = df["b_labels"].values
# Separa a base em treino e teste
x_train, x_test, y_train, y_test = train_test_split(df["data"], y
test_size=0.33)
# Número máximo de palavras para considerar
# São consideradas as mais frequentes, as demais são
   ignoradas
num words = 20000
tokenizer = Tokenizer(num_words=num_words)
tokenizer.fit_on_texts(x_train)
sequences_train = tokenizer.texts_to_sequences(x_train)
sequences_test = tokenizer.texts_to_sequences(x_test)
word2index = tokenizer.word index
V = len(word2index)
# Acerta o tamanho das sequências (padding)
data_train = pad_sequences(sequences_train) # usa o tamanho da
   maior seq.
T = data_train.shape[1] # tamanho da sequência
data_test = pad_sequences(sequences_test, maxlen=T)
print("%s tokens" % V)
print("data_train.shape: ", data_train.shape)
print("data_test.shape: ", data_test.shape)
```

```
7201 tokens
data_train.shape: (3733, 189)
data_test.shape: (1839, 189)
```

```
M = 5  # tamanho do hidden state, quantidade de unidades LSTM
i = Input(shape=(T,)) # Entra uma frase inteira
x = Embedding(V+1, D)(i)
x = LSTM(M)(x)
x = Dense(1, activation="sigmoid")(x) # Sigmoide pois só tem 2
    valores
model = Model(i, x)
model.summary()
```

Model: "functional"

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 189)	0
embedding (Embedding)	(None, 189, 20)	143,980
Istm (LSTM)	(None, 5)	520
dense (Dense)	(None, 1)	6

Total params: 144,506 (564.48 KB) Trainable params: 144,506 (564.48 KB)

Non-trainable params: 0 (0.00 B)

```
# Compila e treina o modelo
model.compile(loss="binary_crossentropy", optimizer="adam",
metrics=["accuracy"])
epochs = 5
r = model.fit(data_train, y_train, epochs=epochs, validation_data
   =(data_test,
y_test))
# Plota função de perda e acurácia
plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.xlabel("Epocas")
plt.ylabel("loss")
plt.xticks(np.arange(0, epochs, step=1), labels=range(1, epochs
   +1))
plt.legend()
plt.show()
plt.plot(r.history["accuracy"], label="accuracy")
plt.plot(r.history["val_accuracy"], label="val_accuracy")
plt.xlabel("Epocas")
plt.ylabel("Acurácia")
```

FIGURA 26 - Função de perda - RNN

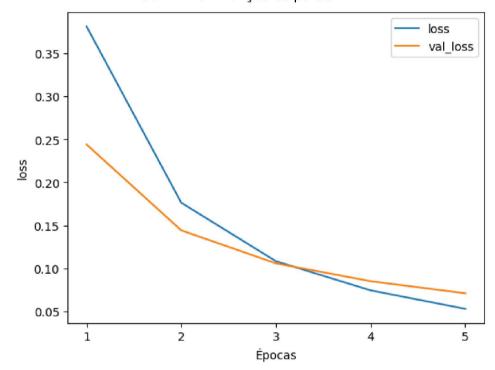
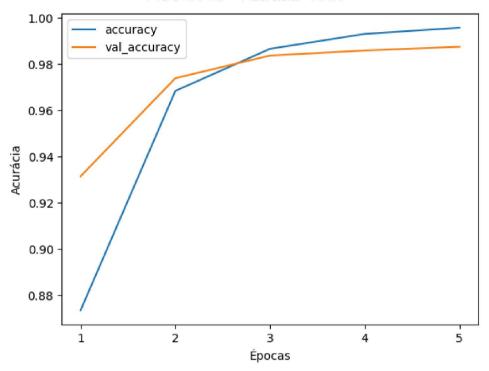


FIGURA 27 - Acurácia - RNN



```
# Efetua a predição de um texto novo
#texto = "Hi, my name is Razer and want to tell you something."
texto = "Is your car dirty? Discover our new product. Free for
    all. Click the link."
seq_texto = tokenizer.texts_to_sequences([texto]) # Tokeniza
data_texto = pad_sequences(seq_texto, maxlen=T) # Padding
pred = model.predict(data_texto) # Predição
print(pred)
print ("SPAM" if pred >= 0.5 else "OK")
```

[[0.7768526]] SPAM

3 Gerador de Dígitos Fake (GAN)

```
!pip install imageio
!pip install git+https://github.com/tensorflow/docs

# Importações
import tensorflow as tf
import glob
import imageio
import matplotlib.pyplot as plt
```

```
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time
from IPython import display
# Carregar a base de dados
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.
   load_data()
# Normalização
train_images = train_images.reshape(train_images.shape[0], 28,
   28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normaliza entre
   [-1, 1]
# Gera o banco em partes e randomiza
BUFFER_SIZE = 60000
BATCH SIZE = 256
# Cria o dataset (from_tensor_slices)
# Randomiza (shuffle)
# Combina elementos consecutivos em lotes (batch)
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).
   shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
# Cria o GERADOR
def make_generator_model():
  model = tf.keras.Sequential()
 model.add(layers.Dense(7*7*256, use_bias=False,input_shape
   =(100,))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
 model.add(layers.Reshape((7, 7, 256)))
  assert model.output_shape == (None, 7, 7, 256)
  # Note: None is the batch size
 model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1),
   padding='same', use_bias=False))
  assert model.output_shape == (None, 7, 7, 128)
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
```

```
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2),
    padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())

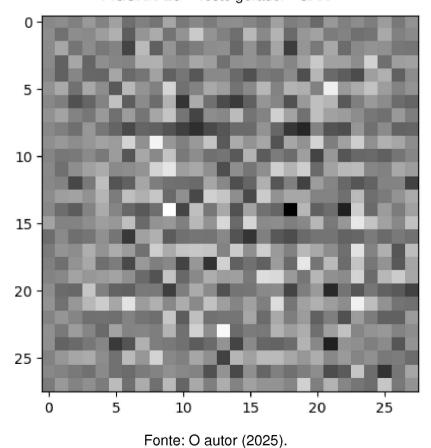
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2),
    padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model

# Teste do GERADOR, ainda não treinado
generator = make_generator_model()

moise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')
```

FIGURA 28 - Teste gerador - GAN



```
# Cria o DISCRIMINADOR
def make_discriminator_model():
  model = tf.keras.Sequential()
 model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='
   same', input_shape=[28, 28, 1]))
 model.add(layers.LeakyReLU())
  model.add(layers.Dropout(0.3))
  model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='
   same'))
 model.add(layers.LeakyReLU())
  model.add(layers.Dropout(0.3))
 model.add(layers.Flatten())
  model.add(layers.Dense(1))
  return model
# Teste do DISCRIMINADOR, ainda não treinado
discriminator = make_discriminator_model()
decision = discriminator(generated_image)
#print (decision)
# Define as funções de perda
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=
   True)
# Perda do DISCRIMINADOR
def discriminator_loss(real_output, fake_output):
  real_loss = cross_entropy(tf.ones_like(real_output),
   real_output)
  fake_loss = cross_entropy(tf.zeros_like(fake_output),
   fake_output)
  total_loss = real_loss + fake_loss
  return total_loss
# Perda do GERADOR
def generator_loss(fake_output):
  return cross_entropy(tf.ones_like(fake_output), fake_output)
# Cria os otimizadores para o gerador e discriminador
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
```

```
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# Cria checkpoints para salvar modelos ao longo do tempo
# Uteis em tarefas longas, para se recuperar de um desligamento
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=
   generator_optimizer,
                                 discriminator_optimizer=
   discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)
                             # Configura o Loop de treinamento
EPOCHS = 100
noise dim = 100
num_examples_to_generate = 16
# You will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
def f(x, y):
  return 3*x**2 + 2*x*y
x, y = tf.Variable(5.), tf.Variable(3.)
with tf.GradientTape() as tape:
  z = f(x, y)
gradients = tape.gradient(z, [x, y])
print(gradients)
# Função que faz um passo de treinamento
# E uma tf.function, que compila essa funcao
@tf.function
def train_step(images):
  noise = tf.random.normal([BATCH_SIZE, noise_dim])
  with tf.GradientTape() as gen_tape, tf.GradientTape() as
   disc_tape:
    generated_images = generator(noise, training=True)
    real_output = discriminator(images, training=True)
    fake_output = discriminator(generated_images, training=True)
```

```
gen_loss = generator_loss(fake_output)
    disc_loss = discriminator_loss(real_output, fake_output)
  gradients_of_generator = gen_tape.gradient(gen_loss, generator.
   trainable_variables)
  gradients_of_discriminator = disc_tape.gradient(disc_loss,
   discriminator.trainable_variables)
  generator_optimizer.apply_gradients(zip(gradients_of_generator,
    generator.trainable_variables))
  discriminator_optimizer.apply_gradients(zip(
   gradients_of_discriminator, discriminator.trainable_variables
   ))
# Treinamento completo/laço
def train(dataset, epochs):
  for epoch in range(epochs):
    start = time.time()
   for image_batch in dataset:
      train_step(image_batch)
    # Produce images for the GIF as you go
    display.clear_output(wait=True)
    generate_and_save_images(generator, epoch + 1, seed)
    # Save the model every 15 epochs
    if (epoch + 1) \% 15 == 0:
      checkpoint.save(file_prefix = checkpoint_prefix)
   print ('Time for epoch {} is {} sec'.format(epoch + 1, time.
   time() - start))
  # Generate after the final epoch
  display.clear_output(wait=True)
  generate_and_save_images(generator, epochs, seed)
def generate_and_save_images(model, epoch, test_input):
  # Notice 'training' is set to False.
  # This is so all layers run in inference mode (batchnorm).
 predictions = model(test_input, training=False)
```

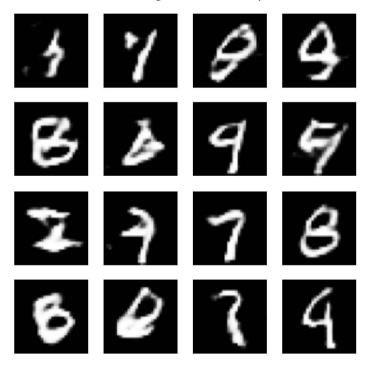
```
fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):
   plt.subplot(4, 4, i+1)
   plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='
   gray')
   plt.axis('off')

plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
   plt.show()

train(train_dataset, EPOCHS)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
```

FIGURA 29 - Imagem na ultima epoca - GAN



4 Tradutor de Textos (Transformer)

```
# Instalação e importação
!pip uninstall -y tensorflow
!pip uninstall -y tf-keras
!pip install tf-keras==2.15.1
!pip install tensorflow==2.15.0 #--use-deprecated=legacy-resolver
!pip install tensorflow_datasets
!pip install -U tensorflow-text==2.15.0
```

```
pip install matplotlib
import collections
import logging
import os
import pathlib
import re
import string
import sys
import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow_datasets as tfds
import tensorflow_text as text
import tensorflow as tf
logging.getLogger('tensorflow').setLevel(logging.ERROR) #
   suppress warnings
# Carregar a base de dados
examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en',
   with_info=True, as_supervised=True)
train_examples, val_examples = examples['train'], examples['
   validation'
# Verificar o dataset
for pt_examples, en_examples in train_examples.batch(3).take(1):
  for pt in pt_examples.numpy():
   print(pt.decode('utf-8'))
 print()
  for en in en_examples.numpy():
    print(en.decode('utf-8'))
```

e quando melhoramos a procura , tiramos a única vantagem da impressão , que é a serendipidade .

mas e se estes fatores fossem ativos ?

mas eles não tinham a curiosidade de me testar.

and when you improve searchability, you actually take away the one advantage of print, which is serendipity.

but what if it were active?

but they did n't test for curiosity.

```
# Tokenização e Destokenização do texto
model_name = "ted_hrlr_translate_pt_en_converter"
tf.keras.utils.get_file(f"{model_name}.zip", f"https://storage.
   googleapis.com/download.tensorflow.org/models/{model_name}.
   zip", cache_dir='.', cache_subdir='', extract=True)
# Tem 2 tokenizers: um pt outro em en tokenizers.en tokeniza e
   detokeniza
tokenizers = tf.saved_model.load(model_name)
# PIPELINE DE ENTRADA
# Codificar/tokenizar lotes de texto puro
def tokenize_pairs(pt, en):
 pt = tokenizers.pt.tokenize(pt)
  # Converte ragged (irregular, tam variável) para dense
  # Faz padding com zeros.
 pt = pt.to_tensor()
  en = tokenizers.en.tokenize(en)
  # ragged -> dense
  en = en.to_tensor()
  return pt, en
# Pipeline simpes: processa, embaralha, agrupa os dados, prefetch
# Datasets de entrada terminam com prefetch
BUFFER_SIZE = 20000
BATCH_SIZE = 64
def make_batches(ds):
  return (
    ds
```

```
.cache()
    .shuffle(BUFFER_SIZE)
    .batch(BATCH_SIZE)
    .map(tokenize_pairs, num_parallel_calls=tf.data.AUTOTUNE)
    .prefetch(tf.data.AUTOTUNE)
  )
train_batches = make_batches(train_examples)
val_batches = make_batches(val_examples)
# CODIFICAÇÃO POSICIONAL
def get_angles(pos, i, d_model):
  angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(
   d_model))
  return pos * angle_rates
def positional_encoding(position, d_model):
  angle_rads = get_angles(np.arange(position)[:, np.newaxis],np.
   arange(d_model)[np.newaxis, :],d_model)
  # sin em índices pares no array; 2i
  angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
  # cos em índices ímpares no array; 2i+1
  angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
  # newaxis, aumenta a dimensão [] -> [ [] ]
 pos_encoding = angle_rads[np.newaxis, ...]
  return tf.cast(pos_encoding, dtype=tf.float32)
# CODIFICACAO POSICIONAL
n, d = 2048, 512
pos_encoding = positional_encoding(n, d)
print(pos_encoding.shape)
pos_encoding = pos_encoding[0]
# Arrumar as dimensões
pos_encoding = tf.reshape(pos_encoding, (n, d//2, 2))
pos_encoding = tf.transpose(pos_encoding, (2, 1, 0))
pos_encoding = tf.reshape(pos_encoding, (d, n))
plt.pcolormesh(pos_encoding, cmap='RdBu')
plt.ylabel('Depth')
plt.xlabel('Position')
```

```
plt.colorbar()
plt.show()
```

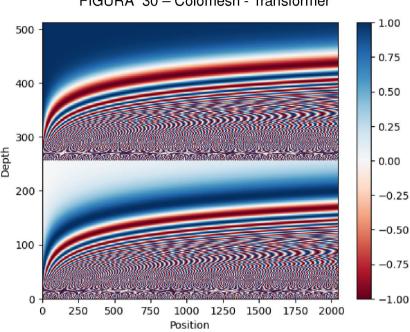


FIGURA 30 - Colomesh - Transformer

```
# Cria uma máscara de 0 e 1, 0 para quando há valor e 1 quando nã
   o há
def create_padding_mask(seq):
  seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
  # add extra dimensions to add the padding
  # to the attention logits.
  return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1,
   seq_1)
# Máscara futura, usada no decoder
def create_look_ahead_mask(size):
  # zera o triângulo inferior
 mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
  return mask # (seq_len, seq_len)
# Função de Atenção
def scaled_dot_product_attention(q, k, v, mask):
  # Q K^T
 matmul_qk = tf.matmul(q, k, transpose_b=True) # (...,
   seq_len_q, seq_len_k)
  # converte matmul_qk para float32
```

```
dk = tf.cast(tf.shape(k)[-1], tf.float32)
  # divide por sqrt(d_k)
  scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
  # Soma a máscara, e os valores faltantes serão um número pró
   ximo a -inf
  if mask is not None:
    scaled_attention_logits += (mask * -1e9)
  # softmax normaliza os dados, soman 1. // (..., seq_len_q,
   seq_len_k)
  attention_weights = tf.nn.softmax(scaled_attention_logits, axis
  output = tf.matmul(attention_weights, v) # (..., seq_len_q,
   depth_v)
  return output, attention_weights
# Atenção Multi-cabeças
class MultiHeadAttention(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads):
    super(MultiHeadAttention, self).__init__()
    self.num_heads = num_heads
    self.d model = d model
    assert d_model % self.num_heads == 0
    self.depth = d_model // self.num_heads
    self.wq = tf.keras.layers.Dense(d_model)
    self.wk = tf.keras.layers.Dense(d_model)
    self.wv = tf.keras.layers.Dense(d_model)
    self.dense = tf.keras.layers.Dense(d_model)
  def split_heads(self, x, batch_size):
    #"Separa a última dimensão em (num_heads, depth).Transpõe o
   resultado para o shape (batch_size, num_heads, seq_len, depth
   ) 11
   x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth
   return tf.transpose(x, perm=[0, 2, 1, 3])
  def call(self, v, k, q, mask):
```

```
batch_size = tf.shape(q)[0]
    q = self.wq(q) # (batch_size, seq_len, d_model)
   k = self.wk(k) # (batch_size, seq_len, d_model)
    v = self.wv(v) # (batch_size, seq_len, d_model)
    q = self.split_heads(q, batch_size) # (batch_size, num_heads
   , seq_len_q, depth)
   k = self.split_heads(k, batch_size) # (batch_size, num_heads
   , seq_len_k, depth)
   v = self.split_heads(v, batch_size) # (batch_size, num_heads
   , seq_len_v, depth)
    # Calcula a atenção para cada cabeça (de forma matricial)
    # scaled_attention.shape == (batch_size, num_heads, seq_len_q
   , depth)
   # attention_weights.shape == (batch_size, num_heads,
   seq_len_q, seq_len_k)
    scaled_attention, attention_weights =
   scaled_dot_product_attention(q, k, v, mask)
    # Troca a dimensão 2 com 1, para acertar o num_heads# (
   batch_size, seq_len_q, num_heads, depth)
    scaled_attention = tf.transpose(scaled_attention, perm=[0, 2,
    1, 3])
    # Concatena os valores em: (batch_size, seq_len_q, d_model)
    concat_attention = tf.reshape(scaled_attention, (batch_size,
   -1, self.d_model))
   output = self.dense(concat_attention) # (batch_size,
   seq_len_q, d_model)
    return output, attention_weights
def point_wise_feed_forward_network(d_model, dff):
  return tf.keras.Sequential([
    tf.keras.layers.Dense(dff, activation='relu'), # (batch_size
   , seq_len, dff)
   tf.keras.layers.Dense(d_model) # (batch_size, seq_len,
   d_model)
  1)
class EncoderLayer(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads, dff, rate=0.1):
```

```
super(EncoderLayer, self).__init__()
    self.mha = MultiHeadAttention(d_model, num_heads)
    self.ffn = point_wise_feed_forward_network(d_model, dff)
    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon
   self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon
   =1e-6)
    self.dropout1 = tf.keras.layers.Dropout(rate)
    self.dropout2 = tf.keras.layers.Dropout(rate)
  def call(self, x, training, mask):
    attn_output, _ = self.mha(x, x, x, mask)
    attn_output = self.dropout1(attn_output, training=training)
    out1 = self.layernorm1(x + attn_output)
    ffn_output = self.ffn(out1)
   ffn_output = self.dropout2(ffn_output, training=training)
    out2 = self.layernorm2(out1 + ffn_output)
    return out2
class DecoderLayer(tf.keras.layers.Layer):
  def __init__(self, d_model, num_heads, dff, rate=0.1):
    super(DecoderLayer, self).__init__()
    self.mha1 = MultiHeadAttention(d_model, num_heads)
    self.mha2 = MultiHeadAttention(d_model, num_heads)
    self.ffn = point_wise_feed_forward_network(d_model, dff)
    self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon
   =1e-6)
    self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon
    self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon
    self.dropout1 = tf.keras.layers.Dropout(rate)
    self.dropout2 = tf.keras.layers.Dropout(rate)
    self.dropout3 = tf.keras.layers.Dropout(rate)
  def call(self, x, enc_output, training, look_ahead_mask,
```

```
padding_mask):
    # enc_output.shape == (batch_size, input_seq_len, d_model)
    # (batch_size, target_seq_len, d_model)
    attn1, attn_weights_block1 = self.mha1(x, x, x,
   look ahead mask)
    attn1 = self.dropout1(attn1, training=training)
    out1 = self.layernorm1(attn1 + x)
    # (batch_size, target_seq_len, d_model)
    attn2, attn_weights_block2 = self.mha2(enc_output, enc_output
   , out1, padding_mask)
    attn2 = self.dropout2(attn2, training=training)
    out2 = self.layernorm2(attn2 + out1) # (batch_size,
   target_seq_len, d_model)
   ffn_output = self.ffn(out2) # (batch_size, target_seq_len,
   d_model)
   ffn_output = self.dropout3(ffn_output, training=training)
    out3 = self.layernorm3(ffn_output + out2) # (batch_size,
   target_seq_len, d_model)
    return out3, attn_weights_block1, attn_weights_block2
class Encoder(tf.keras.layers.Layer):
  def __init__(self, num_layers, d_model, num_heads, dff,
   input_vocab_size, maximum_position_encoding, rate=0.1):
    super(Encoder, self).__init__()
    self.d_model = d_model
    self.num_layers = num_layers
    self.embedding = tf.keras.layers.Embedding(input_vocab_size,
   d model)
    self.pos_encoding = positional_encoding(
   maximum_position_encoding, self.d_model)
   self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate
   ) for _ in range(num_layers)]
    self.dropout = tf.keras.layers.Dropout(rate)
  def call(self, x, training, mask):
    seq_len = tf.shape(x)[1]
    # adding embedding and position encoding.
   x = self.embedding(x) # (batch_size, input_seq_len, d_model)
   x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
```

```
x += self.pos_encoding[:, :seq_len, :]
   x = self.dropout(x, training=training)
   for i in range(self.num_layers):
      x = self.enc_layers[i](x, training, mask)
    return x # (batch_size, input_seq_len, d_model)
class Decoder(tf.keras.layers.Layer):
  def __init__(self, num_layers, d_model, num_heads, dff,
   target_vocab_size,
   maximum_position_encoding, rate=0.1):
    super(Decoder, self).__init__()
    self.d_model = d_model
    self.num_layers = num_layers
    self.embedding = tf.keras.layers.Embedding(target_vocab_size,
    d_model)
    self.pos_encoding = positional_encoding(
   maximum_position_encoding, d_model)
    self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate
   ) for _ in range(num_layers)]
    self.dropout = tf.keras.layers.Dropout(rate)
  def call(self, x, enc_output, training, look_ahead_mask,
   padding_mask):
   seq_len = tf.shape(x)[1]
   attention_weights = {}
   x = self.embedding(x) # (batch_size, target_seq_len, d_model
   x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
   x += self.pos_encoding[:, :seq_len, :]
   x = self.dropout(x, training=training)
   for i in range(self.num_layers):
      x, block1, block2 = self.dec_layers[i](x, enc_output,
   training,look_ahead_mask, padding_mask)
      attention_weights[f'decoder_layer{i+1}_block1'] = block1
      attention_weights[f'decoder_layer{i+1}_block2'] = block2
    # x.shape == (batch_size, target_seq_len, d_model)
    return x, attention_weights
class Transformer(tf.keras.Model):
  def __init__(self, num_layers, d_model, num_heads, dff,
   input_vocab_size, target_vocab_size, pe_input, pe_target,
   rate=0.1):
```

```
super().__init__()
    self.encoder = Encoder(num_layers, d_model, num_heads, dff,
   input_vocab_size, pe_input, rate)
    self.decoder = Decoder(num_layers, d_model, num_heads, dff,
   target_vocab_size, pe_target, rate)
    self.final_layer = tf.keras.layers.Dense(target_vocab_size)
  def call(self, inputs, training):
    # Keras models prefer if you pass all your inputs in the
   first argument
    inp, tar = inputs
    enc_padding_mask, look_ahead_mask, dec_padding_mask = self.
   create_masks(inp, tar)
    # (batch_size, inp_seq_len, d_model)
    enc_output = self.encoder(inp, training, enc_padding_mask)
    # dec_output.shape == (batch_size, tar_seq_len, d_model)
    dec_output, attention_weights = self.decoder(tar, enc_output,
    training, look_ahead_mask, dec_padding_mask)
    # (batch_size, tar_seq_len, target_vocab_size)
    final_output = self.final_layer(dec_output)
    return final_output, attention_weights
  def create_masks(self, inp, tar):
    # Encoder padding mask
    enc_padding_mask = create_padding_mask(inp)
    # Used in the 2nd attention block in the decoder.
    # This padding mask is used to mask the encoder outputs.
    dec_padding_mask = create_padding_mask(inp)
    # Used in the 1st attention block in the decoder.
    # It is used to pad and mask future tokens in the input
   received by
    # the decoder.
    look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
    dec_target_padding_mask = create_padding_mask(tar)
    look_ahead_mask = tf.maximum(dec_target_padding_mask,
   look_ahead_mask)
    return enc_padding_mask, look_ahead_mask, dec_padding_mask
# Hiperparâmetros
num_layers = 4
```

```
d_{model} = 128
dff = 512
num_heads = 8
dropout_rate = 0.1
class CustomSchedule(tf.keras.optimizers.schedules.
   LearningRateSchedule):
  def __init__(self, d_model, warmup_steps=4000):
    super(CustomSchedule, self).__init__()
    self.d_model = d_model
    self.d_model = tf.cast(self.d_model, tf.float32)
    self.warmup_steps = warmup_steps
  def __call__(self, step):
    step = tf.cast(step, tf.float32) # Adicionado para evitar
   ERRO
    arg1 = tf.math.rsqrt(step)
    arg2 = step * (self.warmup_steps ** -1.5)
    return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1,
   arg2)
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9,
   beta_2=0.98, epsilon=1e-9)
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
   from_logits=True, reduction='none')
def loss_function(real, pred):
  mask = tf.math.logical_not(tf.math.equal(real, 0))
  loss_ = loss_object(real, pred)
  mask = tf.cast(mask, dtype=loss_.dtype)
  loss_ *= mask
  return tf.reduce_sum(loss_)/tf.reduce_sum(mask)
def accuracy_function(real, pred):
  accuracies = tf.equal(real, tf.argmax(pred, axis=2))
  mask = tf.math.logical_not(tf.math.equal(real, 0))
  accuracies = tf.math.logical_and(mask, accuracies)
  accuracies = tf.cast(accuracies, dtype=tf.float32)
  mask = tf.cast(mask, dtype=tf.float32)
  return tf.reduce_sum(accuracies)/tf.reduce_sum(mask)
```

```
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.Mean(name='train_accuracy')
transformer = Transformer(
  num_layers=num_layers,
  d_model=d_model,
  num_heads=num_heads,
  dff=dff.
  input_vocab_size=tokenizers.pt.get_vocab_size().numpy(),
  target_vocab_size=tokenizers.en.get_vocab_size().numpy(),
 pe_input=1000,
 pe_target=1000,
  rate=dropout_rate)
# Checkpoint
checkpoint_path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=
   optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path,
   max_to_keep=5)
# if a checkpoint exists, restore the latest checkpoint.
if ckpt_manager.latest_checkpoint:
  ckpt.restore(ckpt_manager.latest_checkpoint)
 print('Latest checkpoint restored!!')
EPOCHS = 20
train_step_signature = [
  tf.TensorSpec(shape=(None, None), dtype=tf.int64),
 tf.TensorSpec(shape=(None, None), dtype=tf.int64),
@tf.function(input_signature=train_step_signature)
def train_step(inp, tar):
  tar_inp = tar[:, :-1]
  tar_real = tar[:, 1:]
  with tf.GradientTape() as tape:
   predictions, _ = transformer([inp, tar_inp], training = True)
   loss = loss_function(tar_real, predictions)
```

```
gradients = tape.gradient(loss, transformer.trainable_variables
  optimizer.apply_gradients(zip(gradients, transformer.
   trainable_variables))
  train loss(loss)
  train_accuracy(accuracy_function(tar_real, predictions))
for epoch in range (EPOCHS):
  start = time.time()
  train_loss.reset_state()
  train_accuracy.reset_state()
  # inp -> portuguese, tar -> english
  for (batch, (inp, tar)) in enumerate(train_batches):
   train_step(inp, tar)
    if batch % 50 == 0:
      print(f'Epoch {epoch + 1} Batch {batch} Loss {train_loss.
   result():.4f} Accuracy{train_accuracy.result():.4f}')
  if (epoch + 1) \% 5 == 0:
    ckpt_save_path = ckpt_manager.save()
   print(f'Saving checkpoint for epoch {epoch+1} at {
   ckpt_save_path}')
  print(f'Epoch {epoch + 1} Loss {train_loss.result():.4f}
   Accuracy{train_accuracy.result():.4f}')
 print(f'Time taken for 1 epoch: {time.time() - start:.2f} secs\
   n')
```

```
Epoch 20 Batch 0 Loss 1.4398 Accuracy0.6776
Epoch 20 Batch 50 Loss 1.4214 Accuracy0.6838
Epoch 20 Batch 100 Loss 1.4334 Accuracy0.6820
Epoch 20 Batch 150 Loss 1.4287 Accuracy0.6833
Epoch 20 Batch 200 Loss 1.4364 Accuracy0.6820
Epoch 20 Batch 250 Loss 1.4398 Accuracy 0.6815
Epoch 20 Batch 300 Loss 1.4402 Accuracy 0.6813
Epoch 20 Batch 350 Loss 1.4458 Accuracy 0.6804
Epoch 20 Batch 400 Loss 1.4458 Accuracy0.6805
Epoch 20 Batch 450 Loss 1.4450 Accuracy0.6804
Epoch 20 Batch 500 Loss 1.4463 Accuracy0.6801
Epoch 20 Batch 550 Loss 1.4490 Accuracy0.6795
Epoch 20 Batch 600 Loss 1.4511 Accuracy0.6793
Epoch 20 Batch 650 Loss 1.4533 Accuracy0.6788
Epoch 20 Batch 700 Loss 1.4567 Accuracy0.6782
Epoch 20 Batch 750 Loss 1.4590 Accuracy0.6778
Epoch 20 Batch 800 Loss 1.4610 Accuracy 0.6775
Saving checkpoint for epoch 20 at ./checkpoints/train/ckpt-4
Epoch 20 Loss 1.4617 Accuracy 0.6774
Time taken for 1 epoch: 95.57 secs
```

```
class Translator(tf.Module):
  def __init__(self, tokenizers, transformer):
    self.tokenizers = tokenizers
    self.transformer = transformer
  def __call__(self, sentence, max_length=20):
   # input sentence is portuguese, hence adding the start and
   end token
   assert isinstance(sentence, tf.Tensor)
   if len(sentence.shape) == 0:
     sentence = sentence[tf.newaxis]
    sentence = self.tokenizers.pt.tokenize(sentence).to_tensor()
   encoder_input = sentence
   # as the target is english, the first token to the
   transformer should be the
   # english start token.
   start_end = self.tokenizers.en.tokenize([''])[0]
   start = start_end[0][tf.newaxis]
    end = start_end[1][tf.newaxis]
    output_array = tf.TensorArray(dtype=tf.int64, size=0,
```

```
dynamic_size=True)
    output_array = output_array.write(0, start)
    for i in tf.range(max_length):
      output = tf.transpose(output_array.stack())
      predictions, _ = self.transformer([encoder_input, output],
   training=False)
      predictions = predictions[:, -1:, :] # (batch_size, 1,
   vocab_size)
      predicted_id = tf.argmax(predictions, axis=-1)
      output_array = output_array.write(i+1, predicted_id[0])
      if predicted_id == end:
       break
    output = tf.transpose(output_array.stack())
    # output.shape (1, tokens)
    text = tokenizers.en.detokenize(output)[0]
    tokens = tokenizers.en.lookup(output)[0]
    _, attention_weights = self.transformer([encoder_input,
   output[:,:-1]], training=False)
   return text, tokens, attention_weights
translator = Translator(tokenizers, transformer)
sentence = "Eu li sobre triceratops na enciclopédia."
translated_text, translated_tokens, attention_weights =
   translator(tf.constant(sentence))
print(f'{"Prediction":15s}: {translated_text}')
```

Prediction: b'i read about tribucis in egypt.'

APÊNDICE 10 - BIG DATA

A - ENUNCIADO

Enviar um arquivo PDF contendo uma descrição breve (2 páginas) sobre a implementação de uma aplicação ou estudo de caso envolvendo Big Data e suas ferramentas (NoSQL e NewSQL). Caracterize os dados e Vs envolvidos, além da modelagem necessária dependendo dos modelos de dados empregados.

B-RESOLUÇÃO

Implementação de uma aplicação de Big Data

Análise de dados públicos de CNPJ para análise de compliance, cálculo de marketshare e vendas

1 Contexto

A crescente complexidade do ambiente de negócios exige soluções inovadoras para a gestão de dados. Soluções baseadas em big data permitem extrair, refinar, armazenar e rotular dados de várias fontes e com as garantias de qualidade para que os negócios as utilizem.

O impacto da utilização dessas tecnologias é tao grande, que as empresas líderes no uso de big data tem maior probabilidade de serem líderes em seu setor e de superar seus concorrentes (McAfee et al., 2012).

A utilização de informações públicas confere uma vantagem competitiva significativa às empresas. Ao acessar dados precisos e atualizados sobre o mercado, as organizações podem identificar novas oportunidades de negócio, personalizar suas estratégias de marketing e otimizar seus processos de vendas. Além disso, a análise de informações públicas permite antecipar tendências de mercado, reduzir riscos e tomar decisões mais assertivas.

Este estudo de caso explora a criação de uma estrutura de big data, utilizando Hadoop, para extrair informações referentes as empresas brasileiras, disponibilizadas pela Receita Federal.

A estruturação da pipeline de dados e a criação de um data lake servirá como fonte única e confiável de informações para toda a organização. Ao eliminar a necessidade de coletar dados de diversas fontes e realizar processos manuais, a solução proposta proporciona uma significativa redução de custos e um aumento da agilidade nas tomadas de decisão.

Após o devido processamento dessas informações, teremos uma gama interessante de dados das empresas brasileiras (CNPJ, status, data de abertura, CNAEs, endereço, contatos, sócios) e serão possíveis, dentre muitas outras aplicabilidades, aplicações em 3 focos distintos: análises de compliance de fornecedores, cálculo de market share e execução de campanhas de vendas.

1.1 Análises de Compliance de Fornecedores

Tendo informações do quadro societário das empresas fornecedoras, pode-se realizar análises referentes a PLDFT (Prevenção a Lavagem de Dinheiro e Financiamento ao Terrorismo). Alguns exemplos de listas restritivas que podem ser analisadas:

- PEP: Apresenta Pessoas Politicamente Expostas (PEP), ou seja, alguém que ocupa, ou ocupou nos últimos anos, um cargo público importante. Devido à sua posição de poder e influência, essas pessoas são consideradas mais suscetíveis a atos de corrupção, como lavagem de dinheiro e suborno.
- **OFAC:** Apresenta empresas, entidades e pessoas físicas com envolvimento direto ou relação com grupos de terroristas e narcotraficantes.

1.2 Cálculo Market Share

Com as informações de CNPJ, status, CNAE e data de abertura é possível calcular quantas das empresas possivelmente clientes (CNAE, localização...) fazem parte da sua carteira e quantas não, chegando a um cálculo preciso e dinâmico do Market Share.

1.3 Execução de Campanhas de Vendas

Entendo quem é e, principalmente, quem não é cliente da sua carteira, é possível utilizar os contatos para campanhas de vendas. Além de utilizar outras informações da empresa para qualificar o lead dentro do funil de vendas.

2 Caracterização dos Dados

Os dados usados neste estudo vêm da base pública da Receita Federal de CNPJs. Tal base contém diversos dados de empresas, porém para nosso estudo de caso focamos somente em dados como nome da empresa, CNPJ, região, data de abertura, sócios, e dados de contato.

2.1 Os V's de Big Data

- Volume: A base de dados de CNPJs inclui milhões de registros de empresas em todo o Brasil, o que justifica o uso de Hadoop para processar grandes volumes de dados.
- **Velocidade**: A análise de compliance e cálculo de market share exigem o processamento em tempo hábil para que as decisões possam ser tomadas rapidamente.
- Variedade: A base de dados da Receita Federal contém diferentes tipos de informações que variam entre dados estruturados (como CNPJ, nome da empresa e data de abertura) e semi-estruturados (como os dados de contato e a relação de sócios).
- Veracidade: A precisão e a confiabilidade dos dados são fundamentais para garantir que as análises, como as de compliance de fornecedores, sejam seguras e sem falhas. Informações incorretas sobre o quadro societário ou o status de uma empresa podem levar a decisões erradas, como a seleção de fornecedores inadequados ou a análise errada do market share. Assim, a limpeza e verificação dos dados antes do processamento são etapas essenciais.
- Valor: O valor gerado a partir desses dados está diretamente relacionado à capacidade da empresa em usá-los para otimizar suas operações e aumentar a competitividade. Ao identificar novos leads e fazer cálculos precisos de market share, a empresa consegue traçar estratégias de vendas mais eficientes e aumentar sua receita.

3 Pipeline de Processamento

3.1 Extração

Os dados são extraídos diretamente da base pública de CNPJs da Receita Federal. São utilizados scripts em Python para baixar os arquivos e em seguida realizar uma etapa de limpeza e transformação, que inclui o tratamento de dados ausentes, a padronização de formatos e a remoção de registros duplicados. O objetivo é garantir que os dados estejam prontos para serem analisados e armazenados no Data Lake.

3.2 Data Lake

Os dados transformados são organizados em um Data Lake no Hadoop, o que permite o armazenamento de grandes volumes de dados de maneira escalável.

Base pública de CNPJs

Extração Python

Data Lake Hadoop

Processamento Hadoop

Análise e Relatórios

FIGURA 31 - Pipeline de Processamento

Fonte: O autor (2025).

3.3 Processamento com Hadoop

A etapa de processamento dos dados é realizada utilizando o MapReduce no Hadoop. Este modelo de processamento distribui as tarefas de maneira eficiente, permitindo que grandes volumes de dados sejam analisados em paralelo. No contexto deste estudo de caso, o MapReduce é utilizado para realizar cálculos complexos, como:

- Análises de compliance de fornecedores, cruzando informações do quadro societário com listas restritivas.
- Cálculo dinâmico do market share, considerando a quantidade de empresas em diferentes setores e regiões.
- Otimização das campanhas de vendas, identificando leads potenciais a partir dos dados de contato e características das empresas.

3.4 Ferramentas utilizadas

- Hadoop: Armazenamento e processamento distribuído.
- Python: Scripts de coleta e transformação dos dados.
- Pandas: Análise antes de enviar os dados ao cluster Hadoop.

4 Conclusão

A implementação deste pipeline utilizando Hadoop e Python possibilitou o processamento eficiente de grandes volumes de dados públicos da Receita Federal, oferecendo uma solução escalável e robusta para lidar com a complexidade e o volume de dados empresariais. A utilização do MapReduce permitiu a distribuição das tarefas de processamento, garantindo agilidade e precisão nas análises de compliance, cálculo de market share e otimização de campanhas de vendas.

APÊNDICE 11 - VISÃO COMPUTACIONAL

A - ENUNCIADO

1 Extração de Características

Os bancos de imagens fornecidos são conjuntos de imagens de 250x250 pixels de imuno-histoquímica (biópsia) de câncer de mama. No total são 4 classes (0, 1+, 2+ e 3+) que estão divididas em diretórios. O objetivo é classificar as imagens nas categorias correspondentes. Uma base de imagens será utilizada para o treinamento e outra para o teste do treino.

As imagens fornecidas são recortes de uma imagem maior do tipo WSI (Whole Slide Imaging) disponibilizada pela Universidade de Warwick (<u>link</u>). A nomenclatura das imagens segue o padrão XX_HER_YYYY.png, onde XX é o número do paciente e YYYY é o número da imagem recortada. Separe a base de treino em 80% para treino e 20% para validação. Separe por pacientes (XX), não utilize a separação randômica! Pois, imagens do mesmo paciente não podem estar na base de treino e de validação, pois isso pode gerar um viés. No caso da CNN VGG16 remova a última camada de classificação e armazene os valores da penúltima camada como um vetor de características. Após o treinamento, os modelos treinados devem ser validados na base de teste.

Tarefas:

- a) Carregue a base de dados de Treino.
- b) Crie partições contendo 80% para treino e 20% para validação (atenção aos pacientes).
- c) Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada extrator).
- d) Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos.
- e) Carregue a base de **Teste** e execute a tarefa 3 nesta base.
- f) Aplique os modelos treinados nos dados de treino
- g) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas matrizes de confusão.

h) Indique qual modelo dá o melhor o resultado e a métrica utilizada

2 Redes Neurais

Utilize as duas bases do exercício anterior para treinar as Redes Neurais Convolucionais VGG16 e a Resnet50. Utilize os pesos pré-treinados (*Transfer Learning*), refaça as camadas *Fully Connected*para o problema de 4 classes. Compare os treinos de 15 épocas com e sem *Data Augmentation*. Tanto a VGG16 quanto a Resnet50 têm como camada de entrada uma imagem 224x224x3, ou seja, uma imagem de 224x224 pixels coloridos (3 canais de cores). Portanto, será necessário fazer uma transformação de 250x250x3 para 224x224x3. Ao fazer o *Data Augmentation* cuidado para não alterar demais as cores das imagens e atrapalhar na classificação.

Tarefas:

- a) Utilize a base de dados de **Treino** já separadas em treino e validação do exercício anterior
- b) Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation
- c) Aplique os modelos treinados nas imagens da base de Teste
- d) Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas matrizes de confusão.
- e) Indique qual modelo dá o melhor o resultado e a métrica utilizada

B - RESOLUÇÃO

1 Extração de Características

Importação das bibliotecas utilizadas

```
#Resolvendo problema compatibilidade ImageDataGenerator
!pip uninstall -y tensorflow
!pip uninstall -y tf-keras
%pip install tensorflow==2.15
import os
```

```
import random
import shutil
import csv
from collections import defaultdict
from pathlib import Path
import numpy as np
import pandas as pd
import cv2
# Keras e TensorFlow
from keras.models import Model, Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras.applications import VGG16, ResNet50
from tensorflow.keras.preprocessing.image import
   ImageDataGenerator
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import
   image_dataset_from_directory
# Scikit-learn
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix,
   classification_report, recall_score, precision_score,
   f1_score
#Selecione a T4 GPU
```

Extração de Características

1 Carregue a base de dados de Treino

```
!unzip Train_Warwick.zip
```

```
diretorio_dataset = '/content/Train_4cls_amostra'

dataset_treino = image_dataset_from_directory(
    diretorio_dataset,
    image_size=(250, 250), # Tamanho das imagens
    batch_size=32, # Tamanho do lote
    label_mode='int', # Modo de rotulagem (inteiro)
    seed=123, # Semente para aleatoriedade
    shuffle=True # Aleatorizar as imagens
)

nomes_classes = dataset_treino.class_names
print("Classes:", nomes_classes)
Found 593 files belonging to 4 classes.
```

Classes: ['0', '1', '2', '3']

tes)

2 Crie partições contendo 80% para treino e 20% para validação (atenção aos pacien-

```
diretorio_dataset = '/content/Train_4cls_amostra'
diretorio_treino = '/content/Train_split'
diretorio_validacao = '/content/Val_split'
def remover_diretorio(caminho_dir):
    if os.path.exists(caminho_dir):
        shutil.rmtree(caminho_dir)
remover_diretorio(diretorio_treino)
remover_diretorio(diretorio_validacao)
os.makedirs(diretorio_treino, exist_ok=True)
os.makedirs(diretorio_validacao, exist_ok=True)
imagens_pacientes = defaultdict(list)
pacientes_por_classe = defaultdict(set)
for class_dir in os.listdir(diretorio_dataset):
    caminho_classe = os.path.join(diretorio_dataset, class_dir)
    if os.path.isdir(caminho_classe):
        for nome_img in os.listdir(caminho_classe):
            id_paciente = nome_img.split('_')[0] # ID do
   paciente
```

```
imagens_pacientes[id_paciente].append((os.path.join(
   caminho_classe, nome_img), class_dir))
            pacientes_por_classe[class_dir].add(id_paciente)
pacientes_treino = set()
pacientes_validacao = set()
for nome_classe, pacientes in pacientes_por_classe.items():
   paciente_validacao = random.choice(list(pacientes))
   pacientes_validacao.add(paciente_validacao)
   pacientes.remove(paciente_validacao)
todos_pacientes = list(imagens_pacientes.keys())
random.shuffle(todos_pacientes)
for id_paciente in todos_pacientes:
    if id_paciente not in pacientes_validacao:
       pacientes_treino.add(id_paciente)
for class_dir in os.listdir(diretorio_dataset):
    os.makedirs(os.path.join(diretorio_treino, class_dir),
   exist_ok=True)
    os.makedirs(os.path.join(diretorio_validacao, class_dir),
   exist ok=True)
for id_paciente in pacientes_treino:
    for caminho_img, class_dir in imagens_pacientes[id_paciente]:
        shutil.move(caminho_img, os.path.join(diretorio_treino,
   class_dir, os.path.basename(caminho_img)))
for id_paciente in pacientes_validacao:
    for caminho_img, class_dir in imagens_pacientes[id_paciente]:
        shutil.move(caminho_img, os.path.join(diretorio_validacao
   , class_dir, os.path.basename(caminho_img)))
# Caminhos das pastas de treino e validação
train_dir = '/content/Train_split'
val_dir = '/content/Val_split'
def count_classes_in_directory(directory):
    class_counts = {}
    for class_folder in os.listdir(directory):
        class_path = os.path.join(directory, class_folder)
```

```
Classes treino:
Classe 1: 120 imagens
Classe 3: 120 imagens
Classe 2: 120 imagens
Classe 0: 116 imagens

Classes validacao:
Classes 1: 27 imagens
Classe 3: 30 imagens
Classe 2: 30 imagens
Classe 0: 30 imagens
```

3 Extraia características utilizando LBP e a CNN VGG16 (gerando um csv para cada extrator)

3.1 LBP

```
# Função para calcular LBP

def get_pixel(img, center, x, y):
    new_value = 0
    try:
        if img[x][y] >= center:
            new_value = 1
    except:
```

```
pass
    return new_value
def lbp_calculated_image(img):
   height, width = img.shape
    img_lbp = np.zeros((height, width), np.uint8)
   for x in range(1, height-1):
        for y in range(1, width-1):
            center = img[x][y]
            val_ar = [
                get_pixel(img, center, x-1, y-1),
                get_pixel(img, center, x-1, y),
                get_pixel(img, center, x-1, y+1),
                get_pixel(img, center, x, y+1),
                get_pixel(img, center, x+1, y+1),
                get_pixel(img, center, x+1, y),
                get_pixel(img, center, x+1, y-1),
                get_pixel(img, center, x, y-1)
            1
            power_val = [1, 2, 4, 8, 16, 32, 64, 128]
            img_lbp[x, y] = sum(val_ar[i] * power_val[i] for i in
    range(len(val_ar)))
    return img_lbp
def processar_imagens(diretorio, nome_arquivo):
    caracteristicas = []
   for class_dir in os.listdir(diretorio):
        caminho_classe = os.path.join(diretorio, class_dir)
        if os.path.isdir(caminho_classe):
            for nome_img in os.listdir(caminho_classe):
                caminho_img = os.path.join(caminho_classe,
   nome_img)
                # Ler imagem e converter para escala de cinza
                img = cv2.imread(caminho_img, cv2.
   IMREAD_GRAYSCALE)
                # Calcular LBP
                img_lbp = lbp_calculated_image(img)
```

```
# Calcular histograma
                hist = cv2.calcHist([img_lbp], [0], None, [256],
   [0, 256])
                hist_normalizado = hist.flatten() / hist.sum() #
    Normalizar
                # Adicionar as características
                caracteristicas.append((class_dir, nome_img, *
   hist_normalizado))
    # Gerar CSV
   with open(nome_arquivo, 'w', newline='') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerow(['Classe', 'Imagem'] + [f'Bin_{i}' for i
   in range(256)]) # Cabeçalho
        writer.writerows(caracteristicas)
# Processar diretórios de treino e validação
processar_imagens(diretorio_treino, '/content/
   caracteristicas_lbp_treino.csv')
processar_imagens(diretorio_validacao, '/content/
   caracteristicas_lbp_validacao.csv')
#CSV gerado com características LBP para treino e validação.
```

3.2 VGG

```
from keras.preprocessing import image

# Carregar o modelo VGG16 pré-treinado
model_vgg = VGG16(weights='imagenet', include_top=False, pooling=
    'avg')

def extrair_caracteristicas_vgg(diretorio, arquivo_saida):
    caracteristicas = []

    for class_dir in os.listdir(diretorio):
        caminho_classe = os.path.join(diretorio, class_dir)
        if os.path.isdir(caminho_classe):
        for nome_img in os.listdir(caminho_classe):
```

```
caminho_img = os.path.join(caminho_classe,
   nome_img)
                # Pré-processar a imagem para VGG16
                img = image.load_img(caminho_img, target_size
   =(250, 250)) # Mudar para 250x250 se necessário
                img_array = image.img_to_array(img)
                img_array = np.expand_dims(img_array, axis=0)
                img_array = preprocess_input(img_array)
                # Extrair características
                features = model_vgg.predict(img_array)
                # Adicionar as características junto com a classe
    e nome da imagem
                caracteristicas.append((class_dir, nome_img, *
   features.flatten())) # Flatten para um vetor
    # Gerar CSV
    with open(arquivo_saida, 'w', newline='') as csv_file:
        writer = csv.writer(csv_file)
        writer.writerow(['Classe', 'Imagem'] + [f'Feature_{i}']
   for i in range(features.shape[1])]) # Cabeçalho
       writer.writerows(caracteristicas)
# Chame a função para processar os diretórios de treino e validaç
extrair_caracteristicas_vgg(diretorio_treino, '/content/
   caracteristicas_treino_vgg16.csv')
extrair_caracteristicas_vgg(diretorio_validacao, '/content/
   caracteristicas_validacao_vgg16.csv')
```

4 Treine modelos Random Forest, SVM e RNA para predição dos dados extraídos

4.1 Random Forest

```
# características VGG
vgg_df_train = pd.read_csv('/content/caracteristicas_treino_vgg16
   .csv')
vgg_df_val = pd.read_csv('/content/
   caracteristicas_validacao_vgg16.csv')
# Concatenar características LBP e VGG
X_train = pd.concat([lbp_df_train.drop(['Classe', 'Imagem'], axis
   =1),
                     vgg_df_train.drop(['Classe', 'Imagem'], axis
   =1)], axis=1)
y_train = lbp_df_train['Classe']
X_val = pd.concat([lbp_df_val.drop(['Classe', 'Imagem'], axis=1),
                   vgg_df_val.drop(['Classe', 'Imagem'], axis=1)
   ], axis=1)
y_val = lbp_df_val['Classe']
# Treinar Random Forest
model_rf = RandomForestClassifier(n_estimators=100, random_state
model_rf.fit(X_train, y_train)
# Fazer previsões no conjunto de validação
y_pred = model_rf.predict(X_val)
# Avaliar o modelo
conf_matrix = confusion_matrix(y_val, y_pred)
class_report = classification_report(y_val, y_pred)
print("Matriz de Confusao:\n", conf_matrix)
print("\nRelatorio de Classificacao:\n", class_report)
Matriz de Confusao:
 [[27 1 0 0]
 [21 3 6 0]
 [ 0 5 25 0]
 [0 0 1 29]]
```

precision recall f1-score

support

Relatorio de Classificacao:

0	0.56	0.96	0.71	28	
1	0.33	0.10	0.15	30	
2	0.78	0.83	0.81	30	
3	1.00	0.97	0.98	30	
accuracy			0.71	118	
macro avg	0.67	0.72	0.66	118	
weighted avg	0.67	0.71	0.66	118	

4.2 SVM

```
# Carregar os CSVs
data_lbp_train = pd.read_csv('/content/caracteristicas_lbp_treino
data_lbp_val = pd.read_csv('/content/
   caracteristicas_lbp_validacao.csv')
data_vgg_train = pd.read_csv('/content/
   caracteristicas_treino_vgg16.csv')
data_vgg_val = pd.read_csv('/content/
   caracteristicas_validacao_vgg16.csv')
print("Dimensões LBP Treino:", data_lbp_train.shape)
print("Dimensões VGG Treino:", data_vgg_train.shape)
print("Dimensões LBP Validação:", data_lbp_val.shape)
print("Dimensões VGG Validação:", data_vgg_val.shape)
# Concatenar características LBP e VGG
X_train = np.concatenate((data_lbp_train.iloc[:, 2:].values,
   data_vgg_train.iloc[:, 2:].values), axis=1) # Todas as
   colunas exceto as duas primeiras
y_train = data_lbp_train['Classe'].values # Usando as classes do
    LBP, que são as mesmas
X_val = np.concatenate((data_lbp_val.iloc[:, 2:].values,
   data_vgg_val.iloc[:, 2:].values), axis=1) # Para o conjunto
   de validação
y_val = data_lbp_val['Classe'].values # Usando as classes do LBP
# Treinar o modelo SVM
model_svm = SVC(kernel='linear', random_state=42) # Você pode
   experimentar outros kernels como 'rbf'
```

```
model_svm.fit(X_train, y_train)
# Fazer previsões no conjunto de validação
y_pred = model_svm.predict(X_val)
# Avaliar o modelo
conf_matrix = confusion_matrix(y_val, y_pred)
report = classification_report(y_val, y_pred)
print("Matriz de Confusão:")
print(conf_matrix)
print("\nRelatório de Classificação:")
print(report)
Dimensões LBP Treino: (475, 258)
Dimensões VGG Treino: (475, 514)
Dimensões LBP Validação: (118, 258)
Dimensões VGG Validação: (118, 514)
Matriz de Confusão:
[[25 3 0 0]
```

[52500] [0 4 26 0] [0 0 1 29]]

Relatório de	Classificaçã	ão:			
	precision	recall	f1-score	support	
0	0.83	0.89	0.86	28	
1	0.78	0.83	0.81	30	
2	0.96	0.87	0.91	30	
3	1.00	0.97	0.98	30	
accuracy			0.89	118	
macro avg	0.89	0.89	0.89	118	
weighted avg	0.90	0.89	0.89	118	

4.3 RNA

```
# características LBP
lbp_df_train = pd.read_csv('/content/caracteristicas_lbp_treino.
   csv')
```

```
lbp_df_val = pd.read_csv('/content/caracteristicas_lbp_validacao.
   csv')
# características VGG
vgg_df_train = pd.read_csv('/content/caracteristicas_treino_vgg16
vgg_df_val = pd.read_csv('/content/
   caracteristicas_validacao_vgg16.csv')
# Concatenar características LBP e VGG
X_train = pd.concat([lbp_df_train.drop(['Classe', 'Imagem'], axis
   =1),
                     vgg_df_train.drop(['Classe', 'Imagem'], axis
   =1)], axis=1)
y_train = lbp_df_train['Classe']
X_val = pd.concat([lbp_df_val.drop(['Classe', 'Imagem'], axis=1),
                   vgg_df_val.drop(['Classe', 'Imagem'], axis=1)
   ], axis=1)
y_val = lbp_df_val['Classe']
label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)
y_val_encoded = label_encoder.transform(y_val)
y_train_categorical = to_categorical(y_train_encoded)
y_val_categorical = to_categorical(y_val_encoded)
# Criar o modelo da RNA
model_rna = Sequential()
model_rna.add(Dense(256, activation='relu', input_shape=(X_train.
   shape[1],))) # Primeira camada oculta
model_rna.add(Dense(128, activation='relu')) # Segunda camada
   oculta
model_rna.add(Dense(len(label_encoder.classes_), activation='
   softmax')) # Camada de saída com softmax
# Compilar o modelo
model_rna.compile(optimizer='adam', loss='
   categorical_crossentropy', metrics=['accuracy'])
# Treinar o modelo
```

5 Carregue a base de Teste e execute a tarefa 3 nesta base

```
!unzip Test_Warwick.zip
```

tarefa 3

6 Aplique os modelos treinados nos dados de teste

6.1 Random Forest

```
Matriz de Confusão (Random Forest) no conjunto de teste:
 [[98 3 0 0]
 [16 49 25 0]
 [ 0 22 68 0]
 [0 0 4 86]]
Relatório de Classificação (Random Forest) no conjunto de teste:
                           recall f1-score
              precision
                                               support
                   0.86
                             0.97
                                       0.91
          0
                                                  101
           1
                   0.66
                             0.54
                                       0.60
                                                   90
          2
                   0.70
                             0.76
                                       0.73
                                                   90
                             0.96
          3
                  1.00
                                       0.98
                                                   90
    accuracy
                                       0.81
                                                  371
                   0.81
                             0.81
                                                  371
  macro avg
                                       0.80
weighted avg
                   0.81
                             0.81
                                       0.81
                                                  371
```

6.2 SVM

```
# Fazer previsões no conjunto de teste com o modelo SVM treinado
y_pred_svm = model_svm.predict(X_test)

# Avaliar o modelo
conf_matrix_svm = confusion_matrix(y_test, y_pred_svm)
class_report_svm = classification_report(y_test, y_pred_svm)
```

```
Matriz de Confusão (SVM) no conjunto de teste:
 [[87 14 0 0]
 [6 69 15 0]
 [ 0 20 69 1]
 [0 0 0 90]]
Relatório de Classificação (SVM) no conjunto de teste:
                                                support
               precision
                            recall f1-score
           0
                   0.94
                             0.86
                                        0.90
                                                   101
           1
                   0.67
                             0.77
                                        0.72
                                                    90
           2
                   0.82
                             0.77
                                        0.79
                                                    90
           3
                   0.99
                             1.00
                                        0.99
                                                    90
   accuracy
                                        0.85
                                                   371
  macro avg
                   0.85
                             0.85
                                        0.85
                                                   371
weighted avg
                   0.86
                             0.85
                                        0.85
                                                   371
```

6.3 RNA

```
# Fazer previsões no conjunto de teste com o modelo RNA treinado
y_pred_rna_prob = model_rna.predict(X_test)

# Converter probabilidades em rótulos de classe (pegando o índice
    da classe com maior probabilidade)
y_pred_rna = np.argmax(y_pred_rna_prob, axis=1)

# Avaliar o modelo
conf_matrix_rna = confusion_matrix(y_test, y_pred_rna)
class_report_rna = classification_report(y_test, y_pred_rna)

print("Matriz de Confusão (RNA) no conjunto de teste:\n",
    conf_matrix_rna)
print("\nRelatório de Classificação (RNA) no conjunto de teste:\n
    ", class_report_rna)
```

```
Matriz de Confusão (RNA) no conjunto de teste:
 [[96 5 0 0]
 [8 55 27 0]
 [ 0 21 66 3]
 [0 0 1 89]]
Relatório de Classificação (RNA) no conjunto de teste:
              precision
                           recall f1-score
                                              support
          0
                  0.92
                            0.95
                                      0.94
                                                 101
           1
                  0.68
                            0.61
                                      0.64
                                                  90
          2
                  0.70
                            0.73
                                      0.72
                                                  90
          3
                  0.97
                            0.99
                                      0.98
                                                  90
                                      0.82
   accuracy
                                                 371
  macro avg
                  0.82
                             0.82
                                      0.82
                                                 371
                                      0.82
weighted avg
                  0.82
                             0.82
                                                 371
```

7 Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas matrizes de confusão

```
# Função para calcular especificidade para múltiplas classes
def calcular_especificidade_multiclasse(conf_matrix):
    especificidades = []
    for i in range(conf_matrix.shape[0]):
        tn = conf_matrix.sum() - conf_matrix[i, :].sum() -
   conf_matrix[:, i].sum() + conf_matrix[i, i]
        fp = conf_matrix[:, i].sum() - conf_matrix[i, i]
        especificidades.append(tn / (tn + fp) if (tn + fp) > 0
   else 0)
    return np.mean(especificidades)
# Cálculo das métricas para Random Forest
sensibilidade_rf = recall_score(y_test, y_pred_rf, average='macro
f1_rf = f1_score(y_test, y_pred_rf, average='macro')
especificidade_rf = calcular_especificidade_multiclasse(
   conf_matrix_rf)
print(f"Métricas para Random Forest:")
print(f"F1-Score: {f1_rf:.4f}")
```

```
print(f"Sensibilidade: {sensibilidade_rf:.4f}")
print(f"Especificidade: {especificidade_rf:.4f}")
```

```
Métricas para Random Forest:
F1-Score: 0.8034
Sensibilidade: 0.8065
Especificidade: 0.9371
```

```
Métricas para SVM:
F1-Score: 0.8499
Sensibilidade: 0.8487
Especificidade: 0.9500
```

```
Métricas para RNA:
F1-Score: 0.8188
Sensibilidade: 0.8210
Especificidade: 0.9419
```

8 Indique qual modelo dá o melhor o resultado e a métrica utilizada

RESULTADO

F1-Score: SVM

· Sensibilidade: SVM

Especificidade: SVM

SVM apresentou melhor resultado em todas as métricas.

A SVM se destacou como o melhor modelo. Ela apresentou métricas de desempenho superiores, incluindo uma F1-Score mais alta, sensibilidade e especificidade eficazes. A SVM se mostrou eficiente na classificação das imagens, principalmente devido à sua capacidade de lidar bem com dados de alta dimensionalidade e encontrar margens de separação mais precisas entre as classes.

Embora a RNA tenha também demonstrado bom desempenho, a SVM foi mais consistente, o que a torna a escolha ideal para essa tarefa específica.

2 Redes Neurais

- 1 Utilize a base de dados de Treino já separadas em treino e validação do exercício anterior
- 2 Treine modelos VGG16 e Resnet50 adaptadas com e sem Data Augmentation
- 2.1 Sem Data Augmentation

```
!pip install livelossplot

from keras.optimizers import RMSprop

from keras.callbacks import ModelCheckpoint

from keras.models import Model

from keras.layers import Dense, Flatten

from keras.applications import VGG16, ResNet50

from livelossplot import PlotLossesKeras

# Definições de parâmetros

BATCH_SIZE = 64  # Tamanho do batch para treinamento

EPOCHS = 10  # Número de épocas para treinamento

# Carregar dados de treino sem Data Augmentation

train_datagen = ImageDataGenerator(rescale=1.0/255.0)

train_generator = train_datagen.flow_from_directory(
```

```
'Train_split/',
    target_size=(224, 224),
    batch_size=BATCH_SIZE,
   class_mode='categorical',
)
# Carregar dados de validação sem Data Augmentation
validation_datagen = ImageDataGenerator(rescale=1.0/255.0)
validation_generator = validation_datagen.flow_from_directory(
    'Val_split/',
    target_size=(224, 224),
   batch_size=BATCH_SIZE,
   class_mode='categorical',
# Treinar modelo VGG16
model_vgg_without_augmentation = VGG16(input_shape=(224, 224, 3),
    weights='imagenet', include_top=False) # Use o modelo pré-
   treinado
# Adicionar camadas próprias ao modelo VGG16
x_vgg = Flatten()(model_vgg_without_augmentation.output)
prediction_vgg = Dense(4, activation='softmax')(x_vgg)
# Criação do Objeto Modelo
model_vgg_without_augmentation = Model(inputs=
   model_vgg_without_augmentation.input, outputs=prediction_vgg)
# Compilar o modelo
model_vgg_without_augmentation.compile(loss='
   categorical_crossentropy', optimizer=RMSprop(learning_rate
   =0.0001), metrics=['accuracy'])
# Treinamento sem Data Augmentation
model_vgg_without_augmentation.fit(
    train_generator,
    validation_data=validation_generator,
    epochs=EPOCHS,
    callbacks=[PlotLossesKeras()]
```

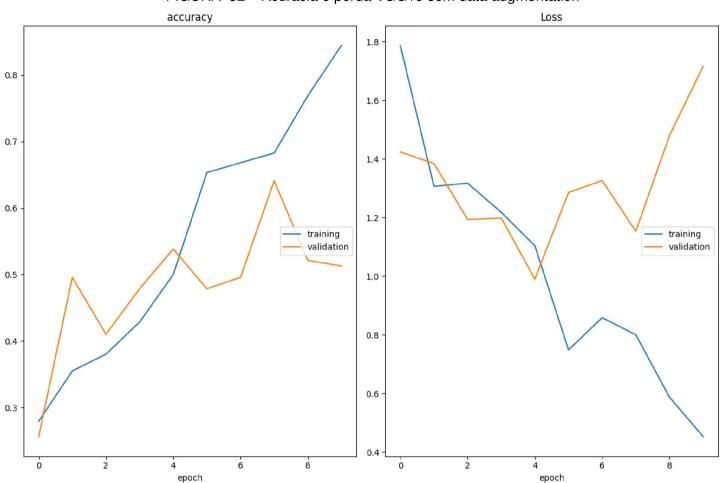


FIGURA 32 – Acurácia e perda VGG16 sem data augmentation

Fonte: O autor (2025).

```
training (min: 0.279, max: 0.845, cur: 0.845)
validation (min: 0.256, max: 0.641, cur: 0.513)

Loss

training (min: 0.453, max: 1.787, cur: 0.453)
validation (min: 0.990, max: 1.716, cur: 1.716)
```

```
# Criação do Objeto Modelo
model_resnet_without_augmentation = Model(inputs=
   model_resnet_without_augmentation.input, outputs=
   prediction_resnet)
# Compilar o modelo
model_resnet_without_augmentation.compile(loss=')
   categorical_crossentropy', optimizer=RMSprop(learning_rate
   =0.0001), metrics=['accuracy'])
# Salva o modelo Keras após cada época, porém só o de melhor
   resultado
checkpointer = ModelCheckpoint(filepath='
   img_model_no_augmentation.weights.best.keras',
                               verbose=1,
                               save_best_only=True)
# Definindo steps_per_epoch e val_steps
steps_per_epoch = train_generator.samples // BATCH_SIZE
val_steps = validation_generator.samples // BATCH_SIZE
# Treinamento sem Data Augmentation para ResNet50
model_resnet_without_augmentation.fit(
    train_generator, # Usando o gerador de treino sem data
   augmentation
    epochs=EPOCHS,
    steps_per_epoch=steps_per_epoch,
    validation_data=validation_generator,
    validation_steps=val_steps,
    callbacks=[checkpointer, PlotLossesKeras()],
    verbose=False
)
print("Treinamento concluído para VGG16 e ResNet50, sem Data
   Augmentation.")
accuracy
                  (min: 0.299, max: 0.570, cur: 0.570)
        training
        validation (min: 0.250, max: 0.516, cur: 0.422)
Loss
                  (min: 0.869, max: 1.794, cur: 0.869)
        training
        validation (min: 0.931, max: 1.273, cur: 0.931)
```

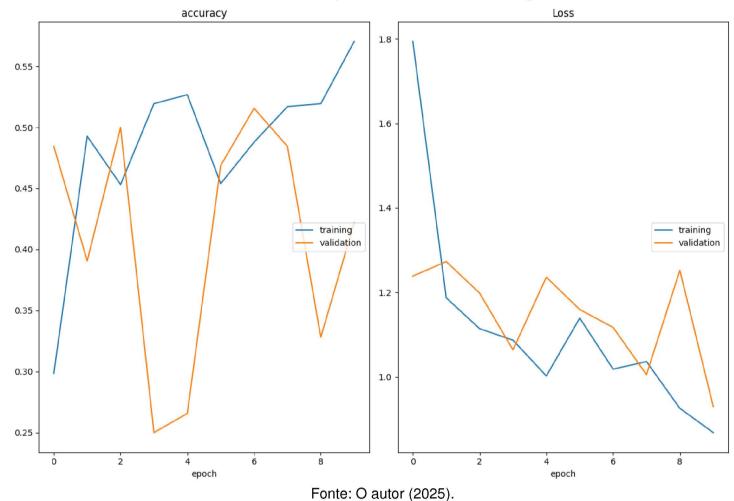


FIGURA 33 – Acurácia e perda ResNet50 sem data augmentation

2.2 Com Data Augmentation

```
from keras.optimizers import RMSprop
from keras.callbacks import ModelCheckpoint
from keras.models import Model
from keras.layers import Dense, Flatten
from keras.applications import VGG16, ResNet50
from livelossplot import PlotLossesKeras
from tensorflow.keras.applications.resnet50 import
    preprocess_input

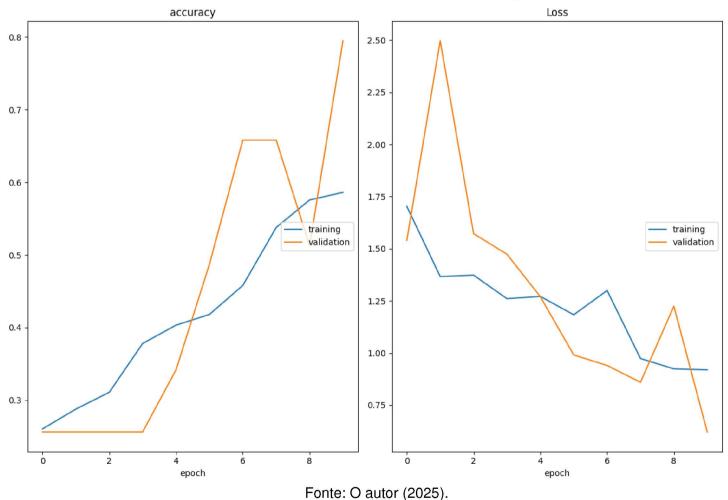
# Definições de parâmetros
BATCH_SIZE = 64  # Tamanho do batch para treinamento
EPOCHS = 10  # Número de épocas para treinamento
# Data Augmentation para o conjunto de treinamento
train_datagen_augmented = ImageDataGenerator(
    rescale=1.0/255.0,
```

```
rotation_range=90,
    brightness_range=[0.1, 0.7],
    width_shift_range=0.5,
   height_shift_range=0.5,
   horizontal_flip=True,
    vertical_flip=True,
    validation_split=0.2,
   preprocessing_function=preprocess_input
)
# Carregar dados de treino com Data Augmentation
train_generator_augmented = train_datagen_augmented.
   flow_from_directory(
    'Train_split/',
   target_size=(224, 224),
   batch_size=BATCH_SIZE,
   class_mode='categorical',
)
# Carregar dados de validação sem Data Augmentation
validation_datagen = ImageDataGenerator(rescale=1.0/255.0,
   preprocessing_function=preprocess_input)
validation_generator = validation_datagen.flow_from_directory(
    'Val_split/',
    target_size=(224, 224),
   batch_size=BATCH_SIZE,
   class_mode='categorical',
# Treinar modelo VGG16
model_vgg_with_augmentation = VGG16(input_shape=(224, 224, 3),
   weights='imagenet', include_top=False) # Use o modelo pré-
   treinado
# Adicionar camadas próprias ao modelo VGG16
x_vgg = Flatten()(model_vgg_with_augmentation.output)
prediction_vgg = Dense(4, activation='softmax')(x_vgg)
# Criação do Objeto Modelo
model_vgg_with_augmentation = Model(inputs=
   model_vgg_with_augmentation.input, outputs=prediction_vgg)
```

```
# Compilar o modelo
model_vgg_with_augmentation.compile(loss=')
    categorical_crossentropy', optimizer=RMSprop(learning_rate
    =0.0001), metrics=['accuracy'])

# Treinamento com Data Augmentation
model_vgg_with_augmentation.fit(
    train_generator_augmented,
    validation_data=validation_generator,
    epochs=EPOCHS,
    callbacks=[PlotLossesKeras()]
)
```

FIGURA 34 – Acurácia e perda VGG16 com data augmentation



```
accuracy
training (min: 0.261, max: 0.586, cur: 0.586)
validation (min: 0.256, max: 0.795, cur: 0.795)
Loss
training (min: 0.919, max: 1.703, cur: 0.919)
```

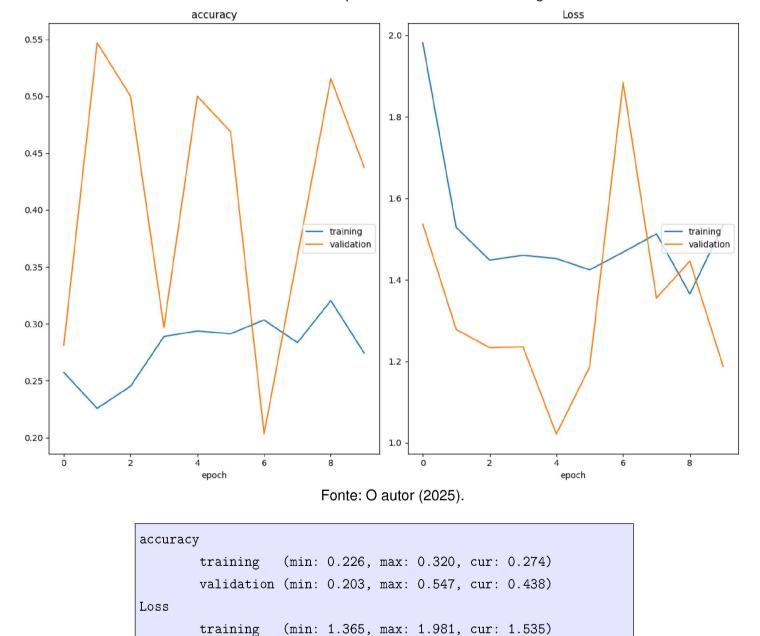
validation (min: 0.622, max: 2.497, cur: 0.622)

```
# Treinar modelo ResNet50
model_resnet_with_augmentation = ResNet50(input_shape=(224,224,3)
   , weights='imagenet', include_top=False)
# Não treinar os pesos existentes
for layer in model_resnet_with_augmentation.layers:
    layer.trainable = False
# Camadas próprias
x_resnet = Flatten()(model_resnet_with_augmentation.output)
prediction_resnet = Dense(4, activation='softmax')(x_resnet)
# Criação do Objeto Modelo
model_resnet_with_augmentation = Model(inputs=
   model_resnet_with_augmentation.input, outputs=
   prediction_resnet)
# Compilar o modelo
model_resnet_with_augmentation.compile(loss='
   categorical_crossentropy', optimizer=RMSprop(learning_rate
   =0.0001), metrics=['accuracy'])
# Salva o modelo Keras após cada época, porém só o de melhor
   resultado
checkpointer = ModelCheckpoint(filepath='img_model_tl.weights.
   best.keras',
                               verbose=1,
                               save_best_only=True)
# Definindo steps_per_epoch e val_steps
steps_per_epoch = train_generator_augmented.samples // BATCH_SIZE
val_steps = validation_generator.samples // BATCH_SIZE
# Treinamento com Data Augmentation para ResNet50
model_resnet_with_augmentation.fit(
    train_generator_augmented, # Usando o gerador de treino com
   data augmentation
    epochs=EPOCHS,
    steps_per_epoch=steps_per_epoch,
    validation_data=validation_generator,
```

```
validation_steps=val_steps,
  callbacks=[checkpointer, PlotLossesKeras()],
  verbose=False
)

print("Treinamento concluído para VGG16 e ResNet50, com Data
  Augmentation.")
```

FIGURA 35 – Acurácia e perda ResNet50 com data augmentation



validation (min: 1.021, max: 1.884, cur: 1.187)

3 Aplique os modelos treinados nas imagens da base de Teste

```
test_generator = ImageDataGenerator(preprocessing_function=
   preprocess_input, rescale=1.0/255.0)
testgen = test_generator.flow_from_directory('/content/
   Test_4cl_amostra',
                                             target_size=(224,
   224),
                                              batch_size=
   BATCH_SIZE,
                                              class_mode=None,
                                              #classes=
   class_subset,
                                              shuffle=False,
                                              seed=42)
test_dir = '/content/Test_4cl_amostra'
def carregar_imagens_teste(diretorio):
    imagens = []
   classes = []
   for class_dir in os.listdir(diretorio):
        caminho_classe = os.path.join(diretorio, class_dir)
        if os.path.isdir(caminho_classe):
            for nome_img in os.listdir(caminho_classe):
                caminho_img = os.path.join(caminho_classe,
   nome_img)
                # Ler a imagem, redimensionar e normalizar
                img = cv2.imread(caminho_img)
                img = cv2.resize(img, (224, 224))
                img = img / 255.0
                imagens.append(img)
                classes.append(int(class_dir))
   return np.array(imagens), np.array(classes)
#X_test, y_test = carregar_imagens_teste(test_dir)
# Modelos sem Data Augmentation
#y_pred_vgg16_no_aug = model_vgg_no_augmentation.predict(X_test)
```

```
y_pred_vgg16_no_aug = model_vgg_without_augmentation.predict(
    testgen)
y_pred_resnet50_no_aug = model_resnet_without_augmentation.
    predict(testgen)

# Modelos com Data Augmentation
y_pred_vgg16_aug = model_vgg_with_augmentation.predict(testgen)
y_pred_resnet50_aug = model_resnet_with_augmentation.predict(
    testgen)

y_pred_vgg16_no_aug_classes = np.argmax(y_pred_vgg16_no_aug, axis =1)
y_pred_resnet50_no_aug_classes = np.argmax(y_pred_resnet50_no_aug, axis=1)

y_pred_vgg16_aug_classes = np.argmax(y_pred_vgg16_aug, axis=1)
y_pred_vgg16_aug_classes = np.argmax(y_pred_vgg16_aug, axis=1)
y_pred_resnet50_aug_classes = np.argmax(y_pred_resnet50_aug, axis=1)
```

4 Calcule as métricas de Sensibilidade, Especificidade e F1-Score com base em suas matrizes de confusão

```
# Cálculo das métricas para cada modelo
y_true = testgen.classes
# VGG16 sem Data Augmentation
conf_matrix_vgg16_no_aug = confusion_matrix(y_true,
   y_pred_vgg16_no_aug_classes)
sensibilidade_vgg16_no_aug = recall_score(y_true,
   y_pred_vgg16_no_aug_classes, average='macro')
f1_vgg16_no_aug = f1_score(y_true, y_pred_vgg16_no_aug_classes,
   average='macro')
especificidade_vgg16_no_aug = calcular_especificidade_multiclasse
   (conf_matrix_vgg16_no_aug)
print("Métricas VGG16 sem Data Augmentation:")
print(f"F1-Score: {f1_vgg16_no_aug:.4f}")
print(f"Sensibilidade: {sensibilidade_vgg16_no_aug:.4f}")
print(f"Especificidade: {especificidade_vgg16_no_aug:.4f}\n")
# ResNet50 sem Data Augmentation
```

```
conf_matrix_resnet50_no_aug = confusion_matrix(y_true,
   y_pred_resnet50_no_aug_classes)
sensibilidade_resnet50_no_aug = recall_score(y_true,
   y_pred_resnet50_no_aug_classes, average='macro')
f1_resnet50_no_aug = f1_score(y_true,
   y_pred_resnet50_no_aug_classes, average='macro')
especificidade_resnet50_no_aug =
   calcular_especificidade_multiclasse(
   conf_matrix_resnet50_no_aug)
print("Métricas ResNet50 sem Data Augmentation:")
print(f"F1-Score: {f1_resnet50_no_aug:.4f}")
print(f"Sensibilidade: {sensibilidade_resnet50_no_aug:.4f}")
print(f"Especificidade: {especificidade_resnet50_no_aug:.4f}\n")
# VGG16 com Data Augmentation
conf_matrix_vgg16_aug = confusion_matrix(y_true,
   y_pred_vgg16_aug_classes)
sensibilidade_vgg16_aug = recall_score(y_true,
   y_pred_vgg16_aug_classes, average='macro')
f1_vgg16_aug = f1_score(y_true, y_pred_vgg16_aug_classes, average
   ='macro')
especificidade_vgg16_aug = calcular_especificidade_multiclasse(
   conf_matrix_vgg16_aug)
print("Métricas VGG16 com Data Augmentation:")
print(f"F1-Score: {f1_vgg16_aug:.4f}")
print(f"Sensibilidade: {sensibilidade_vgg16_aug:.4f}")
print(f"Especificidade: {especificidade_vgg16_aug:.4f}\n")
# ResNet50 com Data Augmentation
conf_matrix_resnet50_aug = confusion_matrix(y_true,
   y_pred_resnet50_aug_classes)
sensibilidade_resnet50_aug = recall_score(y_true,
   y_pred_resnet50_aug_classes, average='macro')
f1_resnet50_aug = f1_score(y_true, y_pred_resnet50_aug_classes,
   average='macro')
especificidade_resnet50_aug = calcular_especificidade_multiclasse
   (conf_matrix_resnet50_aug)
print("Métricas ResNet50 com Data Augmentation:")
print(f"F1-Score: {f1_resnet50_aug:.4f}")
```

```
print(f"Sensibilidade: {sensibilidade_resnet50_aug:.4f}")
print(f"Especificidade: {especificidade_resnet50_aug:.4f}")
```

```
Métricas VGG16 sem Data Augmentation:
F1-Score: 0.2912
Sensibilidade: 0.3240
Especificidade: 0.7704
Métricas ResNet50 sem Data Augmentation:
F1-Score: 0.4255
Sensibilidade: 0.4898
Especificidade: 0.8316
Métricas VGG16 com Data Augmentation:
F1-Score: 0.8277
Sensibilidade: 0.8444
Especificidade: 0.9486
Métricas ResNet50 com Data Augmentation:
F1-Score: 0.3287
Sensibilidade: 0.5000
Especificidade: 0.8301
```

5 Indique qual modelo dá o melhor o resultado e a métrica utilizada

RESULTADO

F1-Score: VGG16 com Data Augmentation

Sensibilidade: VGG16 com Data Augmentation

• Especificidade: VGG16 com Data Augmentation

VGG16 com Data Augmentation apresentou melhor resultado em todas as métricas.

Após avaliar as performances dos modelos VGG16 e ResNet50 em diferentes configurações, a VGG16 com Data Augmentation se destacou como a melhor opção. Este modelo apresentou as melhores métricas de desempenho, com uma F1-Score superior, sensibilidade e especificidade elevadas.

Em contraste, a ResNet50, embora eficaz, não alcançou resultados tão robustos quanto o VGG16 em situações semelhantes. Assim, a VGG16 com Data Augmen-

tation foi escolhida como o modelo ideal para a tarefa em questão, garantindo uma classificação mais precisa e confiável.

APÊNDICE 12 - GESTÃO DE PROJETOS DE IA

A - ENUNCIADO

1 Objetivo

Individualmente, ler e resumir – seguindo o *template* fornecido – **um** dos artigos abaixo:

AHMAD, L.; ABDELRAZEK, M.; ARORA, C.; BANO, M; GRUNDY, J. Requirements practices and gaps when engineering human-centered Artificial Intelligence systems. Applied Soft Computing. 143. 2023. DOI https://doi.org/10.1016/j.asoc.2023.110421

NAZIR, R.; BUCAIONI, A.; PELLICCIONE, P.; Architecting ML-enabled systems: Challenges, best practices, and design decisions. The Journal of Systems & Software. 207. 2024. DOI https://doi.org/10.1016/j.jss.2023.111860

SERBAN, A.; BLOM, K.; HOOS, H.; VISSER, J. Software engineering practices for machine learning – Adoption, effects, and team assessment. The Journal of Systems & Software. 209. 2024. DOI https://doi.org/10.1016/j.jss.2023.111907

STEIDL, M.; FELDERER, M.; RAMLER, R. The pipeline for continuous development of artificial intelligence models — Current state of research and practice. The Journal of Systems & Software. 199. 2023. DOI https://doi.org/10.1016/j.jss. 2023.111615

XIN, D.; WU, E. Y.; LEE, D. J.; SALEHI, N.; PARAMESWARAN, A. Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows. In CHI Conference on Human Factors in Computing Systems (CHI'21), Maio 8-13, 2021, Yokohama, Japão. DOI https://doi.org/10.1145/3411764.3445306

2 Orientações adicionais

Escolha o artigo que for mais interessante para você. Utilize tradutores e o Chat GPT para entender o conteúdo dos artigos – caso precise, mas escreva o resumo em língua portuguesa e nas suas palavras.

Não esqueça de preencher, no trabalho, os campos relativos ao seu nome e ao artigo escolhido.

No template, você deverá responder às seguintes questões:

- Qual o objetivo do estudo descrito pelo artigo?
- Qual o problema/oportunidade/situação que levou a necessidade de realização deste estudo?

- Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?
- Quais os principais resultados obtidos pelo estudo?

Responda cada questão utilizando o espaço fornecido no *template*, sem alteração do tamanho da fonte (Times New Roman, 10), nem alteração do espaçamento entre linhas (1.0).

Não altere as questões do template.

Utilize o editor de textos de sua preferência para preencher as respostas, mas entreque o trabalho em PDF.

B-RESOLUÇÃO

Nome do artigo escolhido:

Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows

Resumo do artigo

O artigo, em sua introdução, enaltece o Aprendizado de Máguina (ML) como promessa de ser o fornecedor de soluções para grandes problemas da atualidade. Porém, sendo uma tecnologia com difícil entendimento e aplicação, há um esforço grande para chegar na precisão desejada. Segue explicando que o Auto-ML é um possível atalho para a utilização dos algoritmos de ML. E, para entender o quanto essas tecnologias estão efetivamente atendendo as necessidades, serão conduzidas entrevistas com dezesseis usuários de Auto-ML a fim de realizar um estudo qualitativo. Em seguida, no capítulo 2, o artigo apresenta 3 diferentes modelos de Auto-ML: sistemas Auto-ML existentes, práticas de trabalho ML centradas no humano e ferramentas ML com humanos no circuito. Cada um deles apresentando suas características e principais soluções existentes no mercado. Sistemas Auto-ML existentes: soluções Auto-ML disponíveis no mercado categorizadas em: software open-source, soluções comerciais hospedadas oferecidas por provedores de nuvem e soluções empresariais oferecidas por empresas dedicadas ao desenvolvimento de plataformas Auto-ML. Práticas de Trabalho ML Centradas no Humano: desenvolvimento de ML deve ser uma atividade colaborativa entre usuários humanos e a máquina, na qual os usuários especificam seu conhecimento de domínio ou comportamento desejável do modelo em alto nível e o sistema executa alguma forma de busca automatizada para gerar um pipeline ou modelo ML apropriado. Ferramentas ML com Humanos no Circuito: busca incorporar conhecimento humano ao desenvolvimento do fluxo de trabalho de ML. Continuando, no capítulo 3, é apresentado o design do estudo. Os 16 participantes recrutados tinham

experiência prévia na aplicação de Auto-ML em capacidades profissionais. Em média, 10 anos de experiência em programação e uma média de 5 anos de experiência com ML. As entrevistas foram realizadas entre outubro de 2019 a março de 2020 e duraram aproximadamente 1 hora. O foco da entrevista foram os 3 componentes abaixo:

- Os participantes foram convidados a descrever seu papel profissional, organização e casos de uso de ML.
- Perguntamos aos participantes sobre sua experiência no desenvolvimento de fluxos de trabalho de ML (sem Auto-ML) e os desafios que enfrentaram.
- Perguntamos aos participantes sobre sua experiência no uso de ferramentas Auto-ML, incluindo os recursos da ferramenta específica usada e como eles integraram o Auto-ML em seus fluxos de trabalho de ML, e suas percepções sobre as ferramentas Auto-ML em geral, incluindo personalização, eficácia, interpretabilidade e transparência.

Todas as entrevistas, com exceção de 1, foram gravadas e transcritas para posterior análise de resultados. Posteriormente, no capítulo 4, o artigo traz os resultados do estudo. Inicialmente definindo os grupos de usuários (inovadores de ML, engenheiros de ML e novatos) e as categorias de uso (aplicação de produção, protótipo e pesquisa). Define também as tarefas de Pré-processamento de Dados, Modelagem e Pós-processamento. Em seguida, mostra, segundo o estudo, os benefícios do Auto-ML:

- Habilita e Empodera Novatos
- Padroniza o fluxo de trabalho ML para melhor reprodutibilidade, manutenção de código e compartilhamento de conhecimento
- Previne resultados subótimos devido a idiossincrasias dos inovadores de ML
- · Constrói modelos de forma mais eficaz e eficiente
- Permite prototipagem rápida
- · Promove Aprendizado

Após, mostra, segundo o estudo, as deficiências do Auto-ML:

- Falta de suporte abrangente de ponta a ponta
- Pré-processamento de dados limitado
- Suporte limitado para modelos e tipos de dados complexos

- Causa falhas no sistema devido a cargas de trabalho intensivas de computação
- Falta de Personalização
- Falta de Transparência e Interpretabilidade

Na sequência mostra como os profissionais impulsionam o desempenho e a eficiência do Auto-ML realizando operações em meio ao "ML automatizado". No capítulo 5, denominado Discussões, os autores trazem possíveis melhorias as soluções de Auto-ML:

- · Adaptar-se ao nível de proficiência do usuário pretendido
- Língua Franca para ML
- Plataforma Holística
- Computação Sem Servidor
- Interface de Usuário Adaptativa
- Exploração Interativa
- Equilíbrio entre Controle Humano e Automação

Na conclusão, os autores salientam que o estudo lança luz sobre várias formas de parceria ou colaboração entre humanos e ML/IA, dependendo das motivações, necessidades, habilidades e casos de uso dos usuários, e fornece aos desenvolvedores de ferramentas Auto-ML de próxima geração diretrizes de design para como melhor incorporar orientação pragmática e capacitar o engajamento eficaz com as ferramentas Auto-ML.

Qual o objetivo do estudo descrito pelo artigo?

Entender o uso de Auto-ML pelos profissionais e possíveis pontos de melhoria para as soluções presentes no mercado.

Qual o problema/oportunidade/situação que levou à necessidade de realização desse estudo?

Apesar se dizer "ML automatizado", o uso do Auto-ML não cobre todas as etapas e particularidades de seu uso necessitando conhecimento dos profissionais que o utilizam. Desta forma, o estudo busca trazer a luz melhorias esperadas para as soluções de Auto-ML disponíveis no mercado.

Qual a metodologia que os autores usaram para obter e analisar as informações do estudo?

Entrevistas com usuários e análise qualitativa dos dados.

Quais os principais resultados obtidos pelo estudo?

Foi possível avaliar os benefícios e as deficiências das ferramentas. Além de, qualificar 7 pontos de melhorias para as soluções:

- Adaptar-se ao nível de proficiência do usuário pretendido
- Língua Franca para ML
- · Plataforma Holística
- Computação Sem Servidor
- Interface de Usuário Adaptativa
- Exploração Interativa
- Equilíbrio entre Controle Humano e Automação

APÊNDICE 13 - FRAMEWORKS DE IA

A - ENUNCIADO

1 Classificação (RNA)

Implementar o exemplo de Classificação usando a base de dados Fashion MNIST e a arquitetura RNA vista na aula **FRA - Aula 10 - 2.4 Resolução de exercício de RNA - Classificação**. Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de perda e de acurácia;
- Imagem gerada na seção "Mostrar algumas classificações erradas", apresentada na aula prática.

Informações:

- Base de dados: Fashion MNIST Dataset
- Descrição: Um dataset de imagens de roupas, onde o objetivo é classificar o tipo de vestuário. É semelhante ao famoso dataset MNIST, mas com peças de vestuário em vez de dígitos.
- Tamanho: 70.000 amostras, 784 features (28x28 pixels).
- Importação do dataset: Copiar código abaixo.

```
data = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
```

2 Regressão (RNA)

Implementar o exemplo de Classificação usando a base de dados Wine Dataset e a arquitetura RNA vista na aula **FRA - Aula 12 - 2.5 Resolução de exercício de RNA - Regressão**. Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de avaliação do modelo (loss);
- Métricas de avaliação do modelo (pelo menos uma entre MAE, MSE, R²).

Informações:

- Base de dados: Wine Quality
- **Descrição**: O objetivo deste dataset prever a qualidade dos vinhos com base em suas características químicas. A variável target (y) neste exemplo será o score de qualidade do vinho, que varia de 0 (pior qualidade) a 10 (melhor qualidade)
- Tamanho: 1599 amostras, 12 features.
- Importação: Copiar código abaixo.

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"

```
data = pd.read csv(url, delimiter=';')
```

Dica 1. Para facilitar o trabalho, renomeie o nome das colunas para português, dessa forma:

```
data.columns = [
  'acidez fixa', # fixed acidity
  'acidez_volatil', # volatile acidity
  'acido citrico', # citric acid
  'acucar residual', # residual sugar
  'cloretos'.
                    # chlorides
  'dioxido de enxofre livre', # free sulfur dioxide
  'dioxido de enxofre total', # total sulfur dioxide
  'densidade', # density
  pH',
            # pH
  'sulfatos', # sulphates
  'alcool',
                   # alcohol
  'score qualidade vinho' # quality
1
```

Dica 2. Separe os dados (x e y) de tal forma que a última coluna (índice -1), chamada score_qualidade_vinho, seja a variável target (y)

3 Sistemas de Recomendação

Implementar o exemplo de Sistemas de Recomendação usando a base de dados Base_livos.csv e a arquitetura vista na aula **FRA - Aula 22 - 4.3 Resolução do Exercício de Sistemas de Recomendação**. Além disso, fazer uma breve explicação dos seguintes resultados:

- Gráficos de avaliação do modelo (loss);
- Exemplo de recomendação de livro para determinado Usuário.

Informações:

- Base de dados: Base livros.csv
- Descrição: Esse conjunto de dados contém informações sobre avaliações de livros (Notas), nomes de livros (Titulo), ISBN e identificação do usuário (ID_usuario)
- Importação: Base de dados disponível no Moodle (UFPR Virtual), chamada Base_livros (formato .csv).

4 Deepdream

Implementar o exemplo de implementação mínima de Deepdream usando uma imagem de um felino - retirada do site Wikipedia - e a arquitetura Deepdream vista na aula **FRA - Aula 23 - Prática Deepdream**. Além disso, fazer uma breve explicação dos seguintes resultados:

- Imagem onírica obtida por Main Loop;
- Imagem onírica obtida ao levar o modelo até uma oitava;
- Diferenças entre imagens oníricas obtidas com Main Loop e levando o modelo até a oitava.

Informações:

- Base de dados: https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg
- Importação da imagem: Copiar código abaixo.

```
url = "https://commons.wikimedia.org/wiki/Special:FilePath/Felis_catus-cat_
on_snow.jpg"
```

Dica: Para exibir a imagem utilizando display (display.html) use o link https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg

B-RESOLUÇÃO

1 Classificação (RNA)

Importação das bibliotecas

```
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
from mlxtend.plotting import plot_confusion_matrix
from sklearn.metrics import confusion_matrix
```

Importação dos dados

```
fashion_mnist = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
print("x_train.shape: ", x_train.shape)
print("y_train.shape: ", y_train.shape)
print("x_test.shape: ", y_test.shape)
print("y_test.shape: ", y_test.shape)
```

```
x_train.shape: (60000, 28, 28)
y_train.shape: (60000,)
x_test.shape: (10000,)
y_test.shape: (10000,)
```

Pré-processamento

```
x_train, x_test = x_train/255.0, x_test/255.0
```

Criação do modelo

```
i = tf.keras.layers.Input(shape=(28, 28))
x = tf.keras.layers.Flatten()(i)
x = tf.keras.layers.Dense(128, activation="relu")(x)
x = tf.keras.layers.Dropout(0.2)(x)
x = tf.keras.layers.Dense(10, activation="softmax")(x)

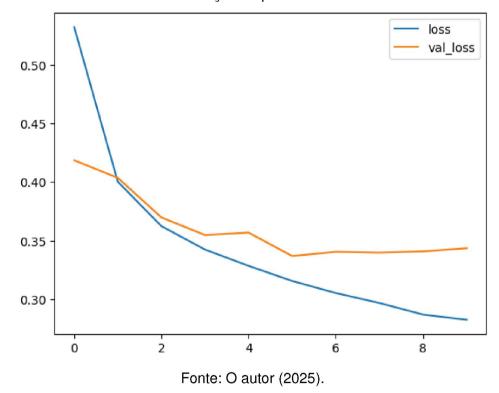
model = tf.keras.models.Model(i, x)
```

Compilação e treinamento do modelo

Avaliação do modelo

```
# Plotar a função de perda
plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.legend()
```

FIGURA 36 - Função de perda - Fashion MNIST



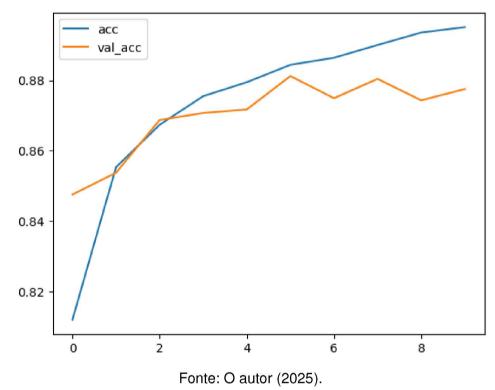
Breve explicação gráfico de perda

A linha azul 'loss' representa a função de perda no conjunto de treinamento, ou seja, o quão ruim as previsões foram nesse conjunto em relação aos valores verdadeiros. Já a linha laranja 'val loss' mostra a perda no conjunto de validação. A

perda diminui gradualmente mostrando que a rede está convergindo para melhores resultados conforme vai sendo treinada.

```
# Plotar a acurácia
plt.plot(r.history["accuracy"], label="acc")
plt.plot(r.history["val_accuracy"], label="val_acc")
plt.legend()
```

FIGURA 37 - Acurácia - Fashion MNIST



Breve explicação gráfico de acurácia

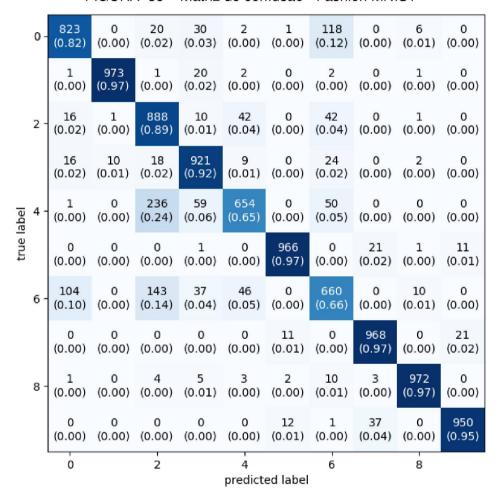
A linha azul 'acc' representa a acurácia no conjunto de treinamento, ou seja, quantas foram as previsões corretas durante o treinamento. Já a linha laranja 'val_acc' representa a acurária no conjunto de validação, mostrando como a rede generaliza para dados que não foram utilizados no treinamento. Ambas as acurárias aumentam gradativamente indicando que a rede está aprendendo e atinge um valor mais de 87% oque é uma boa acurácia.

```
# Avaliar o modelo com a base de teste
print( model.evaluate(x_test, y_test) )

accuracy: 0.8782 - loss: 0.3406
[0.3435542583465576, 0.8774999976158142]
```

Predições

FIGURA 38 – Matriz de confusão - Fashion MNIST



Fonte: O autor (2025).

Mostrar algumas classificações erradas

```
misclassified = np.where(y_pred != y_test)[0]

i = np.random.choice(misclassified)

plt.imshow(x_test[i].reshape(28, 28), cmap="gray")

plt.title("True label: %s Predicted: %s" % (y_test[i], y_pred[i])
)
```

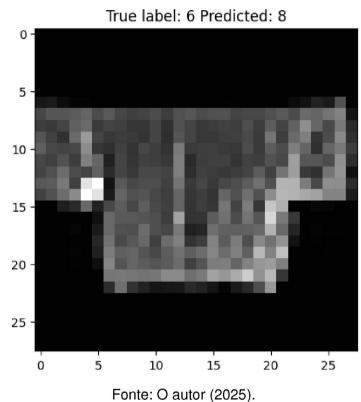


FIGURA 39 – Classificação errada - Fashion MNIST

2 Regressão (RNA)

Importação das bibliotecas

```
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
from math import sqrt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
from sklearn.utils.class_weight import compute_class_weight
from tensorflow.python.keras import backend
```

```
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/
    wine-quality/winequality-red.csv"
data = pd.read_csv(url, delimiter=';')
data.head()
```

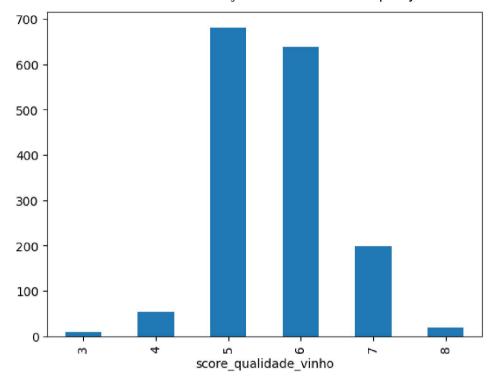
ID	Fixed acidity	Volatile acidity	Citric acid	Residual sugar	Chlorides
0	7.4	0.70	0.00	1.9	0.076
1	7.8	0.88	0.00	2.6	0.098
2	7.8	0.76	0.04	2.3	0.092
3	11.2	0.28	0.56	1.9	0.075
4	7.4	0.70	0.00	1.9	0.076

ID	Free SO ₂	Total SO ₂	Density	рН	Sulphates	Alcohol	Quality
0	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
#Dica 1. Para facilitar o trabalho, renomeie o nome das colunas
   para português, dessa forma:
data.columns = [
'acidez_fixa', # fixed acidity
'acidez_volatil', # volatile acidity
'acido_citrico', # citric acid
'acucar_residual', # residual sugar
'cloretos', # chlorides
'dioxido_de_enxofre_livre', # free sulfur dioxide
'dioxido_de_enxofre_total', # total sulfur dioxide
'densidade', # density
'pH', # pH
'sulfatos', # sulphates
'alcool', # alcohol
'score_qualidade_vinho' # quality
]
#Dica 2. Separe os dados (x e y) de tal forma que a última coluna
    (índice -1), chamada score_qualidade_vinho, seja a variável
   target (y)
X = data.iloc[:, :-1] # Todas as colunas exceto a última
Y = data.iloc[:, -1].astype(float) # Apenas a última coluna
```

```
# Verificar distribuição dos dados
data['score_qualidade_vinho'].value_counts().sort_index().plot(
    kind='bar')
plt.show()
```

FIGURA 40 - Distribuição dos dados - Wine quality



Fonte: O autor (2025).

```
# Melhorar distribuição dos dados

#Aplicar SMOTE (oversampling) ou RandomUnderSampler (
        undersampling)
#Tentativa 1
smote = SMOTE(random_state=42)
#Tentativa 2
#undersampler = RandomUnderSampler(random_state=42)

#Tentativa 1
X, Y = smote.fit_resample(X, Y)
#Tentativa 2
#x_train, y_train = undersampler.fit_resample(x_train, y_train)

# Verificar a distribuição das classes após o balanceamento
print(pd.Series(Y).value_counts())
```

```
score_qualidade_vinho
5.0 681
6.0 681
7.0 681
4.0 681
8.0 681
3.0 681
Name: count, dtype: int64
```

Separação da base em treino e teste (80/20)

Pré-processamento dos dados

```
# Normalização dos dados de entrada
scaler = StandardScaler()
#scaler = MinMaxScaler()

# Ajustar o scaler aos dados de treinamento e transformar x_train
x_train = scaler.fit_transform(x_train)

# Transformar x_test
x_test = scaler.transform(x_test)
```

Criação do modelo

```
# 3 camadas
i = tf.keras.layers.Input(shape=(11,))
#x = tf.keras.layers.Dense(50, activation='relu')(i)
x = tf.keras.layers.Dense(64, activation='relu')(i)
d = tf.keras.layers.Dropout(0.2)(x)
x1 = tf.keras.layers.Dense(32, activation='relu')(d)
d1 = tf.keras.layers.Dropout(0.2)(x1)
x2 = tf.keras.layers.Dense(1)(d1)

model = tf.keras.models.Model(i, x2)
```

Compilação e treinamento do modelo

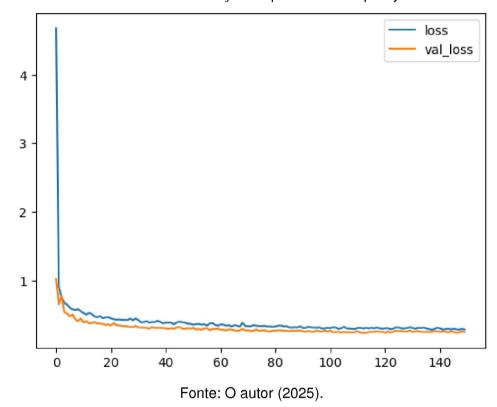
```
# Criação de funções para as métricas R2 e RMSE serem inseridas
   no modelo
def rmse(y_true, y_pred):
  # Converter y_true para float32 para garantir compatibilidade
 y_true = backend.cast(y_true, dtype='float32')
  return backend.sqrt(backend.mean( backend.square(y_pred -
   y_true), axis=-1) )
def r2(y_true, y_pred):
  # Converter y_true para float32 para garantir compatibilidade
  y_true = backend.cast(y_true, dtype='float32')
 media = backend.mean(y_true)
        = backend.sum (backend.square(y_true - y_pred))
  num
        = backend.sum (backend.square(y_true - media))
  den
  return (1.0 - num/den)
# Compilação
#optimizer=tf.keras.optimizers.Adam(learning_rate=0.05)
#optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
optimizer=tf.keras.optimizers.SGD(learning_rate=0.01, momentum
#optimizer=tf.keras.optimizers.SGD(learning_rate=0.2, momentum
   =0.5)
#optimizer=tf.keras.optimizers.RMSprop(0.01)
model.compile(optimizer=optimizer,
              loss="mse",
              metrics=[rmse, r2])
# Early stop para epochs
early_stop = tf.keras.callbacks.EarlyStopping(
                            monitor='val_loss',
                            patience=50,
                            restore_best_weights=True)
#Treinar o modelo com ou sem pesos de classe
#r = model.fit(x_train, y_train, epochs=100, batch_size=32,
 validation_data=(x_test, y_test), callbacks=[early_stop])
```

```
r = model.fit(x_train, y_train, batch_size=64, epochs=150,
    validation_data=(x_test, y_test), callbacks=[early_stop])
```

Avaliação do modelo

```
plt.plot( r.history["loss"], label="loss" )
plt.plot( r.history["val_loss"], label="val_loss" )
plt.legend()
```

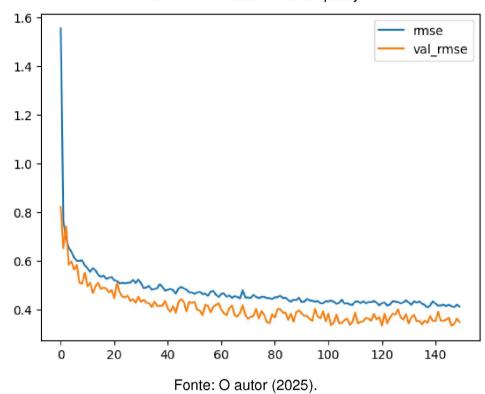
FIGURA 41 - Função de perda - Wine quality



Breve explicação gráfico loss

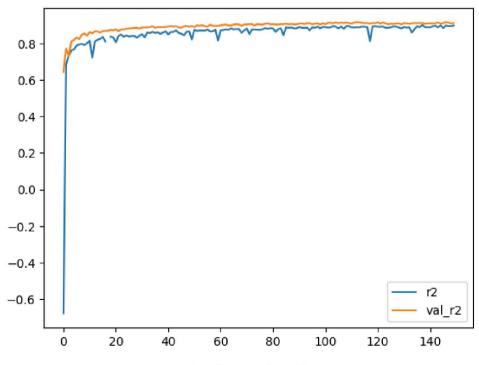
A linha azul 'loss' representa a função de perda no conjunto de treinamento, ou seja, o quão ruim as previsões foram nesse conjunto em relação aos valores verdadeiros. Já a linha laranja 'val_loss' mostra a perda no conjunto de validação. A rede convergiu rapidamente para um baixo valor de perda, e depois se mantém quase constante com uma mínima variação, sugerindo que talvez possa ser diminuido o número de épocas no treinamento.

```
plt.plot( r.history["rmse"], label="rmse" )
plt.plot( r.history["val_rmse"], label="val_rmse" )
plt.legend()
```

plt.plot(r.history["r2"], label="r2")
plt.plot(r.history["val_r2"], label="val_r2")
plt.legend()

FIGURA 43 – R2 - Wine quality



Fonte: O autor (2025).

Predições

```
# Predição
y_pred = model.predict(x_test).flatten()
print(y_test[:10])
print(y_pred[:10])
```

```
837 7.0

1303 5.0

2092 3.0

3659 8.0

2747 4.0

723 5.0

3230 7.0

1164 5.0

808 5.0

3133 7.0

Name: score_qualidade_vinho, dtype: float64

6.3655353 6.268461 2.9856465 7.419491 4.506182 4.958458 5.962226

4.9503975 5.1298738 6.320078
```

```
# Cálculo das métricas de acurácia: mse, r2 e rmse
mse = mean_squared_error(y_test, y_pred)
rmse = sqrt(mse)
r2 = r2_score(y_test, y_pred)

# Resultados das métricas de acurácia
print("mse = ", mse)
print("rmse = ", rmse)
print("r2 = ", r2)
```

```
mse = 0.23897800376884185
rmse = 0.4888537652190498
r2 = 0.9187425337397466
```

Breve explicação das métricas de avaliação

• O MSE de ≈ 0.2389 sugere que a média dos erros quadráticos não é muito alta, o que implica que o modelo fez previsões razoavelmente boas.

- O RMSE de ≈ 0.489 indica que o modelo está errando pouco.
- Um R^2 de ≈ 0.9187 significa que aproximadamente 91.87% das qualidades dos vinhos é explicada corretamente pelo modelo. Isso é um excelente desempenho para uma regressão, indicando que a RNA tem uma boa capacidade preditiva.

3 Sistemas de Recomendação

Importação das bibliotecas

```
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Embedding,
    Flatten, Concatenate, Dropout, Layer
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import SGD, Adam
from tensorflow.keras.regularizers import 12
from tensorflow.keras.callbacks import EarlyStopping

from sklearn.utils import shuffle

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Importação dos dados

```
import pandas as pd

rows = []

# Abrindo o arquivo original
with open("/content/Base_livros.csv", "r") as file:
    next(file) # Pula a primeira linha
for line in file:
    isbn, rest = line.split(",", 1)

    rest_parts = rest.rsplit(",", 5)

    if len(rest_parts) == 6:
        titulo, autor, ano, editora, id_usuario, notas = rest_parts
        rows.append({
            "ISBN": isbn.strip(),
```

```
"Titulo": titulo.strip(),
                "Autor": autor.strip(),
                "Ano": ano.strip(),
                "Editora": editora.strip(),
                "ID_usuario": id_usuario.strip(),
                "Notas": notas.strip()
            7)
# Limpeza geral
df['ISBN'] = df['ISBN'].str.replace(r'^"|"$', '', regex=True) #
   Remove aspas extras no início e fim
df['Titulo'] = df['Titulo'].str.replace(r'^""|""$', '', regex=
   True) # Remove aspas ao redor do título
df['Notas'] = df['Notas'].str.replace(r';+', '', regex=True) #
   Remove os ';' extras nas notas
df['Notas'] = df['Notas'].str.replace(r'^"|"$', '', regex=True)
   # Remove aspas ao redor
#VERIFICAR VALORES NAN
has_nan = df.isnull().values.any()
```

Conversão de userld e movield para categoria

```
# ID_usuario e ISBN não estão no formato certo para usar
# Embeddings > devem ser categóricos

df.ID_usuario = pd.Categorical(df.ID_usuario)
df['new_user_id'] = df.ID_usuario.cat.codes

df.ISBN = pd.Categorical(df.ISBN)
df['new_book_id'] = df.ISBN.cat.codes

#DATA AUGMENTATION

def stratified_sampling(df, n_samples=5):
    augmented_samples = []

# Para cada usuário, pegar os livros com as diferentes notas
    for user in df['new_user_id'].unique():
        user_books = df[df['new_user_id'] == user]
        all_ratings = user_books['Notas'].unique()
```

```
for rating in all_ratings:
            # Pegar livros com essa nota
            sampled_books = user_books[user_books['Notas'] ==
   rating].sample(n=n_samples, replace=True)
            for _, row in sampled_books.iterrows():
                augmented_samples.append([row['new_user_id'], row
   ['new_book_id'], row['Notas']])
    # Criar DataFrame com as interações aumentadas
    augmented_df = pd.DataFrame(augmented_samples, columns=[')
   new_user_id', 'new_book_id', 'Notas'])
   return augmented_df
# Aplicar amostragem estratificada
augmented_df = stratified_sampling(df)
# PARA DESATIVAR DATA AUGMENTATION
#augmented_df = df
# Dimensões
N = len(set(augmented_df.new_user_id))
M = len(set(augmented_df.new_book_id))
# dimensão do embedding (tentar outros)
K = 10
```

Criar o modelo

```
# usuário
u = Input(shape=(1,))
u_emb = Embedding(N, K)(u) # saída : num_samples, 1, K
u_emb = Flatten()(u_emb) # saída : num_samples, K

# livro
m = Input(shape=(1,))
m_emb = Embedding(M, K)(m) # saída : num_samples, 1, K
m_emb = Flatten()(m_emb) # saída : num_samples, K

x = Concatenate()([u_emb, m_emb])

x = Dense(1024, activation="relu")(x)
x = Dense(1)(x)
```

```
model = Model(inputs=[u, m], outputs=x)
```

Compilação do modelo

```
model.compile(
    loss="mse",
    #optimizer=SGD(learning_rate=0.08, momentum=0.9)
    optimizer=Adam(learning_rate=0.001)
)
```

Separação dos dados e pré-processamento

```
from sklearn.preprocessing import StandardScaler
#Padronização das notas, ao descomentar aqui comentar a
   centralização abaixo
scaler = StandardScaler()# Ajuste conforme o nome correto da
   coluna
augmented_df['Notas'] = scaler.fit_transform(augmented_df[['Notas'])
   ']])
# Tentar converter para numérico, substituindo não numéricos por
augmented_df['Notas'] = pd.to_numeric(augmented_df['Notas'],
   errors='coerce')
user_ids, book_ids, ratings = shuffle(augmented_df.new_user_id,
   augmented_df.new_book_id, augmented_df.Notas)
Ntrain = int(0.75 * len(ratings)) # separar os dados 75% x 25%
train_user = user_ids[:Ntrain]
train_book = book_ids[:Ntrain]
train_ratings = ratings[:Ntrain]
test_user = user_ids[Ntrain:]
test_book = book_ids[Ntrain:]
test_ratings = ratings[Ntrain:]
# centralizar as notas
avg_rating = train_ratings.mean()
#train_ratings = train_ratings - avg_rating
```

```
#test_ratings = test_ratings - avg_rating
linhas_na = df[df['Notas'].isnull()]
```

Treinamento do modelo

```
early_stopping = EarlyStopping(
    monitor='val_loss',
    patience=10,
    restore_best_weights=True
)

epochs = 50

r = model.fit(
    x=[train_user, train_book],
    y=train_ratings,
    epochs=epochs,
    batch_size=1024,
    verbose=2, # não imprime o progresso
    validation_data=([test_user, test_book], test_ratings),
    callbacks=[early_stopping]
)
```

Plotar a função de perda

```
plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.legend()
plt.show()
```

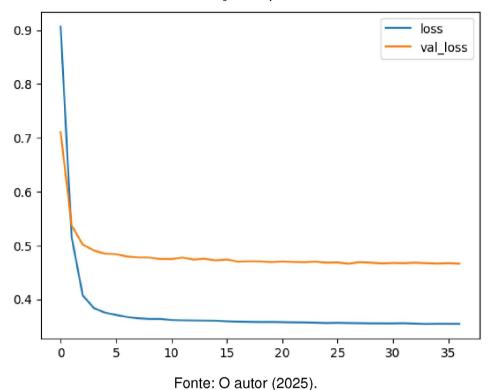


FIGURA 44 - Função de perda - Base livros

Breve explicação gráfico de perda

A linha azul 'loss' representa a função de perda no conjunto de treinamento, ou seja, o quão ruim as previsões foram nesse conjunto em relação aos valores verdadeiros. Já a linha laranja 'val_loss' mostra a perda no conjunto de validação. O modelo começa com uma perda alta e, aparentemente, aprende rapidamente no início, o que é indicado pela queda acentuada no início da curva azul. Após um certo ponto, a curva de validação (laranja) começa a se distanciar da curva de treinamento (azul), o que pode ser um sinal de overfitting. Ou seja, o modelo está começando a se ajustar excessivamente aos dados de treinamento, mas não generaliza bem para os dados de validação, resultando em uma perda crescente no conjunto de validação.

Recomendações para o usuário 7386

```
# Gerar o array com o usuário único
# repete a quantidade de livros
input_usuario = np.repeat(a=7386, repeats=M)
book = np.array(list(set(book_ids)))

preds = model.predict( [input_usuario, book] )

# descentraliza as predições
#rat = preds.flatten() + avg_rating
```

```
Recomendação: ISBN Livro - 5853 / 2.1411452293395996 *
```

Breve explicação recomendação usuário 7386

O modelo, para o usuário com ID 7386, recomenda o livro com ISBN e a nota associada a ele. No exemplo fornecido, a recomendação foi para o livro com ISBN 5853, e a nota prevista para o livro foi ≈ 2.141 .

4 Deepdream

Esta prática contém uma implementação mínima do DeepDream, conforme descrito neste post, do blog de Alexander Mordvintsev.

Vamos demonstrar como fazer uma rede neural "sonhar"e aprimorar os padrões surreais que ela vê em uma imagem.

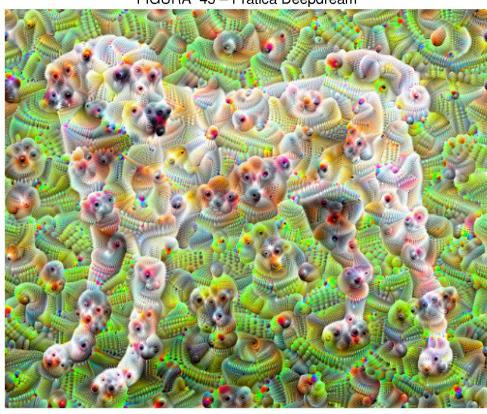


FIGURA 45 – Prática Deepdream

Fonte: O autor (2025).

Importação das bibliotecas

```
import tensorflow as tf
import numpy as np
import matplotlib as mpl
import IPython.display as display
import PIL.Image
```

Importação da imagem

```
url = "https://commons.wikimedia.org/wiki/Special:FilePath/
    Felis_catus-cat_on_snow.jpg"

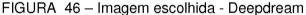
# Download da imagem e gravação em array Numpy
def download(url, max_dim=None):
    name = url.split(','')[-1]
    image_path = tf.keras.utils.get_file(name, origin=url)
    img = PIL.Image.open(image_path)
    if max_dim:
```

```
img.thumbnail((max_dim, max_dim))
return np.array(img)

# Normalização da imagem
def deprocess(img):
    img = 255*(img + 1.0)/2.0
    return tf.cast(img, tf.uint8)

# Mostra a imagem
def show(img):
    display.display(PIL.Image.fromarray(np.array(img)))

# Redução do tamanho da imagem para facilitar o trabalho da RNN
original_img = download(url, max_dim=500)
show(original_img)
display.display(display.HTML('Image cc-by: <a "href=https://
    commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg">
    Von.grzanka</a>'))
```



Fonte: O autor (2025).

Preparar o modelo de extração de recursos

Aqui faremos o download um modelo de classificação de imagem pré-treinado. Usaremos o InceptionV3 que é semelhante ao modelo originalmente usado no Deep-

Dream. Observe que qualquer modelo pré-treinado funcionará, embora você precise ajustar os nomes das camadas abaixo, caso deseje alterá-lo.

```
base_model = tf.keras.applications.InceptionV3(include_top=False,
    weights='imagenet')
```

A ideia no DeepDream é escolher uma camada (ou camadas) e maximizar a "perda"de forma que a imagem cada vez mais treine as camadas.

```
# Maximizando as ativações das camadas
names = ['mixed3', 'mixed5']
layers = [base_model.get_layer(name).output for name in names]
# Criação do modelo
dream_model = tf.keras.Model(inputs=base_model.input, outputs= layers)
```

Cálculo da perda (loss)

A perda é a soma das ativações nas camadas escolhidas.

```
def calc_loss(img, model):
    # Passe a imagem pelo modelo para recuperar as ativações.
    # Converte a imagem em um batch de tamanho 1.
    img_batch = tf.expand_dims(img, axis=0)
    layer_activations = model(img_batch)
    if len(layer_activations) == 1:
        layer_activations = [layer_activations]

losses = []
    for act in layer_activations:
        loss = tf.math.reduce_mean(act)
        losses.append(loss)

return tf.reduce_sum(losses)
```

Subida de gradiente (Gradient ascent)

Depois de ter calculado a perda para as camadas escolhidas, tudo o que resta é calcular os gradientes em relação à imagem e adicioná-los à imagem original.

```
class DeepDream(tf.Module):
   def __init__(self, model):
     self.model = model
```

```
@tf.function(
      input_signature=(
        tf.TensorSpec(shape=[None,None,3], dtype=tf.float32),
        tf.TensorSpec(shape=[], dtype=tf.int32),
        tf.TensorSpec(shape=[], dtype=tf.float32),)
  )
  def __call__(self, img, steps, step_size):
      print("Tracing")
      loss = tf.constant(0.0)
      for n in tf.range(steps):
        with tf.GradientTape() as tape:
          # Gradientes relativos a img
          tape.watch(img)
          loss = calc_loss(img, self.model)
        # Calculo do gradiente da perda em relação aos pixels da
   imagem de entrada.
        gradients = tape.gradient(loss, img)
        # Normalizacao dos gradintes
        gradients /= tf.math.reduce_std(gradients) + 1e-8
        # Na subida gradiente, a "perda" é maximizada.
        # Você pode atualizar a imagem adicionando diretamente os
    gradientes (porque eles têm o mesmo formato!)
        img = img + gradients*step_size
        img = tf.clip_by_value(img, -1, 1)
      return loss, img
deepdream = DeepDream(dream_model)
```

Circuito princial (Main Loop)

```
def run_deep_dream_simple(img, steps=100, step_size=0.01):
    img = tf.keras.applications.inception_v3.preprocess_input(img)
    img = tf.convert_to_tensor(img)
    step_size = tf.convert_to_tensor(step_size)
    steps_remaining = steps
```

```
step = 0
  while steps_remaining:
    if steps_remaining>100:
      run_steps = tf.constant(100)
   else:
      run_steps = tf.constant(steps_remaining)
   steps_remaining -= run_steps
    step += run_steps
   loss, img = deepdream(img, run_steps, tf.constant(step_size))
   display.clear_output(wait=True)
   show(deprocess(img))
   print ("Step {}, loss {}".format(step, loss))
  result = deprocess(img)
  display.clear_output(wait=True)
  show(result)
  return result
dream_img = run_deep_dream_simple(img=original_img,
                                  steps=100, step_size=0.01)
```

FIGURA 47 - Imagem escolhida - Ciclo principal - Deepdream

Fonte: O autor (2025).

Explicação: Imagem gerada durante o ciclo principal do algoritmo DeepDream, que aplica convoluções repetidas vezes para amplificar padrões reconhecidos pela rede neural, em áreas específicas da imagem, gerando texturas e formas psicodélicas, parecidas de um "sonho". Aqui ainda no Main Loop, já é observado um efeito inicial onde partes do gato mostram características "oníricas", mas ainda mantendo a estrutura básica do animal e do fundo da imagem.

Levando o modelo até um oitava

Conseguimos gerar uma imagem. Porém, há alguns problemas com esta primeira tentativa:

- 1. A saída é ruidosa (isso pode ser resolvido com uma perda tf.image.total variation).
- 2. A imagem é de baixa resolução.
- 3. Os padrões parecem estar acontecendo na mesma granularidade.

```
import time
start = time.time()
OCTAVE_SCALE = 1.30
img = tf.constant(np.array(original_img))
base_shape = tf.shape(img)[:-1]
float_base_shape = tf.cast(base_shape, tf.float32)
for n in range(-2, 3):
 new_shape = tf.cast(float_base_shape*(OCTAVE_SCALE**n), tf.
   int32)
  img = tf.image.resize(img, new_shape).numpy()
  img = run_deep_dream_simple(img=img, steps=50, step_size=0.01)
display.clear_output(wait=True)
img = tf.image.resize(img, base_shape)
img = tf.image.convert_image_dtype(img/255.0, dtype=tf.uint8)
show(img)
end = time.time()
end-start
```


FIGURA 48 - Imagem escolhida - Elevado oitava - Deepdream

Fonte: O autor (2025).

Explicação: Aqui onde o modelo é elevado uma oitava a imagem gerada mostra uma intensificação maior dos detalhes oníricos. A imagem do gato começa a perder destaque para o fundo que ganha o destaque com maior preenchimento de padrões e texturas.

Elevar o modelo a uma oitava resolve os problemas de ruído, resolução, e granularidade, através da aplicação da subida de gradiente em uma escala diferente, permitindo que a imagem seja preenchida com detalhes adicionais.

Diferenças entre as imagens do Main Loop e ao elevar à oitava

Nível de detalhe: A imagem após subir uma oitava é mais rica em detalhes, com padrões mais amplificados e complexos em comparação à imagem gerada no Main loop.

Alteração no fundo: No Main Loop, o fundo da imagem ainda mantém maior simplicidade. Após a oitava, ele é preenchido com texturas e formas oníricas adicionais.

Intensidade dos padrões: Na segunda imagem, os padrões criados pela rede neural são mais visíveis e se repetem com maior frequência em todo o corpo do gato.

APÊNDICE 14 - VISUALIZAÇÃO DE DADOS E STORYTELLING

A - ENUNCIADO

Escolha um conjunto de dados brutos (ou uma visualização de dados que você acredite que possa ser melhorada) e faça uma visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de sua escolha)

Desenvolva uma narrativa/storytelling para essa visualização de dados considerando os conceitos e informações que foram discutidas nesta disciplina. Não esqueça de deixar claro para seu possível público alvo qual o objetivo dessa visualização de dados, o que esses dados significam, quais possíveis ações podem ser feitas com base neles.

Entregue em um PDF:

- O conjunto de dados brutos (ou uma visualização de dados que você acredite que possa ser melhorada);
- Explicação do **contexto e o publico-alvo** da visualização de dados e do story-telling que será desenvolvido;
- A visualização desses dados (de acordo com os dados escolhidos e com a ferramenta de sua escolha) explicando a escolha do tipo de visualização e da ferramenta usada; (50 pontos)

B-RESOLUÇÃO

Conjunto de Dados

O conjunto de dados escolhido foi "Crime_Data_from_2020_to_Present.csv", disponível em https://www.kaggle.com/datasets/samithsachidanandan/crime-data-from-2020-to-present/data, contendo dados sobre os crimes na cidade de Los Angeles no período entre 2020 e 2024. Para a utilização no relatório, foi criada uma rotina de processamento de dados ("eda-processamento.ipynb") que filtra somente os crimes de 2023 e substitui valores "nan" para melhor apresentação no relatório. A base preparada (dados_crimes_LA_2023.csv) foi copiada para o Google Drive para melhor utilização com o Looker Studio, devido a integração nativa da ferramenta.

Contexto e Público-alvo

O objetivo é trazer um panorama sobre a violência na cidade de Los Angeles para que visitantes e moradores diminuam os riscos de crimes acontecerem. Desta forma, o relatório deve ser interativo com a finalidade do usuário poder, além de navegar pelas informações, selecionar filtragens específicas.

Visualização dos Dados

Para a visualização dos dados foi escolhida a ferramenta Looker Studio e criado um dashboard com 5 páginas. Esta ferramenta permite a interação entre o usuário e as informações de forma simples e intuitiva, facilitando o objetivo desta visualização. O dashboard está disponível no link: https://lookerstudio.google.com/reporting/c13ed9a8-61ae-452c-91df-21a9b6d064e8

Descrição do Storytelling

O dashboard, após a capa, inicia apresentando uma visão baseada nos bairros da cidade, página Crimes por Bairro. Como trata-se de um relatório para visitantes e moradores, responder à pergunta "onde é mais seguro" se torna uma premissa básica. Nesta página, é apresentado os 10 bairros com maior número de crimes e os 10 bairros com menor número de crimes. Além da lista completa de bairros por ordem alfabética e com o totalizador de crimes. Com os gráficos, fica claro afirmar que o bairro com maior número de crimes é o Central e o com menor número de crimes é o Foothill. A próxima página, Tipo do Crime X Status das Investigações, traz a correlação entre os tipos de crimes e qual o status das investigações. Nele, ao clicar em qualquer um dos gráficos, o outro é filtrado. Desta forma, a indicação é clicar no Tipo de Crime e acompanhar os Status das Investigações logo abaixo. Utilizando desta forma, podemos verificar que 95Na página Arma do Crime X Dados das Vítimas, podemos relacionar a arma utilizada nos crimes com dados das vítimas. Da mesma forma que a página anterior, ao selecionar a arma do crime, os dados da vítima são filtrados. Podemos ver, por exemplo, que o crime de ameaça verbal (VERBAL THREAT) tem como vítimas predominantemente mulheres (48,1E, por fim, a página Guia de Destino reúne todas as informações visualizadas no relatório, adicionando uma caixa de seleção suspensa com todos os bairros para que o usuário entenda os crimes no destino escolhido. Como exemplo, ao selecionar Hollywood, é possível verificar que há mais crimes contra mulheres e pessoas brancas, majoritariamente assaltos sem armas.

APÊNDICE 15 - TÓPICOS EM IA

A - ENUNCIADO

1 Algoritmo Genético

Problema do Caixeiro Viajante

A Solução poderá ser apresentada em: Python (preferencialmente), ou em R, ou em Matlab, ou em C ou em Java.

Considere o seguinte problema de otimização (a escolha do número de 100 cidades foi feita simplesmente para tornar o problema intratável. A solução ótima para este problema não é conhecida).

Suponha que um caixeiro deva partir de sua cidade, visitar clientes em outras 99 cidades diferentes, e então retornar à sua cidade. Dadas as coordenadas das 100 cidades, descubra o percurso de menor distância que passe uma única vez por todas as cidades e retorne à cidade de origem.

Para tornar a coisa mais interessante, as coordenadas das cidades deverão ser sorteadas (aleatórias), considere que cada cidade possui um par de coordenadas (x e y) em um espaço limitado de 100 por 100 pixels.

O relatório deverá conter no mínimo a primeira melhor solução (obtida aleatoriamente na geração da população inicial) e a melhor solução obtida após um número mínimo de 1000 gerações. Gere as imagens em 2d dos pontos (cidades) e do caminho.

Sugestão:

- (1) considere o cromossomo formado pelas cidades, onde a cidade de início (escolhida aleatoriamente) deverá estar na posição 0 e 100 e a ordem das cidades visitadas nas posições de 1 a 99 deverão ser definidas pelo algoritmo genético.
- (2) A função de avaliação deverá minimizar a distância euclidiana entre as cidades (os pontos).
- (3) Utilize no mínimo uma população com 100 indivíduos;
- (4) Utilize no mínimo 1% de novos indivíduos obtidos pelo operador de mutação;
- (5) Utilize no mínimo de 90% de novos indivíduos obtidos pelo método de cruzamento (crossover-ox);
- (6) Preserve sempre a melhor solução de uma geração para outra.

Importante: A solução deverá implementar os operadores de "cruzamento" e "mutação".

2 Compare a representação de dois modelos vetoriais

Pegue um texto relativamente pequeno, o objetivo será visualizar a representação vetorial, que poderá ser um vetor por palavra ou por sentença. Seja qual for a situação, considere a quantidade de palavras ou sentenças onde tenha no mínimo duas similares e no mínimo 6 textos, que deverão produzir no mínimo 6 vetores. Também limite o número máximo, para que a visualização fique clara e objetiva.

O trabalho consiste em pegar os fragmentos de texto e codificá-las na forma vetorial. Após obter os vetores, imprima-os em figuras (plot) que demonstrem a projeção desses vetores usando a PCA.

O PDF deverá conter o código-fonte e as imagens obtidas.

B - RESOLUÇÃO

1 Algoritmo Genético

Importações

```
import numpy as np
import matplotlib.pyplot as plt
import random
from itertools import permutations
```

Configurações

```
NUM_POPULACAO = 100

GERACOES = 1000

TAXA_MUTACAO = 0.01

TAXA_CRUZAMENTO = 0.9
```

Gerar cidades aleatórias

```
cidades = np.random.rand(NUM_POPULACAO, 2) * 100
def populacaoInicial(tamanho):
    resultado = []
    for \_ in range(tamanho):
        individuo = list(np.random.permutation(NUM_POPULACAO))
        resultado.append(individuo)
    return resultado
```

```
#def printaSolucao(caminho, titulo):
# cidadesOrdenadas = np.append(caminho, caminho[0])
# plt.figure(figsize=(10, 6))
# plt.scatter(cidades[:, 0], cidades[:, 1], c='red')
# plt.plot(cidades[cidadesOrdenadas, 0], cidades[cidadesOrdenadas
   , 1], 'b-')
# plt.title(titulo)
# plt.show()
def printaSolucao(caminho, titulo):
    cidadesOrdenadas = caminho + [caminho[0]]
   plt.figure(figsize=(12, 8))
   plt.scatter([c[0] for c in cidades], [c[1] for c in cidades],
    c='red', s=50, label="Cidades")
   plt.plot([cidades[i % NUM_POPULACAO][0] for i in
   cidadesOrdenadas], [cidades[i % NUM_POPULACAO][1] for i in
   cidadesOrdenadas], 'b-', alpha=0.6, linewidth=1.5)
   for i, (x, y) in enumerate(cidades):
       plt.text(x, y, str(i), fontsize=9, ha='right', color='
   black')
   plt.xlim(-10, 110)
   plt.ylim(-10, 110)
   plt.grid(True, linestyle='--', alpha=0.5)
   plt.title(titulo)
   plt.legend()
   plt.show()
```

Calculos distâncias

```
def distanciaEuclidiana(a, b):
    return np.linalg.norm(a - b)

#def distanciaEuclidiana(a, b):
# return np.sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2)

def distanciaTotal(caminho):
    distancia = 0
    for i in range(len(caminho) - 1):
        distancia += distanciaEuclidiana(cidades[caminho[i]],
        cidades[caminho[i+1]])
    distancia += distanciaEuclidiana(cidades[caminho[-1]],
        cidades[caminho[0]])
    return distancia
```

Implementa mutação

```
def mutacao(individuo):
    if random.random() < TAXA_MUTACAO:
        i, j = random.sample(range(NUM_POPULACAO), 2)
        individuo[i], individuo[j] = individuo[j], individuo[i]
    return individuo</pre>
```

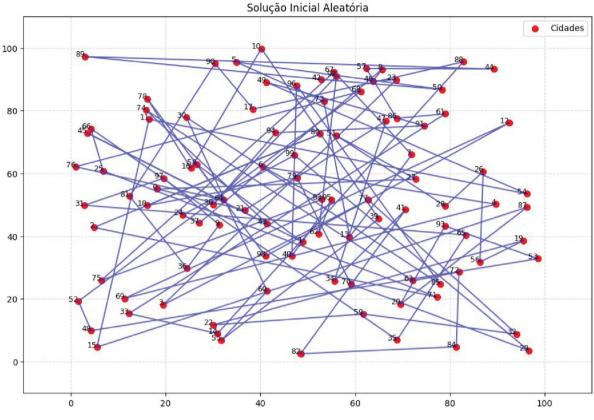
Implementa seleção

```
def selecao(populacao, fitness):
    total = sum(fitness)
    probabilidades = [a / total for a in fitness]
    idx1, idx2 = random.choices(range(len(populacao)), weights=
    probabilidades, k=2)
    return populacao[idx1], populacao[idx2]
```

Inicialização

```
populacao = populacaoInicial(NUM_POPULACAO)
melhorSolucao = min(populacao, key=distanciaTotal)
melhorDistancia = distanciaTotal(melhorSolucao)
printaSolucao(melhorSolucao, "Solução Inicial Aleatória")
```

FIGURA 49 – Solução Inicial Aleatória
Solução Inicial Aleatória



Fonte: O autor (2025).

Algoritmo Genético

```
for geracao in range(GERACOES):
    fitness = np.array([1 / distanciaTotal(ind) for ind in
   populacao])
    novaPopulacao = [melhorSolucao]
    while len(novaPopulacao) < NUM_POPULACAO:</pre>
        if random.random() < TAXA_CRUZAMENTO:</pre>
            p1, p2 = selecao(populacao, fitness)
            filho = cruzamento(p1, p2)
        else:
            filho = random.choice(populacao)
        novaPopulacao.append(mutacao(filho))
    populacao = novaPopulacao
    melhorAtual = min(populacao, key=distanciaTotal)
    distanciaAtual = distanciaTotal(melhorAtual)
    if distanciaAtual < melhorDistancia:</pre>
        melhorSolucao, melhorDistancia = melhorAtual,
   distanciaAtual
```

Exibe a melhor solução encontrada

printaSolucao(melhorSolucao, "Melhor Solução Após 1000 Gerações")

FIGURA 50 - Melhor Solução Após 1000 Gerações

2 Compare a representação de dois modelos vetoriais

Importações

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import PCA
```

Fonte: O autor (2025).

Trechos de texto

```
textos = [
   "Um mago nunca se atrasa, nem se adianta. Ele chega
   exatamente quando pretende chegar, pois o tempo dos magos não
   é o mesmo dos homens. Quando ele chega, é o momento certo.",
   "Mesmo a menor das pessoas pode mudar o curso do futuro. O
   que importa não é o tamanho ou a força, mas a coragem que se
   tem de seguir um caminho que poucos ousariam.",
```

"Tudo o que temos de decidir é o que fazer com o tempo que nos é dado. O que está em nossas mãos, ao fim das contas, é como escolhemos usar os momentos que temos para afetar o que está à nossa volta.", "A jornada não termina aqui. A morte é apenas outro caminho, que todos temos que trilhar. Cada um de nós, por mais que deseje evitar, um dia terá que enfrentar o fim, mas o que fazemos enquanto vivemos é o que realmente importa.", "O mundo não está em seus livros e mapas. Ele está lá fora, nas montanhas, nas florestas e nas planícies. Não se limita ao que você pode ver com os olhos, mas ao que você está disposto a explorar e descobrir.", "Os dias passam como folhas ao vento, mas nossas escolhas permanecem. O que fizemos e as decisões que tomamos, seja na alegria ou na dor, ecoam por todo o nosso caminho e deixam uma marca no que está por vir."]

Vetorização TF-IDF

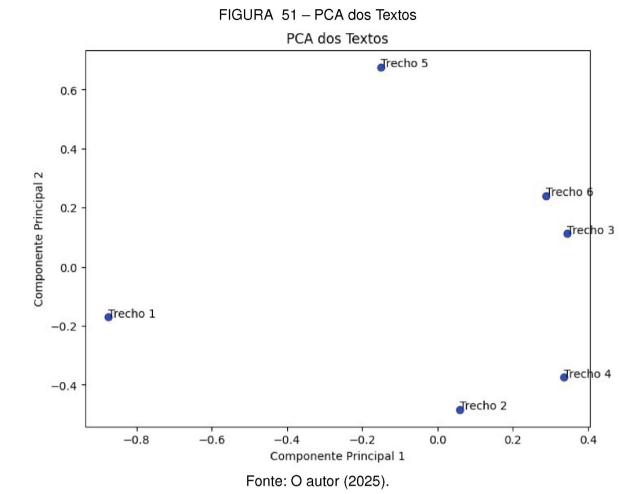
```
vetorizador = TfidfVectorizer()
X = vetorizador.fit_transform(textos).toarray()
```

Redução de dimensionalidade para visualização

```
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
```

Plotagem dos vetores

```
plt.figure(figsize=(8, 6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], color='blue')
for i, txt in enumerate(textos):
    plt.annotate(f"Trecho {i+1}", (X_pca[i, 0], X_pca[i, 1]))
plt.xlabel("Componente Principal 1")
plt.ylabel("Componente Principal 2")
plt.title("PCA dos Textos")
plt.show()
```



No gráfico, os trechos 3 ("Tudo o que temos de decidir é o que fazer com o tempo que nos é dado...") e 6 ("Os dias passam como folhas ao vento, mas nossas escolhas permanecem...") ficaram bem próximos, o que faz sentido visto que tratam da mesma ideia sobre a importância das escolhas.

Já os trechos 2 ("Mesmo a menor das pessoas pode mudar o curso do futuro...") e 4 ("A jornada não termina aqui. A morte é apenas outro caminho, que todos temos que trilhar...") estão ligeiramente próximos, e isso também faz sentido. Da para entender que ambos os trechos tem um toque de esperança.

Essas similaridades revelam como a representação vetorial consegue captar certos significados em trechos de textos.