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“Most good ideas [towards human-level AlI] will come from academia,
even if the most impressive applications come from industry.”
— Yann LeCun



RESUMO

O reconhecimento automdtico de placas de veiculos (ALPR) tem sido um tdpico de pesquisa
frequente devido as suas amplas aplicag¢des praticas, incluindo cobranga automética de pedédgios e
aplicagdo das leis de transito. Apesar do progresso considerdvel no estado da arte nos tltimos anos,
vérias questdes persistem em aberto neste dominio. Esta tese investiga o potencial para avangos
significativos no ALPR ao investigar e abordar meticulosamente essas questdes, em vez de focar
no aumento do nimero de imagens reais de treinamento, na proposta de descritores inovadores, ou
na busca extensiva por melhores arquiteturas de modelos. Nossa pesquisa comeca enderecando a
falta de atencdo dada as imagens contendo placas Mercosul, motocicletas, e placas com duas
linhas de caracteres através da criacdo de um conjunto de dados dedicado (RodoSol-ALPR) e da
condugdo de uma série de experimentos com ele. Nossos experimentos ressaltam a importancia
deste conjunto de dados para o reconhecimento robusto de placas Mercosul e de placas com duas
linhas de caracteres, ja que modelos de reconhecimento 6ptico de caracteres (OCR) treinados em
outros conjuntos de dados nao conseguem ultrapassar uma taxa de reconhecimento de 70% em seu
conjunto de teste. Posteriormente, apresentamos melhorias substanciais no desempenho do ALPR
de ponta a ponta ao mesclar a saida de varios modelos de OCR e combinar varias metodologias
de geracdo de dados sintéticos. Notavelmente, a utilizacdo extensiva de dados sintéticos leva a
resultados estado-da-arte em diversos conjuntos de dados e desempenha um papel fundamental
na superacado de desafios causados pela disponibilidade limitada de dados de treinamento. Esta
tese também identifica questdes criticas na avaliacdo de sistemas para o ALPR. Revelamos que
os protocolos de avaliacdo estabelecidos ndao levam em conta as quase duplicatas nos conjuntos
de treinamento e teste, dificultando o desenvolvimento e a aceitacdo de modelos mais eficientes
que tenham fortes habilidades de generalizacdo mas nao memorizam duplicatas tdo bem quanto
outros modelos. Por fim, contextualizamos o problema do viés de conjunto de dados no dominio
do ALPR, aumentando a conscientizag@o sobre suas possiveis consequéncias. A identificacao
destas questdes enfatiza a importancia da realizacao de experimentos cross-dataset, uma vez que
estes fornecem uma melhor indicac¢do de generalizagdao do que experimentos intra-dataset. Uma
maior adocao de avaliagdes cross-dataset tem o potencial de reduzir a lacuna entre os resultados
relatados no meio académico e os alcancados na industria.

Palavras-chave: Reconhecimento Automatico de Placas de Veiculos, Generalizacao Cross-
Dataset, Viés de Conjunto de Dados, Layout Mercosul, Fusao de Modelos, Quase Duplicatas,
Conjuntos de Dados Publicos, Dados Sintéticos.



ABSTRACT

Automatic License Plate Recognition (ALPR) has been a frequent research topic due to its wide-
ranging practical applications, including automatic toll collection and traffic law enforcement.
Despite the considerable progress in the state of the art driven by deep learning and the increasing
availability of public datasets, several open issues persist within the ALPR domain. This thesis
investigates the potential for significant advancements in ALPR by meticulously identifying and
addressing these issues, rather than focusing on increasing the number of real training images,
designing groundbreaking descriptors, or extensively searching for better model architectures.
Our research begins by tackling the lack of attention given to images featuring Mercosur License
Plates (LPs), motorcycles, and two-row LPs by creating a dedicated dataset (RodoSol-ALPR) and
conducting a series of experiments using it. Our experiments underscore the importance of the
RodoSol-ALPR dataset for robust recognition of Mercosur and two-row LPs, as Optical Character
Recognition (OCR) models trained on alternative datasets fail to surpass a 70% recognition
rate on its test set. Subsequently, we showcase substantial improvements in end-to-end ALPR
performance by fusing the outputs of multiple OCR models and combining various synthetic data
generation methodologies. Notably, the extensive use of synthetic data leads to state-of-the-art
results across diverse datasets and plays a pivotal role in overcoming challenges caused by limited
training data availability. This thesis also identifies critical issues in the assessment of ALPR
systems. We reveal that established evaluation protocols have failed to account for near-duplicates
within training and test sets, hindering the development and acceptance of more efficient models
that have strong generalization abilities but do not memorize duplicates as well as other models.
Finally, we contextualize the dataset bias problem within the License Plate Recognition (LPR)
domain, raising awareness about its potential consequences and discussing the subtle ways this
bias may have crept into existing datasets. Identifying these issues emphasizes the importance
of conducting cross-dataset experiments, as they provide a better indication of generalization
than intra-dataset ones. This shift toward cross-dataset setups has the potential to bridge the gap
between results reported in academia and those achieved in industry.

Keywords: Automatic License Plate Recognition, Cross-Dataset Generalization, Dataset Bias,
Mercosur Layout, Model Fusion, Near-Duplicates, Public Datasets, Synthetic Data.
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1. INTRODUCTION

The global automotive industry’s sales volume has recently rebounded to pre-pandemic levels
(Statista, 2024; ING Economics, 2024). In addition to bringing convenience to owners, vehicles
also significantly modify the urban environment, posing pollution, privacy and security challenges,
especially in large urban centers. The continuous monitoring of vehicles through computational
techniques is of paramount importance and has consequently become a prevalent area of research.
In this context, Automatic License Plate Recognition (ALPR) systems stand out.

ALPR systems leverage image processing and pattern recognition techniques to detect
and recognize License Plates (LPs) from images or videos. Some practical applications for an
ALPR system are road traffic monitoring, toll collection, and vehicle access control in restricted
areas (Anagnostopoulos et al., 2008; Du et al., 2013; Weihong and Jiaoyang, 2020).

In the deep learning era, ALPR systems typically include two stages: License Plate
Detection (LPD) and License Plate Recognition (LPR). As depicted in Figure 1.1, the former
stage involves locating the LP regions within the input image, while the latter refers to identifying
the characters on those LPs. Both of these stages are crucial to the overall system performance
and must be executed close to perfection, as (i) a failure in LPD often leads to subsequent failures
in LPR, and (i1) a single incorrectly recognized character can result in the incorrect identification
of the vehicle (Gongalves et al., 2016b; Shashirangana et al., 2022; Ding et al., 2024).

Image Acquisition

License Plate Detection License Plate Recognition

!PLA-?HI—)M]

Figure 1.1: A typical ALPR system. It is divided into two stages: LPD and LPR. The former stage refers to locating
the LPs within the input image, while the latter refers to identifying the characters on those LPs.

ALPR systems have exhibited remarkable performance on LPs from multiple regions
due to advances in deep learning and the increasing availability of annotated datasets (Henry
et al., 2020; Silva and Jung, 2022; Liu et al., 2024b). Despite the considerable progress in the
state of the art, many issues remain unresolved within the ALPR domain.

1.1 Problem Statement

This section outlines the key problems identified in the literature, which motivate our research.

Evaluation Protocols

In the past, the evaluation of ALPR systems used to be done within individual datasets.
This involved training and testing the proposed methods on different subsets from the same
dataset, with the models being trained and tested independently for each dataset. However, a
recent shift has occurred due to the time-consuming nature of training deep learning models,
especially on low- and mid-end Graphics Processing Units (GPUs). Researchers have embraced
a new protocol where the models are trained once on the union of the training images from the
selected datasets and then evaluated separately on the respective test sets (Laroca et al., 2021b;
Qin and Liu, 2022; Pattanaik and Balabantaray, 2023). This protocol is hereinafter referred to
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as traditional split. Despite using disjoint subsets for training and testing, such a protocol does
not indicate whether the evaluated models have good generalization ability (i.e., whether they
perform well on images from different scenarios), mainly due to domain divergence and data
selection bias (Torralba and Efros, 2011; Zhang et al., 2019a; Fabbrizzi et al., 2022).

In this regard, many computer vision researchers have carried out cross-dataset ex-
periments — where training and testing data come from different sources — to assess whether
the proposed models perform well on data from an unknown domain (Ashraf et al., 2018; Ma
et al., 2021; Estevam et al., 2024). Nevertheless, to our knowledge, research in ALPR lacks
in-depth exploration of such experimental settings. This contrasts with the fact that real-world
deployments often involve installing new cameras without retraining existing models. Adopting
a leave-one-dataset-out evaluation protocol would effectively simulate this specific scenario and
provide a more robust assessment of the models’ generalizability.

Our practical experience has revealed that even when training the models on images
from the same scenario (as in the traditional-split protocol), the accuracy levels observed in
real-world deployments often fall short of those reported in academic studies. One possible
explanation for this discrepancy is dataset bias, a well-recognized issue in the computer vision
community (Ashraf et al., 2018; Jaipuria et al., 2022; Hort et al., 2023). Essentially, models
inadvertently learn idiosyncrasies unique to each dataset alongside fundamental task-related
knowledge. We also have discovered that the protocols traditionally adopted for splitting the
images in public datasets into training and test sets do not account for the same vehicle or LP
appearing in multiple images. Hence, distinct yet highly similar images of the same vehicle or
LP may exist in both the training and test sets. Somewhat alarmingly, these issues (dataset bias
and near-duplicates within the training and test sets) have gone unnoticed in the ALPR literature.

Diverse LP Layouts

Increased mobility and internationalization set new challenges for developing effective
traffic monitoring and control systems. This is particularly true for ALPR systems, which must
handle LPs from multiple regions with different character sets and syntax (Mecocci and Tommaso,
2006; Anagnostopoulos et al., 2008; Lubna et al., 2021). As shown in Figure 1.2, even LPs from
the same country can vary considerably. For example, in the United States, many states allow
specialty LPs showcasing the emblems of colleges, universities, professional sports teams, or
other organizations. Individuals can also customize the arrangement of letters and digits for an
extra fee (vanity LPs) (Guggenheim and Silversmith, 2000). Despite this variety, most ALPR
systems presented in the literature were tailored to handle a single LP style (e.g., single-row
blue LPs from mainland China). This limitation has been increasingly pointed out in recent
research (Zeni and Jung, 2020; Silva and Jung, 2022; Gao et al., 2023). Although some authors
claimed that their approaches could be extended with minor modifications to detect and recognize
LPs from another region (Liu and Chang, 2019; Wang et al., 2022a; Rao et al., 2024), adapting
layout-specific approaches to handle multiple LP layouts — with a similar degree of robustness —
can be quite challenging or even unfeasible (Gao et al., 2020b; Laroca et al., 2021b).

Mercosur LPs

Mercosur, short for Mercado Comiin del Sur (Southern Common Market in Spanish), is
an economic and political bloc comprising Argentina, Brazil, Paraguay and Uruguay'. These
countries have collectively adopted a standardized format for LPs on newly purchased vehicles,
as shown in Figure 1.3, drawing inspiration from the integrated system long adopted by member
countries of the European Union. Despite the adoption of this new layout across all countries in
the bloc, there is still no public dataset for ALPR with images of Mercosur LPs.

!'Venezuela is currently suspended, and Bolivia is in the process of accession (MERCOSUR, 2024).
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Figure 1.2: Examples of different LP styles in the United States. One can infer that it would be impractical to train an
ALPR system specifically for each LP style. Image reproduced from http://www.ashtonrose.org/blog/
new—-north—-dakota—-license-plate (available via http://web.archive.org/).
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Figure 1.3: The new standard of LPs adopted by Mercosur countries. This standard allows for any combination of
letters and digits on the LP. The initial pattern adopted by each member country is shown above.

Motorcycles and Two-Row LPs
Motorcycles constitute a major form of transportation in urban areas, especially in

developing nations (Hsu et al., 2015; Oliveira et al., 2021; Yuniaristanto et al., 2024). For
instance, motorcycles make up over 90% of traffic in Vietnam (Nguyen-Phuoc et al., 2024) and
28% of all vehicles in Brazil (Senatran, 2024). This makes it crucial for ALPR systems to handle
motorcycle images very well. Startlingly, motorcycles have been largely overlooked in ALPR
research. While most researchers have used datasets without motorcycle images to evaluate their
methods (Weihong and Jiaoyang, 2020; Lubna et al., 2021), there are several works where all
images of motorcycles were explicitly excluded from the experiments (Gongalves et al., 2018;
Yonetsu et al., 2019; Fernandes et al., 2020). The lack of attention toward motorcycles in the
ALPR literature is mainly because LPs of motorcycles usually have two rows of characters, which
create difficulties for sequential/recurrent-based methods (Zeni and Jung, 2020; Xu et al., 2022;
Chen et al., 2023), and also because they are generally smaller in size (with smaller and closely
spaced characters) and are often tilted, further complicating recognition efforts.

Public Datasets
In this sense, there is a great demand for a publicly available dataset for end-to-end ALPR

that contains the same number of images of cars and motorcycles, ensuring that both vehicle
types receive equal importance during experimental evaluations. Ideally, the dataset should also
encompass an equal distribution of LPs with one and two rows of characters. As highlighted
by Ponce et al. (2006), the results may be biased when there are many more images for some
“easy” samples (e.g., cars with single-row LPs) than for some “hard” ones (e.g., motorcycles with
two-row LPs). For simplicity and in line with common practice in the literature, in this work
“car” refers to any vehicle with four wheels or more (e.g., passenger cars, vans, buses, trucks,
among others), whereas “motorcycle” refers to both motorcycles and motorized tricycles.

Synthetic LP Images

In the regime where labeled data is expensive (Bjorklund et al., 2019; Han et al., 2020;
Gao et al., 2023) and privacy concerns are growing (Chan et al., 2020; Kong et al., 2021; Trinh
et al., 2023), researchers would also benefit significantly from an approach capable of generating
fully labeled images of LPs from diverse regions and styles. While recent studies have delved into
the creation of synthetic LP images to enhance LPR performance, there are several limitations
within these efforts, as elaborated in the following paragraph.
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In addition to most works focusing on LPs from a single region, as discussed earlier,
existing studies have predominantly employed a single methodology to generate synthetic LPs.
This leaves open questions regarding the potential for significantly enhanced outcomes through
the integration of data generated from various methodologies. Moreover, current research has
mostly explored unpaired image-to-image translation methods (e.g., CycleGAN) using a large
number of real images for training (100k+), without addressing how to achieve similar results with
a limited number of real images for training. This need for many images limits the application
of these methods since there are not always a large number of images available for each LP
layout (Han et al., 2020; Laroca et al., 2021b; Yang et al., 2023). Finally, the assessment of
synthetic data generation methods has mainly relied on the performance of individual Optical
Character Recognition (OCR) models, overlooking the possibility that images created using a
particular method may disproportionately favor certain models over others.

OCR Model Fusion
Regarding OCR models, previous research has shown that different models perform

with varying degrees of robustness on different datasets (Zeni and Jung, 2020; Mokayed et al.,
2021; Al-batat et al., 2022). Each dataset poses distinct challenges, such as diverse LP layouts
and varying tilt ranges. As a result, a model that performs exceptionally well on one dataset may
produce subpar results on another. This highlights the potential for significantly enhancing LPR
results by fusing the outputs of diverse OCR models. The extent of this improvement and the
optimal number and selection of models required remain unaddressed in the current literature.

Summary
The evaluation protocols traditionally adopted to assess ALPR systems fail to accurately

indicate these systems’ out-of-domain robustness. Moreover, they allow the same vehicle or LP
to appear in both the training and test sets, potentially leading to skewed outcomes, even in intra-
dataset evaluations. Current research has primarily focused on designing ALPR systems tailored
to a single LP layout, neglecting the challenges of increased mobility and internationalization.
There is a clear demand for a publicly available dataset that incorporates Mercosur LPs and
includes an equal distribution of vehicle types (cars and motorcycles) and LP configurations (one-
and two-row LPs). The ability to synthesize diverse and high-quality LP images is highly desirable
to reduce the reliance on private datasets and address growing privacy concerns. Current methods
for synthetic LP generation have several limitations, including a narrow focus on LP styles from
specific regions, a lack of exploration of combining data generation methodologies, and the
requirement for many real training images. Finally, the potential for improved performance by
combining the output of multiple OCR models remains largely unexplored.

1.2 Hypothesis and Research Questions

The main hypothesis of this research is:

Hypothesis
It is possible to significantly improve the state of the art in Automatic License Plate
Recognition (ALPR) without increasing the number of real training images, designing
groundbreaking descriptors, or extensively searching for better model architectures.

More specifically, we firmly believe we can considerably improve the state of the art
in ALPR by focusing on aspects often overlooked in the literature. These aspects include but
are not limited to (i) addressing the lack of attention given to images featuring Mercosur LPs,
motorcycles, and two-row LPs through the creation of a dedicated dataset, (ii) leveraging
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fusion approaches to enhance LPR performance across various scenarios, and (ii1) developing
a Generative Adversarial Network (GAN)-based methodology for synthesizing fully-labeled
images of LPs from diverse regions and styles. Integrating this methodology with others can lead
to improved LPR performance and reduce the reliance on large volumes of real training data.

We are also certain that moving beyond overly simplistic experimental setups will enable

us to reveal limitations in current approaches and biases within established evaluation protocols.
By actively addressing these issues, our proposed methods can yield results that not only surpass
state-of-the-art approaches but also align more closely with those achieved in industry.

The following questions guide our research:

What are the best practices for gathering images in real-world settings to build a dataset
featuring images of vehicles with Mercosur LPs? What legal and ethical factors should
be considered when collecting and selecting these images, such as the potential presence
of identifiable faces within the images? What specific characteristics should this dataset
possess, such as a balanced representation of cars and motorcycles, as well as an equal
representation of Brazilian and Mercosur LPs?>? What annotations must be provided for
each image to enable the evaluation of ALPR systems in an end-to-end manner?

Do current methods for detecting and recognizing LPs generalize well to unseen data?
Why is it crucial to evaluate deep learning models on a range of datasets with varying
characteristics? Is there an OCR model that stands out as superior across all datasets,
regardless of their characteristics and the volume of training data? What influence does
the proposed dataset have on the accurate recognition of Mercosur and two-row LPs?

Can we significantly improve LPR results by combining the outputs of various OCR
models? If so, to what extent can such enhancement be attained? Additionally, how
many models and which specific ones should we explore for optimal results? When
selecting models for the ensemble, should we prioritize their accuracy levels to maximize
recognition performance, or would it be more advantageous to focus on faster models to
strike a better balance between accuracy and speed in the final methodology?

To what extent does combining real data with synthetic data generated through advanced
techniques improve LPR accuracy compared to solely augmenting real data with standard
transformations such as random perspective shifts, noise addition, and adjustments to
brightness and contrast? What are the prevalent methodologies for generating synthetic
LP images, and how do they stack up in terms of increasing LPR accuracy? Is there a
synergistic effect from combining them, or is relying on a single method sufficient?

Can a single generative model, trained with only a few hundred real images for each
LP layout, produce fully-labeled images of LPs from diverse regions and styles? Can
alternative methods for generating synthetic data be leveraged to overcome the scarcity
of labeled paired data required to train an image-to-image translation model? How can
character distortion or blending be mitigated during the generation of the LP images?

To what degree can synthetic images, created using various methodologies, reduce the
number of real images needed for effectively training OCR models? How do OCR
models with similar performance fare when trained with reduced portions of the training

2 To maintain consistency with previous works (Izidio et al., 2020; Oliveira et al., 2021; Silva and Jung, 2022),
we refer to “Brazilian” as the layout used in Brazil before the adoption of the Mercosur layout.
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set but supplemented with synthetic data? Do they exhibit comparable performance
trends, or does one model outperform the other in such scenarios?

* Can we attain state-of-the-art performance without relying on heuristic rules or post-
processing techniques to adjust the predictions based on expected patterns in particular
LP layouts? How important is it to rectify (unwarp) the LPs before recognition for
achieving these results? Which OCR model offers the optimal balance between speed
and accuracy in each of the intra-dataset and cross-dataset protocols? Do models that
strike a good speed/accuracy trade-off under the intra-dataset protocol maintain such
equilibrium when applied to independent datasets? What specific characteristics enable
these models (or hinder them) to sustain such balance?

* Do well-established partitions of ALPR datasets contain near-duplicates within their
training and test sets? If so, how prevalent are these occurrences? How can these
partitions be reworked to create fair splits that exclude duplicates while maintaining their
key characteristics? Would LPR models trained and tested on these fair splits exhibit
significantly higher error rates compared to those trained and tested on conventional
partitions that include duplicates? What are the implications of such duplicates on the
assessment and development of deep learning-based models for LPR?

 Are there identifiable signatures (bias) in public datasets that LPR models can exploit to
identify from which dataset each LP image originates? If such biases are found, what
impact have they had on the learning and evaluation of LPR models? Which strategies
can be employed to mitigate dataset bias in upcoming data collections?

1.3 Objectives

This research aims to propel the field of Automatic License Plate Recognition forward. We seek
to achieve this by identifying and meticulously analyzing the key limitations within the literature.
By addressing these shortcomings, we aim to improve the state of the art and bridge the gap
between the results reached in academia and industry. The specific objectives are as follows:

* To introduce a public dataset comprising many images of vehicles with Mercosur LPs
acquired in real-world scenarios. We intend to meticulously curate this dataset to ensure
a balanced distribution between images of cars and motorcycles, as well as Brazilian and
Mercosur LPs. This approach aims to mitigate potential biases during the assessment of
ALPR systems. Additionally, we plan to provide detailed annotations for each image,
enabling a comprehensive end-to-end evaluation of ALPR systems;

* To draw researchers’ attention to cross-dataset experiments since they better simulate
real-world ALPR applications, where new cameras are regularly being installed in new
locations without existing systems being retrained every time;

* To underscore the significant variations in how models perform on different datasets.
We aim to emphasize the importance of evaluating models using a diverse range of
datasets rather than relying on just a few that may not be fully representative;

* To explore potential improvements in LPR results by fusing the outputs from multiple
OCR models. Our objective is to determine the most effective method of combining the
chosen models, quantify the attainable performance gains, and find the optimal selection
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of models for the ensemble, considering either the achieved recognition accuracy or the
balance between speed and accuracy in the resulting methodology;

* To thoroughly evaluate synthetic data generation methodologies based on the average
results achieved by diverse OCR models across various datasets. We aim to demonstrate
the contributions of each synthesis method and assess how their combination could
further enhance model performance compared to using a single methodology;

* To propose an end-to-end ALPR system that achieves state-of-the-art results on public
benchmarks. The system must effectively handle challenges often found in real-world
applications, such as diverse LP layouts, images with varying resolutions, LPs with
different numbers of characters arranged in one or two rows, and scenarios where the
LP characters are partially occluded. Ideally, the proposed system should demonstrate
robustness to images captured in domains beyond those represented in the training set
without requiring hundreds of thousands of real, human-labeled images for training;

* To highlight the fact that the evaluation protocols traditionally adopted to assess ALPR
systems have historically failed to account for the possibility of the same vehicle or LP
appearing in multiple images. We aim to understand how these near-duplicates have
affected the performance evaluation of OCR models applied to LPR;

* To examine the issue of dataset bias in the LPR context, specifically investigating whether
public datasets from the two dominant regions in the field have unique and identifiable
signatures. Our goal is to bring attention to the significant ramifications of dataset bias
in ALPR research, analyzing how this bias could have infiltrated these datasets and
suggesting measures to identify and mitigate it in future data collection efforts;

1.4 Contributions

The contributions of this work can be summarized as follows:

* [Chapter 4] The first public dataset containing images of vehicles with Mercosur LPs.
This dataset, named RodoSol-ALPR, is instrumental in enabling researchers to adapt and
develop ALPR systems specifically for this new LP layout. RodoSol-ALPR facilitates
fair comparisons between methods proposed in various studies due to its balanced
distribution of images featuring cars and motorcycles, as well as one- and two-row LPs.
Remarkably, access to the dataset has already been granted to 145 researchers from
42 countries around the world, as shown here. The dataset has already been explored in
several works, including (Nascimento et al., 2023; Chen et al., 2023; Liu et al., 2024b);

* [Chapter 5] A comprehensive evaluation that highlights the importance of increasing
the out-of-domain robustness of ALPR systems, particularly regarding LPR. We consider
the proposed traditional-split vs. leave-one-dataset-out experimental setup to be a valid
testbed for assessing the cross-dataset generalizability of forthcoming methods;

* [Chapter 6] A demonstration of the substantial benefits of fusion approaches to LPR
performance, both in intra- and cross-dataset experimental setups. More specifically, we
show that fusing multiple OCR models reduces considerably the likelihood of obtaining
subpar performance on a particular scenario. This analysis includes a comparative
assessment of distinct fusion methods and considers the speed/accuracy trade-off in the
final approach by varying the number of models incorporated into the ensemble;



26

* [Chapter 7] A GAN-driven methodology for synthesizing fully-labeled images of LPs
from diverse regions and styles. Despite being trained with only a few hundred real
images per LP layout, it yields high-quality results. We are releasing a dataset with 300k
LP images generated through this technique, which researchers can use for training and
testing their OCR models. Such a dataset is of paramount importance as growing privacy
concerns have inhibited the creation and availability of LP datasets in several regions;

* [Chapter 7] A thorough study on the effectiveness of multiple synthetic data generation
methodologies, from creating template-based LP images using OpenCV to produc-
ing more realistic images using GANs, on the average performance across various
OCR models. Our analysis goes beyond measuring the individual effectiveness of each
methodology. We highlight the synergistic effect of combining them, leading to en-
hanced overall LPR performance. Furthermore, we demonstrate that synthetic data plays
a crucial role in overcoming the challenges posed by limited training data availability;

* [Chapter 7] An end-to-end ALPR system that outperforms state-of-the-art approaches
and established commercial solutions, excelling in both intra- and cross-dataset scenarios,
despite being trained on a significantly smaller set of real images;

* [Chapters 5 to 7] Empirical evidence indicating that general-purpose detectors (e.g.,
YOLOv4 and its variants) can be reliably employed for LPD, even when dealing with
images from unseen datasets. However, our experiments emphasize the importance of
rectifying the LPs before feeding them into OCR models for optimal LPR performance;

* [Chapters S to 7] Several experimental findings that underscore the importance of
comparing models across multiple datasets that have a wide variety in the way they
were collected and that comprise images of various vehicle types and LP layouts;

» [Chapter 8] We reveal the large fraction of near-duplicates within the training and
test sets of datasets widely adopted in ALPR research. Our findings suggest that such
duplicates have biased the evaluation of deep learning-based models for LPR, potentially
hindering the development and acceptance of more efficient models that have strong
generalization abilities but do not memorize duplicates as well as other models. To
address this issue, we have created and released fair splits for the two most popular
datasets in the field. These new splits eliminate duplicates from the training and test sets
while preserving the key characteristics of the original partitions as much as possible;

* [Chapter 9] A contextualization of the dataset bias problem within LPR, showing that
a lightweight Convolutional Neural Network (CNN) can determine the source dataset of
an LP image with over 95% accuracy. This level of accuracy far exceeds what would
be expected by chance or human ability. In addition to raising awareness about the
potential consequences of this bias, we discuss the subtle ways through which it may
have crept into the datasets, paving the way for future research directions;

The works published during the PhD’s studies are listed below. Publications directly
stemming from this thesis are marked with a star (%). Works co-authored and those covering
related fields are included if they have substantially contributed to the development of this
research. As an example, insights into multi-task learning and the generation of synthetic
data via character permutation were derived from (Gongalves et al., 2019) (item 10). Another
pertinent example is (Laroca et al., 2021a) (item 5), where we investigated image-based Automatic



27

Meter Reading (AMR) rather than ALPR. Two models that play a significant role in Chapter 7,
CDCC-NET and Fast-OCR, were proposed in that work. CDCC-NET also inspires the creation
of the DC-NET model in Chapter 9, while Fast-OCR is also explored in Chapters 5 and 6.

1.

10.

% R. Laroca, L. A. Zanlorensi, V. Estevam, R. Minetto, and D. Menotti, “Leveraging
Model Fusion for Improved License Plate Recognition” in Iberoamerican Congress on
Pattern Recognition (CIARP), pp. 60-75, Nov 2023;

% R. Laroca, V. Estevam, A. S. Britto Jr., R. Minetto, and D. Menotti, “Do We
Train on Test Data? The Impact of Near-Duplicates on License Plate Recognition” in
International Joint Conference on Neural Networks (IJCNN), pp. 1-8, June 2023;

. % R. Laroca, M. Santos, V. Estevam, E. Luz, and D. Menotti, “A First Look at Dataset

Bias in License Plate Recognition” in Conference on Graphics, Patterns and Images
(SIBGRAPI), pp. 234-239, Oct 2022;

. % R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, “On the

Cross-dataset Generalization in License Plate Recognition” in International Conference
on Computer Vision Theory and Applications (VISAPP), pp. 166-178, Feb 2022;

. R. Laroca, A. B. Araujo, L. A. Zanlorensi, E. C. de Almeida, and D. Menotti, ‘“Towards

Image-based Automatic Meter Reading in Unconstrained Scenarios: A Robust and
Efficient Approach,” IEEE Access, vol. 9, pp. 67569-67584, 2021,

. R. Laroca, L. A. Zanlorensi, G. R. Gongalves, E. Todt, W. R. Schwartz, and D. Menotti,

“An Efficient and Layout-Independent Automatic License Plate Recognition System
Based on the YOLO Detector,” IET Intelligent Transport Systems, vol. 15, no. 4,
pp- 483-503, 2021;

V. Nascimento, R. Laroca, J. A. Lambert, W. R. Schwartz, and D. Menotti, “Super-
Resolution of License Plate Images Using Attention Modules and Sub-Pixel Convolution
Layers,” Computers & Graphics, vol. 113, pp. 69-76, 2023;

V. Nascimento, R. Laroca, J. A. Lambert, W. R. Schwartz, and D. Menotti, “Combining
Attention Module and Pixel Shuffle for License Plate Super-Resolution” in Conference
on Graphics, Patterns and Images (SIBGRAPI), pp. 228-233, Oct 2022;

I. O. de Oliveira, R. Laroca, D. Menotti, K. V. O. Fonseca, and R. Minetto, ‘“Vehicle-Rear:
A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional
Neural Networks,” IEEE Access, vol. 9, pp. 101065-101077, 2021;

G. R. Gongalves, M. A. Diniz, R. Laroca, D. Menotti, and W. R. Schwartz, “Multi-Task
Learning for Low-Resolution License Plate Recognition” in Iberoamerican Congress
on Pattern Recognition (CIARP), pp. 251-261, Oct 2019.

We are currently preparing two additional articles for submission to prestigious journals.

The first article focuses on the fusion of real and synthetic data to enhance LPR, as discussed in
Chapter 7. The second article is a comprehensive survey of public datasets for ALPR. Despite
being near completion and containing numerous insights from this work, the second article has
been omitted due to constraints within this document’s scope.
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1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 presents the theoretical foundation
for the concepts used throughout this work. Chapter 3 reviews relevant research in the field.
Chapter 4 introduces the RodoSol-ALPR dataset, the first to include Mercosur LPs. Chapter 5
covers our study on the cross-dataset generalization in LPR. Chapter 6 examines the potential
for improving LPR results by combining the outputs from multiple OCR models. Chapter 7
delves into the integration of real and synthetic data to enhance LPR performance. Chapter 8
investigates the existence of near-duplicates within the training and test sets of datasets widely
adopted in ALPR research. Chapter 9 situates the dataset bias problem in the LPR context.
Finally, Chapter 10 lays out the conclusions of this work and proposes avenues for future research.

Please be aware that this thesis presents the research in a logical order that may differ from
the original chronology. We have revised and reorganized several sections for improved coherence,
and while we have carefully reviewed the manuscript, there may be minor inconsistencies.
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2. THEORETICAL FOUNDATION

This chapter provides a concise theoretical foundation for the concepts explored in this work.
We begin by describing the metrics commonly used to assess ALPR systems. As the LPD task
comes down to detecting a single class of objects (LPs), many of these metrics were originally
proposed for evaluating general object detectors. We then delve into the realm of deep learning,
focusing specifically on CNNs and GANSs. Finally, we discuss the concept of data augmentation.

2.1 Evaluation Metrics

The precision and recall evaluation metrics are commonly used in object detection (Everingham
et al., 2010; Lin et al., 2014b; Padilla et al., 2020) and ALPR (Lu et al., 2021; Lee et al., 2022;
Ding et al., 2024). These metrics are defined by comparing the areas covered by the ground truth
and predicted bounding boxes, considering True Positives (TPs), False Positives (FPs), and False
Negatives (FNs). Precision and recall can be formally expressed as follows:

. TP o
I n = ———, .
precisio TP+ FP
TP
recall = ———. 2.2)
TP+ FN

In simpler terms, precision and recall are metrics that range from O to 1, with higher
values indicating better performance. Precision measures the proportion of true positive results
among all predictions, meaning a higher precision indicates fewer false positives. Conversely,
recall measures the proportion of true positives that were correctly identified, meaning a higher
recall indicates fewer false negatives. However, neither precision nor recall alone can accurately
assess the match quality. For instance, recall can be artificially inflated by predicting numerous
objects, even if many are incorrect (think of a system detecting many LPs in an image, even if
most are not actually there). Conversely, a high precision rate can be achieved by being very
selective, but at the cost of missing many correct identifications (imagine a system that only
detects LPs with extremely high confidence, potentially missing many genuine ones).

The F-measure metric is defined as a harmonic mean of precision and recall. As shown
in Equation 2.3, the most general form allows the differential weighting of precision and recall;
however, they are commonly given equal weight (i.e., 8 = 1) (Powers, 2015). The Average
Precision (AP) (Everingham et al., 2010) metric summarizes the shape of the precision/recall
curve since it is defined as the average precision at a set of eleven equally spaced recall levels
[0, 0.1, ..., 1] (see Equation 2.4). Finally, the mean Average Precision (mAP) is calculated by
taking the mean AP over all classes.

precision - recall

(1+5%) -

F-measure

(2.3)

(B2 - precision) + recall’

1 .
AP = I Z max Precision(F) . (2.4)

rir>r
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A metric often used to assess the quality of predictions in object detection tasks is the
Intersection over Union (1o0U), also known as Jaccard index and Jaccard similarity coefficient,
which can be expressed by the formula

_area(B, N By)

IoU = ,
¢ area(B, U By;)

(2.5)

where B), and By, are the predicted and ground truth bounding boxes, respectively. Figure 2.1
illustrates this definition. The closer the IoU is to 1, the better the detection.

Area of Overlap
loU =

Area of Union

Figure 2.1: Definition of IoU. IoU is the division of the overlapping area between the bounding boxes by the union
area. Image reproduced from https://www.pyimagesearch.com/.

The IoU metric is interesting because it penalizes both over- and under-estimated
objects, as shown in Figure 2.2. Overestimated bounding boxes might include a large amount of
unnecessary information and increase subsequent stages’ processing time. On the other hand,
meaningful parts of the object might be lost in underestimated bounding boxes.

(a) Overestimated bounding box (IoU =0.8)  (b) Underestimated bounding box (IoU = 0.8)

Figure 2.2: An illustration of two bounding boxes with the same IoU with the ground truth. The predicted position
and ground truth are outlined in red and green, respectively. Image (without the bounding boxes) reproduced from
https://www.pexels.com

The PASCAL Visual Object Classes (VOC) (Everingham et al., 2010) and Common
Objects in Context (COCO) (Lin et al., 2014b) object detection tasks considered a detection to be
correct if the IoU between the predicted and ground-truth bounding boxes exceed 0.5. As stated
by Everingham et al. (2010), this threshold was set deliberately low to account for inaccuracies
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in bounding boxes in the training data, for example, defining the bounding box for a highly
non-convex object (e.g., a person with arms and legs spread) is somewhat subjective.

Although LPs are convex objects, this threshold (IoU > 0.5) is by far the most adopted
in the ALPR context because different datasets are labeled differently. For example, the bounding
boxes of the LPs in the AOLP dataset (Hsu et al., 2013) are very tight (see Figure 2.3a), even
cutting off parts of the LP characters in some cases, while other public datasets often consider the
entire LP region as the bounding box. This is one of the reasons why some authors have re-labeled
the bounding boxes in the AOLP dataset (see Figure 2.3b) to perform their experiments.

(a) Annotation provided by Hsu et al. (2013) (b) Annotation provided by Laroca et al. (2021b)

Figure 2.3: The way annotations are created differs considerably from dataset to dataset, as different authors follow
different annotation protocols. (a) shows the original bounding box annotation for an LP from the AOLP dataset (Hsu
et al., 2013), and (b) shows the bounding box annotation provided by Laroca et al. (2021b) for the same LP.

The ultimate goal of ALPR systems is to attain a high recognition rate, which is defined
as the number of correctly recognized LPs divided by the number of LPs in the test set. Note that
an LP is considered correctly recognized only if all its characters are accurately identified, as
even a single misidentified character can lead to misidentification of the vehicle.

2.2 Deep Learning

Problems that are intellectually difficult for human beings but relatively straightforward for
computers (e.g., problems that can be described by a list of mathematical rules) were rapidly
tackled in the early days of Artificial Intelligence (Al). On the other hand, problems that humans
solve intuitively, that feel automatic, such as telling the difference between pictures of cats and
dogs, are very challenging for Al (Goodfellow et al., 2016; Redmon, 2018).

The ability to process natural data in their raw form (such as the pixel values of an image)
was limited in conventional machine learning techniques. For many years, the development of
machine learning systems required a lot of effort and considerable domain expertise to transform
raw data into feature vectors with both discriminative and informative features (LeCun et al.,
2015). It should be noted that the choice of data representation (or features) directly determines
the performance of machine learning methods (Bengio et al., 2013), as demonstrated in Figure 2.4.

One solution to this problem is representation learning, which is a set of methods where
the representations needed for detection or classification are automatically discovered from raw
data (LeCun et al., 2015). In other words, instead of telling the system what a cat or dog looks
like (through feature vectors), we provide as input a lot of images (i.e., millions or hundreds of
thousands) of cats and dogs and let the system learns by itself to associate patterns and images
with the correct label (Redmon, 2018). A string of empirical successes has been achieved both in
academia and industry with the growing interest of the scientific community on representation
learning (Bengio et al., 2013; LeCun et al., 2015; Bengio et al., 2021).
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Figure 2.4: An example of different data representations. It is impossible to draw a straight line that separates two

categories of data when representing them using Cartesian coordinates. On the other hand, this task becomes very
simple when using Polar coordinates. Image reproduced from http://www.deeplearningbook.org/.

The central problem in representation learning is that it can be very difficult to extract
such high-level, abstract features from raw data. Deep learning solves this problem by introducing
representations that are expressed in terms of other, simpler representations (Goodfellow et al.,
2016). An illustration of a deep learning model is shown in Figure 2.5. As can be seen, features
regarding the presence or absence of edges at particular orientations and locations in the image
are learned in the first representation layer. Next, corners and contours (i.e., collections of edges)
are detected in the second layer. The third layer is where parts of objects are found by locating
specific collections of contours and corners. Finally, the subsequent layers would detect specific
objects as combinations of these parts (Goodfellow et al., 2016). The key aspect of deep learning
is that these layers of features are learned from data using a general-purpose learning procedure,
and thus it requires minimal engineering by hand (LeCun et al., 2015).

Initially, deep learning approaches were mainly employed for the handwritten digits
recognition problem, breaking the supremacy of Support Vector Machines (SVMs) in the
renowned MNIST dataset. The focus shifted progressively to object recognition in natural images,
increasingly attracting the attention of the scientific community since the breakthrough achieved
by Krizhevsky et al. (2012) on the ImageNet Large Scale Visual Recognition Challenge, bringing
down the state-of-the-art error rate from 26.2% to 15.3% (Bengio et al., 2013).

In addition to the outstanding results achieved in several applications through deep
learning, there are two other reasons for its success (Deng and Yu, 2014; LeCun et al., 2015;
Bengio et al., 2021). First, the dramatically increased chip processing abilities (e.g., GPUs).
Second, the fact that deep learning can easily take advantage of increases in the amount of
available computation and data since it requires very little engineering by hand.

In the next two subsections, we provide more details about CNNs and GANs since they
are two of the best known classes of deep neural networks and also those we explore in this work.

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs), also known as Convolutional Networks and ConvNets,
are designed to process data that have a known, grid-like topology, for example, a color image
composed of three 2-D arrays containing pixel intensities in the three color channels (LeCun
etal., 2015; Goodfellow et al., 2016). It is worth noting that the impressive results reported by
Krizhevsky et al. (2012) were obtained using CNNs.
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Figure 2.5: An illustration of a deep learning model. First, low-level features such as edges and curves are
found, and then more abstract concepts are built through a series of layers. Image reproduced from http:
//www.deeplearningbook.org/.

All CNNs perform a kind of linear operation called convolution (hence the name) in
at least one of their layers (Goodfellow et al., 2016). The basic building blocks of CNNs are
convolutions, pooling (downsampling) operators, activation functions (e.g., Rectified Linear
Unit (RelLU)) and fully connected layers, which are essentially similar to hidden layers of a
Multilayer Perceptron (MLP) (Ponti et al., 2017). Each one of those building blocks will be
described throughout this section. Figure 2.6 shows an example of a CNN.

el e OO e e s

Input Convolution + RelLU Pooling Convolution + ReLU Pooling Fully Connected

Figure 2.6: An example of a CNN, which consists of convolutional layers, activation functions and pooling layers,
followed by a set of fully connected layers. Image reproduced from (Tejani, 2016).

2.2.1.1 Convolutional Layer

The main building blocks of CNNs are the convolutional layers, which are composed of a set of
filters (or kernels), each to be applied to the entire array of pixel values. Each filter is a matrix
of weights (or values) that can be considered as a feature identifier (e.g., straight edges, simple
colors, and curves). The filters produce what can be seen as an affine transformation of the input
image (Ponti et al., 2017). Each filter is slid (or convolved) around the input image, with the



34

values in the filter being multiplied by the original pixel values of the image (Ponti et al., 2017).
An example of 2-D convolution is shown in Figure 2.7.
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Figure 2.7: An example of 2-D convolution. The boxes with arrows were drawn to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding upper-left region of the input
tensor. Image reproduced from (Goodfellow et al., 2016).

Each region that the filter processes is called a local receptive field, and an output value
(pixel) is a combination of the input pixels in this local receptive field, as shown in Figure 2.8.
That makes the convolutional layer different from layers of an MLP, where each neuron produces
a single output based on all values from the previous layer (see Figure 2.9) (Ponti et al., 2017).

An important aspect of CNNs is that the filter weights are shared across receptive fields,
significantly reducing the number of weights that the network has to learn. As stated by LeCun
et al. (2015), if a feature can appear in one part of the image, it could appear anywhere, hence the
idea of filters at different locations sharing the same weights and detecting the same pattern in
different parts of the array.

Note that convolution is not naturally equivariant to some other transformations, such
as changes in the scale or rotation of an image. Therefore, other mechanisms are necessary for
handling these kinds of transformations (Goodfellow et al., 2016).

2.2.1.2 Activation Function

In order to go from one layer to the next, a set of units compute a weighted sum of their inputs
from the previous layer and pass the result through an activation function (LeCun et al., 2015).
In contrast to using a sigmoid function such as the logistic or hyperbolic tangent in MLPs, the
Rectified Linear Unit (ReLU) is often used in CNNs after convolutional or fully connected
layers (Ponti et al., 2017). Figure 2.10 shows plots of these functions.

Although sigmoid functions are commonly used in neural networks, their limitations
are well known. For example, it is slow to learn the whole network due to weak gradients when
the units are close to saturation in both directions (Deng and Yu, 2014). Deep CNNs with ReL.Us
train several times faster than their equivalents with sigmoid functions (Krizhevsky et al., 2012).
The Leaky RelLU allows for a small, non-zero gradient when the unit is saturated and inactive.
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Figure 2.8: The convolution process. It processes local information centered in each position (x, y): this region is a
called local receptive field, whose values are used as input by some filter i with weights w; in order to produce a
single point (pixel) in the output feature map f(i, x, y). Image reproduced from (Ponti et al., 2017).

/N \

(a) Fully connected layer (b) Convolutional layer

Figure 2.9: Comparison between fully connected (a) and convolutional layers (b). In a fully connected
layer, each unit is connected to all units of the previous layers. On the other hand, in a convolu-
tional layer, each unit is connected to a constant number of units in a local region of the previous
layer. Image reproduced from https://www.quora.com/what-is-the-difference-between-a-
convolutional-neural-network—-and-a-multilayer—perceptron.

tanh(z) logistic(x) mazx |0, ] maz|az,z],a = 0.1

(a) Hyperbolic tangent (b) Logistic (c) ReLU (d) Parametric ReLU (PReLU)

Figure 2.10: Activation functions. (a) and (b) are often used in MLP networks, while (c) and (d) are more common
in CNNs. A PReLU (d) with a = 0.01 is equivalent to Leaky ReLLU. Image reproduced from (Ponti et al., 2017).

Maas et al. (2013) observed that the non-zero gradient does not substantially affect training
optimization and that deep networks with Leaky ReLUs converge slightly faster.

In addition to the innovations in better architectures of deep learning models, there is also
a growing body of work on developing and implementing better nonlinear units (Ramachandran
et al., 2018; Misra, 2020; Nader and Azar, 2020).
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2.2.1.3 Pooling

In addition to convolutions and activation functions, pooling operations make up another important
building block in CNNs. Pooling operations reduce the size of feature maps by using some
function to summarize subregions, such as taking the average or the maximum value of the
contributing features (Dumoulin and Visin, 2018). Although much better linear discrimination
performance was achieved with max pooling compared to average pooling in (Boureau et al.,
2010a), the same research group showed in (Boureau et al., 2010b) that depending on the data
and features, either max or average pooling may perform best. Then, in this section, we focus on
the max-pooling operator since it is the most frequently used (Ponti et al., 2017).

The role of the pooling layer is to merge semantically similar features into one,
enabling representations to vary very little when elements in the previous layer vary in position
and appearance (LeCun et al., 2015). In other words, the use of pooling can be viewed as
adding an infinitely strong prior that the function the layer learns must be invariant to small
translations (Goodfellow et al., 2016). See Figure 2.11 for an example of how max pooling works.

POOLING STAGE
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DETECTOR STAGE
(a)

POOLING STAGE

v
»
DETECTOR STAGE
(b)
Figure 2.11: Max pooling introduces invariance. (a) shows a view of the middle of the output of a convolutional
layer, and (b) shows a view of the same network after the input has been shifted to the right by one pixel. The bottom
row shows the outputs of the activation function. The top row shows the outputs of max pooling, with a stride of one
pixel between pooling regions and a pooling region width of three pixels. Observe that every value in the bottom
row has changed, but only half of the values in the top row have changed. This occurred because the max-pooling

units are only sensitive to the maximum value in the neighborhood, not its exact location. Image reproduced from
http://www.deeplearningbook.org/.
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It is possible to use fewer pooling units than detector units (see Figure 2.12), as pooling
summarizes the responses over a whole neighborhood. In this way, the computational efficiency
of the network is improved because the next layer has fewer inputs to process. When the number
of parameters in the next layer is a function of its input size (e.g., the next layer is fully connected
and based on matrix multiplication), this reduction in the input size can also result in improved
statistical efficiency and reduced memory requirements for storing the parameters (Goodfellow
et al., 2016).
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Figure 2.12: Max pooling with downsampling. When using stride = 2 between pools, the representation size is
reduced by a factor of two, which reduces the computational and statistical burden on the next layer. Note that the

rightmost pooling region is smaller but must be included if we do not want to ignore some of the detector units.
Image reproduced from http://www.deeplearningbook.org/.

It should be noted that generative models such as auto-encoders and GANs shown to be
harder to train with pooling layers (Radford et al., 2016; Ponti et al., 2017). Therefore, pooling
layers might be avoided in some neural network architectures.

2.2.1.4 Fully Connected Layers and Regularization

Conventional CNNs perform convolution in the lower layers of the network. For classification,
the feature maps of the last convolutional layer are vectorized and fed into fully connected layers
followed by a softmax logistic regression layer (Lin et al., 2014a).

However, the fully connected layers are prone to overfitting, thus hampering the
generalization ability of the overall network (Lin et al., 2014a). In this sense, a technique called
dropout (Srivastava et al., 2014) was introduced to limit co-adaptation. It operates as follows.
On each training instance, each hidden unit is randomly omitted with a fixed probability (e.g.,
p =0.5) (Deng and Yu, 2014). The neurons that are “dropped out” do not contribute to the
forward pass and do not participate in backpropagation, as illustrated in Figure 2.13. Thus, the
neural network samples a different architecture every time an input is presented, but all these
architectures share weights (Krizhevsky et al., 2012).
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(a) Standard neural network (b) After applying dropout

Figure 2.13: An illustration of dropout regularization. (a) shows a standard neural network with two hidden layers,
and (b) shows an example of a thinned network produced by applying dropout to the network on (a). Image
reproduced from (Srivastava et al., 2014).

Dropout is turned off in the test stage, and the activations are rescaled by p to compensate
those activations that were dropped during the training stage (Ponti et al., 2017). The benefits of
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dropout regularization for training deep neural networks are to make a hidden unit act strongly by
itself without relying on others and to serve as a way to do model averaging of different networks.
These benefits are most pronounced when the training data is limited or when the network size is
disproportionally large with respect to the size of the training data (Deng and Yu, 2014).

Deep neural networks involve the composition of several functions or layers. Training
them is complicated because the distribution of each layer’s inputs changes during training, as the
parameters of the previous layers change (Ioffe and Szegedy, 2015). In other words, the gradient
tells how to update each parameter under the assumption that the other layers do not change. In
practice, all layers are updated simultaneously. Hence, unexpected results might happen because
many functions composed together were changed simultaneously, using updates computed under
the assumption that the other functions would remain constant (Goodfellow et al., 2016).

This makes it notoriously hard to train models with saturating nonlinearities. Therefore,
the training is slower since it requires lower learning rates and careful parameter initialization (Ioffe
and Szegedy, 2015). In this direction, Ioffe and Szegedy (2015) proposed a regularization
technique called batch normalization for controlling the distributions of neural network activations,
thereby reducing internal covariate shift (Cooijmans et al., 2017). Batch normalization is a
method of adaptive reparametrization in which the output of each neuron (before application
of the nonlinearity) is normalized by the mean and standard deviation of the outputs calculated
over the examples in the mini-batch (Salimans and Kingma, 2016). This effectively decouples
each layer’s parameters from those of other layers, leading to a better-conditioned optimization
problem. Deep neural networks trained with batch normalization converge significantly faster,
generalize better, and often do not need dropout (Cooijmans et al., 2017; Ponti et al., 2017).

2.2.2 Generative Adversarial Networks (GANs)

Compared with discriminative models, which only model the decision boundary between the
classes, generative models tackle a more difficult task: to capture the actual distribution of each
class in order to generate similar data (Oussidi and Elhassouny, 2018; Harshvardhan et al., 2020).
In other words, as defined by Goodfellow (2016), generative models refer to any model that takes
a training set, consisting of samples drawn from a distribution p 4,4, and learns to represent an
estimate of that distribution somehow. The result is a probability distribution p,,,ge;-

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014b) are generative
models based on a competition between a generator network G and a discriminator network D.
The generator G (z; 8(¢)) produces samples from the data distribution, pga(x), by transforming
vectors of noise z as x = G(z;0')) (Goodfellow et al., 2014b). The function G is simply a
function represented by a neural network that transforms the random, unstructured z vector into
structured data, intended to be statistically indistinguishable from the training data. The training
signal for G is provided by the discriminator network D (x), which is trained to distinguish
samples from the generator distribution p,gel(x) from real data. In turn, the generator network
G 1s trained to fool the discriminator into accepting its outputs as being real (Salimans et al.,
2016). At convergence (a local Nash equilibrium), the generator’s samples are indistinguishable
from real data (pyoder = Pdara), and the discriminator outputs 1/, everywhere3 (Fedus et al.,
2018; Harshvardhan et al., 2020). Therefore, neither player can improve its payoff, and the
discriminator may then be discarded (Goodfellow et al., 2016).

Goodfellow et al. (2014b) observed that the generator can be thought of as analogous to
a team of counterfeiters, trying to produce fake currency and use it without detection, while the

3 This (Pmodel = Pdara) 18 just an example of an idealized case; generally, the generator does not need to produce
perfect replicas from the input domain to be useful (Brownlee, 2019; Goodfellow, 2019).
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discriminator is analogous to the police, trying to detect the counterfeit currency. Competition
between counterfeiters and police leads to more and more realistic counterfeit money, until
eventually the counterfeiters produce perfect fakes and the police cannot distinguish between real
and fake money. Figure 2.14 illustrates this alternate training process.

Generated Data Discriminator Real Data

&

10
__ FAKE REAL —

Finally, if generator training goes well, the discriminator cannot differentiate between the two distributions, i.e., D (x) = %

Figure 2.14: An illustration of the fundamental intuition underlying the training process of GANs. Image adapted
from https://developers.google.com/machine-learning/gan/gan_structure.

GANs typically use CNNs as the generator and discriminator models (Brownlee, 2019).
The most common training algorithm is simply to use a gradient-based optimizer to repeatedly
take simultaneous steps on both players, incrementally minimizing each player’s cost with respect
to that player’s parameters. In simpler terms, the back-propagation algorithm propagates gradients
from the discriminator through the generator’s output (Goodfellow et al., 2020). The Adam
optimizer (Kingma and Ba, 2015) has been chosen in most works in the literature (Miyato et al.,
2018; Lucic et al., 2019; Choi et al., 2020; Wang et al., 2021b). At the end of the training process,
GANSs can often produce realistic samples, as shown in Figure 2.15.

Figure 2.15: These images are samples from StyleGAN?2 (Karras et al., 2020) depicting three people who do not
exist but were “imagined” by a GAN after training on a high-quality image dataset of human faces. The three images
were downloaded from https://thispersondoesnotexist.com/.

Indeed, GANs are often regarded as producing the best samples compared to other
generative models, such as Variational Autoencoders (VAESs), especially in generating realistic
high-resolution images (Goodfellow et al., 2016; Wang et al., 2018b; Karras et al., 2020). Note that
they have proven useful for several tasks other than straightforward image generation (Goodfellow
et al., 2020). Consequently, they have become a hot research topic. According to Gui et al.
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(2023), approximately 28,500 GAN-related papers were published in 2020 alone, constituting
approximately 78 papers every day or more than three per hour.

However, GANs are not without problems. The two most significant are that they are
hard to train and difficult to evaluate (Salimans et al., 2016; Wang et al., 2021b). Regarding being
difficult to train, Odena et al. (2018) stated that various causes seem to plague GANSs’ training
procedure. The most notable of them, called mode collapse, is characterized by a tendency of the
generator to output samples from a small subset of the modes of the data distribution. In extreme
cases, the generator outputs only a few unique samples or even just the same sample repeatedly.
As even the best learning algorithms often fail to converge (Goodfellow et al., 2020), several
works have sought to design better costs, models, and training algorithms with better convergence
properties (Arjovsky et al., 2017; Miyato et al., 2018; Bang and Shim, 2021). In terms of
evaluation, generative models are traditionally evaluated in terms of fidelity (how realistic a
generated image is) and diversity (how well generated samples capture the variations in real
data) of the learned distribution (Borji, 2022). Nevertheless, there is not a single compelling
way to evaluate both fidelity and diversity simultaneously (Goodfellow, 2016). The two most
common GAN evaluation measures are Inception Score (IS) (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017), which rely on pre-trained deep networks to
represent and statistically compare original and generated samples (Borji, 2022). However,
several shortcomings of both measures have been pointed out over the years (Shane Barratt,
2018; Shmelkov et al., 2018; Borji, 2022). That is why some authors (Theis et al., 2016; Borji,
2022) argued that generative models, including GANs, need to be evaluated with respect to the
application(s) they are intended for (evaluation metrics should be tailored to the target task).

Considering the success achieved by GANs in recent years, there are many relevant
derivatives of GANs proposed in the literature. In the following subsections, we review two of
them given their importance and because we have explored them in the development of this work.

2.2.2.1 Deep Convolutional Generative Adversarial Networks (DCGANSs)

The original GANs (Goodfellow et al., 2014b) worked but were unstable and difficult to train,
especially with large inputs, often resulting in generators that produce nonsensical outputs.
Nevertheless, shortly afterward, Radford et al. (2016) crafted a Deep Convolutional Generative
Adversarial Network (DCGAN)* that showed stable training across a range of datasets and allowed
for training higher resolution and deeper generative models. Based on this, most GANs proposed
after (Radford et al., 2016) are at least loosely based on the DCGAN architecture (Goodfellow,
2016; Wang et al., 2021b; Gui et al., 2023).

DCGANSs have three main differences from the original GANs: (i) DCGAN replaces
any pooling layers with strided convolutions (see the generator used by Radford et al. (2016) for
scene modeling in Figure 2.16), allowing each network to learn its own spatial downsampling;
(i1)) DCGAN uses batch normalization in most layers of both the discriminator and the generator
(except for the G output layer and D input layer to avoid sample oscillation and model instability)
to deal with training problems that arise due to poor initialization, preventing mode collapse; and
(iii)) DCGAN uses ReLLU in G for all layers except for the output, and Leaky ReL.U for all layers
in D — while ReL.U allowed the model to learn quicker how to saturate and cover the color space
of the training distribution, Leaky ReLLU worked well for higher resolution modeling.

4 Although GANs were both deep and convolutional prior to DCGANS, the name DCGAN is traditionally used
to refer to this specific style of architecture (Goodfellow, 2016).
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Figure 2.16: The generator of DCGAN with four sequential fractionally-strided convolutional layers, which convert
a 100-dimensional uniform distribution z — projected to a small spatial extent convolutional representation with
many feature maps — into a 64 x 64 image. Image reproduced from (Radford et al., 2016).

2.2.2.2 Conditional Generative Adversarial Networks (cCGANs)

Although standard (or unconditioned) GAN models are able to generate new random plausible
examples for a given dataset, there is no way to control the appearance (e.g., class) of the samples
that are generated other than trying to figure out the complex relationship between the latent space
input to the generator and the generated images (Kaneko et al., 2017; Brownlee, 2019). With that
in mind, Mirza and Osindero (2014) proposed to extend GANs to a conditional model — called
Conditional Generative Adversarial Network (cCGAN) — by conditioning both the generator and
discriminator on some extra label y, which can be any kind of auxiliary information such as class
labels or data from other modalities. Figure 2.17 compares GANs and cGANS in a simplified way.
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Figure 2.17: Comparison between GANs and cGANs. Image reproduced from (Cheng et al., 2020).

Over the years, many studies have empirically shown that there is almost always a causal
relationship between using labels in any way, shape or form and a dramatic improvement in the
subjective quality of the samples generated by GAN models (Denton et al., 2015; Salimans et al.,
2016; Odena et al., 2018), even though it is not entirely clear why this trick works in each specific
case (Goodfellow, 2016; Boulahbal et al., 2021). An important characteristic of cGAN models
is that the generated images should not only be realistic but also recognizable as related to the
specified condition y (e.g., coming from a given class) (Shmelkov et al., 2018).

In practical terms, cGANSs are trained on a labeled dataset, allowing the label for each
generated instance to be specified. cGANs find applications in several areas such as categorical
image generation using class labels (Mirza and Osindero, 2014; Miyato and Koyama, 2018),
text-to-image synthesis, where text sentences are converted into images (Reed et al., 2016; Zhang
etal., 2021b), and image-to-image translation, where one image is transformed into another (Isola
et al., 2017; Zhu et al., 2017a). In the subsequent paragraphs, we elaborate on image-to-image
translation, as we plan to use cGANSs to generate LP images from LP masks.
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Image-to-image translation (see Figure 2.18) is a class of problems where the goal is
to translate images from one domain to another by learning a mapping between the input and
output images using a training dataset of paired (Isola et al., 2017; Shaham et al., 2021) or
unpaired (Zhu et al., 2017b; Lee et al., 2020) cross-domain image pairs. It should be noted that
even though the latter approach (unpaired) is generally called unsupervised as a counterpart of
the former, it actually assumes that the domain labels are given a priori (Baek et al., 2021b).
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Figure 2.18: Image-to-image translation is a concept introduced by Isola et al. (2017) that encompasses many kinds
of transformations of an image: converting segmentation masks into images, converting aerial photos into maps,
converting sketches into photorealistic images, among others. Image adapted from (Isola et al., 2017).

Figure 2.19 illustrates the difference between paired and unpaired training data in
image-to-image translation. The application of cGANS to this task was first investigated by Isola
et al. (2017), who created a model — called pix2pix — that maps an image from input to output
domain using an adversarial loss in conjunction with the L1 loss between the result and target,
thus requiring paired training data. Since this seminal work, paired image-to-image translation
models have shown impressive results (Wang et al., 2018b; Park et al., 2019; Shaham et al., 2021;
Zhou et al., 2021). Nevertheless, acquiring such training data (i.e., matching image pairs with
pixelwise or patchwise labeling) can be time-consuming and even unrealistic (Zhu et al., 2017a;
Lee et al., 2020). For example, for converting daylight scenes to night scenes and vice versa,
even though matching image pairs can be obtained with stationary cameras, moving objects in
the scene (e.g., vehicles and clouds) often cause varying degrees of content discrepancies (Y1
et al., 2017). To tackle this problem, CycleGAN (Zhu et al., 2017b), Dual GAN (Yi et al., 2017)
and DiscoGAN (Kim et al., 2017) provided a new insight (nearly at the same time), in which the
GAN models discover relations between two visual domains without any explicitly paired data.
As paired data is often not available, unpaired image-to-image translation has gained a great deal
of attention in recent years (Zhao et al., 2020b; Tang et al., 2021; Zheng et al., 2021).

As a side note, with paired training data, image-to-image translation can be approached
by a single feedforward CNN trained to minimize a regression loss (Chen and Koltun, 2017).
However, as stated by Goodfellow (2016), models with generative modeling are better trained for
this task because there are multiple correct outputs for each input (as shown in Figure 2.20).

2.3 Data Augmentation

A huge number of training examples are required to train deep networks since they often have
a large set of parameters to be optimized (Ponti et al., 2017; Bengio et al., 2021). In practice,
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Figure 2.19: Paired training data (left) consists of training examples {x;, y; }:*,, where the correspondence between
x; and y; exists. Unpaired training data (right) consists of a source set {x,-}f,\:’ , (xi € X) and a target set {y; }j”i !
(yj €Y), with no information provided as to which x; matches which y ;. Image reproduced from (Zhu et al., 2017b).
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Figure 2.20: Examples of diverse outputs produced by DRIT++ (Lee et al., 2020) trained without aligned pairs.
Observe that a single input may correspond to multiple possible outputs. Image adapted from (Lee et al., 2020).

the amount of data available is limited. One way to get around this problem is to create fake
data and add it to the training set. This process is known as data augmentation. It is reasonably
straightforward to create new fake data for some machine learning tasks (Goodfellow et al., 2016).

Images in the same dataset usually have similar illumination conditions, a low variance
of rotation, pose, etc. Therefore, one can augment the training dataset using many operations to
produce several times more examples (Ponti et al., 2017). To better illustrate, Figure 2.21 shows
multiple images created from a single one using Albumentations (Buslaev et al., 2020), which is
a well-known library for image augmentation. Operations like translating the training images
a few pixels in each direction can often greatly improve generalization, even if the model has
already been designed to be partially translation-invariant by using the convolution and pooling
techniques described in the previous section. Many other operations, such as rotating or scaling
the image, have also proven quite effective (Goodfellow et al., 2016; Ponti et al., 2017).

It is well-known that unbalanced data (usually the case in ALPR) is undesirable for
neural network classifiers since the learning of some patterns might be biased. This problem can
be addressed with data augmentation, by increasing the number of images of under-represented
classes to create a new set of training images, in which each class is equally represented.

Itis worth noting that some frameworks already have built-in data augmentation (Redmon
et al., 2016), and one must be careful not to apply transformations that would change the correct
class. For example, OCR tasks require recognizing the difference between ‘b’ and ‘d’ and the
difference between ‘6’ and ‘9’, so these cases must be considered before applying horizontal flips
and 180° rotations for those tasks (Laroca et al., 2018; Aberdam et al., 2021).
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Figure 2.21: An example of how some augmentations can be applied to create new images from the original one.
Image reproduced from https://github.com/albumentations-team/albumentations/.



45

3. RELATED WORK

This chapter reviews relevant works that explored deep learning methodologies within the ALPR
domain. For a broader survey covering research on traditional image processing techniques,
please refer to (Du et al., 2013; Lubna et al., 2021; Shashirangana et al., 2021).

We structured this chapter into five sections. The first two sections focus on methods
designed or adjusted for LPD and LPR. The third section explores research that leverages data
synthesis techniques to enhance the performance of LPR models. The fourth section provides a
brief overview of approaches that do not align with the preceding sections, such as models for
locating the four corners of the LPs, commercial ALPR systems, and established methods for
scene text recognition. The final section offers concluding remarks.

3.1 License Plate Detection (LPD)

Many authors have addressed the LPD stage using off-the-shelf object detection CNNs. Con-
sidering that there is a large portion of works on ALPR that are focused on the recognition
stage, many authors simply employed well-known detectors without providing details about the
implementation, training strategies, and results obtained. For example, Zhang et al. (2018a)
used Faster-RCNN (Ren et al., 2017), Zhang et al. (2019b, 2021c); Kim et al. (2021) explored
YOLOV2 (Redmon and Farhadi, 2017), and Zhang et al. (2021d) used YOLOv4 (Bochkovskiy
et al., 2020) for LPD. The following paragraphs describe relevant works where more information
was provided regarding the methods used/designed for the detection stage.

Henry et al. (2020) employed Fast-YOLOV3 for locating the LPs directly in the input
image (i.e., without vehicle detection)’. Although high precision and recall rates were achieved
in five different datasets, the chosen datasets were collected under relatively controlled conditions
(e.g., with handheld cameras in parking lots or stationary cameras in car wash facilities) and the
authors trained a distinct network for each dataset, i.e., the parameters (e.g., network input size)
were adjusted specifically for each scenario. In this way, it is not clear whether such a shallow
network (compared to state-of-the-art object detectors) is robust enough to handle multiple
real-world scenarios. Silva and Jung (2017, 2020), on the other hand, noticed that the Fast-YOLO
model achieved a low recall rate when detecting LPs without prior vehicle detection. Therefore,
they used the Fast-YOLO model arranged in a cascaded manner to first detect the frontal view of
the cars and then locate their LPs in the detected patches, attaining high precision and recall rates.
Their approach can remarkably process 185 frames per second (FPS) on an NVIDIA TITAN X
GPU, assuming that a single vehicle is being processed.

Inspired by this cascaded approach, Laroca et al. (2018) first fine-tuned the YOLOv2
model (Redmon and Farhadi, 2017) to locate the vehicles (both front and rear views) in the input
image and then trained the Fast-YOLOvV2 model to detect the respective LPs in the cropped patches.
The authors reported promising speed/accuracy results in two public datasets acquired in Brazil.
An important finding of their work is that better results were reached when using two distinct
classes for detecting cars and motorcycles (instead of a single class called “vehicle”). On the
other hand, Silva and Jung (2018) detected the vehicles in the input image using the pre-trained

> Each YOLO model has a corresponding smaller version known as YOLO-tiny (or Fast-YOLO). These variants
have fewer convolutional layers and filters than their larger counterparts. Despite their compact design, YOLO-tiny
versions can still achieve a surprising level of detection accuracy (Redmon et al., 2016), leading to their adoption in
various real-world applications (Bezerra et al., 2018; Salomon et al., 2020; Ismail et al., 2021; Ke et al., 2023).
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YOLOV2 model (i.e., without any change or refinement). The outputs related to vehicles (i.e.,
cars and buses) were merged, whereas those related to other classes were ignored. Then, they
proposed a Warped Planar Object Detection Network (WPOD-NET) that searches for LPs and
regresses one affine transformation per detection, enabling a rectification of the LP region to a
rectangle resembling a frontal view. Their approach, illustrated in Figure 3.1, was trained using
many synthetically warped versions of real images to augment the training dataset composed of
less than 200 manually labeled images. The detection stage’s results and execution time were not
reported, as the authors focused on the end-to-end evaluation of their system.
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Figure 3.1: The LPD approach proposed by Silva and Jung (2018). Note that the rectification process can significantly
help the OCR task when the LPs are heavily distorted. Image reproduced from (Silva and Jung, 2018).

Considering some limitations of WPOD-NET, such as not working properly for motorcy-
cle LPs due to differences in aspect ratio and layout, Silva and Jung (2022) presented an Improved
Warped Planar Object Detection Network (IWPOD-NET) that learns separately the weights
for the classification and localization tasks. In summary, while WPOD-NET relies on weight
sharing for both tasks until the last layer, IWNPOD-NET contains two shallow (but independent)
sub-networks, one for each task. By massively exploring data augmentation techniques and
post-processing strategies, IWPOD-NET reached remarkable performance for handling both car
and motorcycle LPs captured at a variety of lighting conditions and viewpoints.

Xie et al. (2018) proposed a YOLO-based model to predict the LP rotation angle in
addition to its coordinates and confidence value. Their network consists of seven convolutional
layers and three fully connected ones. Before that, another CNN (with the same architecture) was
applied to determine the attention region in the input image, assuming that some distance will
inevitably exist between any two LPs. By cascading both models, their approach outperformed all
baselines in three public datasets while still running in real time. Despite the impressive results,
it is important to highlight two limitations in their work: (i) the authors simplified the problem by
forcing their ALPR system to output only one bounding box per image — this limitation was also
highlighted by Zhang et al. (2021a); and (ii) motorcycle LPs might be lost when determining the
attention region since, in some scenarios (e.g., traffic lights), they might be very close.

Rather than exploring off-the-shelf object detectors, Li et al. (2018) trained a 4-layer
CNN using characters cropped from general text to perform a character-based LP detection. The
network was employed in a sliding-window fashion across the entire image to generate a text
salience map. Text-like regions were extracted based on the clustering nature of the characters.
Connected Component Analysis (CCA) was subsequently applied to produce the initial candidate
boxes. Then, an LP/non-LP CNN - also with four layers — was trained to remove false positives.
Finally, the bounding boxes were refined through a projection-based method. Although the
precision and recall rates obtained were higher than those achieved in previous works, this
sequence of methods (see Figure 3.2) is too expensive for real-time applications, taking more
than 2 seconds to process a single image when running on an NVIDIA Tesla K40c GPU.
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(d)

Figure 3.2: The LPD approach proposed by Li et al. (2018). (a) input image (taken from the AOLP dataset);
(b) text salience map generated after the sliding window-based detection; (c) text salience map after applying the
Non-Maximum Suppression (NMS) and smoothing algorithms; (d) candidate bounding boxes generated by CCA;
(e) candidate bounding boxes after the elimination of false positives; and (f) final bounding boxes after box refining
and LP/non-LP classification. Image reproduced from (Li et al., 2018).

Liu and Chang (2019) combined handcrafted features with CNNs in their pipeline,
which was designed for large visual surveillance scenes and consists of three parts. First, a
color-based feature was explored to quickly reject backgrounds with colors other than those of
target LPs (in their work, blue LPs from mainland China). Then, for further background rejection,
the authors designed a feature that uses information regarding the intensity and color differences
between the characters and the background in each LP to express local rectangular features. The
AdaBoost algorithm (Viola and Jones, 2004) was employed for both tasks. Lastly, a CNN-based
cascade structure containing three distinct networks was proposed to accurately detect the LPs.
Their method, which requires 202 ms per image on an NVIDIA GeForce GTX 1060 GPU (i.e.,
it processes approximately 5 FPS), achieved the highest precision rate and the second-highest
recall rate in their assessments with four other LPD methods and two commercial systems. As
limitations of their work, we can mention that their method cannot readily be applied to multiple
LP layouts, as it leverages color information for background rejection, and that all experiments
were performed exclusively on a private dataset.

Mokayed et al. (2021) also explored handcrafted features and CNNss in their pipeline.
They combined Discrete Cosine Transform (DCT) and phase congruency to extract a set of
candidate LP regions and employed a CNN to eliminate false positives. The authors focused their
experimental evaluation on images acquired by drones, which contain several challenges such as
large variations in height distance, oblique angles, and many vehicles in a single image (hence,
the camera’s focus spreads across the vehicles). Although promising results were achieved in
images captured by drones, a low F-measure value of 81.1% was obtained in the experiments
performed on the Medialab LPR dataset (Anagnostopoulos et al., 2008). As detection rates close
to 100% are often reached on Medialab LPR (Bhargav and Deshpande, 2019; Gao et al., 2020a),
we conjecture that the thresholds and heuristics of their method were overtuned for drone images,
making it not very robust to images acquired by stationary or handheld cameras. The average
processing time on an Intel® Core™ 17-8700K CPU was 32 ms per image.
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Gongalves et al. (2018) presented a 15-layer CNN to detect the LPs directly in the input
image. The authors showed that even at a high Intersection over Union (IoU) threshold (e.g., 0.7),
it is not possible to guarantee that the detected LP encloses all characters (see Figure 3.3).
Therefore, they proposed a new loss function that penalizes over-segmented LPs to avoid
detections on the inner side of the LP. Their approach was evaluated on public datasets containing
Brazilian LPs and worked best on images captured by stationary cameras. According to the
authors, this is related to the fact that non-stationary backgrounds contain much more patterns
that can be confused with an LP.

Figure 3.3: Three LPs detected with the same IoU value (0.7) with the ground truth; however, only the rightmost has
all LP characters completely visible. The ground truth bounding boxes are outlined in blue, while the hypothetical
predictions are outlined in orange. Image reproduced from (Gongalves et al., 2018).

Wang et al. (2022c¢) reinforced that the speed/accuracy trade-off always accompanies
the ALPR’s design process and that how to design an effective and efficient ALPR system is still
an open-ended question. In this sense, they proposed a compact one-stage LP detector, called
VertexNet, with small-resolution input (256 x 256 pixels) that contains an integration block to
extract the spatial features of the LPs as well as a vertex-estimation branch (hence the name of
the network) for predicting the geometric shapes of the LPs, which can be later used for LP
rectification. Although VertexNet has proven very efficient (i.e., it runs at 5.7 ms per image on
an NVIDIA GTX 1080 Ti GPU) and accurate in their experimental evaluation, it probably does
not perform well in scenarios where the vehicles are relatively far from the camera, as in the
images of the UFPR-ALPR (Laroca et al., 2018) and Vehicle-Rear (Oliveira et al., 2021) datasets,
either failing to locate the LPs or predicting many false positives. In fact, we believe this is
precisely why the authors forced VertexNet to output only one bounding box per image in their
experiments, despite the fact that many real-world applications contain multiple vehicles in the
scene (Hsu et al., 2017; Kurpiel et al., 2017; Gongalves et al., 2018).

Chen et al. (2020) claimed that LPD is easily affected by vehicle detection due to the
inclusion relation. Hence, they proposed an end-to-end framework to detect vehicles and LPs
simultaneously in a given image, where two separate branches with different convolutional layers
were designed for each task. Following (Redmon and Farhadi, 2017; Redmon and Farhadi, 2018),
to learn better predictions, the anchor boxes were not selected manually, but using k-means
clustering. Finally, attention mechanisms and feature-fusion strategies were employed to improve
the detection of small-scale objects. The AP metric and datasets commonly used for general
object detection were employed in the experiments. This makes it difficult to compare their
method with other LPD approaches in the literature, which generally report the precision and
recall rates (considering as correct only the detections with IoU > 0.5 with the ground truth) and
perform experiments on datasets created specifically for ALPR-related tasks (Xu et al., 2018;
Kessentini et al., 2019; Al-Shemarry and Li, 2020; Lu et al., 2021). Although the authors stated
that detecting the vehicles and their LPs in a cascaded fashion is less efficient, their approach
presented an inference time of 22 ms on a PC with 4 NVIDIA Titan Xp GPUs, which is longer
than the execution times reported in recent cascade-based methods (Silva and Jung, 2020; Laroca
et al., 2021b) that also achieved impressive precision/recall rates — this occurs simply because
shallower models can be used to detect each LP once the vehicles have been located.

In (Ribeiro et al., 2019; Silvano et al., 2021), the authors highlighted that when a new
LP layout is adopted in a country/region, the LPD systems must detect both legacy LPs and those
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under the new layout and associated technical specifications. Considering that collecting and
manually labeling real-world images of the newly adopted LP layout with sufficient variations
can be quite challenging (depending on the transition rules, vehicles with the new LP models
remain the exception rather than the rule for a while), the authors presented a methodology for
generating synthetic LP images by coupling synthetic images of the target LP layout (in their
work, the target was Mercosur LPs) with real-world images containing vehicles with other LP
models (e.g., Brazilian), as illustrated in Figure 3.4. The Fast-YOLOv3 model trained exclusively
with synthetic images achieved an F-measure of 92% on 1,000 real images from various sources
such as search engines, public traffic cameras, and parking lots. The authors considered these
results promising; however, it is difficult to assess them accurately since the test images were not
made available to the research community.
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Figure 3.4: Overview of the methodology proposed by Ribeiro et al. (2019) for generating synthetic LP images.
Image reproduced from (Ribeiro et al., 2019).

Selmi et al. (2020) slightly modified Mask-RCNN (He et al., 2017) to make it more
suitable for LPD. In summary, they removed Mask-RCNN’s segmentation module — keeping
only the RoIAlign layer — and used a network comparable to GoogleNet (Szegedy et al., 2015)
as the backbone but with fewer inception modules and more pooling layers (in fact, they used
convolutional layers with stride = 2). Although promising results were reported in four public
datasets, such a network (with an input size of 960 x 570 pixels) is very computationally expensive,
especially considering the real-time requirements of ALPR applications. This limitation was
highlighted by the authors themselves and also by Chowdhury et al. (2020).

Chowdhury et al. (2020) stated that most LPD approaches consider the images having a
single vehicle in the scene. Thus, they focused on developing a new method for detecting LPs
in crowded street scenes, with multiple vehicles at different angles and positions. To enhance
the ability to cope with the challenges caused by partial occlusion and varying degree of focus
for different vehicles, their method integrates Graph Attention Network (GAT) (Velickovic¢
et al., 2018) — using Residual Network (ResNet)-101 (He et al., 2016) for feature extraction —
with Progressive Scale Expansion Network (PSENet) (Wang et al., 2019). Their method
outperformed both YOLOv2 and PSENet (Wang et al., 2019) in terms of F-measure in three
datasets; nevertheless, it takes one second to process a single image on an NVIDIA GeForce
GTX 1070 Ti GPU and therefore it cannot be applied to several real-world applications (for
comparison purposes, YOLOV?2 took only 0.03 seconds in the same setup). The authors also
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showed that their method is affected by high/low exposure (i.e., sunlight or shadows on the LPs),
failing to differentiate the background and the LPs at the pixel level in these cases.

While also observing that most benchmarks for LPD have only one labeled LP per
image, Lee et al. (2022) reinforced that scene texts that look like LPs and arbitrarily shaped LPs
are the leading cause of erroneous detections. Hence, they proposed an LP detector that explicitly
prevents the learning of non-LP objects (i.e., scene texts but not LPs). As shown in Figure 3.5,
their architecture is divided into a backbone network (ResNet-50-FPN) for feature extraction
and two parallel sub-networks (i.e., Region Proposal Networks (RPNs)), one for LP detection
and other for detecting non-LP objects. The authors added a mutual information term to the
objective function for training the networks, expecting the LP detector to maximize the inter-class
variation related to non-LP objects. Considering that existing datasets for ALPR do not provide
annotations of the scene text (not LP) bounding boxes, the authors introduced a dataset — called
LPST-110K — with images/annotations of LPs and non-LP scene-texts to enable the training of
their method. The experiments were performed on five public datasets, including LPST-110K.
The results showed that their method significantly improved detection performance, especially
in terms of precision, which implied that it decreased the number of false positives regarding
non-LP scene texts. Nevertheless, it should be noted that the authors unusually reported different
metrics for each dataset, making it very difficult to analyze the results. For example, they reported
the recall in the UFPR-ALPR dataset, the precision on CCPD, the F-measure in the PKU dataset,
and the AP on the LPST-110K. Note that, as detailed in Section 2.1, neither precision nor recall
alone can accurately assess the detection quality. Regarding the execution time, considering
input images with a resolution of 1280 x 720 pixels and several LPs per image, their detector
runs at 14 FPS on an NVIDIA TITAN X GPU.

|:| LP (License Plate) Bounding box

|:| Non-LP Scent Text Bounding box

Non- LP detection

Figure 3.5: Overall architecture of the model proposed by Lee et al. (2022) for LPD. ResNet-50-FPN was employed
as the backbone in f. Image reproduced from (Lee et al., 2022).

Aiming to improve the results achieved in the recognition stage, some authors chose
to also classify the LPs in some way in addition to detecting them. For example, Laroca et al.
(2021b) used a modified Fast-YOLOvV2 model to detect the LPs and simultaneously classify
their layouts into one of the following classes: American, Brazilian, Chinese, European and
Taiwanese®. According to their experimental evaluation, carried out on eight public datasets
from these five regions, LP layout classification (along with heuristic rules) greatly improved the
recognition results since, depending on the LP layout, they avoided errors in characters that are
often misclassified and also in the number of predicted characters to be considered. As another
example, Xu et al. (2022) proposed a CNN-based detection module that locates the LPs and
simultaneously classifies them as having one or two rows of characters. The authors connected
this module with another recognition module and reported only end-to-end results. It is worth

®Following Laroca et al. (2021b), in this work the “Chinese” layout refers to LPs of vehicles registered in
mainland China, while the “Taiwanese” layout refers to LPs of vehicles registered in the Taiwan region.
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noting that both detection approaches were designed to be applied to vehicle patches. While
Laroca et al. (2021b) applied YOLOV2 (Redmon and Farhadi, 2017) to detect the vehicles in the
input images, Xu et al. (2022) took cropped vehicle images as input in their experiments.

Lu et al. (2021) pointed out that most research in LPD is based on individual images,
even though there may be multiple frames as input in practical applications. Therefore, they
designed an adaptive weight-guided feature aggregation network, called AWFA-LPD, that
merges information from adjacent frames to improve LPD results. As shown in Figure 3.6,
AWFA-LPD has two branches: one that extracts features from each input frame using ResNet as
the backbone and another that obtains optical flow feature maps between adjacent frames using
FlowNetSimple (Dosovitskiy et al., 2015). The extracted features are then sent to the aggregation
module, which can assign different weights to the feature maps and aggregate them with the
feature maps of the reference frame. The weights are assigned based on cosine similarity; the
intuition is that feature maps from frames very different from the reference one should have as
little impact as possible. Finally, the authors employed R-FCN (Dai et al., 2016) for LPD using
the aggregated feature maps. Their method achieved impressive results on the UFPR-ALPR
dataset, outperforming five baselines in terms of recall (100%), precision (97.3%) and F-measure
(98.6%). As mentioned by the authors, the main shortcoming of their approach is its execution
time — to a large extent due to the optical flow module —, which is five times longer than the faster
baseline (i.e., 78 vs. 16 ms) and three times longer than most of them.
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Figure 3.6: The AWFA-LPD framework (Lu et al., 2021). Image reproduced from (Lu et al., 2021).

In the same direction, Zhang et al. (2021a) remarked that existing systems generally focus
on single image-based algorithms, yet traffic video sequences provide more practical information
than individual frames for ALPR-related tasks. Hence, they proposed a multi-task architecture
that integrates LP detection and LP tracking to minimize the additional computational complexity
of tracking features generation. This architecture is shown in Figure 3.7. Given an input video,
the detector locates the LPs by referring to the temporal relationship between multiple adjacent
frames and spatial information in the current frame. At the same time, the tracker generates
LP streams and assigns them different identities using motion information and discriminative
features. The EAST scene text detector (Zhou et al., 2017) was used as the detection backbone.
In an experimental evaluation conducted on three public datasets with Brazilian LPs, their
method reached better precision and recall rates than several baselines that process frames
individually. Although computation complexity was reduced by sharing feature extraction and
avoiding repeated calculations in a separated tracking stage, their method’s main limitation is its
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computational complexity as it takes about 122 ms to process each frame; for comparison, one of
the baselines achieved a slightly lower F-measure (e.g., 98.5% vs. 99.3% on the UFPR-ALPR
dataset) taking only a tenth of that time to process each frame on similar hardware.
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Figure 3.7: The multi-task architecture proposed by Zhang et al. (2021a) that integrates LP detection and LP tracking.
Image reproduced from (Zhang et al., 2021a).

3.2 License Plate Recognition (LPR)

The great speed/accuracy trade-off provided by YOLO networks (Redmon et al., 2016; Redmon
and Farhadi, 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020; Wang et al., 2021a)
inspired many authors to explore similar architectures targeting real-time performance for LPR.
For example, Silva and Jung (2017) proposed a YOLO-based model that simultaneously detects
and recognizes all characters within a cropped LP (we depict how object detectors handle OCR
tasks in Figure 3.8). This model, called CR-NET, consists of the first eleven layers of YOLO
and four other convolutional layers added to improve nonlinearity. While impressive FPS rates
—1i.e., 448 FPS on an NVIDIA Titan X GPU — were attained in experiments carried out in the
SSIG-SegPlate dataset (Gongalves et al., 2016a), less than 65% of the LPs in the test set were
correctly recognized. According to the authors, the bottleneck of their approach was in letter
recognition since the character classes (in particular, letters) are highly unbalanced in the training
set of the SSIG-SegPlate dataset (as in most datasets for ALPR (Zhang et al., 2021c)).

14891 LFD ~| 04891 LFD | 114891 LFD| | Jfamsnro

Input Image Detection + Recognition Non-maximum Supression (NMS)

Figure 3.8: An illustration of how object detectors (e.g., CR-NET) handle OCR tasks. First, the characters are
simultaneously detected and recognized. Then, an NMS algorithm eliminates redundant detections (e.g., those with
IoU > 0.25) since the network often detects the same character more than once. Finally, the detections are sorted
based on some predefined criteria (e.g., x-coordinate for single-row LPs) to produce the final string.

Taking this into account, Silva and Jung (2018) generalized CR-NET by retraining it
with an enlarged training set composed of real and artificially generated images using font-types
similar to the LPs of the target regions (i.e., Brazil, Europe, and the United States), as shown in
Figure 3.9. The retrained network became much more robust for detecting and classifying real
characters on Brazilian LPs and also on LPs from other regions, outperforming previous works
and commercial systems in three public datasets. In (Silva and Jung, 2020), in a very similar
way, the same authors retrained the CR-NET model with a massive number of artificial images
generated by blending real LPs with synthetic characters through Poisson blending (Pérez et al.,
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2003). Impressive results on several public datasets have been achieved through CR-NET in
recent works (Laroca et al., 2021b; Oliveira et al., 2021; Silva and Jung, 2022).
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Figure 3.9: Artificial LP samples generated by Silva and Jung (2018). Such LPs use font-types similar to the LPs of
the target regions (i.e., Brazil, Europe, and the United States), which made their network more robust for detecting
and classifying real characters of LPs issued in those regions. Image reproduced from (Silva and Jung, 2018).

While some authors (Kessentini et al., 2019; Lee et al., 2019; Kim et al., 2021) employed
YOLO models without any change or refinement for LPR, Henry et al. (2020) applied YOLOV3-
SPP — a version of YOLOvV3 (Redmon and Farhadi, 2018) with Spatial Pyramid Pooling (SPP)
— to this task. They developed an algorithm to determine whether the detected characters are
arranged in one or two rows, regardless of the LP layout. Although their approach achieved high
recognition rates on five datasets from multiple countries/regions, the YOLOv3-SPP model is
excessively deep for LPR (i.e., it has more than 100 layers), making it difficult for the whole
system to meet the real-time requirements of ALPR applications — especially if there are multiple
vehicles in the scene —, as each LP is recognized individually.

Instead of exploring object detectors, Li et al. (2018) handled LPR as a sequence labeling
problem, i.e., without character-level segmentation. First, sequential features were extracted
from the entire LP patch using a 9-layer CNN in a sliding window manner. Then, Bidirectional
Recurrent Neural Networks (BRNNs) with Long Short-Term Memory (LSTM) were applied to
label the sequential features. Lastly, Connectionist Temporal Classification (CTC) was employed
for sequence decoding. Figure 3.10 illustrates the overall structure of their approach, which
attained better recognition rates than the two baselines chosen by the authors. Nevertheless, only
Taiwanese LPs were used in the experiments, and the execution time was not reported.

Wang et al. (2018a) rectified the LP images prior to the recognition stage so that all LPs
have a uniform orientation and thus are easier to recognize. They employed a Spatial Transformer
Network (STN) (Jaderberg et al., 2015) for this task. Then, in a very similar way to the approach
presented by Li et al. (2018), they extracted sequential features using a CNN model (based on
VGG (Simonyan and Zisserman, 2015)), adopted a BRNN to output labels from the sequential
features, and applied CTC to decode the sequential labels and produce the final recognition
results. Their method (see Figure 3.11), pre-trained on synthetic LPs (created using OpenCV)
and fine-tuned on real Chinese LPs, achieved better results compared to the baseline (Li et al.,
2019) and took approximately 17.5 ms to recognize an LP on an NVIDIA 1080 Ti GPU. No
public datasets were used in their experiments.

Zou et al. (2020) also adopted a Bi-directional Long Short-Term Memory (Bi-LSTM)
network (Graves and Schmidhuber, 2005b,a) to implicitly locate the characters on each LP. They
explored a 1-D attention module to extract useful features of the character regions, improving the
LPR performance. Their experiments were performed on four public datasets: AOLP (Hsu et al.,
2013), PKU (Yuan et al., 2017), CCPD (Xu et al., 2018) and CLPD (Zhang et al., 2021c). Their
network achieved better results than the baselines on the three datasets with LPs from mainland
China; however, the comparison of their method with others in the AOLP dataset should not be
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Figure 3.10: The sequence labeling-based approach proposed by Li et al. (2018) for LPR. First, a 9-layer CNN
extracts sequential features in a sliding window manner. Then, BRNNs with LSTM are used for sequence labeling.
Lastly, CTC is employed for sequence decoding. Image reproduced from (Li et al., 2018).
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Figure 3.11: The LPR approach proposed by Wang et al. (2018a), which is capable of recognizing English letters,
digits, and Chinese characters. Image reproduced from (Wang et al., 2018a).

considered as the authors adopted a different evaluation protocol from that used by the baselines.
Details were not provided regarding the execution time of their approach.

Similarly, Zhang et al. (2021c) used a 2-D attention mechanism to optimize their OCR
model, which uses a 30-layer CNN based on Xception (Chollet, 2017) for feature extraction.
An LSTM model was adopted to decode the extracted features into LP characters. The authors
highlighted that it is difficult to manually collect LP images from various regions, which makes
most ALPR datasets heavily biased toward specific regional identifiers. Therefore, they explored
the asymmetric CycleGAN model — proposed in their previous work (Zhang et al., 2019b) (see
Section 3.3) — to synthesize images of Chinese LPs with different transformations and balanced
character classes, reducing data bias and improving model generalization ability. The proposed
method outperformed all baselines in four public datasets — AOLP (Hsu et al., 2013), PKU (Yuan
et al., 2017), CCPD (Xu et al., 2018) and CLPD (Zhang et al., 2021c) — especially with limited
training data. Although the authors claimed that their approach does not leverage any heuristic
rules or post-processing, they trained a recognition network specifically for each LP layout unlike
some recent works (e.g., (Laroca et al., 2021b; Silva and Jung, 2022)), which employed a single
model for LPs from different regions. In other words, their network implicitly learns heuristic
rules about each LP layout. For example, when trained using images from the CCPD dataset
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(which contains LPs from mainland China), it learns to always predict a Chinese character as the
first LP character since this is the case in every single training example. The authors did not
report information about the execution time of their approach.

Several works also designed multi-task CNNss to process the entire LP image holistically,
circumventing character segmentation. For instance, Spaiihel et al. (2017) focused on recognizing
LPs in low-resolution and low-quality images, where segmentation becomes challenging due to
blurred characters. Their model initially processes the entire image using convolutional layers.
Then, eight separate branches with fully connected layers predict up to eight characters (including
a “non-character” class) for specific positions on the LP (see Figure 3.12). Their model, often
referred to as Holistic-CNN (Meng et al., 2018; Gong et al., 2022; Liu et al., 2024a), achieved a
processing speed of over 1000 FPS on an NVIDIA GeForce GTX 1080 GPU and outperformed
two commercial systems — namely, OpenALPR (OpenALPR, 2024) and UnicamLPR (CAMEA,
2024) — on three public datasets containing Czech LPs.
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Figure 3.12: The attention of Holistic-CNN’s fully connected layers for different characters on a Czech LP. From
left to right, top to bottom: 1st to 8th character. In most cases (i.e., on Czech LPs with less than eight characters),
the 4th position does not contain any character (it is blank). Image reproduced from (Spaiihel et al., 2017).

A similar approach was introduced by Gongalves et al. (2018), who designed a multi-
task CNN with 14 layers to locate and recognize all LP characters simultaneously. Promising
results (in terms of both accuracy and execution time) were achieved in two public datasets with
Brazilian LPs by massively taking advantage of synthetic data. The same authors explored a very
similar multi-task model in (Gongalves et al., 2019). However, they focused on designing a novel
strategy to generate synthetic data and thus improve the LPR results obtained by the multi-task
model in low-resolution LP images (we describe this latter work in Section 3.3).

Wang et al. (2022c) observed that these multi-task models for LPR employ fully
connected layers as classifiers to recognize the characters on the predefined positions of the
LPs. Hence, without making massive use of synthetic data, they may not generalize well with
small-scale training sets since the probability of a specific character appearing in a specific
position is low; in fact, a given character may never appear in a specific position on a small set of
LPs. Thus, they proposed a weight-sharing classifier for LPR, called SCR-Net, which can spot
instances of each character across all positions. Figure 3.13 shows three weight-sharing classifiers
used by the authors for the three types of characters on the LPs from the CCPD dataset (Xu
et al., 2018) (Chinese characters, English letters, and digits). The authors explored an encoding
technique to vertically squeeze feature maps into 1-D horizontal features (32 X 1), before feeding
them to the classifier. Despite running relatively fast, taking 5.7 ms to process each image on
an NVIDIA GTX 1080 Ti GPU, their approach reached better results than all baselines on four
public datasets: AOLP (Hsu et al., 2013), PKU (Yuan et al., 2017), CCPD (Xu et al., 2018) and
CLPD (Zhang et al., 2021c). One of their method’s limitations is that a new training process
must be carried out for each LP layout to be recognized. For example, the authors trained and
tested two instances of their model in the experiments: one for LPs from mainland China and
one for LPs from the Taiwan region. Moreover, we conjecture that their approach is not as robust
— or even does not work — for LPs with two rows of characters due to the left-to-right horizontal
encoding technique employed.

Zhang et al. (2021d) also pointed out that existing multi-task models — including those
proposed by Spatihel et al. (2017) and Gongalves et al. (2018) — cannot exploit the diversity
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Figure 3.13: Example of weight-sharing classifiers for Chinese LPs. Image reproduced from (Wang et al., 2022c).

of LP characters at different positions. Thus, in the same way as Wang et al. (2022c), they
employed a shared classifier to recognize the characters at different positions in a unified way.
For producing more discriminative features, the authors explicitly disentangled the semantic and
position information of the LP characters using two networks in parallel, with supervision on each
of them being optional (see Figure 3.14). For the semantic network, the ground truth corresponds
to a bounding box for each character with the pixels annotated (i.e., colored) according to the
semantic class of that character. Similarly, the ground truth labels for the position network are
also represented with bounding boxes; however, the pixels in each bounding box are determined
by the position of the respective characters in the LP. The semantic and position networks connect
the same backbone network — BiSeNet (Yu et al., 2018) — to share global features and produce the
semantic and position features by appending different heads. Based on experiments performed on
four datasets (Medialab LPR, AOLP, CLPD, and CCPD), the authors noted that more supervision
signals are useful as promising results were achieved in all of them. Nevertheless, it is unclear
whether their method generalizes well to unseen data as they trained an instance of their network
specifically for each dataset or LP layout. The same is true for LPs with two rows of characters, as
all experiments were performed on single-row LPs. It is worth noting that the authors discarded
175 images from the AOLP dataset in their experiments; therefore, the results reported on it are
not comparable with those obtained in previous works (which did not discard any image). Finally,
regarding execution time, different models were explored as the base network in the backbone
(i.e., ResNet-18, -34, -50, and -101), thus enabling different speed/accuracy trade-offs. In this
way, depending on the model chosen as the backbone, their network processes between 57 and
191 FPS in the AOLP dataset on an NVIDIA GTX 1080 Ti GPU.

Zeni and Jung (2020) highlighted that detection-based recognition methods (e.g., CR-
NET) tend to adapt better to different LP layouts since they learn each character’s appearance
separately, while segmentation-free approaches (e.g., Holistic-CNN) alleviate the cost of manually
labeling the bounding box of each character on the LP. Thus, they presented a Weakly Supervised
Character Detection (WSCD) approach that explores the best of both worlds: it uses only string-
level annotations to learn the characters’ bounding boxes in a weakly supervised fashion. Their
approach is built on top of the multiple instance detection network proposed by Bilen and Vedaldi
(2016), with an instance-aware online refinement approach, a knowledge distillation module,
and a sub-network for estimating the number of characters to guide the final recognition result.
Although their method produced impressive results for some datasets, the module that classifies
the number of characters showed signs of overfitting (according to the authors themselves); thus,
very low recognition rates — compared to baselines — were obtained in some other datasets.
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Figure 3.14: Tllustration of the LPR method proposed by Zhang et al. (2021d). It comprises four main components:
a backbone network, a semantic network, a position network, and a shared classifier. C,, and Cy are the number of
characters in an LP and the number of character classes, respectively. Image reproduced from (Zhang et al., 2021d).

Zhang et al. (2020a) reinforced that robust and efficient LPR is still an urgent task to
be solved. In addition, they stated that there are only a few video-based approaches modeling
temporal information explicitly (as illustrated in Figure 3.15). Accordingly, they proposed
a quality-aware algorithm that first evaluates the image quality of each LP patch and then
recommends the recognition result predicted in the highest quality frame as the final decision.
The authors employed knowledge distillation (Hinton et al., 2014) to compress their quality
awareness network and make it lightweight. Although impressive recognition results were
reported in the UFPR-ALPR dataset (Laroca et al., 2018), they are not directly comparable with
those reached in other works since the authors expanded/modified the original test set through
data augmentation (instead of just augmenting the training set); the authors also carried out
experiments with Chinese LPs, but as they belong to a private dataset it is difficult to assess the
reported results. Furthermore, even though the authors emphasized the efficiency requirements
of LPR, their approach cannot process 30 FPS (even with the LPD stage not being addressed),
and details about the hardware used in their experiments were not provided. In subsequent
work (Zhang et al., 2021a), the same authors integrated this quality-aware algorithm (with a
few changes; for example, without knowledge distillation) into an end-to-end framework, thus
reaching better results in terms of recognition rate than several baselines that process frames
individually in three video-based public datasets: SSIG-SegPlate (Gongalves et al., 2016a),
LQPV (Seibel et al., 2017) and UFPR-ALPR (Laroca et al., 2018). While such a quality-aware
approach is very appealing for multi-frame LPR in conventional ALPR applications (e.g., traffic
law enforcement), it is not able to handle the challenging cases — yet common in forensic
applications — where a vehicle’s LP is illegible or has very low quality in every frame of a video
because it was recorded by cameras installed for purposes other than ALPR.

Vasek et al. (2018) extended the CNN model proposed in (Goodfellow et al., 2014a),
originally designed for number recognition on street view images, to process a sequence of
rectified LP images obtained from a tracker and output a distribution over a set of LP strings.
They addressed a relatively under-explored scenario of when the input of the LPR system is a
low-resolution video captured by an ordinary camera or a cell phone. As illustrated in Figure 3.16,
their architecture has three components: (i) a CNN that extracts features from each image in
the sequence; (i1) an aggregation layer that shrinks the feature sequence into a distribution over
strings; and (ii1) another CNN that converts the output of the aggregation layer into a distribution
over strings. It is noteworthy that the number of images in the test sequences can be arbitrary
thanks to the aggregation layer. Empirical evaluation on low-resolution European LPs (mostly
Czech) showed that their approach significantly outperformed both baseline methods and human
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Figure 3.15: Many frames are involved with the same LP at different times in a traffic video. The red characters of
the single-frame recognition results indicate incorrect predictions that can be avoided through the quality-aware
approach proposed by Zhang et al. (2020a). Image reproduced from (Zhang et al., 2020a).

performance. Nevertheless, the experiments were performed on a proprietary dataset only, with
8.3 million image sequences (each having five images) being used for training their networks.
No experiments related to execution time were reported.
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Figure 3.16: The LPR approach proposed by Vasek et al. (2018), which takes a sequence of rectified LP images as
input. Image adapted from (Vasek et al., 2018).

Zhuang et al. (2018) proposed a semantic segmentation technique followed by a
character count refinement module to recognize the characters of an LP. Figure 3.17 illustrates
their framework. For semantic segmentation, they simplified the DeepLabV?2 (ResNet-101)
model (Chen et al., 2018) by removing the multi-scaling process, thus increasing computational
efficiency. According to the authors, the purpose of the multi-scaling process is to fuse hierarchical
global information; however, the semantic areas of different characters have a lower correlation in
the LPR task. After obtaining the LP semantic map, the character areas were generated through
CCA. Finally, Inception-v3 (Szegedy et al., 2016) and AlexNet (Krizhevsky et al., 2012) were
adopted as the character classification and character counting models, respectively. The authors
claimed that both an outstanding recognition performance and a high computational efficiency
were attained. Nevertheless, they assumed that LPD is easily accomplished and used cropped
patches (from the ground truth) containing only the LP with almost no background as input. In
addition, their approach cannot process images in real time (it processes 25 FPS on an NVIDIA
TITAN X GPU), especially when considering the time required for the LPD stage, which is
generally more time-consuming than the recognition one. Lastly, they trained specific models for
each LP layout (i.e., the experiments on Greek and Taiwanese LPs were conducted separately);
therefore, adding support for a new layout requires retraining the networks.
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Figure 3.17: Illustration of the framework proposed by Zhuang et al. (2018) for LPR. Their framework consists of
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initial character sequence, while the latter generates the final result (i.e., the LP text) through counting characters.
Image reproduced from (Zhuang et al., 2018).

Selmi et al. (2020) used Mask-RCNN (He et al., 2017) for LPR. The network was trained
to predict 37 classes (0-9, A-Z, and one Arabic word). Some post-processing rules were applied
to the network’s output to improve the recognition results (e.g., predicted regions too wide or too
small to be a character were discarded). Despite the fact that promising results were reported in
four public datasets, the chosen model (with an input size of 530 x 300 pixels) is much more
computationally expensive than those used in other works — e.g., (Silva and Jung, 2020; Liu et al.,
2021; Zhang et al., 2021d) — for this task, which makes it difficult (or even impossible) for it
to be employed in some real-world applications (especially those where multiple vehicles can
coexist on the scene). The authors themselves highlighted this limitation in their method.

Liu et al. (2021) observed that most recognition methods were proposed for single-row
LPs, considering LPR a one-dimensional sequence recognition problem. They stated that these
methods are not suitable for recognizing two-row LPs because the features of adjacent characters
may get mixed up when directly transforming an LP image into a one-dimensional feature
sequence. In an attempt to solve this problem, they proposed a 2-D spatial attention module
to recognize LPs from a two-dimensional perspective (see Figure 3.18). The authors adopted
the backbone from Holistic-CNN (Spaiihel et al., 2017), with a few modifications, to extract
visual features from the input image. Unlike Zhang et al. (2021c), who also explored a 2-D
attention module, Liu et al. (2021) adopted one fully connected layer (i.e., a shared classifier) as
the decoder and not a recurrent structure. Their method performed better than several baselines
on images from three private and two public datasets containing Chinese LPs. While much of
the authors’ focus was on recognizing two-row LPs, they overlooked public datasets containing
images of LPs with two rows of characters — some examples are the EnglishLP, UFPR-ALPR and
Vehicle-Rear datasets — and evaluated their network exclusively on two-row LPs from private
datasets. Their network can process 278 FPS on an NVIDIA GTX 1080 Ti GPU.

In (Xu et al., 2022), an extension of (Xu et al., 2021), the authors also emphasized
that most methods for ALPR can only handle single-row LPs. In this way, similar to (Zhang
etal., 2021c; Liu et al., 2021) and inspired in (Wojna et al., 2017), they adopted a 2-D attention
mechanism for LPR where the encoder is a lightweight CNN structure and the decoder is
attention-based. A Gated Recurrent Unit (GRU) (Cho et al., 2014) was used to convert the
feature maps into a character sequence. Before recognition, each detected LP is fed into a feature
alignment module based on perspective transformation prediction and grid sampling, which
rectifies the deformed LP features into regular ones. Their method was primarily evaluated on
Chinese LPs, considerably outperforming other well-known models for recognizing LLPs from
mainland China. However, we remark that the authors fine-tuned their method (and not the
baselines) on 150k images from a private dataset. The downside of their method lies in its
efficiency since, according to the authors, it is about two times slower than CTC-based models
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Figure 3.18: The overall architecture of the network proposed by Liu et al. (2021) for LPR. “maxT" is the max
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— which are already known in the ALPR literature for being quite time-consuming (Zhang et al.,
2021d; Liu et al., 2021).

Lee et al. (2022) explored a similar method for LPR, in which the encoder network (with
seven convolutional layers) is followed by Bi-LSTM, and an attention mechanism with GRU and
LSTM is employed as the decoder. Although the authors performed experiments on five public
datasets from four different regions, they described this approach and also reported its results
very superficially, as the focus of their work was on the LPD stage.

3.3 Synthetic Data

As highlighted in Section 2.3, it is well-known that unbalanced data is undesirable for neural
network classifiers since the learning of some patterns might be biased. This problem is even
more pronounced in the ALPR context, particularly in the LPR stage, as it is difficult to manually
collect LP images from a variety of regions, which makes most existing ALPR datasets heavily
biased toward specific regional identifiers (Zhang et al., 2021c; Liu et al., 2021).

Considering the above discussion, many data augmentation methods have been proposed
in the ALPR context to eliminate bias from the experiments and reduce the number of real images
needed for training deep models (Gongalves et al., 2018; Silva and Jung, 2020; Laroca et al.,
2021b). To narrow the scope of this section, we focus on describing relevant works where the
authors exploited generative models (mostly GANs) to this end.

Although GANs were proposed in 2014 (Goodfellow et al., 2014b), it was not until 2017
that they were first applied to data augmentation in the ALPR context. Wang et al. (2017) pointed
out that LP images are hard to collect due to privacy issues and regional characteristics (i.e., the
LPs differ in countries and regions). Therefore, they trained CycleGAN (Zhu et al., 2017b) with
the Wasserstein distance loss (Arjovsky et al., 2017) to learn a mapping that maps script images
(Figure 3.19a) into real images (Figure 3.19b). They used the generated images (Figure 3.19c),
which are labeled, to pre-train a Convolutional Recurrent Neural Network (CRNN) model (Shi
et al., 2017) for recognizing Chinese LPs. The CRNN model was then fine-tuned on real images.
The authors reported many experiments, which demonstrated that this strategy (i.e., pre-training
an OCR model on synthetic data created by CycleGAN and fine-tuning it on real data) brings
significant improvements in terms of recognition rate. For example, the CRNN model pre-trained
on CycleGAN images and fine-tuned on 9,000 real images reached better results than the same
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model trained on a set containing 50,000 real images without CycleGAN-generated images. The
major shortcoming of their work is that only private datasets (with tens or hundreds of thousands
of training images) were used in the experiments. In addition, the authors trained one model to
generate blue LPs and another to generate yellow LPs, without detailing why not train a single
model to generate LPs of both colors (we conjecture that the LP images generated in this way
have artifacts). Lastly, it is important to note that this work is only available on arXiv’; that is, it
has not gone through the peer-review process. Still, we chose to describe it here since it is the
first work applying GANSs to generate LP images and because some of the authors have already
published relevant articles in the ALPR context (Li et al., 2018, 2019; Zhang et al., 2021c).

(a) Script images (b) Real images (c) CycleGAN images

Figure 3.19: Wang et al. (2017) trained CycleGAN (Zhu et al., 2017b) to generate images of Chinese LPs (c). The
CycleGAN model was trained using images created by a script (a) (i.e., colors and character deformations were
hard-coded) as one domain and real images (b) as another. Image reproduced from (Wang et al., 2017).

Exactly the same strategy was adopted shortly after by Zhang et al. (2018b). That
is, they also employed CycleGAN (Zhu et al., 2017b) (with the original loss) to automatically
generate a large number of Chinese LPs for pre-training the CRNN model (Shi et al., 2017). As
in (Wang et al., 2017), the CycleGAN-generated images did help improve the performance of
the OCR model (from 95.5% to 97.6%), and the experiments were conducted exclusively on a
private dataset. The authors classified the need for an abundant source of training images as the
main limitation of this approach since they tried to generate images of American LPs using the
Caltech Cars dataset (Weber, 1999) (which has 126 images), but the results were not satisfactory.

Wau et al. (2018) emphasized that there is no clear common understanding of how many
labeled LPs are needed to train a recognition model that achieves satisfactory performance. They
tried to address such a question by analyzing the performance of a recognition model based on
DenseNet (Huang et al., 2017) when trained on a few real images and many artificial ones. In the
same direction as (Wang et al., 2017; Zhang et al., 2018b), they explored CycleGAN (Zhu et al.,
2017b) — with gradient penalty (Gulrajani et al., 2017) — to learn the mapping relationship between
script LPs and real LPs. However, differently from what was done in those works, the authors
used both generated and real images to train the recognition model from scratch (rather than
pre-training it on generated images and then fine-tuning it on real images). The results showed
that their recognition model trained from scratch on only 300 real images in addition to hundreds
of thousands of generated images reached competitive results to the CRNN model pre-trained on
generated images and fine-tuned on 200,000 real images by Wang et al. (2017). Although these
results are quite promising, the experiments were performed exclusively on images from a private
dataset. We conjecture that the test set is not challenging enough, with many “easy” LP images
and a few difficult ones. This would explain the high recognition rates being achieved with only
300 real training images and not improving when the number of real LPs is increased from 4,750.
It is worth noting that the authors performed experiments on images from the AOLP dataset (Hsu
et al., 2013), but they did not generate Taiwanese LPs for training their recognition model (they
explored only real images with simple data augmentation techniques such as affine transformation,

TarXiv (https://arxiv.org/) is an open-access repository of electronic preprints, with a submission rate
of over 19,000 articles per month as of February 2024 (arXiv, 2024).
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erosion, and dilation). This reinforces what was concluded by Zhang et al. (2018b), i.e., that
such generative models need a large training set to produce satisfactory results.

Zhang et al. (2019b) remarked that it is difficult to manually collect images of LPs from
different states/provinces across a country. To better illustrate, they noted that 95% of the images
from the CCPD dataset (Xu et al., 2018) were captured in a single city in China, so the first
two characters on different LPs are usually the same®. In this way, according to the authors, a
recognition model trained on CCPD’s images — without some kind of data generation — cannot be
used nationwide. Their approach has two main differences from those already described in this
section. First, the authors trained the CycleGAN model (Zhu et al., 2017b) without the second
cycle-consistency loss (i.e., they discarded the loss responsible for mapping real images into
synthetic ones) — this is why this model ssers termed as asymmetric CycleGAN in a subsequent
work (Zhang et al., 2021c). Second, they trained multiple networks to generate images with
specific characteristics. For example, they trained one CycleGAN network specifically to map
script images (Figure 3.20a) into bright LPs (Figure 3.20b), another to map script images into dark
LPs (Figure 3.20c), and so on. The generated images consistently improved the results obtained
on the CCPD dataset by a CNN based on Xception (Chollet, 2017), even though the authors
acknowledged that CycleGAN does not handle character details very well. The experimental
evaluation could have been more extensive since the authors did not detail how discarding
CycleGAN'’s second cycle-consistency loss affected the quality of the generated images, nor
whether it would be possible to train a single CycleGAN-based network to generate LP images
with different characteristics.

(a) Script LPs

T s, s | f%\.w‘?’— » o /r' A Py |

[ .,". - 5 .li‘_ N -l v .-ﬁ'l »,_"i;.gh 1__,_'. J
(b) Bright LPs

(c) Dark LPs

Figure 3.20: Zhang et al. (2019b) trained multiple CycleGAN-based networks (Zhu et al., 2017b) to generate LP
images with different characteristics (b) (c). Each network was trained using script images (a) as one domain and
real images with specific characteristics as another domain. Image reproduced from (Zhang et al., 2019b).

Wu et al. (2019) argued that existing models at that time could transfer general color
and texture from the source images to target images but ignored the structural properties of each
character region, yielding blurry and distorted results. Therefore, they proposed PixTextGAN,
which comprises a generator, a discriminator, and a text recognition module to generate realistic
LP images while preserving character structure information. As illustrated in Figure 3.21,
considering paired data, PixTextGAN is trained using a structure-sensitive loss function that
integrates pixel-wise loss (i.e., Mean Squared Error (MSE)), content loss (similar to perceptual
loss, but the feature representations are extracted by a pre-trained text recognition network), and
CTC loss (Graves et al., 2006). The authors compared PixTextGAN with CycleGAN (Zhu et al.,
2017a) and pix2pix (Isola et al., 2017) in the Reld (Spaﬁhel et al., 2017) and CCPD datasets (Xu
et al., 2018). To this end, they pre-trained CRNN (Shi et al., 2017) on 100,000 generated images

8 The first character in Chinese LPs denotes the province to which the vehicle is registered, while the second
character is a letter indicating the issuing city within that province (Xu et al., 2018, 2021; Zhang et al., 2019c, 2021c).
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and fine-tuned it on different numbers of real images. According to the qualitative and quantitative
results, PixTextGAN outperformed CycleGAN and pix2pix in both datasets. As PixTextGAN
exploits a recognition module to improve the generation of LP images, it remains to be analyzed
whether a single model would be able to generate LPs from different regions and with different
characteristics (they trained two distinct models, one for Chinese LPs and another for Czech LPs).
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Figure 3.21: The framework of the PixTextGAN model (Wu et al., 2019), which aims to generate realistic LP images
while preserving text order consistency between synthetic and real images. Image reproduced from (Wu et al., 2019).

Han et al. (2020) listed several public datasets for ALPR (the best-known ones), observing
that none contain images of Korean LPs. To train a recognition model for these LPs, they tried to
build a large-scale dataset through web-scraping but managed to find only 159 images of Korean
LPs. Considering this, they proposed using image-to-image translation GANSs to generate images
of Korean LPs from script images. They trained CycleGAN (Zhu et al., 2017b), StarGAN (Choi
et al., 2018) and pix2pix (Isola et al., 2017) for this task (see Figure 3.22) and compared the
performance of a recognition model trained with images generated by each method. The authors
concluded that pix2pix generated more realistic/diverse LP images, as the recognition model
trained with images generated by pix2pix achieved significantly better results (96.3%) than the
models trained with images generated by StarGAN (94.2%) and CycleGAN (93.6%). A modified
version of YOLOvV2 (Redmon and Farhadi, 2017) was employed as the recognition model. As a
limitation of this work, we can mention that all datasets used in the experiments are not available
to the research community. Furthermore, although the authors highlighted that the more synthetic
images, the better the recognition rates achieved, they created only 9k synthetic images with each
GAN model without assessing at what point the recognition rates would stop increasing.
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Figure 3.22: Examples of Korean LPs generated by Han et al. (2020) with CycleGAN (b), StarGAN (c), and
pix2pix (d). The first column shows the script images used as input (a). Image reproduced from (Han et al., 2020).

Shashirangana et al. (2022) pointed out that while there are many public datasets for
ALPR, they mostly (or exclusively) have images captured during the day. As curating a new
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dataset for nighttime images is both expensive and time-consuming, they employed pix2pix (Isola
et al., 2017) to convert color images from the CCPD dataset (Xu et al., 2018) into thermal
infrared (TIR) images. The authors explored the KAIST multi-spectral dataset (Hwang et al.,
2015), which has 95k paired color and infrared images, for training the pix2pix model. Figure 3.23
shows two color images and their corresponding infrared images generated by pix2pix. As can be
seen, the authors created synthetic infrared images of the entire scene and not just the LP region;
hence, these images can be used to train deep models for both the detection and recognition
stages. The qualitative results are promising, but experiments with public datasets were lacking to
assess whether a deep model trained on such synthetic images would be able to detect/recognize
LPs in real nighttime images captured by infrared cameras. In this regard, the authors mentioned
a few experiments conducted on real nighttime images, but the test set had only 100 images (no
samples were shown) and was not made available to the research community.

(a) Real color images (CCPD dataset) (b) Synthetic infrared images (pix2pix)

Figure 3.23: Shashirangana et al. (2022) employed pix2pix (Isola et al., 2017) to convert color images (a) into
thermal infrared images (b). Image reproduced from (Shashirangana et al., 2022).

Gongalves et al. (2019) observed that many companies and government departments
do not have a large budget to invest in high-quality cameras. They also noted that forensic
experts often have to handle low-quality images captured from crime scenes. Taking this into
account, the authors designed a deep generative network for creating synthetic LP images as if
they were acquired farther away from where they actually were. Their objective was to train
a recognition model that performs better on low-resolution images (while still being robust
to high-resolution images). Instead of using GANs, they employed a model very similar to a
variational autoencoder (Kingma and Welling, 2014) (see Figure 3.24). They trained the model
with pairs of LP images from the same vehicle, where one high-resolution image captured close
to the camera is used as input, and a low-resolution image captured far from the camera is used
as output. The intuition behind this training process lies in the fact that simply downscaling
high-resolution images does not emulate the actual behavior of low-resolution LPs, as they
contain noise resulting from long-distance captures or low-quality cameras. The experimental
evaluation, carried out on images from the SSIG-ALPR dataset (Gongalves et al., 2018), showed
that adding many synthetic images (400k) of low-resolution LPs to the training set improved
the recognition rate achieved by their multi-task OCR model by 4.9%. An important finding is
that the accuracy on high-resolution LPs remained the same, i.e., the low-resolution samples
improved the recognition model’s robustness to low-resolution LPs without compromising the
results obtained on high-resolution LPs. As the experiments were performed using images from
a single dataset (with Brazilian LPs), it is unclear whether such a generative model needs to be
retrained/adjusted for images of other LP layouts and for images acquired under other settings.

Vasek et al. (2018) explored cGAN concepts (Mirza and Osindero, 2014) to create a
CNN-based super-resolution generator of LP images that converts input low-resolution images
into their high-resolution counterparts closely matching the structure of the input LP patch
(i.e., tilt angle, lighting conditions, among other characteristics). They trained the generator
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Figure 3.24: The deep generative model designed by Goncgalves et al. (2019) to create LP images simulating that
they were captured farther away from where they actually were. Image reproduced from (Gongalves et al., 2019).

using 1.6 million triplets (Ir;, hr;, str;), where lr; corresponds to the input low-resolution image,
hr; refers to the desired high-resolution counterpart, and str; is the string to be depicted on hr;.
As the focus of their work was on recognizing LPs in low-resolution videos (as detailed in
Section 3.2), the authors only showed some images produced by the generator (see Figure 3.25b),
without evaluating them quantitatively — i.e., without using them to train a recognition model and
then assess what impact they have on its performance. It is worth noting that both the training
images (1.4M real + 0.2M synthetic) and test images were taken from private datasets.
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Figure 3.25: Vasek et al. (2018) proposed a super-resolution CNN-based generator that converts input low-resolution
images into their high-resolution counterparts closely matching the structure of the input LP. (a) shows a simplified
view of the super-resolution generator; it takes as input the low-resolution LP image and the string to be depicted.
(b) shows impressive examples of high-resolution LP images created by their generator. The first column shows
low-resolution images (the red strings denote the ground truth), while the second and third columns show images
produced by the generator. Image adapted from (VaSek et al., 2018).

3.4 Miscellaneous

Here we present works or systems that do not fit into any of the other sections of this chapter.
We first describe works where the authors designed deep models to locate the four corners of
the LPs in order to rectify them before the recognition stage. We then provide information on
two commercial systems that have been used frequently as baselines in the literature. Lastly, we
point out some fundamental differences between scene text recognition and LPR, describing the
models proposed for scene text recognition that are explored in other chapters of this work.
Meng et al. (2018) claimed that some segmentation-free methods (e.g., those proposed
by Spatihel et al. (2017) and Gongalves et al. (2018)) might not achieve high recognition rates
on considerably tilted LPs, as the respective authors only considered LPs with a regular shape
and with small variations in their works. Accordingly, they designed a 10-layer CNN, called
LocateNet, to predict the four vertices coordinates (xo/w, yo/h, . ..,x3/w, y3/h) of the LP. Then,
an affine transformation was applied to the LP patch in order to rectify it, as illustrated in
Figure 3.26. A neural network (for character segmentation) followed by AlexNet (Krizhevsky
et al., 2012) (for character recognition), and three existing methods were used in their experiments
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on three public datasets to demonstrate that the LP rectification stage significantly improves the
recognition results. Similar findings were observed by Spatihel et al. (2018), who also designed a
deep network to locate the corners of the LP. The network, called Aligner-CNN, outputs four
probability maps for the four corner points in a specified order (i.e., top left, top right, bottom
right, and bottom left). The results showed that the rectification performed by Aligner-CNN
considerably improved the recognition rate achieved by Holistic-CNN (Spaiihel et al., 2017) on
a public dataset containing several styles of parking (e.g., parallel, angle, and perpendicular)
both outside (e.g., streets, outdoor, and parking lots) and inside (e.g., parking garages). More
specifically, the error rate was reduced from 12.5% to 4.0% when rectifying the LPs before
recognition. However, the computational cost required for such an additional task is worth noting,
as the recognition approach proposed by Meng et al. (2018) took six times longer to process an
LP image compared to a baseline (Holistic-CNN) without the rectification stage (even though
both methods achieved similar results). Similarly, but to a lesser extent, in (Spatihel et al., 2018)
it took about three times longer for Holistic-CNN to recognize an LP when rectifying it first.
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Figure 3.26: The flowchart of LocateNet (Meng et al., 2018), which predicts eight floating numbers corresponding
to the horizontal and vertical locations of the four corners of the LP. Image adapted from (Meng et al., 2018).

In the same direction, Yoo and Jun (2021) evaluated five models based on deep learning
to estimate the corner coordinates of tilted LP images. Considering the real-time requirements
of ALPR applications, they focused on models with relatively small size and high speed. In
experiments carried out on a private dataset and also on the road patrol (RP) subset of the
AOLP dataset (Hsu et al., 2013), a hybrid model between a network proposed by the authors
and MobileNetV2 (Sandler et al., 2018) reached the best results in terms of accuracy (i.e., the
mean pixel distance between the predicted corner positions and the ground truth). In terms of
efficiency, the authors compared only the sizes of the models, without detailing their execution
time or the hardware used in the experiments. We believe that this is not the ideal evaluation
approach, as models of similar sizes can still perform at quite different speeds due to the specific
characteristics of each architecture (Huang et al., 2017; Laroca et al., 2019, 2021b).

Masood et al. (2017) presented Sighthound (Sighthound, 2024), an end-to-end ALPR
system, that uses a sequence of deep CNNs for LPD, character detection (or segmentation), and
character recognition. For character detection, a binary network classifier was trained with LP
characters as positive examples and symbols (e.g., wheelchair, flags, among others) as negative
samples. Due to its commercial nature, Sighthound’s technical background is strictly confidential,
i.e., little information is provided about the models used for each stage or about the datasets used
to train it. According to the authors, the variety of character fonts and hard negative samples
improved the robustness of their system, which outperformed other commercial solutions in
two public datasets. It is worth noting that the performance of commercial systems is often
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overestimated for promotional reasons (Anagnostopoulos et al., 2008; Thome et al., 2011). As it
offers a trial version via an Application Programming Interface (API), Sighthound is frequently
used as a baseline in the literature (Zhang et al., 2020a; Lu et al., 2021; Chen et al., 2023).

OpenALPR’ (OpenALPR, 2024) is another commercial system often employed as a
baseline in ALPR research. It offers specialized solutions for LPs from various regions, including
Europe, mainland China, and the United States. This entails users inputting the correct region
when using its API. While OpenALPR can deliver superior results by employing heuristic rules
tailored to the specified region, the need for users to have prior knowledge regarding the LP
layout can be viewed as a limitation (Laroca et al., 2021b). Indeed, studies have shown that it
typically achieves better results than Sighthound on LPs from supported regions and considerably
worse otherwise (Silva and Jung, 2018; Li et al., 2020; Shu et al., 2020).

ALPR is a specific application of scene text detection and recognition (Mokayed et al.,
2021; Lee et al., 2022; Ding et al., 2023). Nevertheless, there are some fundamental differences
between ALPR and the general task of detecting and recognizing scene text that should be
highlighted: (i) there is no language model hidden in LPs, nor any substantial relationship with the
context information; (i) LPR models usually need to learn 36 character classes (10 digits [0-9],
and 26 uppercase letters [A-Z]), while networks for general scene text recognition must handle
62 classes (10 digits [0-9], 26 uppercase letters [A-Z], and 26 lowercase letters [a-z]) or even
more (91-96) when incorporating symbols (Shi et al., 2019; Wu et al., 2022; Jiang et al., 2023a);
and (iii) detection and recognition models for ALPR do not need to deal with curved text, which
1s commonly encountered in natural scenes such as business logos, signs and entrances (see
Figure 3.27). In the next paragraphs, we briefly describe the well-known models originally
proposed for scene text recognition that are explored in other chapters of this work.

Figure 3.27: Examples of curved text, which is a commonly seen artistic-style text in natural scenes (Shi et al., 2016).
Recognition models for ALPR do not need to deal with this text style. Image adapted from (Ch’ng and Chan, 2017).

Baek et al. (2019) introduced a four-stage framework (illustrated in Figure 3.28) that
models the design patterns of most modern methods for scene text recognition. The Transformation
stage removes the distortion from the word image so that the text is horizontal or normalized.
This task is generally done by STNs (Jaderberg et al., 2015) with a thin-plate splines (TPS)
transformation (Bookstein, 1989), which models the distortion by finding and correcting fiducial
points (see the green ‘+” markers in Figure 3.28). The second stage, Feature Extraction, maps
the input image to a representation that focuses on the attributes relevant to character recognition
while suppressing irrelevant features such as font, color, size and background. This task is usually
performed by a module composed of CNNs, such as VGG (Simonyan and Zisserman, 2015),
ResNet (He et al., 2016), and Recurrent Convolutional Neural Network (RCNN) (Liang and
Hu, 2015). The Sequence Modeling stage converts visual features to contextual features that
capture the context in the sequence of characters. Bi-LSTM (Graves and Schmidhuber, 2005b,a)
is generally employed for this task. Finally, the Prediction stage produces the character sequence

% Although OpenALPR has an open-source version, the commercial variant (the one typically used as a baseline)
employs distinct OCR models trained with larger datasets for improved accuracy (OpenALPR, 2024).
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from the identified features. This task is typically done by a CTC decoder (Graves et al., 2006) or
through an attention mechanism (Bahdanau et al., 2015).

Input image Normalized image Visual feature Contextual feature Prediction
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Figure 3.28: The four modules or stages of modern scene text recognition, according to (Baek et al., 2019). “Trans.”
stands for Transformation, “Feat.” stands for Feature Extraction, “Seq.” stands for Sequence Modeling, and “Pred.”
stands for Prediction. Image reproduced from (Baek et al., 2019).

As can be seen in Table 3.1, although most methods can fit into this framework (Atienza,
2021b), they do not necessarily have all four modules. For example, Robust text recognizer with
Automatic REctification (RARE) (Shi et al., 2016), SpaTial Attention Residue Network (STAR-
Net) (Liu et al., 2016), and TPS-ResNet-BiLSTM-Attention (TRBA) (Baek et al., 2019) rectify the
input image using TPS, whereas CRNN (Shi et al., 2017), Recursive Recurrent neural networks
with Attention Modeling (R?AM) (Lee and Osindero, 2016), Gated Recurrent Convolution
Neural Network (GRCNN) (Wang and Hu, 2017), and Rosetta (Borisyuk et al., 2018) do not
normalize the input image. For the feature extraction task, RARE and CRNN use VGG; RZAM
and GRCNN employ RCNN; and STAR-Net, Rosetta and TRBA use ResNet. Regarding the
sequence modeling stage, R?AM and Rosetta skip it to speed up prediction, while RARE,
STAR-Net, CRNN, GRCNN and TRBA address it using Bi-LSTMs. Lastly, RZAM, RARE and
TRBA rely on an attention mechanism to predict the sequence of characters, whereas STAR-Net,
CRNN, GRCNN and Rosetta employ CTC. For more information about the methods mentioned
in this paragraph, see the respective works where they were proposed and also (Atienza, 2021b;
Chen et al., 2022), which summarize the similarities and differences between them.

Table 3.1: Summary of seven well-known models for scene text recognition that fit into the framework introduced by
Baek et al. (2019). We list these models (and not others) as they are explored in other chapters of this work.

Model Transformation  Feature Extraction ~Sequence Modeling Prediction
R2AM (Lee and Osindero, 2016) - RCNN - Attention
RARE (Shi et al., 2016) TPS VGG Bi-LSTM Attention
STAR-Net (Liu et al., 2016) TPS ResNet Bi-LSTM CTC
CRNN (Shi et al., 2017) - VGG Bi-LSTM CTC
GRCNN (Wang and Hu, 2017) - RCNN Bi-LSTM CTC
Rosetta (Borisyuk et al., 2018) - ResNet - CTC
TRBA (Baek et al., 2019) TPS ResNet Bi-LSTM Attention

Inspired by the success of Vision Transformer (ViT) (Dosovitskiy et al., 2021), Atienza
(2021b) proposed a simple single-stage model — called ViTSTR — that uses a pre-trained ViT (Tou-
vron et al., 2021) to perform scene text recognition. The ViT introduced by Dosovitskiy et al.
(2021) is an architecture directly inherited from Natural Language Processing (NLP) (Vaswani
et al., 2017) but applied to image classification with raw image patches as input. As shown
in Figure 3.29, in VITSTR, the input image is first converted into non-overlapping patches.
The patches are then converted into 1-D vector embeddings (i.e., flattened 2-D patches). As
input to the encoder, a learnable patch embedding is added together with a position encoding
for each embedding. ViTSTR is trained in an end-to-end manner with no parameters frozen.
Considering that little emphasis has been placed on speed and computational efficiency in scene
text recognition, the authors also proposed two smaller versions of ViTSTR, called ViTSTR-Tiny
and ViTSTR-Small, with reduced embedding size and number of heads (see Table 3.2).

Another model that is explored in other chapters of this work and therefore should be
described here is Fast-OCR (Laroca et al., 2021a). It was proposed for reading energy/gas/water
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Figure 3.29: The network architecture of ViTSTR (Atienza, 2021b). The prediction head is the only difference
between ViT (Dosovitskiy et al., 2021) and ViTSTR. Instead of single object-class recognition, VIiTSTR must
identify multiple characters with the correct sequence order and length. [GO] is a pre-defined start of sequence
symbol, while [s] represents a space or end of a character sequence. Image reproduced from (Atienza, 2021b).

Table 3.2: The settings of each ViTSTR version. Table reproduced from (Atienza, 2021b).

Version Patch Size Depth Embedding Size # Heads Sequence Length

ViTSTR-Tiny 16 12 192 3 27
ViTSTR-Small 16 12 384 6 27
ViTSTR-Base 16 12 768 12 27

meters and incorporates features from three object detection-based models focused on the
speed/accuracy trade-off, namely YOLOv2 (Redmon and Farhadi, 2017), CR-NET (Silva and
Jung, 2020) and Fast-YOLOv4 (Bochkovskiy, 2020). Accordingly, it is trained to predict N
character classes (originally 10 classes [0-9]) using the region-of-interest patch as well as the
class and bounding box (x, y, w, h) of each character as input. As detailed in Table 3.3, Fast-OCR
performs detection at two different scales, as Fast-YOLOv4. The convolutional layers mostly have
3 x 3 kernels and the number of filters is doubled after each max-pooling layer, as in YOLOv2
and CR-NET. In addition, there are 1 X 1 convolutional layers between 3 X 3 convolutions to
reduce the feature space from preceding layers. In experiments carried out on two public datasets
with images of energy meters, Fast-OCR achieved considerably better results than baselines that
perform recognition holistically, including CRNN, TRBA and the multi-task network designed
specifically for counter recognition'® by Gémez et al. (2018).

Table 3.3: The architecture of Fast-OCR (Laroca et al., 2021a).

# Layer Filters Size Input Output # Layer Filters  Size Input Output

0  conv 32 3x3/1 384x128x3 384x128x32 11 conv 256 1x1/1 24x8x512 24x8x%256
1 max 2x2/2 384x128x32 192x64x32 12 conv 512 3x3/1 24x8x256 24x8x512
2 conv 64 3x3/1 192x64x32 192X 64 %64 13 conv 45 Ix1/1 24x8x512 24x8x45

3 max 2%x2/2 192x64x64 96 x32 %64 14 detection

4 conv 128 3x3/1 96x32x64  96x32x128 15 route [11] 24 x 8 x 256
5 max 2x2/2 96%x32x128 48x16x128 16 conv 256 1x1/1 24x8x256 24x8x256
6 conv 256 3x3/1 48x16x128 48 x16x256 17 upsample 2% 24x8x256 48 x16x256
7 conv 128 Ix1/1 48x16x256 48x16x128 18 route [17, 6] 48 x 16 x 512
8 conv 256 3x3/1 48x16x128 48 x 16x256 19 conv 512 3x3/1 48x16x512 48x16x512
9  max 2x2/2 48x16%x256 24 x8x256 20 conv 45 Ix1/1 48x16x512 48x16x45
10 conv 512 3x3/1 24x8x256 24 x 8 x 512 21  detection

10The counter is the region on each meter where the digits are displayed. Thus, in automatic meter reading, the
digit recognition stage is often referred to as counter recognition (Laroca et al., 2019, 2021a; Rocha et al., 2022).
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3.5 Final Remarks

Recent developments in deep learning (Bengio et al., 2021) have significantly contributed to
improving many computer vision tasks, such as object detection and OCR, which directly benefit
ALPR systems. Despite extensive research driven by the wide range of ALPR applications, there
remains a significant gap between the performance levels reported in academic studies and those
observed in real-world deployments. This gap can largely be attributed to the overly simplified
setups used in most research endeavors. In the following paragraphs, we outline the primary
limitations observed in the studies reviewed in this chapter.

What caught our attention right away was the lack of evaluation regarding the out-of-
domain robustness of the proposed methods in most studies. Only recently have some researchers
started conducting cross-dataset experiments to assess the generalizability of their methods. The
prevalent approach involves training the models exclusively on the CCPD dataset and testing
them on the CLPD and PKU datasets, all three acquired in mainland China (Zou et al., 2020;
Wang et al., 2022c; Chen et al., 2023). We argue that it is crucial to expand such evaluations to
datasets gathered from different regions, encompassing a greater diversity in LP styles. Zeni
and Jung (2020) set a valuable example in this regard. They explored five datasets from various
regions, three for both training and testing, and two exclusively for testing. Interestingly, both
their LPR method and a baseline they trained exhibited signs of overfitting on images from
unseen datasets, especially on LPs from regions with limited representation in the training data.

Even in traditional intra-dataset experiments (where training and testing data come
from disjoint parts of the same dataset), it is quite common for only a particular LP style (e.g.,
single-row blue LPs from mainland China) to be considered in the experiments (Han et al., 2020;
Maier et al., 2022; Shvai et al., 2023). To experiment with multiple LP layouts, many researchers
have opted to train separate instances of their models for each layout (e.g., considering the LPR
stage, one model recognizes LPs from the Taiwan region, another model recognizes LPs from
mainland China, and so on) (Zhang et al., 2021d; Wang et al., 2022c; Ke et al., 2023). As one may
infer, dealing with the problem in this way becomes cumbersome (even unfeasible) as the number
of LP layouts the ALPR system must detect and recognize increases, since the parameters are
individually adjusted for each LP layout and adding support for a new region requires retraining
the networks. Moreover, this protocol does not make it possible to assess whether the proposed
models, as they were designed and trained, can effectively deal with LPs from multiple regions.

To better illustrate the importance of the points discussed above, Figure 3.30 shows the
predictions made by two pre-trained instances of the CR-NET model, one provided by Silva
and Jung (2018) and the other by Laroca et al. (2021b), on two randomly selected images of
Mercosur LPs. Although excellent recognition results were reported in these works, both models
failed to correctly recognize the LPs, even though the images were free of shadows, blur, dirt,
or occlusions. This suggests a potential issue with the training data. Neither study included
images of vehicles bearing Mercosur LPs in their datasets. Further experiments are necessary
to ascertain whether these models (and potentially others) lack robustness specifically towards
LP layouts not seen during training (e.g., the models may have failed on these Mercosur LPs
due to the characters’ reflective films, which are absent in other layouts), or if they struggle with
images captured under conditions different from those in the training set, irrespective of the LP
layout. If the latter scenario holds true, the underlying reasons for this lack of robustness must be
explored. Several questions arise in this context. For example, how significant is the dataset bias
issue (Torralba and Efros, 2011; Tommasi et al., 2017; Hort et al., 2023) within the context of
LPR? As another example, could there be issues with the protocols typically used to split public
datasets into training and test sets, potentially skewing the results reported in academic research?
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Figure 3.30: Recognition results yielded by two instances of the CR-NET model, one trained by Silva and Jung
(2018) and the other by Laroca et al. (2021b), on two images of Mercosur LPs acquired by handheld cameras. For
this evaluation, we used the weights provided by the respective authors in the supplementary material of each work.

Although there are many public datasets available in the literature (we managed to find
nearly 40), there is still a large number of works that perform experiments exclusively on images
from private datasets. Some examples are (Liu and Chang, 2019; Jin et al., 2021; Maier et al.,
2022; Akoushideh et al., 2024). The use of private datasets makes it very difficult — in some
cases even impossible — to make a fair comparison between results reported in different works.

When reviewing the literature, we noticed that many authors are incredibly unaware of
the existence of most public datasets for ALPR. For instance, Ismail et al. (2021) asserted that
AOLP (Hsu et al., 2013) was the sole publicly available dataset suitable for ALPR. Similarly,
Pan et al. (2022) stated that labeled datasets for LPD and LPR are very scarce. Similar claims
were made in several other works (Gao et al., 2020b; Xu et al., 2021; Ashrafee et al., 2022; Yang
et al., 2023), especially when referring to datasets collected from specific geographic regions.
Considering this discussion, we assert that there is a high demand for a complete review of public
datasets for ALPR, describing them in detail and highlighting their distinguishing characteristics.

Such a review would shed light on less popular datasets (in terms of citations) and
assist ALPR researchers in making sound choices regarding which datasets to explore in their
experiments based on the target application of their algorithms. For example, CCPD (Xu et al.,
2018) stands out as the most widely used dataset in existing literature, primarily due to its
widespread adoption among Chinese researchers. Nevertheless, as shown in Figure 3.31, its
images were heavily compressed. Therefore, CCPD may not be ideal for training and evaluating
ALPR systems intended to handle less degraded images, which is often the case. Indeed, Qiao
et al. (2021) observed that some images within CCPD are too blurry for the LPs to be recognized.
This limitation led Silva and Jung (2022) to exclude this dataset from their LPR experiments.

Figure 3.31: Three images that illustrate the high compression ratios in the CCPD dataset. As noted by Qiao et al.
(2021); Silva and Jung (2022), it is clear that the high compression ratios impair the legibility of the LPs in some
cases. We show a zoomed-in version of the vehicle’s LP in the bottom-right region of each image for better viewing.

Additionally, a complete listing of existing datasets would facilitate the identification of
gaps in the literature caused by the lack of datasets with specific characteristics. For example,
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there is no public dataset containing images of vehicles with Mercosur LPs; such a dataset would
considerably assist in developing new approaches for this LP layout. We are also unaware of any
dataset comprising a substantial and balanced number of images of cars and motorcycles, which
would enable researchers to give equal importance to both types of vehicles and also to LPs with
one and two rows of characters during experimentation (cars typically have a single-row character
arrangement on their LPs, while motorcycles usually feature characters arranged in two rows). It
is noticeable that motorcycles and two-row LPs have been largely overlooked in ALPR research.

Given the difficulty in collecting and labeling thousands of images of LPs from different
states or provinces across a country, generative models (mostly GANs) have increasingly been
employed to create synthetic LP images with diverse characteristics. These generated images
have proven instrumental in reducing biases in training sets, thereby enhancing the performance
of OCR models. Nevertheless, most studies have focused on unpaired image-to-image translation
methods (e.g., CycleGAN) using a large number of real images for training (100k+), without
addressing how similar results could be achieved with limited training data. This need for many
images restricts the applicability of such methods, as numerous images are not always available
for every LP layout (Han et al., 2020; Laroca et al., 2021b; Yang et al., 2023). That is probably
why Wu et al. (2018); Zhang et al. (2018b, 2021c) only generated images of LPs from mainland
China, which are widely available, despite carrying out experiments on LPs from other regions
(United States and Taiwan). Indeed, Zhang et al. (2018b) acknowledged that the need for an
abundant source of training images is the main limitation of their approach. Furthermore, we
also noticed that whether a single model could effectively generate high-quality LP images from
diverse regions with varying characteristics has yet to be demonstrated. While Wu et al. (2019);
Fan and Zhao (2022) produced images of LPs from multiple regions, they did so by training
separate models for each region. Considering these observations, there is a clear demand for
developing an approach capable of generating high-quality images of LPs from various regions,
even when trained with only a few hundred real images per LP layout.

Regarding the existing methods for generating synthetic data, we observed that they
have been evaluated based on the results yielded by a single OCR model. For example, Wang
et al. (2017); Zhang et al. (2018b); Wu et al. (2019) evaluated the efficacy of their strategies
solely based on the recognition results achieved by CRNN (Shi et al., 2017), while Zhang et al.
(2019b, 2021c) considered only the recognition results reached by a CNN model based on
Xception (Chollet, 2017). This evaluation approach is flawed because images produced in a
specific manner may benefit certain methods much more than others; in essence, a synthetic data
generation method might produce images that significantly enhance the recognition results of
one model but not another. This was evidenced by Laroca et al. (2019) in the context of image-
based Automatic Meter Reading (AMR), where two segmentation-free approaches (including
CRNN) had a much higher performance gain than the CR-NET model (Silva and Jung, 2020),
which is based on YOLO, when trained with images created by a character permutation-based
synthesis data generation technique (Gongalves et al., 2018). Therefore, while there is strong
evidence of improved LPR performance through such techniques, there is a lack of studies
focusing on evaluating their effectiveness using outcomes from multiple OCR models with
varying characteristics. Furthermore, it remains unclear whether relying solely on one method
for generating synthetic data is sufficient for achieving optimal LPR results, or if significantly
superior outcomes could be obtained by integrating data generated through diverse methodologies,
such as images created via character permutation, rendering-based techniques, or a GAN model.

Finally, after reviewing the literature, it became evident that most research in ALPR is
narrowly focused on specific tasks. For example, Al-Shemarry and Li (2020); Mokayed et al.
(2021); Ding et al. (2024) exclusively addressed the LPD stage. Similarly, Xu et al. (2021);
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Schirrmacher et al. (2023); Liu et al. (2024b) only dealt with the LPR stage, while Meng et al.
(2018); Spatihel et al. (2018); Yoo and Jun (2021) concentrated on corner detection and LP
rectification. There is a clear need for approaches handling ALPR in an end-to-end fashion. Such
approaches should be designed and evaluated considering the common challenges encountered
in real-world scenarios. These challenges include efficient detection and recognition of LPs with
diverse layouts, images with varying resolutions, and LPs with different numbers of characters
arranged in one or two rows. In the regime where labeled data is expensive (Bjorklund et al.,
2019; Han et al., 2020; Gao et al., 2023), these approaches should not require hundreds of
thousands of real images for training and must demonstrate robustness to images captured in
domains beyond those represented in the training set.
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4. THE RODOSOL-ALPR DATASET

The RodoSol-ALPR dataset!'! contains 20,000 images captured by stationary cameras located at
pay tolls owned by the Rodovia do Sol (RodoSol) concessionaire, which operated 67.5 kilometers
of a highway (ES-060) in the Brazilian state of Espirito Santo for 25 years (RodoSol, 2024).
As can be seen in Figure 4.1, there are images of different types of vehicles (e.g., cars,
motorcycles, buses and trucks), captured during the day and night, from distinct lanes, on clear
and rainy days, and the distance from the vehicle to the camera varies slightly. All images are
available in the JPG format (quality = 95) and have a resolution of 1,280 x 720 pixels.

Figure 4.1: Some images extracted from the RodoSol-ALPR dataset. The first and second rows show images of
cars and motorcycles, respectively, with Brazilian LPs (i.e., the standard used in Brazil before the adoption of the
Mercosur standard). The third and fourth rows show images of cars and motorcycles, respectively, with Mercosur
LPs. We show a zoomed-in version of the vehicle’s LP in the lower right region of the images in the last column for
better viewing of the LP layouts. All human faces were blurred in every image due to privacy constraints.

An important feature of this dataset is that it has images of two different LP layouts:
Brazilian and Mercosur — as mentioned in Chapter 1, we use “Brazilian” to denote the layout
used in Brazil before the adoption of the Mercosur layout, maintaining consistency with prior
research. This feature is important because both LP layouts will coexist for many years in Brazil,
as transitioning from the Brazilian to the Mercosur layout incurs costs and is not mandatory for
used vehicles (Ribeiro et al., 2019; Laroca et al., 2021b). All Brazilian LPs consist of three
letters followed by four digits (e.g., ABC1234), while the initial pattern adopted in Brazil for
Mercosur LPs consists of three letters, one digit, one letter, and two digits (e.g., ABC1D23). In
both layouts, car LPs have seven characters arranged in a single row, whereas motorcycle LPs
split the characters into two rows: three on the top and four on the bottom.

Even though these two LP layouts are very similar in shape and size, there are
considerable differences in their colors and characters’ fonts. In Brazil, LPs have size and color
variations depending on the type of the vehicle and its category (CONTRAN, 2007; MERCOSUR,
2014). In summary, car LPs have a size of 40cm X 13cm, while motorcycle LPs measure
20cm x 17cm. Private vehicles are identified by gray and black LPs in Brazilian and Mercosur

"' The RodoSol-ALPR dataset is publicly available to the research community at https://github.com/
raysonlaroca/rodosol-alpr-dataset/
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layouts, respectively, whereas buses, taxis, and other commercial vehicles have red LPs. Further
variations in color exist for specific vehicle categories, such as official or older cars. Figure 4.2
shows the diversity of the RodoSol-ALPR dataset in terms of LP characteristics.
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Figure 4.2: Some LPs from the RodoSol-ALPR dataset. The first and second rows show Brazilian LPs of cars and
motorcycles, respectively. The third and fourth rows show Mercosur LPs of cars and motorcycles, respectively.

We draw attention to some important characteristics of Brazilian and Mercosur LPs:
(1) depending on the vehicle category, Brazilian LPs exhibit variation in both the background
color and the characters’ color, whereas in Mercosur LPs, only the color of the characters varies;
(i1) there are Brazilian LPs with different fonts of characters (e.g., DIN 1451 Mittelschrift and
Mandatory), as regulations changed over the years, whereas all Mercosur LPs have the characters
printed with the FE-Schrift font, which contains monospaced letters and digits that are slightly
disproportionate to prevent easy modification (i.e., faking one character into another) and to
improve machine readability. Note that the characters ‘0’ and ‘O’ are different in this font, unlike
many other fonts where they look exactly the same (e.g., Mandatory); and (iii) in both layouts,
the characters printed on motorcycle LPs are smaller in both width and height than those printed
on car LPs (CONTRAN, 2007; MERCOSUR, 2014). This, coupled with the typical tilting of
motorcycle LPs, inherently increases the difficulty of recognizing motorcycle LPs.

RodoSol-ALPR’s 20,000 images are divided as follows: 5,000 images of cars with
Brazilian LPs; 5,000 images of motorcycles with Brazilian LPs; 5,000 images of cars with
Mercosur LPs; and 5,000 images of motorcycles with Mercosur LPs. As far as we know,
RodoSol-ALPR is the public dataset for ALPR with the highest number of motorcycle images.
The dataset is split as follows: 8,000 images for training; 8,000 images for testing; and 4,000
images for validation, following the split protocol (i.e., 40%/40%/20%) adopted in the SSIG-
SegPlate (Gongalves et al., 2016a) and UFPR-ALPR (Laroca et al., 2018) datasets. We preserved
the percentage of samples for each vehicle type and LP layout; for example, there are 2,000
images of cars with Brazilian LPs in each of the training and test sets, and 1,000 images in the
validation one. For reproducibility purposes, the subsets generated are explicitly available along
with the proposed dataset.

Every image has the following information available in a text file: the vehicle’s type
(car or motorcycle), the LP’s layout (Brazilian or Mercosur), its text (e.g., ABC-1234), and
the position (x, y) of each of its four corners!>. We labeled the corners instead of just the LP
bounding box to enable the training of methods that explore LP rectification and the application
of a wider range of data augmentation techniques.

The datasets for ALPR are generally very unbalanced in terms of character classes due
to LP allocation policies (Anagnostopoulos et al., 2006; Sun et al., 2019; Zhang et al., 2021c¢). In
Brazil, for example, one letter can appear much more often than others according to the state in

12 We used two open source tools for labeling the dataset, namely, sloth and labellmg. They are available at ht tps :
//github.com/cvhciKIT/slothand https://github.com/tzutalin/labelImg, respectively.
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which the LP was issued (Gongalves et al., 2018; Laroca et al., 2018). This information must be
taken into account when training LPR models in order to avoid undesirable biases; for instance, a
network trained exclusively in the RodoSol-ALPR dataset may learn to always classify the first
character as ‘P’ in cases where it should be ‘B’ or ‘R’ since it appears much more often in that
position than these two characters (see Figure 4.3). Such biases are usually mitigated through
synthetic data (Zhang et al., 2021c; Hasnat and Nakib, 2021; Shvai et al., 2023).

1st char
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6th char
7th char
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Figure 4.3: The distribution of character classes in the RodoSol-ALPR dataset. Observe that there is a significant
imbalance in the distribution of the letters (due to LP allocation policies), whereas the digits are well balanced.

Regarding privacy concerns related to this dataset, we remark that in Brazil the LPs
are related to the respective vehicles, i.e., no public information is available about the vehicle
drivers/owners (Presidéncia da Republica, 1997; Oliveira et al., 2021). Moreover, all human faces
(e.g., drivers or RodoSol’s employees) were manually redacted (i.e., blurred) in each image.
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5. ON THE CROSS-DATASET GENERALIZATION IN LICENSE PLATE RECOGNI-
TION

Deep learning-based ALPR systems have often achieved recognition rates above 99% in existing
datasets under the traditional-split protocol, where the test images mostly belong to scenarios
seen during training. However, as already mentioned, in real-world applications, new cameras
are regularly being installed in new locations without existing systems being retrained as often,
which can dramatically decrease their performance.

Considering the above discussion, in this chapter we evaluate various OCR models in a
leave-one-dataset-out experimental setup using nine public datasets with distinct characteristics'>.
The results obtained are compared with those achieved under the traditional-split protocol.
Aligning with recent research trends (Nascimento et al., 2022, 2023; Schirrmacher et al., 2023;
Liu et al., 2024b), we focus our analysis on the LPR stage. Thus, we simply train the YOLOv4
model (Bochkovskiy et al., 2020) to detect the LPs in the input images. For completeness, we
also report the results achieved in the LPD stage under both of the aforementioned protocols.

In the following sections, we describe the setup adopted in our experiments. We first
list the models we implemented, elucidating the rationale behind their selection over others.
Afterward, we provide implementation details, including the framework used for training and
testing each model, along with the associated hyperparameters. We then present and briefly
describe the datasets used, as well as the techniques employed to prevent overfitting. Subsequently,
we detail the evaluation protocols (traditional-split and leave-one-dataset-out), specifying which
images from each dataset were used for training or testing in each experiment. Lastly, we elucidate
our methodology for performance evaluation.

5.1 OCR Models

We apply 12 OCR models to LPR: RARE (Shi et al., 2016), RZAM (Lee and Osindero, 2016),
STAR-Net (Liu et al., 2016), CRNN (Shi et al., 2017), GRCNN (Wang and Hu, 2017), Holistic-
CNN (gpaﬁhel et al., 2017), Multi-Task-LR (Gongalves et al., 2019), Rosetta (Borisyuk et al.,
2018), TRBA (Baek et al., 2019), CR-NET (Silva and Jung, 2020), Fast-OCR (Laroca et al.,
2021a), and ViTSTR-Base (Atienza, 2021b). Table 5.1 presents an overview of these models,
listing the original OCR application for which they were designed as well as the framework we
used to train and evaluate them. We adjusted the architectures of these models to accommodate
images with a width-to-height ratio of 3 at the respective input layers.

We selected these models for two primary reasons. First, they have a proven track record
of success in OCR tasks (including but not limited to LPR) (Baek et al., 2019, 2021a; Atienza,
2021a,b; Nascimento et al., 2023; Dai et al., 2024). Second, we are confident in our ability to
train and adjust them effectively to ensure fairness in our experiments, as the respective authors
provided enough details about the model architectures, and also because we designed/employed
similar networks in (Gongalves et al., 2018, 2019; Laroca et al., 2019, 2021a).

The CR-NET and Fast-OCR models are based on the YOLO object detector (Redmon
et al., 2016). Therefore, they simultaneously detect and classify the characters in the LP

13 This chapter — in article form — was accepted for presentation at the 2022 International Conference on Computer
Vision Theory and Applications (VISAPP) (Laroca et al., 2022a). While the general conclusions remain the same, the
specific recognition rates presented here differ from those in the article. This is because subsequent optimizations to
the testing algorithm yielded improved performance across all OCR models, particularly for two-row LPs.
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Table 5.1: OCR models explored in this chapter.

Model Original Application

Framework: PyTorch (Atienza, 2022)

R2AM (Lee and Osindero, 2016) Scene Text Recognition

RARE (Shi et al., 2016) Scene Text Recognition

STAR-Net (Liu et al., 2016) Scene Text Recognition

CRNN (Shi et al., 2017) Scene Text Recognition

GRCNN (Wang and Hu, 2017) Scene Text Recognition

Rosetta (Borisyuk et al., 2018) Scene Text Recognition

TRBA (Baek et al., 2019) Scene Text Recognition

ViTSTR-Base (Atienza, 2021b) Scene Text Recognition
Framework: Keras (Chollet et al., 2024)

Holistic-CNN (Spatihel et al., 2017) License Plate Recognition

Multi-Task-LR (Gongalves et al., 2019)  License Plate Recognition

Framework: Darknet (Bochkovskiy, 2023)
CR-NET (Silva and Jung, 2020) License Plate Recognition
Fast-OCR (Laroca et al., 2021a) Image-based Meter Reading

region. The networks are trained to predict 35 classes (0-9, A-Z, where ‘O’ and ‘0’ are
detected/recognized jointly) using the bounding box of each LP character as input. Although
these models have been attaining impressive results, they require laborious data annotations,
i.e., each character’s bounding box needs to be labeled for training them (Zeni and Jung, 2020;
Wang et al., 2022c; Liu et al., 2024b). All the other 10 models, on the other hand, output the
LP characters in a segmentation-free manner, i.e., they predict the characters (also 35 classes)
holistically from the LP region without the need to detect/segment each of them. Some of the
models are multi-task networks, i.e., those proposed by Spaiihel et al. (2017) and Gongalves
et al. (2019) (see Section 3.2), while the others are CTC-, attention- and Transformer-based
networks originally proposed for scene text recognition (see Section 3.4). According to previous
works (Gongalves et al., 2019; Hasnat and Nakib, 2021; Shvai et al., 2023), the generalizability of
such segmentation-free models tends to improve significantly through the use of synthetic data.

Here we list the hyperparameters employed in each framework for training the OCR
models. These hyperparameters were determined based on existing research (Baek et al., 2019;
Atienza, 2021b; Oliveira et al., 2021) and were further validated through experiments on the
validation set. In Darknet, the parameters include: Stochastic Gradient Descent (SGD) optimizer,
90k iterations, a batch size of 64, and a learning rate of [1073, 10%, 107] with decay steps at
30k and 60k iterations. In Keras, we employed the Adam optimizer with an initial learning rate
of 10~ (ReduceLROnPlateau’s patience of 5 and factor of 10°!), a batch size of 64, and a patience
value of 11 (patience indicates the number of epochs without improvement before training is
stopped). In PyTorch, we used the following parameters: Adadelta optimizer with a decay rate of
p =0.99, 300k iterations, and a batch size of 128.

5.2 Datasets

Researchers have conducted experiments on various datasets to showcase the effectiveness of
their models in detecting and recognizing LPs from different regions (Henry et al., 2020; Lee
et al., 2022; Dai et al., 2024). Accordingly, we perform our experiments using images from
the RodoSol-ALPR dataset and eight public datasets widely adopted in ALPR research (Chen
et al., 2023; Ding et al., 2024; Liu et al., 2024a). These datasets are Caltech Cars (Weber, 1999),
EnglishLLP (Srebri¢, 2003), UCSD-Stills (Dlagnekov and Belongie, 2005), ChineseLP (Zhou et al.,
2012), AOLP (Hsu et al., 2013), OpenALPR-EU (OpenALPR, 2016), SSIG-SegPlate (Gongalves
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et al., 2016a), and UFPR-ALPR (Laroca et al., 2018). Table 5.2 provides an overview of these
datasets, which were introduced over the past quarter-century and exhibit considerable diversity
in terms of the number of images, acquisition settings, image resolution, and LP layouts.

Table 5.2: Datasets explored in this chapter. As mentioned earlier, the “Chinese” layout refers to LPs of vehicles
registered in mainland China, while the “Taiwanese” layout refers to LPs of vehicles registered in the Taiwan region.

Dataset Year Images Resolution LP Layout
Caltech Cars 1999 126 896 x 592 American
EnglishLP 2003 509 640 x 480 European
UCSD-Stills 2005 291 640 x 480 American
ChineseLP 2012 411 Various Chinese
AOLP 2013 2049 Various Taiwanese
OpenALPR-EU 2016 108 Various European
SSIG-SegPlate 2016 2000 1920 x 1080 Brazilian
UFPR-ALPR 2018 4500 1920 x 1080 Brazilian

RodoSol-ALPR 2022 20000 1280 x 720  Brazilian/Mercosur

Figure 5.1 highlights the variety of the chosen datasets in terms of LP layouts. It is clear
that even LPs from the same country can be quite different; for example, the Caltech Cars and
UCSD-Stills datasets were collected in the same region (California, United States), but they have
images of LPs with significant differences in terms of colors, aspect ratios, backgrounds, and
the number of characters. Additionally, the LPs may be tilted or have lower resolutions due to
camera quality or vehicle-to-camera distance. It is also worth noting that some datasets (i.e.,
EnglishLP, UFPR-ALPR and RodoSol-ALPR) include LPs with two rows of characters.
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Figure 5.1: Some representative LPs from the public datasets used in this chapter’s experiments. Several LPs from
the RodoSol-ALPR dataset are shown in Figure 4.2.

To mitigate biases from the public datasets, we incorporated 772 images from the
internet — those labeled and provided by Laroca et al. (2021b) — into the training set. These
images include 257 American LPs, 347 Chinese LPs, and 178 European LPs.

We opted not to explore the CCPD dataset (Xu et al., 2018) in our experiments, despite its
widespread use in the literature. There are two primary reasons for this decision. First, the dataset
comprises highly compressed images (see Section 3.5) , significantly reducing the legibility of
the LPs (Qiao et al., 2021; Silva and Jung, 2022), and this does not align with our intended
application. Second, the CCPD dataset experienced multiple updates and expansions since its
introduction. Hence, there is inconsistency regarding the dataset’s size across different studies.
While some sources claim it contains 250k images (Liang et al., 2022; Fan and Zhao, 2022; Ding
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et al., 2024), others suggest a range of 280-290k images (Zou et al., 2020; Wang et al., 2022c;
Gao et al., 2023), whereas the current version has 366,789 images. The divergence in test sets
across different versions renders the results reported in various studies not directly comparable.

5.2.1 Synthetic Data

As shown in Table 5.2, two-thirds of the images used in our experiments are from the RodoSol-
ALPR dataset. To prevent overfitting, we initially balanced the number of images from different
datasets through data augmentation techniques such as random cropping, conversion to grayscale,
and random perturbations of hue, saturation and brightness. We used Albumentations (Buslaev
et al., 2020), a popular library mentioned in Section 2.3, to apply these transformations.
Nevertheless, preliminary experiments showed that some of the OCR models were prone to
predict only LP patterns present in the training set, as some patterns were being fed numerous
times per epoch to the networks — particularly those belonging to smaller datasets, where many
images were created from a single original one. This phenomenon was also observed in (Zhang
et al., 2020c; Hasnat and Nakib, 2021; Garcia-Bordils et al., 2022).

Drawing inspiration from Gongalves et al. (2018), we performed random permutations
of character positions on each LP to mitigate potential biases during the learning phase, as
depicted in Figure 5.2. As annotating bounding boxes for LP characters is a time-consuming
and labor-intensive task, we chose not to explore the RodoSol-ALPR dataset for generating new
images in this manner. We believe this decision is not of significant concern given the substantial
size of the RodoSol-ALPR dataset compared to others. We relied on the labels provided by
Laroca et al. (2021b) to explore the images from the remaining datasets.
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Figure 5.2: Tllustration of the character permutation-based synthetic data generation method (Gongalves et al., 2018)
we adopted to reduce overfitting. The images in rows 2 to 4 were created based on the images shown in the top row.

In this process, we do not enforce the generated LPs to have the same arrangement of
letters and digits as the original LPs so that the OCR models do not memorize specific patterns
from different LP layouts. For example, as described in Chapter 4, all Brazilian LPs consist of
three letters followed by four digits, while Mercosur LPs in Brazil have three letters, one digit,
one letter and two digits, in that order. Considering that LPs of these layouts are relatively similar,
the segmentation-free networks would probably predict three letters followed by four digits for
most Mercosur LPs when holding the RodoSol-ALPR dataset out in a leave-one-dataset-out
evaluation, as none of the other datasets include images of vehicles with Mercosur LPs.

5.3 Evaluation Protocols

We propose a traditional-split versus leave-one-dataset-out experimental setup. In the following
subsections (Sections 5.3.1 and 5.3.2), we describe these two protocols in detail.
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5.3.1 Traditional-Split

The traditional-split protocol assesses the ability of the models to perform well in seen scenarios,
as each model is trained on the union of the training set images from all datasets and evaluated
on the test set images from the respective datasets. In recent works, researchers have chosen
to train a single model on images from multiple datasets (instead of training a specific network
for each dataset or LP layout, as was commonly done in the past) so that the proposed models
are robust for different scenarios with considerably less manual effort since their parameters are
adjusted only once for all datasets (Selmi et al., 2020; Qin and Liu, 2022; Silva and Jung, 2022).

For reproducibility, it is important to make clear how we divided the images from each
of the datasets to train, validate and test the chosen models'*. The UCSD-Stills, SSIG-SegPlate,
UFPR-ALPR and RodoSol-ALPR datasets were split according to the protocols defined by
the respective authors, while the other datasets — which do not have well-defined evaluation
protocols — were divided following previous works. In summary, as in (Xiang et al., 2019; Henry
et al., 2020; Liu et al., 2024a), the Caltech Cars dataset was randomly split into 63.5% of the
images for training/validation and 36.5% for testing. Following (Panahi and Gholampour, 2017;
Beratoglu and Toreyin, 2021), the EnglishLP dataset was randomly divided as follows: 80% of
the images for training/validation and 20% for testing. For the ChineseLLP dataset, we employed
the same protocol as in our previous work (Laroca et al., 2021b): 40% of the images for training,
20% for validation, and 40% for testing. We split each of the three subsets of the AOLP dataset
(i.e., AC, LE, and RP) into training and test sets with a 2:1 ratio, following (Xie et al., 2018;
Zhuang et al., 2018; Liang et al., 2022), with 20% of the training images being used for validation.
Finally, as in most works in the literature (Masood et al., 2017; Xu et al., 2022; Zibani et al.,
2024), we used all 108 images from the OpenALPR-EU dataset for testing (this division has been
considered as a mini leave-one-dataset-out evaluation in recent works). Table 5.3 lists the exact
number of images used for training, validating and testing the chosen models.

Table 5.3: A summary of each dataset’s image distribution across training, validation, and test sets.

Dataset Training Validation Test Discarded Total
Caltech Cars 61 16 46 3 126
EnglishL.P 326 81 102 0 509
UCSD-Stills 181 39 60 11 291
ChineseLP 159 79 159 14 411
AOLP 1,093 273 683 0 2,049
OpenALPR-EU 0 0 108 0 108
SSIG-SegPlate 789 407 804 0 2,000
UFPR-ALPR 1,800 900 1,800 0 4,500
RodoSol-ALPR 8,000 4,000 8,000 0 20,000

As indicated in Table 5.3, a small fraction of the images (0.01%) was excluded from our
experiments !>, either because it is impossible to recognize the LPs on them due to occlusion,
lighting or image acquisition problems, or because they do not represent real ALPR scenarios
(e.g., images showing a person holding an LP). Figure 5.3 shows three illustrative examples.
Such images were also discarded in previous works (Masood et al., 2017; Laroca et al., 2021b).

14 The complete lists of which images from each dataset were used for training, testing and validation can be
downloaded at https://raysonlaroca.github.io/supp/visapp2022/splits.zip

15 The complete list of discarded images can be found at https: //raysonlaroca.github.io/supp/
visapp2022/discarded-images.txt
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Figure 5.3: Examples of images discarded in our experiments. Image reproduced from (Laroca et al., 2021b).

5.3.2 Leave-One-Dataset-Out

The leave-one-dataset-out protocol evaluates the generalization performance of the trained models
by testing them on the test set of an independent dataset, meaning no images from that dataset
are available during training. In each experiment, one dataset’s test set becomes the unseen data,
while the models are trained on all images from the remaining datasets. For example, if the test
set from UCSD-Stills is the current unseen data, the models are trained using all images from the
Caltech Cars, EnglishLP, ChineseLP, AOLP, OpenALPR-EU, SSIG-SegPlate, UFPR-ALPR and
RodoSol-ALPR datasets, along with the internet images labeled by Laroca et al. (2021b).

We assess the models exclusively on the test set images from each unseen dataset, without
incorporating the training and validation images in the assessment. This ensures that the results
achieved by each model on a particular dataset remain entirely comparable to those obtained by
the same model under the traditional-split protocol. For clarity, we illustrate in Figure 5.4 the
methodology used for conducting the experiments under the leave-one-dataset-out protocol.

—

Experiment 1

Training + Validation Test

Experiment 2 ~

Training + Validation Test

Experiment 3 <

Test

Training + Validation

-

Figure 5.4: An illustration of how the experiments are conducted under the leave-one-dataset-out protocol. Here,
only three datasets are considered for simplicity.

5.4 Performance Evaluation

The LP regions fed into the OCR models were detected using YOLOv4 (Bochkovskiy et al., 2020)
— with an input size of 672 x 416 pixels — rather than being directly cropped from the ground truth.
This approach allows for a more accurate simulation of real-world scenarios, considering the
imperfect nature of LP detection and the reduced robustness of certain OCR models when faced
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with imprecisely detected LP regions (Gongalves et al., 2018; Lee et al., 2022). We opted for
YOLOV4 because YOLO-based models have consistently achieved impressive results in ALPR
research (Weihong and Jiaoyang, 2020; Laroca et al., 2021b; Yang et al., 2023) (at the time of
conducting the experiments for this chapter, YOLOv4 was the latest model available). As detailed
in the next section, YOLOvV4 reached an average recall rate exceeding 99.5% in our experiments,
considering detections with Intersection over Union (IoU) > 0.5 with the ground truth as correct.

As mentioned in Chapter 3, the first character in Chinese LPs is a Chinese character that
represents the province in which the vehicle is affiliated. Even though Chinese LPs are used in
our experiments (see Figure 5.1d), the models were not trained or adjusted to recognize Chinese
characters; that is, only digits and English letters are considered. This same procedure has been
adopted in many works (Selmi et al., 2020; Laroca et al., 2021b; Shashirangana et al., 2022)
for several reasons, including scope reduction and the fact that it is not trivial for non-Chinese
speakers to analyze the different Chinese characters in order to make an accurate error analysis
or to choose which synthetic data generation techniques to explore. Accordingly, even Chinese
authors have reported the recognition rates achieved by their methods when considering only
digits and English letters (Wu et al., 2018; Zhang et al., 2020a,b; Fan and Zhao, 2022; Chen et al.,
2023). Following (Li et al., 2019), we denoted all Chinese characters as a single class “*’ in our
experiments. Our results demonstrate that the models effectively learned to distinguish between
Chinese characters and other characters (digits and English letters), with this approach minimally
impacting the recognition of non-Chinese characters.

All metrics reported in our experiments were described in Section 2.1.

5.5 Results and Discussion

First, we report in Table 5.4 the recall rates obtained by the YOLOv4 model in the LPD stage. As
can be seen, it reached surprisingly good results in both protocols. More specifically, recall rates
above 99.9% were achieved in 14 of the 18 assessments. Consistent with previous works (Laroca
et al., 2018; Gongalves et al., 2018; Silva and Jung, 2020; Ding et al., 2023), the detection results
are slightly worse for the UFPR-ALPR dataset due to its challenging nature, as (i) it has images
where the vehicles are considerably far from the camera; (ii) some of its frames have motion blur
because the dataset was recorded in real-world scenarios where both the vehicle and the camera
— inside another vehicle — are moving; and (iii) it also contains images of motorcycles, where the
backgrounds can be much more complicated due to different body configurations and mixtures
with other background scenes (Hsu et al., 2015; Serajeh, 2016).

Table 5.4: Recall rates obtained by YOLOv4 in the LPD stage. “Trad.” stands for traditional-split and “LODO”
stands for leave-one-dataset-out. The number of LPs in each dataset’s test set is listed below its name.

W Caltech Cars  EnglishLP UCSD-Stills ChineseLP AOLP  OpenALPR-EU SSIG-SegPlate UFPR-ALPR RodoSol-ALPR Average
Model

#46 #102 #60 #161 # 687 #108 #804 #1,800 # 8,000
YOLOV4 (Trad.) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 99.1% 100.0% 99.9%
YOLOv4 (LODO) 100.0% 100.0% 100.0% 100.0% 99.9% 99.1% 100.0% 96.8% 99.6% 99.5%

The precision rates achieved in our experiments were approximately 98% and 95% under
the traditional-split and leave-one-dataset-out protocols, respectively. We omit a per-dataset
breakdown of precision because the “false positives” identified by YOLOv4 primarily correspond
to unlabeled LPs in the image backgrounds, not actual errors.

Given the results obtained under the leave-one-dataset-out protocol, we assert that deep
learning models trained on a variety of datasets can be reliably applied to detect LPs in images
from unseen datasets. Of course, this may not hold true in extraordinary cases where the test set
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domain is very different from that of the training set, but this was not the case in our experiments
carried out on images from nine datasets with diverse characteristics.

Regarding the LPR stage, the results achieved by all OCR models under the traditional-
split and leave-one-dataset-out protocols are shown in Table 5.5 and Table 5.6, respectively.
Table 5.6 also includes the results obtained by the Sighthound (2022) and OpenALPR (2022)
commercial systems since, in principle, they are trained on images from large-scale private
datasets rather than the public datasets explored here (thus aligning with the leave-one-dataset-out
protocol). For further details on both systems, refer to Section 3.4.

Table 5.5: Recognition rates obtained by all models under the traditional-split protocol, which assesses the ability of
the models to perform well in seen scenarios. Each model (rows) was trained once on the union of the training set
images from all datasets and evaluated on the respective test sets (columns). The models are listed alphabetically,
and the best recognition rate achieved in each dataset is shown in bold.

W Caltech Cars  EnglishLP  UCSD-Stills  ChineseLP  AOLP  OpenALPR-EU  SSIG-SegPlate UFPR-ALPR RodoSol-ALPR Average
Model #46 #102 #60 #161 #687 #108 #3804 #1,800 #8,000

CR-NET (Silva and Jung, 2020) 97.8% 94.1% 100.0% 97.5% 98.0% 96.3% 97.5% 82.6% 59.0%" 91.4%
CRNN (Shi et al., 2017) 93.5% 88.2% 91.7% 90.7% 97.1% 93.5% 92.9% 68.9% 73.6% 87.8%
Fast-OCR (Laroca et al., 2021a) 93.5% 97.1% 100.0% 97.5% 98.1% 97.2% 97.1% 81.6% 56.7%" 91.0%
GRCNN (Wang and Hu, 2017) 93.5% 92.2% 93.3% 91.9% 97.1% 87.0% 93.4% 66.6% 77.6% 88.1%
Holistic-CNN (Spaiihel et al., 2017) 87.0% 75.5% 88.3% 95.0% 97.7% 89.8% 95.6% 81.2% 94.7% 89.4%
Multi-Task-LR (Gongalves et al., 2019) 89.1% 73.5% 85.0% 92.5% 94.9% 85.2% 93.3% 72.3% 86.6% 85.8%
R2AM (Lee and Osindero, 2016) 89.1% 83.3% 86.7% 91.9% 96.5% 88.9% 92.0% 75.9% 83.4% 87.5%
RARE (Shi et al., 2016) 95.7% 94.1% 95.0% 94.4% 97.7% 94.4% 94.0% 75.7% 78.7% 91.1%
Rosetta (Borisyuk et al., 2018) 89.1% 82.4% 93.3% 93.8% 97.5% 90.7% 94.4% 75.5% 89.0% 89.5%
STAR-Net (Liu et al., 2016) 95.7% 96.1% 95.0% 95.7% 97.8% 97.2% 96.1% 78.8% 82.3% 92.7%
TRBA (Back et al., 2019) 93.5% 91.2% 91.7% 93.8% 97.2% 93.5% 97.3% 83.4% 80.6% 91.3%
ViTSTR-Base (Atienza, 2021b) 87.0% 88.2% 86.7% 96.9% 99.4% 89.8% 95.8% 89.7% 95.6% 92.1%
Average 92.0% 88.0% 92.2% 94.3% 97.4% 92.0% 95.0% 77.7% 79.8% 89.8%

Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for training them (as detailed in Section 5.1).

Table 5.6: Recognition rates obtained by all models under the leave-one-dataset-out protocol, which assesses the
generalization performance of the models by testing them on the test set images of an unseen dataset. For each
dataset (columns), we trained the models (rows) on all images from the other datasets. The models are listed
alphabetically, and the best recognition rates achieved are shown in bold.

w Caltech Cars  EnglishLP  UCSD-Stills ~ ChineseLP ~ AOLP OpenALPR-EU  SSIG-SegPlate  UFPR-ALPR  RodoSol-ALPR Average
Approach #46 #102 #60 #161 #687 #108 #804 #1,800 # 8,000

CR-NET (Silva and Jung, 2020) 97.8% 97.1% 98.3% 94.4% 89.1% 98.1% 97.1% 66.4% 63.8% 89.1%
CRNN (Shi et al., 2017) 93.5% 82.4% 86.7% 84.5% 71.6% 94.4% 90.8% 62.9% 39.2% 78.4%
Fast-OCR (Laroca et al., 2021a) 95.7% 95.1% 96.7% 93.8% 79.3% 96.3% 95.5% 65.9% 63.4% 86.8%
GRCNN (Wang and Hu, 2017) 93.5% 82.4% 93.3% 85.1% 72.1% 91.7% 90.8% 62.7% 40.0% 79.0%
Holistic-CNN (Spaiihel et al., 2017) 84.8% 56.9% 76.7% 82.6% 60.0% 93.5% 93.2% 66.4% 34.5% 72.0%
Multi-Task-LR (Gongalves et al., 2019) 84.8% 57.8% 78.3% 76.4% 67.5% 88.9% 90.8% 61.7% 25.2% 70.2%
R?AM (Lee and Osindero, 2016) 89.1% 58.8% 81.7% 85.1% 62.6% 89.8% 94.2% 61.2% 41.1% 73.7%
RARE (Shi et al., 2016) 89.1% 64.7% 93.3% 88.2% 70.7% 92.6% 93.9% 78.2% 40.2% 79.0%
Rosetta (Borisyuk et al., 2018) 95.7% 82.4% 88.3% 87.6% 70.6% 90.7% 93.9% 69.2% 42.8% 80.1%
STAR-Net (Liu et al., 2016) 91.3% 85.3% 93.3% 92.5% 79.2% 96.3% 93.8% 74.8% 43.8% 83.4%
TRBA (Baek et al., 2019) 91.3% 62.7% 95.0% 92.5% 75.3% 92.6% 96.8% 82.9% 42.9% 81.3%
ViTSTR-Base (Atienza, 2021b) 93.5% 62.7% 86.7% 96.3% 68.9% 91.7% 97.8% 84.7% 59.7% 82.4%
Average 91.7% 74.0% 89.0% 88.3% 72.2% 93.1% 94.0% 69.7% 44.7% 79.6%
Average (traditional-split protocol) 92.0% 88.0% 92.2% 94.3% 97.4% 92.0%* 95.0% 77.7% 79.8% 89.8%
Sighthound (2022) 87.0% 94.1% 90.0% 84.5% 79.6% 94.4% 79.2% 52.6% 51.0% 79.2%
OpenALPR (2022)* 95.7% 99.0% 96.7% 93.8% 81.1% 99.1% 91.4% 87.8% 70.0% 90.5%

#Even under the traditional-split protocol, no images from the OpenALPR-EU dataset were used for training. This is the protocol commonly adopted in the literature (Silva and Jung, 2018; Zibani et al., 2024).
*OpenALPR contains specialized solutions for LPs from different regions and we must enter the correct region before using its API. Hence, it was expected to achieve better results than the other methods.

The first observation is that, as expected, the best results — on average for all models —
were attained when training and evaluating the models on disjoint subsets from the same datasets
(i.e., under the traditional-split protocol). The sole exception was precisely in the OpenALPR-EU
dataset, which has no training images even under the traditional-split protocol. Despite this
seeming somewhat counterintuitive, we kept this division for two main reasons: (i) to maintain
consistency with previous works (Silva and Jung, 2018; Xu et al., 2022; Zibani et al., 2024), which
used all images from OpenALPR-EU for testing; and (ii) to analyze how the models perform
when trained with additional data from other datasets, which in this case corresponds to the
leave-one-dataset-out protocol since it employs all images from the other datasets — not just the
training set ones — for training. While it has been acknowledged for many years that incorporating
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images from other datasets into the training set may result in declines in performance (Torralba
and Efros, 2011; Khosla et al., 2012), the recognition rates reached in the OpenALPR-EU dataset
generally improved with more images from other datasets integrated into the training set (i.e.,
under the leave-one-dataset-out protocol). This enhancement is likely due to the utilization of all
images from the EnglishLLP dataset for training, as both datasets contain images of European LPs.

The average recognition rate across all datasets decreased from 89.8% under the
traditional-split protocol to 79.6% under the leave-one-dataset-out protocol. This drastic
performance drop is accentuated by the poor results obtained on the EnglishLLP, AOLP and
RodoSol-ALPR datasets under the leave-one-dataset-out protocol. For instance, the average
recognition rate for the AOLP dataset went from 97.4% (traditional-split) to 72.2% (leave-one-
dataset-out). Similarly, the average recognition rate for the RodoSol-ALPR dataset plummeted
from 79.8% (traditional-split) to 44.7% (leave-one-dataset-out).

We expected such a severe drop in the recognition rates for the RodoSol-ALPR dataset,
as no other dataset has images of Mercosur LPs or as many images of two-row LPs. However, we
were surprised by the poor outcomes observed in the EnglishLP and AOLP datasets. Previous
works have often reported recognition rates around 97% for the EnglishLP dataset and above
99% for the AOLP dataset (Henry et al., 2020; Laroca et al., 2021b; Zhang et al., 2021d; Wang
et al., 2022c; Ke et al., 2023). Upon analysis, we found that most recognition errors under the
leave-one-dataset-out protocol were not due to challenging scenarios but rather stemmed from
differences in the fonts of the LP characters between training and test images, as well as because
of specific patterns within the LPs (e.g., a coat of arms between the LP characters or a straight
line below them). To better illustrate, Figure 5.5 (top row) shows four LPs from the AOLP dataset
where the VITSTR-Base model, which performed best on that dataset (99.4%), recognized at least
one character incorrectly under the leave-one-dataset-out protocol but not under the traditional
split. Similarly, Figure 5.5 (bottom row) shows the predictions made by STAR-Net for four LPs
from the EnglishLLP dataset (although STAR-Net ranked second in recognition performance on
EnglishLP (96.1%), we selected it for illustration because it experienced a larger performance
drop under the leave-one-dataset-out protocol than the top-performing model). These findings
highlight the importance of conducting cross-dataset experiments in the ALPR context.

LODO: 8C8313 LODO: AB0416 LODO: PG379T LODO: 03250M
Trad.: 8C8313 Trad.: AR0O416 Trad.: P63791 Trad.: 0325DM

LODO: CK3118R LODO: NB4071P LODO: —64097AC LODO: ZGQ880TM
Trad.: CK311BR Trad.: MB4071P Trad.: ZG4097AC Trad.: ZG 880TV

Figure 5.5: Comparison of the predictions yielded for the same LPs under the leave-one-dataset-out (LODO) and
traditional-split (Trad.) protocols. The top row shows the predictions returned by ViTSTR-Base for four LPs from
the AOLP dataset, while the bottom row shows the predictions made by STAR-Net for four LPs from EnglishLP. In
general, the errors under the LODO protocol (outlined in red) were not observed in challenging cases (e.g., blurry or
extremely tilted images). This suggests that these errors likely stemmed from differences between the training and
testing data distributions.

The second observation is that, regardless of the evaluation protocol adopted, no OCR
model achieved the best result across all datasets. Interestingly, STAR-Net attained the highest
average recognition rate under the traditional-split protocol (92.7%) without securing the top
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spot in eight of the nine datasets. These results emphasize the importance of evaluating the
models on multiple datasets with varying characteristics, including LPs from different regions.

The third observation is that all the 12 OCR models trained by us, as well as both
commercial systems, failed to reach recognition rates above 70% in the RodoSol-ALPR’s test set
under the leave-one-dataset-out protocol. These underwhelming results are primarily attributed
to the unique composition of the RodoSol-ALPR dataset, which includes a substantial number
of images featuring Mercosur LPs, motorcycles, and two-row LPs. To illustrate, OpenALPR
accurately recognized 3,561 of the 4,000 Brazilian LPs in the test set (89.0%), yet only 2,039 out
of the 4,000 Mercosur LPs (51.0%). Similarly, OpenALPR correctly identified 3,772 of the 4,000
car/single-row LPs in the test set (94.3%) but only 1,827 out of the 4,000 motorcycle/two-row
LPs (45.7%). These results emphasize the importance of the RodoSol-ALPR dataset for the
reliable recognition of Mercosur LPs and also for the accurate evaluation of ALPR systems, as it
mitigates bias during assessments by incorporating an equal number of “easy” samples (cars
with single-row LPs) and “difficult” samples (motorcycles with two-row LPs).

We also did not rule out challenging images when selecting the images for the creation
of the RodoSol-ALPR dataset. Figure 5.6 shows some of these images along with the predictions
returned by ViTSTR-Base (traditional-split) and OpenALPR, which are the top-performing
model and commercial system on this dataset, respectively. The results are in line with what was
stated by Zhang et al. (2021c); Lee et al. (2022); Ke et al. (2023), specifically, that there is still
significant room for improvement in detecting and recognizing LPs in complex environments.
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Figure 5.6: Some LP images from the RodoSol-ALPR dataset along with the predictions returned by ViTSTR-Base
and OpenALPR. Observe that one character may become very similar to another due to factors such as blur, dirt,
exposure levels (either too low or too high), rotations and occlusions. For correctness, we checked if the Ground
Truth (GT) matched the vehicle make and model on the National Traffic Department of Brazil (DENATRAN) database.

Lastly, it is important to highlight the number of experiments we conducted for this
traditional-split versus leave-one-dataset-out evaluation. We trained each of the 12 chosen OCR
models 10 times: once following the split protocols traditionally adopted in the literature (see
Table 5.5) and nine for the leave-one-dataset-out evaluation (see Table 5.6); not to mention
the experiments with YOLOv4 related to the LPD stage. We remark that a single training
process of some models (e.g., TRBA and ViTSTR-Base) took several days to complete on an
NVIDIA Quadro RTX 8000 GPU, which is one of the best GPUs available on the market. This
extensive set of experiments likely explains why a leave-one-dataset-out evaluation has not yet
been conducted in the existing literature.
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5.6 Final Remarks

Considering that the performance of ALPR systems under the traditional-split protocol is rapidly
improving, researchers should pay more attention to cross-dataset setups. These setups better
mimic real-world ALPR applications, where new cameras are frequently being installed in diverse
locations without the need to retrain existing systems for each installation.

As a first step toward that direction, in this chapter we evaluated 12 OCR models on nine
public datasets with a great variety in several aspects (e.g., acquisition settings, image resolution,
and LP layouts). We adopted a traditional-split versus leave-one-dataset-out experimental setup
to empirically assess the cross-dataset generalizability of the chosen models.

The experimental results showed significant drops in performance for most datasets
when training and testing the OCR models in a leave-one-dataset-out fashion. The fact that very
low recognition rates (around 73%) were reached in both the EnglishLLP and AOLP datasets
underscores the importance of carrying out cross-dataset experiments, as very high recognition
rates (around 97% and 99%, respectively) have frequently been achieved on these datasets
under the traditional-split protocol (Henry et al., 2020; Al-batat et al., 2022; Ke et al., 2023).
Furthermore, the results accentuated the importance of the RodoSol-ALPR dataset for the
robust recognition of Mercosur and two-row LPs, as all 12 models trained by us failed to reach
recognition rates above 70% on its test set under the leave-one-dataset-out protocol.

Our experiments also emphasized the importance of evaluating OCR models on multiple
datasets with varying characteristics, as no model emerged as superior across all datasets. In this
sense, we remark that much of the current research relies on only three or fewer datasets in the
experiments or concentrates solely on datasets from a specific region. Although recent studies by
Laroca et al. (2021b); Lee et al. (2022); Chen et al. (2023) indicate a positive trend towards more
comprehensive evaluations, progress in this direction has been relatively gradual.

Another finding that should be highlighted relates to using the YOLOv4 model in the
LPD stage. YOLOv4 achieved remarkably good results under both protocols. This leads us to
conclude that well-established object detectors trained on a variety of datasets can be reliably
employed for LPD, even when presented with images from unseen datasets.
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6. LEVERAGING MODEL FUSION FOR IMPROVED LICENSE PLATE RECOGNI-
TION

Multiple studies, including our own presented in the previous chapter, have shown that different
models exhibit varying levels of robustness across different datasets (Zeni and Jung, 2020;
Mokayed et al., 2021). Each dataset poses distinct challenges, such as diverse LP layouts and
varying tilt ranges. As a result, a model that performs optimally on one dataset may yield poor
results on another. This raises an important question: “Can we substantially enhance LPR
results by fusing the outputs of diverse OCR models?” 1f so, two additional questions arise: “To
what extent can this improvement be attained?” and “How many and which models should be
employed?” As of now, such questions remain unanswered in the existing literature.

We acknowledge that some ALPR applications impose stringent time constraints on their
execution. This is particularly true for embedded systems engaged in tasks such as access control
and parking management in high-traffic areas. However, in other contexts, such as systems used
for issuing traffic tickets and conducting forensic investigations, there is often a preference to
prioritize the recognition rate, even if it sacrifices efficiency (Izidio et al., 2020; Nascimento
et al., 2022, 2023; Schirrmacher et al., 2023). These scenarios can greatly benefit from the fusion
of multiple OCR models.

While we found a few works leveraging model fusion to improve LPR results, we
observed that they explored a limited range of models and datasets in the experiments. For
example, Izidio et al. (2020) employed multiple instances of the same model (i.e., Tiny-YOLOV3)
rather than different models with varying architectures. Their experiments were conducted
exclusively on a private dataset. Another example is the recent work by Schirrmacher et al.
(2023), where they examined deep ensembles, BatchEnsemble, and Monte Carlo dropout using
multiple instances of two backbone architectures. The authors’ primary focus was on recognizing
severely degraded images, leading them to perform nearly all of their experiments on a synthetic
dataset containing artificially degraded images.

Taking this into account, in this chapter, we thoroughly examine the potential of
enhancing LPR results through the fusion of outputs from multiple OCR models'¢. Remarkably,
we assess the combination of up to 12 well-known models across 12 different datasets, setting
our investigation apart from earlier studies.

In summary, this chapter has two main contributions:

e We present empirical evidence showcasing the benefits offered by fusion approaches in
both intra- and cross-dataset setups. In the intra-dataset setup, the mean recognition rate
across the datasets experiences a substantial boost, rising from 92.4% achieved by the
best model individually to 97.6% when leveraging the best fusion approach. Similarly,
in the cross-dataset setup, the mean recognition rate increases from 87.6% to levels
exceeding 90%. Notably, in both setups, the sequence-level majority vote fusion approach
outperform both character-level majority vote and selecting the prediction made with the
highest confidence approaches.

e We draw attention to the effectiveness of fusing models based on their speed. This approach
is particularly useful for applications where the recognition task can accommodate a
moderate increase in processing time. In such cases, the recommended strategy is to

16 This chapter, in the form of an article, was accepted for presentation at the 2023 Iberoamerican Congress on
Pattern Recognition (CIARP) (Laroca et al., 2023b).
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combine 4-6 fast models. Although these models may not achieve the highest accuracy
individually, their fusion results in an optimal trade-off between speed and accuracy.

The remainder of this chapter is organized as follows. Section 6.1 provides an overview
of the experimental setup. Subsequently, Section 6.2 delves into the presentation and analysis of
the results obtained. Finally, Section 6.3 summarizes our findings.

6.1 Experimental Setup

This section provides an overview of the experimental setup adopted in this chapter. Initially,
we list the models implemented, omitting detailed descriptions since they are the same ones
used in the preceding chapter. Subsequently, we compile a list of the datasets employed in our
assessments, showcasing sample LP images from each dataset to highlight their diversity. Finally,
we elaborate on the strategies examined for fusing the outputs of the different models.

The experiments were conducted on a computer with an AMD Ryzen Threadripper
1920X 3.5GHz CPU, 96 GB of RAM operating at 2,133 MHz, an NVMe SSD (read: 3,500 MB/s;
write: 3,000 MB/s), and an NVIDIA Quadro RTX 8000 GPU (48 GB).

6.1.1 OCR Models

For this study, we explored the same models used in the preceding chapter: RARE (Shi et al.,
2016), RZAM (Lee and Osindero, 2016), STAR-Net (Liu et al., 2016), CRNN (Shi et al., 2017),
GRCNN (Wang and Hu, 2017), Holistic-CNN (Spaﬁhel et al., 2017), Multi-Task-LR (Gongalves
etal., 2019), Rosetta (Borisyuk et al., 2018), TRBA (Baek et al., 2019), CR-NET (Silva and Jung,
2020), Fast-OCR (Laroca et al., 2021a) and ViTSTR-Base (Atienza, 2021b). We chose these
models not only for the reasons outlined in Section 5.1, but also because they have often served
as benchmarks in LPR research (Gong et al., 2022; Chen et al., 2023; Dai et al., 2024).

As detailed in Section 5.1, we implemented each model using the original framework or
well-known public repositories associated with it.

6.1.2 Datasets

As shown in Table 6.1, we have incorporated three new datasets into the collection of datasets
explored in the preceding chapter (see Section 5.2). These datasets are PKU (Yuan et al., 2017),
CD-HARD (Silva and Jung, 2018), and CLPD (Zhang et al., 2021c). They are popular choices
for cross-dataset experiments (Fan and Zhao, 2022; Silva and Jung, 2022; Chen et al., 2023).

Table 6.1: The 12 datasets employed in this chapter’s experiments, with * indicating those used exclusively for testing
(i.e., in cross-dataset experiments). The datasets marked with “(new)” were not explored in the previous chapter.

Dataset Year Images LP Layout | Dataset Year Images LP Layout
Caltech Cars 1999 126 American SSIG-SegPlate 2016 2,000 Brazilian
EnglishLP 2003 509 European | PKU* (new) 2017 2,253 Chinese
UCSD-Stills 2005 291 American | UFPR-ALPR 2018 4,500 Brazilian
ChineselLP 2012 411 Chinese CD-HARD* (new) 2018 102 Various

AOLP 2013 2,049  Taiwanese | CLPD* (new) 2021 1,200 Chinese
OpenALPR-EU* 2016 108 European | RodoSol-ALPR 2022 20,000 Brazilian & Mercosur

Each dataset was divided using standard splits, defined by the datasets’ authors, or
following previous works (Laroca et al., 2021b; Wang et al., 2022c; Ke et al., 2023) in cases
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where no standard split was available!”. Specifically, eight datasets were used for both training
and evaluating the models, mirroring the datasets employed in this way in the preceding chapter
under the traditional-split protocol. Meanwhile, four datasets were exclusively reserved for
testing purposes, comprising OpenALPR-EU along with the three newly incorporated datasets.
The selected datasets exhibit substantial diversity in terms of image number, acquisition settings,
image resolution, and LP layouts. As far as we know, no other work in ALPR research has
conducted experiments using images from such a wide range of public datasets.

The diversity of LP layouts across the selected datasets is depicted in Figure 6.1,
revealing considerable variations even among LPs from the same region. For instance, the
EnglishLLP and OpenALPR-EU datasets, both collected in Europe, include images of LPs with
notable distinctions in colors, aspect ratios, symbols (e.g., coats of arms), and the number of
characters. Furthermore, certain datasets encompass LPs with two rows of characters, shadows,
tilted orientations, and at relatively low spatial resolutions.

THG: AS 1802

(b) EnglishLP

(d) ChineseLLP
gy | 3] AR
(¢) AOLP (f) OpenALPR-EU
§— - : S ——
B (it oeies [ DEEEY JATHRY iC 64829
(g) SSIG-SegPlate (h) PKU
(i) UFPR-ALPR (j) CD-HARD

. ]
(k) CLPD (1) RodoSol-ALPR

Figure 6.1: Some LP images from the public datasets used in this chapter’s experimental evaluation.

We explored various data augmentation techniques to ensure a balanced distribution
of training images across different datasets. These techniques include random cropping, the
introduction of random shadows, grayscale conversion, and random perturbations of hue,
saturation, and brightness. Additionally, to counteract the propensity of OCR models to
memorize sequence patterns encountered during training (Zeni and Jung, 2020; Garcia-Bordils
et al., 2022), we generated many synthetic LP images by shuffling the character positions on each
LP (Gongalves et al., 2018). Examples of these generated images are shown in Figure 6.2.

6.1.3 Fusion Approaches

We examine three primary approaches to combine the outputs of multiple OCR models. The first
approach involves selecting the sequence predicted with the Highest Confidence (HC) value as the

7 Detailed information on which images were used to train, validate and test the models can be accessed at
https://raysonlaroca.github.io/supp/lpr-model—-fusion/
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Figure 6.2: Examples of LP images we created to mitigate overfitting. Within each group, the image on the left is
the original, while the remaining ones are artificially generated counterparts.

final prediction, even if only one model predicts it. The second approach employs the Majority
Vote (MV) rule to aggregate the sequences predicted by different models. In other words, the final
prediction is the sequence predicted by the largest number of models, disregarding the confidence
values associated with each prediction. Lastly, the third approach follows a similar Majority Vote
rule but performs individual aggregation for each Character Position (MVCP). To illustrate, the
characters predicted in the first position are analyzed separately, and the character predicted the
most times is selected. The same process is then applied to each subsequent character position
until the last one. Ultimately, the selected characters are concatenated to form the final string.

One concern that arises when employing majority vote-based strategies is the potential
occurrence of a tie. Let’s consider a scenario where an LP image is processed by five OCR
models. Two models predict “ABC-123,” two models predict “ABC-124,” and the remaining
model predicts “ABC-125.” In this case, a tie occurs between “ABC-123" and “ABC-124.” To
address this, we assess two tie-breaking approaches for each majority vote strategy: (i) selecting
the prediction made with the highest confidence among the tied predictions as the final one, and
(i1) selecting the prediction made by the “best model” as the final prediction. In this study, for
simplicity, we consider the best model the one that performs best individually across all datasets.
However, in a more practical context, the chosen model could be the one known to perform best
in the specific implementation scenario (e.g., one model may be the most robust for recognizing
tilted LPs while another model may excel at handling low-resolution or noisy images). We use
the acronym MV-HC to denote the majority vote approach in which ties are broken by selecting
the prediction made with the highest confidence value. Similarly, MV-BM refers to the majority
vote approach in which ties are resolved by choosing the prediction made by the best model. The
MVCP approaches follow a similar naming convention (MVCP-HC and MVCP-BM).

It is important to mention that when conducting fusion based on the highest confidence,
we consider the confidence values derived directly from the models’ outputs, even though some
of them tend to make overconfident predictions. We carried out several experiments in which we
normalized the confidence values of different models before fusing them, using various strategies
such as weighted normalization based on the average confidence of each classifier’s predictions.
Somewhat surprisingly, these attempts did not yield improved results.

6.2 Results and Discussion

Following the methodology detailed in the previous chapter, we employed the YOLOv4
model (Bochkovskiy et al., 2020) to detect the LPs for subsequent processing by the OCR
models. Considering the detections with an IoU > 0.7 with the ground truth as correct, YOLOv4
achieved an average recall rate exceeding 99.7% in the intra-dataset experiments and 97.8% in
the cross-dataset experiments. In both cases, the precision rates obtained were higher than 97%.

Table 6.2 shows the recognition rates obtained on the disjoint test sets of the eight
datasets used for training and validating the models (intra-dataset experiments). It presents the
results reached by each model individually, as well as the outcomes achieved through the fusion
strategies outlined in Section 6.1.3. To improve clarity, Table 6.2 only includes the best results
attained through model fusion. For a detailed breakdown of the results achieved by combining
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the outputs from the top 2 to the top 12 OCR models, refer to Table 6.3. The ranking of the
models was determined based on their mean performance across the datasets (the ranking on the
validation set was essentially the same, with only two models swapping positions).

Table 6.2: Comparison of the recognition rates achieved across eight popular datasets by 12 models individually
and through five different fusion strategies (intra-dataset experiments). Each model (rows) was trained once on the
combined set of training images from all datasets and evaluated on the respective test sets (columns). The models
are listed alphabetically, and the best recognition rates achieved in each dataset are shown in bold.

Test set # LPs Caltech Cars EnglishLP  UCSD-Stills ChineseLP ~ AOLP  SSIG-SegPlate UFPR-ALPR RodoSol-ALPR A
Model #46 #102 #60 #161 #687 #804 # 1,800 #8,000 verage

CR-NET 97.8% 94.1% 100.0% 97.5% 98.1% 97.5% 82.6% 59.0%* 90.8%
CRNN 93.5% 88.2% 91.7% 90.7% 97.1% 92.9% 68.9% 73.6% 87.1%
Fast-OCR 93.5% 97.1% 100.0% 97.5% 98.1% 97.1% 81.6% 56.7%" 90.2%
GRCNN 93.5% 92.2% 93.3% 91.9% 97.1% 93.4% 66.6% 77.6% 88.2%
Holistic-CNN 87.0% 75.5% 88.3% 95.0% 97.7% 95.6% 81.2% 94.7% 89.4%
Multi-Task-LR 89.1% 73.5% 85.0% 92.5% 94.9% 93.3% 72.3% 86.6% 85.9%
RZAM 89.1% 83.3% 86.7% 91.9% 96.5% 92.0% 75.9% 83.4% 87.4%
RARE 95.7% 94.1% 95.0% 94.4% 97.7% 94.0% 75.7% 78.7% 90.7%
Rosetta 89.1% 82.4% 93.3% 93.8% 97.5% 94.4% 75.5% 89.0% 89.4%
STAR-Net 95.7% 96.1% 95.0% 95.7% 97.8% 96.1% 78.8% 82.3% 92.2%
TRBA 93.5% 91.2% 91.7% 93.8% 97.2% 97.3% 83.4% 80.6% 91.1%
VIiTSTR-Base 87.0% 88.2% 86.7% 96.9% 99.4% 95.8% 89.7% 95.6% 92.4%
Fusion HC (top 6) 97.8% 95.1% 96.7% 98.1% 99.0% 96.6% 90.9% 93.5% 96.0%
Fusion MV-BM (top 8) 97.8% 97.1% 100.0% 98.1% 99.7% 98.4% 92.7% 96.4% 97.5%
Fusion MV-HC (top 8) 97.8% 97.1% 100.0% 98.1% 99.7% 99.1% 92.3% 96.5% 97.6%
Fusion MVCP-BM (top 9) 95.7% 96.1% 100.0% 98.1% 99.6% 99.0% 92.8% 96.4% 97.2%
Fusion MVCP-HC (top 9) 97.8% 96.1% 100.0% 98.1% 99.6% 99.3% 92.5% 96.3% 97.5%

“Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for training them.

Table 6.3: Average results obtained across the datasets by combining the output of the top N OCR models, ranked
by accuracy, using five distinct strategies.

Models HC MV-BM MV-HC MVCP-BM MVCP-HC
Top 1 (VITSTR-Base) 92.4% 92.4% 92.4% 92.4% 92.4%
Top 2 (+ STAR-Net) 94.1% 92.4% 94.1% 92.4% 94.1%
Top 3 (+ TRBA) 94.2% 94.6% 94.9% 94.2% 94.2%
Top 4 (+ CR-NET) 95.2% 95.9% 96.3% 94.8% 95.9%
Top 5 (+ RARE) 95.5% 96.1% 96.6% 96.1% 96.2%
Top 6 (+ Fast-OCR) 96.0% 97.1% 97.0% 96.7% 96.9%
Top 7 (+ Rosetta) 95.4% 97.3% 97.2% 97.1% 97.0%
Top 8 (+ Holistic-CNN) 95.7% 97.5% 97.6% 96.1% 97.2%
Top 9 (+ GRCNN) 95.7% 97.5% 97.5% 97.2% 97.5%
Top 10 (+ RZAM) 95.5% 97.4% 97.2% 96.1% 96.6%
Top 11 (+ CRNN) 95.2% 97.1% 97.0% 96.5% 96.5%
Top 12 (+ Multi-Task-LR) 95.0% 97.0% 97.0% 95.5% 96.5%

Upon analyzing the results presented in Table 6.2, it becomes evident that model
fusion has yielded substantial improvements. Specifically, the highest average recognition rate
increased from 92.4% (ViTSTR-Base) to 97.6% by combining the outputs of multiple OCR
models (MV-HC). While each model individually obtained recognition rates below 90% for at
least two datasets (three on average), all fusion strategies surpassed the 90% threshold across all
datasets. Remarkably, in most cases, fusion led to recognition rates exceeding 95%.

The significance of conducting experiments on multiple datasets becomes apparent
once again as we observe that the best overall model (ViTSTR-Base) exhibited relatively poor
performance on the Caltech Cars, EnglishL.P, and UCSD-Stills datasets. We attribute this to two
primary reasons: (i) these datasets are older, containing fewer training images, which seems to
impact certain models more than others (as explained in Section 6.1.2, we exploited synthetic
data to mitigate this issue); and (ii) these datasets were collected in the United States and Europe,
regions known for having a higher degree of variability in LP layouts compared to the regions
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where the other datasets were collected (specifically, Brazil, mainland China, and Taiwan). We
maintained these datasets in our experimental setup, despite their limited number of images,
precisely because they provide an opportunity to uncover or corroborate such valuable insights.

Analyzing results from individual datasets reveals that combining the outputs of multiple
models does not necessarily lead to significantly improved performance compared to the best
model within the ensemble. Instead, it reduces the likelihood of obtaining poor performance.
This phenomenon arises because diverse models tend to make different errors for each sample,
but generally concur on correct classifications (Polikar, 2012). Illustrated in Figure 6.3 are
predictions made by multiple models and the MV-HC fusion strategy for various LP images.
It is remarkable that model fusion can produce accurate predictions even in cases where most
models exhibit prediction errors. To clarify, with the MV-HC approach, this occurs when each
incorrect sequence is predicted fewer times than the correct one, or in the case of a tie, the correct
sequence is predicted with higher confidence.

ViTSTR-Base: AIQ1056 (0.93) ViTSTR-Base: *AS5I8D (0.53) ViTSTR-Base: 4NIU770 (0.45) ViTSTR-Base: 5E7Z729 (0.51)
STAR-Net: ATQ1056 (0.59) STAR-Net: xAS5180 (0.82) STAR-Net: 4NIU770 (0.94) STAR-Net: SEZ229 (0.74)
TRBA: AIQ1056 (0.98) TRBA: xAS5180 (0.60) TRBA: 4NTU770 (0.99) TRBA: 5EZ229 (0.99)
CR-NET: ATQ1056 (0.82) CR-NET: *AS518D (0.83) CR-NET: 4NTU770 (0.91) CR-NET: 5EZ229 (0.88)
RARE: ATQ1056 (0.92) RARE: *AS5I8D (0.79) RARE: 4NIU770 (0.99) RARE: 5E2229 (0.88)

Fusion MV-HC: AIQ1056 Fusion MV-HC: *AS5I8D Fusion MV-HC: 4NIU770 Fusion MV-HC: 5EZ229

T T ——

enfanm -
ML A
ViTSTR-Base: KRM7E95 (0.99) ViTSTR-Base: Y88096 (0.94) ViTSTR-Base: HLP459A (0.98) ViTSTR-Base: MRU3095 (0.97)
STAR-Net: KRH7E95 (0.59) STAR-Net: Y68096 (0.93) STAR-Net: HLP4594 (0.97) STAR-Net: MR0O3095 (0.98)
TRBA: KRM7E95 (0.51) TRBA: Y88096 (0.97) TRBA: HLPA594 (0.99) TRBA: MRD3095 (0.72)
CR-NET: KRH7E95 (0.73) CR-NET: Y296096 (0.75) CR-NET: HLP4594 (0.85) CR-NET: MRD3095 (0.94)
RARE: KRM7E95 (0.60) RARE: YS8096 (0.67) RARE: HLPA59A (0.93) RARE: MRD3095 (0.87)
Fusion MV-HC: KRM7E95 Fusion MV-HC: Y88096 Fusion MV-HC: HLP4594 Fusion MV-HC: MRD3095

Figure 6.3: Predictions obtained in eight LP images by multiple models individually and through the best fusion
approach. Although we only show the predictions from the top 5 models for better viewing, it is noteworthy that
in these particular cases, fusing the top 8 models (the optimal configuration) yielded identical predictions. The
confidence for each prediction is indicated in parentheses, and any errors are highlighted in red.

Returning to Table 6.3, we note that the majority vote-based strategies produced similar
results, with the sequence-level approach (MV) performing marginally better for a given number
of combined models. Our analysis suggests that this difference arises in cases where a model
predicts one character more or one character less, impacting the majority vote by character
position (MVCP) approach relatively more. Conversely, selecting the prediction with the highest
confidence (HC) consistently led to inferior results. This can be attributed to the general tendency
of all models to make incorrect predictions also with high confidence (see Figure 6.3).

Building on Chapter 5’s emphasis on the value of cross-dataset evaluation, Table 6.4
presents the results obtained on four independent datasets'®. These particular datasets are
commonly employed for such evaluations (Zou et al., 2020; Fan and Zhao, 2022; Ke et al., 2023).

These experiments provide further support for the findings presented earlier in this
section. Specifically, both strategies that rely on a majority vote at the sequence level (MV-BM
and MV-HC) outperformed the others significantly. This performance gap was most evident on
the CD-HARD dataset, known for its challenges due to the predominance of heavily tilted LPs

18 To train the models, we excluded the few images from the ChineseLP dataset that are also found in CLPD
(this occurs because both collections include internet-sourced images). A thorough examination of the presence of
near-duplicates within public datasets and its consequential impact will be carried out in Chapter 8.
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Table 6.4: Comparison of the results achieved in cross-dataset setups by 12 models individually and through five
different fusion strategies. The models are listed alphabetically, with the highest recognition rates attained for each
dataset highlighted in bold. The number of LPs in each dataset is listed below its name.

Dataset ~ OpenALPR-EU  PKU  CD-HARD ~CLPD
Model #108 #2253 #104 #1200 Yereee

CR-NET 96.3% 99.1% 58.7% 94.2% 87.1%
CRNN 93.5% 98.2% 31.7% 89.0% 78.1%
Fast-OCR 97.2% 99.2% 59.6% 94.4%  87.6%
GRCNN 87.0% 98.6% 38.5% 87.7% 77.9%
Holistic-CNN 89.8% 98.6% 11.5% 90.2% 72.5%
Multi-Task-LR 85.2% 97.4% 10.6% 86.8% 70.0%
RZAM 88.9% 97.1% 20.2% 88.2% 73.6%
RARE 94.4% 98.3% 37.5% 92.4% 80.7%
Rosetta 90.7% 97.2% 14.4% 86.9% 72.3%
STAR-Net 97.2% 99.1% 48.1% 93.3% 84.4%
TRBA 93.5% 98.5% 35.6% 90.9% 79.6%
ViTSTR-Base 89.8% 98.4% 22.1% 93.1% 75.9%
Fusion HC (top 6) 95.4% 99.2% 48.1% 94.9% 84.4%
Fusion MV-BM (top 8) 99.1% 99.7% 65.4% 97.0%  90.3%
Fusion MV-HC (top 8) 99.1% 99.7% 65.4% 96.3% 90.1%
Fusion MVCP-BM (top 9) 95.4% 99.7% 54.8% 95.5% 86.3%
Fusion MVCP-HC (fop 9) 97.2% 99.7% 57.7% 95.9% 87.6%

and the wide variety of LP layouts (as shown in Figure 6.1). Interestingly, in this cross-dataset
scenario, the MV-BM strategy exhibited slightly superior performance compared to MV-HC.
Unexpectedly, the HC approach failed to yield any improvements in results on any dataset,
indicating that the models made errors with high confidence even on LP images extracted from
datasets that were not part of their training.

While our primary focus lies on investigating the improvements in recognition rates
achieved through model fusion, it is also pertinent to examine its impact on runtime. Naturally,
certain applications might favor combining fewer models to attain a moderate improvement in
recognition while minimizing the increase in the system’s running time. With this in mind,
Table 6.5 presents the number of frames per second (FPS) processed by each model independently
and when incorporated into the ensemble. In addition to combining the models based on their
average recognition rate across the datasets, as done in the rest of this section, we also explore
combining them based on their processing speed.

Table 6.5: The number of FPS processed by each model independently and when incorporated into the ensembles.
On the left, the models are ranked based on their results across the datasets, while on the right they are ranked
according to their speed. The reported time, measured in milliseconds per image, represents the average of 5 runs.

Models MV_HC Individual Fusion Models MV_HC Individual Fusion

(ranked by accuracy) Time FPS  Time FPS (ranked by speed) Time FPS  Time FPS
Top 1 (VITSTR-Base) 92.4% 73 137 73 137 | Top 1 (MultiTaskLR)  85.9% 2.3 427 23 427
Top 2 (+ STAR-Net) 9%4.1% 7.1 141 144 70 | Top2 (+Holistic-CNN) ~ 90.2% 2.5 399 49 206
Top 3 (+ TRBA) 94.9% 169 59 313 32 | Top3(+ CRNN) 91.1% 2.9 343 78 129
Top 4 (+ CR-NET) 96.3% 53 189  36.6 27 | Top4 (+ Fast-OCR) 954% 3.0 330 108 93
Top 5 (+ RARE) 96.6%  13.0 77  49.6 20 | Top5 (+ Rosetta) 96.0% 4.6 219 154 65
Top 6 (+ Fast-OCR) 97.0% 3.0 330 526 19 | Top 6 (+ CR-NET) 96.6% 53 189 207 48
Top 7 (+ Rosetta) 9729% 4.6 219 572 18 | Top7 (+ STAR-Net) 96.9% 7. 141 278 36
Top 8 (+ Holistic-CNN) 97.6% 2.5 399 597 17 | Top 8 (+ VITSTR-Base) 96.9% 7.3 137 350 29
Top 9 (+ GRCNN) 97.5% 85 117 682 15 | Top9 (+ GRCNN) 97.1% 85 117 436 23
Top 10 (+ R2AM) 972% 159 63 842 12 | Top 10 (+ RARE) 97.1% 13.0 77 566 18
Top 11 (+ CRNN) 97.0% 29 343  87.1 11 | Topll (+ R2AM) 97.1% 159 63 725 14
Top 12 (+ Multi-Task-LR) ~ 97.0% 2.3 427 894 11 | Top 12 (+ TRBA) 97.1% 169 59  89.4 11
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Remarkably, fusing the outputs of the three fastest models results in a lower recognition
rate (91.1%) than using the best model alone (92.4%). Nevertheless, as more models are included
in the ensemble, the gap reduces considerably. From this observation, we can infer that if
attaining the utmost recognition rate across various scenarios is not imperative, it becomes
more advantageous to combine fewer but faster models, as long as they perform satisfactorily
individually. According to Table 6.5, combining 4-6 fast models appears to be the optimal choice
for striking a better balance between speed and accuracy.

6.3 Final Remarks

This chapter examined the potential improvements in LPR results by fusing the outputs from
multiple OCR models. Distinguishing itself from prior studies, our research explored a wide
range of models and datasets in the experiments. We combined the outputs of different models
through straightforward approaches such as selecting the most confident prediction or through
majority vote (both at sequence and character levels), demonstrating the substantial benefits of
fusion approaches in both intra- and cross-dataset experimental setups.

In the traditional intra-dataset setup, where we explored eight datasets, the mean
recognition rate experienced a significant boost, rising from 92.4% achieved by the best model
individually to 97.6% when leveraging model fusion. Essentially, we demonstrate that fusing
multiple models reduces considerably the likelihood of obtaining subpar performance on a
particular dataset. In the more challenging cross-dataset setup, where we explored four datasets,
the mean recognition rate increased from 87.6% to rates surpassing 90%. Notably, the optimal
fusion approach in both setups was via a majority vote at the sequence level.

We also conducted an evaluation to analyze the speed/accuracy trade-off in the final
approach by varying the number of models included in the ensemble. For this assessment, we
ranked the models in two distinct ways: one based on their recognition results and the other based
on their efficiency. The findings led us to conclude that for applications where the recognition
task can tolerate some additional time, though not excessively, an effective strategy is to combine
4-6 fast models. Employing this approach significantly enhances the recognition results while
maintaining the system’s efficiency at an acceptable level.
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7. ADVANCING MULTINATIONAL LICENSE PLATE RECOGNITION THROUGH
SYNTHETIC AND REAL DATA FUSION: A COMPREHENSIVE EVALUATION

Despite the considerable progress in the state of the art, LPR faces challenges related to unbalanced
data. The inherent difficulty in collecting LP images from a variety of regions makes most ALPR
datasets exhibit a significant bias toward specific regional identifiers (Zhang et al., 2021c; Liu
et al., 2021; Wang et al., 2022b; Shvai et al., 2023).

One way to mitigate this problem would be to embrace the “wildness” of the internet to
collect a large-scale dataset from multiple sources (Torralba and Efros, 2011). However, labeling
such a dataset would be very expensive and time-consuming (Bjorklund et al., 2019; Han et al.,
2020; Gao et al., 2023), not to mention the growing concerns surrounding privacy (Chan et al.,
2020; Kong et al., 2021; Trinh et al., 2023). In this scenario, synthetic data emerges as a practical
alternative, offering a cost-effective and privacy-preserving solution while providing the diversity
and scale needed for effectively training deep learning-based models.

Although recent research has explored creating synthetic LP images to improve LPR
performance, our analysis in Section 7.1 reveals certain limitations in these efforts. Existing
studies have predominantly employed a single methodology to generate synthetic LPs, leaving
unanswered questions regarding the potential for significantly enhanced outcomes through the
integration of data generated from various methodologies. Additionally, most works have focused
on LPs from a single region. To illustrate, researchers have trained separated instances of
Generative Adversarial Networks (GANs) for different LP layouts. This approach becomes
increasingly impractical and even unfeasible as the number of LP layouts the ALPR system must
handle increases. Ultimately, the assessment of synthetic data generation methods has primarily
relied on the performance of individual OCR models, overlooking the fact that images created
using a particular method may disproportionately favor certain models over others.

This work aims to address the limitations described above by delving further into the
integration of real and synthetic data to enhance LPR. Setting our research apart from previous
studies, we subject 16 well-known OCR models to a benchmarking process across 12 public
datasets acquired from multiple regions. Synthetic LP images are created by drawing inspiration
from the three most widely adopted methodologies in the literature. We conduct ablation studies
to demonstrate the impact of each methodology on the final results and the importance of synthetic
data when training data is scarce.

In summary, this chapter makes the following contributions:

e The most extensive experimental evaluation ever conducted in the field. While our focus
lies on the LPR stage, as per recent research trends, we also compare various models
for detecting the LPs and their corresponding corners within the input images. Our
end-to-end experiments cover both intra- and cross-dataset evaluations, including an
examination of the speed/accuracy trade-oft of the OCR models;

e We deviate from prior methodologies by introducing a pipeline that employs a single
GAN model to generate images of LPs from diverse regions and across styles. Notably,
satisfactory outcomes are attained despite using a relatively small number of real images
for training (around 2k). This success stems from our approach of supplementing these
real images with many synthetic ones created through character permutation while also
leveraging an OCR model to identify and filter out poorly generated images;

e Our results show that the massive use of synthetic data significantly improves the
performance of the models, both in intra- and cross-dataset scenarios. Remarkably,
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employing the top-performing OCR model yields end-to-end results that surpass those
reached by state-of-the-art methods and established commercial systems. These findings
are particularly impressive because our models were not specifically trained for any
particular LP layout, and we do not rely on post-processing with heuristic rules to
improve the LPR performance on LPs from specific regions;

e Our ablation studies reveal that each synthesis method contributes considerably to
enhancing the results, with a substantial synergistic effect observed when combining
them. Incorporating synthetic data into the training set also proves to be effective in
overcoming the challenges posed by limited training data, as commendable results are
attained even when using only small fractions of the original data;

This chapter is structured as follows. Section 7.1 outlines the prevalent methods for
synthesizing LP images in the literature. Section 7.2 elaborates on our methodology for generating
synthetic data, which will be integrated with real data to train the OCR models. Section 7.3
describes the experimental setup, including the datasets and models explored. The results are
presented and analyzed in Section 7.4. Finally, Section 7.5 summarizes our findings.

7.1 Related Work

Many methods have been proposed to generate synthetic LP images. These methods aim to
mitigate bias in the experiments and reduce the reliance on large volumes of real images for
training OCR models. The subsequent paragraphs provide a concise overview of three popular
methods used for this purpose.

A highly intuitive approach for creating LP images involves a rendering-based process,
particularly effective as LPs within a specific region typically conform to a strict standard. Put
simply, such a method initiates with a blank template mirroring the actual aspect ratio and color
scheme of LPs from the target region. Subsequently, a random sequence of characters reflecting
the actual LP sequence scheme is superimposed onto the template. Finally, transformations are
applied to enhance the diversity of the generated images.

Several works have effectively explored the above methodology, including but not
limited to (Bjorklund et al., 2019; Maier et al., 2022; Gao et al., 2023). Regarding the process of
creating LP images, these works primarily differed in the LP layout synthesized and the specific
transformations applied. For instance, Bjorklund et al. (2019) focused on creating Italian LPs,
Maier et al. (2022) generated German LPs, and Gao et al. (2023) synthesized LPs from mainland
China. In general, the transformations applied include modifications in font thickness, pixel
shifts in character positions, LP rotation, and adjustments in brightness and contrast.

Rendering-based methods face a significant limitation as they generate images with
inconsistent distributions compared to real-world images, even when incorporating many
transformations (Wu et al., 2019; Maier et al., 2022; Gao et al., 2023). Consequently, LPR
models trained solely on such images often produce unsatisfactory outcomes when applied to
real-world images. Taking this into account, researchers have explored various approaches for
creating realistic LP images, ranging from simpler methods such as character permutation to
more complex strategies involving generative models.

Generating synthetic data through character permutation is a simple yet effective method
for achieving balance among character classes. Essentially, considering that each character’s
position on a given LP is labeled, one character can be replaced by another by superimposing
the corresponding patch. Typically, this procedure focuses on replacing characters that are
overrepresented in the training set with those that are underrepresented. To our knowledge, this
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permutation-based approach was first explored in the LPR context by Gongalves et al. (2018).
Since then, several authors have successfully applied it to construct well-balanced training sets in
terms of character classes. The following paragraph presents three examples, accompanied by a
brief description of the subtle variations in how the respective authors implemented this method.

Shashirangana et al. (2022) swapped character patches from distinct LP images, while
most authors limited their permutations to character patches from the same LP to reduce
illumination inconsistencies. Al-batat et al. (2022) refrained from permuting patches of thin
characters such as ‘1’ and ‘I’ to prevent potential deformation caused by swapping them with
wider characters. In contrast, other researchers addressed this issue by first expanding the
bounding boxes of smaller characters, incorporating portions of the LP background into them,
to ensure uniform sizing of all characters before permutation. Lastly, although most authors
swapped letters with digits and vice versa, Laroca et al. (2021b) performed same-category
permutations only (letters were swapped with other letters, and digits with other digits), enabling
models to implicitly learn the fixed positions for letters and digits in certain LP layouts.

Concerning the use of generative models in LPR research, the prevailing choice has been
GANSs. The application of conditional GANs to image-to-image translation was first investigated
by Isola et al. (2017) with the proposal of the widely recognized pix2pix model. As detailed
in Section 2.2.2.2, pix2pix learns to map an image from the input to the output domain using
an adversarial loss in conjunction with the L1 loss between the output and target images, thus
requiring paired training data. While paired image-to-image translation models have shown
remarkable results since this seminal work, acquiring such training data (i.e., matching image
pairs with pixelwise or patchwise labeling) can be time-consuming and even unrealistic. To tackle
this challenge, subsequent works provided a novel perspective in which the proposed models
(e.g., CycleGAN, DualGAN and DiscoGAN) discover relations between two visual domains
without any explicitly paired data. As paired data is often unavailable, unpaired image-to-image
translation has gained much attention. Having examined various studies employing GANs to
generate synthetic data for improved LPR in Section 3.3, we will now revisit a selection of these
publications relevant to this chapter’s context.

Wang et al. (2022b) employed CycleGAN (Zhu et al., 2017b) to transform a large number
of script LP images, created using OpenCV, into realistic ones (specific details were not provided).
Similarly, Zhang et al. (2021c) trained CycleGAN without the second cycle-consistency loss (i.e.,
they discarded the loss responsible for mapping real images into synthetic ones) to generate LP
images with different characters and distinct characteristics. They trained multiple networks,
each specialized in producing images with specific attributes. For instance, one model was
trained to transform script images into bright LPs, while another was trained to convert script
images into dark LPs, and so forth. In both works, LPs of only a few different styles (all from
mainland China) were synthesized. Fan and Zhao (2022) adopted essentially the same approach
but trained CycleGAN with the Wasserstein distance loss. Their experiments focused on two
distinct LP styles, one from mainland China and another from the Taiwan region.

Han et al. (2020) trained CycleGAN, StarGAN and pix2pix to generate images of the
major style of Korean LPs from script images. Their findings indicated that pix2pix produced
more realistic and diverse LP images, supported by both qualitative comparisons and the superior
performance of an OCR model trained with pix2pix-generated images compared to instances of
the same model trained with images from CycleGAN and StarGAN. Shashirangana et al. (2022)
employed pix2pix to convert color images from the CCPD dataset into infrared images. They
explored the KAIST multi-spectral dataset, which has 95k paired color and infrared images,
for training the pix2pix model. The researchers suggested that the generated images could be
employed to train an OCR model capable of identifying LPs extracted from real images captured
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during nighttime periods. Shvai et al. (2023) built on several existing frameworks (e.g., AC-GAN
and PG-GAN) to generate high-quality LP images with distinct sequences. In summary, their
model achieves diversity by inputting the generator with different random latent vectors. It is
worth noting that the authors focused on generating a single style of LPs, specifically the most
common style found on vehicles in Texas, United States.

When examining the works described in this section, as well as others detailed in
Section 3.3, it becomes clear that the evaluation of methods for generating synthetic data has
relied on the outcomes produced by individual OCR models. For example, Wang et al. (2022b)
assessed the efficacy of their strategy solely based on the results achieved by their CNN-based
model. Similarly, Zhang et al. (2021c) considered only the results reached by an OCR based
on Xception, and Fan and Zhao (2022) considered only the results yielded by CNNG, their
multi-task recognition model. We posit that such an evaluation is suboptimal because images
created through a specific method may disproportionately benefit certain approaches over others,
hindering a fair evaluation of the data generation technique itself. As mentioned in Section 3.5,
this phenomenon was evidenced in (Laroca et al., 2019), where two segmentation-free approaches
(Multi-Task and CRNN) had a much higher performance gain than the YOLO-based CR-NET
model (Silva and Jung, 2020) when incorporating images generated via character permutation
into the training set. Therefore, there is a lack of studies focused on evaluating these techniques’
efficiency based on the results achieved by multiple OCR models with varying characteristics.

Another point that caught our attention is that most works are still focused on LPs
from a single region, even though this limitation has been acknowledged for many years in
the literature (Mecocci and Tommaso, 2006; Anagnostopoulos et al., 2008). In fact, it is not
uncommon for only a very specific LP style (e.g., single-row blue LPs from mainland China)
to be considered in the experiments (Han et al., 2020; Maier et al., 2022; Shvai et al., 2023).
Researchers often opted to train separate instances of the proposed models for each layout.
For example, one model generates/recognizes LPs from the Taiwan region, another model
generates/recognizes LPs from mainland China, and so forth (Bjorklund et al., 2019; Zhang
et al., 2021d; Wang et al., 2022c). However, this approach becomes increasingly impractical,
and even unfeasible, as the number of LP layouts the ALPR system must handle increases. This
impracticality arises from the need to adjust parameters and retrain models when incorporating
support for LPs from new regions or even markedly different LP styles within the same region.

Ultimately, it is crucial to emphasize that within the examined literature, each work has
exclusively generated synthetic LPs through a single methodology, such as relying solely on
templates, employing only character permutation, or using GANs exclusively. It remains unclear
whether relying on a single approach is sufficient for optimal results, or if considerably superior
outcomes could be attained by integrating data generated through diverse methodologies.

7.2 Synthetic Data

This section details our approach for generating synthetic data, which will be combined with real
data to train the deep models for LPR. We first describe the methodology adopted for creating LP
images using blank templates and character patches sourced from the internet. Afterward, we
delve into the process of producing new LP images by permuting the positions of the characters
within each LP. Lastly, we elaborate on our utilization of a paired image-to-image translation
model (pix2pix) to generate realistic LP images.
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7.2.1 Templates

While there are various approaches for creating LP images using templates, the method employed
in this chapter is quite straightforward. First, blank templates that match the aspect ratio and
color scheme of real LPs are sourced from the internet'®. Subsequently, a sequence of characters,
selected randomly yet crafted to mirror the patterns found on authentic LPs, is superimposed onto
each template. Figure 7.1 shows examples of LP images generated through this process. Naturally,
during the training of the OCR models, we subject these images to various transformations to
introduce variability. These transformations encompass a range of techniques, including but not
limited to random perspective transformation, introduction of random noise, incorporation of
random shadows, and application of random changes to hue, saturation and brightness.
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Figure 7.1: Examples of the template-based LP images we created for this study. Notably, any sequence can be
generated for each template. The background and character images were manually gathered from the internet!®.
During training, these LP images are subjected to various transformations to introduce variability.

To better simulate real-world scenarios, the templates we generated using this method
were derived from the LP styles observed within the training sets of the datasets explored in our
experiments (refer to Section 7.3.2 for details). In other words, we did not create templates for
LP styles found exclusively in the test sets. To illustrate, one of the datasets we employed in
our cross-dataset assessments contains images of electric vehicles registered in mainland China,
which feature 8-character green LPs. Despite this, we refrained from creating templates for this
LP style since it is not present in the training set.

An appealing aspect of this synthesis method lies in its ability to generate any sequence
for each template while adhering to a predefined number of characters. Nevertheless, two
drawbacks deserve attention. First, as highlighted in Section 7.1, images produced by such
rendering-based approaches often exhibit inconsistent distributions compared to real-world
images (even with transformations applied). Second, sourcing background and character images
online for certain LP styles, particularly those less popular or recently introduced, can pose a
challenge. This challenge played a role in our decision not to create templates for every LP style
present in the training set, in addition to the inherent scope limitations of our study.

We generated 100k LP images employing this approach, a number determined through
preliminary experiments that showed slightly improved outcomes compared to using 50k
images and similar performance to using 200k images. The number of synthesized LPs was
balanced across the six explored LP layouts (i.e., American, Brazilian, Chinese, European,
Mercosur, and Taiwanese), and the LP sequences were defined to maximize class balance for
each character position.

19 Most of the blank templates and character patches were taken from https://platesmania.com/
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7.2.2 Character Permutation

Generating synthetic data through character permutation is also a straightforward process, outlined
as follows. Initially, each character’s bounding box (x, y, w, &) must be labeled. Then, if all the
bounding boxes share the same width and height, the patch of each character can be replaced with
another according to predefined rules. However, it is important to highlight that characters from
distinct classes often differ in size, especially in terms of width. Adhering to established practices
in the literature (refer to Section 7.1), we first expanded the bounding boxes of smaller characters,
incorporating small portions of the LP background into them, so that all characters have identical
dimensions. Subsequently, we replaced patches of characters that were overrepresented in the
training set with patches from those that were underrepresented. To maintain consistency in
illumination, we limited character permutation to patches within the same LP.

In Figure 7.2, we show examples of LP images generated by permuting the character
positions on three LPs and applying random transformations of scale, rotation, brightness
and cropping. Despite the impressive visual outcomes, it is essential to acknowledge certain
limitations associated with this image synthesis method. First, manually labeling the bounding
box for each character on every LP image is a laborious, time-consuming, and error-prone
task (Bjorklund et al., 2019; Wang et al., 2022c; Liu et al., 2024b). Second, this method can
only be applied to LP images where the character bounding boxes do not intersect (typically
restricting its use on tilted LPs). Otherwise, parts of some characters may become obscured or
replicated during the permutation process. Lastly, as the permutations involve repetitions and are
limited to characters within the same LP, the OCR models may inadvertently learn undesirable
correlations or biases. For instance, Gongalves et al. (2018) pointed out that characters from
initially underrepresented classes exhibited a strong self-correlation, as they are more likely to
appear in multiple positions on the permuted LPs (this is illustrated in Figure 7.2 as well).

Figure 7.2: Some LP images created by permuting the positions of the characters within each LP and then applying
transformations. The images in the top row are the originals, while the others were synthesized.

We conducted a series of experiments in the validation set to determine the number of
LP images to generate through this approach. We then generated 300k images, evenly distributed
across the different LP layouts, as we found that generating a higher volume of images did not
yield improved results.

7.2.3 Image-To-Image Translation (pix2pix)

As outlined in Section 7.1, most previous works explored unpaired image-to-image translation
methods (e.g., CycleGAN) to generate realistic LP images due to the lack of labeled paired
data. In this work, we exploited the character permutation method described above to tackle
this problem. More specifically, we generated over one million new LP images by shuflling
the character positions on approximately 2k images from the training set of public datasets and
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the internet. While Laroca et al. (2021b) provided labels for most of these images, we further
enriched the annotations by labeling the positions of the LP corners.

Considering that these images are accompanied by precise annotations for the position
of each LP corner and the bounding box of every character, they can be used to train paired
image-to-image translation methods. In this study, we employ the renowned pix2pix model (Isola
et al., 2017) for synthesizing many realistic images of LPs from multiple regions. We remark that
although there are newer models available that would certainly yield better results than pix2pix,
our decision to opt for pix2pix is primarily based on its widespread availability across various
frameworks such as Chainer, Keras, PyTorch, TensorFlow, Torch, and others??, This choice was
particularly significant for our research, given that part of our experiments were conducted on an
old CPU lacking AVX instructions, significantly limiting the available framework options.

The paired data required for training the pix2pix model was prepared as follows. For
each LP image generated through character permutation, which serves as the intended output, a
corresponding segmentation mask was created to serve as the input. These masks were designed
such that each color represents a distinct LP layout class or character class. For example, as shown
in Figure 7.3, the digit ‘0’ is indicated by a vivid red color (228, 28, 26), the letter ‘A’ is denoted
by a dark brown shade (126, 47, 0), the Mercosur layout is represented by a purplish-magenta
tone (187, 0, 170), and the Chinese layout is denoted by a gray color (127, 127, 127). The Glasbey
library?! was employed to generate a set of colors that were maximally distinguishable from each
other. Black (0, 0, 0) and similar shades were avoided in this process since black in the input
mask represents the background. Notably, the background in the output LP image consists of
gray pixels. This choice was made because using the original background led to inferior results.
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Figure 7.3: Examples of image pairs used for training the pix2pix model. To create the input masks, labels are
required for both the LP’s layout and corners, as well as for the bounding box of each character.

After completing the model’s training, the next step involves using it to generate hundreds
of thousands of new LP images. Intuitively, this task was accomplished by feeding the model
with segmentation masks derived from randomly selected LP layouts and character sequences.
While the characters were sampled from the valid alphabet per position, we ensured a balanced
distribution of character classes at every position.

Upon examining the generated LP images, we discovered that although many high-
quality LPs were produced, a notable portion of them also displayed certain issues. The primary

20See a list of pix2pix implementations at https://phillipi.github.io/pix2pix/. Our chosen
implementation can be found at https://github.com/affinelayer/pix2pix—tensorflow.
21 The Glasbey library is available at https: //github.com/taketwo/glasbey
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issue identified was the distortion of characters or their blending into two distinct classes. For
instance, a generated character might exhibit a fusion of traits from ‘0’ and ‘8’, with the defining
strokes that typically differentiate the two appearing faint and indistinct. To address this matter,
we ran the Fast-OCR model, which demonstrated superior cross-dataset results among a dozen
recognition models in Chapter 6, on the millions of generated images and selected the top N
predictions according to their associated confidence values. Specifically, we selected the top 50k
images for each of the six LP layouts, totaling 300k images. This strategy proved effective in
filtering out most images with defects, although it may have led to the exclusion of some instances
with a higher degree of variability. Examples of the selected images are shown in Figure 7.4.

Figure 7.4: Examples of selected images from those generated using pix2pix. From top to bottom, we show
American, Brazilian, Chinese, European, Mercosur, and Taiwanese LPs.

It should be noted that we trained the pix2pix model to produce a blurred representation
instead of Chinese characters (this can be seen in Figures 7.3 and 7.4). This adjustment was made
due to the absence of class labels for these characters in the training set. Accurately labeling
these characters poses a challenging task for individuals not proficient in Chinese. Further details
on how we handled Chinese characters in our experiments can be found in Section 7.3.3.

One might question the rationale behind employing segmentation maps as input for the
pix2pix model, rather than using LP templates. While we acknowledge that using templates as
input would likely yield similar or even better results, the lack of LP style-related annotations
in public datasets poses a challenge. The provided information is limited to the geographical
region where the images were collected (e.g., Europe, mainland China, and the United States).
Fundamentally, adopting LP templates as input would entail labeling the specific style of each LP
and searching online platforms for the corresponding templates and character patches (or creating
them using OpenCV or similar tools). This is most likely why previous works explored very few
LP styles in their experiments (Zhang et al., 2021c; Fan and Zhao, 2022; Wang et al., 2022b).

The major limitation of this GAN-based method stems from its reliance on the training
data, as it cannot synthesize LP layouts that are not included in the training set (Gao et al., 2023).

7.3 Experimental Setup

This section describes the experimental setup adopted in this chapter. We begin by outlining
the OCR models implemented for our evaluations. Subsequently, we list the datasets employed,
which are the same used in the previous chapter, while briefly reminding the reader of their
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characteristics such as the number of images, resolution, and LP layouts. Lastly, we elaborate on
the methodology used for performance evaluation.

While different machines were used for model training, all testing experiments were
conducted on a PC equipped with an AMD Ryzen Threadripper 1920X 3.5GHz CPU, 96 GB
of RAM running at 2,133 MHz, an NVMe SSD with read and write speeds of 3,500 MB/s and
3,000 MB/s respectively, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

7.3.1 OCR Models

This chapter expands upon the 12 models explored in Chapters 5 and 6 by integrating four
additional models into the experiments: Table 7.1 presents an overview of all 16 models, including
their original applications and the frameworks used for their implementation. We are unaware of
any work in ALPR research where so many OCR models were explored.

Table 7.1: The 16 OCR models explored in this chapter.

Model Original Application
Framework: PyTorch (Atienza, 2022)
R2AM (Lee and Osindero, 2016) Scene Text Recognition
RARE (Shi et al., 2016) Scene Text Recognition
STAR-Net (Liu et al., 2016) Scene Text Recognition
CRNN (Shi et al., 2017) Scene Text Recognition
GRCNN (Wang and Hu, 2017) Scene Text Recognition
Rosetta (Borisyuk et al., 2018) Scene Text Recognition
TRBA (Baek et al., 2019) Scene Text Recognition
ViTSTR-Base (Atienza, 2021b) Scene Text Recognition
ViTSTR-Small (Atienza, 2021b) Scene Text Recognition
VIiTSTR-Tiny (Atienza, 2021b) Scene Text Recognition
Framework: Keras (Chollet et al., 2024)
Holistic-CNN (Spatihel et al., 2017) License Plate Recognition
Multi-Task (Gongalves et al., 2018) License Plate Recognition
Multi-Task-LR (Gongalves et al., 2019)  License Plate Recognition
CNNG (Fan and Zhao, 2022) License Plate Recognition
Framework: Darknet (Bochkovskiy, 2023)
CR-NET (Silva and Jung, 2020) License Plate Recognition
Fast-OCR (Laroca et al., 2021a) Image-based Meter Reading

As in previous chapters, the YOLO-based models (i.e., CR-NET and Fast-OCR) were
implemented using Darknet (Bochkovskiy, 2023); the multi-task models (those listed in the
middle section of Table 7.1) were implemented using Keras (Chollet et al., 2024); and the other
models were implemented using a popular fork of the open source repository of Clova Al Deep
Text Recognition Benchmark (Atienza, 2022). For training the models within each framework,
we used the same hyperparameters as in previous chapters (refer to Section 5.1).

7.3.2 Datasets

We used the same 12 datasets explored in the previous chapter, as shown in Table 7.2. We also
adhered to the same data-splitting protocol established earlier. This means that eight datasets were
used to train, validate and test the chosen models (intra-dataset experiments), while the remaining
four datasets were used solely for testing their generalizability (cross-dataset experiments). For
detailed information on how each dataset was divided in the intra-dataset setup, see Section 6.1.2.

In line with the experiments conducted in the preceding chapters, we employed Albumen-
tations (Buslaev et al., 2020) to balance the number of training images from different datasets. This
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Table 7.2: The 12 datasets used in the experiments carried out for this chapter.

Dataset Images Resolution LP Layout
Caltech Cars (Weber, 1999) 126 896 x 592 American
EnglishLP (Srebri¢, 2003) 509 640 x 480 European
UCSD-Stills (Dlagnekov and Belongie, 2005) 291 640 x 480 American
ChineseLLP (Zhou et al., 2012) 411 Various Chinese
AOLP (Hsu et al., 2013) 2,049 Various Taiwanese
OpenALPR-EU* (OpenALPR, 2016) 108 Various European
SSIG-SegPlate (Gongalves et al., 2016a) 2,000 1920 x 1080 Brazilian
PKU”* (Yuan et al., 2017) 2,253 1082 x 727 Chinese
UFPR-ALPR (Laroca et al., 2018) 4,500 1920 x 1080 Brazilian
CD-HARD (Silva and Jung, 2018) 102 Various Various
CLPD* (Zhang et al., 2021c) 1,200 Various Chinese
RodoSol-ALPR 20,000 1280 x 720  Brazilian & Mercosur

*Datasets used only for testing the deep models (i.e., cross-dataset experiments).

involved applying common transformations to the original images, such as random perspective
shifts, random noise addition, and random adjustments to hue, saturation, and brightness.

7.3.3 Performance Evaluation

In this chapter, we detected the LPs in the original images using YOLOv4-CSP (Wang et al.,
2021a) and rectified them through a combination of CDCC-NET (Laroca et al., 2021a) — for
locating the LP corners — and perspective transformation (the rectification process is detailed in
the next paragraph). These models were chosen due to their remarkable performance in balancing
the trade-off between robustness and efficiency in the studies they were proposed. We adopted
this procedure to fairly compare our results with end-to-end ALPR systems and to better simulate
real-world scenarios, where the LPs are not always optimally detected.

We rectify each LP by calculating and applying a perspective transform from the
coordinates of the four corners in the detected LP region to the corresponding vertices in the
“unwarped” image. These corresponding vertices were defined as follows: (0, 0) corresponds
to the top-left corner; (max,, — 1, 0) is the top-right corner; (max,, — 1, max;,, — 1) refers to the
bottom-right corner; and (0, max;, — 1) indicates the bottom-left corner, where max,, denotes
the maximum distance between the top-right and top-left x coordinates or the bottom-right
and bottom-left x coordinates, and maxj is the maximum distance between the top-left and
bottom-left y coordinates or the top-right and bottom-right y coordinates. The rectification
process is illustrated in Figure 7.5. Recent works that exploited LP rectification to improve the
recognition results include (Qin and Liu, 2022; Xu et al., 2022; Jiang et al., 2023b).
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(a) detected LP regions (b) rectified LP regions

Figure 7.5: Two LPs before and after the rectification process. Observe that the rectified LPs resemble frontal views,
becoming more horizontal, tightly bounded, and easier to read.

It is essential to highlight that we refrained from using prior knowledge about individual
LP layouts to enhance the results through post-processing. As an illustration, despite being aware
that all LPs in a given dataset or particular region adhere to a fixed pattern (e.g., Brazilian LPs are
composed of three letters followed by four digits), we treat the predictions made by the models as
final. We argue that by exposing the models to sufficient variability in the training stage, they
can, to varying extents, implicitly learn and leverage such information to yield better predictions.
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In this chapter, we also adhere to the methodology established by Li et al. (2019), where
all Chinese characters are collectively represented as a unified class denoted by “*’. Accordingly,
all results from other studies presented in our comparison with the state of the art (Section 7.4.2.2)
were obtained in the same way, disregarding Chinese characters.

7.4 Results and Discussion

This section presents and analyzes the outcomes of our experiments. Section 7.4.1 offers a
concise overview of the results obtained in detecting the LPs and locating the corresponding
corners. The precise detection of the LP corners is pivotal for accurately rectifying the LPs
before recognition. Section 7.4.2 then delves into a detailed examination of the end-to-end results
obtained by employing different OCR models.

7.4.1 LP Detection and Corner Detection

To evaluate detection tasks, one can employ various quantitative criteria. Our assessment includes
the widely adopted precision, recall and f-score metrics (described in Section 2.1). In line with
recent studies (Jiang et al., 2023b; Ke et al., 2023), for this chapter, we define the detections as
correct when the Intersection over Union (IoU) with the ground truth exceeds 0.7.

Table 7.3 presents the results obtained by YOLOv4-CSP (Wang et al., 2021a) and
IWPOD-NET (Silva and Jung, 2022) in the LPD stage. Three key observations can be drawn
from the results: (i) YOLOv4-CSP demonstrated satisfactory results, both in terms of precision
and recall, with instances of slightly lower precision attributed to unlabeled LPs in the background
of frames (akin to what was observed in Chapters 5 and 6); (i1) while IWPOD-NET directly
predicts LP corners rather than bounding boxes, its performance is suboptimal in scenarios where
the vehicles are far from the camera, as evidenced by the recall rates reached in the UFPR-ALPR
dataset; and (iii) IWPOD-NET tends to predict a significant number of false positives, leading to
notably low precision rates. Despite our exploration of higher detection thresholds, doing so
led to the exclusion of many true LPs (leading to lower recall rates). These observations likely
influenced the decision of Silva and Jung (2022) to feed regions identified by a vehicle detector
(YOLOV3) into IWPOD-NET instead of applying it directly to the original image. It is worth
noting that optimizing both precision and recall is crucial for efficient system operation, as it
relies on the detection of all LPs with minimal false positives.

Table 7.3: Results obtained by YOLOv4-CSP and IWPOD-NET in the LPD stage (@ IoU > 0.7). For this evaluation,
the corners predicted by IWPOD-NET were converted into bounding boxes.

Caltech Cars  EnglishLP UCSD-Stills ChineseLP  AOLP  SSIG-SegPlate UFPR-ALPR RodoSol-ALPR

Model Metric #46 #102 #60 #161 #687 #3804 #1,800 #8,000 Average
YOLOw4-CSP 100.0% 99.0% 100.0% 98.1%  99.9% 100.0% 99.2% 100.0% 99.5%
IWPOD-NET eca 95.7% 100.0% 100.0% 97.5%  99.7% 98.8% 82.4% 99.6% 96.7%
YOLOV4-CSP ..~ 100.0% 97.1% 96.8% 98.1%  94.8% 94.9% 97.8% 99.6% 97.4%
IWPOD-NET  ¢¢81° 66.7% 77.9% 73.2% 83.1%  88.3% 61.6% 62.2% 78.4% 73.9%
YOLOVA4-CSP 100.0% 98.1% 98.4% 98.1%  97.3% 97.5% 98.5% 99.8% 98.5%
IWPOD-NET 81.2% 88.9% 86.6% 90.3%  94.0% 80.2% 72.3% 89.0% 85.3%

To rectify the LPs found by YOLOv4-CSP, it is necessary to locate the four corners
associated with each of them. Table 7.4 presents a comparison of the results obtained in this
process by four models specifically designed for corner detection, including IWPOD-NET.
The evaluation is carried out in terms of LP-NME (Jia and Xie, 2023), a metric inspired by
Normalization Mean Error (NME), which in turn is commonly employed to evaluate the quality
of face alignment algorithms. LP-NME is defined as follows:
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4

1 |G - C||
LP-NME(C,C) = — 7.1
(c.0) 421 (7.1)

where C and C are the ground truth and predicted corners, respectively, and d is the normalization
factor. Following Jia and Xie (2023), we adopt the diagonal length of the smallest bounding box
that completely encloses the LP as the normalization factor.

Table 7.4: Corner detection results achieved by four models within the regions found by YOLOv4-CSP. The results
are presented in terms of LP-NME, where lower values indicate higher accuracy.

Test set # LPs Caltech Cars  EnglishLP UCSD-Stills ChineseLP AOLP  SSIG-SegPlate UFPR-ALPR RodoSol-ALPR Avers
Model #46 #102 #60 #161  #687 #3804 #1,800 #8,000 verage

LocateNet (Meng et al., 2018) 0.0739 0.0359 0.0782 0.1092  0.0730 0.0329 0.0556 0.0592 0.0647
Hybrid-MobileNetV2 (Yoo and Jun, 2021) 0.0323 0.0226 0.0352 0.0391 0.0332 0.0214 0.0313 0.0383 0.0317
IWPOD-NET (Silva and Jung, 2022) 0.0244 0.0143 0.0205 0.0138 0.0205 0.0098 0.0194 0.0141 0.0171
CDCC-NET (Laroca et al., 2021a) 0.0160 0.0117 0.0164 0.0176  0.0142 0.0098 0.0168 0.0150 0.0147

CDCC-NET stands out as the top-performing model, achieving the lowest average
LP-NME value of 0.0147. It is noteworthy, however, that the IWPOD-NET model outperformed
CDCC-NET in two datasets and achieved near-identical results in another. Figure 7.6 showcases
the predictions made by all models for five LP images. While some predictions show clear
similarities across models, the CDCC-NET model exhibits superior overall accuracy.

(042-K-729) (042-K-729] | 042-K-729]

LocateNet Hybrid-MobileNetV2 IWPOD-NET CDCC-NET

Figure 7.6: Qualitative results achieved by four different models in corner detection. For better viewing, we draw a
polygon from the predicted corner positions.

The findings outlined in this section substantiate our choice to employ YOLOv4-CSP for
LPD and CDCC-NET for corner detection. As elaborated in Section 7.3.3, the corners predicted
by CDCC-NET are used to rectify the LPs before recognition.

7.4.2 Overall Evaluation (End-To-End)

This section conducts a thorough comparative analysis of the OCR models, assessing their
performance and contrasting the end-to-end results attained when employing the top-performing
model with those reached by state-of-the-art approaches and established commercial systems
(Sections 7.4.2.1 to 7.4.2.3). Notably, the evaluation covers both intra- and cross-dataset scenarios.
Additionally, ablation studies are incorporated to demonstrate the impact of each explored method
for generating synthetic images on the final results, as well as the importance of synthetic data
when training data is scarce. Finally, Section 7.4.2.4 examines the trade-off between speed and
accuracy exhibited by the recognition models, highlighting those that strike a favorable balance.
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7.4.2.1 Intra-Dataset Experiments

Table 7.5 presents the end-to-end results obtained across the disjoint test sets of the eight datasets
used to train and validate the models. In these experiments, all OCR models were trained
using real images combined with synthetic ones generated by the three methods described in
Section 7.2. Later in this section, we present an ablation study that details the contribution of
each image synthesis method to the results achieved. Importantly, Table 7.5 also includes the
outcomes achieved by combining the outputs of different models, following the optimal strategy
identified in the previous chapter. The results demonstrate that combining synthetic data and
model fusion further enhances LPR performance.

Table 7.5: Recognition rates obtained by all models under the intra-dataset protocol, where each model was trained
once on the union of the training set images from these datasets (plus synthetic data) and evaluated on the respective
test sets. The best results achieved in each dataset are shown in bold.

Test set # LPs Caltech Cars  EnglishLP  UCSD-Stills ~ ChineseLP AOLP SSIG-SegPlate  UFPR-ALPR  RodoSol-ALPR A
Model #46 #102 #60 #161 #687 #804 #1,800 #8,000 verage

CNNG (Fan and Zhao, 2022) 97.8% 91.2% 96.7% 98.8% 99.1% 98.8% 96.1% 97.1% 96.9%
CR-NET (Silva and Jung, 2020) 93.5% 96.1% 98.3% 96.9% 98.7% 98.0% 89.3% 88.3%" 94.9%
CRNN (Shi et al., 2017) 93.5% 96.1% 96.7% 95.7% 98.8% 97.5% 87.0% 92.2% 94.7%
Fast-OCR (Laroca et al., 2021a) 95.7% 97.1% 95.0% 96.9% 98.7% 96.0% 89.6% 88.1%" 94.6%
GRCNN (Wang and Hu, 2017) 97.8% 99.0% 96.7% 98.8% 99.0% 97.9% 87.4% 93.0% 96.2%
Holistic-CNN (Spaiihel et al., 2017) 95.7% 91.2% 93.3% 99.4% 99.3% 98.4% 94.9% 97.9% 96.3%
Multi-Task (Gongalves et al., 2018) 97.8% 94.1% 100.0% 98.8% 99.1% 98.6% 93.3% 95.1% 97.1%
Multi-Task-LR (Gongalves et al., 2019) 95.7% 93.1% 93.3% 100.0% 99.6% 97.5% 94.6% 96.6% 96.3%
R?AM (Lee and Osindero, 2016) 97.8% 94.1% 95.0% 98.8% 99.3% 99.3% 90.6% 94.4% 96.1%
RARE (Shi et al., 2016) 97.8% 97.1% 98.3% 98.1% 99.4% 99.1% 91.9% 96.5% 97.3%
Rosetta (Borisyuk et al., 2018) 95.7% 98.0% 98.3% 98.1% 98.7% 98.3% 92.6% 96.0% 97.0%
STAR-Net (Liu et al., 2016) 97.8% 99.0% 98.3% 98.1% 99.1% 99.3% 94.7% 97.0% 97.9%
TRBA (Baek et al., 2019) 97.8% 99.0% 98.3% 98.8% 98.8% 99.3% 94.0% 97.3% 97.9%
ViTSTR-Base (Atienza, 2021b) 95.7% 96.1% 93.3% 99.4% 99.9% 99.4% 94.6% 97.7% 97.0%
ViTSTR-Small (Atienza, 2021b) 95.7% 96.1% 98.3% 98.1% 99.1% 98.5% 94.9% 96.8% 97.2%
ViTSTR-Tiny (Atienza, 2021b) 93.5% 95.1% 91.7% 98.8% 99.0% 98.9% 92.3% 95.3% 95.5%
Average 96.2% 95.8% 96.4% 98.3% 99.1% 98.4% 92.4% 94.9% 96.4%
Model Fusion MV-HC (top 8) 97.8% 99.0% 100.0% 99.4% 99.4% 100.0% 98.2% 98.6% 99.1%

TImuges from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for training them.

The first observation is that all models performed surprisingly well, reaching average
recognition rates between 94.6% and 97.9%. It is noteworthy that the mean results were well above
90% across all datasets, including UFPR-ALPR, which is known to be quite challenging (Zhang
et al., 2021a; Zhou et al., 2023; Ding et al., 2024). According to our analysis of the results
(presented throughout this section), such impressive results are mainly due to the massive use of
synthetic data combined with the LP rectification stage.

Another point that immediately draws attention is that multiple models achieved the
best result in at least one dataset. For instance, the CNNG excelled in the UFPR-ALPR dataset,
while the Multi-Task-LR and Holistic-CNN models reported the highest recognition rates on
ChineseLP and RodoSol-ALPR, respectively. Interestingly, the models that performed better on
average (i.e., STAR-Net and TRBA) did not achieve the best results in six of the eight datasets;
some models actually reached the best result in one dataset and the worst in another (e.g., see
the results achieved by the CNNG and Holistic-CNN models on the EnglishLLP dataset). These
results emphasize the importance of evaluating and comparing OCR models on various datasets.

Figure 7.7 showcases the predictions yielded by the STAR-Net and TRBA models for LPs
with distinct characteristics. The outcomes underscore the models’ robustness in handling diverse
LP layouts, images with varying resolutions, LPs with different numbers of characters arranged in
one or two rows, and scenarios where the characters are partially occluded. Impressively, some of
these LP styles were not even included in the training set. Overall, errors are limited to instances
where one character closely resembles another, often due to factors such as low resolution and
artifacts on the LP. Although this qualitative analysis focuses on the two models that achieved the
best average results across the datasets, the other models generally produced similar predictions.
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Figure 7.7: Predictions made for 12 LP images by STAR-Net and TRBA, the two models that exhibited the highest
average performance in the intra-dataset experiments. Errors, if any, are highlighted in red. All LPs are well aligned
because they were rectified before recognition, as detailed in Section 7.3.3.

A compelling aspect to consider is the impact of synthetic data in scenarios with limited
availability of training data, as public datasets collected in certain regions often have a restricted
number of images. Table 7.6 presents the average recognition rates attained by STAR-Net and
TRBA when trained with reduced portions — 50%, 25%, 10%, 5% and 1% — of the original
training data, with and without the addition of synthetic data. Remarkably, incorporating synthetic
data in the training phase enabled commendable results to be reached even when using small
fractions of the original training set. For example, both STAR-Net and TRBA achieved an average
recognition rate exceeding 94.5% across all datasets when trained with only 10% of the original
training set but supplemented with synthetic data. In contrast, relying solely on real images
with common transformations as data augmentation led to a substantial decline in the results.
Specifically, the recognition rates dropped below 75% when halving the original training set and
plummeted to approximately 1% when using only 10% of it. This underscores the effectiveness
of synthetic data in mitigating the challenges posed by limited training data.

Table 7.6: Average recognition rates obtained by STAR-Net and TRBA when trained with reduced portions of the
original training data. Naturally, images not included in the reduced training set were not used to generate synthetic
images in the respective experiments.

W 100%  50%  25%  10% 5% 1%
Model

STAR-Net (no synthetic)  95.3% 62.0% 18.3%  1.3% 0.2%  0.0%
STAR-Net (w/ synthetic)  97.9% 95.8% 94.7% 94.6% 93.6% 86.4%

TRBA (no synthetic) 93.7% 74.0% 239%  09%  0.2%  0.0%
TRBA (w/ synthetic) 97.9% 97.0% 96.0% 94.5% 94.3% 87.9%

Table 7.7 elucidates the effectiveness of each image synthesis method described in
Section 7.2, as well as their combination, to the results obtained. It reveals that each method
contributes considerably to enhancing the results. Notably, a substantial synergistic effect is
observed when combining these methods, pushing the performance boundaries of OCR models
applied to LPR. To elaborate, the best recognition rates (i.e., 94.9% and 96.4% for unrectified
and rectified LPs, respectively), on average for all models, were achieved by combining original
data with images synthesized in all three ways. When real images were combined solely with
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images generated through character permutation, as in (Laroca et al., 2021b; Shashirangana et al.,
2022), the average recognition rates obtained were 91.4% and 93.6% for unrectified and rectified
LPs, respectively. Combining real images with LP templates alone, as in (Maier et al., 2022;
Gao et al., 2023), resulted in average recognition rates of 92.5% and 94.7% for unrectified and
rectified LPs, respectively. Finally, the combination of real images with those generated through
a GAN model (in our case, pix2pix), as in (Zhang et al., 2021c; Shvai et al., 2023), yielded
average recognition rates of 93.2% and 95.2% for unrectified and rectified LPs, respectively.

Table 7.7: Average recognition rates obtained across all models and datasets with different types of images included
in the training set. The synergistic impact of the three image synthesis methods in enhancing the overall results is
evident. As creating synthetic images through character permutation and GAN relies on the existence of real images,
our evaluation of their integration is limited to cases where real images coexist in the training set. ‘Data aug.’ refers
to images created by applying common transformations.

liezgtlerln;ugge.s Templates Permutation (pSc/;;I:iIx) Average A(\rzz(r:zti.g)e
v 42.5%  46.5%

v 84.5%  88.1%

v v 91.4%  93.6%

v v 92.5%  94.7%

v v 93.2%  95.2%

v v v 93.8%  95.5%

v v v 94.0%  95.6%

v v v 94.1%  95.8%

v v v v 94.9%  96.4%

It is important to highlight how much better the results were when training the models
with both real and synthetic images (i.e., 94.9% and 96.4%) compared to those obtained when
simply training the models with original images augmented by common transformations such as
random rotation, random noise, random cropping, random compression, and random changes in
brightness, saturation and contrast (i.e., 84.5% and 88.1%).

Interestingly, both the templates and the images produced by the GAN model contributed
significantly more to improving the OCR models’ performance than the images generated through
character permutation. This finding aligns with the fact that images created via character
permutation still share many characteristics with their original counterparts (e.g., character
position, compression artifacts, and camera noise) despite having different sequences of characters.

While not the primary focus of Table 7.7, it also reinforces the importance of rectifying
the LPs before the recognition stage, as this consistently resulted in improved outcomes.

7.4.2.2 Cross-Dataset Experiments

As emphasized throughout this work, conducting cross-dataset experiments is pivotal in assessing
the models’ generalizability. Thus, Table 7.8 presents the recognition rates obtained by all models
on the four datasets not seen during the training stage: OpenALPR, PKU, CD-HARD and CLPD.

These results demonstrate that the explored OCR models, trained on a combination
of real and synthetic images, maintain high performance even in unseen scenarios. What most
caught our attention was the consistency of the TRBA model (Baek et al., 2019), as it also
reached the best results in this evaluation. On the other hand, here the STAR-Net model (which
tied with the best results in the intra-dataset experiments) was outperformed by RARE in all
datasets. That is why we consider YOLOv4-CSP (detection) + CDCC-NET (rectification) +
TRBA (recognition) to be our best approach and therefore employ it in the comparisons with
state-of-the-art approaches in the next section.
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Table 7.8: Recognition rates obtained by all models on four public datasets that were not seen during the training
stage (cross-dataset experiments). The best results for each dataset are shown in bold.

Dataset # LPs OpenALPR-EU PKU CD-HARD  CLPD Aver.
Model #108 #2253 #104 #1200 Verase

CNNG (Fan and Zhao, 2022) 95.4% 98.6% 58.7% 92.9% 86.4%
CR-NET (Silva and Jung, 2020) 93.5% 99.5% 67.3% 92.9% 88.3%
CRNN (Shi et al., 2017) 97.2% 99.1% 56.7% 94.2% 86.8%
Fast-OCR (Laroca et al., 2021a) 98.1% 99.1% 69.2% 94.4% 90.2%
GRCNN (Wang and Hu, 2017) 97.2% 99.0% 57.7% 94.5% 87.1%
Holistic-CNN (Spaihel et al., 2017) 95.4% 99.0% 54.8% 94.0% 85.8%
Multi-Task (Gongalves et al., 2018) 96.3% 98.8% 54.8% 93.7% 85.9%
Multi-Task-LR (Gongalves et al., 2019) 94.4% 98.8% 53.8% 92.6% 84.9%
R?AM (Lee and Osindero, 2016) 98.1% 99.4% 57.7% 93.8% 87.3%
RARE (Shi et al., 2016) 99.1% 99.1% 72.1% 95.2% 91.4%
Rosetta (Borisyuk et al., 2018) 97.2% 99.2% 64.4% 93.8% 88.7%
STAR-Net (Liu et al., 2016) 98.1% 98.5% 71.2% 95.0% 90.7%
TRBA (Baek et al., 2019) 99.1% 99.4% 76.9% 96.2% 92.9%
ViTSTR-Base (Atienza, 2021b) 94.4% 99.0% 54.8% 93.4% 85.4%
ViTSTR-Small (Atienza, 2021b) 96.3% 97.4% 59.6% 94.3% 86.9%
ViTSTR-Tiny (Atienza, 2021b) 94.4% 97.6% 53.8% 92.3% 84.5%
Average 96.5% 98.8% 61.5% 93.9% 87.7%
Model Fusion MV-HC (top 8) 99.1% 99.6% 81.7% 97.6% 94.5%

While subpar results were achieved on the CD-HARD dataset, it is essential to recognize
the inherent complexity of this dataset, as implied by its name. Our analysis has revealed that the
primary challenge posed by this dataset lies in the diverse range of LP layouts it encompasses.
Images within the dataset feature vehicles from various regions not represented in the datasets
used for model training, such as Dubai and New South Wales. The high degree of tilt of many
LPs would further hinder recognition if not rectified before the recognition stage.

A noteworthy insight from Table 7.8 is that integrating synthetic data with model fusion
also improves LPR performance in cross-dataset scenarios.

7.4.2.3 Comparison With Previous Works and Commercial Systems

In Table 7.9, we compare the end-to-end results achieved by our best approach with those reported
by state-of-the-art ALPR systems. Following common practice, to ensure fairness, we only
consider systems evaluated in the same way as in our benchmark (see details in Section 7.3.2).
We also compare our results with those obtained by the Sighthound (2023) and OpenALPR
(2023) commercial systems (details on these systems were provided in Section 3.4).

It is impressive that, without using any heuristics rule or post-processing, our best
approach (TRBA) achieves state-of-the-art performance on all datasets except AOLP. Note that
we actually attained state-of-the-art results (e.g., 99.9%) in this dataset when employing other
models for LPR (see Table 7.5); however, we do not consider those results here as the respective
models did not perform better than TRBA on average.

Two other aspects should be highlighted from the above results. First, the positive
influence of exploiting synthetic data is reaffirmed, as our system did not achieve the best
results on most datasets when solely using real data (plus simple data augmentation) for training.
Second, both the Sighthound (2023) and OpenALPR (2023) commercial systems performed
poorly on the RodoSol-ALPR dataset (with 57.0% and 69.3% recognition rates, respectively).
As previously discussed in Chapter 5 and now detailed in Table 7.10, the primary reason for
such underwhelming results is the limited effectiveness of these systems in handling motorcycle
LPs (which have two-row character arrangement and smaller size) and Mercosur LPs. These



112

Table 7.9: Recognition rates obtained by our best approach (which uses TRBA as the recognition model), state-of-
the-art methods, and two commercial systems in the eight datasets where part of the images was used for training the
networks (intra-dataset experiments). The best results achieved in each dataset are shown in bold.

W Caltech Cars  EnglishLP  UCSD-Stills  ChineseLP AOLP SSIG-SegPlate  UFPR-ALPR  RodoSol-ALPR Average
Approach #46 #102 #60 #161 # 687 # 804 #1,800 #8,000

Sighthound (2023) 87.0% 93.1% 96.7% 95.0% 95.5% 82.8% 62.9% 57.0% 83.7%
Castro-Zunti et al. (2020)* 91.3% - 98.3% - - - - - -
Silva and Jung (2022) - - - - 97.4% - 86.3% - -
Henry et al. (2020) 97.8% 97.1% - - 98.9% - - - -
Laroca et al. (2021b) (run 1)* 97.8% 96.1% 96.7% 98.1% 99.4% 98.8% 89.7% - -
Zhou et al. (2023) - - - - - - 90.3% - -
Silva and Jung (2022)" - - - - 99.0% - 91.8% - -
OpenALPR (2023)* 95.7% 98.0% 98.3% 96.9% 97.1% 93.0% 92.2% 69.3% 92.6%
Chen et al. (2023) - - - - - - - 96.6% -
Nascimento et al. (2023)* - - - - - - - 96.6% -
Ours 87.0% 91.2% 88.3% 98.1% 98.4% 98.1% 92.1% 96.8% 93.7%
Zhang et al. (2021a) - — - - - 98.6% 92.3% - -
Liu et al. (2024a)* - - - - 99.0% - - 97.0% -
Ours + synthetic 97.8% 99.0% 98.3% 98.8% 98.8% 99.3% 94.0% 97.3% 97.9%

T ALPR systems that rely on pre-defined heuristic rules (prior knowledge) to refine the predictions returned by the OCR model.
“The LP patches fed into the OCR model were cropped directly from the ground truth in (Castro-Zunti et al., 2020; Nascimento et al., 2023; Liu et al., 2024a).

observations underscore the importance of comparing ALPR systems across diverse datasets
that encompass various collection methodologies, feature images of different types of vehicles
(including motorcycles), and exhibit different LP layouts (including two-row configurations).

Table 7.10: Results achieved by two well-known commercial systems in the RodoSol-ALPR dataset. It can be seen
that their capabilities vary considerably according to the vehicle type and the LP layout.

System Vehicle Type LP Layout

Cars  Motorcycles Brazilian Mercosur

Sighthound (2023) 81.3% 32.7% 63.9% 50.1%
OpenALPR (2023) 95.6% 43.0% 90.7% 47.8%

There are many recent works where the authors evaluated the generalizability of the
proposed methods in the PKU (Yuan et al., 2017) and CLPD (Zhang et al., 2021c¢) datasets, both
collected in mainland China. Hence, in Table 7.11, we compare the results obtained by these
methods (plus Sighthound and OpenALPR) with those reached by our best approach. For each
method, we also provide details on the number of real Chinese LPs used for its training, as well
as its multinational applicability (we classify methods as multinational if they were not trained or
fine-tuned exclusively on Chinese LPs).

When exploring synthetic data for training the OCR model, our end-to-end approach
(YOLOv4-CSP + CDCC-NET + TRBA) exhibited significantly superior performance compared to
state-of-the-art methods and commercial systems on both datasets. These results are particularly
noteworthy given that our training dataset comprised only 506 real images of vehicles with
Chinese LPs, while most baseline models were trained on over 100,000 images from the CCPD
dataset (Xu et al., 2018). Indeed, this is one of the reasons why our approach did not outperform
the baselines even further, especially on the CLPD dataset, as several of the recognition errors
occurred on LP styles missing in our training set but present in CCPD (e.g., 8-character green
LPs from electric vehicles). By incorporating LP images extracted from CCPD’s training set into
our training data, mirroring previous studies, our approach achieved impressive recognition rates
of 97.3% and 99.5% on the CLPD and PKU datasets, respectively.

7.4.2.4 Speed/Accuracy Trade-Off

The importance of devising methods that strike an optimal balance between speed and accuracy
has been highlighted in recent ALPR research (Jiang et al., 2023b; Ke et al., 2023; Ding et al.,
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Table 7.11: Comparison of the recognition rates obtained by our best approach (which uses TRBA as the recognition
model), state-of-the-art methods, and commercial systems on the CLPD and PKU datasets. These experiments
assess the generalizability of these ALPR approaches, as no images from those datasets were used for training. The
methods categorized as “Multinational” were not trained or fine-tuned exclusively on Chinese LPs.

Real images of Chinese Recognition Rate

Approach LPs used for training Multinational CLPD PKU
Sighthound (2023) ? v 85.2%  89.3%
Zhang et al. (2021c¢) 100,000+ 87.6%  90.5%
Fan and Zhao (2022) 100,000+ v 88.5%  92.5%
Ours 506 v 90.1%  96.8%
Rao et al. (2024)" 4,444 91.4%  96.1%
Liu et al. (2021) 10,000 91.7% -
OpenALPR (2023) ? 91.8%  96.0%
Chen et al. (2023) 100,000+ 92.4%  92.8%
Ke et al. (2023) 100,000+ 93.2% -
Zou et al. (2020) 100,000+ 94.0%  96.6%
Zou et al. (2022) 100,000+ 94.5% -
Wang et al. (2022b) 100,000+ 94.8% -
Wang et al. (2022c) 100,000+ 95.3%  96.9%
QOurs + synthetic 506 v 96.2%  99.4%
[Additional experiments]

Ours + CCPD’s training set 100,000+ v 94.5% 96.8%

Ours + CCPD’s training set + synthetic 100,000+ v 97.3%  99.5%

 Approaches in which we applied the authors’ code and pre-trained models to obtain the reported results.

2024). Thus, this section examines the speed/accuracy trade-off of the OCR models explored in
this chapter. Figure 7.8 compares the average recognition rates reached across datasets and the
corresponding frames per second (FPS) processing capabilities of all models, both in intra- and
cross-dataset setups.

Intra-Dataset Cross-Dataset
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Figure 7.8: Average recognition rate across datasets and the corresponding FPS processing capabilities for all
OCR models on intra-dataset (left) and cross-dataset (right) experiments. The specific FPS value for each model
is as follows: CNNG: 479; CR-NET: 189; CRNN: 343; Fast-OCR: 330; GRCNN: 117; Holistic-CNN: 399;
Multi-Task: 427; Multi-Task-LR: 463; RZAM: 63; RARE: 77; Rosetta: 219; STAR-Net: 141; TRBA: 59; ViTSTR-
Base: 137; ViTSTR-Small: 142; and ViTSTR-Tiny: 145.

In intra-dataset scenarios, the multi-task models, particularly Multi-Task and CNNG,
demonstrated an exceptional balance between speed and accuracy. This success stems from their
ability to learn potential classes for each character position independently, avoiding confusion
between similar letters and digits in layouts where they appear in distinct positions. If the primary
goal is to achieve the utmost recognition rate across various scenarios, STAR-Net stands as a
more compelling option compared to TRBA. This is because STAR-Net reached the same average
recognition rate as TRBA (97.9%) while processing more than twice the FPS (141 vs. 59).
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In cross-dataset scenarios, as outlined in Section 7.4.2.2, TRBA once again emerged as
the top performer in terms of average recognition rate, standing alone this time, while STAR-
Net was outperformed by RARE. Concerning the trade-off between speed and accuracy, the
Fast-OCR model clearly excels, striking a commendable balance between the two. Its relatively
high accuracy on unseen LPs can be attributed to its foundation on the YOLO object detector.
Consequently, it detects and recognizes each character individually, as opposed to predicting
specific LP sequences that mimic patterns from the training set. Conversely, the multi-task
models experienced a substantial decline in recognition rate precisely because they learned to
predict sequences based on patterns observed in the training set, which often differ from those
observed in other datasets/scenarios.

Regarding the VITSTR variants, it is worth noting that they handle essentially the same
number of FPS. This is because the key differentiation among the ViTSTR-Base, -Small and
-Tiny models lies in their respective number of parameters and computations required (FLOPS),
rather than in the number of FPS they can process (Atienza, 2021b).

7.5 Final Remarks

This chapter delves into the integration of real and synthetic data for improved LPR. Synthetic LP
images were generated using three widely adopted methodologies in the literature: a rendering-
based pipeline (templates), character permutation, and a GAN model. We subjected 16 OCR
models to a thorough benchmarking process involving 12 public datasets acquired from various
regions. The experiments encompassed both intra- and cross-dataset evaluations, including an
examination of the speed/accuracy trade-off of the models. To the best of our knowledge, this
constitutes the most extensive experimental evaluation conducted in the field.

Several key findings emerged from our study. Primarily, the massive use of synthetic
data significantly improved the performance of all models. Both quantitative and qualitative
results demonstrated the models’ robustness in effectively handling diverse LP layouts, images
with varying resolutions, and LPs with varying numbers of characters arranged in either one
or two rows. Notably, employing the top-performing OCR model (TRBA) yielded end-to-end
results that surpassed those reached by state-of-the-art methods and established commercial
systems in both intra- and cross-dataset scenarios. These results are particularly noteworthy as
our models were not specifically trained for each LP layout, and we refrained from incorporating
heuristic rules to enhance the predictions for LPs from specific regions through post-processing.
This streamlined approach significantly simplifies the process of incorporating support for LPs
from new regions or even markedly different LP styles within the same region.

The conducted ablation studies provided three important insights. First, each synthesis
method contributed considerably to enhancing the results, and a substantial synergistic effect was
observed when combining them. This finding contrasts with the common practice of generating
synthetic LPs exclusively through a single methodology. Second, incorporating synthetic data into
the training set enabled commendable results to be attained even when using small fractions of
the original data. This highlights the effectiveness of synthetic data in overcoming the challenges
posed by scarce training data. Third, consistent with findings from prior research, rectifying the
LPs before the recognition stage proved essential for achieving optimal LPR performance.

Acknowledging the significance of both model speed and accuracy in real-world
applications, we investigated how well the models strike a balance between these two factors.
Although the multi-task models demonstrated an impressive speed/accuracy trade-off in intra-
dataset scenarios, this optimal balance did not extend to cross-scenario scenarios. In such
instances, these models exhibited a more substantial decline in recognition rates than most other
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models. Remarkably, in cross-dataset scenarios, Fast-OCR stood out due to its great balance
between speed and accuracy. The effectiveness of Fast-OCR in cross-dataset scenarios can be
attributed to its character-level detection and recognition approach, setting it apart from other
models that predict LP sequences by replicating patterns from the training set. While this
replication approach proves effective in similar contexts, its efficacy tends to diminish when
applied to different regions or scenarios.

It is essential to acknowledge the extensive number of experiments conducted for this
study. We carried out nine training sessions for each of the 16 OCR models under investigation
(refer to Table 7.7), subjecting them to testing across various seen and unseen datasets. We
also explored the pix2pix model’s capabilities for generating LP images and performed multiple
experiments related to the LPD and corner detection tasks, as reported in Tables 7.3 and 7.4.
As mentioned earlier in this work, a single training process for some models (e.g., TRBA and
ViTSTR-Base) takes several days to complete on an NVIDIA Quadro RTX 8000 GPU, which is
currently one of the top-performing GPUs in the market.
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8. DO WE TRAIN ON TEST DATA? THE IMPACT OF NEAR-DUPLICATES ON
LICENSE PLATE RECOGNITION

LPR methods are typically evaluated using images from public datasets, which are divided into
disjoint training and test sets using standard splits, defined by the datasets’ authors, or following
previous works (when there is no standard split). In many cases, such an assessment is carried out
independently for each dataset (Laroca et al., 2018; Zhuang et al., 2018; Weihong and Jiaoyang,
2020; Zhang et al., 2021d; Ke et al., 2023; Pham, 2023).

Although the images for training and testing belong to disjoint sets, the splits traditionally
adopted in the literature were defined without considering that the same LP may appear in
multiple images. As a result, we found that there are many near-duplicates (i.e., different images
of the same LP) in the training and test sets of datasets widely explored in ALPR research (see
Section 8.1.1). In this chapter, to evaluate the impact of such duplicates on LPR, we focus our
analysis on the AOLP (Hsu et al., 2013) and CCPD (Xu et al., 2018) datasets, as they are the most
popular datasets in the field. Nevertheless, Section 8.3 highlights the existence of near-duplicates
in several other datasets and gives examples of how it has been overlooked in the literature.

Considering that recent ALPR approaches rectify (unwarp) the detected LPs before
feeding them to the recognition model (Fan and Zhao, 2022; Qin and Liu, 2022; Silva and Jung,
2022; Wang et al., 2022c; Xu et al., 2022; Jiang et al., 2023b), the presence of duplicates in
the training and test sets means that LPR models are, in many cases, being trained and tested
on essentially the same images (see Figure 8.1). This is a critical issue for accurate scientific
evaluation (Barz and Denzler, 2020; Emami et al., 2020). Researchers aim to compare models in
terms of their ability to generalize to unseen data (Feldman and Zhang, 2020; Liao et al., 2021).
With a considerable number of duplicates, however, there is a risk of comparing the models in
terms of their ability to memorize training data, which increases with the model’s capacity (Barz
and Denzler, 2020; Hooker et al., 2020).

AOLP (Protocol A) AOLP (Protocol B) CCPD (latest version)

P (Protoc ey RAUGOTTY: ! 361 5P TITPA

255453 D071 T9B85GN BBBBEF 7263KT 9F 1381
Figure 8.1: Examples of near-duplicates in the training and test sets of the AOLP and CCPD datasets, which are by
far the two most popular datasets in the LPR literature. The top row shows LPs cropped and rectified from images in
the training sets, while the bottom row shows LPs cropped and rectified from their nearest neighbors in the respective

test set. We show three image pairs for each dataset representing the 10th, 50th and 90th percentiles based on their
Euclidean distance in pixel space. Protocols A and B in the AOLP dataset are described in Section 8.1.1.

Test Training

In light of this, we create fair splits for the AOLP and CCPD datasets (see Section 8.2.1)
and compare the performance of six well-known OCR models applied to LPR under the
original (adopted in previous works) and fair protocols??. Our results indicate that the presence
of duplicates greatly affects the performance evaluation of these models. Considering the
experiments under the AOLP-B protocol as an example, the model that reached the best results
under the traditional split ranked third under the fair one. Such results imply that the duplicates
have biased the evaluation and development of deep learning-based models for LPR.

22 An article version of this chapter was accepted for presentation at the 2023 International Joint Conference on
Neural Networks (IJCNN) (Laroca et al., 2023a).
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This chapter builds upon the work of Barz and Denzler (2020), who identified duplicates
within the CIFAR-10 and CIFAR-100 datasets. It is further motivated by the results presented in
Chapter 5, particularly the substantial drops observed in LPR performance when training and
testing state-of-the-art models in a leave-one-dataset-out experimental setup.

In summary, this chapter has two main contributions:

e We reveal the presence of near-duplicates in the training and test sets of datasets widely
adopted in the ALPR literature. Our analysis shows the impact of such duplicates on the
evaluation of six well-known recognition models applied to LPR.

— Our results on the AOLP dataset indicate that the high fraction of near-duplicates in
the splits traditionally employed in the literature may have hindered the development
and acceptance of more efficient LPR models that have strong generalization abilities
but do not memorize duplicates as well as other models;

— Our experiments on the CCPD dataset give a clearer picture of the true capabilities
of LPR models compared to prior evaluations using the standard split, in which the
test set has duplicates in the training set. Results revealed a decrease in the average
recognition rate from 80.3% to 77.6% when the experiments were conducted under
a fair split without duplicates.

e We create and release fair splits for these datasets where there are no duplicates in the
training and test sets, and the key characteristics of the original partitions are preserved
as much as possible (see details on Section 8.2.1).

This chapter is structured as follows. We describe the AOLP and CCPD datasets in
Section 8.1, detailing the protocols often adopted for each and how many near-duplicates they
have. Section 8.2 details the experiments performed. The presence of duplicates in other popular
datasets is discussed in Section 8.3. Finally, conclusions are provided in Section 8.4.

8.1 The AOLP and CCPD Datasets

The two most popular datasets for ALPR (in terms of the number of works that explored them)
are AOLP (Hsu et al., 2013) and CCPD (Xu et al., 2018). While most authors explored at least
one of these two datasets in their experiments (Li et al., 2019; Silva and Jung, 2022; Dai et al.,
2024), there are many works in which the experiments were performed exclusively on them (Xie
et al., 2018; Zhang et al., 2020c; Liang et al., 2022; Pham, 2023).

AOLP was created to verify that ALPR is better handled in an application-oriented
way. It is categorized into three subsets: access control (AC), traffic law enforcement (LE), and
road patrol (RP). These subsets have 681, 757 and 611 images, respectively, all captured in the
Taiwan region.

The AOLP dataset lacks a standardized division for training and testing purposes, leading
researchers to adopt various approaches. For instance, some authors (e.g., Xie et al. (2018);
Laroca et al. (2021b); Liang et al. (2022)) randomly divided its images into training and test sets
with a 2:1 ratio (we refer to this protocol as AOLP-A). Others, including Li et al. (2019); Zhang
et al. (2021d); Wang et al. (2022c), used images from different subsets for training and testing.
For example, Fan and Zhao (2022); Nguyen (2022); Qin and Liu (2022) used images from the
AC and LE subsets to train the proposed models and tested them on the RP subset (we refer to
this protocol as AOLP-B). Zhuang et al. (2018) evaluated their method under both the AOLP-A
and AOLP-B protocols. As commonly done in previous works, we consider that 20% of the
training images are allocated for validation in both protocols.
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Xu et al. (2018) claimed that the ALPR datasets available at the time (including AOLP)
either lacked quantity (i.e., they had less than 10k images) or diversity (i.e., they were collected
by static cameras or in overly controlled settings). Thus, to assist in better benchmarking ALPR
approaches, they presented the CCPD dataset.

CCPD comprises images taken with handheld cameras by workers of a roadside parking
management company on the streets of a capital city in mainland China. The dataset was
updated/expanded twice after being introduced in 2018%3. Tt originally consisted of 250k images,
divided into subsets (e.g., Blur, Challenge, Rotate, Weather, among others) according to their
characteristics (Xu et al., 2018). Then, in 2019, the authors released a new version — much more
challenging than the previous one — containing over 300k images, refined annotations, and a
standard split. In summary, in this protocol, the 200k images in the “Base” subset are split into
training and validation sets (50%/50%), while all images from the other subsets are employed
for testing. Finally, in 2020, the authors included a new subset (Green) with 11,776 images of
electric vehicles, which have green LPs with eight characters (all the other subsets have images
of vehicles with blue LPs containing seven characters). The Green subset has a standard split,
with 49% of the images allocated for training, 8.5% for validation, and 42.5% for testing. This
latest iteration of CCPD (2020) is the version explored in this chapter.

8.1.1 Duplicates

The problem with these split protocols is that they do not account for the same vehicle/LP
appearing in multiple images, including images from different subsets, as shown in Figure 8.2
and Figure 8.3. While one may claim that such images have enough variety to be used both for
training and testing LP detectors, as they are fed the entire images, not just the LP region, it
seems reasonable to consider that such images should not be employed in the same way (i.e.,
for both training and testing) in the recognition stage, as the LPs look very similar after being
cropped and rectified. In fact, they can look very similar even without rectification (e.g., see (d)
and (e) in Figure 8.2).

In the AOLP dataset, considering the AOLP-A split protocol?*, there are 320 duplicates
from the test set in the training one. As there are 683 test images in this protocol, 46.9% of them
have duplicates. Startlingly, the number of duplicates is even higher in the AOLP-B split protocol,
where 413 of the 611 test images (67.6%0) have duplicates in the training set.

The situation is less severe — albeit still concerning — for the CCPD dataset, where we
found 29,943 duplicates from the test set in the training set. Despite the much higher number of
duplicates in absolute terms, CCPD’s current version has 157k images with labeled LPs in the
test set; that is, the duplicates amount to 19.1% of the test images.

8.2 Experiments

This section presents the experiments conducted for this study. First, we describe the duplicate-
free splits proposed for the AOLP and CCPD datasets. Then, we list the six OCR models explored
in this chapter’s assessments. Afterward, we show some examples of the synthetic images created
to avoid overfitting during model training. Finally, we report and analyze the results obtained.

23 CCPD’s latest version is available at https://github.com/detectRecog/CCPD/
24 We replicated the split made in (Laroca et al., 2021b) of AOLP’s images into training, validation and test sets.
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Figure 8.2: Examples of images from different subsets in the AOLP dataset that show the same vehicle/LP. In the

split protocols often adopted in the literature, some of these images are in the training set and others are in the test
set. We show a zoomed-in version of the rectified LP in the lower left region of each image for better viewing.
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Figure 8.3: The same vehicle/LP may appear in both training and test images in the CCPD dataset (Xu et al., 2018).
We show a zoomed-in version of the rectified LP in the lower left region of each image for better viewing.
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8.2.1 Duplicate-Free Splits for the AOLP and CCPD Datasets

As the AOLP and CCPD datasets do not have data scraped from the internet (as CIFAR-10 and
CIFAR-100 do, for example), we cannot replace the duplicates with new images due to the risk of
selection bias or domain shift (Torralba and Efros, 2011; Tommasi et al., 2017; Barz and Denzler,
2020). Therefore, we present fair splits for each dataset where there are no duplicates of the test
images in the training set?. As detailed next, we attempted to preserve the key characteristics of
the original splits in the new ones as much as possible.

The AOLP-Fair-A split was created as follows. Following previous works (Xie et al.,
2018; Zhuang et al., 2018; Liang et al., 2022), we randomly divided each of the three subsets
of the AOLP dataset into training and test sets with a 2:1 ratio. Nevertheless, we ensured that
distinct images showing the same vehicle/LP (as those shown in Figure 8.2) were all in the same
set. Afterward, we allocated 20% of the training images for validation. In this way, the AOLP-A
(adopted in previous works) and AOLP-Fair-A protocols have the same number of images for
training, testing and validation.

The core idea of the AOLP-B protocol is to train the approaches on the AC and LE
subsets and test them on the RP subset (Fan and Zhao, 2022; Qin and Liu, 2022; Nguyen, 2022).
Thus, we created the AOLP-Fair-B protocol in the following way. We kept the original training
and validation sets and removed the duplicates from the test set; otherwise, one could ask whether
a potential drop in recognition rate is solely due to the reduction in the number of training
examples available. In other words, the test sets for the AOLP-B and AOLP-B-Fair splits are
different, with the AOLP-B-Fair’s test set being a duplicate-free subset of the AOLP-B’s test set.
However, the training and validation sets are exactly the same in both splits.

As mentioned in Section 8.1.1, CCPD’s standard split randomly divides the 200k images
of the Base subset into training (100k) and validation (100k) sets. All images from the other
subsets are used for testing (except Green, which was introduced later and has its own split).
In order to maintain such a distribution, we created the CCPD-Fair split as follows. The Base
subset was divided into training and validation sets with 100k images each, as in the original
split. Nevertheless, instead of making this division completely random, we made the training set
free of duplicates by allocating all duplicates to the validation set?®. Similarly, we followed the
original split for the Green subset as closely as possible, just reallocating the duplicates from
the training set to the validation set. The test set has not changed. In essence, the original and
CCPD-Fair splits use the same ~ 157k images for testing but have different images in the training
and validation sets (each with ~ 103k images — about 100k from Base and 3k from Green).

8.2.2 OCR Models

This chapter focuses on six of the OCR models used in previous chapters: CNNG (Fan and Zhao,
2022), Holistic-CNN (Spaﬁhel et al., 2017), Multi-Task (Gongalves et al., 2018), STAR-Net (Liu
et al., 2016), TRBA (Baek et al., 2019), and ViTSTR-Base (Atienza, 2021b). These models
were selected based on their performance in prior evaluations. Note that the CCPD dataset lacks
annotations for character positions, rendering CR-NET and Fast-OCR unusable for this analysis.

We trained the models using the same frameworks and hyperparameters as in previous
chapters (see Section 5.1 for details).

23 The list of near-duplicates we have found and proposals for fair splits are publicly available for further research
athttps://raysonlaroca.github.io/supp/lpr—-train-on-test/

26 We trained the OCR models with and without duplicates in CCPD-Fair’s validation set, which is used for early
stopping and choosing the best weights. As the results achieved in the test set were essentially the same, we kept the
same number of validation images (100k-103k) as in the original division.
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8.2.3 Synthetic Data

It is well-known that (i) LPR datasets usually have a significant imbalance in terms of character
classes as a result of LP assignment policies (Gongalves et al., 2018; Fan and Zhao, 2022) and
(i) OCR models are prone to memorize patterns seen in the training stage (Zeni and Jung, 2020;
Garcia-Bordils et al., 2022); this phenomenon was termed vocabulary reliance in (Wan et al.,
2020). To mitigate the risk of overfitting, we incorporated many synthetic LP images into the
training set. We opted to generate these images using templates, mirroring the methodology
outlined in the preceding chapter (Section 7.2.1), as this method does not rely on real images.
Examples of the LP images generated for this chapter’s experiments are shown in Figure 8.4.

Figure 8.4: Some of the many LP images we created to mitigate overfitting. The images in the top row simulate
LPs from vehicles registered in the Taiwan region (as in AOLP), while those in the bottom row simulate LPs from
vehicles registered in mainland China (as in CCPD).

8.2.4 Results and Discussion

Here, we report the recognition rates reached by the OCR models in each dataset under the
original and fair splits>’. As usual, recognition rate refers to the number of correctly recognized
LPs divided by the number of LPs in the test set. Following (Barz and Denzler, 2020), in addition
to the recognition rates obtained in the original and fair protocols, we report their differences in
terms of absolute percentage points (“Gap”) and in relation to the original error (“Rel. Gap”):

sap

Rel. Gap = ————
¢ ap 100% — acc

(8.1)

The results reached by all OCR models on the AOLP dataset are shown in Tables 8.1
and 8.2. In both protocols (AOLP-A and AOLP-B), the recognition rates obtained in the fair split
were considerably lower than those achieved in the original one. Specifically, the error rates
were more than twice as high in the experiments conducted under the fair protocols.

Table 8.1: Recognition rates achieved by six OCR models under the AOLP-A (adopted in previous works) and
AOLP-Fair-A (ours) protocols. The best value in each column is shown in bold.

Model AOLP-AT AOLP-A-FairT Gap| Rel. Gap|
CNNG (Fan and Zhao, 2022) 98.88% 95.63% 3.25%  290.2%
Holistic-CNN (Spaiihel et al., 2017)  96.75% 93.11% 3.64%  112.0%
Multi-Task (Gongalves et al., 2018) 97.33% 93.79% 3.54% 132.6%
STAR-Net (Liu et al., 2016) 98.69% 95.83% 2.86%  218.3%
TRBA (Baek et al., 2019) 99.18% 96.94%0 2.24%  273.2%
ViTSTR-Base (Atienza, 2021b) 98.74% 96.94% 1.80%  142.9%

It is crucial to note that the ranking of the recognition models changed when they were
trained and tested under fair splits. For example, the CNNG model achieved the best result under

27 We reinforce that all results reported in this chapter are from our experiments (i.e., we trained all recognition
models following precisely the same protocol in each set of experiments) and not replicated from the cited papers.
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Table 8.2: Recognition rates achieved by six OCR models under the AOLP-B (adopted in previous works) and
AOLP-Fair-B (ours) protocols. The best value in each column is shown in bold.

Model AOLP-BT AOLP-B-FairT Gap| Rel. Gap|
CNNG (Fan and Zhao, 2022) 98.91% 96.80% 2.11% 193.6%
Holistic-CNN (Spatihel et al., 2017)  98.42% 96.30% 2.12% 134.2%
Multi-Task (Gongalves et al., 2018) 98.42% 95.29% 3.13% 198.1%
STAR-Net (Liu et al., 2016) 98.47% 96.46% 2.01% 131.4%
TRBA (Baek et al., 2019) 98.75% 97.47% 1.28%  102.4%
ViTSTR-Base (Atienza, 2021b) 98.75% 97.31% 1.44% 115.2%

the AOLP-B protocol (as in (Fan and Zhao, 2022), where it was proposed) but only reached the
third-best result under AOLP-Fair-B. Similarly, the ViTSTR-Base model ranked third under the
AOQOLP-A protocol but tied for first place with TRBA under AOLP-Fair-A.

These results strongly suggest that, in the past, the high fraction of near-duplicates in
the splits traditionally adopted in the literature for the AOLP dataset may have prevented the
publication and adoption of more efficient LPR models that can generalize as well as other models
but fail to memorize duplicates. A similar concern was raised by Barz and Denzler (2020) with
respect to the CIFAR-10 and CIFAR-100 datasets.

The results for the CCPD dataset are presented in Table 8.3, with a further breakdown
provided in Table 8.4 following established practices in the field (Xu et al., 2018; Chen et al.,
2023; Liu et al., 2024b). While the largest drop in recognition rate was 3.64% in the AOLP
dataset, the STAR-Net and TRBA models had drops of 5.20% and 4.35% in recognition rate
under the CCPD-Fair protocol, respectively. The average recognition rate decreased from 80.3%
to 77.6%, with the relative gaps being much smaller than those observed in the AOLP dataset
because the recognition rates reached in CCPD were not as high (we note that lower recognition
rates were expected for the CCPD dataset, as its creators modified it twice with the specific
purpose of making it much more challenging than it was initially).

Table 8.3: Recognition rates achieved by six well-known recognition models on the CCPD dataset under the standard
and CCPD-Fair protocols. The best value in each column is shown in bold.

Model CCPDT CCPD-FairT Gap| Rel. Gap]

CNNG (Fan and Zhao, 2022) 88.24% 86.93% 1.31% 11.1%
Holistic-CNN (Spatihel et al., 2017)  77.01% 75.41% 1.60% 7.0%
Multi-Task (Gongalves et al., 2018)  83.01% 81.84% 1.17% 6.9%

STAR-Net (Liu et al., 2016) 78.53% 73.33% 5.20% 24.2%
TRBA (Bacek et al., 2019) 75.83% 71.48% 4.35% 18.0%
ViTSTR-Base (Atienza, 2021b) 79.06% 76.37% 2.69% 12.9%

Examining the absolute number of errors may give a clearer understanding of the impact
of duplicates on the evaluation of the recognition models. The lowest performance gap of 1.17%
translates to 1,800+ additional LPs being misrecognized under the fair split (vs. the standard
one), while the highest performance gap of 5.2% represents a staggering number of 8,000+ more
LPs being incorrectly recognized under the fair split.

In contrast to the observed in the AOLP dataset, the model rankings remained largely
consistent in CCPD, with only the fourth and fifth places switching positions. This is partially
due to the significant performance gap between the models and suggests that the community’s
research efforts have not yet overfitted to the presence of duplicates in the standard split of the
CCPD dataset. However, we fundamentally believe it is only a matter of time before this starts
to happen or be noticed (potentially with the use of deeper models, as the ability to memorize
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Table 8.4: Recognition rates (%) for each subset of the CCPD dataset under the standard and CCPD-Fair protocols.

Subset Blur Chal. DB FN Green Rot. Tilt Weath. All
Model 21K 50K 10K 21K 5K 10K 30K 10K 157K
CCPD
CNNG (Fan and Zhao, 2022) 77.3  84.1 80.8 91.0 942 974 955 993 88.2

Holistic-CNN (Spatihel et al., 2017) 52.0 68.8 67.8 81.9 930 952 914 99.1 77.0
Multi-Task (Gongalves et al., 2018)  68.4 77.1 732 86.1 93.8 96.0 926 98.8 83.0

STAR-Net (Liu et al., 2016) 587 712 649 833 917 949 912 984 785

TRBA (Baek et al., 2019) 502 679 59.6 819 927 947 91.1 984 758

ViTSTR-Base (Atienza, 2021b) 564 720 659 84.6 940 955 922 98.8 79.1
CCPD-Fair

CNNG (Fan and Zhao, 2022) 734 828 788 902 928 97.0 951 99.2 86.9

Holistic-CNN (Spatihel et al., 2017)  47.9 66.8 656 81.2 912 951 909 982 754
Multi-Task (Gongalves et al., 2018)  65.7 757 71.5 853 920 956 922 98.7 81.8

STAR-Net (Liu et al., 2016) 464 643 572 797 915 939 8.6 98.0 733
TRBA (Baek et al., 2019) 38.7 627 524 80.0 912 938 893 981 715
ViTSTR-Base (Atienza, 2021b) 502 684 635 825 935 951 911 987 764

training data increases with the model’s capacity (Barz and Denzler, 2020; Hooker et al., 2020)) in
case such near-duplicates in the training and test sets are not acknowledged and therefore avoided.

8.3 What About Other Datasets?

As mentioned earlier, we focused our analysis on the AOLP and CCPD datasets due to their
predominance in the ALPR literature (Xie et al., 2018; Qin and Liu, 2020; Zhang et al., 2020c;
Liang et al., 2022; Pham, 2023). Nevertheless, as this issue (i.e., LPR models being evaluated in
datasets containing near-duplicates in the training and test sets) has not yet received due attention
from the community, it has recurred in assessments carried out on several other public datasets.

Consider the EnglishLP (Srebrié, 2003), Medialab LPR (Anagnostopoulos et al., 2008)
and PKU (Yuan et al., 2017) datasets as examples (they are quite popular, albeit far less than
AOLP and CCPD). They all have near-duplicates, as shown in Figure 8.5. As these datasets
lack an official evaluation protocol, it is common for authors to divide their images into training,
validation and test sets randomly (Zhuang et al., 2018; Gao et al., 2020a; Khan et al., 2021;
Zhang et al., 2021d; Qin and Liu, 2022). As can be inferred, the presence of near-duplicates in
these datasets has also been overlooked in such setups.

The Reld dataset (Spatihel et al., 2017) differs from the datasets mentioned above by
having a standard protocol. It has 182,335 images of cropped low-resolution LPs, of which
105,923 are in the training set and 76,412 are in the test set. We found that 52,394 (68.6%0)
of the test images have near-duplicates in the training set (see some examples in Figure 8.6).
Although alarming, the high fraction of duplicates has gone unacknowledged in works using the
Reld dataset for experimentation (§paﬁhel et al., 2018; Wu et al., 2019; Moussa et al., 2022).

We also want to draw attention to the fact that there are duplicates even across different
datasets. Recently, Zhang et al. (2021c) released the CLPD dataset, which comprises 1,200
images gathered from multiple sources such as the internet, mobile phones, and car driving
recorders. The authors employed all images for testing to verify the practicality of their LP
detection and recognition models, trained on other datasets. Subsequent studies have followed
this protocol (Zou et al., 2020, 2022; Liu et al., 2021; Zhang et al., 2021d; Chen et al., 2023; Ke
et al., 2023; Rao et al., 2024). The problem is that several vehicles/LPs shown in CLPD are also
shown in the ChineseLP dataset (Zhou et al., 2012) (see Figure 8.7). That is, if not yet, images
from the ChineseLP dataset will eventually be used to train ALPR systems that will then be tested
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(2) EnglishLP (b) Medialab LPR (c) PKU

Figure 8.5: ALPR datasets that do not have a well-defined evaluation protocol are customarily divided into training
and test sets randomly without the authors noticing that the same vehicle/LP may appear in multiple images. Above,
we show a pair of near-duplicates from each of the EnglishLP, Medialab LPR, and PKU datasets. Observe that it is
common for an LP to look very similar in different images even without rectification. We show a zoomed-in version
of the rectified LP in the lower left region of each image for better viewing.
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(b) Test set

Figure 8.6: Examples of near-duplicates in the Reld dataset (Spaiihel et al., 2017). It is clear that such duplicates
may also considerably bias the evaluation of ALPR systems that do not perform rectification before the LPR stage.

on the CLPD dataset. These experiments will likely be regarded as “cross-dataset,” although
perhaps they should not. In our experiments, presented in previous chapters, we addressed this
concern by excluding from the training set any images from the ChineseLP dataset that are also
present in the CLPD dataset (see footnote '® on page 93).

One last example that highlights the overlooked nature of this issue can be found in the
work of Gong et al. (2022). They presented a detailed comparison between multiple datasets
gathered in mainland China, including ChineseLP and CLPD, without noticing the existence of
duplicates across them.

It is noteworthy that we incorporated measures while defining the standard split for the
RodoSol-ALPR dataset to ensure the absence of duplicates within the training and test sets.

8.4 Final Remarks

We drew attention to the large fraction of near-duplicates within the training and test sets of datasets
widely adopted in ALPR research. Both the existence of such duplicates and their influence on
the performance evaluation of LPR models have largely gone unnoticed in the literature.

Our experiments on the AOLP and CCPD datasets, the most commonly used in the field,
showed that the presence of near-duplicates significantly impacts the performance evaluation
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(a) Imﬁges from ChineseLP (Zhou et al., 2012)

(b) Images rm CLPD (Zhang et al., 2021c)

Figure 8.7: There are duplicates even across different datasets. The above images were taken from the ChineseLP
and CLPD datasets, both of which contain images scraped from the internet. The presence of near-duplicates across
datasets can significantly bias the results of cross-dataset experiments.

of OCR models applied to LPR. In the AOLP dataset, the error rates reported by the models
were more than twice as high in the experiments conducted under the fair splits. The ranking
of the models also changed when they were trained and tested under duplicate-free splits. In
the more challenging CCPD dataset, the models showed recognition rate drops of up to 5.2%.
Specifically, the average recognition rate decreased from 80.3% to 77.6% when the experiments
were conducted under the fair split compared to the standard one. These results indicate that
duplicates have biased the evaluation and development of deep learning-based models for LPR.

We created the fair splits for the abovementioned datasets by dividing their images
into new training, validation and test sets while ensuring that no duplicates from the test set
are present in the training set and preserving the original splits’ key characteristics as much as
possible. These new splits and the list of duplicates found are publicly available.

We hope the work conducted in this chapter will encourage LPR researchers to train and
evaluate their models using the fair splits we created for the AOLP and CCPD datasets and to
beware of duplicates when performing experiments on other datasets. This chapter also provides
researchers with a clearer understanding of the true capabilities of LPR models that have only
been evaluated on test sets that include duplicates from the training set.
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9. A FIRST LOOK AT DATASET BIAS IN LICENSE PLATE RECOGNITION

Is it possible to accurately determine the dataset from which an LP image originates? Initially,
one may think that this task is fairly trivial since — in principle — images from distinct datasets are
collected in different regions, with different hardware, for different purposes, etc. On second
thought, one may realize that it depends on the datasets we are comparing.

Suppose there are two datasets, one composed exclusively of images of American LPs
and the other of images of European LPs. In that case, it should indeed be relatively straightforward
to distinguish which dataset each LP image belongs to due to the many characteristics LPs from
the same region share in common, e.g., the aspect ratio, colors, symbols, the position of the
characters, the number of characters, among others. Nevertheless, beyond the LP layout, are there
unique signatures (bias) in each dataset that would enable identifying the source of an LP image?

The presence of unique signatures in public datasets was first revealed by Torralba
and Efros (2011). They investigated the then-popular object recognition datasets (PASCAL 07,
ImageNet, among others) using the Name That Dataset! experiment in which a Support Vector
Machine (SVM) classifier was trained to distinguish images from 12 datasets. If dataset bias
did not exist, no classifier would be able to perform this task at levels considerably different
from chance. However, their classifier reached an accuracy of 39%, which is significantly better
than chance (1/12 = 8%). This result becomes even more surprising when taking into account
that those datasets were created with the expressed goal of being as varied and rich as possible,
aiming to sample the visual world “in the wild” (Torralba and Efros, 2011).

Dataset bias has been consistently recognized as a severe problem in the computer
vision community (Tommasi et al., 2017; Ashraf et al., 2018; Wachinger et al., 2021; Jaipuria
et al., 2022; Hort et al., 2023), given that models are inadvertently learning idiosyncrasies of
each dataset along with knowledge fundamental to the task under study. Nevertheless, to the best
of our knowledge, this bias has remained largely unnoticed in the LPR literature.

Considering the above discussion, in this chapter we revisit the experiments conducted
by Torralba and Efros (2011), adapting them to the LPR context®® (see Figure 9.1, where we
recreate the Name That Dataset! game with Brazilian LPs). Our experiments, performed on
public datasets acquired in Brazil and mainland China, demonstrate that a lightweight CNN
can identify the source dataset of an LP image with more than 95% accuracy, which is much
higher than expected from chance or human perceptual similarity judgments. Intriguingly, our
experiments also show no signs of saturation as more training data is added, i.e., the classification
accuracy could be even higher if there were more training data.

The severity of the dataset bias problem in LPR boils down to the following. LPR
datasets are usually very unbalanced in terms of character classes due to LP assignment policies,
as previously discussed. In a dataset collected in Brazil, for instance, one letter may appear much
more frequently than others according to the state in which most vehicles were registered; for
example, the SSIG-SegPlate dataset (Gongalves et al., 2016a) has 746 instances of the letter ‘O’
but only 135 instances of the letter ‘Q’. The same is true for vehicles registered in different cities
within a province in mainland China (Zhang et al., 2021c; Wang et al., 2022c). Taking into
account that LPR models are generally trained and evaluated on images from the same dataset (as
detailed in Chapter 5), such bias can skew the predictions toward the prominent character classes

28 This chapter — in article form — was accepted for presentation at the 2022 Conference on Graphics, Patterns
and Images (SIBGRAPI) (Laroca et al., 2022b).
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RodoSol-ALPR (ES): ___ ___ SSIG-SegPlate (MG): ___

UFOP (MG): __ UFPR-ALPR (PR): ___

Figure 9.1: Can you name the dataset to which each of the above images belongs? (you can try grouping the
images into four distinct groups if you are unfamiliar with the corresponding datasets). See footnote for the
answer key. This task is somewhat challenging for humans, as LP images from distinct datasets have similar
characteristics. However, a shallow CNN (3 conv. layers) predicts the correct dataset in more than 95% of cases
(chance is 1/4 = 25%). All images above were classified correctly, with a mean confidence value of 95.9%.

within that particular dataset, resulting in poor performance on other datasets and, naturally, in
real-world scenarios (Yang et al., 2018; Zhang et al., 2020c).

The aim of this chapter is two-fold. First, to situate the dataset bias problem in the LPR
context and thus raise awareness in the community regarding the possible impacts of such bias as
this issue is not getting the attention it deserves. Second, to discuss some subtle ways bias may
have crept into the chosen datasets to outline directions for future research.

The subsequent sections of this chapter are structured as follows. Section 9.1 provides a
concise overview of the motivation behind this chapter. Section 9.2 outlines the experiments
carried out and presents the corresponding results. In Section 9.3, we shed light on the impacts
of dataset bias on the cross-dataset generalization of LPR models, offering insights into potential
causes. Lastly, Section 9.4 summarizes the key findings of the chapter.

9.1 Motivation

The standard method of evaluating an LPR method’s performance is to use multiple publicly
available datasets, such as SSIG-SegPlate (Gongalves et al., 2016a) and CCPD (Xu et al.,
2018), which are split into disjoint training and test sets. Such an assessment is typically done
independently for each dataset (Zhuang et al., 2018; Weihong and Jiaoyang, 2020; Zhang et al.,
2021d; Ke et al., 2023). As models based on deep learning can take significant time to be trained,
some authors have adopted a slightly different protocol where the proposed networks are trained
once on the union of the training images from the chosen datasets and evaluated individually
on the respective test sets (Selmi et al., 2020; Laroca et al., 2021b; Qin and Liu, 2022; Silva
and Jung, 2022). Although the images for training and testing belong to disjoint subsets, these
protocols do not make it clear whether the evaluated models have good generalization ability,
i.e., whether they perform well on images from other scenarios/datasets, mainly due to domain
divergence and data selection bias (Torralba and Efros, 2011; Tommasi et al., 2017).

In Chapter 5, we showed that there are significant drops in LPR performance across
various datasets when employing well-known OCR models such as Facebook’s Rosetta (Borisyuk

29 Answer key: RodoSol-ALPR — (a),(d),(h),(1); SSIG-SegPlate — (e),(i),(j).(0); UFOP — (b),(f),(m),(n); and
UFPR-ALPR — (¢),(g),(k).
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etal., 2018) and TRBA (Baek et al., 2019) in a leave-one-dataset-out experimental setup. Initially,
we attributed such underwhelming results to the heavy bias toward specific regional identifiers
within existing datasets for LPR. Nevertheless, we employed a large volume of synthetic data
(generated through character permutation) to mitigate such bias during those experiments. This
led us to hypothesize that there are other strong biases crept into LPR datasets. This realization
serves as the primary motivation for the research presented in this chapter.

9.2 Experiments

This section describes the experiments performed in this work. We first list the datasets explored
in our assessments, explaining why they were chosen and not others. We also detail how the LP
images from each dataset were selected and divided into training, validation and test subsets.
Then, we describe the CNN model employed for the dataset classification task (Name That
Dataset! game) and provide implementation details. Finally, we report the results achieved.

9.2.1 Datasets

Our experiments were carried out on images from eight public datasets introduced over the
last decade: RodoSol-ALPR, SSIG-SegPlate (Gongalves et al., 2016a), UFOP (Mendes Junior
et al., 2011), UFPR-ALPR (Laroca et al., 2018), a reduced version of CCPD (Xu et al., 2018),
ChineseLLP (Zhou et al., 2012), PKU (Yuan et al., 2017), and PlatesMania-CN (Laroca et al.,
2021b). The images of the first four datasets were acquired in three states of Brazil, while the
images of the last four datasets were collected in various provinces of mainland China. We cropped
the LP regions from the original images (taken in urban environments) for our experiments.

In this chapter, we chose to experiment with LPs from Brazil and mainland China
because there are many ALPR systems designed primarily for LPs from one of those regions (Silva
and Jung, 2017; Silvano et al., 2021; Gong et al., 2022; Jiang et al., 2023b). Considering the
objectives of our study, we also filter which LP images from each dataset to use in our experiments:
(1) regarding the datasets collected in Brazil, we explore only LPs that have a single row of
characters and gray as the background color (LPs for private vehicles before the implementation
of the Mercosur standard); and (ii) for the datasets acquired in mainland China, we explore only
LPs that have a single row of characters and blue as the background color. This protocol was
adopted because the four datasets collected in each region have LPs with these characteristics. In
contrast, only some datasets have LPs with other characteristics (e.g., UFOP and SSIG-SegPlate
do not have any two-row LPs, and the ChineseLP and PlatesMania-CN datasets do not include
LPs with yellow background). An overview of the datasets used in our experiments, after the
aforementioned selection process, is presented in Table 9.1. We labeled the color of each LP in
every dataset to make this selection, and these annotations are publicly available®.

For reproducibility, it is essential to make clear how we divided the selected images from
each of the datasets to train, validate and test the classification model (detailed in Section 9.2.2).
The CCPD, RodoSol-ALPR, SSIG-SegPlate and UFPR-ALPR datasets were split according to
the protocols defined by the respective authors (i.e., the authors specified which images belong to
which subsets), while the other datasets, which do not have well-defined evaluation protocols,
were randomly split into 40% images for training; 20% images for validation; and 40% images for
testing, following the split protocol adopted in the SSIG-SegPlate and UFPR-ALPR datasets>!.

Mhttps://raysonlaroca.github.io/supp/sibgrapi2022/annotations.zip
31 The training, validation, and test splits are available at https://raysonlaroca.github.io/supp/
sibgrapi2022/splits.zip
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Table 9.1: Datasets used for the experiments conducted in this chapter.

Dataset Year LP Images State/Province-City
UFOP 2011 244 Minas Gerais (BR)
ChineseLP 2012 400 Various (CN)
SSIG-SegPlate 2016 1,832 Minas Gerais (BR)
PKU 2017 2,024 Anhui-Tongling (CN)
UFPR-ALPR 2018 2,700 Parana (BR)

CCPD 2020" 25,0007  Anhui-Hefei (CN)
PlatesMania-CN 2021 347 Various (CN)

RodoSol-ALPR 2022 4,765 Espirito Santo (BR)

* The CCPD dataset was introduced in 2018 and last updated in 2020.
i Following (Liu et al., 2021), we used a reduced version of CCPD in our experiments.

As the CCPD dataset has many more images than the others (more than 350k), we followed (Liu
et al., 2021) and performed our experiments using a reduced version with 25k images.

Three points should be noted. First, for all datasets, we were careful not to have images
of the same LP in different subsets (otherwise, different images of an LP could appear in both the
training and test sets, for example). Second, as the chosen datasets have different numbers of test
images, we randomly sample a set of N test set images from different datasets to predict which
dataset each image belongs to (for each region, N is constrained by the smallest number of images
in the test sets). This experiment is repeated 100 times with different splits and we report the
average results. Similar protocols were adopted in (Torralba and Efros, 2011; Khosla et al., 2012;
Tommasi et al., 2017). Third, as in other chapters of this thesis, we used Albumentations (Buslaev
et al., 2020) to balance the number of training images from different datasets, thus mitigating
overfitting. Transformations applied to generate new images include random noise, random JPEG
compression, random shadows, and random perturbations of hue, saturation and brightness.

For clarity, throughout the remainder of this chapter, “Brazilian LPs” refer to gray
single-row LPs from vehicles registered in Brazil (prior to the adoption of the Mercosur layout),
and “Chinese LPs” refer to blue single-row LPs from vehicles registered in mainland China.
While some examples of Brazilian LPs can be seen in Figure 9.1 (the teaser image of this chapter),
some Chinese LPs from the chosen datasets are shown in Figure 9.2.
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Figure 9.2: Some Chinese LPs from the datasets used in this chapter. From top to bottom: CCPD (Xu et al., 2018),
ChineseLP (Zhou et al., 2012), PKU (Yuan et al., 2017) and PlatesMania-CN (Laroca et al., 2021b).

One may have noticed that all LP images we showed (both in Figure 9.1 and Figure 9.2)
are quite horizontal, tightly bounded, and “easy” to read. This is because we rectified all LPs to
eliminate biases such as repetitive tilt angles caused by specific camera positions in images from
distinct datasets. To perform the rectification, we labeled the position (x, y) of the four corners of
each LP in the eight datasets that do not contain such labels (only the CCPD and RodoSol-ALPR
datasets have corner annotations for all LPs). These newly created annotations are also accessible
at the URL referenced in footnote 3° on the previous page.
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9.2.2 C(Classification Model

For the dataset classification task (Name That Dataset!), we designed a lightweight CNN
architecture called DC-NET. It is inspired by the CDCC-NET model (Laroca et al., 2021a) and is
relatively similar to the model used for this same task in (McLaughlin et al., 2015).

DC-NET’s architecture is shown in Table 9.2. As can be seen, the model is relatively
shallow, with three convolutional layers containing 16/32/64 filters, each followed by a max-
pooling layer with a 2 X 2 kernel and stride = 2. Batch normalization, followed by a Rectified
Linear Unit (ReLU), is added after each convolutional layer. We evaluated several changes to this
architecture, such as using depthwise separable convolutional layers, convolutional layers with
stride = 2 (removing the max-pooling layers), and different input sizes and numbers of filters.
However, better results were not obtained (we conducted these experiments in the validation set).

Table 9.2: DC-NET’s layers and hyperparameters.

# Layer Filters Size/Stride Input Output

0 conv 16 3x3/1 192 x64%x3 192x64x16
1  max 2x2/2 192x 64 x16 96x32x%x 16
2 conv 32 3x3/1 96x32x 16 96 x32x32
3  max 2x2/2 96 x32x32 48x16x32
4  conv 64 3x3/1 48x16x32 48x16x64
5 max 2x2/2 48x 16 x64 24x8x64

6 flatten 24 x 8 x 64 12288

# Layer Units Input Output

7 dense 128 12288 128

8 dense 4 128 4

The DC-NET model was implemented using Keras. We used the Adam optimizer, initial
learning rate = 10 (with ReduceLROnPlateau’s patience = 3 and factor = 10°!), batch size = 64,
max epochs = 50, and patience = 7. In our test environment, equipped with an NVIDIA Quadro
RTX 8000 GPU as described in preceding chapters, DC-NET runs at approximately 720 FPS.

9.2.3 Results

In this subsection, we report the results obtained by DC-NET in the dataset classification
task (Name That Dataset!). Figure 9.3 shows the confusion matrices for Brazilian (left) and
Chinese (right) LPs. There is a clearly pronounced diagonal in both matrices, indicating that
each dataset does have a unique, identifiable “signature”; it is worth noting that only about 25%
accuracy would be expected if the classifier was operating at chance levels, as would happen if
the LP images from each dataset were fully unbiased samples. The overall accuracy was 95.2%
for Brazilian LPs and 95.9% for Chinese LPs.

The results show that the DC-NET model is more successful in classifying LP images
from the datasets acquired with static cameras (RodoSol-ALPR, SSIG-SegPlate, UFOP, and PKU)
than LP images from the datasets captured by handheld (CCPD, ChineseLP, and PlatesMania-CN)
or moving cameras (UFPR-ALPR). We believe this is because images collected by static cameras
have many characteristics in common, not just the background. These similarities likely extend
to the LP regions, explaining the model’s greater accuracy with such images. To illustrate,
in Figure 9.4, we show two pairs of the most similar images — in terms of Mean Squared
Error (MSE) — from distinct subsets from each of the RodoSol-ALPR and UFPR-ALPR datasets
(the datasets where the highest and worst accuracy were achieved, respectively). Observe that
factors common in images taken by static cameras, such as similar vehicle positioning and



131

Brazilian LPs Chinese LPs
RodoSol-ALPR 0.0% | 0.1% CCPD 0.2% 0.8%
] =
& SSIG-SegPlate 4 S $  ChineseLP 0.0% | 7.6%
z g
° ©
s UFOP v
= é PKU -
UFPR-ALPR )
PlatesMania- 1.5% 3.7%
ool /] Q Lol T T T
Q ) Q Q > s
¥ g $ o & ¥ & &
I e/o' ol G 17 éb
9 9 R Y
o / 3 S &
kS < > & &
& & N
Predicted dataset Predicted dataset

Figure 9.3: Confusion matrices for a classifier (DC-NET) trained to predict the source dataset of a given LP image.
Left: Brazilian LPs; right: Chinese LPs.

distance from the camera, may cause the LPs from different images to be quite resembling (note
that this is not always the case; it may seem so because we focused on the most similar pairs of
images from these datasets for this analysis).

(c) MSE = 1,686 (d) MSE = 1,700

Figure 9.4: Two pairs of the most similar images (in terms of MSE) from distinct subsets from each of the
RodoSol-ALPR (a, b) and UFPR-ALPR (c, d) datasets. In each pair, the left image belongs to the training set, while
the right one belongs to the test set. Observe that LPs from different images captured by static cameras may be quite
resembling. We show a zoomed-in version of the LP in the lower left region of each image for better viewing.

One might initially suspect the model simply memorized the most frequent regional
characters in each dataset (e.g., most LPs in the CCPD dataset have ‘f5%’ as the first character).
However, this does not hold since DC-NET correctly classified more than 97% of the LP images
from both datasets collected in the Brazilian state of Minas Gerais (SSIG-SegPlate and UFOP)
and from both datasets acquired in the Anhui province in mainland China (CCPD and PKU).

By carefully analyzing the confusion matrices in Figure 9.3, we noticed that almost all
incorrect predictions on Chinese LPs were between the ChineseLLP and PlatesMania-CN datasets.
We consider this occurred because both datasets have images collected from the internet (the
other six datasets do not contain any images from the internet). Specifically, all images from
the PlatesMania-CN datasets were downloaded from the internet (Laroca et al., 2021b), while
around 39% of the ChineseLP’s images were taken from the internet (Zhou et al., 2012). It makes
perfect sense that the bias is less pronounced when the images come from multiple sources.
The classifier still managing to achieve high accuracy rates in both datasets is due to selection
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bias (Torralba and Efros, 2011; McLaughlin et al., 2015; Wachinger et al., 2021), which arises
because authors building a dataset select images with specific purposes in mind, thus reducing
the variability of the data (in many cases without even realizing it). Furthermore, these datasets
have images with different quality levels, as they were introduced years apart and the capture
devices evolved considerably in the time between them being collected.

Torralba and Efros (2011) observed that using more training data led to higher accuracy,
without any immediate signs of saturation. Intrigued by these findings, we trained the DC-NET
model three more times for each LP layout: using 50%, 25% and 12.5% of the training data
(randomly selected). As depicted in Figure 9.5, our experiments corroborate this trend: the
accuracy improves as the size of the training set increases, with no signs of saturation yet observed.
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Figure 9.5: Classification performance as a function of training data size. The performance does not seem to be
saturated for either Brazilian (left) or Chinese (right) LPs.

Another noteworthy finding is that the classifier predicts the source dataset correctly with
a significantly higher confidence value than when it predicts incorrectly. The mean confidence
values for correctly classified Brazilian and Chinese LPs were 98.5% and 98.1%, respectively,
while the mean confidence values for incorrectly classified Brazilian and Chinese LPs were
79.7% and 74.3%, respectively. Figure 9.6 shows the Receiver Operating Characteristic (ROC)
curves for Brazilian (left) and Chinese (right) LPs. Since ROC curves are typically used in binary
classification, we binarized the classifier’s output (per class) to draw one ROC curve per dataset.
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Figure 9.6: ROC curves for Brazilian and Chinese LPs. Note the high Area Under the Curve (AUC) values, which
indicate that DC-NET performs considerably well at distinguishing between LP images from different datasets.

9.3 Discussion

Considering that the DC-NET model — which is relatively shallow — can predict the source dataset
of an LP image with accuracy above 95%, we conjecture that most LPR models — which are
considerably deeper — are actually learning and exploiting such signatures to improve the results
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achieved in seen datasets at the cost of losing generalization capability. The intuition behind
this conjecture is as follows: consider the SSIG-SegPlate dataset (Gongalves et al., 2016a) as an
example, it has many LPs with the letter ‘O’ as the first character but no LP with the letter ‘Q’ in
that position. Hence, an LPR model capable of identifying that a given LP image belongs to this
dataset may predict the letter ‘O’ as the first character even if the character looks more like ‘Q’
than ‘O’ due to noise or other factors. However, the relatively high recognition rates achieved in
the SSIG-SegPlate dataset would likely not be reached in unseen datasets.

This chapter’s findings echo the concerns raised in Chapter 5, where we observed
significant drops in recognition performance across several datasets when training and testing the
models in a leave-one-dataset-out (LODO) fashion. It is important to recall our earlier observation
in that chapter (more specifically, in Figure 5.5), where we emphasized that errors under the
LODO protocol were not not primarily associated with challenging scenarios, suggesting that
they likely stemmed from differences between the training and testing data distributions.

We believe that the main cause of dataset bias is related to the cameras used to collect
the images in each dataset. Taking the results achieved in Brazilian LPs as an example, the
lowest accuracy (i.e., less pronounced bias) was reported for the UFPR-ALPR dataset, which
was captured by three non-static cameras of different price ranges. In contrast, the other datasets
have images acquired by a single static camera (SSIG-SegPlate and UFOP) or by multiple static
cameras of the same model (RodoSol-ALPR). In the same direction, another probable cause
of bias relates to how the images were stored in different datasets. For example, the CCPD
dataset contains highly compressed images while most other datasets do not. DC-NET probably
exploited the detection of artifacts in the highly compressed LP images for better classification.

Some works have linked dataset bias to image backgrounds (McLaughlin et al., 2015;
Tian et al., 2018). For example, a classifier may accurately classify images labeled as “boat”
without actually focusing on the boat itself, but rather on the water below or the shore in the
distance (Torralba and Efros, 2011). Although we are convinced that we have eliminated such
bias by performing our experiments on rectified LP images, it is worth noting that the corner
annotations in the CCPD dataset are not as accurate as those we made or those found in other
datasets. The DC-NET model may have exploited these subtle distinctions as well.

While these conclusions have been reached for the particular classifier used in our
experiments, similar trends are expected to hold for similar models (McLaughlin et al., 2015).

We consider two initial ways to mitigate the dataset bias problem in LPR. The first
is leveraging deep learning-based methods’ high capability to visualize and understand how
bias has crept into the chosen datasets. One technique that immediately comes to mind is
Grad-CAM (Selvaraju et al., 2017), which uses the gradients of any target class flowing into the
final convolutional layer to produce a coarse localization map highlighting the important regions
in the image for predicting the class.

The other way is to embrace the “wildness” of the internet to collect a large-scale dataset
for LPR. However, as shown in Section 9.2 and in (Torralba and Efros, 2011), downloading images
from the internet alone does not guarantee a bias-free sampling, as keyword-based searches
return only particular types of images; users of a specific website prefer images with certain
characteristics, among other factors. Thus, such a dataset should be obtained from multiple
sources on the internet (e.g., multiple search engines and websites from various countries).

9.4 Final Remarks

In this chapter, we situated the dataset bias problem (Torralba and Efros, 2011; Tommasi et al.,
2017) in the LPR context. We performed experiments on LP images from eight publicly available
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datasets; four were collected in Brazil and four in mainland China. The results showed that each
dataset does have a unique, identifiable signature.

Specifically, our Name That Dataset! experiments showed that the source dataset of an
LP image could be predicted with more than 95% accuracy (chance is 1/4 = 25%). Intriguingly,
we observed no evidence of saturation as more training data was added. We believe there is no
theoretical reason for such results other than the strong biases in the actual datasets.

We hope these findings will further encourage the evaluation of LPR models in cross-

dataset setups, as they provide a better indication of generalization (hence real-world performance)
than intra-dataset ones.
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10. CONCLUSIONS AND FUTURE DIRECTIONS

This thesis contributes significantly to the advancement of Automatic License Plate Recogni-
tion (ALPR) by identifying and addressing key limitations in the existing literature.

We tackled the lack of attention given to images featuring Mercosur LPs, motorcycles,
and two-row LPs by creating a dedicated dataset (Chapter 4) and conducting many experiments
on it (Chapters 5 to 7 and 9). In Chapter 5 specifically, we showed the importance of the RodoSol-
ALPR dataset for robust recognition of Mercosur and two-row LPs, as none of the OCR models we
trained surpassed a 70% recognition rate on its test set under the leave-one-dataset-out protocol.

In Chapters 6 and 7, we demonstrated that significant improvements in ALPR results
could indeed be attained without relying on additional real training data, groundbreaking
descriptor designs, or extensive searches for better model architectures. Chapter 6 examined
the potential enhancements in LPR results by fusing the outputs from multiple OCR models
using straightforward approaches such as selecting the most confident prediction or through
majority voting. Chapter 7 explored the synergistic benefits of combining various synthetic data
generation methodologies not only to improve LPR performance but also to overcome challenges
posed by limited training data availability. Notably, both chapters detailed the enhancements
achieved in scenarios observed during training (intra-dataset) as well as on entirely new, unseen
data (cross-dataset). Moreover, they compared the balance between speed and accuracy across
different approaches, recognizing the importance of efficient systems in real-world applications.

By utilizing a traditional-split vs. leave-one-dataset-out experimental setup, we identified
a critical issue in the way ALPR systems have been evaluated. Specifically, the established
protocols for assessing these systems have historically failed to accurately indicate their out-of-
domain robustness. Our investigation in Chapter 8 revealed that these protocols were formulated
without accounting for instances where the same vehicle or LP appears in multiple images. This
resulted in many near-duplicates within the training and test sets of the two most referenced
datasets in the field, potentially hindering the development and acceptance of more efficient
LPR models that have strong generalization abilities but do not memorize duplicates as well as
other models. Furthermore, Chapter 9 contextualized the dataset bias problem within the LPR
domain. We discovered that OCR models are inadvertently learning idiosyncrasies of each dataset
alongside fundamental LPR-related knowledge. All these findings underscore the importance of
conducting cross-dataset experiments, as they provide a better indication of generalization (hence
real-world performance) than intra-dataset ones. In other words, the outcomes from cross-dataset
experiments are more likely to reflect what would be observed in real-world deployments.

Future Directions

Regarding improving the out-of-domain robustness of OCR models applied to LPR,
a promising avenue for future research lies in leveraging adversarial training. This approach
entails incorporating carefully crafted adversarial examples — inputs specifically designed to
mislead the models — into the training data. Several studies have shown that adversarial training
not only enhances the performance of deep learning models against unforeseen attacks but also
boosts their accuracy on both clean images and out-of-domain samples (Zhao et al., 2020a;
Poursaeed et al., 2021; Lehner et al., 2024). Despite these potential benefits, the exploration of
adversarial training within the ALPR domain remains largely unexplored.

Beyond exploring adversarial training, we firmly believe that significantly improved
results can be attained with minimal manual effort by utilizing coarse annotations. These
annotations can be automatically generated for unlabeled images from the internet or public
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datasets that either lack annotations entirely or only have labels for specific parts of the ALPR
pipeline. While research across various domains demonstrates the effectiveness of coarse
annotations in boosting deep learning model performance (Lucio et al., 2019; Liu et al., 2020;
Das et al., 2023), there is still a gap in understanding how to best couple coarse-annotated data
with fine-annotated data in the ALPR context. Such exploration should focus on mitigating
annotation errors and their adverse effects on network learning.

After successfully applying synthetic data to accurately recognize LPs on high-quality
images captured across various scenarios and regions (Chapter 7), we suggest a progressive
shift in focus for ALPR researchers toward tackling the challenges associated with detecting
and recognizing low-quality and low-resolution LPs. These challenges are often encountered
in criminal investigations, where video evidence typically comes from security cameras not
optimized for ALPR. The LPs in these videos are commonly illegible throughout the entire
recording. Possible solutions to this problem include exploring image enhancement techniques,
such as super-resolution, and leveraging temporal information by analyzing multiple frames.
Current research on LP image enhancement has predominantly focused on unrealistic scenarios,
such as synthetic low-resolution images created by artificially downsampling high-resolution
ones (Schirrmacher et al., 2023; Kim et al., 2024). Similarly, studies using multiple frames have
often relied on basic majority voting from individual frames (Al-batat et al., 2022; Silva and
Jung, 2022), failing to utilize the full potential of feeding sequential frames into the models.

Last but not least, exploring how to effectively utilize the high capabilities of deep
learning methods to address the dataset bias issue in LPR (Chapter 9) remains an open area for
future research. As an initial step toward this goal, we advocate exploring visualization techniques
such as Grad-CAM (Selvaraju et al., 2017) and Iterated Integrated Attributions (IIA) (Barkan
etal., 2023). These techniques can generate visually interpretable heatmaps, offering insights into
how a lightweight classifier can excel at distinguishing between LP images from different datasets.
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