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“Most good ideas [towards human-level AI] will come from academia,
even if the most impressive applications come from industry.”

— Yann LeCun



RESUMO

O reconhecimento automático de placas de veículos (ALPR) tem sido um tópico de pesquisa

frequente devido às suas amplas aplicações práticas, incluindo cobrança automática de pedágios e

aplicação das leis de trânsito. Apesar do progresso considerável no estado da arte nos últimos anos,

várias questões persistem em aberto neste domínio. Esta tese investiga o potencial para avanços

significativos no ALPR ao investigar e abordar meticulosamente essas questões, em vez de focar

no aumento do número de imagens reais de treinamento, na proposta de descritores inovadores, ou

na busca extensiva por melhores arquiteturas de modelos. Nossa pesquisa começa endereçando a

falta de atenção dada às imagens contendo placas Mercosul, motocicletas, e placas com duas

linhas de caracteres através da criação de um conjunto de dados dedicado (RodoSol-ALPR) e da

condução de uma série de experimentos com ele. Nossos experimentos ressaltam a importância

deste conjunto de dados para o reconhecimento robusto de placas Mercosul e de placas com duas

linhas de caracteres, já que modelos de reconhecimento óptico de caracteres (OCR) treinados em

outros conjuntos de dados não conseguem ultrapassar uma taxa de reconhecimento de 70% em seu

conjunto de teste. Posteriormente, apresentamos melhorias substanciais no desempenho do ALPR

de ponta a ponta ao mesclar a saída de vários modelos de OCR e combinar várias metodologias

de geração de dados sintéticos. Notavelmente, a utilização extensiva de dados sintéticos leva a

resultados estado-da-arte em diversos conjuntos de dados e desempenha um papel fundamental

na superação de desafios causados pela disponibilidade limitada de dados de treinamento. Esta

tese também identifica questões críticas na avaliação de sistemas para o ALPR. Revelamos que

os protocolos de avaliação estabelecidos não levam em conta as quase duplicatas nos conjuntos

de treinamento e teste, dificultando o desenvolvimento e a aceitação de modelos mais eficientes

que tenham fortes habilidades de generalização mas não memorizam duplicatas tão bem quanto

outros modelos. Por fim, contextualizamos o problema do viés de conjunto de dados no domínio

do ALPR, aumentando a conscientização sobre suas possíveis consequências. A identificação

destas questões enfatiza a importância da realização de experimentos cross-dataset, uma vez que

estes fornecem uma melhor indicação de generalização do que experimentos intra-dataset. Uma

maior adoção de avaliações cross-dataset tem o potencial de reduzir a lacuna entre os resultados

relatados no meio acadêmico e os alcançados na indústria.

Palavras-chave: Reconhecimento Automático de Placas de Veículos, Generalização Cross-
Dataset, Viés de Conjunto de Dados, Layout Mercosul, Fusão de Modelos, Quase Duplicatas,

Conjuntos de Dados Públicos, Dados Sintéticos.



ABSTRACT

Automatic License Plate Recognition (ALPR) has been a frequent research topic due to its wide-

ranging practical applications, including automatic toll collection and traffic law enforcement.

Despite the considerable progress in the state of the art driven by deep learning and the increasing

availability of public datasets, several open issues persist within the ALPR domain. This thesis

investigates the potential for significant advancements in ALPR by meticulously identifying and

addressing these issues, rather than focusing on increasing the number of real training images,

designing groundbreaking descriptors, or extensively searching for better model architectures.

Our research begins by tackling the lack of attention given to images featuring Mercosur License

Plates (LPs), motorcycles, and two-row LPs by creating a dedicated dataset (RodoSol-ALPR) and

conducting a series of experiments using it. Our experiments underscore the importance of the

RodoSol-ALPR dataset for robust recognition of Mercosur and two-row LPs, as Optical Character

Recognition (OCR) models trained on alternative datasets fail to surpass a 70% recognition

rate on its test set. Subsequently, we showcase substantial improvements in end-to-end ALPR

performance by fusing the outputs of multiple OCR models and combining various synthetic data

generation methodologies. Notably, the extensive use of synthetic data leads to state-of-the-art

results across diverse datasets and plays a pivotal role in overcoming challenges caused by limited

training data availability. This thesis also identifies critical issues in the assessment of ALPR

systems. We reveal that established evaluation protocols have failed to account for near-duplicates

within training and test sets, hindering the development and acceptance of more efficient models

that have strong generalization abilities but do not memorize duplicates as well as other models.

Finally, we contextualize the dataset bias problem within the License Plate Recognition (LPR)

domain, raising awareness about its potential consequences and discussing the subtle ways this

bias may have crept into existing datasets. Identifying these issues emphasizes the importance

of conducting cross-dataset experiments, as they provide a better indication of generalization

than intra-dataset ones. This shift toward cross-dataset setups has the potential to bridge the gap

between results reported in academia and those achieved in industry.

Keywords: Automatic License Plate Recognition, Cross-Dataset Generalization, Dataset Bias,

Mercosur Layout, Model Fusion, Near-Duplicates, Public Datasets, Synthetic Data.
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1. INTRODUCTION

The global automotive industry’s sales volume has recently rebounded to pre-pandemic levels

(Statista, 2024; ING Economics, 2024). In addition to bringing convenience to owners, vehicles

also significantly modify the urban environment, posing pollution, privacy and security challenges,

especially in large urban centers. The continuous monitoring of vehicles through computational

techniques is of paramount importance and has consequently become a prevalent area of research.

In this context, Automatic License Plate Recognition (ALPR) systems stand out.

ALPR systems leverage image processing and pattern recognition techniques to detect

and recognize License Plates (LPs) from images or videos. Some practical applications for an

ALPR system are road traffic monitoring, toll collection, and vehicle access control in restricted

areas (Anagnostopoulos et al., 2008; Du et al., 2013; Weihong and Jiaoyang, 2020).

In the deep learning era, ALPR systems typically include two stages: License Plate

Detection (LPD) and License Plate Recognition (LPR). As depicted in Figure 1.1, the former

stage involves locating the LP regions within the input image, while the latter refers to identifying

the characters on those LPs. Both of these stages are crucial to the overall system performance

and must be executed close to perfection, as (i) a failure in LPD often leads to subsequent failures

in LPR, and (ii) a single incorrectly recognized character can result in the incorrect identification

of the vehicle (Gonçalves et al., 2016b; Shashirangana et al., 2022; Ding et al., 2024).

License Plate Detection

PLA251

NHW193

NZ240FU

Image Acquisition License Plate Recognition

Figure 1.1: A typical ALPR system. It is divided into two stages: LPD and LPR. The former stage refers to locating

the LPs within the input image, while the latter refers to identifying the characters on those LPs.

ALPR systems have exhibited remarkable performance on LPs from multiple regions

due to advances in deep learning and the increasing availability of annotated datasets (Henry

et al., 2020; Silva and Jung, 2022; Liu et al., 2024b). Despite the considerable progress in the

state of the art, many issues remain unresolved within the ALPR domain.

1.1 Problem Statement

This section outlines the key problems identified in the literature, which motivate our research.

Evaluation Protocols
In the past, the evaluation of ALPR systems used to be done within individual datasets.

This involved training and testing the proposed methods on different subsets from the same

dataset, with the models being trained and tested independently for each dataset. However, a

recent shift has occurred due to the time-consuming nature of training deep learning models,

especially on low- and mid-end Graphics Processing Units (GPUs). Researchers have embraced

a new protocol where the models are trained once on the union of the training images from the

selected datasets and then evaluated separately on the respective test sets (Laroca et al., 2021b;

Qin and Liu, 2022; Pattanaik and Balabantaray, 2023). This protocol is hereinafter referred to
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as traditional split. Despite using disjoint subsets for training and testing, such a protocol does

not indicate whether the evaluated models have good generalization ability (i.e., whether they

perform well on images from different scenarios), mainly due to domain divergence and data

selection bias (Torralba and Efros, 2011; Zhang et al., 2019a; Fabbrizzi et al., 2022).

In this regard, many computer vision researchers have carried out cross-dataset ex-

periments – where training and testing data come from different sources – to assess whether

the proposed models perform well on data from an unknown domain (Ashraf et al., 2018; Ma

et al., 2021; Estevam et al., 2024). Nevertheless, to our knowledge, research in ALPR lacks

in-depth exploration of such experimental settings. This contrasts with the fact that real-world

deployments often involve installing new cameras without retraining existing models. Adopting

a leave-one-dataset-out evaluation protocol would effectively simulate this specific scenario and

provide a more robust assessment of the models’ generalizability.

Our practical experience has revealed that even when training the models on images

from the same scenario (as in the traditional-split protocol), the accuracy levels observed in

real-world deployments often fall short of those reported in academic studies. One possible

explanation for this discrepancy is dataset bias, a well-recognized issue in the computer vision

community (Ashraf et al., 2018; Jaipuria et al., 2022; Hort et al., 2023). Essentially, models

inadvertently learn idiosyncrasies unique to each dataset alongside fundamental task-related

knowledge. We also have discovered that the protocols traditionally adopted for splitting the

images in public datasets into training and test sets do not account for the same vehicle or LP

appearing in multiple images. Hence, distinct yet highly similar images of the same vehicle or

LP may exist in both the training and test sets. Somewhat alarmingly, these issues (dataset bias

and near-duplicates within the training and test sets) have gone unnoticed in the ALPR literature.

Diverse LP Layouts
Increased mobility and internationalization set new challenges for developing effective

traffic monitoring and control systems. This is particularly true for ALPR systems, which must

handle LPs from multiple regions with different character sets and syntax (Mecocci and Tommaso,

2006; Anagnostopoulos et al., 2008; Lubna et al., 2021). As shown in Figure 1.2, even LPs from

the same country can vary considerably. For example, in the United States, many states allow

specialty LPs showcasing the emblems of colleges, universities, professional sports teams, or

other organizations. Individuals can also customize the arrangement of letters and digits for an

extra fee (vanity LPs) (Guggenheim and Silversmith, 2000). Despite this variety, most ALPR

systems presented in the literature were tailored to handle a single LP style (e.g., single-row

blue LPs from mainland China). This limitation has been increasingly pointed out in recent

research (Zeni and Jung, 2020; Silva and Jung, 2022; Gao et al., 2023). Although some authors

claimed that their approaches could be extended with minor modifications to detect and recognize

LPs from another region (Liu and Chang, 2019; Wang et al., 2022a; Rao et al., 2024), adapting

layout-specific approaches to handle multiple LP layouts – with a similar degree of robustness –

can be quite challenging or even unfeasible (Gao et al., 2020b; Laroca et al., 2021b).

Mercosur LPs
Mercosur, short for Mercado Común del Sur (Southern Common Market in Spanish), is

an economic and political bloc comprising Argentina, Brazil, Paraguay and Uruguay1. These

countries have collectively adopted a standardized format for LPs on newly purchased vehicles,

as shown in Figure 1.3, drawing inspiration from the integrated system long adopted by member

countries of the European Union. Despite the adoption of this new layout across all countries in

the bloc, there is still no public dataset for ALPR with images of Mercosur LPs.

1 Venezuela is currently suspended, and Bolivia is in the process of accession (MERCOSUR, 2024).
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Figure 1.2: Examples of different LP styles in the United States. One can infer that it would be impractical to train an

ALPR system specifically for each LP style. Image reproduced from http://www.ashtonrose.org/blog/
new-north-dakota-license-plate (available via http://web.archive.org/).

Figure 1.3: The new standard of LPs adopted by Mercosur countries. This standard allows for any combination of

letters and digits on the LP. The initial pattern adopted by each member country is shown above.

Motorcycles and Two-Row LPs
Motorcycles constitute a major form of transportation in urban areas, especially in

developing nations (Hsu et al., 2015; Oliveira et al., 2021; Yuniaristanto et al., 2024). For

instance, motorcycles make up over 90% of traffic in Vietnam (Nguyen-Phuoc et al., 2024) and

28% of all vehicles in Brazil (Senatran, 2024). This makes it crucial for ALPR systems to handle

motorcycle images very well. Startlingly, motorcycles have been largely overlooked in ALPR

research. While most researchers have used datasets without motorcycle images to evaluate their

methods (Weihong and Jiaoyang, 2020; Lubna et al., 2021), there are several works where all

images of motorcycles were explicitly excluded from the experiments (Gonçalves et al., 2018;

Yonetsu et al., 2019; Fernandes et al., 2020). The lack of attention toward motorcycles in the

ALPR literature is mainly because LPs of motorcycles usually have two rows of characters, which

create difficulties for sequential/recurrent-based methods (Zeni and Jung, 2020; Xu et al., 2022;

Chen et al., 2023), and also because they are generally smaller in size (with smaller and closely

spaced characters) and are often tilted, further complicating recognition efforts.

Public Datasets
In this sense, there is a great demand for a publicly available dataset for end-to-end ALPR

that contains the same number of images of cars and motorcycles, ensuring that both vehicle

types receive equal importance during experimental evaluations. Ideally, the dataset should also

encompass an equal distribution of LPs with one and two rows of characters. As highlighted

by Ponce et al. (2006), the results may be biased when there are many more images for some

“easy” samples (e.g., cars with single-row LPs) than for some “hard” ones (e.g., motorcycles with

two-row LPs). For simplicity and in line with common practice in the literature, in this work

“car” refers to any vehicle with four wheels or more (e.g., passenger cars, vans, buses, trucks,

among others), whereas “motorcycle” refers to both motorcycles and motorized tricycles.

Synthetic LP Images
In the regime where labeled data is expensive (Björklund et al., 2019; Han et al., 2020;

Gao et al., 2023) and privacy concerns are growing (Chan et al., 2020; Kong et al., 2021; Trinh

et al., 2023), researchers would also benefit significantly from an approach capable of generating

fully labeled images of LPs from diverse regions and styles. While recent studies have delved into

the creation of synthetic LP images to enhance LPR performance, there are several limitations

within these efforts, as elaborated in the following paragraph.
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In addition to most works focusing on LPs from a single region, as discussed earlier,

existing studies have predominantly employed a single methodology to generate synthetic LPs.

This leaves open questions regarding the potential for significantly enhanced outcomes through

the integration of data generated from various methodologies. Moreover, current research has

mostly explored unpaired image-to-image translation methods (e.g., CycleGAN) using a large

number of real images for training (100k+), without addressing how to achieve similar results with

a limited number of real images for training. This need for many images limits the application

of these methods since there are not always a large number of images available for each LP

layout (Han et al., 2020; Laroca et al., 2021b; Yang et al., 2023). Finally, the assessment of

synthetic data generation methods has mainly relied on the performance of individual Optical

Character Recognition (OCR) models, overlooking the possibility that images created using a

particular method may disproportionately favor certain models over others.

OCR Model Fusion
Regarding OCR models, previous research has shown that different models perform

with varying degrees of robustness on different datasets (Zeni and Jung, 2020; Mokayed et al.,

2021; Al-batat et al., 2022). Each dataset poses distinct challenges, such as diverse LP layouts

and varying tilt ranges. As a result, a model that performs exceptionally well on one dataset may

produce subpar results on another. This highlights the potential for significantly enhancing LPR

results by fusing the outputs of diverse OCR models. The extent of this improvement and the

optimal number and selection of models required remain unaddressed in the current literature.

Summary
The evaluation protocols traditionally adopted to assess ALPR systems fail to accurately

indicate these systems’ out-of-domain robustness. Moreover, they allow the same vehicle or LP

to appear in both the training and test sets, potentially leading to skewed outcomes, even in intra-

dataset evaluations. Current research has primarily focused on designing ALPR systems tailored

to a single LP layout, neglecting the challenges of increased mobility and internationalization.

There is a clear demand for a publicly available dataset that incorporates Mercosur LPs and

includes an equal distribution of vehicle types (cars and motorcycles) and LP configurations (one-

and two-row LPs). The ability to synthesize diverse and high-quality LP images is highly desirable

to reduce the reliance on private datasets and address growing privacy concerns. Current methods

for synthetic LP generation have several limitations, including a narrow focus on LP styles from

specific regions, a lack of exploration of combining data generation methodologies, and the

requirement for many real training images. Finally, the potential for improved performance by

combining the output of multiple OCR models remains largely unexplored.

1.2 Hypothesis and Research Questions

The main hypothesis of this research is:

Hypothesis
It is possible to significantly improve the state of the art in Automatic License Plate

Recognition (ALPR) without increasing the number of real training images, designing
groundbreaking descriptors, or extensively searching for better model architectures.

More specifically, we firmly believe we can considerably improve the state of the art

in ALPR by focusing on aspects often overlooked in the literature. These aspects include but

are not limited to (i) addressing the lack of attention given to images featuring Mercosur LPs,

motorcycles, and two-row LPs through the creation of a dedicated dataset, (ii) leveraging
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fusion approaches to enhance LPR performance across various scenarios, and (iii) developing

a Generative Adversarial Network (GAN)-based methodology for synthesizing fully-labeled

images of LPs from diverse regions and styles. Integrating this methodology with others can lead

to improved LPR performance and reduce the reliance on large volumes of real training data.

We are also certain that moving beyond overly simplistic experimental setups will enable

us to reveal limitations in current approaches and biases within established evaluation protocols.

By actively addressing these issues, our proposed methods can yield results that not only surpass

state-of-the-art approaches but also align more closely with those achieved in industry.

The following questions guide our research:

• What are the best practices for gathering images in real-world settings to build a dataset

featuring images of vehicles with Mercosur LPs? What legal and ethical factors should

be considered when collecting and selecting these images, such as the potential presence

of identifiable faces within the images? What specific characteristics should this dataset

possess, such as a balanced representation of cars and motorcycles, as well as an equal

representation of Brazilian and Mercosur LPs2? What annotations must be provided for

each image to enable the evaluation of ALPR systems in an end-to-end manner?

• Do current methods for detecting and recognizing LPs generalize well to unseen data?

Why is it crucial to evaluate deep learning models on a range of datasets with varying

characteristics? Is there an OCR model that stands out as superior across all datasets,

regardless of their characteristics and the volume of training data? What influence does

the proposed dataset have on the accurate recognition of Mercosur and two-row LPs?

• Can we significantly improve LPR results by combining the outputs of various OCR

models? If so, to what extent can such enhancement be attained? Additionally, how

many models and which specific ones should we explore for optimal results? When

selecting models for the ensemble, should we prioritize their accuracy levels to maximize

recognition performance, or would it be more advantageous to focus on faster models to

strike a better balance between accuracy and speed in the final methodology?

• To what extent does combining real data with synthetic data generated through advanced

techniques improve LPR accuracy compared to solely augmenting real data with standard

transformations such as random perspective shifts, noise addition, and adjustments to

brightness and contrast? What are the prevalent methodologies for generating synthetic

LP images, and how do they stack up in terms of increasing LPR accuracy? Is there a

synergistic effect from combining them, or is relying on a single method sufficient?

• Can a single generative model, trained with only a few hundred real images for each

LP layout, produce fully-labeled images of LPs from diverse regions and styles? Can

alternative methods for generating synthetic data be leveraged to overcome the scarcity

of labeled paired data required to train an image-to-image translation model? How can

character distortion or blending be mitigated during the generation of the LP images?

• To what degree can synthetic images, created using various methodologies, reduce the

number of real images needed for effectively training OCR models? How do OCR

models with similar performance fare when trained with reduced portions of the training

2 To maintain consistency with previous works (Izidio et al., 2020; Oliveira et al., 2021; Silva and Jung, 2022),

we refer to “Brazilian” as the layout used in Brazil before the adoption of the Mercosur layout.
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set but supplemented with synthetic data? Do they exhibit comparable performance

trends, or does one model outperform the other in such scenarios?

• Can we attain state-of-the-art performance without relying on heuristic rules or post-

processing techniques to adjust the predictions based on expected patterns in particular

LP layouts? How important is it to rectify (unwarp) the LPs before recognition for

achieving these results? Which OCR model offers the optimal balance between speed

and accuracy in each of the intra-dataset and cross-dataset protocols? Do models that

strike a good speed/accuracy trade-off under the intra-dataset protocol maintain such

equilibrium when applied to independent datasets? What specific characteristics enable

these models (or hinder them) to sustain such balance?

• Do well-established partitions of ALPR datasets contain near-duplicates within their

training and test sets? If so, how prevalent are these occurrences? How can these

partitions be reworked to create fair splits that exclude duplicates while maintaining their

key characteristics? Would LPR models trained and tested on these fair splits exhibit

significantly higher error rates compared to those trained and tested on conventional

partitions that include duplicates? What are the implications of such duplicates on the

assessment and development of deep learning-based models for LPR?

• Are there identifiable signatures (bias) in public datasets that LPR models can exploit to

identify from which dataset each LP image originates? If such biases are found, what

impact have they had on the learning and evaluation of LPR models? Which strategies

can be employed to mitigate dataset bias in upcoming data collections?

1.3 Objectives

This research aims to propel the field of Automatic License Plate Recognition forward. We seek

to achieve this by identifying and meticulously analyzing the key limitations within the literature.

By addressing these shortcomings, we aim to improve the state of the art and bridge the gap

between the results reached in academia and industry. The specific objectives are as follows:

• To introduce a public dataset comprising many images of vehicles with Mercosur LPs

acquired in real-world scenarios. We intend to meticulously curate this dataset to ensure

a balanced distribution between images of cars and motorcycles, as well as Brazilian and

Mercosur LPs. This approach aims to mitigate potential biases during the assessment of

ALPR systems. Additionally, we plan to provide detailed annotations for each image,

enabling a comprehensive end-to-end evaluation of ALPR systems;

• To draw researchers’ attention to cross-dataset experiments since they better simulate

real-world ALPR applications, where new cameras are regularly being installed in new

locations without existing systems being retrained every time;

• To underscore the significant variations in how models perform on different datasets.

We aim to emphasize the importance of evaluating models using a diverse range of

datasets rather than relying on just a few that may not be fully representative;

• To explore potential improvements in LPR results by fusing the outputs from multiple

OCR models. Our objective is to determine the most effective method of combining the

chosen models, quantify the attainable performance gains, and find the optimal selection
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of models for the ensemble, considering either the achieved recognition accuracy or the

balance between speed and accuracy in the resulting methodology;

• To thoroughly evaluate synthetic data generation methodologies based on the average

results achieved by diverse OCR models across various datasets. We aim to demonstrate

the contributions of each synthesis method and assess how their combination could

further enhance model performance compared to using a single methodology;

• To propose an end-to-end ALPR system that achieves state-of-the-art results on public

benchmarks. The system must effectively handle challenges often found in real-world

applications, such as diverse LP layouts, images with varying resolutions, LPs with

different numbers of characters arranged in one or two rows, and scenarios where the

LP characters are partially occluded. Ideally, the proposed system should demonstrate

robustness to images captured in domains beyond those represented in the training set

without requiring hundreds of thousands of real, human-labeled images for training;

• To highlight the fact that the evaluation protocols traditionally adopted to assess ALPR

systems have historically failed to account for the possibility of the same vehicle or LP

appearing in multiple images. We aim to understand how these near-duplicates have

affected the performance evaluation of OCR models applied to LPR;

• To examine the issue of dataset bias in the LPR context, specifically investigating whether

public datasets from the two dominant regions in the field have unique and identifiable

signatures. Our goal is to bring attention to the significant ramifications of dataset bias

in ALPR research, analyzing how this bias could have infiltrated these datasets and

suggesting measures to identify and mitigate it in future data collection efforts;

1.4 Contributions

The contributions of this work can be summarized as follows:

• [Chapter 4] The first public dataset containing images of vehicles with Mercosur LPs.

This dataset, named RodoSol-ALPR, is instrumental in enabling researchers to adapt and

develop ALPR systems specifically for this new LP layout. RodoSol-ALPR facilitates

fair comparisons between methods proposed in various studies due to its balanced

distribution of images featuring cars and motorcycles, as well as one- and two-row LPs.

Remarkably, access to the dataset has already been granted to 145 researchers from

42 countries around the world, as shown here. The dataset has already been explored in

several works, including (Nascimento et al., 2023; Chen et al., 2023; Liu et al., 2024b);

• [Chapter 5] A comprehensive evaluation that highlights the importance of increasing

the out-of-domain robustness of ALPR systems, particularly regarding LPR. We consider

the proposed traditional-split vs. leave-one-dataset-out experimental setup to be a valid

testbed for assessing the cross-dataset generalizability of forthcoming methods;

• [Chapter 6] A demonstration of the substantial benefits of fusion approaches to LPR

performance, both in intra- and cross-dataset experimental setups. More specifically, we

show that fusing multiple OCR models reduces considerably the likelihood of obtaining

subpar performance on a particular scenario. This analysis includes a comparative

assessment of distinct fusion methods and considers the speed/accuracy trade-off in the

final approach by varying the number of models incorporated into the ensemble;
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• [Chapter 7] A GAN-driven methodology for synthesizing fully-labeled images of LPs

from diverse regions and styles. Despite being trained with only a few hundred real

images per LP layout, it yields high-quality results. We are releasing a dataset with 300k

LP images generated through this technique, which researchers can use for training and

testing their OCR models. Such a dataset is of paramount importance as growing privacy

concerns have inhibited the creation and availability of LP datasets in several regions;

• [Chapter 7] A thorough study on the effectiveness of multiple synthetic data generation

methodologies, from creating template-based LP images using OpenCV to produc-

ing more realistic images using GANs, on the average performance across various

OCR models. Our analysis goes beyond measuring the individual effectiveness of each

methodology. We highlight the synergistic effect of combining them, leading to en-

hanced overall LPR performance. Furthermore, we demonstrate that synthetic data plays

a crucial role in overcoming the challenges posed by limited training data availability;

• [Chapter 7] An end-to-end ALPR system that outperforms state-of-the-art approaches

and established commercial solutions, excelling in both intra- and cross-dataset scenarios,

despite being trained on a significantly smaller set of real images;

• [Chapters 5 to 7] Empirical evidence indicating that general-purpose detectors (e.g.,

YOLOv4 and its variants) can be reliably employed for LPD, even when dealing with

images from unseen datasets. However, our experiments emphasize the importance of

rectifying the LPs before feeding them into OCR models for optimal LPR performance;

• [Chapters 5 to 7] Several experimental findings that underscore the importance of

comparing models across multiple datasets that have a wide variety in the way they

were collected and that comprise images of various vehicle types and LP layouts;

• [Chapter 8] We reveal the large fraction of near-duplicates within the training and

test sets of datasets widely adopted in ALPR research. Our findings suggest that such

duplicates have biased the evaluation of deep learning-based models for LPR, potentially

hindering the development and acceptance of more efficient models that have strong

generalization abilities but do not memorize duplicates as well as other models. To

address this issue, we have created and released fair splits for the two most popular

datasets in the field. These new splits eliminate duplicates from the training and test sets

while preserving the key characteristics of the original partitions as much as possible;

• [Chapter 9] A contextualization of the dataset bias problem within LPR, showing that

a lightweight Convolutional Neural Network (CNN) can determine the source dataset of

an LP image with over 95% accuracy. This level of accuracy far exceeds what would

be expected by chance or human ability. In addition to raising awareness about the

potential consequences of this bias, we discuss the subtle ways through which it may

have crept into the datasets, paving the way for future research directions;

The works published during the PhD’s studies are listed below. Publications directly

stemming from this thesis are marked with a star (�). Works co-authored and those covering

related fields are included if they have substantially contributed to the development of this

research. As an example, insights into multi-task learning and the generation of synthetic

data via character permutation were derived from (Gonçalves et al., 2019) (item 10). Another

pertinent example is (Laroca et al., 2021a) (item 5), where we investigated image-based Automatic
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Meter Reading (AMR) rather than ALPR. Two models that play a significant role in Chapter 7,

CDCC-NET and Fast-OCR, were proposed in that work. CDCC-NET also inspires the creation

of the DC-NET model in Chapter 9, while Fast-OCR is also explored in Chapters 5 and 6.

1. � R. Laroca, L. A. Zanlorensi, V. Estevam, R. Minetto, and D. Menotti, “Leveraging

Model Fusion for Improved License Plate Recognition” in Iberoamerican Congress on
Pattern Recognition (CIARP), pp. 60-75, Nov 2023;

2. � R. Laroca, V. Estevam, A. S. Britto Jr., R. Minetto, and D. Menotti, “Do We

Train on Test Data? The Impact of Near-Duplicates on License Plate Recognition” in

International Joint Conference on Neural Networks (ĲCNN), pp. 1-8, June 2023;

3. � R. Laroca, M. Santos, V. Estevam, E. Luz, and D. Menotti, “A First Look at Dataset

Bias in License Plate Recognition” in Conference on Graphics, Patterns and Images
(SIBGRAPI), pp. 234-239, Oct 2022;

4. � R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, “On the

Cross-dataset Generalization in License Plate Recognition” in International Conference
on Computer Vision Theory and Applications (VISAPP), pp. 166-178, Feb 2022;

5. R. Laroca, A. B. Araujo, L. A. Zanlorensi, E. C. de Almeida, and D. Menotti, “Towards

Image-based Automatic Meter Reading in Unconstrained Scenarios: A Robust and

Efficient Approach,” IEEE Access, vol. 9, pp. 67569-67584, 2021;

6. R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz, and D. Menotti,

“An Efficient and Layout-Independent Automatic License Plate Recognition System

Based on the YOLO Detector,” IET Intelligent Transport Systems, vol. 15, no. 4,

pp. 483-503, 2021;

7. V. Nascimento, R. Laroca, J. A. Lambert, W. R. Schwartz, and D. Menotti, “Super-

Resolution of License Plate Images Using Attention Modules and Sub-Pixel Convolution

Layers,” Computers & Graphics, vol. 113, pp. 69-76, 2023;

8. V. Nascimento, R. Laroca, J. A. Lambert, W. R. Schwartz, and D. Menotti, “Combining

Attention Module and Pixel Shuffle for License Plate Super-Resolution” in Conference
on Graphics, Patterns and Images (SIBGRAPI), pp. 228-233, Oct 2022;

9. I. O. de Oliveira, R. Laroca, D. Menotti, K. V. O. Fonseca, and R. Minetto, “Vehicle-Rear:

A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional

Neural Networks,” IEEE Access, vol. 9, pp. 101065-101077, 2021;

10. G. R. Gonçalves, M. A. Diniz, R. Laroca, D. Menotti, and W. R. Schwartz, “Multi-Task

Learning for Low-Resolution License Plate Recognition” in Iberoamerican Congress
on Pattern Recognition (CIARP), pp. 251-261, Oct 2019.

We are currently preparing two additional articles for submission to prestigious journals.

The first article focuses on the fusion of real and synthetic data to enhance LPR, as discussed in

Chapter 7. The second article is a comprehensive survey of public datasets for ALPR. Despite

being near completion and containing numerous insights from this work, the second article has

been omitted due to constraints within this document’s scope.
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1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 presents the theoretical foundation

for the concepts used throughout this work. Chapter 3 reviews relevant research in the field.

Chapter 4 introduces the RodoSol-ALPR dataset, the first to include Mercosur LPs. Chapter 5

covers our study on the cross-dataset generalization in LPR. Chapter 6 examines the potential

for improving LPR results by combining the outputs from multiple OCR models. Chapter 7

delves into the integration of real and synthetic data to enhance LPR performance. Chapter 8

investigates the existence of near-duplicates within the training and test sets of datasets widely

adopted in ALPR research. Chapter 9 situates the dataset bias problem in the LPR context.

Finally, Chapter 10 lays out the conclusions of this work and proposes avenues for future research.

Please be aware that this thesis presents the research in a logical order that may differ from

the original chronology. We have revised and reorganized several sections for improved coherence,

and while we have carefully reviewed the manuscript, there may be minor inconsistencies.
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2. THEORETICAL FOUNDATION

This chapter provides a concise theoretical foundation for the concepts explored in this work.

We begin by describing the metrics commonly used to assess ALPR systems. As the LPD task

comes down to detecting a single class of objects (LPs), many of these metrics were originally

proposed for evaluating general object detectors. We then delve into the realm of deep learning,

focusing specifically on CNNs and GANs. Finally, we discuss the concept of data augmentation.

2.1 Evaluation Metrics

The precision and recall evaluation metrics are commonly used in object detection (Everingham

et al., 2010; Lin et al., 2014b; Padilla et al., 2020) and ALPR (Lu et al., 2021; Lee et al., 2022;

Ding et al., 2024). These metrics are defined by comparing the areas covered by the ground truth

and predicted bounding boxes, considering True Positives (TPs), False Positives (FPs), and False

Negatives (FNs). Precision and recall can be formally expressed as follows:

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2.1)

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2.2)

In simpler terms, precision and recall are metrics that range from 0 to 1, with higher

values indicating better performance. Precision measures the proportion of true positive results

among all predictions, meaning a higher precision indicates fewer false positives. Conversely,

recall measures the proportion of true positives that were correctly identified, meaning a higher

recall indicates fewer false negatives. However, neither precision nor recall alone can accurately

assess the match quality. For instance, recall can be artificially inflated by predicting numerous

objects, even if many are incorrect (think of a system detecting many LPs in an image, even if

most are not actually there). Conversely, a high precision rate can be achieved by being very

selective, but at the cost of missing many correct identifications (imagine a system that only

detects LPs with extremely high confidence, potentially missing many genuine ones).

The F-measure metric is defined as a harmonic mean of precision and recall. As shown

in Equation 2.3, the most general form allows the differential weighting of precision and recall;

however, they are commonly given equal weight (i.e., 𝛽 = 1) (Powers, 2015). The Average
Precision (AP) (Everingham et al., 2010) metric summarizes the shape of the precision/recall

curve since it is defined as the average precision at a set of eleven equally spaced recall levels

[0, 0.1, . . . , 1] (see Equation 2.4). Finally, the mean Average Precision (mAP) is calculated by

taking the mean AP over all classes.

F-measure = (1 + 𝛽2) ·
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
, (2.3)

AP =
1

11

∑

𝑟∈{0,0.1,...,1}

max
𝑟:𝑟>𝑟

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟) . (2.4)
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A metric often used to assess the quality of predictions in object detection tasks is the

Intersection over Union (IoU), also known as Jaccard index and Jaccard similarity coefficient,

which can be expressed by the formula

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
, (2.5)

where 𝐵𝑝 and 𝐵𝑔𝑡 are the predicted and ground truth bounding boxes, respectively. Figure 2.1

illustrates this definition. The closer the IoU is to 1, the better the detection.

Figure 2.1: Definition of IoU. IoU is the division of the overlapping area between the bounding boxes by the union

area. Image reproduced from https://www.pyimagesearch.com/.

The IoU metric is interesting because it penalizes both over- and under-estimated

objects, as shown in Figure 2.2. Overestimated bounding boxes might include a large amount of

unnecessary information and increase subsequent stages’ processing time. On the other hand,

meaningful parts of the object might be lost in underestimated bounding boxes.

(a) Overestimated bounding box (IoU = 0.8) (b) Underestimated bounding box (IoU = 0.8)

Figure 2.2: An illustration of two bounding boxes with the same IoU with the ground truth. The predicted position

and ground truth are outlined in red and green, respectively. Image (without the bounding boxes) reproduced from

https://www.pexels.com.

The PASCAL Visual Object Classes (VOC) (Everingham et al., 2010) and Common

Objects in Context (COCO) (Lin et al., 2014b) object detection tasks considered a detection to be

correct if the IoU between the predicted and ground-truth bounding boxes exceed 0.5. As stated

by Everingham et al. (2010), this threshold was set deliberately low to account for inaccuracies
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in bounding boxes in the training data, for example, defining the bounding box for a highly

non-convex object (e.g., a person with arms and legs spread) is somewhat subjective.

Although LPs are convex objects, this threshold (IoU > 0.5) is by far the most adopted

in the ALPR context because different datasets are labeled differently. For example, the bounding

boxes of the LPs in the AOLP dataset (Hsu et al., 2013) are very tight (see Figure 2.3a), even

cutting off parts of the LP characters in some cases, while other public datasets often consider the

entire LP region as the bounding box. This is one of the reasons why some authors have re-labeled

the bounding boxes in the AOLP dataset (see Figure 2.3b) to perform their experiments.

(a) Annotation provided by Hsu et al. (2013) (b) Annotation provided by Laroca et al. (2021b)

Figure 2.3: The way annotations are created differs considerably from dataset to dataset, as different authors follow

different annotation protocols. (a) shows the original bounding box annotation for an LP from the AOLP dataset (Hsu

et al., 2013), and (b) shows the bounding box annotation provided by Laroca et al. (2021b) for the same LP.

The ultimate goal of ALPR systems is to attain a high recognition rate, which is defined

as the number of correctly recognized LPs divided by the number of LPs in the test set. Note that

an LP is considered correctly recognized only if all its characters are accurately identified, as

even a single misidentified character can lead to misidentification of the vehicle.

2.2 Deep Learning

Problems that are intellectually difficult for human beings but relatively straightforward for

computers (e.g., problems that can be described by a list of mathematical rules) were rapidly

tackled in the early days of Artificial Intelligence (AI). On the other hand, problems that humans

solve intuitively, that feel automatic, such as telling the difference between pictures of cats and

dogs, are very challenging for AI (Goodfellow et al., 2016; Redmon, 2018).

The ability to process natural data in their raw form (such as the pixel values of an image)

was limited in conventional machine learning techniques. For many years, the development of

machine learning systems required a lot of effort and considerable domain expertise to transform

raw data into feature vectors with both discriminative and informative features (LeCun et al.,

2015). It should be noted that the choice of data representation (or features) directly determines

the performance of machine learning methods (Bengio et al., 2013), as demonstrated in Figure 2.4.

One solution to this problem is representation learning, which is a set of methods where

the representations needed for detection or classification are automatically discovered from raw

data (LeCun et al., 2015). In other words, instead of telling the system what a cat or dog looks

like (through feature vectors), we provide as input a lot of images (i.e., millions or hundreds of

thousands) of cats and dogs and let the system learns by itself to associate patterns and images

with the correct label (Redmon, 2018). A string of empirical successes has been achieved both in

academia and industry with the growing interest of the scientific community on representation

learning (Bengio et al., 2013; LeCun et al., 2015; Bengio et al., 2021).
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Figure 2.4: An example of different data representations. It is impossible to draw a straight line that separates two

categories of data when representing them using Cartesian coordinates. On the other hand, this task becomes very

simple when using Polar coordinates. Image reproduced from http://www.deeplearningbook.org/.

The central problem in representation learning is that it can be very difficult to extract

such high-level, abstract features from raw data. Deep learning solves this problem by introducing

representations that are expressed in terms of other, simpler representations (Goodfellow et al.,

2016). An illustration of a deep learning model is shown in Figure 2.5. As can be seen, features

regarding the presence or absence of edges at particular orientations and locations in the image

are learned in the first representation layer. Next, corners and contours (i.e., collections of edges)

are detected in the second layer. The third layer is where parts of objects are found by locating

specific collections of contours and corners. Finally, the subsequent layers would detect specific

objects as combinations of these parts (Goodfellow et al., 2016). The key aspect of deep learning

is that these layers of features are learned from data using a general-purpose learning procedure,

and thus it requires minimal engineering by hand (LeCun et al., 2015).

Initially, deep learning approaches were mainly employed for the handwritten digits

recognition problem, breaking the supremacy of Support Vector Machines (SVMs) in the

renowned MNIST dataset. The focus shifted progressively to object recognition in natural images,

increasingly attracting the attention of the scientific community since the breakthrough achieved

by Krizhevsky et al. (2012) on the ImageNet Large Scale Visual Recognition Challenge, bringing

down the state-of-the-art error rate from 26.2% to 15.3% (Bengio et al., 2013).

In addition to the outstanding results achieved in several applications through deep

learning, there are two other reasons for its success (Deng and Yu, 2014; LeCun et al., 2015;

Bengio et al., 2021). First, the dramatically increased chip processing abilities (e.g., GPUs).

Second, the fact that deep learning can easily take advantage of increases in the amount of

available computation and data since it requires very little engineering by hand.

In the next two subsections, we provide more details about CNNs and GANs since they

are two of the best known classes of deep neural networks and also those we explore in this work.

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs), also known as Convolutional Networks and ConvNets,

are designed to process data that have a known, grid-like topology, for example, a color image

composed of three 2-D arrays containing pixel intensities in the three color channels (LeCun

et al., 2015; Goodfellow et al., 2016). It is worth noting that the impressive results reported by

Krizhevsky et al. (2012) were obtained using CNNs.
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Figure 2.5: An illustration of a deep learning model. First, low-level features such as edges and curves are

found, and then more abstract concepts are built through a series of layers. Image reproduced from http:
//www.deeplearningbook.org/.

All CNNs perform a kind of linear operation called convolution (hence the name) in

at least one of their layers (Goodfellow et al., 2016). The basic building blocks of CNNs are

convolutions, pooling (downsampling) operators, activation functions (e.g., Rectified Linear

Unit (ReLU)) and fully connected layers, which are essentially similar to hidden layers of a

Multilayer Perceptron (MLP) (Ponti et al., 2017). Each one of those building blocks will be

described throughout this section. Figure 2.6 shows an example of a CNN.

Figure 2.6: An example of a CNN, which consists of convolutional layers, activation functions and pooling layers,

followed by a set of fully connected layers. Image reproduced from (Tejani, 2016).

2.2.1.1 Convolutional Layer

The main building blocks of CNNs are the convolutional layers, which are composed of a set of

filters (or kernels), each to be applied to the entire array of pixel values. Each filter is a matrix

of weights (or values) that can be considered as a feature identifier (e.g., straight edges, simple

colors, and curves). The filters produce what can be seen as an affine transformation of the input

image (Ponti et al., 2017). Each filter is slid (or convolved) around the input image, with the
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values in the filter being multiplied by the original pixel values of the image (Ponti et al., 2017).

An example of 2-D convolution is shown in Figure 2.7.

Figure 2.7: An example of 2-D convolution. The boxes with arrows were drawn to indicate how the upper-left

element of the output tensor is formed by applying the kernel to the corresponding upper-left region of the input

tensor. Image reproduced from (Goodfellow et al., 2016).

Each region that the filter processes is called a local receptive field, and an output value

(pixel) is a combination of the input pixels in this local receptive field, as shown in Figure 2.8.

That makes the convolutional layer different from layers of an MLP, where each neuron produces

a single output based on all values from the previous layer (see Figure 2.9) (Ponti et al., 2017).

An important aspect of CNNs is that the filter weights are shared across receptive fields,

significantly reducing the number of weights that the network has to learn. As stated by LeCun

et al. (2015), if a feature can appear in one part of the image, it could appear anywhere, hence the

idea of filters at different locations sharing the same weights and detecting the same pattern in

different parts of the array.

Note that convolution is not naturally equivariant to some other transformations, such

as changes in the scale or rotation of an image. Therefore, other mechanisms are necessary for

handling these kinds of transformations (Goodfellow et al., 2016).

2.2.1.2 Activation Function

In order to go from one layer to the next, a set of units compute a weighted sum of their inputs

from the previous layer and pass the result through an activation function (LeCun et al., 2015).

In contrast to using a sigmoid function such as the logistic or hyperbolic tangent in MLPs, the

Rectified Linear Unit (ReLU) is often used in CNNs after convolutional or fully connected

layers (Ponti et al., 2017). Figure 2.10 shows plots of these functions.

Although sigmoid functions are commonly used in neural networks, their limitations

are well known. For example, it is slow to learn the whole network due to weak gradients when

the units are close to saturation in both directions (Deng and Yu, 2014). Deep CNNs with ReLUs

train several times faster than their equivalents with sigmoid functions (Krizhevsky et al., 2012).

The Leaky ReLU allows for a small, non-zero gradient when the unit is saturated and inactive.
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Figure 2.8: The convolution process. It processes local information centered in each position (𝑥, 𝑦): this region is a

called local receptive field, whose values are used as input by some filter 𝑖 with weights 𝑤𝑖 in order to produce a

single point (pixel) in the output feature map 𝑓 (𝑖, 𝑥, 𝑦). Image reproduced from (Ponti et al., 2017).

(a) Fully connected layer (b) Convolutional layer

Figure 2.9: Comparison between fully connected (a) and convolutional layers (b). In a fully connected

layer, each unit is connected to all units of the previous layers. On the other hand, in a convolu-

tional layer, each unit is connected to a constant number of units in a local region of the previous

layer. Image reproduced from https://www.quora.com/what-is-the-difference-between-a-
convolutional-neural-network-and-a-multilayer-perceptron.

(a) Hyperbolic tangent (b) Logistic (c) ReLU (d) Parametric ReLU (PReLU)

Figure 2.10: Activation functions. (a) and (b) are often used in MLP networks, while (c) and (d) are more common

in CNNs. A PReLU (d) with 𝑎 = 0.01 is equivalent to Leaky ReLU. Image reproduced from (Ponti et al., 2017).

Maas et al. (2013) observed that the non-zero gradient does not substantially affect training

optimization and that deep networks with Leaky ReLUs converge slightly faster.

In addition to the innovations in better architectures of deep learning models, there is also

a growing body of work on developing and implementing better nonlinear units (Ramachandran

et al., 2018; Misra, 2020; Nader and Azar, 2020).
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2.2.1.3 Pooling

In addition to convolutions and activation functions, pooling operations make up another important

building block in CNNs. Pooling operations reduce the size of feature maps by using some

function to summarize subregions, such as taking the average or the maximum value of the

contributing features (Dumoulin and Visin, 2018). Although much better linear discrimination

performance was achieved with max pooling compared to average pooling in (Boureau et al.,

2010a), the same research group showed in (Boureau et al., 2010b) that depending on the data

and features, either max or average pooling may perform best. Then, in this section, we focus on

the max-pooling operator since it is the most frequently used (Ponti et al., 2017).

The role of the pooling layer is to merge semantically similar features into one,

enabling representations to vary very little when elements in the previous layer vary in position

and appearance (LeCun et al., 2015). In other words, the use of pooling can be viewed as

adding an infinitely strong prior that the function the layer learns must be invariant to small

translations (Goodfellow et al., 2016). See Figure 2.11 for an example of how max pooling works.

(a)

(b)

Figure 2.11: Max pooling introduces invariance. (a) shows a view of the middle of the output of a convolutional

layer, and (b) shows a view of the same network after the input has been shifted to the right by one pixel. The bottom

row shows the outputs of the activation function. The top row shows the outputs of max pooling, with a stride of one

pixel between pooling regions and a pooling region width of three pixels. Observe that every value in the bottom

row has changed, but only half of the values in the top row have changed. This occurred because the max-pooling

units are only sensitive to the maximum value in the neighborhood, not its exact location. Image reproduced from

http://www.deeplearningbook.org/.

It is possible to use fewer pooling units than detector units (see Figure 2.12), as pooling

summarizes the responses over a whole neighborhood. In this way, the computational efficiency

of the network is improved because the next layer has fewer inputs to process. When the number

of parameters in the next layer is a function of its input size (e.g., the next layer is fully connected

and based on matrix multiplication), this reduction in the input size can also result in improved

statistical efficiency and reduced memory requirements for storing the parameters (Goodfellow

et al., 2016).
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Figure 2.12: Max pooling with downsampling. When using stride = 2 between pools, the representation size is

reduced by a factor of two, which reduces the computational and statistical burden on the next layer. Note that the

rightmost pooling region is smaller but must be included if we do not want to ignore some of the detector units.

Image reproduced from http://www.deeplearningbook.org/.

It should be noted that generative models such as auto-encoders and GANs shown to be

harder to train with pooling layers (Radford et al., 2016; Ponti et al., 2017). Therefore, pooling

layers might be avoided in some neural network architectures.

2.2.1.4 Fully Connected Layers and Regularization

Conventional CNNs perform convolution in the lower layers of the network. For classification,

the feature maps of the last convolutional layer are vectorized and fed into fully connected layers

followed by a softmax logistic regression layer (Lin et al., 2014a).

However, the fully connected layers are prone to overfitting, thus hampering the

generalization ability of the overall network (Lin et al., 2014a). In this sense, a technique called

dropout (Srivastava et al., 2014) was introduced to limit co-adaptation. It operates as follows.

On each training instance, each hidden unit is randomly omitted with a fixed probability (e.g.,

𝑝 = 0.5) (Deng and Yu, 2014). The neurons that are “dropped out” do not contribute to the

forward pass and do not participate in backpropagation, as illustrated in Figure 2.13. Thus, the

neural network samples a different architecture every time an input is presented, but all these

architectures share weights (Krizhevsky et al., 2012).

(a) Standard neural network (b) After applying dropout

Figure 2.13: An illustration of dropout regularization. (a) shows a standard neural network with two hidden layers,

and (b) shows an example of a thinned network produced by applying dropout to the network on (a). Image

reproduced from (Srivastava et al., 2014).

Dropout is turned off in the test stage, and the activations are rescaled by 𝑝 to compensate

those activations that were dropped during the training stage (Ponti et al., 2017). The benefits of
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dropout regularization for training deep neural networks are to make a hidden unit act strongly by

itself without relying on others and to serve as a way to do model averaging of different networks.

These benefits are most pronounced when the training data is limited or when the network size is

disproportionally large with respect to the size of the training data (Deng and Yu, 2014).

Deep neural networks involve the composition of several functions or layers. Training

them is complicated because the distribution of each layer’s inputs changes during training, as the

parameters of the previous layers change (Ioffe and Szegedy, 2015). In other words, the gradient

tells how to update each parameter under the assumption that the other layers do not change. In

practice, all layers are updated simultaneously. Hence, unexpected results might happen because

many functions composed together were changed simultaneously, using updates computed under

the assumption that the other functions would remain constant (Goodfellow et al., 2016).

This makes it notoriously hard to train models with saturating nonlinearities. Therefore,

the training is slower since it requires lower learning rates and careful parameter initialization (Ioffe

and Szegedy, 2015). In this direction, Ioffe and Szegedy (2015) proposed a regularization

technique called batch normalization for controlling the distributions of neural network activations,

thereby reducing internal covariate shift (Cooĳmans et al., 2017). Batch normalization is a

method of adaptive reparametrization in which the output of each neuron (before application

of the nonlinearity) is normalized by the mean and standard deviation of the outputs calculated

over the examples in the mini-batch (Salimans and Kingma, 2016). This effectively decouples

each layer’s parameters from those of other layers, leading to a better-conditioned optimization

problem. Deep neural networks trained with batch normalization converge significantly faster,

generalize better, and often do not need dropout (Cooĳmans et al., 2017; Ponti et al., 2017).

2.2.2 Generative Adversarial Networks (GANs)

Compared with discriminative models, which only model the decision boundary between the

classes, generative models tackle a more difficult task: to capture the actual distribution of each

class in order to generate similar data (Oussidi and Elhassouny, 2018; Harshvardhan et al., 2020).

In other words, as defined by Goodfellow (2016), generative models refer to any model that takes

a training set, consisting of samples drawn from a distribution 𝑝𝑑𝑎𝑡𝑎, and learns to represent an

estimate of that distribution somehow. The result is a probability distribution 𝑝𝑚𝑜𝑑𝑒𝑙 .
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014b) are generative

models based on a competition between a generator network 𝐺 and a discriminator network 𝐷.

The generator 𝐺 (𝒛; 𝜃 (𝐺)) produces samples from the data distribution, 𝑝data(𝒙), by transforming

vectors of noise 𝒛 as 𝒙 = 𝐺 (𝒛; 𝜃 (𝐺)) (Goodfellow et al., 2014b). The function 𝐺 is simply a

function represented by a neural network that transforms the random, unstructured 𝒛 vector into

structured data, intended to be statistically indistinguishable from the training data. The training

signal for 𝐺 is provided by the discriminator network 𝐷 (𝒙), which is trained to distinguish

samples from the generator distribution 𝑝model(𝒙) from real data. In turn, the generator network

𝐺 is trained to fool the discriminator into accepting its outputs as being real (Salimans et al.,

2016). At convergence (a local Nash equilibrium), the generator’s samples are indistinguishable

from real data (𝑝𝑚𝑜𝑑𝑒𝑙 = 𝑝𝑑𝑎𝑡𝑎), and the discriminator outputs 1⁄2 everywhere3 (Fedus et al.,

2018; Harshvardhan et al., 2020). Therefore, neither player can improve its payoff, and the

discriminator may then be discarded (Goodfellow et al., 2016).

Goodfellow et al. (2014b) observed that the generator can be thought of as analogous to

a team of counterfeiters, trying to produce fake currency and use it without detection, while the

3 This (𝑝𝑚𝑜𝑑𝑒𝑙 = 𝑝𝑑𝑎𝑡𝑎) is just an example of an idealized case; generally, the generator does not need to produce

perfect replicas from the input domain to be useful (Brownlee, 2019; Goodfellow, 2019).
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discriminator is analogous to the police, trying to detect the counterfeit currency. Competition

between counterfeiters and police leads to more and more realistic counterfeit money, until

eventually the counterfeiters produce perfect fakes and the police cannot distinguish between real

and fake money. Figure 2.14 illustrates this alternate training process.

When training begins, the generator produces obviously fake data, and the discriminator quickly learns to tell it is fake.

As training progresses, the generator gets closer to producing outputs that can fool the discriminator.

Finally, if generator training goes well, the discriminator cannot differentiate between the two distributions, i.e., 𝐷 (𝒙) = 1
2 .

Figure 2.14: An illustration of the fundamental intuition underlying the training process of GANs. Image adapted

from https://developers.google.com/machine-learning/gan/gan_structure.

GANs typically use CNNs as the generator and discriminator models (Brownlee, 2019).

The most common training algorithm is simply to use a gradient-based optimizer to repeatedly

take simultaneous steps on both players, incrementally minimizing each player’s cost with respect

to that player’s parameters. In simpler terms, the back-propagation algorithm propagates gradients

from the discriminator through the generator’s output (Goodfellow et al., 2020). The Adam

optimizer (Kingma and Ba, 2015) has been chosen in most works in the literature (Miyato et al.,

2018; Lučić et al., 2019; Choi et al., 2020; Wang et al., 2021b). At the end of the training process,

GANs can often produce realistic samples, as shown in Figure 2.15.

Figure 2.15: These images are samples from StyleGAN2 (Karras et al., 2020) depicting three people who do not

exist but were “imagined” by a GAN after training on a high-quality image dataset of human faces. The three images

were downloaded from https://thispersondoesnotexist.com/.

Indeed, GANs are often regarded as producing the best samples compared to other

generative models, such as Variational Autoencoders (VAEs), especially in generating realistic

high-resolution images (Goodfellow et al., 2016; Wang et al., 2018b; Karras et al., 2020). Note that

they have proven useful for several tasks other than straightforward image generation (Goodfellow

et al., 2020). Consequently, they have become a hot research topic. According to Gui et al.
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(2023), approximately 28,500 GAN-related papers were published in 2020 alone, constituting

approximately 78 papers every day or more than three per hour.

However, GANs are not without problems. The two most significant are that they are

hard to train and difficult to evaluate (Salimans et al., 2016; Wang et al., 2021b). Regarding being

difficult to train, Odena et al. (2018) stated that various causes seem to plague GANs’ training

procedure. The most notable of them, called mode collapse, is characterized by a tendency of the

generator to output samples from a small subset of the modes of the data distribution. In extreme

cases, the generator outputs only a few unique samples or even just the same sample repeatedly.

As even the best learning algorithms often fail to converge (Goodfellow et al., 2020), several

works have sought to design better costs, models, and training algorithms with better convergence

properties (Arjovsky et al., 2017; Miyato et al., 2018; Bang and Shim, 2021). In terms of

evaluation, generative models are traditionally evaluated in terms of fidelity (how realistic a

generated image is) and diversity (how well generated samples capture the variations in real

data) of the learned distribution (Borji, 2022). Nevertheless, there is not a single compelling

way to evaluate both fidelity and diversity simultaneously (Goodfellow, 2016). The two most

common GAN evaluation measures are Inception Score (IS) (Salimans et al., 2016) and Fréchet

Inception Distance (FID) (Heusel et al., 2017), which rely on pre-trained deep networks to

represent and statistically compare original and generated samples (Borji, 2022). However,

several shortcomings of both measures have been pointed out over the years (Shane Barratt,

2018; Shmelkov et al., 2018; Borji, 2022). That is why some authors (Theis et al., 2016; Borji,

2022) argued that generative models, including GANs, need to be evaluated with respect to the

application(s) they are intended for (evaluation metrics should be tailored to the target task).

Considering the success achieved by GANs in recent years, there are many relevant

derivatives of GANs proposed in the literature. In the following subsections, we review two of

them given their importance and because we have explored them in the development of this work.

2.2.2.1 Deep Convolutional Generative Adversarial Networks (DCGANs)

The original GANs (Goodfellow et al., 2014b) worked but were unstable and difficult to train,

especially with large inputs, often resulting in generators that produce nonsensical outputs.

Nevertheless, shortly afterward, Radford et al. (2016) crafted a Deep Convolutional Generative
Adversarial Network (DCGAN)4 that showed stable training across a range of datasets and allowed

for training higher resolution and deeper generative models. Based on this, most GANs proposed

after (Radford et al., 2016) are at least loosely based on the DCGAN architecture (Goodfellow,

2016; Wang et al., 2021b; Gui et al., 2023).

DCGANs have three main differences from the original GANs: (i) DCGAN replaces

any pooling layers with strided convolutions (see the generator used by Radford et al. (2016) for

scene modeling in Figure 2.16), allowing each network to learn its own spatial downsampling;

(ii) DCGAN uses batch normalization in most layers of both the discriminator and the generator

(except for the 𝐺 output layer and 𝐷 input layer to avoid sample oscillation and model instability)

to deal with training problems that arise due to poor initialization, preventing mode collapse; and

(iii) DCGAN uses ReLU in 𝐺 for all layers except for the output, and Leaky ReLU for all layers

in 𝐷 – while ReLU allowed the model to learn quicker how to saturate and cover the color space

of the training distribution, Leaky ReLU worked well for higher resolution modeling.

4 Although GANs were both deep and convolutional prior to DCGANs, the name DCGAN is traditionally used

to refer to this specific style of architecture (Goodfellow, 2016).
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Figure 2.16: The generator of DCGAN with four sequential fractionally-strided convolutional layers, which convert

a 100-dimensional uniform distribution 𝑧 – projected to a small spatial extent convolutional representation with

many feature maps – into a 64 × 64 image. Image reproduced from (Radford et al., 2016).

2.2.2.2 Conditional Generative Adversarial Networks (cGANs)

Although standard (or unconditioned) GAN models are able to generate new random plausible

examples for a given dataset, there is no way to control the appearance (e.g., class) of the samples

that are generated other than trying to figure out the complex relationship between the latent space

input to the generator and the generated images (Kaneko et al., 2017; Brownlee, 2019). With that

in mind, Mirza and Osindero (2014) proposed to extend GANs to a conditional model – called

Conditional Generative Adversarial Network (cGAN) – by conditioning both the generator and

discriminator on some extra label 𝑦, which can be any kind of auxiliary information such as class

labels or data from other modalities. Figure 2.17 compares GANs and cGANs in a simplified way.

Figure 2.17: Comparison between GANs and cGANs. Image reproduced from (Cheng et al., 2020).

Over the years, many studies have empirically shown that there is almost always a causal

relationship between using labels in any way, shape or form and a dramatic improvement in the

subjective quality of the samples generated by GAN models (Denton et al., 2015; Salimans et al.,

2016; Odena et al., 2018), even though it is not entirely clear why this trick works in each specific

case (Goodfellow, 2016; Boulahbal et al., 2021). An important characteristic of cGAN models

is that the generated images should not only be realistic but also recognizable as related to the

specified condition 𝑦 (e.g., coming from a given class) (Shmelkov et al., 2018).

In practical terms, cGANs are trained on a labeled dataset, allowing the label for each

generated instance to be specified. cGANs find applications in several areas such as categorical

image generation using class labels (Mirza and Osindero, 2014; Miyato and Koyama, 2018),

text-to-image synthesis, where text sentences are converted into images (Reed et al., 2016; Zhang

et al., 2021b), and image-to-image translation, where one image is transformed into another (Isola

et al., 2017; Zhu et al., 2017a). In the subsequent paragraphs, we elaborate on image-to-image

translation, as we plan to use cGANs to generate LP images from LP masks.
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Image-to-image translation (see Figure 2.18) is a class of problems where the goal is

to translate images from one domain to another by learning a mapping between the input and

output images using a training dataset of paired (Isola et al., 2017; Shaham et al., 2021) or

unpaired (Zhu et al., 2017b; Lee et al., 2020) cross-domain image pairs. It should be noted that

even though the latter approach (unpaired) is generally called unsupervised as a counterpart of

the former, it actually assumes that the domain labels are given a priori (Baek et al., 2021b).

Figure 2.18: Image-to-image translation is a concept introduced by Isola et al. (2017) that encompasses many kinds

of transformations of an image: converting segmentation masks into images, converting aerial photos into maps,

converting sketches into photorealistic images, among others. Image adapted from (Isola et al., 2017).

Figure 2.19 illustrates the difference between paired and unpaired training data in

image-to-image translation. The application of cGANs to this task was first investigated by Isola

et al. (2017), who created a model – called pix2pix – that maps an image from input to output

domain using an adversarial loss in conjunction with the L1 loss between the result and target,

thus requiring paired training data. Since this seminal work, paired image-to-image translation

models have shown impressive results (Wang et al., 2018b; Park et al., 2019; Shaham et al., 2021;

Zhou et al., 2021). Nevertheless, acquiring such training data (i.e., matching image pairs with

pixelwise or patchwise labeling) can be time-consuming and even unrealistic (Zhu et al., 2017a;

Lee et al., 2020). For example, for converting daylight scenes to night scenes and vice versa,

even though matching image pairs can be obtained with stationary cameras, moving objects in

the scene (e.g., vehicles and clouds) often cause varying degrees of content discrepancies (Yi

et al., 2017). To tackle this problem, CycleGAN (Zhu et al., 2017b), DualGAN (Yi et al., 2017)

and DiscoGAN (Kim et al., 2017) provided a new insight (nearly at the same time), in which the

GAN models discover relations between two visual domains without any explicitly paired data.

As paired data is often not available, unpaired image-to-image translation has gained a great deal

of attention in recent years (Zhao et al., 2020b; Tang et al., 2021; Zheng et al., 2021).

As a side note, with paired training data, image-to-image translation can be approached

by a single feedforward CNN trained to minimize a regression loss (Chen and Koltun, 2017).

However, as stated by Goodfellow (2016), models with generative modeling are better trained for

this task because there are multiple correct outputs for each input (as shown in Figure 2.20).

2.3 Data Augmentation

A huge number of training examples are required to train deep networks since they often have

a large set of parameters to be optimized (Ponti et al., 2017; Bengio et al., 2021). In practice,
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Figure 2.19: Paired training data (left) consists of training examples {𝑥𝑖 , 𝑦𝑖}
𝑁
𝑖=1

, where the correspondence between

𝑥𝑖 and 𝑦𝑖 exists. Unpaired training data (right) consists of a source set {𝑥𝑖}
𝑁
𝑖=1

(𝑥𝑖 ∈ 𝑋) and a target set {𝑦 𝑗 }
𝑀
𝑗=1

(𝑦 𝑗 ∈ 𝑌 ), with no information provided as to which 𝑥𝑖 matches which 𝑦 𝑗 . Image reproduced from (Zhu et al., 2017b).

Figure 2.20: Examples of diverse outputs produced by DRIT++ (Lee et al., 2020) trained without aligned pairs.

Observe that a single input may correspond to multiple possible outputs. Image adapted from (Lee et al., 2020).

the amount of data available is limited. One way to get around this problem is to create fake

data and add it to the training set. This process is known as data augmentation. It is reasonably

straightforward to create new fake data for some machine learning tasks (Goodfellow et al., 2016).

Images in the same dataset usually have similar illumination conditions, a low variance

of rotation, pose, etc. Therefore, one can augment the training dataset using many operations to

produce several times more examples (Ponti et al., 2017). To better illustrate, Figure 2.21 shows

multiple images created from a single one using Albumentations (Buslaev et al., 2020), which is

a well-known library for image augmentation. Operations like translating the training images

a few pixels in each direction can often greatly improve generalization, even if the model has

already been designed to be partially translation-invariant by using the convolution and pooling

techniques described in the previous section. Many other operations, such as rotating or scaling

the image, have also proven quite effective (Goodfellow et al., 2016; Ponti et al., 2017).

It is well-known that unbalanced data (usually the case in ALPR) is undesirable for

neural network classifiers since the learning of some patterns might be biased. This problem can

be addressed with data augmentation, by increasing the number of images of under-represented

classes to create a new set of training images, in which each class is equally represented.

It is worth noting that some frameworks already have built-in data augmentation (Redmon

et al., 2016), and one must be careful not to apply transformations that would change the correct

class. For example, OCR tasks require recognizing the difference between ‘b’ and ‘d’ and the

difference between ‘6’ and ‘9’, so these cases must be considered before applying horizontal flips

and 180° rotations for those tasks (Laroca et al., 2018; Aberdam et al., 2021).



44

Figure 2.21: An example of how some augmentations can be applied to create new images from the original one.

Image reproduced from https://github.com/albumentations-team/albumentations/.
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3. RELATED WORK

This chapter reviews relevant works that explored deep learning methodologies within the ALPR

domain. For a broader survey covering research on traditional image processing techniques,

please refer to (Du et al., 2013; Lubna et al., 2021; Shashirangana et al., 2021).

We structured this chapter into five sections. The first two sections focus on methods

designed or adjusted for LPD and LPR. The third section explores research that leverages data

synthesis techniques to enhance the performance of LPR models. The fourth section provides a

brief overview of approaches that do not align with the preceding sections, such as models for

locating the four corners of the LPs, commercial ALPR systems, and established methods for

scene text recognition. The final section offers concluding remarks.

3.1 License Plate Detection (LPD)

Many authors have addressed the LPD stage using off-the-shelf object detection CNNs. Con-

sidering that there is a large portion of works on ALPR that are focused on the recognition

stage, many authors simply employed well-known detectors without providing details about the

implementation, training strategies, and results obtained. For example, Zhang et al. (2018a)

used Faster-RCNN (Ren et al., 2017), Zhang et al. (2019b, 2021c); Kim et al. (2021) explored

YOLOv2 (Redmon and Farhadi, 2017), and Zhang et al. (2021d) used YOLOv4 (Bochkovskiy

et al., 2020) for LPD. The following paragraphs describe relevant works where more information

was provided regarding the methods used/designed for the detection stage.

Henry et al. (2020) employed Fast-YOLOv3 for locating the LPs directly in the input

image (i.e., without vehicle detection)5. Although high precision and recall rates were achieved

in five different datasets, the chosen datasets were collected under relatively controlled conditions

(e.g., with handheld cameras in parking lots or stationary cameras in car wash facilities) and the

authors trained a distinct network for each dataset, i.e., the parameters (e.g., network input size)

were adjusted specifically for each scenario. In this way, it is not clear whether such a shallow

network (compared to state-of-the-art object detectors) is robust enough to handle multiple

real-world scenarios. Silva and Jung (2017, 2020), on the other hand, noticed that the Fast-YOLO

model achieved a low recall rate when detecting LPs without prior vehicle detection. Therefore,

they used the Fast-YOLO model arranged in a cascaded manner to first detect the frontal view of

the cars and then locate their LPs in the detected patches, attaining high precision and recall rates.

Their approach can remarkably process 185 frames per second (FPS) on an NVIDIA TITAN X

GPU, assuming that a single vehicle is being processed.

Inspired by this cascaded approach, Laroca et al. (2018) first fine-tuned the YOLOv2

model (Redmon and Farhadi, 2017) to locate the vehicles (both front and rear views) in the input

image and then trained the Fast-YOLOv2 model to detect the respective LPs in the cropped patches.

The authors reported promising speed/accuracy results in two public datasets acquired in Brazil.

An important finding of their work is that better results were reached when using two distinct

classes for detecting cars and motorcycles (instead of a single class called “vehicle”). On the

other hand, Silva and Jung (2018) detected the vehicles in the input image using the pre-trained

5 Each YOLO model has a corresponding smaller version known as YOLO-tiny (or Fast-YOLO). These variants

have fewer convolutional layers and filters than their larger counterparts. Despite their compact design, YOLO-tiny

versions can still achieve a surprising level of detection accuracy (Redmon et al., 2016), leading to their adoption in

various real-world applications (Bezerra et al., 2018; Salomon et al., 2020; Ismail et al., 2021; Ke et al., 2023).
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YOLOv2 model (i.e., without any change or refinement). The outputs related to vehicles (i.e.,

cars and buses) were merged, whereas those related to other classes were ignored. Then, they

proposed a Warped Planar Object Detection Network (WPOD-NET) that searches for LPs and

regresses one affine transformation per detection, enabling a rectification of the LP region to a

rectangle resembling a frontal view. Their approach, illustrated in Figure 3.1, was trained using

many synthetically warped versions of real images to augment the training dataset composed of

less than 200 manually labeled images. The detection stage’s results and execution time were not

reported, as the authors focused on the end-to-end evaluation of their system.

Figure 3.1: The LPD approach proposed by Silva and Jung (2018). Note that the rectification process can significantly

help the OCR task when the LPs are heavily distorted. Image reproduced from (Silva and Jung, 2018).

Considering some limitations of WPOD-NET, such as not working properly for motorcy-

cle LPs due to differences in aspect ratio and layout, Silva and Jung (2022) presented an Improved

Warped Planar Object Detection Network (IWPOD-NET) that learns separately the weights

for the classification and localization tasks. In summary, while WPOD-NET relies on weight

sharing for both tasks until the last layer, IWPOD-NET contains two shallow (but independent)

sub-networks, one for each task. By massively exploring data augmentation techniques and

post-processing strategies, IWPOD-NET reached remarkable performance for handling both car

and motorcycle LPs captured at a variety of lighting conditions and viewpoints.

Xie et al. (2018) proposed a YOLO-based model to predict the LP rotation angle in

addition to its coordinates and confidence value. Their network consists of seven convolutional

layers and three fully connected ones. Before that, another CNN (with the same architecture) was

applied to determine the attention region in the input image, assuming that some distance will

inevitably exist between any two LPs. By cascading both models, their approach outperformed all

baselines in three public datasets while still running in real time. Despite the impressive results,

it is important to highlight two limitations in their work: (i) the authors simplified the problem by

forcing their ALPR system to output only one bounding box per image – this limitation was also

highlighted by Zhang et al. (2021a); and (ii) motorcycle LPs might be lost when determining the

attention region since, in some scenarios (e.g., traffic lights), they might be very close.

Rather than exploring off-the-shelf object detectors, Li et al. (2018) trained a 4-layer

CNN using characters cropped from general text to perform a character-based LP detection. The

network was employed in a sliding-window fashion across the entire image to generate a text

salience map. Text-like regions were extracted based on the clustering nature of the characters.

Connected Component Analysis (CCA) was subsequently applied to produce the initial candidate

boxes. Then, an LP/non-LP CNN – also with four layers – was trained to remove false positives.

Finally, the bounding boxes were refined through a projection-based method. Although the

precision and recall rates obtained were higher than those achieved in previous works, this

sequence of methods (see Figure 3.2) is too expensive for real-time applications, taking more

than 2 seconds to process a single image when running on an NVIDIA Tesla K40c GPU.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: The LPD approach proposed by Li et al. (2018). (a) input image (taken from the AOLP dataset);

(b) text salience map generated after the sliding window-based detection; (c) text salience map after applying the

Non-Maximum Suppression (NMS) and smoothing algorithms; (d) candidate bounding boxes generated by CCA;

(e) candidate bounding boxes after the elimination of false positives; and (f) final bounding boxes after box refining

and LP/non-LP classification. Image reproduced from (Li et al., 2018).

Liu and Chang (2019) combined handcrafted features with CNNs in their pipeline,

which was designed for large visual surveillance scenes and consists of three parts. First, a

color-based feature was explored to quickly reject backgrounds with colors other than those of

target LPs (in their work, blue LPs from mainland China). Then, for further background rejection,

the authors designed a feature that uses information regarding the intensity and color differences

between the characters and the background in each LP to express local rectangular features. The

AdaBoost algorithm (Viola and Jones, 2004) was employed for both tasks. Lastly, a CNN-based

cascade structure containing three distinct networks was proposed to accurately detect the LPs.

Their method, which requires 202 ms per image on an NVIDIA GeForce GTX 1060 GPU (i.e.,

it processes approximately 5 FPS), achieved the highest precision rate and the second-highest

recall rate in their assessments with four other LPD methods and two commercial systems. As

limitations of their work, we can mention that their method cannot readily be applied to multiple

LP layouts, as it leverages color information for background rejection, and that all experiments

were performed exclusively on a private dataset.

Mokayed et al. (2021) also explored handcrafted features and CNNs in their pipeline.

They combined Discrete Cosine Transform (DCT) and phase congruency to extract a set of

candidate LP regions and employed a CNN to eliminate false positives. The authors focused their

experimental evaluation on images acquired by drones, which contain several challenges such as

large variations in height distance, oblique angles, and many vehicles in a single image (hence,

the camera’s focus spreads across the vehicles). Although promising results were achieved in

images captured by drones, a low F-measure value of 81.1% was obtained in the experiments

performed on the Medialab LPR dataset (Anagnostopoulos et al., 2008). As detection rates close

to 100% are often reached on Medialab LPR (Bhargav and Deshpande, 2019; Gao et al., 2020a),

we conjecture that the thresholds and heuristics of their method were overtuned for drone images,

making it not very robust to images acquired by stationary or handheld cameras. The average

processing time on an Intel® Core™ i7-8700K CPU was 32 ms per image.
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Gonçalves et al. (2018) presented a 15-layer CNN to detect the LPs directly in the input

image. The authors showed that even at a high Intersection over Union (IoU) threshold (e.g., 0.7),

it is not possible to guarantee that the detected LP encloses all characters (see Figure 3.3).

Therefore, they proposed a new loss function that penalizes over-segmented LPs to avoid

detections on the inner side of the LP. Their approach was evaluated on public datasets containing

Brazilian LPs and worked best on images captured by stationary cameras. According to the

authors, this is related to the fact that non-stationary backgrounds contain much more patterns

that can be confused with an LP.

Figure 3.3: Three LPs detected with the same IoU value (0.7) with the ground truth; however, only the rightmost has

all LP characters completely visible. The ground truth bounding boxes are outlined in blue, while the hypothetical

predictions are outlined in orange. Image reproduced from (Gonçalves et al., 2018).

Wang et al. (2022c) reinforced that the speed/accuracy trade-off always accompanies

the ALPR’s design process and that how to design an effective and efficient ALPR system is still

an open-ended question. In this sense, they proposed a compact one-stage LP detector, called

VertexNet, with small-resolution input (256 × 256 pixels) that contains an integration block to

extract the spatial features of the LPs as well as a vertex-estimation branch (hence the name of

the network) for predicting the geometric shapes of the LPs, which can be later used for LP

rectification. Although VertexNet has proven very efficient (i.e., it runs at 5.7 ms per image on

an NVIDIA GTX 1080 Ti GPU) and accurate in their experimental evaluation, it probably does

not perform well in scenarios where the vehicles are relatively far from the camera, as in the

images of the UFPR-ALPR (Laroca et al., 2018) and Vehicle-Rear (Oliveira et al., 2021) datasets,

either failing to locate the LPs or predicting many false positives. In fact, we believe this is

precisely why the authors forced VertexNet to output only one bounding box per image in their

experiments, despite the fact that many real-world applications contain multiple vehicles in the

scene (Hsu et al., 2017; Kurpiel et al., 2017; Gonçalves et al., 2018).

Chen et al. (2020) claimed that LPD is easily affected by vehicle detection due to the

inclusion relation. Hence, they proposed an end-to-end framework to detect vehicles and LPs

simultaneously in a given image, where two separate branches with different convolutional layers

were designed for each task. Following (Redmon and Farhadi, 2017; Redmon and Farhadi, 2018),

to learn better predictions, the anchor boxes were not selected manually, but using k-means

clustering. Finally, attention mechanisms and feature-fusion strategies were employed to improve

the detection of small-scale objects. The AP metric and datasets commonly used for general

object detection were employed in the experiments. This makes it difficult to compare their

method with other LPD approaches in the literature, which generally report the precision and

recall rates (considering as correct only the detections with IoU > 0.5 with the ground truth) and

perform experiments on datasets created specifically for ALPR-related tasks (Xu et al., 2018;

Kessentini et al., 2019; Al-Shemarry and Li, 2020; Lu et al., 2021). Although the authors stated

that detecting the vehicles and their LPs in a cascaded fashion is less efficient, their approach

presented an inference time of 22 ms on a PC with 4 NVIDIA Titan Xp GPUs, which is longer

than the execution times reported in recent cascade-based methods (Silva and Jung, 2020; Laroca

et al., 2021b) that also achieved impressive precision/recall rates – this occurs simply because

shallower models can be used to detect each LP once the vehicles have been located.

In (Ribeiro et al., 2019; Silvano et al., 2021), the authors highlighted that when a new

LP layout is adopted in a country/region, the LPD systems must detect both legacy LPs and those
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under the new layout and associated technical specifications. Considering that collecting and

manually labeling real-world images of the newly adopted LP layout with sufficient variations

can be quite challenging (depending on the transition rules, vehicles with the new LP models

remain the exception rather than the rule for a while), the authors presented a methodology for

generating synthetic LP images by coupling synthetic images of the target LP layout (in their

work, the target was Mercosur LPs) with real-world images containing vehicles with other LP

models (e.g., Brazilian), as illustrated in Figure 3.4. The Fast-YOLOv3 model trained exclusively

with synthetic images achieved an F-measure of 92% on 1,000 real images from various sources

such as search engines, public traffic cameras, and parking lots. The authors considered these

results promising; however, it is difficult to assess them accurately since the test images were not

made available to the research community.

Figure 3.4: Overview of the methodology proposed by Ribeiro et al. (2019) for generating synthetic LP images.

Image reproduced from (Ribeiro et al., 2019).

Selmi et al. (2020) slightly modified Mask-RCNN (He et al., 2017) to make it more

suitable for LPD. In summary, they removed Mask-RCNN’s segmentation module – keeping

only the RoIAlign layer – and used a network comparable to GoogLeNet (Szegedy et al., 2015)

as the backbone but with fewer inception modules and more pooling layers (in fact, they used

convolutional layers with stride = 2). Although promising results were reported in four public

datasets, such a network (with an input size of 960×570 pixels) is very computationally expensive,

especially considering the real-time requirements of ALPR applications. This limitation was

highlighted by the authors themselves and also by Chowdhury et al. (2020).

Chowdhury et al. (2020) stated that most LPD approaches consider the images having a

single vehicle in the scene. Thus, they focused on developing a new method for detecting LPs

in crowded street scenes, with multiple vehicles at different angles and positions. To enhance

the ability to cope with the challenges caused by partial occlusion and varying degree of focus

for different vehicles, their method integrates Graph Attention Network (GAT) (Veličković

et al., 2018) – using Residual Network (ResNet)-101 (He et al., 2016) for feature extraction –

with Progressive Scale Expansion Network (PSENet) (Wang et al., 2019). Their method

outperformed both YOLOv2 and PSENet (Wang et al., 2019) in terms of F-measure in three

datasets; nevertheless, it takes one second to process a single image on an NVIDIA GeForce

GTX 1070 Ti GPU and therefore it cannot be applied to several real-world applications (for

comparison purposes, YOLOv2 took only 0.03 seconds in the same setup). The authors also
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showed that their method is affected by high/low exposure (i.e., sunlight or shadows on the LPs),

failing to differentiate the background and the LPs at the pixel level in these cases.

While also observing that most benchmarks for LPD have only one labeled LP per

image, Lee et al. (2022) reinforced that scene texts that look like LPs and arbitrarily shaped LPs

are the leading cause of erroneous detections. Hence, they proposed an LP detector that explicitly

prevents the learning of non-LP objects (i.e., scene texts but not LPs). As shown in Figure 3.5,

their architecture is divided into a backbone network (ResNet-50-FPN) for feature extraction

and two parallel sub-networks (i.e., Region Proposal Networks (RPNs)), one for LP detection

and other for detecting non-LP objects. The authors added a mutual information term to the

objective function for training the networks, expecting the LP detector to maximize the inter-class

variation related to non-LP objects. Considering that existing datasets for ALPR do not provide

annotations of the scene text (not LP) bounding boxes, the authors introduced a dataset – called

LPST-110K – with images/annotations of LPs and non-LP scene-texts to enable the training of

their method. The experiments were performed on five public datasets, including LPST-110K.

The results showed that their method significantly improved detection performance, especially

in terms of precision, which implied that it decreased the number of false positives regarding

non-LP scene texts. Nevertheless, it should be noted that the authors unusually reported different

metrics for each dataset, making it very difficult to analyze the results. For example, they reported

the recall in the UFPR-ALPR dataset, the precision on CCPD, the F-measure in the PKU dataset,

and the AP on the LPST-110K. Note that, as detailed in Section 2.1, neither precision nor recall

alone can accurately assess the detection quality. Regarding the execution time, considering

input images with a resolution of 1280 × 720 pixels and several LPs per image, their detector

runs at 14 FPS on an NVIDIA TITAN X GPU.

Figure 3.5: Overall architecture of the model proposed by Lee et al. (2022) for LPD. ResNet-50-FPN was employed

as the backbone in 𝑓 . Image reproduced from (Lee et al., 2022).

Aiming to improve the results achieved in the recognition stage, some authors chose

to also classify the LPs in some way in addition to detecting them. For example, Laroca et al.

(2021b) used a modified Fast-YOLOv2 model to detect the LPs and simultaneously classify

their layouts into one of the following classes: American, Brazilian, Chinese, European and

Taiwanese6. According to their experimental evaluation, carried out on eight public datasets

from these five regions, LP layout classification (along with heuristic rules) greatly improved the

recognition results since, depending on the LP layout, they avoided errors in characters that are

often misclassified and also in the number of predicted characters to be considered. As another

example, Xu et al. (2022) proposed a CNN-based detection module that locates the LPs and

simultaneously classifies them as having one or two rows of characters. The authors connected

this module with another recognition module and reported only end-to-end results. It is worth

6 Following Laroca et al. (2021b), in this work the “Chinese” layout refers to LPs of vehicles registered in

mainland China, while the “Taiwanese” layout refers to LPs of vehicles registered in the Taiwan region.
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noting that both detection approaches were designed to be applied to vehicle patches. While

Laroca et al. (2021b) applied YOLOv2 (Redmon and Farhadi, 2017) to detect the vehicles in the

input images, Xu et al. (2022) took cropped vehicle images as input in their experiments.

Lu et al. (2021) pointed out that most research in LPD is based on individual images,

even though there may be multiple frames as input in practical applications. Therefore, they

designed an adaptive weight-guided feature aggregation network, called AWFA-LPD, that

merges information from adjacent frames to improve LPD results. As shown in Figure 3.6,

AWFA-LPD has two branches: one that extracts features from each input frame using ResNet as

the backbone and another that obtains optical flow feature maps between adjacent frames using

FlowNetSimple (Dosovitskiy et al., 2015). The extracted features are then sent to the aggregation

module, which can assign different weights to the feature maps and aggregate them with the

feature maps of the reference frame. The weights are assigned based on cosine similarity; the

intuition is that feature maps from frames very different from the reference one should have as

little impact as possible. Finally, the authors employed R-FCN (Dai et al., 2016) for LPD using

the aggregated feature maps. Their method achieved impressive results on the UFPR-ALPR

dataset, outperforming five baselines in terms of recall (100%), precision (97.3%) and F-measure

(98.6%). As mentioned by the authors, the main shortcoming of their approach is its execution

time – to a large extent due to the optical flow module –, which is five times longer than the faster

baseline (i.e., 78 vs. 16 ms) and three times longer than most of them.

Figure 3.6: The AWFA-LPD framework (Lu et al., 2021). Image reproduced from (Lu et al., 2021).

In the same direction, Zhang et al. (2021a) remarked that existing systems generally focus

on single image-based algorithms, yet traffic video sequences provide more practical information

than individual frames for ALPR-related tasks. Hence, they proposed a multi-task architecture

that integrates LP detection and LP tracking to minimize the additional computational complexity

of tracking features generation. This architecture is shown in Figure 3.7. Given an input video,

the detector locates the LPs by referring to the temporal relationship between multiple adjacent

frames and spatial information in the current frame. At the same time, the tracker generates

LP streams and assigns them different identities using motion information and discriminative

features. The EAST scene text detector (Zhou et al., 2017) was used as the detection backbone.

In an experimental evaluation conducted on three public datasets with Brazilian LPs, their

method reached better precision and recall rates than several baselines that process frames

individually. Although computation complexity was reduced by sharing feature extraction and

avoiding repeated calculations in a separated tracking stage, their method’s main limitation is its
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computational complexity as it takes about 122 ms to process each frame; for comparison, one of

the baselines achieved a slightly lower F-measure (e.g., 98.5% vs. 99.3% on the UFPR-ALPR

dataset) taking only a tenth of that time to process each frame on similar hardware.

Figure 3.7: The multi-task architecture proposed by Zhang et al. (2021a) that integrates LP detection and LP tracking.

Image reproduced from (Zhang et al., 2021a).

3.2 License Plate Recognition (LPR)

The great speed/accuracy trade-off provided by YOLO networks (Redmon et al., 2016; Redmon

and Farhadi, 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020; Wang et al., 2021a)

inspired many authors to explore similar architectures targeting real-time performance for LPR.

For example, Silva and Jung (2017) proposed a YOLO-based model that simultaneously detects

and recognizes all characters within a cropped LP (we depict how object detectors handle OCR

tasks in Figure 3.8). This model, called CR-NET, consists of the first eleven layers of YOLO

and four other convolutional layers added to improve nonlinearity. While impressive FPS rates

– i.e., 448 FPS on an NVIDIA Titan X GPU – were attained in experiments carried out in the

SSIG-SegPlate dataset (Gonçalves et al., 2016a), less than 65% of the LPs in the test set were

correctly recognized. According to the authors, the bottleneck of their approach was in letter

recognition since the character classes (in particular, letters) are highly unbalanced in the training

set of the SSIG-SegPlate dataset (as in most datasets for ALPR (Zhang et al., 2021c)).

Input Image Detection + Recognition Non-maximum Supression (NMS)

4891LFD

Figure 3.8: An illustration of how object detectors (e.g., CR-NET) handle OCR tasks. First, the characters are

simultaneously detected and recognized. Then, an NMS algorithm eliminates redundant detections (e.g., those with

IoU ≥ 0.25) since the network often detects the same character more than once. Finally, the detections are sorted

based on some predefined criteria (e.g., x-coordinate for single-row LPs) to produce the final string.

Taking this into account, Silva and Jung (2018) generalized CR-NET by retraining it

with an enlarged training set composed of real and artificially generated images using font-types

similar to the LPs of the target regions (i.e., Brazil, Europe, and the United States), as shown in

Figure 3.9. The retrained network became much more robust for detecting and classifying real

characters on Brazilian LPs and also on LPs from other regions, outperforming previous works

and commercial systems in three public datasets. In (Silva and Jung, 2020), in a very similar

way, the same authors retrained the CR-NET model with a massive number of artificial images

generated by blending real LPs with synthetic characters through Poisson blending (Pérez et al.,
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2003). Impressive results on several public datasets have been achieved through CR-NET in

recent works (Laroca et al., 2021b; Oliveira et al., 2021; Silva and Jung, 2022).

Figure 3.9: Artificial LP samples generated by Silva and Jung (2018). Such LPs use font-types similar to the LPs of

the target regions (i.e., Brazil, Europe, and the United States), which made their network more robust for detecting

and classifying real characters of LPs issued in those regions. Image reproduced from (Silva and Jung, 2018).

While some authors (Kessentini et al., 2019; Lee et al., 2019; Kim et al., 2021) employed

YOLO models without any change or refinement for LPR, Henry et al. (2020) applied YOLOv3-

SPP – a version of YOLOv3 (Redmon and Farhadi, 2018) with Spatial Pyramid Pooling (SPP)

– to this task. They developed an algorithm to determine whether the detected characters are

arranged in one or two rows, regardless of the LP layout. Although their approach achieved high

recognition rates on five datasets from multiple countries/regions, the YOLOv3-SPP model is

excessively deep for LPR (i.e., it has more than 100 layers), making it difficult for the whole

system to meet the real-time requirements of ALPR applications – especially if there are multiple

vehicles in the scene –, as each LP is recognized individually.

Instead of exploring object detectors, Li et al. (2018) handled LPR as a sequence labeling

problem, i.e., without character-level segmentation. First, sequential features were extracted

from the entire LP patch using a 9-layer CNN in a sliding window manner. Then, Bidirectional

Recurrent Neural Networks (BRNNs) with Long Short-Term Memory (LSTM) were applied to

label the sequential features. Lastly, Connectionist Temporal Classification (CTC) was employed

for sequence decoding. Figure 3.10 illustrates the overall structure of their approach, which

attained better recognition rates than the two baselines chosen by the authors. Nevertheless, only

Taiwanese LPs were used in the experiments, and the execution time was not reported.

Wang et al. (2018a) rectified the LP images prior to the recognition stage so that all LPs

have a uniform orientation and thus are easier to recognize. They employed a Spatial Transformer

Network (STN) (Jaderberg et al., 2015) for this task. Then, in a very similar way to the approach

presented by Li et al. (2018), they extracted sequential features using a CNN model (based on

VGG (Simonyan and Zisserman, 2015)), adopted a BRNN to output labels from the sequential

features, and applied CTC to decode the sequential labels and produce the final recognition

results. Their method (see Figure 3.11), pre-trained on synthetic LPs (created using OpenCV)

and fine-tuned on real Chinese LPs, achieved better results compared to the baseline (Li et al.,

2019) and took approximately 17.5 ms to recognize an LP on an NVIDIA 1080 Ti GPU. No

public datasets were used in their experiments.

Zou et al. (2020) also adopted a Bi-directional Long Short-Term Memory (Bi-LSTM)

network (Graves and Schmidhuber, 2005b,a) to implicitly locate the characters on each LP. They

explored a 1-D attention module to extract useful features of the character regions, improving the

LPR performance. Their experiments were performed on four public datasets: AOLP (Hsu et al.,

2013), PKU (Yuan et al., 2017), CCPD (Xu et al., 2018) and CLPD (Zhang et al., 2021c). Their

network achieved better results than the baselines on the three datasets with LPs from mainland

China; however, the comparison of their method with others in the AOLP dataset should not be
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Figure 3.10: The sequence labeling-based approach proposed by Li et al. (2018) for LPR. First, a 9-layer CNN

extracts sequential features in a sliding window manner. Then, BRNNs with LSTM are used for sequence labeling.

Lastly, CTC is employed for sequence decoding. Image reproduced from (Li et al., 2018).

Figure 3.11: The LPR approach proposed by Wang et al. (2018a), which is capable of recognizing English letters,

digits, and Chinese characters. Image reproduced from (Wang et al., 2018a).

considered as the authors adopted a different evaluation protocol from that used by the baselines.

Details were not provided regarding the execution time of their approach.

Similarly, Zhang et al. (2021c) used a 2-D attention mechanism to optimize their OCR

model, which uses a 30-layer CNN based on Xception (Chollet, 2017) for feature extraction.

An LSTM model was adopted to decode the extracted features into LP characters. The authors

highlighted that it is difficult to manually collect LP images from various regions, which makes

most ALPR datasets heavily biased toward specific regional identifiers. Therefore, they explored

the asymmetric CycleGAN model – proposed in their previous work (Zhang et al., 2019b) (see

Section 3.3) – to synthesize images of Chinese LPs with different transformations and balanced

character classes, reducing data bias and improving model generalization ability. The proposed

method outperformed all baselines in four public datasets – AOLP (Hsu et al., 2013), PKU (Yuan

et al., 2017), CCPD (Xu et al., 2018) and CLPD (Zhang et al., 2021c) – especially with limited

training data. Although the authors claimed that their approach does not leverage any heuristic

rules or post-processing, they trained a recognition network specifically for each LP layout unlike

some recent works (e.g., (Laroca et al., 2021b; Silva and Jung, 2022)), which employed a single

model for LPs from different regions. In other words, their network implicitly learns heuristic

rules about each LP layout. For example, when trained using images from the CCPD dataset
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(which contains LPs from mainland China), it learns to always predict a Chinese character as the

first LP character since this is the case in every single training example. The authors did not

report information about the execution time of their approach.

Several works also designed multi-task CNNs to process the entire LP image holistically,

circumventing character segmentation. For instance, Špaňhel et al. (2017) focused on recognizing

LPs in low-resolution and low-quality images, where segmentation becomes challenging due to

blurred characters. Their model initially processes the entire image using convolutional layers.

Then, eight separate branches with fully connected layers predict up to eight characters (including

a “non-character” class) for specific positions on the LP (see Figure 3.12). Their model, often

referred to as Holistic-CNN (Meng et al., 2018; Gong et al., 2022; Liu et al., 2024a), achieved a

processing speed of over 1000 FPS on an NVIDIA GeForce GTX 1080 GPU and outperformed

two commercial systems – namely, OpenALPR (OpenALPR, 2024) and UnicamLPR (CAMEA,

2024) – on three public datasets containing Czech LPs.

Figure 3.12: The attention of Holistic-CNN’s fully connected layers for different characters on a Czech LP. From

left to right, top to bottom: 1st to 8th character. In most cases (i.e., on Czech LPs with less than eight characters),

the 4th position does not contain any character (it is blank). Image reproduced from (Špaňhel et al., 2017).

A similar approach was introduced by Gonçalves et al. (2018), who designed a multi-

task CNN with 14 layers to locate and recognize all LP characters simultaneously. Promising

results (in terms of both accuracy and execution time) were achieved in two public datasets with

Brazilian LPs by massively taking advantage of synthetic data. The same authors explored a very

similar multi-task model in (Gonçalves et al., 2019). However, they focused on designing a novel

strategy to generate synthetic data and thus improve the LPR results obtained by the multi-task

model in low-resolution LP images (we describe this latter work in Section 3.3).

Wang et al. (2022c) observed that these multi-task models for LPR employ fully

connected layers as classifiers to recognize the characters on the predefined positions of the

LPs. Hence, without making massive use of synthetic data, they may not generalize well with

small-scale training sets since the probability of a specific character appearing in a specific

position is low; in fact, a given character may never appear in a specific position on a small set of

LPs. Thus, they proposed a weight-sharing classifier for LPR, called SCR-Net, which can spot

instances of each character across all positions. Figure 3.13 shows three weight-sharing classifiers

used by the authors for the three types of characters on the LPs from the CCPD dataset (Xu

et al., 2018) (Chinese characters, English letters, and digits). The authors explored an encoding

technique to vertically squeeze feature maps into 1-D horizontal features (32 × 1), before feeding

them to the classifier. Despite running relatively fast, taking 5.7 ms to process each image on

an NVIDIA GTX 1080 Ti GPU, their approach reached better results than all baselines on four

public datasets: AOLP (Hsu et al., 2013), PKU (Yuan et al., 2017), CCPD (Xu et al., 2018) and

CLPD (Zhang et al., 2021c). One of their method’s limitations is that a new training process

must be carried out for each LP layout to be recognized. For example, the authors trained and

tested two instances of their model in the experiments: one for LPs from mainland China and

one for LPs from the Taiwan region. Moreover, we conjecture that their approach is not as robust

– or even does not work – for LPs with two rows of characters due to the left-to-right horizontal

encoding technique employed.

Zhang et al. (2021d) also pointed out that existing multi-task models – including those

proposed by Špaňhel et al. (2017) and Gonçalves et al. (2018) – cannot exploit the diversity
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Figure 3.13: Example of weight-sharing classifiers for Chinese LPs. Image reproduced from (Wang et al., 2022c).

of LP characters at different positions. Thus, in the same way as Wang et al. (2022c), they

employed a shared classifier to recognize the characters at different positions in a unified way.

For producing more discriminative features, the authors explicitly disentangled the semantic and

position information of the LP characters using two networks in parallel, with supervision on each

of them being optional (see Figure 3.14). For the semantic network, the ground truth corresponds

to a bounding box for each character with the pixels annotated (i.e., colored) according to the

semantic class of that character. Similarly, the ground truth labels for the position network are

also represented with bounding boxes; however, the pixels in each bounding box are determined

by the position of the respective characters in the LP. The semantic and position networks connect

the same backbone network – BiSeNet (Yu et al., 2018) – to share global features and produce the

semantic and position features by appending different heads. Based on experiments performed on

four datasets (Medialab LPR, AOLP, CLPD, and CCPD), the authors noted that more supervision

signals are useful as promising results were achieved in all of them. Nevertheless, it is unclear

whether their method generalizes well to unseen data as they trained an instance of their network

specifically for each dataset or LP layout. The same is true for LPs with two rows of characters, as

all experiments were performed on single-row LPs. It is worth noting that the authors discarded

175 images from the AOLP dataset in their experiments; therefore, the results reported on it are

not comparable with those obtained in previous works (which did not discard any image). Finally,

regarding execution time, different models were explored as the base network in the backbone

(i.e., ResNet-18, -34, -50, and -101), thus enabling different speed/accuracy trade-offs. In this

way, depending on the model chosen as the backbone, their network processes between 57 and

191 FPS in the AOLP dataset on an NVIDIA GTX 1080 Ti GPU.

Zeni and Jung (2020) highlighted that detection-based recognition methods (e.g., CR-

NET) tend to adapt better to different LP layouts since they learn each character’s appearance

separately, while segmentation-free approaches (e.g., Holistic-CNN) alleviate the cost of manually

labeling the bounding box of each character on the LP. Thus, they presented a Weakly Supervised

Character Detection (WSCD) approach that explores the best of both worlds: it uses only string-

level annotations to learn the characters’ bounding boxes in a weakly supervised fashion. Their

approach is built on top of the multiple instance detection network proposed by Bilen and Vedaldi

(2016), with an instance-aware online refinement approach, a knowledge distillation module,

and a sub-network for estimating the number of characters to guide the final recognition result.

Although their method produced impressive results for some datasets, the module that classifies

the number of characters showed signs of overfitting (according to the authors themselves); thus,

very low recognition rates – compared to baselines – were obtained in some other datasets.
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Figure 3.14: Illustration of the LPR method proposed by Zhang et al. (2021d). It comprises four main components:

a backbone network, a semantic network, a position network, and a shared classifier. 𝐶𝑝 and 𝐶𝑠 are the number of

characters in an LP and the number of character classes, respectively. Image reproduced from (Zhang et al., 2021d).

Zhang et al. (2020a) reinforced that robust and efficient LPR is still an urgent task to

be solved. In addition, they stated that there are only a few video-based approaches modeling

temporal information explicitly (as illustrated in Figure 3.15). Accordingly, they proposed

a quality-aware algorithm that first evaluates the image quality of each LP patch and then

recommends the recognition result predicted in the highest quality frame as the final decision.

The authors employed knowledge distillation (Hinton et al., 2014) to compress their quality

awareness network and make it lightweight. Although impressive recognition results were

reported in the UFPR-ALPR dataset (Laroca et al., 2018), they are not directly comparable with

those reached in other works since the authors expanded/modified the original test set through

data augmentation (instead of just augmenting the training set); the authors also carried out

experiments with Chinese LPs, but as they belong to a private dataset it is difficult to assess the

reported results. Furthermore, even though the authors emphasized the efficiency requirements

of LPR, their approach cannot process 30 FPS (even with the LPD stage not being addressed),

and details about the hardware used in their experiments were not provided. In subsequent

work (Zhang et al., 2021a), the same authors integrated this quality-aware algorithm (with a

few changes; for example, without knowledge distillation) into an end-to-end framework, thus

reaching better results in terms of recognition rate than several baselines that process frames

individually in three video-based public datasets: SSIG-SegPlate (Gonçalves et al., 2016a),

LQPV (Seibel et al., 2017) and UFPR-ALPR (Laroca et al., 2018). While such a quality-aware

approach is very appealing for multi-frame LPR in conventional ALPR applications (e.g., traffic

law enforcement), it is not able to handle the challenging cases – yet common in forensic

applications – where a vehicle’s LP is illegible or has very low quality in every frame of a video

because it was recorded by cameras installed for purposes other than ALPR.

Vašek et al. (2018) extended the CNN model proposed in (Goodfellow et al., 2014a),

originally designed for number recognition on street view images, to process a sequence of

rectified LP images obtained from a tracker and output a distribution over a set of LP strings.

They addressed a relatively under-explored scenario of when the input of the LPR system is a

low-resolution video captured by an ordinary camera or a cell phone. As illustrated in Figure 3.16,

their architecture has three components: (i) a CNN that extracts features from each image in

the sequence; (ii) an aggregation layer that shrinks the feature sequence into a distribution over

strings; and (iii) another CNN that converts the output of the aggregation layer into a distribution

over strings. It is noteworthy that the number of images in the test sequences can be arbitrary

thanks to the aggregation layer. Empirical evaluation on low-resolution European LPs (mostly

Czech) showed that their approach significantly outperformed both baseline methods and human
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Figure 3.15: Many frames are involved with the same LP at different times in a traffic video. The red characters of

the single-frame recognition results indicate incorrect predictions that can be avoided through the quality-aware

approach proposed by Zhang et al. (2020a). Image reproduced from (Zhang et al., 2020a).

performance. Nevertheless, the experiments were performed on a proprietary dataset only, with

8.3 million image sequences (each having five images) being used for training their networks.

No experiments related to execution time were reported.

Figure 3.16: The LPR approach proposed by Vašek et al. (2018), which takes a sequence of rectified LP images as

input. Image adapted from (Vašek et al., 2018).

Zhuang et al. (2018) proposed a semantic segmentation technique followed by a

character count refinement module to recognize the characters of an LP. Figure 3.17 illustrates

their framework. For semantic segmentation, they simplified the DeepLabV2 (ResNet-101)

model (Chen et al., 2018) by removing the multi-scaling process, thus increasing computational

efficiency. According to the authors, the purpose of the multi-scaling process is to fuse hierarchical

global information; however, the semantic areas of different characters have a lower correlation in

the LPR task. After obtaining the LP semantic map, the character areas were generated through

CCA. Finally, Inception-v3 (Szegedy et al., 2016) and AlexNet (Krizhevsky et al., 2012) were

adopted as the character classification and character counting models, respectively. The authors

claimed that both an outstanding recognition performance and a high computational efficiency

were attained. Nevertheless, they assumed that LPD is easily accomplished and used cropped

patches (from the ground truth) containing only the LP with almost no background as input. In

addition, their approach cannot process images in real time (it processes 25 FPS on an NVIDIA

TITAN X GPU), especially when considering the time required for the LPD stage, which is

generally more time-consuming than the recognition one. Lastly, they trained specific models for

each LP layout (i.e., the experiments on Greek and Taiwanese LPs were conducted separately);

therefore, adding support for a new layout requires retraining the networks.
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Figure 3.17: Illustration of the framework proposed by Zhuang et al. (2018) for LPR. Their framework consists of

two key modules: semantic segmentation and counting refinement. The former produces the semantic map and the

initial character sequence, while the latter generates the final result (i.e., the LP text) through counting characters.

Image reproduced from (Zhuang et al., 2018).

Selmi et al. (2020) used Mask-RCNN (He et al., 2017) for LPR. The network was trained

to predict 37 classes (0-9, A-Z, and one Arabic word). Some post-processing rules were applied

to the network’s output to improve the recognition results (e.g., predicted regions too wide or too

small to be a character were discarded). Despite the fact that promising results were reported in

four public datasets, the chosen model (with an input size of 530 × 300 pixels) is much more

computationally expensive than those used in other works – e.g., (Silva and Jung, 2020; Liu et al.,

2021; Zhang et al., 2021d) – for this task, which makes it difficult (or even impossible) for it

to be employed in some real-world applications (especially those where multiple vehicles can

coexist on the scene). The authors themselves highlighted this limitation in their method.

Liu et al. (2021) observed that most recognition methods were proposed for single-row

LPs, considering LPR a one-dimensional sequence recognition problem. They stated that these

methods are not suitable for recognizing two-row LPs because the features of adjacent characters

may get mixed up when directly transforming an LP image into a one-dimensional feature

sequence. In an attempt to solve this problem, they proposed a 2-D spatial attention module

to recognize LPs from a two-dimensional perspective (see Figure 3.18). The authors adopted

the backbone from Holistic-CNN (Špaňhel et al., 2017), with a few modifications, to extract

visual features from the input image. Unlike Zhang et al. (2021c), who also explored a 2-D

attention module, Liu et al. (2021) adopted one fully connected layer (i.e., a shared classifier) as

the decoder and not a recurrent structure. Their method performed better than several baselines

on images from three private and two public datasets containing Chinese LPs. While much of

the authors’ focus was on recognizing two-row LPs, they overlooked public datasets containing

images of LPs with two rows of characters – some examples are the EnglishLP, UFPR-ALPR and

Vehicle-Rear datasets – and evaluated their network exclusively on two-row LPs from private

datasets. Their network can process 278 FPS on an NVIDIA GTX 1080 Ti GPU.

In (Xu et al., 2022), an extension of (Xu et al., 2021), the authors also emphasized

that most methods for ALPR can only handle single-row LPs. In this way, similar to (Zhang

et al., 2021c; Liu et al., 2021) and inspired in (Wojna et al., 2017), they adopted a 2-D attention

mechanism for LPR where the encoder is a lightweight CNN structure and the decoder is

attention-based. A Gated Recurrent Unit (GRU) (Cho et al., 2014) was used to convert the

feature maps into a character sequence. Before recognition, each detected LP is fed into a feature

alignment module based on perspective transformation prediction and grid sampling, which

rectifies the deformed LP features into regular ones. Their method was primarily evaluated on

Chinese LPs, considerably outperforming other well-known models for recognizing LPs from

mainland China. However, we remark that the authors fine-tuned their method (and not the

baselines) on 150k images from a private dataset. The downside of their method lies in its

efficiency since, according to the authors, it is about two times slower than CTC-based models
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Figure 3.18: The overall architecture of the network proposed by Liu et al. (2021) for LPR. “maxT” is the max

length of LP texts in the training set (in their experiments, maxT = 8), and “∗” in the results represents a blank

character (to handle LPs with different numbers of characters). Image reproduced from (Liu et al., 2021).

– which are already known in the ALPR literature for being quite time-consuming (Zhang et al.,

2021d; Liu et al., 2021).

Lee et al. (2022) explored a similar method for LPR, in which the encoder network (with

seven convolutional layers) is followed by Bi-LSTM, and an attention mechanism with GRU and

LSTM is employed as the decoder. Although the authors performed experiments on five public

datasets from four different regions, they described this approach and also reported its results

very superficially, as the focus of their work was on the LPD stage.

3.3 Synthetic Data

As highlighted in Section 2.3, it is well-known that unbalanced data is undesirable for neural

network classifiers since the learning of some patterns might be biased. This problem is even

more pronounced in the ALPR context, particularly in the LPR stage, as it is difficult to manually

collect LP images from a variety of regions, which makes most existing ALPR datasets heavily

biased toward specific regional identifiers (Zhang et al., 2021c; Liu et al., 2021).

Considering the above discussion, many data augmentation methods have been proposed

in the ALPR context to eliminate bias from the experiments and reduce the number of real images

needed for training deep models (Gonçalves et al., 2018; Silva and Jung, 2020; Laroca et al.,

2021b). To narrow the scope of this section, we focus on describing relevant works where the

authors exploited generative models (mostly GANs) to this end.

Although GANs were proposed in 2014 (Goodfellow et al., 2014b), it was not until 2017

that they were first applied to data augmentation in the ALPR context. Wang et al. (2017) pointed

out that LP images are hard to collect due to privacy issues and regional characteristics (i.e., the

LPs differ in countries and regions). Therefore, they trained CycleGAN (Zhu et al., 2017b) with

the Wasserstein distance loss (Arjovsky et al., 2017) to learn a mapping that maps script images

(Figure 3.19a) into real images (Figure 3.19b). They used the generated images (Figure 3.19c),

which are labeled, to pre-train a Convolutional Recurrent Neural Network (CRNN) model (Shi

et al., 2017) for recognizing Chinese LPs. The CRNN model was then fine-tuned on real images.

The authors reported many experiments, which demonstrated that this strategy (i.e., pre-training

an OCR model on synthetic data created by CycleGAN and fine-tuning it on real data) brings

significant improvements in terms of recognition rate. For example, the CRNN model pre-trained

on CycleGAN images and fine-tuned on 9,000 real images reached better results than the same
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model trained on a set containing 50,000 real images without CycleGAN-generated images. The

major shortcoming of their work is that only private datasets (with tens or hundreds of thousands

of training images) were used in the experiments. In addition, the authors trained one model to

generate blue LPs and another to generate yellow LPs, without detailing why not train a single

model to generate LPs of both colors (we conjecture that the LP images generated in this way

have artifacts). Lastly, it is important to note that this work is only available on arXiv7; that is, it

has not gone through the peer-review process. Still, we chose to describe it here since it is the

first work applying GANs to generate LP images and because some of the authors have already

published relevant articles in the ALPR context (Li et al., 2018, 2019; Zhang et al., 2021c).

(a) Script images (b) Real images (c) CycleGAN images

Figure 3.19: Wang et al. (2017) trained CycleGAN (Zhu et al., 2017b) to generate images of Chinese LPs (c). The

CycleGAN model was trained using images created by a script (a) (i.e., colors and character deformations were

hard-coded) as one domain and real images (b) as another. Image reproduced from (Wang et al., 2017).

Exactly the same strategy was adopted shortly after by Zhang et al. (2018b). That

is, they also employed CycleGAN (Zhu et al., 2017b) (with the original loss) to automatically

generate a large number of Chinese LPs for pre-training the CRNN model (Shi et al., 2017). As

in (Wang et al., 2017), the CycleGAN-generated images did help improve the performance of

the OCR model (from 95.5% to 97.6%), and the experiments were conducted exclusively on a

private dataset. The authors classified the need for an abundant source of training images as the

main limitation of this approach since they tried to generate images of American LPs using the

Caltech Cars dataset (Weber, 1999) (which has 126 images), but the results were not satisfactory.

Wu et al. (2018) emphasized that there is no clear common understanding of how many

labeled LPs are needed to train a recognition model that achieves satisfactory performance. They

tried to address such a question by analyzing the performance of a recognition model based on

DenseNet (Huang et al., 2017) when trained on a few real images and many artificial ones. In the

same direction as (Wang et al., 2017; Zhang et al., 2018b), they explored CycleGAN (Zhu et al.,

2017b) – with gradient penalty (Gulrajani et al., 2017) – to learn the mapping relationship between

script LPs and real LPs. However, differently from what was done in those works, the authors

used both generated and real images to train the recognition model from scratch (rather than

pre-training it on generated images and then fine-tuning it on real images). The results showed

that their recognition model trained from scratch on only 300 real images in addition to hundreds

of thousands of generated images reached competitive results to the CRNN model pre-trained on

generated images and fine-tuned on 200,000 real images by Wang et al. (2017). Although these

results are quite promising, the experiments were performed exclusively on images from a private

dataset. We conjecture that the test set is not challenging enough, with many “easy” LP images

and a few difficult ones. This would explain the high recognition rates being achieved with only

300 real training images and not improving when the number of real LPs is increased from 4,750.

It is worth noting that the authors performed experiments on images from the AOLP dataset (Hsu

et al., 2013), but they did not generate Taiwanese LPs for training their recognition model (they

explored only real images with simple data augmentation techniques such as affine transformation,

7 arXiv (https://arxiv.org/) is an open-access repository of electronic preprints, with a submission rate

of over 19,000 articles per month as of February 2024 (arXiv, 2024).
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erosion, and dilation). This reinforces what was concluded by Zhang et al. (2018b), i.e., that

such generative models need a large training set to produce satisfactory results.

Zhang et al. (2019b) remarked that it is difficult to manually collect images of LPs from

different states/provinces across a country. To better illustrate, they noted that 95% of the images

from the CCPD dataset (Xu et al., 2018) were captured in a single city in China, so the first

two characters on different LPs are usually the same8. In this way, according to the authors, a

recognition model trained on CCPD’s images – without some kind of data generation – cannot be

used nationwide. Their approach has two main differences from those already described in this

section. First, the authors trained the CycleGAN model (Zhu et al., 2017b) without the second

cycle-consistency loss (i.e., they discarded the loss responsible for mapping real images into

synthetic ones) – this is why this model ssers termed as asymmetric CycleGAN in a subsequent

work (Zhang et al., 2021c). Second, they trained multiple networks to generate images with

specific characteristics. For example, they trained one CycleGAN network specifically to map

script images (Figure 3.20a) into bright LPs (Figure 3.20b), another to map script images into dark

LPs (Figure 3.20c), and so on. The generated images consistently improved the results obtained

on the CCPD dataset by a CNN based on Xception (Chollet, 2017), even though the authors

acknowledged that CycleGAN does not handle character details very well. The experimental

evaluation could have been more extensive since the authors did not detail how discarding

CycleGAN’s second cycle-consistency loss affected the quality of the generated images, nor

whether it would be possible to train a single CycleGAN-based network to generate LP images

with different characteristics.

(a) Script LPs

(b) Bright LPs

(c) Dark LPs

Figure 3.20: Zhang et al. (2019b) trained multiple CycleGAN-based networks (Zhu et al., 2017b) to generate LP

images with different characteristics (b) (c). Each network was trained using script images (a) as one domain and

real images with specific characteristics as another domain. Image reproduced from (Zhang et al., 2019b).

Wu et al. (2019) argued that existing models at that time could transfer general color

and texture from the source images to target images but ignored the structural properties of each

character region, yielding blurry and distorted results. Therefore, they proposed PixTextGAN,

which comprises a generator, a discriminator, and a text recognition module to generate realistic

LP images while preserving character structure information. As illustrated in Figure 3.21,

considering paired data, PixTextGAN is trained using a structure-sensitive loss function that

integrates pixel-wise loss (i.e., Mean Squared Error (MSE)), content loss (similar to perceptual

loss, but the feature representations are extracted by a pre-trained text recognition network), and

CTC loss (Graves et al., 2006). The authors compared PixTextGAN with CycleGAN (Zhu et al.,

2017a) and pix2pix (Isola et al., 2017) in the ReId (Špaňhel et al., 2017) and CCPD datasets (Xu

et al., 2018). To this end, they pre-trained CRNN (Shi et al., 2017) on 100,000 generated images

8 The first character in Chinese LPs denotes the province to which the vehicle is registered, while the second

character is a letter indicating the issuing city within that province (Xu et al., 2018, 2021; Zhang et al., 2019c, 2021c).
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and fine-tuned it on different numbers of real images. According to the qualitative and quantitative

results, PixTextGAN outperformed CycleGAN and pix2pix in both datasets. As PixTextGAN

exploits a recognition module to improve the generation of LP images, it remains to be analyzed

whether a single model would be able to generate LPs from different regions and with different

characteristics (they trained two distinct models, one for Chinese LPs and another for Czech LPs).

Figure 3.21: The framework of the PixTextGAN model (Wu et al., 2019), which aims to generate realistic LP images

while preserving text order consistency between synthetic and real images. Image reproduced from (Wu et al., 2019).

Han et al. (2020) listed several public datasets for ALPR (the best-known ones), observing

that none contain images of Korean LPs. To train a recognition model for these LPs, they tried to

build a large-scale dataset through web-scraping but managed to find only 159 images of Korean

LPs. Considering this, they proposed using image-to-image translation GANs to generate images

of Korean LPs from script images. They trained CycleGAN (Zhu et al., 2017b), StarGAN (Choi

et al., 2018) and pix2pix (Isola et al., 2017) for this task (see Figure 3.22) and compared the

performance of a recognition model trained with images generated by each method. The authors

concluded that pix2pix generated more realistic/diverse LP images, as the recognition model

trained with images generated by pix2pix achieved significantly better results (96.3%) than the

models trained with images generated by StarGAN (94.2%) and CycleGAN (93.6%). A modified

version of YOLOv2 (Redmon and Farhadi, 2017) was employed as the recognition model. As a

limitation of this work, we can mention that all datasets used in the experiments are not available

to the research community. Furthermore, although the authors highlighted that the more synthetic

images, the better the recognition rates achieved, they created only 9k synthetic images with each

GAN model without assessing at what point the recognition rates would stop increasing.

(a) Script (b) CycleGAN (c) StarGAN (d) pix2pix

Figure 3.22: Examples of Korean LPs generated by Han et al. (2020) with CycleGAN (b), StarGAN (c), and

pix2pix (d). The first column shows the script images used as input (a). Image reproduced from (Han et al., 2020).

Shashirangana et al. (2022) pointed out that while there are many public datasets for

ALPR, they mostly (or exclusively) have images captured during the day. As curating a new
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dataset for nighttime images is both expensive and time-consuming, they employed pix2pix (Isola

et al., 2017) to convert color images from the CCPD dataset (Xu et al., 2018) into thermal

infrared (TIR) images. The authors explored the KAIST multi-spectral dataset (Hwang et al.,

2015), which has 95k paired color and infrared images, for training the pix2pix model. Figure 3.23

shows two color images and their corresponding infrared images generated by pix2pix. As can be

seen, the authors created synthetic infrared images of the entire scene and not just the LP region;

hence, these images can be used to train deep models for both the detection and recognition

stages. The qualitative results are promising, but experiments with public datasets were lacking to

assess whether a deep model trained on such synthetic images would be able to detect/recognize

LPs in real nighttime images captured by infrared cameras. In this regard, the authors mentioned

a few experiments conducted on real nighttime images, but the test set had only 100 images (no

samples were shown) and was not made available to the research community.

(a) Real color images (CCPD dataset) (b) Synthetic infrared images (pix2pix)

Figure 3.23: Shashirangana et al. (2022) employed pix2pix (Isola et al., 2017) to convert color images (a) into

thermal infrared images (b). Image reproduced from (Shashirangana et al., 2022).

Gonçalves et al. (2019) observed that many companies and government departments

do not have a large budget to invest in high-quality cameras. They also noted that forensic

experts often have to handle low-quality images captured from crime scenes. Taking this into

account, the authors designed a deep generative network for creating synthetic LP images as if

they were acquired farther away from where they actually were. Their objective was to train

a recognition model that performs better on low-resolution images (while still being robust

to high-resolution images). Instead of using GANs, they employed a model very similar to a

variational autoencoder (Kingma and Welling, 2014) (see Figure 3.24). They trained the model

with pairs of LP images from the same vehicle, where one high-resolution image captured close

to the camera is used as input, and a low-resolution image captured far from the camera is used

as output. The intuition behind this training process lies in the fact that simply downscaling

high-resolution images does not emulate the actual behavior of low-resolution LPs, as they

contain noise resulting from long-distance captures or low-quality cameras. The experimental

evaluation, carried out on images from the SSIG-ALPR dataset (Gonçalves et al., 2018), showed

that adding many synthetic images (400k) of low-resolution LPs to the training set improved

the recognition rate achieved by their multi-task OCR model by 4.9%. An important finding is

that the accuracy on high-resolution LPs remained the same, i.e., the low-resolution samples

improved the recognition model’s robustness to low-resolution LPs without compromising the

results obtained on high-resolution LPs. As the experiments were performed using images from

a single dataset (with Brazilian LPs), it is unclear whether such a generative model needs to be

retrained/adjusted for images of other LP layouts and for images acquired under other settings.

Vašek et al. (2018) explored cGAN concepts (Mirza and Osindero, 2014) to create a

CNN-based super-resolution generator of LP images that converts input low-resolution images

into their high-resolution counterparts closely matching the structure of the input LP patch

(i.e., tilt angle, lighting conditions, among other characteristics). They trained the generator
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Figure 3.24: The deep generative model designed by Gonçalves et al. (2019) to create LP images simulating that

they were captured farther away from where they actually were. Image reproduced from (Gonçalves et al., 2019).

using 1.6 million triplets (𝑙𝑟𝑖, ℎ𝑟𝑖, 𝑠𝑡𝑟𝑖), where 𝑙𝑟𝑖 corresponds to the input low-resolution image,

ℎ𝑟𝑖 refers to the desired high-resolution counterpart, and 𝑠𝑡𝑟𝑖 is the string to be depicted on ℎ𝑟𝑖.
As the focus of their work was on recognizing LPs in low-resolution videos (as detailed in

Section 3.2), the authors only showed some images produced by the generator (see Figure 3.25b),

without evaluating them quantitatively – i.e., without using them to train a recognition model and

then assess what impact they have on its performance. It is worth noting that both the training

images (1.4M real + 0.2M synthetic) and test images were taken from private datasets.

(a) (b)

Figure 3.25: Vašek et al. (2018) proposed a super-resolution CNN-based generator that converts input low-resolution

images into their high-resolution counterparts closely matching the structure of the input LP. (a) shows a simplified

view of the super-resolution generator; it takes as input the low-resolution LP image and the string to be depicted.

(b) shows impressive examples of high-resolution LP images created by their generator. The first column shows

low-resolution images (the red strings denote the ground truth), while the second and third columns show images

produced by the generator. Image adapted from (Vašek et al., 2018).

3.4 Miscellaneous

Here we present works or systems that do not fit into any of the other sections of this chapter.

We first describe works where the authors designed deep models to locate the four corners of

the LPs in order to rectify them before the recognition stage. We then provide information on

two commercial systems that have been used frequently as baselines in the literature. Lastly, we

point out some fundamental differences between scene text recognition and LPR, describing the

models proposed for scene text recognition that are explored in other chapters of this work.

Meng et al. (2018) claimed that some segmentation-free methods (e.g., those proposed

by Špaňhel et al. (2017) and Gonçalves et al. (2018)) might not achieve high recognition rates

on considerably tilted LPs, as the respective authors only considered LPs with a regular shape

and with small variations in their works. Accordingly, they designed a 10-layer CNN, called

LocateNet, to predict the four vertices coordinates (𝑥0/𝑤, 𝑦0/ℎ, . . . , 𝑥3/𝑤, 𝑦3/ℎ) of the LP. Then,

an affine transformation was applied to the LP patch in order to rectify it, as illustrated in

Figure 3.26. A neural network (for character segmentation) followed by AlexNet (Krizhevsky

et al., 2012) (for character recognition), and three existing methods were used in their experiments
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on three public datasets to demonstrate that the LP rectification stage significantly improves the

recognition results. Similar findings were observed by Špaňhel et al. (2018), who also designed a

deep network to locate the corners of the LP. The network, called Aligner-CNN, outputs four

probability maps for the four corner points in a specified order (i.e., top left, top right, bottom

right, and bottom left). The results showed that the rectification performed by Aligner-CNN

considerably improved the recognition rate achieved by Holistic-CNN (Špaňhel et al., 2017) on

a public dataset containing several styles of parking (e.g., parallel, angle, and perpendicular)

both outside (e.g., streets, outdoor, and parking lots) and inside (e.g., parking garages). More

specifically, the error rate was reduced from 12.5% to 4.0% when rectifying the LPs before

recognition. However, the computational cost required for such an additional task is worth noting,

as the recognition approach proposed by Meng et al. (2018) took six times longer to process an

LP image compared to a baseline (Holistic-CNN) without the rectification stage (even though

both methods achieved similar results). Similarly, but to a lesser extent, in (Špaňhel et al., 2018)

it took about three times longer for Holistic-CNN to recognize an LP when rectifying it first.

Figure 3.26: The flowchart of LocateNet (Meng et al., 2018), which predicts eight floating numbers corresponding

to the horizontal and vertical locations of the four corners of the LP. Image adapted from (Meng et al., 2018).

In the same direction, Yoo and Jun (2021) evaluated five models based on deep learning

to estimate the corner coordinates of tilted LP images. Considering the real-time requirements

of ALPR applications, they focused on models with relatively small size and high speed. In

experiments carried out on a private dataset and also on the road patrol (RP) subset of the

AOLP dataset (Hsu et al., 2013), a hybrid model between a network proposed by the authors

and MobileNetV2 (Sandler et al., 2018) reached the best results in terms of accuracy (i.e., the

mean pixel distance between the predicted corner positions and the ground truth). In terms of

efficiency, the authors compared only the sizes of the models, without detailing their execution

time or the hardware used in the experiments. We believe that this is not the ideal evaluation

approach, as models of similar sizes can still perform at quite different speeds due to the specific

characteristics of each architecture (Huang et al., 2017; Laroca et al., 2019, 2021b).

Masood et al. (2017) presented Sighthound (Sighthound, 2024), an end-to-end ALPR

system, that uses a sequence of deep CNNs for LPD, character detection (or segmentation), and

character recognition. For character detection, a binary network classifier was trained with LP

characters as positive examples and symbols (e.g., wheelchair, flags, among others) as negative

samples. Due to its commercial nature, Sighthound’s technical background is strictly confidential,

i.e., little information is provided about the models used for each stage or about the datasets used

to train it. According to the authors, the variety of character fonts and hard negative samples

improved the robustness of their system, which outperformed other commercial solutions in

two public datasets. It is worth noting that the performance of commercial systems is often
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overestimated for promotional reasons (Anagnostopoulos et al., 2008; Thome et al., 2011). As it

offers a trial version via an Application Programming Interface (API), Sighthound is frequently

used as a baseline in the literature (Zhang et al., 2020a; Lu et al., 2021; Chen et al., 2023).

OpenALPR9 (OpenALPR, 2024) is another commercial system often employed as a

baseline in ALPR research. It offers specialized solutions for LPs from various regions, including

Europe, mainland China, and the United States. This entails users inputting the correct region

when using its API. While OpenALPR can deliver superior results by employing heuristic rules

tailored to the specified region, the need for users to have prior knowledge regarding the LP

layout can be viewed as a limitation (Laroca et al., 2021b). Indeed, studies have shown that it

typically achieves better results than Sighthound on LPs from supported regions and considerably

worse otherwise (Silva and Jung, 2018; Li et al., 2020; Shu et al., 2020).

ALPR is a specific application of scene text detection and recognition (Mokayed et al.,

2021; Lee et al., 2022; Ding et al., 2023). Nevertheless, there are some fundamental differences

between ALPR and the general task of detecting and recognizing scene text that should be

highlighted: (i) there is no language model hidden in LPs, nor any substantial relationship with the

context information; (ii) LPR models usually need to learn 36 character classes (10 digits [0-9],

and 26 uppercase letters [A-Z]), while networks for general scene text recognition must handle

62 classes (10 digits [0-9], 26 uppercase letters [A-Z], and 26 lowercase letters [a-z]) or even

more (91-96) when incorporating symbols (Shi et al., 2019; Wu et al., 2022; Jiang et al., 2023a);

and (iii) detection and recognition models for ALPR do not need to deal with curved text, which

is commonly encountered in natural scenes such as business logos, signs and entrances (see

Figure 3.27). In the next paragraphs, we briefly describe the well-known models originally

proposed for scene text recognition that are explored in other chapters of this work.

Figure 3.27: Examples of curved text, which is a commonly seen artistic-style text in natural scenes (Shi et al., 2016).

Recognition models for ALPR do not need to deal with this text style. Image adapted from (Ch’ng and Chan, 2017).

Baek et al. (2019) introduced a four-stage framework (illustrated in Figure 3.28) that

models the design patterns of most modern methods for scene text recognition. The Transformation
stage removes the distortion from the word image so that the text is horizontal or normalized.

This task is generally done by STNs (Jaderberg et al., 2015) with a thin-plate splines (TPS)

transformation (Bookstein, 1989), which models the distortion by finding and correcting fiducial

points (see the green ‘+’ markers in Figure 3.28). The second stage, Feature Extraction, maps

the input image to a representation that focuses on the attributes relevant to character recognition

while suppressing irrelevant features such as font, color, size and background. This task is usually

performed by a module composed of CNNs, such as VGG (Simonyan and Zisserman, 2015),

ResNet (He et al., 2016), and Recurrent Convolutional Neural Network (RCNN) (Liang and

Hu, 2015). The Sequence Modeling stage converts visual features to contextual features that

capture the context in the sequence of characters. Bi-LSTM (Graves and Schmidhuber, 2005b,a)

is generally employed for this task. Finally, the Prediction stage produces the character sequence

9 Although OpenALPR has an open-source version, the commercial variant (the one typically used as a baseline)

employs distinct OCR models trained with larger datasets for improved accuracy (OpenALPR, 2024).
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from the identified features. This task is typically done by a CTC decoder (Graves et al., 2006) or

through an attention mechanism (Bahdanau et al., 2015).

Trans. Feat. Seq. Pred. UNITED

Input image Visual feature Contextual feature PredictionNormalized image

Figure 3.28: The four modules or stages of modern scene text recognition, according to (Baek et al., 2019). “Trans.”

stands for Transformation, “Feat.” stands for Feature Extraction, “Seq.” stands for Sequence Modeling, and “Pred.”

stands for Prediction. Image reproduced from (Baek et al., 2019).

As can be seen in Table 3.1, although most methods can fit into this framework (Atienza,

2021b), they do not necessarily have all four modules. For example, Robust text recognizer with

Automatic REctification (RARE) (Shi et al., 2016), SpaTial Attention Residue Network (STAR-

Net) (Liu et al., 2016), and TPS-ResNet-BiLSTM-Attention (TRBA) (Baek et al., 2019) rectify the

input image using TPS, whereas CRNN (Shi et al., 2017), Recursive Recurrent neural networks

with Attention Modeling (R2AM) (Lee and Osindero, 2016), Gated Recurrent Convolution

Neural Network (GRCNN) (Wang and Hu, 2017), and Rosetta (Borisyuk et al., 2018) do not

normalize the input image. For the feature extraction task, RARE and CRNN use VGG; R2AM

and GRCNN employ RCNN; and STAR-Net, Rosetta and TRBA use ResNet. Regarding the

sequence modeling stage, R2AM and Rosetta skip it to speed up prediction, while RARE,

STAR-Net, CRNN, GRCNN and TRBA address it using Bi-LSTMs. Lastly, R2AM, RARE and

TRBA rely on an attention mechanism to predict the sequence of characters, whereas STAR-Net,

CRNN, GRCNN and Rosetta employ CTC. For more information about the methods mentioned

in this paragraph, see the respective works where they were proposed and also (Atienza, 2021b;

Chen et al., 2022), which summarize the similarities and differences between them.

Table 3.1: Summary of seven well-known models for scene text recognition that fit into the framework introduced by

Baek et al. (2019). We list these models (and not others) as they are explored in other chapters of this work.

Model Transformation Feature Extraction Sequence Modeling Prediction

R2AM (Lee and Osindero, 2016) − RCNN − Attention

RARE (Shi et al., 2016) TPS VGG Bi-LSTM Attention

STAR-Net (Liu et al., 2016) TPS ResNet Bi-LSTM CTC

CRNN (Shi et al., 2017) − VGG Bi-LSTM CTC

GRCNN (Wang and Hu, 2017) − RCNN Bi-LSTM CTC

Rosetta (Borisyuk et al., 2018) − ResNet − CTC

TRBA (Baek et al., 2019) TPS ResNet Bi-LSTM Attention

Inspired by the success of Vision Transformer (ViT) (Dosovitskiy et al., 2021), Atienza

(2021b) proposed a simple single-stage model – called ViTSTR – that uses a pre-trained ViT (Tou-

vron et al., 2021) to perform scene text recognition. The ViT introduced by Dosovitskiy et al.

(2021) is an architecture directly inherited from Natural Language Processing (NLP) (Vaswani

et al., 2017) but applied to image classification with raw image patches as input. As shown

in Figure 3.29, in ViTSTR, the input image is first converted into non-overlapping patches.

The patches are then converted into 1-D vector embeddings (i.e., flattened 2-D patches). As

input to the encoder, a learnable patch embedding is added together with a position encoding

for each embedding. ViTSTR is trained in an end-to-end manner with no parameters frozen.

Considering that little emphasis has been placed on speed and computational efficiency in scene

text recognition, the authors also proposed two smaller versions of ViTSTR, called ViTSTR-Tiny

and ViTSTR-Small, with reduced embedding size and number of heads (see Table 3.2).

Another model that is explored in other chapters of this work and therefore should be

described here is Fast-OCR (Laroca et al., 2021a). It was proposed for reading energy/gas/water
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Figure 3.29: The network architecture of ViTSTR (Atienza, 2021b). The prediction head is the only difference

between ViT (Dosovitskiy et al., 2021) and ViTSTR. Instead of single object-class recognition, ViTSTR must

identify multiple characters with the correct sequence order and length. [GO] is a pre-defined start of sequence

symbol, while [s] represents a space or end of a character sequence. Image reproduced from (Atienza, 2021b).

Table 3.2: The settings of each ViTSTR version. Table reproduced from (Atienza, 2021b).

Version Patch Size Depth Embedding Size # Heads Sequence Length

ViTSTR-Tiny 16 12 192 3 27

ViTSTR-Small 16 12 384 6 27

ViTSTR-Base 16 12 768 12 27

meters and incorporates features from three object detection-based models focused on the

speed/accuracy trade-off, namely YOLOv2 (Redmon and Farhadi, 2017), CR-NET (Silva and

Jung, 2020) and Fast-YOLOv4 (Bochkovskiy, 2020). Accordingly, it is trained to predict 𝑁
character classes (originally 10 classes [0-9]) using the region-of-interest patch as well as the

class and bounding box (𝑥, 𝑦, 𝑤, ℎ) of each character as input. As detailed in Table 3.3, Fast-OCR

performs detection at two different scales, as Fast-YOLOv4. The convolutional layers mostly have

3 × 3 kernels and the number of filters is doubled after each max-pooling layer, as in YOLOv2

and CR-NET. In addition, there are 1 × 1 convolutional layers between 3 × 3 convolutions to

reduce the feature space from preceding layers. In experiments carried out on two public datasets

with images of energy meters, Fast-OCR achieved considerably better results than baselines that

perform recognition holistically, including CRNN, TRBA and the multi-task network designed

specifically for counter recognition10 by Gómez et al. (2018).

Table 3.3: The architecture of Fast-OCR (Laroca et al., 2021a).

# Layer Filters Size Input Output
0 conv 32 3 × 3/1 384 × 128 × 3 384 × 128 × 32

1 max 2 × 2/2 384 × 128 × 32 192 × 64 × 32

2 conv 64 3 × 3/1 192 × 64 × 32 192 × 64 × 64

3 max 2 × 2/2 192 × 64 × 64 96 × 32 × 64

4 conv 128 3 × 3/1 96 × 32 × 64 96 × 32 × 128

5 max 2 × 2/2 96 × 32 × 128 48 × 16 × 128

6 conv 256 3 × 3/1 48 × 16 × 128 48 × 16 × 256

7 conv 128 1 × 1/1 48 × 16 × 256 48 × 16 × 128

8 conv 256 3 × 3/1 48 × 16 × 128 48 × 16 × 256

9 max 2 × 2/2 48 × 16 × 256 24 × 8 × 256

10 conv 512 3 × 3/1 24 × 8 × 256 24 × 8 × 512

# Layer Filters Size Input Output
11 conv 256 1 × 1/1 24 × 8 × 512 24 × 8 × 256

12 conv 512 3 × 3/1 24 × 8 × 256 24 × 8 × 512

13 conv 45 1 × 1/1 24 × 8 × 512 24 × 8 × 45

14 detection
15 route [11] 24 × 8 × 256

16 conv 256 1 × 1/1 24 × 8 × 256 24 × 8 × 256

17 upsample 2× 24 × 8 × 256 48 × 16 × 256

18 route [17, 6] 48 × 16 × 512

19 conv 512 3 × 3/1 48 × 16 × 512 48 × 16 × 512

20 conv 45 1 × 1/1 48 × 16 × 512 48 × 16 × 45

21 detection

10 The counter is the region on each meter where the digits are displayed. Thus, in automatic meter reading, the

digit recognition stage is often referred to as counter recognition (Laroca et al., 2019, 2021a; Rocha et al., 2022).
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3.5 Final Remarks

Recent developments in deep learning (Bengio et al., 2021) have significantly contributed to

improving many computer vision tasks, such as object detection and OCR, which directly benefit

ALPR systems. Despite extensive research driven by the wide range of ALPR applications, there

remains a significant gap between the performance levels reported in academic studies and those

observed in real-world deployments. This gap can largely be attributed to the overly simplified

setups used in most research endeavors. In the following paragraphs, we outline the primary

limitations observed in the studies reviewed in this chapter.

What caught our attention right away was the lack of evaluation regarding the out-of-

domain robustness of the proposed methods in most studies. Only recently have some researchers

started conducting cross-dataset experiments to assess the generalizability of their methods. The

prevalent approach involves training the models exclusively on the CCPD dataset and testing

them on the CLPD and PKU datasets, all three acquired in mainland China (Zou et al., 2020;

Wang et al., 2022c; Chen et al., 2023). We argue that it is crucial to expand such evaluations to

datasets gathered from different regions, encompassing a greater diversity in LP styles. Zeni

and Jung (2020) set a valuable example in this regard. They explored five datasets from various

regions, three for both training and testing, and two exclusively for testing. Interestingly, both

their LPR method and a baseline they trained exhibited signs of overfitting on images from

unseen datasets, especially on LPs from regions with limited representation in the training data.

Even in traditional intra-dataset experiments (where training and testing data come

from disjoint parts of the same dataset), it is quite common for only a particular LP style (e.g.,

single-row blue LPs from mainland China) to be considered in the experiments (Han et al., 2020;

Maier et al., 2022; Shvai et al., 2023). To experiment with multiple LP layouts, many researchers

have opted to train separate instances of their models for each layout (e.g., considering the LPR

stage, one model recognizes LPs from the Taiwan region, another model recognizes LPs from

mainland China, and so on) (Zhang et al., 2021d; Wang et al., 2022c; Ke et al., 2023). As one may

infer, dealing with the problem in this way becomes cumbersome (even unfeasible) as the number

of LP layouts the ALPR system must detect and recognize increases, since the parameters are

individually adjusted for each LP layout and adding support for a new region requires retraining

the networks. Moreover, this protocol does not make it possible to assess whether the proposed

models, as they were designed and trained, can effectively deal with LPs from multiple regions.

To better illustrate the importance of the points discussed above, Figure 3.30 shows the

predictions made by two pre-trained instances of the CR-NET model, one provided by Silva

and Jung (2018) and the other by Laroca et al. (2021b), on two randomly selected images of

Mercosur LPs. Although excellent recognition results were reported in these works, both models

failed to correctly recognize the LPs, even though the images were free of shadows, blur, dirt,

or occlusions. This suggests a potential issue with the training data. Neither study included

images of vehicles bearing Mercosur LPs in their datasets. Further experiments are necessary

to ascertain whether these models (and potentially others) lack robustness specifically towards

LP layouts not seen during training (e.g., the models may have failed on these Mercosur LPs

due to the characters’ reflective films, which are absent in other layouts), or if they struggle with

images captured under conditions different from those in the training set, irrespective of the LP

layout. If the latter scenario holds true, the underlying reasons for this lack of robustness must be

explored. Several questions arise in this context. For example, how significant is the dataset bias

issue (Torralba and Efros, 2011; Tommasi et al., 2017; Hort et al., 2023) within the context of

LPR? As another example, could there be issues with the protocols typically used to split public

datasets into training and test sets, potentially skewing the results reported in academic research?
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(Silva and Jung, 2018): Z-M7J23
(Laroca et al., 2021b): ---7-2-

GT: IHM7J23

(Silva and Jung, 2018): --M0J35
(Laroca et al., 2021b): -----35

GT: AIH0J35

Figure 3.30: Recognition results yielded by two instances of the CR-NET model, one trained by Silva and Jung

(2018) and the other by Laroca et al. (2021b), on two images of Mercosur LPs acquired by handheld cameras. For

this evaluation, we used the weights provided by the respective authors in the supplementary material of each work.

Although there are many public datasets available in the literature (we managed to find

nearly 40), there is still a large number of works that perform experiments exclusively on images

from private datasets. Some examples are (Liu and Chang, 2019; Jin et al., 2021; Maier et al.,

2022; Akoushideh et al., 2024). The use of private datasets makes it very difficult – in some

cases even impossible – to make a fair comparison between results reported in different works.

When reviewing the literature, we noticed that many authors are incredibly unaware of

the existence of most public datasets for ALPR. For instance, Ismail et al. (2021) asserted that

AOLP (Hsu et al., 2013) was the sole publicly available dataset suitable for ALPR. Similarly,

Pan et al. (2022) stated that labeled datasets for LPD and LPR are very scarce. Similar claims

were made in several other works (Gao et al., 2020b; Xu et al., 2021; Ashrafee et al., 2022; Yang

et al., 2023), especially when referring to datasets collected from specific geographic regions.

Considering this discussion, we assert that there is a high demand for a complete review of public

datasets for ALPR, describing them in detail and highlighting their distinguishing characteristics.

Such a review would shed light on less popular datasets (in terms of citations) and

assist ALPR researchers in making sound choices regarding which datasets to explore in their

experiments based on the target application of their algorithms. For example, CCPD (Xu et al.,

2018) stands out as the most widely used dataset in existing literature, primarily due to its

widespread adoption among Chinese researchers. Nevertheless, as shown in Figure 3.31, its

images were heavily compressed. Therefore, CCPD may not be ideal for training and evaluating

ALPR systems intended to handle less degraded images, which is often the case. Indeed, Qiao

et al. (2021) observed that some images within CCPD are too blurry for the LPs to be recognized.

This limitation led Silva and Jung (2022) to exclude this dataset from their LPR experiments.

Figure 3.31: Three images that illustrate the high compression ratios in the CCPD dataset. As noted by Qiao et al.

(2021); Silva and Jung (2022), it is clear that the high compression ratios impair the legibility of the LPs in some

cases. We show a zoomed-in version of the vehicle’s LP in the bottom-right region of each image for better viewing.

Additionally, a complete listing of existing datasets would facilitate the identification of

gaps in the literature caused by the lack of datasets with specific characteristics. For example,
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there is no public dataset containing images of vehicles with Mercosur LPs; such a dataset would

considerably assist in developing new approaches for this LP layout. We are also unaware of any

dataset comprising a substantial and balanced number of images of cars and motorcycles, which

would enable researchers to give equal importance to both types of vehicles and also to LPs with

one and two rows of characters during experimentation (cars typically have a single-row character

arrangement on their LPs, while motorcycles usually feature characters arranged in two rows). It

is noticeable that motorcycles and two-row LPs have been largely overlooked in ALPR research.

Given the difficulty in collecting and labeling thousands of images of LPs from different

states or provinces across a country, generative models (mostly GANs) have increasingly been

employed to create synthetic LP images with diverse characteristics. These generated images

have proven instrumental in reducing biases in training sets, thereby enhancing the performance

of OCR models. Nevertheless, most studies have focused on unpaired image-to-image translation

methods (e.g., CycleGAN) using a large number of real images for training (100k+), without

addressing how similar results could be achieved with limited training data. This need for many

images restricts the applicability of such methods, as numerous images are not always available

for every LP layout (Han et al., 2020; Laroca et al., 2021b; Yang et al., 2023). That is probably

why Wu et al. (2018); Zhang et al. (2018b, 2021c) only generated images of LPs from mainland

China, which are widely available, despite carrying out experiments on LPs from other regions

(United States and Taiwan). Indeed, Zhang et al. (2018b) acknowledged that the need for an

abundant source of training images is the main limitation of their approach. Furthermore, we

also noticed that whether a single model could effectively generate high-quality LP images from

diverse regions with varying characteristics has yet to be demonstrated. While Wu et al. (2019);

Fan and Zhao (2022) produced images of LPs from multiple regions, they did so by training

separate models for each region. Considering these observations, there is a clear demand for

developing an approach capable of generating high-quality images of LPs from various regions,

even when trained with only a few hundred real images per LP layout.

Regarding the existing methods for generating synthetic data, we observed that they

have been evaluated based on the results yielded by a single OCR model. For example, Wang

et al. (2017); Zhang et al. (2018b); Wu et al. (2019) evaluated the efficacy of their strategies

solely based on the recognition results achieved by CRNN (Shi et al., 2017), while Zhang et al.

(2019b, 2021c) considered only the recognition results reached by a CNN model based on

Xception (Chollet, 2017). This evaluation approach is flawed because images produced in a

specific manner may benefit certain methods much more than others; in essence, a synthetic data

generation method might produce images that significantly enhance the recognition results of

one model but not another. This was evidenced by Laroca et al. (2019) in the context of image-

based Automatic Meter Reading (AMR), where two segmentation-free approaches (including

CRNN) had a much higher performance gain than the CR-NET model (Silva and Jung, 2020),

which is based on YOLO, when trained with images created by a character permutation-based

synthesis data generation technique (Gonçalves et al., 2018). Therefore, while there is strong

evidence of improved LPR performance through such techniques, there is a lack of studies

focusing on evaluating their effectiveness using outcomes from multiple OCR models with

varying characteristics. Furthermore, it remains unclear whether relying solely on one method

for generating synthetic data is sufficient for achieving optimal LPR results, or if significantly

superior outcomes could be obtained by integrating data generated through diverse methodologies,

such as images created via character permutation, rendering-based techniques, or a GAN model.

Finally, after reviewing the literature, it became evident that most research in ALPR is

narrowly focused on specific tasks. For example, Al-Shemarry and Li (2020); Mokayed et al.

(2021); Ding et al. (2024) exclusively addressed the LPD stage. Similarly, Xu et al. (2021);
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Schirrmacher et al. (2023); Liu et al. (2024b) only dealt with the LPR stage, while Meng et al.

(2018); Špaňhel et al. (2018); Yoo and Jun (2021) concentrated on corner detection and LP

rectification. There is a clear need for approaches handling ALPR in an end-to-end fashion. Such

approaches should be designed and evaluated considering the common challenges encountered

in real-world scenarios. These challenges include efficient detection and recognition of LPs with

diverse layouts, images with varying resolutions, and LPs with different numbers of characters

arranged in one or two rows. In the regime where labeled data is expensive (Björklund et al.,

2019; Han et al., 2020; Gao et al., 2023), these approaches should not require hundreds of

thousands of real images for training and must demonstrate robustness to images captured in

domains beyond those represented in the training set.
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4. THE RODOSOL-ALPR DATASET

The RodoSol-ALPR dataset11 contains 20,000 images captured by stationary cameras located at

pay tolls owned by the Rodovia do Sol (RodoSol) concessionaire, which operated 67.5 kilometers

of a highway (ES-060) in the Brazilian state of Espírito Santo for 25 years (RodoSol, 2024).

As can be seen in Figure 4.1, there are images of different types of vehicles (e.g., cars,

motorcycles, buses and trucks), captured during the day and night, from distinct lanes, on clear

and rainy days, and the distance from the vehicle to the camera varies slightly. All images are

available in the JPG format (quality = 95) and have a resolution of 1,280 × 720 pixels.

Figure 4.1: Some images extracted from the RodoSol-ALPR dataset. The first and second rows show images of

cars and motorcycles, respectively, with Brazilian LPs (i.e., the standard used in Brazil before the adoption of the

Mercosur standard). The third and fourth rows show images of cars and motorcycles, respectively, with Mercosur

LPs. We show a zoomed-in version of the vehicle’s LP in the lower right region of the images in the last column for

better viewing of the LP layouts. All human faces were blurred in every image due to privacy constraints.

An important feature of this dataset is that it has images of two different LP layouts:

Brazilian and Mercosur – as mentioned in Chapter 1, we use “Brazilian” to denote the layout

used in Brazil before the adoption of the Mercosur layout, maintaining consistency with prior

research. This feature is important because both LP layouts will coexist for many years in Brazil,

as transitioning from the Brazilian to the Mercosur layout incurs costs and is not mandatory for

used vehicles (Ribeiro et al., 2019; Laroca et al., 2021b). All Brazilian LPs consist of three

letters followed by four digits (e.g., ABC1234), while the initial pattern adopted in Brazil for

Mercosur LPs consists of three letters, one digit, one letter, and two digits (e.g., ABC1D23). In

both layouts, car LPs have seven characters arranged in a single row, whereas motorcycle LPs

split the characters into two rows: three on the top and four on the bottom.

Even though these two LP layouts are very similar in shape and size, there are

considerable differences in their colors and characters’ fonts. In Brazil, LPs have size and color

variations depending on the type of the vehicle and its category (CONTRAN, 2007; MERCOSUR,

2014). In summary, car LPs have a size of 40cm × 13cm, while motorcycle LPs measure

20cm × 17cm. Private vehicles are identified by gray and black LPs in Brazilian and Mercosur

11 The RodoSol-ALPR dataset is publicly available to the research community at https://github.com/
raysonlaroca/rodosol-alpr-dataset/
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layouts, respectively, whereas buses, taxis, and other commercial vehicles have red LPs. Further

variations in color exist for specific vehicle categories, such as official or older cars. Figure 4.2

shows the diversity of the RodoSol-ALPR dataset in terms of LP characteristics.

Figure 4.2: Some LPs from the RodoSol-ALPR dataset. The first and second rows show Brazilian LPs of cars and

motorcycles, respectively. The third and fourth rows show Mercosur LPs of cars and motorcycles, respectively.

We draw attention to some important characteristics of Brazilian and Mercosur LPs:

(i) depending on the vehicle category, Brazilian LPs exhibit variation in both the background

color and the characters’ color, whereas in Mercosur LPs, only the color of the characters varies;

(ii) there are Brazilian LPs with different fonts of characters (e.g., DIN 1451 Mittelschrift and

Mandatory), as regulations changed over the years, whereas all Mercosur LPs have the characters

printed with the FE-Schrift font, which contains monospaced letters and digits that are slightly

disproportionate to prevent easy modification (i.e., faking one character into another) and to

improve machine readability. Note that the characters ‘0’ and ‘O’ are different in this font, unlike

many other fonts where they look exactly the same (e.g., Mandatory); and (iii) in both layouts,

the characters printed on motorcycle LPs are smaller in both width and height than those printed

on car LPs (CONTRAN, 2007; MERCOSUR, 2014). This, coupled with the typical tilting of

motorcycle LPs, inherently increases the difficulty of recognizing motorcycle LPs.

RodoSol-ALPR’s 20,000 images are divided as follows: 5,000 images of cars with

Brazilian LPs; 5,000 images of motorcycles with Brazilian LPs; 5,000 images of cars with

Mercosur LPs; and 5,000 images of motorcycles with Mercosur LPs. As far as we know,

RodoSol-ALPR is the public dataset for ALPR with the highest number of motorcycle images.

The dataset is split as follows: 8,000 images for training; 8,000 images for testing; and 4,000

images for validation, following the split protocol (i.e., 40%/40%/20%) adopted in the SSIG-

SegPlate (Gonçalves et al., 2016a) and UFPR-ALPR (Laroca et al., 2018) datasets. We preserved

the percentage of samples for each vehicle type and LP layout; for example, there are 2,000

images of cars with Brazilian LPs in each of the training and test sets, and 1,000 images in the

validation one. For reproducibility purposes, the subsets generated are explicitly available along

with the proposed dataset.

Every image has the following information available in a text file: the vehicle’s type

(car or motorcycle), the LP’s layout (Brazilian or Mercosur), its text (e.g., ABC-1234), and

the position (𝑥, 𝑦) of each of its four corners12. We labeled the corners instead of just the LP

bounding box to enable the training of methods that explore LP rectification and the application

of a wider range of data augmentation techniques.

The datasets for ALPR are generally very unbalanced in terms of character classes due

to LP allocation policies (Anagnostopoulos et al., 2006; Sun et al., 2019; Zhang et al., 2021c). In

Brazil, for example, one letter can appear much more often than others according to the state in

12 We used two open source tools for labeling the dataset, namely, sloth and labelImg. They are available at https:
//github.com/cvhciKIT/sloth and https://github.com/tzutalin/labelImg, respectively.
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which the LP was issued (Gonçalves et al., 2018; Laroca et al., 2018). This information must be

taken into account when training LPR models in order to avoid undesirable biases; for instance, a

network trained exclusively in the RodoSol-ALPR dataset may learn to always classify the first

character as ‘P’ in cases where it should be ‘B’ or ‘R’ since it appears much more often in that

position than these two characters (see Figure 4.3). Such biases are usually mitigated through

synthetic data (Zhang et al., 2021c; Hasnat and Nakib, 2021; Shvai et al., 2023).

Figure 4.3: The distribution of character classes in the RodoSol-ALPR dataset. Observe that there is a significant

imbalance in the distribution of the letters (due to LP allocation policies), whereas the digits are well balanced.

Regarding privacy concerns related to this dataset, we remark that in Brazil the LPs

are related to the respective vehicles, i.e., no public information is available about the vehicle

drivers/owners (Presidência da República, 1997; Oliveira et al., 2021). Moreover, all human faces

(e.g., drivers or RodoSol’s employees) were manually redacted (i.e., blurred) in each image.
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5. ON THE CROSS-DATASET GENERALIZATION IN LICENSE PLATE RECOGNI-
TION

Deep learning-based ALPR systems have often achieved recognition rates above 99% in existing

datasets under the traditional-split protocol, where the test images mostly belong to scenarios

seen during training. However, as already mentioned, in real-world applications, new cameras

are regularly being installed in new locations without existing systems being retrained as often,

which can dramatically decrease their performance.

Considering the above discussion, in this chapter we evaluate various OCR models in a

leave-one-dataset-out experimental setup using nine public datasets with distinct characteristics13.

The results obtained are compared with those achieved under the traditional-split protocol.

Aligning with recent research trends (Nascimento et al., 2022, 2023; Schirrmacher et al., 2023;

Liu et al., 2024b), we focus our analysis on the LPR stage. Thus, we simply train the YOLOv4

model (Bochkovskiy et al., 2020) to detect the LPs in the input images. For completeness, we

also report the results achieved in the LPD stage under both of the aforementioned protocols.

In the following sections, we describe the setup adopted in our experiments. We first

list the models we implemented, elucidating the rationale behind their selection over others.

Afterward, we provide implementation details, including the framework used for training and

testing each model, along with the associated hyperparameters. We then present and briefly

describe the datasets used, as well as the techniques employed to prevent overfitting. Subsequently,

we detail the evaluation protocols (traditional-split and leave-one-dataset-out), specifying which

images from each dataset were used for training or testing in each experiment. Lastly, we elucidate

our methodology for performance evaluation.

5.1 OCR Models

We apply 12 OCR models to LPR: RARE (Shi et al., 2016), R2AM (Lee and Osindero, 2016),

STAR-Net (Liu et al., 2016), CRNN (Shi et al., 2017), GRCNN (Wang and Hu, 2017), Holistic-

CNN (Špaňhel et al., 2017), Multi-Task-LR (Gonçalves et al., 2019), Rosetta (Borisyuk et al.,

2018), TRBA (Baek et al., 2019), CR-NET (Silva and Jung, 2020), Fast-OCR (Laroca et al.,

2021a), and ViTSTR-Base (Atienza, 2021b). Table 5.1 presents an overview of these models,

listing the original OCR application for which they were designed as well as the framework we

used to train and evaluate them. We adjusted the architectures of these models to accommodate

images with a width-to-height ratio of 3 at the respective input layers.

We selected these models for two primary reasons. First, they have a proven track record

of success in OCR tasks (including but not limited to LPR) (Baek et al., 2019, 2021a; Atienza,

2021a,b; Nascimento et al., 2023; Dai et al., 2024). Second, we are confident in our ability to

train and adjust them effectively to ensure fairness in our experiments, as the respective authors

provided enough details about the model architectures, and also because we designed/employed

similar networks in (Gonçalves et al., 2018, 2019; Laroca et al., 2019, 2021a).

The CR-NET and Fast-OCR models are based on the YOLO object detector (Redmon

et al., 2016). Therefore, they simultaneously detect and classify the characters in the LP

13 This chapter – in article form – was accepted for presentation at the 2022 International Conference on Computer
Vision Theory and Applications (VISAPP) (Laroca et al., 2022a). While the general conclusions remain the same, the

specific recognition rates presented here differ from those in the article. This is because subsequent optimizations to

the testing algorithm yielded improved performance across all OCR models, particularly for two-row LPs.
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Table 5.1: OCR models explored in this chapter.

Model Original Application

Framework: PyTorch (Atienza, 2022)

R2AM (Lee and Osindero, 2016) Scene Text Recognition

RARE (Shi et al., 2016) Scene Text Recognition

STAR-Net (Liu et al., 2016) Scene Text Recognition

CRNN (Shi et al., 2017) Scene Text Recognition

GRCNN (Wang and Hu, 2017) Scene Text Recognition

Rosetta (Borisyuk et al., 2018) Scene Text Recognition

TRBA (Baek et al., 2019) Scene Text Recognition

ViTSTR-Base (Atienza, 2021b) Scene Text Recognition

Framework: Keras (Chollet et al., 2024)

Holistic-CNN (Špaňhel et al., 2017) License Plate Recognition

Multi-Task-LR (Gonçalves et al., 2019) License Plate Recognition

Framework: Darknet (Bochkovskiy, 2023)

CR-NET (Silva and Jung, 2020) License Plate Recognition

Fast-OCR (Laroca et al., 2021a) Image-based Meter Reading

region. The networks are trained to predict 35 classes (0-9, A-Z, where ‘O’ and ‘0’ are

detected/recognized jointly) using the bounding box of each LP character as input. Although

these models have been attaining impressive results, they require laborious data annotations,

i.e., each character’s bounding box needs to be labeled for training them (Zeni and Jung, 2020;

Wang et al., 2022c; Liu et al., 2024b). All the other 10 models, on the other hand, output the

LP characters in a segmentation-free manner, i.e., they predict the characters (also 35 classes)

holistically from the LP region without the need to detect/segment each of them. Some of the

models are multi-task networks, i.e., those proposed by Špaňhel et al. (2017) and Gonçalves

et al. (2019) (see Section 3.2), while the others are CTC-, attention- and Transformer-based

networks originally proposed for scene text recognition (see Section 3.4). According to previous

works (Gonçalves et al., 2019; Hasnat and Nakib, 2021; Shvai et al., 2023), the generalizability of

such segmentation-free models tends to improve significantly through the use of synthetic data.

Here we list the hyperparameters employed in each framework for training the OCR

models. These hyperparameters were determined based on existing research (Baek et al., 2019;

Atienza, 2021b; Oliveira et al., 2021) and were further validated through experiments on the

validation set. In Darknet, the parameters include: Stochastic Gradient Descent (SGD) optimizer,

90k iterations, a batch size of 64, and a learning rate of [10-3, 10-4, 10-5] with decay steps at

30k and 60k iterations. In Keras, we employed the Adam optimizer with an initial learning rate

of 10-3 (ReduceLROnPlateau’s patience of 5 and factor of 10-1), a batch size of 64, and a patience

value of 11 (patience indicates the number of epochs without improvement before training is

stopped). In PyTorch, we used the following parameters: Adadelta optimizer with a decay rate of

𝜌 = 0.99, 300k iterations, and a batch size of 128.

5.2 Datasets

Researchers have conducted experiments on various datasets to showcase the effectiveness of

their models in detecting and recognizing LPs from different regions (Henry et al., 2020; Lee

et al., 2022; Dai et al., 2024). Accordingly, we perform our experiments using images from

the RodoSol-ALPR dataset and eight public datasets widely adopted in ALPR research (Chen

et al., 2023; Ding et al., 2024; Liu et al., 2024a). These datasets are Caltech Cars (Weber, 1999),

EnglishLP (Srebrić, 2003), UCSD-Stills (Dlagnekov and Belongie, 2005), ChineseLP (Zhou et al.,

2012), AOLP (Hsu et al., 2013), OpenALPR-EU (OpenALPR, 2016), SSIG-SegPlate (Gonçalves
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et al., 2016a), and UFPR-ALPR (Laroca et al., 2018). Table 5.2 provides an overview of these

datasets, which were introduced over the past quarter-century and exhibit considerable diversity

in terms of the number of images, acquisition settings, image resolution, and LP layouts.

Table 5.2: Datasets explored in this chapter. As mentioned earlier, the “Chinese” layout refers to LPs of vehicles

registered in mainland China, while the “Taiwanese” layout refers to LPs of vehicles registered in the Taiwan region.

Dataset Year Images Resolution LP Layout
Caltech Cars 1999 126 896 × 592 American

EnglishLP 2003 509 640 × 480 European

UCSD-Stills 2005 291 640 × 480 American

ChineseLP 2012 411 Various Chinese

AOLP 2013 2049 Various Taiwanese

OpenALPR-EU 2016 108 Various European

SSIG-SegPlate 2016 2000 1920 × 1080 Brazilian

UFPR-ALPR 2018 4500 1920 × 1080 Brazilian

RodoSol-ALPR 2022 20000 1280 × 720 Brazilian/Mercosur

Figure 5.1 highlights the variety of the chosen datasets in terms of LP layouts. It is clear

that even LPs from the same country can be quite different; for example, the Caltech Cars and

UCSD-Stills datasets were collected in the same region (California, United States), but they have

images of LPs with significant differences in terms of colors, aspect ratios, backgrounds, and

the number of characters. Additionally, the LPs may be tilted or have lower resolutions due to

camera quality or vehicle-to-camera distance. It is also worth noting that some datasets (i.e.,

EnglishLP, UFPR-ALPR and RodoSol-ALPR) include LPs with two rows of characters.

(a) Caltech Cars (b) EnglishLP

(c) UCSD-Stills (d) ChineseLP

(e) AOLP (f) OpenALPR-EU

(g) SSIG-SegPlate (h) UFPR-ALPR

Figure 5.1: Some representative LPs from the public datasets used in this chapter’s experiments. Several LPs from

the RodoSol-ALPR dataset are shown in Figure 4.2.

To mitigate biases from the public datasets, we incorporated 772 images from the

internet – those labeled and provided by Laroca et al. (2021b) – into the training set. These

images include 257 American LPs, 347 Chinese LPs, and 178 European LPs.

We opted not to explore the CCPD dataset (Xu et al., 2018) in our experiments, despite its

widespread use in the literature. There are two primary reasons for this decision. First, the dataset

comprises highly compressed images (see Section 3.5) , significantly reducing the legibility of

the LPs (Qiao et al., 2021; Silva and Jung, 2022), and this does not align with our intended

application. Second, the CCPD dataset experienced multiple updates and expansions since its

introduction. Hence, there is inconsistency regarding the dataset’s size across different studies.

While some sources claim it contains 250k images (Liang et al., 2022; Fan and Zhao, 2022; Ding
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et al., 2024), others suggest a range of 280-290k images (Zou et al., 2020; Wang et al., 2022c;

Gao et al., 2023), whereas the current version has 366,789 images. The divergence in test sets

across different versions renders the results reported in various studies not directly comparable.

5.2.1 Synthetic Data

As shown in Table 5.2, two-thirds of the images used in our experiments are from the RodoSol-

ALPR dataset. To prevent overfitting, we initially balanced the number of images from different

datasets through data augmentation techniques such as random cropping, conversion to grayscale,

and random perturbations of hue, saturation and brightness. We used Albumentations (Buslaev

et al., 2020), a popular library mentioned in Section 2.3, to apply these transformations.

Nevertheless, preliminary experiments showed that some of the OCR models were prone to

predict only LP patterns present in the training set, as some patterns were being fed numerous

times per epoch to the networks – particularly those belonging to smaller datasets, where many

images were created from a single original one. This phenomenon was also observed in (Zhang

et al., 2020c; Hasnat and Nakib, 2021; Garcia-Bordils et al., 2022).

Drawing inspiration from Gonçalves et al. (2018), we performed random permutations

of character positions on each LP to mitigate potential biases during the learning phase, as

depicted in Figure 5.2. As annotating bounding boxes for LP characters is a time-consuming

and labor-intensive task, we chose not to explore the RodoSol-ALPR dataset for generating new

images in this manner. We believe this decision is not of significant concern given the substantial

size of the RodoSol-ALPR dataset compared to others. We relied on the labels provided by

Laroca et al. (2021b) to explore the images from the remaining datasets.

Figure 5.2: Illustration of the character permutation-based synthetic data generation method (Gonçalves et al., 2018)

we adopted to reduce overfitting. The images in rows 2 to 4 were created based on the images shown in the top row.

In this process, we do not enforce the generated LPs to have the same arrangement of

letters and digits as the original LPs so that the OCR models do not memorize specific patterns

from different LP layouts. For example, as described in Chapter 4, all Brazilian LPs consist of

three letters followed by four digits, while Mercosur LPs in Brazil have three letters, one digit,

one letter and two digits, in that order. Considering that LPs of these layouts are relatively similar,

the segmentation-free networks would probably predict three letters followed by four digits for

most Mercosur LPs when holding the RodoSol-ALPR dataset out in a leave-one-dataset-out

evaluation, as none of the other datasets include images of vehicles with Mercosur LPs.

5.3 Evaluation Protocols

We propose a traditional-split versus leave-one-dataset-out experimental setup. In the following

subsections (Sections 5.3.1 and 5.3.2), we describe these two protocols in detail.
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5.3.1 Traditional-Split

The traditional-split protocol assesses the ability of the models to perform well in seen scenarios,

as each model is trained on the union of the training set images from all datasets and evaluated

on the test set images from the respective datasets. In recent works, researchers have chosen

to train a single model on images from multiple datasets (instead of training a specific network

for each dataset or LP layout, as was commonly done in the past) so that the proposed models

are robust for different scenarios with considerably less manual effort since their parameters are

adjusted only once for all datasets (Selmi et al., 2020; Qin and Liu, 2022; Silva and Jung, 2022).

For reproducibility, it is important to make clear how we divided the images from each

of the datasets to train, validate and test the chosen models14. The UCSD-Stills, SSIG-SegPlate,

UFPR-ALPR and RodoSol-ALPR datasets were split according to the protocols defined by

the respective authors, while the other datasets – which do not have well-defined evaluation

protocols – were divided following previous works. In summary, as in (Xiang et al., 2019; Henry

et al., 2020; Liu et al., 2024a), the Caltech Cars dataset was randomly split into 63.5% of the

images for training/validation and 36.5% for testing. Following (Panahi and Gholampour, 2017;

Beratoğlu and Töreyin, 2021), the EnglishLP dataset was randomly divided as follows: 80% of

the images for training/validation and 20% for testing. For the ChineseLP dataset, we employed

the same protocol as in our previous work (Laroca et al., 2021b): 40% of the images for training,

20% for validation, and 40% for testing. We split each of the three subsets of the AOLP dataset

(i.e., AC, LE, and RP) into training and test sets with a 2:1 ratio, following (Xie et al., 2018;

Zhuang et al., 2018; Liang et al., 2022), with 20% of the training images being used for validation.

Finally, as in most works in the literature (Masood et al., 2017; Xu et al., 2022; Zibani et al.,

2024), we used all 108 images from the OpenALPR-EU dataset for testing (this division has been

considered as a mini leave-one-dataset-out evaluation in recent works). Table 5.3 lists the exact

number of images used for training, validating and testing the chosen models.

Table 5.3: A summary of each dataset’s image distribution across training, validation, and test sets.

Dataset Training Validation Test Discarded Total
Caltech Cars 61 16 46 3 126

EnglishLP 326 81 102 0 509

UCSD-Stills 181 39 60 11 291

ChineseLP 159 79 159 14 411

AOLP 1,093 273 683 0 2,049

OpenALPR-EU 0 0 108 0 108

SSIG-SegPlate 789 407 804 0 2,000

UFPR-ALPR 1,800 900 1,800 0 4,500

RodoSol-ALPR 8,000 4,000 8,000 0 20,000

As indicated in Table 5.3, a small fraction of the images (0.01%) was excluded from our

experiments15, either because it is impossible to recognize the LPs on them due to occlusion,

lighting or image acquisition problems, or because they do not represent real ALPR scenarios

(e.g., images showing a person holding an LP). Figure 5.3 shows three illustrative examples.

Such images were also discarded in previous works (Masood et al., 2017; Laroca et al., 2021b).

14 The complete lists of which images from each dataset were used for training, testing and validation can be

downloaded at https://raysonlaroca.github.io/supp/visapp2022/splits.zip
15 The complete list of discarded images can be found at https://raysonlaroca.github.io/supp/

visapp2022/discarded-images.txt



82

Figure 5.3: Examples of images discarded in our experiments. Image reproduced from (Laroca et al., 2021b).

5.3.2 Leave-One-Dataset-Out

The leave-one-dataset-out protocol evaluates the generalization performance of the trained models

by testing them on the test set of an independent dataset, meaning no images from that dataset

are available during training. In each experiment, one dataset’s test set becomes the unseen data,

while the models are trained on all images from the remaining datasets. For example, if the test

set from UCSD-Stills is the current unseen data, the models are trained using all images from the

Caltech Cars, EnglishLP, ChineseLP, AOLP, OpenALPR-EU, SSIG-SegPlate, UFPR-ALPR and

RodoSol-ALPR datasets, along with the internet images labeled by Laroca et al. (2021b).

We assess the models exclusively on the test set images from each unseen dataset, without

incorporating the training and validation images in the assessment. This ensures that the results

achieved by each model on a particular dataset remain entirely comparable to those obtained by

the same model under the traditional-split protocol. For clarity, we illustrate in Figure 5.4 the

methodology used for conducting the experiments under the leave-one-dataset-out protocol.

Dataset A
(all images)

Dataset B
(all images)

Dataset C
(test images)

Training + Validation

Experiment 1

Test

Dataset A
(test images)

Dataset B
(all images)

Dataset C
(all images)

Training + Validation Test

Dataset A
(all images)

Dataset B
(test images)

Dataset C
(all images)

Training + Validation Test

Experiment 2

Experiment 3

Figure 5.4: An illustration of how the experiments are conducted under the leave-one-dataset-out protocol. Here,

only three datasets are considered for simplicity.

5.4 Performance Evaluation

The LP regions fed into the OCR models were detected using YOLOv4 (Bochkovskiy et al., 2020)

– with an input size of 672× 416 pixels – rather than being directly cropped from the ground truth.

This approach allows for a more accurate simulation of real-world scenarios, considering the

imperfect nature of LP detection and the reduced robustness of certain OCR models when faced
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with imprecisely detected LP regions (Gonçalves et al., 2018; Lee et al., 2022). We opted for

YOLOv4 because YOLO-based models have consistently achieved impressive results in ALPR

research (Weihong and Jiaoyang, 2020; Laroca et al., 2021b; Yang et al., 2023) (at the time of

conducting the experiments for this chapter, YOLOv4 was the latest model available). As detailed

in the next section, YOLOv4 reached an average recall rate exceeding 99.5% in our experiments,

considering detections with Intersection over Union (IoU) ≥ 0.5 with the ground truth as correct.

As mentioned in Chapter 3, the first character in Chinese LPs is a Chinese character that

represents the province in which the vehicle is affiliated. Even though Chinese LPs are used in

our experiments (see Figure 5.1d), the models were not trained or adjusted to recognize Chinese

characters; that is, only digits and English letters are considered. This same procedure has been

adopted in many works (Selmi et al., 2020; Laroca et al., 2021b; Shashirangana et al., 2022)

for several reasons, including scope reduction and the fact that it is not trivial for non-Chinese

speakers to analyze the different Chinese characters in order to make an accurate error analysis

or to choose which synthetic data generation techniques to explore. Accordingly, even Chinese

authors have reported the recognition rates achieved by their methods when considering only

digits and English letters (Wu et al., 2018; Zhang et al., 2020a,b; Fan and Zhao, 2022; Chen et al.,

2023). Following (Li et al., 2019), we denoted all Chinese characters as a single class ‘*’ in our

experiments. Our results demonstrate that the models effectively learned to distinguish between

Chinese characters and other characters (digits and English letters), with this approach minimally

impacting the recognition of non-Chinese characters.

All metrics reported in our experiments were described in Section 2.1.

5.5 Results and Discussion

First, we report in Table 5.4 the recall rates obtained by the YOLOv4 model in the LPD stage. As

can be seen, it reached surprisingly good results in both protocols. More specifically, recall rates

above 99.9% were achieved in 14 of the 18 assessments. Consistent with previous works (Laroca

et al., 2018; Gonçalves et al., 2018; Silva and Jung, 2020; Ding et al., 2023), the detection results

are slightly worse for the UFPR-ALPR dataset due to its challenging nature, as (i) it has images

where the vehicles are considerably far from the camera; (ii) some of its frames have motion blur

because the dataset was recorded in real-world scenarios where both the vehicle and the camera

– inside another vehicle – are moving; and (iii) it also contains images of motorcycles, where the

backgrounds can be much more complicated due to different body configurations and mixtures

with other background scenes (Hsu et al., 2015; Serajeh, 2016).

Table 5.4: Recall rates obtained by YOLOv4 in the LPD stage. “Trad.” stands for traditional-split and “LODO”

stands for leave-one-dataset-out. The number of LPs in each dataset’s test set is listed below its name.

Model

Test set Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

OpenALPR-EU

# 108

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

YOLOv4 (Trad.) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 99.1% 100.0% 99.9%

YOLOv4 (LODO) 100.0% 100.0% 100.0% 100.0% 99.9% 99.1% 100.0% 96.8% 99.6% 99.5%

The precision rates achieved in our experiments were approximately 98% and 95% under

the traditional-split and leave-one-dataset-out protocols, respectively. We omit a per-dataset

breakdown of precision because the “false positives” identified by YOLOv4 primarily correspond

to unlabeled LPs in the image backgrounds, not actual errors.

Given the results obtained under the leave-one-dataset-out protocol, we assert that deep

learning models trained on a variety of datasets can be reliably applied to detect LPs in images

from unseen datasets. Of course, this may not hold true in extraordinary cases where the test set
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domain is very different from that of the training set, but this was not the case in our experiments

carried out on images from nine datasets with diverse characteristics.

Regarding the LPR stage, the results achieved by all OCR models under the traditional-

split and leave-one-dataset-out protocols are shown in Table 5.5 and Table 5.6, respectively.

Table 5.6 also includes the results obtained by the Sighthound (2022) and OpenALPR (2022)

commercial systems since, in principle, they are trained on images from large-scale private

datasets rather than the public datasets explored here (thus aligning with the leave-one-dataset-out

protocol). For further details on both systems, refer to Section 3.4.

Table 5.5: Recognition rates obtained by all models under the traditional-split protocol, which assesses the ability of

the models to perform well in seen scenarios. Each model (rows) was trained once on the union of the training set

images from all datasets and evaluated on the respective test sets (columns). The models are listed alphabetically,

and the best recognition rate achieved in each dataset is shown in bold.

Model

Test set # LPs Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

OpenALPR-EU

# 108

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

CR-NET (Silva and Jung, 2020) 97.8% 94.1% 100.0% 97.5% 98.0% 96.3% 97.5% 82.6% 59.0%† 91.4%

CRNN (Shi et al., 2017) 93.5% 88.2% 91.7% 90.7% 97.1% 93.5% 92.9% 68.9% 73.6% 87.8%

Fast-OCR (Laroca et al., 2021a) 93.5% 97.1% 100.0% 97.5% 98.1% 97.2% 97.1% 81.6% 56.7%† 91.0%

GRCNN (Wang and Hu, 2017) 93.5% 92.2% 93.3% 91.9% 97.1% 87.0% 93.4% 66.6% 77.6% 88.1%

Holistic-CNN (Špaňhel et al., 2017) 87.0% 75.5% 88.3% 95.0% 97.7% 89.8% 95.6% 81.2% 94.7% 89.4%

Multi-Task-LR (Gonçalves et al., 2019) 89.1% 73.5% 85.0% 92.5% 94.9% 85.2% 93.3% 72.3% 86.6% 85.8%

R2AM (Lee and Osindero, 2016) 89.1% 83.3% 86.7% 91.9% 96.5% 88.9% 92.0% 75.9% 83.4% 87.5%

RARE (Shi et al., 2016) 95.7% 94.1% 95.0% 94.4% 97.7% 94.4% 94.0% 75.7% 78.7% 91.1%

Rosetta (Borisyuk et al., 2018) 89.1% 82.4% 93.3% 93.8% 97.5% 90.7% 94.4% 75.5% 89.0% 89.5%

STAR-Net (Liu et al., 2016) 95.7% 96.1% 95.0% 95.7% 97.8% 97.2% 96.1% 78.8% 82.3% 92.7%
TRBA (Baek et al., 2019) 93.5% 91.2% 91.7% 93.8% 97.2% 93.5% 97.3% 83.4% 80.6% 91.3%

ViTSTR-Base (Atienza, 2021b) 87.0% 88.2% 86.7% 96.9% 99.4% 89.8% 95.8% 89.7% 95.6% 92.1%

Average 92.0% 88.0% 92.2% 94.3% 97.4% 92.0% 95.0% 77.7% 79.8% 89.8%

† Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for training them (as detailed in Section 5.1).

Table 5.6: Recognition rates obtained by all models under the leave-one-dataset-out protocol, which assesses the

generalization performance of the models by testing them on the test set images of an unseen dataset. For each

dataset (columns), we trained the models (rows) on all images from the other datasets. The models are listed

alphabetically, and the best recognition rates achieved are shown in bold.

Approach

Test set Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

OpenALPR-EU

# 108

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

CR-NET (Silva and Jung, 2020) 97.8% 97.1% 98.3% 94.4% 89.1% 98.1% 97.1% 66.4% 63.8% 89.1%
CRNN (Shi et al., 2017) 93.5% 82.4% 86.7% 84.5% 71.6% 94.4% 90.8% 62.9% 39.2% 78.4%

Fast-OCR (Laroca et al., 2021a) 95.7% 95.1% 96.7% 93.8% 79.3% 96.3% 95.5% 65.9% 63.4% 86.8%

GRCNN (Wang and Hu, 2017) 93.5% 82.4% 93.3% 85.1% 72.1% 91.7% 90.8% 62.7% 40.0% 79.0%

Holistic-CNN (Špaňhel et al., 2017) 84.8% 56.9% 76.7% 82.6% 60.0% 93.5% 93.2% 66.4% 34.5% 72.0%

Multi-Task-LR (Gonçalves et al., 2019) 84.8% 57.8% 78.3% 76.4% 67.5% 88.9% 90.8% 61.7% 25.2% 70.2%

R2AM (Lee and Osindero, 2016) 89.1% 58.8% 81.7% 85.1% 62.6% 89.8% 94.2% 61.2% 41.1% 73.7%

RARE (Shi et al., 2016) 89.1% 64.7% 93.3% 88.2% 70.7% 92.6% 93.9% 78.2% 40.2% 79.0%

Rosetta (Borisyuk et al., 2018) 95.7% 82.4% 88.3% 87.6% 70.6% 90.7% 93.9% 69.2% 42.8% 80.1%

STAR-Net (Liu et al., 2016) 91.3% 85.3% 93.3% 92.5% 79.2% 96.3% 93.8% 74.8% 43.8% 83.4%

TRBA (Baek et al., 2019) 91.3% 62.7% 95.0% 92.5% 75.3% 92.6% 96.8% 82.9% 42.9% 81.3%

ViTSTR-Base (Atienza, 2021b) 93.5% 62.7% 86.7% 96.3% 68.9% 91.7% 97.8% 84.7% 59.7% 82.4%

Average 91.7% 74.0% 89.0% 88.3% 72.2% 93.1% 94.0% 69.7% 44.7% 79.6%

Average (traditional-split protocol) 92.0% 88.0% 92.2% 94.3% 97.4% 92.0%‡ 95.0% 77.7% 79.8% 89.8%

Sighthound (2022) 87.0% 94.1% 90.0% 84.5% 79.6% 94.4% 79.2% 52.6% 51.0% 79.2%

OpenALPR (2022)∗ 95.7% 99.0% 96.7% 93.8% 81.1% 99.1% 91.4% 87.8% 70.0% 90.5%

‡Even under the traditional-split protocol, no images from the OpenALPR-EU dataset were used for training. This is the protocol commonly adopted in the literature (Silva and Jung, 2018; Zibani et al., 2024).
∗OpenALPR contains specialized solutions for LPs from different regions and we must enter the correct region before using its API. Hence, it was expected to achieve better results than the other methods.

The first observation is that, as expected, the best results – on average for all models –

were attained when training and evaluating the models on disjoint subsets from the same datasets

(i.e., under the traditional-split protocol). The sole exception was precisely in the OpenALPR-EU

dataset, which has no training images even under the traditional-split protocol. Despite this

seeming somewhat counterintuitive, we kept this division for two main reasons: (i) to maintain

consistency with previous works (Silva and Jung, 2018; Xu et al., 2022; Zibani et al., 2024), which

used all images from OpenALPR-EU for testing; and (ii) to analyze how the models perform

when trained with additional data from other datasets, which in this case corresponds to the

leave-one-dataset-out protocol since it employs all images from the other datasets – not just the

training set ones – for training. While it has been acknowledged for many years that incorporating
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images from other datasets into the training set may result in declines in performance (Torralba

and Efros, 2011; Khosla et al., 2012), the recognition rates reached in the OpenALPR-EU dataset

generally improved with more images from other datasets integrated into the training set (i.e.,

under the leave-one-dataset-out protocol). This enhancement is likely due to the utilization of all

images from the EnglishLP dataset for training, as both datasets contain images of European LPs.

The average recognition rate across all datasets decreased from 89.8% under the

traditional-split protocol to 79.6% under the leave-one-dataset-out protocol. This drastic

performance drop is accentuated by the poor results obtained on the EnglishLP, AOLP and

RodoSol-ALPR datasets under the leave-one-dataset-out protocol. For instance, the average

recognition rate for the AOLP dataset went from 97.4% (traditional-split) to 72.2% (leave-one-

dataset-out). Similarly, the average recognition rate for the RodoSol-ALPR dataset plummeted

from 79.8% (traditional-split) to 44.7% (leave-one-dataset-out).

We expected such a severe drop in the recognition rates for the RodoSol-ALPR dataset,

as no other dataset has images of Mercosur LPs or as many images of two-row LPs. However, we

were surprised by the poor outcomes observed in the EnglishLP and AOLP datasets. Previous

works have often reported recognition rates around 97% for the EnglishLP dataset and above

99% for the AOLP dataset (Henry et al., 2020; Laroca et al., 2021b; Zhang et al., 2021d; Wang

et al., 2022c; Ke et al., 2023). Upon analysis, we found that most recognition errors under the

leave-one-dataset-out protocol were not due to challenging scenarios but rather stemmed from

differences in the fonts of the LP characters between training and test images, as well as because

of specific patterns within the LPs (e.g., a coat of arms between the LP characters or a straight

line below them). To better illustrate, Figure 5.5 (top row) shows four LPs from the AOLP dataset

where the ViTSTR-Base model, which performed best on that dataset (99.4%), recognized at least

one character incorrectly under the leave-one-dataset-out protocol but not under the traditional

split. Similarly, Figure 5.5 (bottom row) shows the predictions made by STAR-Net for four LPs

from the EnglishLP dataset (although STAR-Net ranked second in recognition performance on

EnglishLP (96.1%), we selected it for illustration because it experienced a larger performance

drop under the leave-one-dataset-out protocol than the top-performing model). These findings

highlight the importance of conducting cross-dataset experiments in the ALPR context.

LODO: 8C83I3
Trad.: 8C8313

LODO: AB0416
Trad.: AR0416

LODO: PG379I
Trad.: P63791

LODO: 03250M
Trad.: 0325DM

LODO: CK3118R
Trad.: CK311BR

LODO: NB4071P
Trad.: MB4071P

LODO: -64097AC
Trad.: ZG4097AC

LODO: ZGQ880TM
Trad.: ZG 880TV

Figure 5.5: Comparison of the predictions yielded for the same LPs under the leave-one-dataset-out (LODO) and

traditional-split (Trad.) protocols. The top row shows the predictions returned by ViTSTR-Base for four LPs from

the AOLP dataset, while the bottom row shows the predictions made by STAR-Net for four LPs from EnglishLP. In

general, the errors under the LODO protocol (outlined in red) were not observed in challenging cases (e.g., blurry or

extremely tilted images). This suggests that these errors likely stemmed from differences between the training and

testing data distributions.

The second observation is that, regardless of the evaluation protocol adopted, no OCR

model achieved the best result across all datasets. Interestingly, STAR-Net attained the highest

average recognition rate under the traditional-split protocol (92.7%) without securing the top
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spot in eight of the nine datasets. These results emphasize the importance of evaluating the

models on multiple datasets with varying characteristics, including LPs from different regions.

The third observation is that all the 12 OCR models trained by us, as well as both

commercial systems, failed to reach recognition rates above 70% in the RodoSol-ALPR’s test set

under the leave-one-dataset-out protocol. These underwhelming results are primarily attributed

to the unique composition of the RodoSol-ALPR dataset, which includes a substantial number

of images featuring Mercosur LPs, motorcycles, and two-row LPs. To illustrate, OpenALPR

accurately recognized 3,561 of the 4,000 Brazilian LPs in the test set (89.0%), yet only 2,039 out

of the 4,000 Mercosur LPs (51.0%). Similarly, OpenALPR correctly identified 3,772 of the 4,000

car/single-row LPs in the test set (94.3%) but only 1,827 out of the 4,000 motorcycle/two-row

LPs (45.7%). These results emphasize the importance of the RodoSol-ALPR dataset for the

reliable recognition of Mercosur LPs and also for the accurate evaluation of ALPR systems, as it

mitigates bias during assessments by incorporating an equal number of “easy” samples (cars

with single-row LPs) and “difficult” samples (motorcycles with two-row LPs).

We also did not rule out challenging images when selecting the images for the creation

of the RodoSol-ALPR dataset. Figure 5.6 shows some of these images along with the predictions

returned by ViTSTR-Base (traditional-split) and OpenALPR, which are the top-performing

model and commercial system on this dataset, respectively. The results are in line with what was

stated by Zhang et al. (2021c); Lee et al. (2022); Ke et al. (2023), specifically, that there is still

significant room for improvement in detecting and recognizing LPs in complex environments.

ViTSTR-Base: HLP459A
OpenALPR: HLP4594

GT: HLP4594

ViTSTR-Base: PXO7N47
OpenALPR: PKU7H47

GT: PXU7H47

ViTSTR-Base: QRE4E67
OpenALPR: QRE4E--

GT: QRE4E62

ViTSTR-Base: QRG8D57
OpenALPR: -------

GT: QRG6D57

ViTSTR-Base: OOM8060
OpenALPR: OOM8060

GT: ODM8060

ViTSTR-Base: PPH4172
OpenALPR: PPH4172

GT: PPB4172

Figure 5.6: Some LP images from the RodoSol-ALPR dataset along with the predictions returned by ViTSTR-Base

and OpenALPR. Observe that one character may become very similar to another due to factors such as blur, dirt,

exposure levels (either too low or too high), rotations and occlusions. For correctness, we checked if the Ground

Truth (GT) matched the vehicle make and model on the National Traffic Department of Brazil (DENATRAN) database.

Lastly, it is important to highlight the number of experiments we conducted for this

traditional-split versus leave-one-dataset-out evaluation. We trained each of the 12 chosen OCR

models 10 times: once following the split protocols traditionally adopted in the literature (see

Table 5.5) and nine for the leave-one-dataset-out evaluation (see Table 5.6); not to mention

the experiments with YOLOv4 related to the LPD stage. We remark that a single training

process of some models (e.g., TRBA and ViTSTR-Base) took several days to complete on an

NVIDIA Quadro RTX 8000 GPU, which is one of the best GPUs available on the market. This

extensive set of experiments likely explains why a leave-one-dataset-out evaluation has not yet

been conducted in the existing literature.
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5.6 Final Remarks

Considering that the performance of ALPR systems under the traditional-split protocol is rapidly

improving, researchers should pay more attention to cross-dataset setups. These setups better

mimic real-world ALPR applications, where new cameras are frequently being installed in diverse

locations without the need to retrain existing systems for each installation.

As a first step toward that direction, in this chapter we evaluated 12 OCR models on nine

public datasets with a great variety in several aspects (e.g., acquisition settings, image resolution,

and LP layouts). We adopted a traditional-split versus leave-one-dataset-out experimental setup

to empirically assess the cross-dataset generalizability of the chosen models.

The experimental results showed significant drops in performance for most datasets

when training and testing the OCR models in a leave-one-dataset-out fashion. The fact that very

low recognition rates (around 73%) were reached in both the EnglishLP and AOLP datasets

underscores the importance of carrying out cross-dataset experiments, as very high recognition

rates (around 97% and 99%, respectively) have frequently been achieved on these datasets

under the traditional-split protocol (Henry et al., 2020; Al-batat et al., 2022; Ke et al., 2023).

Furthermore, the results accentuated the importance of the RodoSol-ALPR dataset for the

robust recognition of Mercosur and two-row LPs, as all 12 models trained by us failed to reach

recognition rates above 70% on its test set under the leave-one-dataset-out protocol.

Our experiments also emphasized the importance of evaluating OCR models on multiple

datasets with varying characteristics, as no model emerged as superior across all datasets. In this

sense, we remark that much of the current research relies on only three or fewer datasets in the

experiments or concentrates solely on datasets from a specific region. Although recent studies by

Laroca et al. (2021b); Lee et al. (2022); Chen et al. (2023) indicate a positive trend towards more

comprehensive evaluations, progress in this direction has been relatively gradual.

Another finding that should be highlighted relates to using the YOLOv4 model in the

LPD stage. YOLOv4 achieved remarkably good results under both protocols. This leads us to

conclude that well-established object detectors trained on a variety of datasets can be reliably

employed for LPD, even when presented with images from unseen datasets.



88

6. LEVERAGING MODEL FUSION FOR IMPROVED LICENSE PLATE RECOGNI-
TION

Multiple studies, including our own presented in the previous chapter, have shown that different

models exhibit varying levels of robustness across different datasets (Zeni and Jung, 2020;

Mokayed et al., 2021). Each dataset poses distinct challenges, such as diverse LP layouts and

varying tilt ranges. As a result, a model that performs optimally on one dataset may yield poor

results on another. This raises an important question: “Can we substantially enhance LPR
results by fusing the outputs of diverse OCR models?” If so, two additional questions arise: “To
what extent can this improvement be attained?” and “How many and which models should be
employed?” As of now, such questions remain unanswered in the existing literature.

We acknowledge that some ALPR applications impose stringent time constraints on their

execution. This is particularly true for embedded systems engaged in tasks such as access control

and parking management in high-traffic areas. However, in other contexts, such as systems used

for issuing traffic tickets and conducting forensic investigations, there is often a preference to

prioritize the recognition rate, even if it sacrifices efficiency (Izidio et al., 2020; Nascimento

et al., 2022, 2023; Schirrmacher et al., 2023). These scenarios can greatly benefit from the fusion

of multiple OCR models.

While we found a few works leveraging model fusion to improve LPR results, we

observed that they explored a limited range of models and datasets in the experiments. For

example, Izidio et al. (2020) employed multiple instances of the same model (i.e., Tiny-YOLOv3)

rather than different models with varying architectures. Their experiments were conducted

exclusively on a private dataset. Another example is the recent work by Schirrmacher et al.

(2023), where they examined deep ensembles, BatchEnsemble, and Monte Carlo dropout using

multiple instances of two backbone architectures. The authors’ primary focus was on recognizing

severely degraded images, leading them to perform nearly all of their experiments on a synthetic

dataset containing artificially degraded images.

Taking this into account, in this chapter, we thoroughly examine the potential of

enhancing LPR results through the fusion of outputs from multiple OCR models16. Remarkably,

we assess the combination of up to 12 well-known models across 12 different datasets, setting

our investigation apart from earlier studies.

In summary, this chapter has two main contributions:

• We present empirical evidence showcasing the benefits offered by fusion approaches in

both intra- and cross-dataset setups. In the intra-dataset setup, the mean recognition rate

across the datasets experiences a substantial boost, rising from 92.4% achieved by the

best model individually to 97.6% when leveraging the best fusion approach. Similarly,

in the cross-dataset setup, the mean recognition rate increases from 87.6% to levels

exceeding 90%. Notably, in both setups, the sequence-level majority vote fusion approach

outperform both character-level majority vote and selecting the prediction made with the

highest confidence approaches.

• We draw attention to the effectiveness of fusing models based on their speed. This approach

is particularly useful for applications where the recognition task can accommodate a

moderate increase in processing time. In such cases, the recommended strategy is to

16 This chapter, in the form of an article, was accepted for presentation at the 2023 Iberoamerican Congress on
Pattern Recognition (CIARP) (Laroca et al., 2023b).
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combine 4-6 fast models. Although these models may not achieve the highest accuracy

individually, their fusion results in an optimal trade-off between speed and accuracy.

The remainder of this chapter is organized as follows. Section 6.1 provides an overview

of the experimental setup. Subsequently, Section 6.2 delves into the presentation and analysis of

the results obtained. Finally, Section 6.3 summarizes our findings.

6.1 Experimental Setup

This section provides an overview of the experimental setup adopted in this chapter. Initially,

we list the models implemented, omitting detailed descriptions since they are the same ones

used in the preceding chapter. Subsequently, we compile a list of the datasets employed in our

assessments, showcasing sample LP images from each dataset to highlight their diversity. Finally,

we elaborate on the strategies examined for fusing the outputs of the different models.

The experiments were conducted on a computer with an AMD Ryzen Threadripper

1920X 3.5GHz CPU, 96 GB of RAM operating at 2,133 MHz, an NVMe SSD (read: 3,500 MB/s;

write: 3,000 MB/s), and an NVIDIA Quadro RTX 8000 GPU (48 GB).

6.1.1 OCR Models

For this study, we explored the same models used in the preceding chapter: RARE (Shi et al.,

2016), R2AM (Lee and Osindero, 2016), STAR-Net (Liu et al., 2016), CRNN (Shi et al., 2017),

GRCNN (Wang and Hu, 2017), Holistic-CNN (Špaňhel et al., 2017), Multi-Task-LR (Gonçalves

et al., 2019), Rosetta (Borisyuk et al., 2018), TRBA (Baek et al., 2019), CR-NET (Silva and Jung,

2020), Fast-OCR (Laroca et al., 2021a) and ViTSTR-Base (Atienza, 2021b). We chose these

models not only for the reasons outlined in Section 5.1, but also because they have often served

as benchmarks in LPR research (Gong et al., 2022; Chen et al., 2023; Dai et al., 2024).

As detailed in Section 5.1, we implemented each model using the original framework or

well-known public repositories associated with it.

6.1.2 Datasets

As shown in Table 6.1, we have incorporated three new datasets into the collection of datasets

explored in the preceding chapter (see Section 5.2). These datasets are PKU (Yuan et al., 2017),

CD-HARD (Silva and Jung, 2018), and CLPD (Zhang et al., 2021c). They are popular choices

for cross-dataset experiments (Fan and Zhao, 2022; Silva and Jung, 2022; Chen et al., 2023).

Table 6.1: The 12 datasets employed in this chapter’s experiments, with ∗ indicating those used exclusively for testing

(i.e., in cross-dataset experiments). The datasets marked with “(new)” were not explored in the previous chapter.

Dataset Year Images LP Layout
Caltech Cars 1999 126 American

EnglishLP 2003 509 European

UCSD-Stills 2005 291 American

ChineseLP 2012 411 Chinese

AOLP 2013 2,049 Taiwanese

OpenALPR-EU∗ 2016 108 European

Dataset Year Images LP Layout
SSIG-SegPlate 2016 2,000 Brazilian

PKU∗ (new) 2017 2,253 Chinese

UFPR-ALPR 2018 4,500 Brazilian

CD-HARD∗ (new) 2018 102 Various

CLPD∗ (new) 2021 1,200 Chinese

RodoSol-ALPR 2022 20,000 Brazilian & Mercosur

Each dataset was divided using standard splits, defined by the datasets’ authors, or

following previous works (Laroca et al., 2021b; Wang et al., 2022c; Ke et al., 2023) in cases
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where no standard split was available17. Specifically, eight datasets were used for both training

and evaluating the models, mirroring the datasets employed in this way in the preceding chapter

under the traditional-split protocol. Meanwhile, four datasets were exclusively reserved for

testing purposes, comprising OpenALPR-EU along with the three newly incorporated datasets.

The selected datasets exhibit substantial diversity in terms of image number, acquisition settings,

image resolution, and LP layouts. As far as we know, no other work in ALPR research has

conducted experiments using images from such a wide range of public datasets.

The diversity of LP layouts across the selected datasets is depicted in Figure 6.1,

revealing considerable variations even among LPs from the same region. For instance, the

EnglishLP and OpenALPR-EU datasets, both collected in Europe, include images of LPs with

notable distinctions in colors, aspect ratios, symbols (e.g., coats of arms), and the number of

characters. Furthermore, certain datasets encompass LPs with two rows of characters, shadows,

tilted orientations, and at relatively low spatial resolutions.

(a) Caltech Cars (b) EnglishLP

(c) UCSD-Stills (d) ChineseLP

(e) AOLP (f) OpenALPR-EU

(g) SSIG-SegPlate (h) PKU

(i) UFPR-ALPR (j) CD-HARD

(k) CLPD (l) RodoSol-ALPR

Figure 6.1: Some LP images from the public datasets used in this chapter’s experimental evaluation.

We explored various data augmentation techniques to ensure a balanced distribution

of training images across different datasets. These techniques include random cropping, the

introduction of random shadows, grayscale conversion, and random perturbations of hue,

saturation, and brightness. Additionally, to counteract the propensity of OCR models to

memorize sequence patterns encountered during training (Zeni and Jung, 2020; Garcia-Bordils

et al., 2022), we generated many synthetic LP images by shuffling the character positions on each

LP (Gonçalves et al., 2018). Examples of these generated images are shown in Figure 6.2.

6.1.3 Fusion Approaches

We examine three primary approaches to combine the outputs of multiple OCR models. The first

approach involves selecting the sequence predicted with the Highest Confidence (HC) value as the

17 Detailed information on which images were used to train, validate and test the models can be accessed at

https://raysonlaroca.github.io/supp/lpr-model-fusion/
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Figure 6.2: Examples of LP images we created to mitigate overfitting. Within each group, the image on the left is

the original, while the remaining ones are artificially generated counterparts.

final prediction, even if only one model predicts it. The second approach employs the Majority
Vote (MV) rule to aggregate the sequences predicted by different models. In other words, the final

prediction is the sequence predicted by the largest number of models, disregarding the confidence

values associated with each prediction. Lastly, the third approach follows a similar Majority Vote
rule but performs individual aggregation for each Character Position (MVCP). To illustrate, the

characters predicted in the first position are analyzed separately, and the character predicted the

most times is selected. The same process is then applied to each subsequent character position

until the last one. Ultimately, the selected characters are concatenated to form the final string.

One concern that arises when employing majority vote-based strategies is the potential

occurrence of a tie. Let’s consider a scenario where an LP image is processed by five OCR

models. Two models predict “ABC-123,” two models predict “ABC-124,” and the remaining

model predicts “ABC-125.” In this case, a tie occurs between “ABC-123” and “ABC-124.” To

address this, we assess two tie-breaking approaches for each majority vote strategy: (i) selecting

the prediction made with the highest confidence among the tied predictions as the final one, and

(ii) selecting the prediction made by the “best model” as the final prediction. In this study, for

simplicity, we consider the best model the one that performs best individually across all datasets.

However, in a more practical context, the chosen model could be the one known to perform best

in the specific implementation scenario (e.g., one model may be the most robust for recognizing

tilted LPs while another model may excel at handling low-resolution or noisy images). We use

the acronym MV-HC to denote the majority vote approach in which ties are broken by selecting

the prediction made with the highest confidence value. Similarly, MV-BM refers to the majority

vote approach in which ties are resolved by choosing the prediction made by the best model. The

MVCP approaches follow a similar naming convention (MVCP-HC and MVCP-BM).

It is important to mention that when conducting fusion based on the highest confidence,

we consider the confidence values derived directly from the models’ outputs, even though some

of them tend to make overconfident predictions. We carried out several experiments in which we

normalized the confidence values of different models before fusing them, using various strategies

such as weighted normalization based on the average confidence of each classifier’s predictions.

Somewhat surprisingly, these attempts did not yield improved results.

6.2 Results and Discussion

Following the methodology detailed in the previous chapter, we employed the YOLOv4

model (Bochkovskiy et al., 2020) to detect the LPs for subsequent processing by the OCR

models. Considering the detections with an IoU ≥ 0.7 with the ground truth as correct, YOLOv4

achieved an average recall rate exceeding 99.7% in the intra-dataset experiments and 97.8% in

the cross-dataset experiments. In both cases, the precision rates obtained were higher than 97%.

Table 6.2 shows the recognition rates obtained on the disjoint test sets of the eight

datasets used for training and validating the models (intra-dataset experiments). It presents the

results reached by each model individually, as well as the outcomes achieved through the fusion

strategies outlined in Section 6.1.3. To improve clarity, Table 6.2 only includes the best results

attained through model fusion. For a detailed breakdown of the results achieved by combining
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the outputs from the top 2 to the top 12 OCR models, refer to Table 6.3. The ranking of the

models was determined based on their mean performance across the datasets (the ranking on the

validation set was essentially the same, with only two models swapping positions).

Table 6.2: Comparison of the recognition rates achieved across eight popular datasets by 12 models individually

and through five different fusion strategies (intra-dataset experiments). Each model (rows) was trained once on the

combined set of training images from all datasets and evaluated on the respective test sets (columns). The models

are listed alphabetically, and the best recognition rates achieved in each dataset are shown in bold.

Model
Test set # LPs Caltech Cars

# 46
EnglishLP

# 102
UCSD-Stills

# 60
ChineseLP

# 161
AOLP
# 687

SSIG-SegPlate
# 804

UFPR-ALPR
# 1,800

RodoSol-ALPR
# 8,000

Average

CR-NET 97.8% 94.1% 100.0% 97.5% 98.1% 97.5% 82.6% 59.0%† 90.8%
CRNN 93.5% 88.2% 91.7% 90.7% 97.1% 92.9% 68.9% 73.6% 87.1%

Fast-OCR 93.5% 97.1% 100.0% 97.5% 98.1% 97.1% 81.6% 56.7%† 90.2%
GRCNN 93.5% 92.2% 93.3% 91.9% 97.1% 93.4% 66.6% 77.6% 88.2%
Holistic-CNN 87.0% 75.5% 88.3% 95.0% 97.7% 95.6% 81.2% 94.7% 89.4%
Multi-Task-LR 89.1% 73.5% 85.0% 92.5% 94.9% 93.3% 72.3% 86.6% 85.9%

R2AM 89.1% 83.3% 86.7% 91.9% 96.5% 92.0% 75.9% 83.4% 87.4%
RARE 95.7% 94.1% 95.0% 94.4% 97.7% 94.0% 75.7% 78.7% 90.7%
Rosetta 89.1% 82.4% 93.3% 93.8% 97.5% 94.4% 75.5% 89.0% 89.4%
STAR-Net 95.7% 96.1% 95.0% 95.7% 97.8% 96.1% 78.8% 82.3% 92.2%
TRBA 93.5% 91.2% 91.7% 93.8% 97.2% 97.3% 83.4% 80.6% 91.1%
ViTSTR-Base 87.0% 88.2% 86.7% 96.9% 99.4% 95.8% 89.7% 95.6% 92.4%

Fusion HC (top 6) 97.8% 95.1% 96.7% 98.1% 99.0% 96.6% 90.9% 93.5% 96.0%
Fusion MV-BM (top 8) 97.8% 97.1% 100.0% 98.1% 99.7% 98.4% 92.7% 96.4% 97.5%
Fusion MV-HC (top 8) 97.8% 97.1% 100.0% 98.1% 99.7% 99.1% 92.3% 96.5% 97.6%
Fusion MVCP-BM (top 9) 95.7% 96.1% 100.0% 98.1% 99.6% 99.0% 92.8% 96.4% 97.2%
Fusion MVCP-HC (top 9) 97.8% 96.1% 100.0% 98.1% 99.6% 99.3% 92.5% 96.3% 97.5%

† Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for training them.

Table 6.3: Average results obtained across the datasets by combining the output of the top 𝑁 OCR models, ranked

by accuracy, using five distinct strategies.

Models HC MV-BM MV-HC MVCP-BM MVCP-HC

Top 1 (ViTSTR-Base) 92.4% 92.4% 92.4% 92.4% 92.4%

Top 2 (+ STAR-Net) 94.1% 92.4% 94.1% 92.4% 94.1%

Top 3 (+ TRBA) 94.2% 94.6% 94.9% 94.2% 94.2%

Top 4 (+ CR-NET) 95.2% 95.9% 96.3% 94.8% 95.9%

Top 5 (+ RARE) 95.5% 96.1% 96.6% 96.1% 96.2%

Top 6 (+ Fast-OCR) 96.0% 97.1% 97.0% 96.7% 96.9%

Top 7 (+ Rosetta) 95.4% 97.3% 97.2% 97.1% 97.0%

Top 8 (+ Holistic-CNN) 95.7% 97.5% 97.6% 96.1% 97.2%

Top 9 (+ GRCNN) 95.7% 97.5% 97.5% 97.2% 97.5%
Top 10 (+ R2AM) 95.5% 97.4% 97.2% 96.1% 96.6%

Top 11 (+ CRNN) 95.2% 97.1% 97.0% 96.5% 96.5%

Top 12 (+ Multi-Task-LR) 95.0% 97.0% 97.0% 95.5% 96.5%

Upon analyzing the results presented in Table 6.2, it becomes evident that model

fusion has yielded substantial improvements. Specifically, the highest average recognition rate

increased from 92.4% (ViTSTR-Base) to 97.6% by combining the outputs of multiple OCR

models (MV-HC). While each model individually obtained recognition rates below 90% for at

least two datasets (three on average), all fusion strategies surpassed the 90% threshold across all

datasets. Remarkably, in most cases, fusion led to recognition rates exceeding 95%.

The significance of conducting experiments on multiple datasets becomes apparent

once again as we observe that the best overall model (ViTSTR-Base) exhibited relatively poor

performance on the Caltech Cars, EnglishLP, and UCSD-Stills datasets. We attribute this to two

primary reasons: (i) these datasets are older, containing fewer training images, which seems to

impact certain models more than others (as explained in Section 6.1.2, we exploited synthetic

data to mitigate this issue); and (ii) these datasets were collected in the United States and Europe,

regions known for having a higher degree of variability in LP layouts compared to the regions
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where the other datasets were collected (specifically, Brazil, mainland China, and Taiwan). We

maintained these datasets in our experimental setup, despite their limited number of images,

precisely because they provide an opportunity to uncover or corroborate such valuable insights.

Analyzing results from individual datasets reveals that combining the outputs of multiple

models does not necessarily lead to significantly improved performance compared to the best

model within the ensemble. Instead, it reduces the likelihood of obtaining poor performance.

This phenomenon arises because diverse models tend to make different errors for each sample,

but generally concur on correct classifications (Polikar, 2012). Illustrated in Figure 6.3 are

predictions made by multiple models and the MV-HC fusion strategy for various LP images.

It is remarkable that model fusion can produce accurate predictions even in cases where most

models exhibit prediction errors. To clarify, with the MV-HC approach, this occurs when each

incorrect sequence is predicted fewer times than the correct one, or in the case of a tie, the correct

sequence is predicted with higher confidence.

ViTSTR-Base: AIQ1Q56 (0.93)
STAR-Net: ATQ1056 (0.59)

TRBA: AIQ1056 (0.98)
CR-NET: AIQ1056 (0.82)
RARE: AIQ1Q56 (0.92)

Fusion MV-HC: AIQ1056

ViTSTR-Base: *AS5I8D (0.53)
STAR-Net: *AS5180 (0.82)

TRBA: *AS5180 (0.60)
CR-NET: *AS518D (0.83)
RARE: *AS5I8D (0.79)

Fusion MV-HC: *AS5I8D

ViTSTR-Base: 4NIU770 (0.45)
STAR-Net: 4NIU770 (0.94)

TRBA: 4NTU770 (0.99)
CR-NET: 4NTU770 (0.91)
RARE: 4NIU770 (0.99)

Fusion MV-HC: 4NIU770

ViTSTR-Base: 5EZZ29 (0.51)
STAR-Net: SEZ229 (0.74)

TRBA: 5EZ229 (0.99)
CR-NET: 5EZ229 (0.88)
RARE: 5EZ229 (0.88)

Fusion MV-HC: 5EZ229

ViTSTR-Base: KRM7E95 (0.99)
STAR-Net: KRH7E95 (0.59)

TRBA: KRM7E95 (0.51)
CR-NET: KRH7E95 (0.73)
RARE: KRM7E95 (0.60)

Fusion MV-HC: KRM7E95

ViTSTR-Base: Y88096 (0.94)
STAR-Net: Y68096 (0.93)

TRBA: Y88096 (0.97)
CR-NET: Y96096 (0.75)
RARE: YS8096 (0.67)

Fusion MV-HC: Y88096

ViTSTR-Base: HLP459A (0.98)
STAR-Net: HLP4594 (0.97)

TRBA: HLPA594 (0.99)
CR-NET: HLP4594 (0.85)
RARE: HLPA59A (0.93)

Fusion MV-HC: HLP4594

ViTSTR-Base: MRU3095 (0.97)
STAR-Net: MR03095 (0.98)

TRBA: MRD3095 (0.72)
CR-NET: MRD3095 (0.94)

RARE: MRD3095 (0.87)
Fusion MV-HC: MRD3095

Figure 6.3: Predictions obtained in eight LP images by multiple models individually and through the best fusion

approach. Although we only show the predictions from the top 5 models for better viewing, it is noteworthy that

in these particular cases, fusing the top 8 models (the optimal configuration) yielded identical predictions. The

confidence for each prediction is indicated in parentheses, and any errors are highlighted in red.

Returning to Table 6.3, we note that the majority vote-based strategies produced similar

results, with the sequence-level approach (MV) performing marginally better for a given number

of combined models. Our analysis suggests that this difference arises in cases where a model

predicts one character more or one character less, impacting the majority vote by character

position (MVCP) approach relatively more. Conversely, selecting the prediction with the highest

confidence (HC) consistently led to inferior results. This can be attributed to the general tendency

of all models to make incorrect predictions also with high confidence (see Figure 6.3).

Building on Chapter 5’s emphasis on the value of cross-dataset evaluation, Table 6.4

presents the results obtained on four independent datasets18. These particular datasets are

commonly employed for such evaluations (Zou et al., 2020; Fan and Zhao, 2022; Ke et al., 2023).

These experiments provide further support for the findings presented earlier in this

section. Specifically, both strategies that rely on a majority vote at the sequence level (MV-BM

and MV-HC) outperformed the others significantly. This performance gap was most evident on

the CD-HARD dataset, known for its challenges due to the predominance of heavily tilted LPs

18 To train the models, we excluded the few images from the ChineseLP dataset that are also found in CLPD

(this occurs because both collections include internet-sourced images). A thorough examination of the presence of

near-duplicates within public datasets and its consequential impact will be carried out in Chapter 8.
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Table 6.4: Comparison of the results achieved in cross-dataset setups by 12 models individually and through five

different fusion strategies. The models are listed alphabetically, with the highest recognition rates attained for each

dataset highlighted in bold. The number of LPs in each dataset is listed below its name.

Model

Dataset OpenALPR-EU

# 108

PKU

# 2,253

CD-HARD

# 104

CLPD

# 1,200
Average

CR-NET 96.3% 99.1% 58.7% 94.2% 87.1%

CRNN 93.5% 98.2% 31.7% 89.0% 78.1%

Fast-OCR 97.2% 99.2% 59.6% 94.4% 87.6%
GRCNN 87.0% 98.6% 38.5% 87.7% 77.9%

Holistic-CNN 89.8% 98.6% 11.5% 90.2% 72.5%

Multi-Task-LR 85.2% 97.4% 10.6% 86.8% 70.0%

R2AM 88.9% 97.1% 20.2% 88.2% 73.6%

RARE 94.4% 98.3% 37.5% 92.4% 80.7%

Rosetta 90.7% 97.2% 14.4% 86.9% 72.3%

STAR-Net 97.2% 99.1% 48.1% 93.3% 84.4%

TRBA 93.5% 98.5% 35.6% 90.9% 79.6%

ViTSTR-Base 89.8% 98.4% 22.1% 93.1% 75.9%

Fusion HC (top 6) 95.4% 99.2% 48.1% 94.9% 84.4%

Fusion MV-BM (top 8) 99.1% 99.7% 65.4% 97.0% 90.3%
Fusion MV-HC (top 8) 99.1% 99.7% 65.4% 96.3% 90.1%

Fusion MVCP-BM (top 9) 95.4% 99.7% 54.8% 95.5% 86.3%

Fusion MVCP-HC (top 9) 97.2% 99.7% 57.7% 95.9% 87.6%

and the wide variety of LP layouts (as shown in Figure 6.1). Interestingly, in this cross-dataset

scenario, the MV-BM strategy exhibited slightly superior performance compared to MV-HC.

Unexpectedly, the HC approach failed to yield any improvements in results on any dataset,

indicating that the models made errors with high confidence even on LP images extracted from

datasets that were not part of their training.

While our primary focus lies on investigating the improvements in recognition rates

achieved through model fusion, it is also pertinent to examine its impact on runtime. Naturally,

certain applications might favor combining fewer models to attain a moderate improvement in

recognition while minimizing the increase in the system’s running time. With this in mind,

Table 6.5 presents the number of frames per second (FPS) processed by each model independently

and when incorporated into the ensemble. In addition to combining the models based on their

average recognition rate across the datasets, as done in the rest of this section, we also explore

combining them based on their processing speed.

Table 6.5: The number of FPS processed by each model independently and when incorporated into the ensembles.

On the left, the models are ranked based on their results across the datasets, while on the right they are ranked

according to their speed. The reported time, measured in milliseconds per image, represents the average of 5 runs.

Models

(ranked by accuracy)
MV-HC

Individual Fusion

Time FPS Time FPS

Top 1 (ViTSTR-Base) 92.4% 7.3 137 7.3 137

Top 2 (+ STAR-Net) 94.1% 7.1 141 14.4 70

Top 3 (+ TRBA) 94.9% 16.9 59 31.3 32

Top 4 (+ CR-NET) 96.3% 5.3 189 36.6 27

Top 5 (+ RARE) 96.6% 13.0 77 49.6 20

Top 6 (+ Fast-OCR) 97.0% 3.0 330 52.6 19

Top 7 (+ Rosetta) 97.2% 4.6 219 57.2 18

Top 8 (+ Holistic-CNN) 97.6% 2.5 399 59.7 17

Top 9 (+ GRCNN) 97.5% 8.5 117 68.2 15

Top 10 (+ R2AM) 97.2% 15.9 63 84.2 12

Top 11 (+ CRNN) 97.0% 2.9 343 87.1 11

Top 12 (+ Multi-Task-LR) 97.0% 2.3 427 89.4 11

Models

(ranked by speed)
MV-HC

Individual Fusion

Time FPS Time FPS

Top 1 (Multi-Task-LR) 85.9% 2.3 427 2.3 427

Top 2 (+ Holistic-CNN) 90.2% 2.5 399 4.9 206

Top 3 (+ CRNN) 91.1% 2.9 343 7.8 129

Top 4 (+ Fast-OCR) 95.4% 3.0 330 10.8 93

Top 5 (+ Rosetta) 96.0% 4.6 219 15.4 65

Top 6 (+ CR-NET) 96.6% 5.3 189 20.7 48

Top 7 (+ STAR-Net) 96.9% 7.1 141 27.8 36

Top 8 (+ ViTSTR-Base) 96.9% 7.3 137 35.0 29

Top 9 (+ GRCNN) 97.1% 8.5 117 43.6 23

Top 10 (+ RARE) 97.1% 13.0 77 56.6 18

Top 11 (+ R2AM) 97.1% 15.9 63 72.5 14

Top 12 (+ TRBA) 97.1% 16.9 59 89.4 11
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Remarkably, fusing the outputs of the three fastest models results in a lower recognition

rate (91.1%) than using the best model alone (92.4%). Nevertheless, as more models are included

in the ensemble, the gap reduces considerably. From this observation, we can infer that if

attaining the utmost recognition rate across various scenarios is not imperative, it becomes

more advantageous to combine fewer but faster models, as long as they perform satisfactorily

individually. According to Table 6.5, combining 4-6 fast models appears to be the optimal choice

for striking a better balance between speed and accuracy.

6.3 Final Remarks

This chapter examined the potential improvements in LPR results by fusing the outputs from

multiple OCR models. Distinguishing itself from prior studies, our research explored a wide

range of models and datasets in the experiments. We combined the outputs of different models

through straightforward approaches such as selecting the most confident prediction or through

majority vote (both at sequence and character levels), demonstrating the substantial benefits of

fusion approaches in both intra- and cross-dataset experimental setups.

In the traditional intra-dataset setup, where we explored eight datasets, the mean

recognition rate experienced a significant boost, rising from 92.4% achieved by the best model

individually to 97.6% when leveraging model fusion. Essentially, we demonstrate that fusing

multiple models reduces considerably the likelihood of obtaining subpar performance on a

particular dataset. In the more challenging cross-dataset setup, where we explored four datasets,

the mean recognition rate increased from 87.6% to rates surpassing 90%. Notably, the optimal

fusion approach in both setups was via a majority vote at the sequence level.

We also conducted an evaluation to analyze the speed/accuracy trade-off in the final

approach by varying the number of models included in the ensemble. For this assessment, we

ranked the models in two distinct ways: one based on their recognition results and the other based

on their efficiency. The findings led us to conclude that for applications where the recognition

task can tolerate some additional time, though not excessively, an effective strategy is to combine

4-6 fast models. Employing this approach significantly enhances the recognition results while

maintaining the system’s efficiency at an acceptable level.
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7. ADVANCING MULTINATIONAL LICENSE PLATE RECOGNITION THROUGH
SYNTHETIC AND REAL DATA FUSION: A COMPREHENSIVE EVALUATION

Despite the considerable progress in the state of the art, LPR faces challenges related to unbalanced

data. The inherent difficulty in collecting LP images from a variety of regions makes most ALPR

datasets exhibit a significant bias toward specific regional identifiers (Zhang et al., 2021c; Liu

et al., 2021; Wang et al., 2022b; Shvai et al., 2023).

One way to mitigate this problem would be to embrace the “wildness” of the internet to

collect a large-scale dataset from multiple sources (Torralba and Efros, 2011). However, labeling

such a dataset would be very expensive and time-consuming (Björklund et al., 2019; Han et al.,

2020; Gao et al., 2023), not to mention the growing concerns surrounding privacy (Chan et al.,

2020; Kong et al., 2021; Trinh et al., 2023). In this scenario, synthetic data emerges as a practical

alternative, offering a cost-effective and privacy-preserving solution while providing the diversity

and scale needed for effectively training deep learning-based models.

Although recent research has explored creating synthetic LP images to improve LPR

performance, our analysis in Section 7.1 reveals certain limitations in these efforts. Existing

studies have predominantly employed a single methodology to generate synthetic LPs, leaving

unanswered questions regarding the potential for significantly enhanced outcomes through the

integration of data generated from various methodologies. Additionally, most works have focused

on LPs from a single region. To illustrate, researchers have trained separated instances of

Generative Adversarial Networks (GANs) for different LP layouts. This approach becomes

increasingly impractical and even unfeasible as the number of LP layouts the ALPR system must

handle increases. Ultimately, the assessment of synthetic data generation methods has primarily

relied on the performance of individual OCR models, overlooking the fact that images created

using a particular method may disproportionately favor certain models over others.

This work aims to address the limitations described above by delving further into the

integration of real and synthetic data to enhance LPR. Setting our research apart from previous

studies, we subject 16 well-known OCR models to a benchmarking process across 12 public

datasets acquired from multiple regions. Synthetic LP images are created by drawing inspiration

from the three most widely adopted methodologies in the literature. We conduct ablation studies

to demonstrate the impact of each methodology on the final results and the importance of synthetic

data when training data is scarce.

In summary, this chapter makes the following contributions:

• The most extensive experimental evaluation ever conducted in the field. While our focus

lies on the LPR stage, as per recent research trends, we also compare various models

for detecting the LPs and their corresponding corners within the input images. Our

end-to-end experiments cover both intra- and cross-dataset evaluations, including an

examination of the speed/accuracy trade-off of the OCR models;

• We deviate from prior methodologies by introducing a pipeline that employs a single

GAN model to generate images of LPs from diverse regions and across styles. Notably,

satisfactory outcomes are attained despite using a relatively small number of real images

for training (around 2k). This success stems from our approach of supplementing these

real images with many synthetic ones created through character permutation while also

leveraging an OCR model to identify and filter out poorly generated images;

• Our results show that the massive use of synthetic data significantly improves the

performance of the models, both in intra- and cross-dataset scenarios. Remarkably,
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employing the top-performing OCR model yields end-to-end results that surpass those

reached by state-of-the-art methods and established commercial systems. These findings

are particularly impressive because our models were not specifically trained for any

particular LP layout, and we do not rely on post-processing with heuristic rules to

improve the LPR performance on LPs from specific regions;

• Our ablation studies reveal that each synthesis method contributes considerably to

enhancing the results, with a substantial synergistic effect observed when combining

them. Incorporating synthetic data into the training set also proves to be effective in

overcoming the challenges posed by limited training data, as commendable results are

attained even when using only small fractions of the original data;

This chapter is structured as follows. Section 7.1 outlines the prevalent methods for

synthesizing LP images in the literature. Section 7.2 elaborates on our methodology for generating

synthetic data, which will be integrated with real data to train the OCR models. Section 7.3

describes the experimental setup, including the datasets and models explored. The results are

presented and analyzed in Section 7.4. Finally, Section 7.5 summarizes our findings.

7.1 Related Work

Many methods have been proposed to generate synthetic LP images. These methods aim to

mitigate bias in the experiments and reduce the reliance on large volumes of real images for

training OCR models. The subsequent paragraphs provide a concise overview of three popular

methods used for this purpose.

A highly intuitive approach for creating LP images involves a rendering-based process,

particularly effective as LPs within a specific region typically conform to a strict standard. Put

simply, such a method initiates with a blank template mirroring the actual aspect ratio and color

scheme of LPs from the target region. Subsequently, a random sequence of characters reflecting

the actual LP sequence scheme is superimposed onto the template. Finally, transformations are

applied to enhance the diversity of the generated images.

Several works have effectively explored the above methodology, including but not

limited to (Björklund et al., 2019; Maier et al., 2022; Gao et al., 2023). Regarding the process of

creating LP images, these works primarily differed in the LP layout synthesized and the specific

transformations applied. For instance, Björklund et al. (2019) focused on creating Italian LPs,

Maier et al. (2022) generated German LPs, and Gao et al. (2023) synthesized LPs from mainland

China. In general, the transformations applied include modifications in font thickness, pixel

shifts in character positions, LP rotation, and adjustments in brightness and contrast.

Rendering-based methods face a significant limitation as they generate images with

inconsistent distributions compared to real-world images, even when incorporating many

transformations (Wu et al., 2019; Maier et al., 2022; Gao et al., 2023). Consequently, LPR

models trained solely on such images often produce unsatisfactory outcomes when applied to

real-world images. Taking this into account, researchers have explored various approaches for

creating realistic LP images, ranging from simpler methods such as character permutation to

more complex strategies involving generative models.

Generating synthetic data through character permutation is a simple yet effective method

for achieving balance among character classes. Essentially, considering that each character’s

position on a given LP is labeled, one character can be replaced by another by superimposing

the corresponding patch. Typically, this procedure focuses on replacing characters that are

overrepresented in the training set with those that are underrepresented. To our knowledge, this
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permutation-based approach was first explored in the LPR context by Gonçalves et al. (2018).

Since then, several authors have successfully applied it to construct well-balanced training sets in

terms of character classes. The following paragraph presents three examples, accompanied by a

brief description of the subtle variations in how the respective authors implemented this method.

Shashirangana et al. (2022) swapped character patches from distinct LP images, while

most authors limited their permutations to character patches from the same LP to reduce

illumination inconsistencies. Al-batat et al. (2022) refrained from permuting patches of thin

characters such as ‘1’ and ‘I’ to prevent potential deformation caused by swapping them with

wider characters. In contrast, other researchers addressed this issue by first expanding the

bounding boxes of smaller characters, incorporating portions of the LP background into them,

to ensure uniform sizing of all characters before permutation. Lastly, although most authors

swapped letters with digits and vice versa, Laroca et al. (2021b) performed same-category

permutations only (letters were swapped with other letters, and digits with other digits), enabling

models to implicitly learn the fixed positions for letters and digits in certain LP layouts.

Concerning the use of generative models in LPR research, the prevailing choice has been

GANs. The application of conditional GANs to image-to-image translation was first investigated

by Isola et al. (2017) with the proposal of the widely recognized pix2pix model. As detailed

in Section 2.2.2.2, pix2pix learns to map an image from the input to the output domain using

an adversarial loss in conjunction with the L1 loss between the output and target images, thus

requiring paired training data. While paired image-to-image translation models have shown

remarkable results since this seminal work, acquiring such training data (i.e., matching image

pairs with pixelwise or patchwise labeling) can be time-consuming and even unrealistic. To tackle

this challenge, subsequent works provided a novel perspective in which the proposed models

(e.g., CycleGAN, DualGAN and DiscoGAN) discover relations between two visual domains

without any explicitly paired data. As paired data is often unavailable, unpaired image-to-image

translation has gained much attention. Having examined various studies employing GANs to

generate synthetic data for improved LPR in Section 3.3, we will now revisit a selection of these

publications relevant to this chapter’s context.

Wang et al. (2022b) employed CycleGAN (Zhu et al., 2017b) to transform a large number

of script LP images, created using OpenCV, into realistic ones (specific details were not provided).

Similarly, Zhang et al. (2021c) trained CycleGAN without the second cycle-consistency loss (i.e.,

they discarded the loss responsible for mapping real images into synthetic ones) to generate LP

images with different characters and distinct characteristics. They trained multiple networks,

each specialized in producing images with specific attributes. For instance, one model was

trained to transform script images into bright LPs, while another was trained to convert script

images into dark LPs, and so forth. In both works, LPs of only a few different styles (all from

mainland China) were synthesized. Fan and Zhao (2022) adopted essentially the same approach

but trained CycleGAN with the Wasserstein distance loss. Their experiments focused on two

distinct LP styles, one from mainland China and another from the Taiwan region.

Han et al. (2020) trained CycleGAN, StarGAN and pix2pix to generate images of the

major style of Korean LPs from script images. Their findings indicated that pix2pix produced

more realistic and diverse LP images, supported by both qualitative comparisons and the superior

performance of an OCR model trained with pix2pix-generated images compared to instances of

the same model trained with images from CycleGAN and StarGAN. Shashirangana et al. (2022)

employed pix2pix to convert color images from the CCPD dataset into infrared images. They

explored the KAIST multi-spectral dataset, which has 95k paired color and infrared images,

for training the pix2pix model. The researchers suggested that the generated images could be

employed to train an OCR model capable of identifying LPs extracted from real images captured
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during nighttime periods. Shvai et al. (2023) built on several existing frameworks (e.g., AC-GAN

and PG-GAN) to generate high-quality LP images with distinct sequences. In summary, their

model achieves diversity by inputting the generator with different random latent vectors. It is

worth noting that the authors focused on generating a single style of LPs, specifically the most

common style found on vehicles in Texas, United States.

When examining the works described in this section, as well as others detailed in

Section 3.3, it becomes clear that the evaluation of methods for generating synthetic data has

relied on the outcomes produced by individual OCR models. For example, Wang et al. (2022b)

assessed the efficacy of their strategy solely based on the results achieved by their CNN-based

model. Similarly, Zhang et al. (2021c) considered only the results reached by an OCR based

on Xception, and Fan and Zhao (2022) considered only the results yielded by CNNG, their

multi-task recognition model. We posit that such an evaluation is suboptimal because images

created through a specific method may disproportionately benefit certain approaches over others,

hindering a fair evaluation of the data generation technique itself. As mentioned in Section 3.5,

this phenomenon was evidenced in (Laroca et al., 2019), where two segmentation-free approaches

(Multi-Task and CRNN) had a much higher performance gain than the YOLO-based CR-NET

model (Silva and Jung, 2020) when incorporating images generated via character permutation

into the training set. Therefore, there is a lack of studies focused on evaluating these techniques’

efficiency based on the results achieved by multiple OCR models with varying characteristics.

Another point that caught our attention is that most works are still focused on LPs

from a single region, even though this limitation has been acknowledged for many years in

the literature (Mecocci and Tommaso, 2006; Anagnostopoulos et al., 2008). In fact, it is not

uncommon for only a very specific LP style (e.g., single-row blue LPs from mainland China)

to be considered in the experiments (Han et al., 2020; Maier et al., 2022; Shvai et al., 2023).

Researchers often opted to train separate instances of the proposed models for each layout.

For example, one model generates/recognizes LPs from the Taiwan region, another model

generates/recognizes LPs from mainland China, and so forth (Björklund et al., 2019; Zhang

et al., 2021d; Wang et al., 2022c). However, this approach becomes increasingly impractical,

and even unfeasible, as the number of LP layouts the ALPR system must handle increases. This

impracticality arises from the need to adjust parameters and retrain models when incorporating

support for LPs from new regions or even markedly different LP styles within the same region.

Ultimately, it is crucial to emphasize that within the examined literature, each work has

exclusively generated synthetic LPs through a single methodology, such as relying solely on

templates, employing only character permutation, or using GANs exclusively. It remains unclear

whether relying on a single approach is sufficient for optimal results, or if considerably superior

outcomes could be attained by integrating data generated through diverse methodologies.

7.2 Synthetic Data

This section details our approach for generating synthetic data, which will be combined with real

data to train the deep models for LPR. We first describe the methodology adopted for creating LP

images using blank templates and character patches sourced from the internet. Afterward, we

delve into the process of producing new LP images by permuting the positions of the characters

within each LP. Lastly, we elaborate on our utilization of a paired image-to-image translation

model (pix2pix) to generate realistic LP images.
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7.2.1 Templates

While there are various approaches for creating LP images using templates, the method employed

in this chapter is quite straightforward. First, blank templates that match the aspect ratio and

color scheme of real LPs are sourced from the internet19. Subsequently, a sequence of characters,

selected randomly yet crafted to mirror the patterns found on authentic LPs, is superimposed onto

each template. Figure 7.1 shows examples of LP images generated through this process. Naturally,

during the training of the OCR models, we subject these images to various transformations to

introduce variability. These transformations encompass a range of techniques, including but not

limited to random perspective transformation, introduction of random noise, incorporation of

random shadows, and application of random changes to hue, saturation and brightness.

Figure 7.1: Examples of the template-based LP images we created for this study. Notably, any sequence can be

generated for each template. The background and character images were manually gathered from the internet19.

During training, these LP images are subjected to various transformations to introduce variability.

To better simulate real-world scenarios, the templates we generated using this method

were derived from the LP styles observed within the training sets of the datasets explored in our

experiments (refer to Section 7.3.2 for details). In other words, we did not create templates for

LP styles found exclusively in the test sets. To illustrate, one of the datasets we employed in

our cross-dataset assessments contains images of electric vehicles registered in mainland China,

which feature 8-character green LPs. Despite this, we refrained from creating templates for this

LP style since it is not present in the training set.

An appealing aspect of this synthesis method lies in its ability to generate any sequence

for each template while adhering to a predefined number of characters. Nevertheless, two

drawbacks deserve attention. First, as highlighted in Section 7.1, images produced by such

rendering-based approaches often exhibit inconsistent distributions compared to real-world

images (even with transformations applied). Second, sourcing background and character images

online for certain LP styles, particularly those less popular or recently introduced, can pose a

challenge. This challenge played a role in our decision not to create templates for every LP style

present in the training set, in addition to the inherent scope limitations of our study.

We generated 100k LP images employing this approach, a number determined through

preliminary experiments that showed slightly improved outcomes compared to using 50k

images and similar performance to using 200k images. The number of synthesized LPs was

balanced across the six explored LP layouts (i.e., American, Brazilian, Chinese, European,

Mercosur, and Taiwanese), and the LP sequences were defined to maximize class balance for

each character position.

19 Most of the blank templates and character patches were taken from https://platesmania.com/
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7.2.2 Character Permutation

Generating synthetic data through character permutation is also a straightforward process, outlined

as follows. Initially, each character’s bounding box (𝑥, 𝑦, 𝑤, ℎ) must be labeled. Then, if all the

bounding boxes share the same width and height, the patch of each character can be replaced with

another according to predefined rules. However, it is important to highlight that characters from

distinct classes often differ in size, especially in terms of width. Adhering to established practices

in the literature (refer to Section 7.1), we first expanded the bounding boxes of smaller characters,

incorporating small portions of the LP background into them, so that all characters have identical

dimensions. Subsequently, we replaced patches of characters that were overrepresented in the

training set with patches from those that were underrepresented. To maintain consistency in

illumination, we limited character permutation to patches within the same LP.

In Figure 7.2, we show examples of LP images generated by permuting the character

positions on three LPs and applying random transformations of scale, rotation, brightness

and cropping. Despite the impressive visual outcomes, it is essential to acknowledge certain

limitations associated with this image synthesis method. First, manually labeling the bounding

box for each character on every LP image is a laborious, time-consuming, and error-prone

task (Björklund et al., 2019; Wang et al., 2022c; Liu et al., 2024b). Second, this method can

only be applied to LP images where the character bounding boxes do not intersect (typically

restricting its use on tilted LPs). Otherwise, parts of some characters may become obscured or

replicated during the permutation process. Lastly, as the permutations involve repetitions and are

limited to characters within the same LP, the OCR models may inadvertently learn undesirable

correlations or biases. For instance, Gonçalves et al. (2018) pointed out that characters from

initially underrepresented classes exhibited a strong self-correlation, as they are more likely to

appear in multiple positions on the permuted LPs (this is illustrated in Figure 7.2 as well).

Figure 7.2: Some LP images created by permuting the positions of the characters within each LP and then applying

transformations. The images in the top row are the originals, while the others were synthesized.

We conducted a series of experiments in the validation set to determine the number of

LP images to generate through this approach. We then generated 300k images, evenly distributed

across the different LP layouts, as we found that generating a higher volume of images did not

yield improved results.

7.2.3 Image-To-Image Translation (pix2pix)

As outlined in Section 7.1, most previous works explored unpaired image-to-image translation

methods (e.g., CycleGAN) to generate realistic LP images due to the lack of labeled paired

data. In this work, we exploited the character permutation method described above to tackle

this problem. More specifically, we generated over one million new LP images by shuffling

the character positions on approximately 2k images from the training set of public datasets and
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the internet. While Laroca et al. (2021b) provided labels for most of these images, we further

enriched the annotations by labeling the positions of the LP corners.

Considering that these images are accompanied by precise annotations for the position

of each LP corner and the bounding box of every character, they can be used to train paired

image-to-image translation methods. In this study, we employ the renowned pix2pix model (Isola

et al., 2017) for synthesizing many realistic images of LPs from multiple regions. We remark that

although there are newer models available that would certainly yield better results than pix2pix,

our decision to opt for pix2pix is primarily based on its widespread availability across various

frameworks such as Chainer, Keras, PyTorch, TensorFlow, Torch, and others20. This choice was

particularly significant for our research, given that part of our experiments were conducted on an

old CPU lacking AVX instructions, significantly limiting the available framework options.

The paired data required for training the pix2pix model was prepared as follows. For

each LP image generated through character permutation, which serves as the intended output, a

corresponding segmentation mask was created to serve as the input. These masks were designed

such that each color represents a distinct LP layout class or character class. For example, as shown

in Figure 7.3, the digit ‘0’ is indicated by a vivid red color (228, 28, 26), the letter ‘A’ is denoted

by a dark brown shade (126, 47, 0), the Mercosur layout is represented by a purplish-magenta

tone (187, 0, 170), and the Chinese layout is denoted by a gray color (127, 127, 127). The Glasbey

library21 was employed to generate a set of colors that were maximally distinguishable from each

other. Black (0, 0, 0) and similar shades were avoided in this process since black in the input

mask represents the background. Notably, the background in the output LP image consists of

gray pixels. This choice was made because using the original background led to inferior results.

input output input output input output

input output input output input output

input output input output input output

input output input output input output

Figure 7.3: Examples of image pairs used for training the pix2pix model. To create the input masks, labels are

required for both the LP’s layout and corners, as well as for the bounding box of each character.

After completing the model’s training, the next step involves using it to generate hundreds

of thousands of new LP images. Intuitively, this task was accomplished by feeding the model

with segmentation masks derived from randomly selected LP layouts and character sequences.

While the characters were sampled from the valid alphabet per position, we ensured a balanced

distribution of character classes at every position.

Upon examining the generated LP images, we discovered that although many high-

quality LPs were produced, a notable portion of them also displayed certain issues. The primary

20 See a list of pix2pix implementations at https://phillipi.github.io/pix2pix/. Our chosen

implementation can be found at https://github.com/affinelayer/pix2pix-tensorflow.
21 The Glasbey library is available at https://github.com/taketwo/glasbey
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issue identified was the distortion of characters or their blending into two distinct classes. For

instance, a generated character might exhibit a fusion of traits from ‘0’ and ‘8’, with the defining

strokes that typically differentiate the two appearing faint and indistinct. To address this matter,

we ran the Fast-OCR model, which demonstrated superior cross-dataset results among a dozen

recognition models in Chapter 6, on the millions of generated images and selected the top 𝑁
predictions according to their associated confidence values. Specifically, we selected the top 50k

images for each of the six LP layouts, totaling 300k images. This strategy proved effective in

filtering out most images with defects, although it may have led to the exclusion of some instances

with a higher degree of variability. Examples of the selected images are shown in Figure 7.4.

Figure 7.4: Examples of selected images from those generated using pix2pix. From top to bottom, we show

American, Brazilian, Chinese, European, Mercosur, and Taiwanese LPs.

It should be noted that we trained the pix2pix model to produce a blurred representation

instead of Chinese characters (this can be seen in Figures 7.3 and 7.4). This adjustment was made

due to the absence of class labels for these characters in the training set. Accurately labeling

these characters poses a challenging task for individuals not proficient in Chinese. Further details

on how we handled Chinese characters in our experiments can be found in Section 7.3.3.

One might question the rationale behind employing segmentation maps as input for the

pix2pix model, rather than using LP templates. While we acknowledge that using templates as

input would likely yield similar or even better results, the lack of LP style-related annotations

in public datasets poses a challenge. The provided information is limited to the geographical

region where the images were collected (e.g., Europe, mainland China, and the United States).

Fundamentally, adopting LP templates as input would entail labeling the specific style of each LP

and searching online platforms for the corresponding templates and character patches (or creating

them using OpenCV or similar tools). This is most likely why previous works explored very few

LP styles in their experiments (Zhang et al., 2021c; Fan and Zhao, 2022; Wang et al., 2022b).

The major limitation of this GAN-based method stems from its reliance on the training

data, as it cannot synthesize LP layouts that are not included in the training set (Gao et al., 2023).

7.3 Experimental Setup

This section describes the experimental setup adopted in this chapter. We begin by outlining

the OCR models implemented for our evaluations. Subsequently, we list the datasets employed,

which are the same used in the previous chapter, while briefly reminding the reader of their
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characteristics such as the number of images, resolution, and LP layouts. Lastly, we elaborate on

the methodology used for performance evaluation.

While different machines were used for model training, all testing experiments were

conducted on a PC equipped with an AMD Ryzen Threadripper 1920X 3.5GHz CPU, 96 GB

of RAM running at 2,133 MHz, an NVMe SSD with read and write speeds of 3,500 MB/s and

3,000 MB/s respectively, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

7.3.1 OCR Models

This chapter expands upon the 12 models explored in Chapters 5 and 6 by integrating four

additional models into the experiments: Table 7.1 presents an overview of all 16 models, including

their original applications and the frameworks used for their implementation. We are unaware of

any work in ALPR research where so many OCR models were explored.

Table 7.1: The 16 OCR models explored in this chapter.

Model Original Application

Framework: PyTorch (Atienza, 2022)

R2AM (Lee and Osindero, 2016) Scene Text Recognition

RARE (Shi et al., 2016) Scene Text Recognition

STAR-Net (Liu et al., 2016) Scene Text Recognition

CRNN (Shi et al., 2017) Scene Text Recognition

GRCNN (Wang and Hu, 2017) Scene Text Recognition

Rosetta (Borisyuk et al., 2018) Scene Text Recognition

TRBA (Baek et al., 2019) Scene Text Recognition

ViTSTR-Base (Atienza, 2021b) Scene Text Recognition

ViTSTR-Small (Atienza, 2021b) Scene Text Recognition

ViTSTR-Tiny (Atienza, 2021b) Scene Text Recognition

Framework: Keras (Chollet et al., 2024)

Holistic-CNN (Špaňhel et al., 2017) License Plate Recognition

Multi-Task (Gonçalves et al., 2018) License Plate Recognition

Multi-Task-LR (Gonçalves et al., 2019) License Plate Recognition

CNNG (Fan and Zhao, 2022) License Plate Recognition

Framework: Darknet (Bochkovskiy, 2023)

CR-NET (Silva and Jung, 2020) License Plate Recognition

Fast-OCR (Laroca et al., 2021a) Image-based Meter Reading

As in previous chapters, the YOLO-based models (i.e., CR-NET and Fast-OCR) were

implemented using Darknet (Bochkovskiy, 2023); the multi-task models (those listed in the

middle section of Table 7.1) were implemented using Keras (Chollet et al., 2024); and the other

models were implemented using a popular fork of the open source repository of Clova AI Deep

Text Recognition Benchmark (Atienza, 2022). For training the models within each framework,

we used the same hyperparameters as in previous chapters (refer to Section 5.1).

7.3.2 Datasets

We used the same 12 datasets explored in the previous chapter, as shown in Table 7.2. We also

adhered to the same data-splitting protocol established earlier. This means that eight datasets were

used to train, validate and test the chosen models (intra-dataset experiments), while the remaining

four datasets were used solely for testing their generalizability (cross-dataset experiments). For

detailed information on how each dataset was divided in the intra-dataset setup, see Section 6.1.2.

In line with the experiments conducted in the preceding chapters, we employed Albumen-

tations (Buslaev et al., 2020) to balance the number of training images from different datasets. This
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Table 7.2: The 12 datasets used in the experiments carried out for this chapter.

Dataset Images Resolution LP Layout
Caltech Cars (Weber, 1999) 126 896 × 592 American

EnglishLP (Srebrić, 2003) 509 640 × 480 European

UCSD-Stills (Dlagnekov and Belongie, 2005) 291 640 × 480 American

ChineseLP (Zhou et al., 2012) 411 Various Chinese

AOLP (Hsu et al., 2013) 2,049 Various Taiwanese

OpenALPR-EU∗ (OpenALPR, 2016) 108 Various European

SSIG-SegPlate (Gonçalves et al., 2016a) 2,000 1920 × 1080 Brazilian

PKU∗ (Yuan et al., 2017) 2,253 1082 × 727 Chinese

UFPR-ALPR (Laroca et al., 2018) 4,500 1920 × 1080 Brazilian

CD-HARD∗ (Silva and Jung, 2018) 102 Various Various

CLPD∗ (Zhang et al., 2021c) 1,200 Various Chinese

RodoSol-ALPR 20,000 1280 × 720 Brazilian & Mercosur

∗Datasets used only for testing the deep models (i.e., cross-dataset experiments).

involved applying common transformations to the original images, such as random perspective

shifts, random noise addition, and random adjustments to hue, saturation, and brightness.

7.3.3 Performance Evaluation

In this chapter, we detected the LPs in the original images using YOLOv4-CSP (Wang et al.,

2021a) and rectified them through a combination of CDCC-NET (Laroca et al., 2021a) – for

locating the LP corners – and perspective transformation (the rectification process is detailed in

the next paragraph). These models were chosen due to their remarkable performance in balancing

the trade-off between robustness and efficiency in the studies they were proposed. We adopted

this procedure to fairly compare our results with end-to-end ALPR systems and to better simulate

real-world scenarios, where the LPs are not always optimally detected.

We rectify each LP by calculating and applying a perspective transform from the

coordinates of the four corners in the detected LP region to the corresponding vertices in the

“unwarped” image. These corresponding vertices were defined as follows: (0, 0) corresponds

to the top-left corner; (𝑚𝑎𝑥𝑤 − 1, 0) is the top-right corner; (𝑚𝑎𝑥𝑤 − 1, 𝑚𝑎𝑥ℎ − 1) refers to the

bottom-right corner; and (0, 𝑚𝑎𝑥ℎ − 1) indicates the bottom-left corner, where 𝑚𝑎𝑥𝑤 denotes

the maximum distance between the top-right and top-left 𝑥 coordinates or the bottom-right

and bottom-left 𝑥 coordinates, and 𝑚𝑎𝑥ℎ is the maximum distance between the top-left and

bottom-left 𝑦 coordinates or the top-right and bottom-right 𝑦 coordinates. The rectification

process is illustrated in Figure 7.5. Recent works that exploited LP rectification to improve the

recognition results include (Qin and Liu, 2022; Xu et al., 2022; Jiang et al., 2023b).

(a) detected LP regions (b) rectified LP regions

Figure 7.5: Two LPs before and after the rectification process. Observe that the rectified LPs resemble frontal views,

becoming more horizontal, tightly bounded, and easier to read.

It is essential to highlight that we refrained from using prior knowledge about individual

LP layouts to enhance the results through post-processing. As an illustration, despite being aware

that all LPs in a given dataset or particular region adhere to a fixed pattern (e.g., Brazilian LPs are

composed of three letters followed by four digits), we treat the predictions made by the models as

final. We argue that by exposing the models to sufficient variability in the training stage, they

can, to varying extents, implicitly learn and leverage such information to yield better predictions.
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In this chapter, we also adhere to the methodology established by Li et al. (2019), where

all Chinese characters are collectively represented as a unified class denoted by ‘*’. Accordingly,

all results from other studies presented in our comparison with the state of the art (Section 7.4.2.2)

were obtained in the same way, disregarding Chinese characters.

7.4 Results and Discussion

This section presents and analyzes the outcomes of our experiments. Section 7.4.1 offers a

concise overview of the results obtained in detecting the LPs and locating the corresponding

corners. The precise detection of the LP corners is pivotal for accurately rectifying the LPs

before recognition. Section 7.4.2 then delves into a detailed examination of the end-to-end results

obtained by employing different OCR models.

7.4.1 LP Detection and Corner Detection

To evaluate detection tasks, one can employ various quantitative criteria. Our assessment includes

the widely adopted precision, recall and f-score metrics (described in Section 2.1). In line with

recent studies (Jiang et al., 2023b; Ke et al., 2023), for this chapter, we define the detections as

correct when the Intersection over Union (IoU) with the ground truth exceeds 0.7.

Table 7.3 presents the results obtained by YOLOv4-CSP (Wang et al., 2021a) and

IWPOD-NET (Silva and Jung, 2022) in the LPD stage. Three key observations can be drawn

from the results: (i) YOLOv4-CSP demonstrated satisfactory results, both in terms of precision

and recall, with instances of slightly lower precision attributed to unlabeled LPs in the background

of frames (akin to what was observed in Chapters 5 and 6); (ii) while IWPOD-NET directly

predicts LP corners rather than bounding boxes, its performance is suboptimal in scenarios where

the vehicles are far from the camera, as evidenced by the recall rates reached in the UFPR-ALPR

dataset; and (iii) IWPOD-NET tends to predict a significant number of false positives, leading to

notably low precision rates. Despite our exploration of higher detection thresholds, doing so

led to the exclusion of many true LPs (leading to lower recall rates). These observations likely

influenced the decision of Silva and Jung (2022) to feed regions identified by a vehicle detector

(YOLOv3) into IWPOD-NET instead of applying it directly to the original image. It is worth

noting that optimizing both precision and recall is crucial for efficient system operation, as it

relies on the detection of all LPs with minimal false positives.

Table 7.3: Results obtained by YOLOv4-CSP and IWPOD-NET in the LPD stage (@ IoU > 0.7). For this evaluation,

the corners predicted by IWPOD-NET were converted into bounding boxes.

Model Metric
Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

YOLOv4-CSP
Recall

100.0% 99.0% 100.0% 98.1% 99.9% 100.0% 99.2% 100.0% 99.5%
IWPOD-NET 95.7% 100.0% 100.0% 97.5% 99.7% 98.8% 82.4% 99.6% 96.7%

YOLOv4-CSP
Precision

100.0% 97.1% 96.8% 98.1% 94.8% 94.9% 97.8% 99.6% 97.4%

IWPOD-NET 66.7% 77.9% 73.2% 83.1% 88.3% 61.6% 62.2% 78.4% 73.9%

YOLOv4-CSP
F-score

100.0% 98.1% 98.4% 98.1% 97.3% 97.5% 98.5% 99.8% 98.5%
IWPOD-NET 81.2% 88.9% 86.6% 90.3% 94.0% 80.2% 72.3% 89.0% 85.3%

To rectify the LPs found by YOLOv4-CSP, it is necessary to locate the four corners

associated with each of them. Table 7.4 presents a comparison of the results obtained in this

process by four models specifically designed for corner detection, including IWPOD-NET.

The evaluation is carried out in terms of LP-NME (Jia and Xie, 2023), a metric inspired by

Normalization Mean Error (NME), which in turn is commonly employed to evaluate the quality

of face alignment algorithms. LP-NME is defined as follows:
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LP-NME(𝐶, 𝐶̂) =
1

4

4∑

𝑖=1

| |𝐶𝑖 − 𝐶̂𝑖 | |

𝑑
, (7.1)

where𝐶 and 𝐶̂ are the ground truth and predicted corners, respectively, and 𝑑 is the normalization

factor. Following Jia and Xie (2023), we adopt the diagonal length of the smallest bounding box

that completely encloses the LP as the normalization factor.

Table 7.4: Corner detection results achieved by four models within the regions found by YOLOv4-CSP. The results

are presented in terms of LP-NME, where lower values indicate higher accuracy.

Model

Test set # LPs Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

LocateNet (Meng et al., 2018) 0.0739 0.0359 0.0782 0.1092 0.0730 0.0329 0.0556 0.0592 0.0647

Hybrid-MobileNetV2 (Yoo and Jun, 2021) 0.0323 0.0226 0.0352 0.0391 0.0332 0.0214 0.0313 0.0383 0.0317

IWPOD-NET (Silva and Jung, 2022) 0.0244 0.0143 0.0205 0.0138 0.0205 0.0098 0.0194 0.0141 0.0171

CDCC-NET (Laroca et al., 2021a) 0.0160 0.0117 0.0164 0.0176 0.0142 0.0098 0.0168 0.0150 0.0147

CDCC-NET stands out as the top-performing model, achieving the lowest average

LP-NME value of 0.0147. It is noteworthy, however, that the IWPOD-NET model outperformed

CDCC-NET in two datasets and achieved near-identical results in another. Figure 7.6 showcases

the predictions made by all models for five LP images. While some predictions show clear

similarities across models, the CDCC-NET model exhibits superior overall accuracy.

LocateNet Hybrid-MobileNetV2 IWPOD-NET CDCC-NET

Figure 7.6: Qualitative results achieved by four different models in corner detection. For better viewing, we draw a

polygon from the predicted corner positions.

The findings outlined in this section substantiate our choice to employ YOLOv4-CSP for

LPD and CDCC-NET for corner detection. As elaborated in Section 7.3.3, the corners predicted

by CDCC-NET are used to rectify the LPs before recognition.

7.4.2 Overall Evaluation (End-To-End)

This section conducts a thorough comparative analysis of the OCR models, assessing their

performance and contrasting the end-to-end results attained when employing the top-performing

model with those reached by state-of-the-art approaches and established commercial systems

(Sections 7.4.2.1 to 7.4.2.3). Notably, the evaluation covers both intra- and cross-dataset scenarios.

Additionally, ablation studies are incorporated to demonstrate the impact of each explored method

for generating synthetic images on the final results, as well as the importance of synthetic data

when training data is scarce. Finally, Section 7.4.2.4 examines the trade-off between speed and

accuracy exhibited by the recognition models, highlighting those that strike a favorable balance.
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7.4.2.1 Intra-Dataset Experiments

Table 7.5 presents the end-to-end results obtained across the disjoint test sets of the eight datasets

used to train and validate the models. In these experiments, all OCR models were trained

using real images combined with synthetic ones generated by the three methods described in

Section 7.2. Later in this section, we present an ablation study that details the contribution of

each image synthesis method to the results achieved. Importantly, Table 7.5 also includes the

outcomes achieved by combining the outputs of different models, following the optimal strategy

identified in the previous chapter. The results demonstrate that combining synthetic data and

model fusion further enhances LPR performance.

Table 7.5: Recognition rates obtained by all models under the intra-dataset protocol, where each model was trained

once on the union of the training set images from these datasets (plus synthetic data) and evaluated on the respective

test sets. The best results achieved in each dataset are shown in bold.

Model

Test set # LPs Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

CNNG (Fan and Zhao, 2022) 97.8% 91.2% 96.7% 98.8% 99.1% 98.8% 96.1% 97.1% 96.9%

CR-NET (Silva and Jung, 2020) 93.5% 96.1% 98.3% 96.9% 98.7% 98.0% 89.3% 88.3%† 94.9%

CRNN (Shi et al., 2017) 93.5% 96.1% 96.7% 95.7% 98.8% 97.5% 87.0% 92.2% 94.7%

Fast-OCR (Laroca et al., 2021a) 95.7% 97.1% 95.0% 96.9% 98.7% 96.0% 89.6% 88.1%† 94.6%

GRCNN (Wang and Hu, 2017) 97.8% 99.0% 96.7% 98.8% 99.0% 97.9% 87.4% 93.0% 96.2%

Holistic-CNN (Špaňhel et al., 2017) 95.7% 91.2% 93.3% 99.4% 99.3% 98.4% 94.9% 97.9% 96.3%

Multi-Task (Gonçalves et al., 2018) 97.8% 94.1% 100.0% 98.8% 99.1% 98.6% 93.3% 95.1% 97.1%

Multi-Task-LR (Gonçalves et al., 2019) 95.7% 93.1% 93.3% 100.0% 99.6% 97.5% 94.6% 96.6% 96.3%

R2AM (Lee and Osindero, 2016) 97.8% 94.1% 95.0% 98.8% 99.3% 99.3% 90.6% 94.4% 96.1%

RARE (Shi et al., 2016) 97.8% 97.1% 98.3% 98.1% 99.4% 99.1% 91.9% 96.5% 97.3%

Rosetta (Borisyuk et al., 2018) 95.7% 98.0% 98.3% 98.1% 98.7% 98.3% 92.6% 96.0% 97.0%

STAR-Net (Liu et al., 2016) 97.8% 99.0% 98.3% 98.1% 99.1% 99.3% 94.7% 97.0% 97.9%
TRBA (Baek et al., 2019) 97.8% 99.0% 98.3% 98.8% 98.8% 99.3% 94.0% 97.3% 97.9%
ViTSTR-Base (Atienza, 2021b) 95.7% 96.1% 93.3% 99.4% 99.9% 99.4% 94.6% 97.7% 97.0%

ViTSTR-Small (Atienza, 2021b) 95.7% 96.1% 98.3% 98.1% 99.1% 98.5% 94.9% 96.8% 97.2%

ViTSTR-Tiny (Atienza, 2021b) 93.5% 95.1% 91.7% 98.8% 99.0% 98.9% 92.3% 95.3% 95.5%

Average 96.2% 95.8% 96.4% 98.3% 99.1% 98.4% 92.4% 94.9% 96.4%

Model Fusion MV-HC (top 8) 97.8% 99.0% 100.0% 99.4% 99.4% 100.0% 98.2% 98.6% 99.1%

† Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for training them.

The first observation is that all models performed surprisingly well, reaching average

recognition rates between 94.6% and 97.9%. It is noteworthy that the mean results were well above

90% across all datasets, including UFPR-ALPR, which is known to be quite challenging (Zhang

et al., 2021a; Zhou et al., 2023; Ding et al., 2024). According to our analysis of the results

(presented throughout this section), such impressive results are mainly due to the massive use of

synthetic data combined with the LP rectification stage.

Another point that immediately draws attention is that multiple models achieved the

best result in at least one dataset. For instance, the CNNG excelled in the UFPR-ALPR dataset,

while the Multi-Task-LR and Holistic-CNN models reported the highest recognition rates on

ChineseLP and RodoSol-ALPR, respectively. Interestingly, the models that performed better on

average (i.e., STAR-Net and TRBA) did not achieve the best results in six of the eight datasets;

some models actually reached the best result in one dataset and the worst in another (e.g., see

the results achieved by the CNNG and Holistic-CNN models on the EnglishLP dataset). These

results emphasize the importance of evaluating and comparing OCR models on various datasets.

Figure 7.7 showcases the predictions yielded by the STAR-Net and TRBA models for LPs

with distinct characteristics. The outcomes underscore the models’ robustness in handling diverse

LP layouts, images with varying resolutions, LPs with different numbers of characters arranged in

one or two rows, and scenarios where the characters are partially occluded. Impressively, some of

these LP styles were not even included in the training set. Overall, errors are limited to instances

where one character closely resembles another, often due to factors such as low resolution and

artifacts on the LP. Although this qualitative analysis focuses on the two models that achieved the

best average results across the datasets, the other models generally produced similar predictions.



109

STAR-Net: ODB2B71
TRBA: ODB2B71

STAR-Net: DU166BF
TRBA: DU166BF

STAR-Net: HLP4594
TRBA: HLP4594

STAR-Net: CKC3951
TRBA: CKC3951

STAR-Net: AWZ7648
TRBA: AWZ7648

STAR-Net: *AS7603
TRBA: *AS7603

STAR-Net: PPR2D29
TRBA: PPR2D29

STAR-Net: WOBR3249
TRBA: WOBR3249

STAR-Net: MRD3095
TRBA: MRD3095

STAR-Net: VXS04R
TRBA: NXS04R

STAR-Net: *BD0D100
TRBA: *BD00100

STAR-Net: LER0I79
TRBA: LERUI79

Figure 7.7: Predictions made for 12 LP images by STAR-Net and TRBA, the two models that exhibited the highest

average performance in the intra-dataset experiments. Errors, if any, are highlighted in red. All LPs are well aligned

because they were rectified before recognition, as detailed in Section 7.3.3.

A compelling aspect to consider is the impact of synthetic data in scenarios with limited

availability of training data, as public datasets collected in certain regions often have a restricted

number of images. Table 7.6 presents the average recognition rates attained by STAR-Net and

TRBA when trained with reduced portions – 50%, 25%, 10%, 5% and 1% – of the original

training data, with and without the addition of synthetic data. Remarkably, incorporating synthetic

data in the training phase enabled commendable results to be reached even when using small

fractions of the original training set. For example, both STAR-Net and TRBA achieved an average

recognition rate exceeding 94.5% across all datasets when trained with only 10% of the original

training set but supplemented with synthetic data. In contrast, relying solely on real images

with common transformations as data augmentation led to a substantial decline in the results.

Specifically, the recognition rates dropped below 75% when halving the original training set and

plummeted to approximately 1% when using only 10% of it. This underscores the effectiveness

of synthetic data in mitigating the challenges posed by limited training data.

Table 7.6: Average recognition rates obtained by STAR-Net and TRBA when trained with reduced portions of the

original training data. Naturally, images not included in the reduced training set were not used to generate synthetic

images in the respective experiments.

Model

Real Images
100% 50% 25% 10% 5% 1%

STAR-Net (no synthetic) 95.3% 62.0% 18.3% 1.3% 0.2% 0.0%

STAR-Net (w/ synthetic) 97.9% 95.8% 94.7% 94.6% 93.6% 86.4%

TRBA (no synthetic) 93.7% 74.0% 23.9% 0.9% 0.2% 0.0%

TRBA (w/ synthetic) 97.9% 97.0% 96.0% 94.5% 94.3% 87.9%

Table 7.7 elucidates the effectiveness of each image synthesis method described in

Section 7.2, as well as their combination, to the results obtained. It reveals that each method

contributes considerably to enhancing the results. Notably, a substantial synergistic effect is

observed when combining these methods, pushing the performance boundaries of OCR models

applied to LPR. To elaborate, the best recognition rates (i.e., 94.9% and 96.4% for unrectified

and rectified LPs, respectively), on average for all models, were achieved by combining original

data with images synthesized in all three ways. When real images were combined solely with
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images generated through character permutation, as in (Laroca et al., 2021b; Shashirangana et al.,

2022), the average recognition rates obtained were 91.4% and 93.6% for unrectified and rectified

LPs, respectively. Combining real images with LP templates alone, as in (Maier et al., 2022;

Gao et al., 2023), resulted in average recognition rates of 92.5% and 94.7% for unrectified and

rectified LPs, respectively. Finally, the combination of real images with those generated through

a GAN model (in our case, pix2pix), as in (Zhang et al., 2021c; Shvai et al., 2023), yielded

average recognition rates of 93.2% and 95.2% for unrectified and rectified LPs, respectively.

Table 7.7: Average recognition rates obtained across all models and datasets with different types of images included

in the training set. The synergistic impact of the three image synthesis methods in enhancing the overall results is

evident. As creating synthetic images through character permutation and GAN relies on the existence of real images,

our evaluation of their integration is limited to cases where real images coexist in the training set. ‘Data aug.’ refers

to images created by applying common transformations.

Real Images

+ data aug.
Templates Permutation

GAN

(pix2pix)
Average

Average

(rect.)

� 42.5% 46.5%

� 84.5% 88.1%

� � 91.4% 93.6%

� � 92.5% 94.7%

� � 93.2% 95.2%

� � � 93.8% 95.5%

� � � 94.0% 95.6%

� � � 94.1% 95.8%

� � � � 94.9% 96.4%

It is important to highlight how much better the results were when training the models

with both real and synthetic images (i.e., 94.9% and 96.4%) compared to those obtained when

simply training the models with original images augmented by common transformations such as

random rotation, random noise, random cropping, random compression, and random changes in

brightness, saturation and contrast (i.e., 84.5% and 88.1%).

Interestingly, both the templates and the images produced by the GAN model contributed

significantly more to improving the OCR models’ performance than the images generated through

character permutation. This finding aligns with the fact that images created via character

permutation still share many characteristics with their original counterparts (e.g., character

position, compression artifacts, and camera noise) despite having different sequences of characters.

While not the primary focus of Table 7.7, it also reinforces the importance of rectifying

the LPs before the recognition stage, as this consistently resulted in improved outcomes.

7.4.2.2 Cross-Dataset Experiments

As emphasized throughout this work, conducting cross-dataset experiments is pivotal in assessing

the models’ generalizability. Thus, Table 7.8 presents the recognition rates obtained by all models

on the four datasets not seen during the training stage: OpenALPR, PKU, CD-HARD and CLPD.

These results demonstrate that the explored OCR models, trained on a combination

of real and synthetic images, maintain high performance even in unseen scenarios. What most

caught our attention was the consistency of the TRBA model (Baek et al., 2019), as it also

reached the best results in this evaluation. On the other hand, here the STAR-Net model (which

tied with the best results in the intra-dataset experiments) was outperformed by RARE in all

datasets. That is why we consider YOLOv4-CSP (detection) + CDCC-NET (rectification) +

TRBA (recognition) to be our best approach and therefore employ it in the comparisons with

state-of-the-art approaches in the next section.
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Table 7.8: Recognition rates obtained by all models on four public datasets that were not seen during the training

stage (cross-dataset experiments). The best results for each dataset are shown in bold.

Model

Dataset # LPs OpenALPR-EU

# 108

PKU

# 2,253

CD-HARD

# 104

CLPD

# 1,200
Average

CNNG (Fan and Zhao, 2022) 95.4% 98.6% 58.7% 92.9% 86.4%

CR-NET (Silva and Jung, 2020) 93.5% 99.5% 67.3% 92.9% 88.3%

CRNN (Shi et al., 2017) 97.2% 99.1% 56.7% 94.2% 86.8%

Fast-OCR (Laroca et al., 2021a) 98.1% 99.1% 69.2% 94.4% 90.2%

GRCNN (Wang and Hu, 2017) 97.2% 99.0% 57.7% 94.5% 87.1%

Holistic-CNN (Špaňhel et al., 2017) 95.4% 99.0% 54.8% 94.0% 85.8%

Multi-Task (Gonçalves et al., 2018) 96.3% 98.8% 54.8% 93.7% 85.9%

Multi-Task-LR (Gonçalves et al., 2019) 94.4% 98.8% 53.8% 92.6% 84.9%

R2AM (Lee and Osindero, 2016) 98.1% 99.4% 57.7% 93.8% 87.3%

RARE (Shi et al., 2016) 99.1% 99.1% 72.1% 95.2% 91.4%

Rosetta (Borisyuk et al., 2018) 97.2% 99.2% 64.4% 93.8% 88.7%

STAR-Net (Liu et al., 2016) 98.1% 98.5% 71.2% 95.0% 90.7%

TRBA (Baek et al., 2019) 99.1% 99.4% 76.9% 96.2% 92.9%
ViTSTR-Base (Atienza, 2021b) 94.4% 99.0% 54.8% 93.4% 85.4%

ViTSTR-Small (Atienza, 2021b) 96.3% 97.4% 59.6% 94.3% 86.9%

ViTSTR-Tiny (Atienza, 2021b) 94.4% 97.6% 53.8% 92.3% 84.5%

Average 96.5% 98.8% 61.5% 93.9% 87.7%

Model Fusion MV-HC (top 8) 99.1% 99.6% 81.7% 97.6% 94.5%

While subpar results were achieved on the CD-HARD dataset, it is essential to recognize

the inherent complexity of this dataset, as implied by its name. Our analysis has revealed that the

primary challenge posed by this dataset lies in the diverse range of LP layouts it encompasses.

Images within the dataset feature vehicles from various regions not represented in the datasets

used for model training, such as Dubai and New South Wales. The high degree of tilt of many

LPs would further hinder recognition if not rectified before the recognition stage.

A noteworthy insight from Table 7.8 is that integrating synthetic data with model fusion

also improves LPR performance in cross-dataset scenarios.

7.4.2.3 Comparison With Previous Works and Commercial Systems

In Table 7.9, we compare the end-to-end results achieved by our best approach with those reported

by state-of-the-art ALPR systems. Following common practice, to ensure fairness, we only

consider systems evaluated in the same way as in our benchmark (see details in Section 7.3.2).

We also compare our results with those obtained by the Sighthound (2023) and OpenALPR

(2023) commercial systems (details on these systems were provided in Section 3.4).

It is impressive that, without using any heuristics rule or post-processing, our best

approach (TRBA) achieves state-of-the-art performance on all datasets except AOLP. Note that

we actually attained state-of-the-art results (e.g., 99.9%) in this dataset when employing other

models for LPR (see Table 7.5); however, we do not consider those results here as the respective

models did not perform better than TRBA on average.

Two other aspects should be highlighted from the above results. First, the positive

influence of exploiting synthetic data is reaffirmed, as our system did not achieve the best

results on most datasets when solely using real data (plus simple data augmentation) for training.

Second, both the Sighthound (2023) and OpenALPR (2023) commercial systems performed

poorly on the RodoSol-ALPR dataset (with 57.0% and 69.3% recognition rates, respectively).

As previously discussed in Chapter 5 and now detailed in Table 7.10, the primary reason for

such underwhelming results is the limited effectiveness of these systems in handling motorcycle

LPs (which have two-row character arrangement and smaller size) and Mercosur LPs. These
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Table 7.9: Recognition rates obtained by our best approach (which uses TRBA as the recognition model), state-of-

the-art methods, and two commercial systems in the eight datasets where part of the images was used for training the

networks (intra-dataset experiments). The best results achieved in each dataset are shown in bold.

Approach

Test set Caltech Cars

# 46

EnglishLP

# 102

UCSD-Stills

# 60

ChineseLP

# 161

AOLP

# 687

SSIG-SegPlate

# 804

UFPR-ALPR

# 1,800

RodoSol-ALPR

# 8,000
Average

Sighthound (2023) 87.0% 93.1% 96.7% 95.0% 95.5% 82.8% 62.9% 57.0% 83.7%

Castro-Zunti et al. (2020)‡ 91.3% − 98.3% − − − − − −

Silva and Jung (2022) − − − − 97.4% − 86.3% − −

Henry et al. (2020) 97.8% 97.1% − − 98.9% − − − −

Laroca et al. (2021b) (run 1)† 97.8% 96.1% 96.7% 98.1% 99.4% 98.8% 89.7% − −

Zhou et al. (2023) − − − − − − 90.3% − −

Silva and Jung (2022)† − − − − 99.0% − 91.8% − −

OpenALPR (2023)† 95.7% 98.0% 98.3% 96.9% 97.1% 93.0% 92.2% 69.3% 92.6%

Chen et al. (2023) − − − − − − − 96.6% −

Nascimento et al. (2023)‡ − − − − − − − 96.6% −

Ours 87.0% 91.2% 88.3% 98.1% 98.4% 98.1% 92.1% 96.8% 93.7%

Zhang et al. (2021a) − − − − − 98.6% 92.3% − −

Liu et al. (2024a)‡ − − − − 99.0% − − 97.0% −

Ours + synthetic 97.8% 99.0% 98.3% 98.8% 98.8% 99.3% 94.0% 97.3% 97.9%
†ALPR systems that rely on pre-defined heuristic rules (prior knowledge) to refine the predictions returned by the OCR model.
†The LP patches fed into the OCR model were cropped directly from the ground truth in (Castro-Zunti et al., 2020; Nascimento et al., 2023; Liu et al., 2024a).

observations underscore the importance of comparing ALPR systems across diverse datasets

that encompass various collection methodologies, feature images of different types of vehicles

(including motorcycles), and exhibit different LP layouts (including two-row configurations).

Table 7.10: Results achieved by two well-known commercial systems in the RodoSol-ALPR dataset. It can be seen

that their capabilities vary considerably according to the vehicle type and the LP layout.

System
Vehicle Type LP Layout

Cars Motorcycles Brazilian Mercosur

Sighthound (2023) 81.3% 32.7% 63.9% 50.1%

OpenALPR (2023) 95.6% 43.0% 90.7% 47.8%

There are many recent works where the authors evaluated the generalizability of the

proposed methods in the PKU (Yuan et al., 2017) and CLPD (Zhang et al., 2021c) datasets, both

collected in mainland China. Hence, in Table 7.11, we compare the results obtained by these

methods (plus Sighthound and OpenALPR) with those reached by our best approach. For each

method, we also provide details on the number of real Chinese LPs used for its training, as well

as its multinational applicability (we classify methods as multinational if they were not trained or

fine-tuned exclusively on Chinese LPs).

When exploring synthetic data for training the OCR model, our end-to-end approach

(YOLOv4-CSP + CDCC-NET + TRBA) exhibited significantly superior performance compared to

state-of-the-art methods and commercial systems on both datasets. These results are particularly

noteworthy given that our training dataset comprised only 506 real images of vehicles with

Chinese LPs, while most baseline models were trained on over 100,000 images from the CCPD

dataset (Xu et al., 2018). Indeed, this is one of the reasons why our approach did not outperform

the baselines even further, especially on the CLPD dataset, as several of the recognition errors

occurred on LP styles missing in our training set but present in CCPD (e.g., 8-character green

LPs from electric vehicles). By incorporating LP images extracted from CCPD’s training set into

our training data, mirroring previous studies, our approach achieved impressive recognition rates

of 97.3% and 99.5% on the CLPD and PKU datasets, respectively.

7.4.2.4 Speed/Accuracy Trade-Off

The importance of devising methods that strike an optimal balance between speed and accuracy

has been highlighted in recent ALPR research (Jiang et al., 2023b; Ke et al., 2023; Ding et al.,
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Table 7.11: Comparison of the recognition rates obtained by our best approach (which uses TRBA as the recognition

model), state-of-the-art methods, and commercial systems on the CLPD and PKU datasets. These experiments

assess the generalizability of these ALPR approaches, as no images from those datasets were used for training. The

methods categorized as “Multinational” were not trained or fine-tuned exclusively on Chinese LPs.

Approach
Real images of Chinese

LPs used for training
Multinational

Recognition Rate

CLPD PKU

Sighthound (2023) ? � 85.2% 89.3%

Zhang et al. (2021c) 100,000+ 87.6% 90.5%

Fan and Zhao (2022) 100,000+ � 88.5% 92.5%

Ours 506 � 90.1% 96.8%

Rao et al. (2024)† 4,444 91.4% 96.1%

Liu et al. (2021) 10,000 91.7% −

OpenALPR (2023) ? 91.8% 96.0%

Chen et al. (2023) 100,000+ 92.4% 92.8%

Ke et al. (2023) 100,000+ 93.2% −

Zou et al. (2020) 100,000+ 94.0% 96.6%

Zou et al. (2022) 100,000+ 94.5% −

Wang et al. (2022b) 100,000+ 94.8% −

Wang et al. (2022c) 100,000+ 95.3% 96.9%

Ours + synthetic 506 � 96.2% 99.4%
[Additional experiments]

Ours + CCPD’s training set 100,000+ � 94.5% 96.8%

Ours + CCPD’s training set + synthetic 100,000+ � 97.3% 99.5%
†Approaches in which we applied the authors’ code and pre-trained models to obtain the reported results.

2024). Thus, this section examines the speed/accuracy trade-off of the OCR models explored in

this chapter. Figure 7.8 compares the average recognition rates reached across datasets and the

corresponding frames per second (FPS) processing capabilities of all models, both in intra- and

cross-dataset setups.

Figure 7.8: Average recognition rate across datasets and the corresponding FPS processing capabilities for all

OCR models on intra-dataset (left) and cross-dataset (right) experiments. The specific FPS value for each model

is as follows: CNNG: 479; CR-NET: 189; CRNN: 343; Fast-OCR: 330; GRCNN: 117; Holistic-CNN: 399;

Multi-Task: 427; Multi-Task-LR: 463; R2AM: 63; RARE: 77; Rosetta: 219; STAR-Net: 141; TRBA: 59; ViTSTR-

Base: 137; ViTSTR-Small: 142; and ViTSTR-Tiny: 145.

In intra-dataset scenarios, the multi-task models, particularly Multi-Task and CNNG,

demonstrated an exceptional balance between speed and accuracy. This success stems from their

ability to learn potential classes for each character position independently, avoiding confusion

between similar letters and digits in layouts where they appear in distinct positions. If the primary

goal is to achieve the utmost recognition rate across various scenarios, STAR-Net stands as a

more compelling option compared to TRBA. This is because STAR-Net reached the same average

recognition rate as TRBA (97.9%) while processing more than twice the FPS (141 vs. 59).
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In cross-dataset scenarios, as outlined in Section 7.4.2.2, TRBA once again emerged as

the top performer in terms of average recognition rate, standing alone this time, while STAR-

Net was outperformed by RARE. Concerning the trade-off between speed and accuracy, the

Fast-OCR model clearly excels, striking a commendable balance between the two. Its relatively

high accuracy on unseen LPs can be attributed to its foundation on the YOLO object detector.

Consequently, it detects and recognizes each character individually, as opposed to predicting

specific LP sequences that mimic patterns from the training set. Conversely, the multi-task

models experienced a substantial decline in recognition rate precisely because they learned to

predict sequences based on patterns observed in the training set, which often differ from those

observed in other datasets/scenarios.

Regarding the ViTSTR variants, it is worth noting that they handle essentially the same

number of FPS. This is because the key differentiation among the ViTSTR-Base, -Small and

-Tiny models lies in their respective number of parameters and computations required (FLOPS),

rather than in the number of FPS they can process (Atienza, 2021b).

7.5 Final Remarks

This chapter delves into the integration of real and synthetic data for improved LPR. Synthetic LP

images were generated using three widely adopted methodologies in the literature: a rendering-

based pipeline (templates), character permutation, and a GAN model. We subjected 16 OCR

models to a thorough benchmarking process involving 12 public datasets acquired from various

regions. The experiments encompassed both intra- and cross-dataset evaluations, including an

examination of the speed/accuracy trade-off of the models. To the best of our knowledge, this

constitutes the most extensive experimental evaluation conducted in the field.

Several key findings emerged from our study. Primarily, the massive use of synthetic

data significantly improved the performance of all models. Both quantitative and qualitative

results demonstrated the models’ robustness in effectively handling diverse LP layouts, images

with varying resolutions, and LPs with varying numbers of characters arranged in either one

or two rows. Notably, employing the top-performing OCR model (TRBA) yielded end-to-end

results that surpassed those reached by state-of-the-art methods and established commercial

systems in both intra- and cross-dataset scenarios. These results are particularly noteworthy as

our models were not specifically trained for each LP layout, and we refrained from incorporating

heuristic rules to enhance the predictions for LPs from specific regions through post-processing.

This streamlined approach significantly simplifies the process of incorporating support for LPs

from new regions or even markedly different LP styles within the same region.

The conducted ablation studies provided three important insights. First, each synthesis

method contributed considerably to enhancing the results, and a substantial synergistic effect was

observed when combining them. This finding contrasts with the common practice of generating

synthetic LPs exclusively through a single methodology. Second, incorporating synthetic data into

the training set enabled commendable results to be attained even when using small fractions of

the original data. This highlights the effectiveness of synthetic data in overcoming the challenges

posed by scarce training data. Third, consistent with findings from prior research, rectifying the

LPs before the recognition stage proved essential for achieving optimal LPR performance.

Acknowledging the significance of both model speed and accuracy in real-world

applications, we investigated how well the models strike a balance between these two factors.

Although the multi-task models demonstrated an impressive speed/accuracy trade-off in intra-

dataset scenarios, this optimal balance did not extend to cross-scenario scenarios. In such

instances, these models exhibited a more substantial decline in recognition rates than most other
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models. Remarkably, in cross-dataset scenarios, Fast-OCR stood out due to its great balance

between speed and accuracy. The effectiveness of Fast-OCR in cross-dataset scenarios can be

attributed to its character-level detection and recognition approach, setting it apart from other

models that predict LP sequences by replicating patterns from the training set. While this

replication approach proves effective in similar contexts, its efficacy tends to diminish when

applied to different regions or scenarios.

It is essential to acknowledge the extensive number of experiments conducted for this

study. We carried out nine training sessions for each of the 16 OCR models under investigation

(refer to Table 7.7), subjecting them to testing across various seen and unseen datasets. We

also explored the pix2pix model’s capabilities for generating LP images and performed multiple

experiments related to the LPD and corner detection tasks, as reported in Tables 7.3 and 7.4.

As mentioned earlier in this work, a single training process for some models (e.g., TRBA and

ViTSTR-Base) takes several days to complete on an NVIDIA Quadro RTX 8000 GPU, which is

currently one of the top-performing GPUs in the market.
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8. DO WE TRAIN ON TEST DATA? THE IMPACT OF NEAR-DUPLICATES ON
LICENSE PLATE RECOGNITION

LPR methods are typically evaluated using images from public datasets, which are divided into

disjoint training and test sets using standard splits, defined by the datasets’ authors, or following

previous works (when there is no standard split). In many cases, such an assessment is carried out

independently for each dataset (Laroca et al., 2018; Zhuang et al., 2018; Weihong and Jiaoyang,

2020; Zhang et al., 2021d; Ke et al., 2023; Pham, 2023).

Although the images for training and testing belong to disjoint sets, the splits traditionally

adopted in the literature were defined without considering that the same LP may appear in

multiple images. As a result, we found that there are many near-duplicates (i.e., different images

of the same LP) in the training and test sets of datasets widely explored in ALPR research (see

Section 8.1.1). In this chapter, to evaluate the impact of such duplicates on LPR, we focus our

analysis on the AOLP (Hsu et al., 2013) and CCPD (Xu et al., 2018) datasets, as they are the most

popular datasets in the field. Nevertheless, Section 8.3 highlights the existence of near-duplicates

in several other datasets and gives examples of how it has been overlooked in the literature.

Considering that recent ALPR approaches rectify (unwarp) the detected LPs before

feeding them to the recognition model (Fan and Zhao, 2022; Qin and Liu, 2022; Silva and Jung,

2022; Wang et al., 2022c; Xu et al., 2022; Jiang et al., 2023b), the presence of duplicates in

the training and test sets means that LPR models are, in many cases, being trained and tested

on essentially the same images (see Figure 8.1). This is a critical issue for accurate scientific

evaluation (Barz and Denzler, 2020; Emami et al., 2020). Researchers aim to compare models in

terms of their ability to generalize to unseen data (Feldman and Zhang, 2020; Liao et al., 2021).

With a considerable number of duplicates, however, there is a risk of comparing the models in

terms of their ability to memorize training data, which increases with the model’s capacity (Barz

and Denzler, 2020; Hooker et al., 2020).

AOLP (Protocol A) AOLP (Protocol B) CCPD (latest version)

T
ra

in
in

g
T
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t

Figure 8.1: Examples of near-duplicates in the training and test sets of the AOLP and CCPD datasets, which are by

far the two most popular datasets in the LPR literature. The top row shows LPs cropped and rectified from images in

the training sets, while the bottom row shows LPs cropped and rectified from their nearest neighbors in the respective

test set. We show three image pairs for each dataset representing the 10th, 50th and 90th percentiles based on their

Euclidean distance in pixel space. Protocols A and B in the AOLP dataset are described in Section 8.1.1.

In light of this, we create fair splits for the AOLP and CCPD datasets (see Section 8.2.1)

and compare the performance of six well-known OCR models applied to LPR under the

original (adopted in previous works) and fair protocols22. Our results indicate that the presence

of duplicates greatly affects the performance evaluation of these models. Considering the

experiments under the AOLP-B protocol as an example, the model that reached the best results

under the traditional split ranked third under the fair one. Such results imply that the duplicates

have biased the evaluation and development of deep learning-based models for LPR.

22 An article version of this chapter was accepted for presentation at the 2023 International Joint Conference on
Neural Networks (ĲCNN) (Laroca et al., 2023a).
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This chapter builds upon the work of Barz and Denzler (2020), who identified duplicates

within the CIFAR-10 and CIFAR-100 datasets. It is further motivated by the results presented in

Chapter 5, particularly the substantial drops observed in LPR performance when training and

testing state-of-the-art models in a leave-one-dataset-out experimental setup.

In summary, this chapter has two main contributions:

• We reveal the presence of near-duplicates in the training and test sets of datasets widely

adopted in the ALPR literature. Our analysis shows the impact of such duplicates on the

evaluation of six well-known recognition models applied to LPR.

– Our results on the AOLP dataset indicate that the high fraction of near-duplicates in

the splits traditionally employed in the literature may have hindered the development

and acceptance of more efficient LPR models that have strong generalization abilities

but do not memorize duplicates as well as other models;

– Our experiments on the CCPD dataset give a clearer picture of the true capabilities

of LPR models compared to prior evaluations using the standard split, in which the

test set has duplicates in the training set. Results revealed a decrease in the average

recognition rate from 80.3% to 77.6% when the experiments were conducted under

a fair split without duplicates.

• We create and release fair splits for these datasets where there are no duplicates in the

training and test sets, and the key characteristics of the original partitions are preserved

as much as possible (see details on Section 8.2.1).

This chapter is structured as follows. We describe the AOLP and CCPD datasets in

Section 8.1, detailing the protocols often adopted for each and how many near-duplicates they

have. Section 8.2 details the experiments performed. The presence of duplicates in other popular

datasets is discussed in Section 8.3. Finally, conclusions are provided in Section 8.4.

8.1 The AOLP and CCPD Datasets

The two most popular datasets for ALPR (in terms of the number of works that explored them)

are AOLP (Hsu et al., 2013) and CCPD (Xu et al., 2018). While most authors explored at least

one of these two datasets in their experiments (Li et al., 2019; Silva and Jung, 2022; Dai et al.,

2024), there are many works in which the experiments were performed exclusively on them (Xie

et al., 2018; Zhang et al., 2020c; Liang et al., 2022; Pham, 2023).

AOLP was created to verify that ALPR is better handled in an application-oriented

way. It is categorized into three subsets: access control (AC), traffic law enforcement (LE), and

road patrol (RP). These subsets have 681, 757 and 611 images, respectively, all captured in the

Taiwan region.

The AOLP dataset lacks a standardized division for training and testing purposes, leading

researchers to adopt various approaches. For instance, some authors (e.g., Xie et al. (2018);

Laroca et al. (2021b); Liang et al. (2022)) randomly divided its images into training and test sets

with a 2:1 ratio (we refer to this protocol as AOLP-A). Others, including Li et al. (2019); Zhang

et al. (2021d); Wang et al. (2022c), used images from different subsets for training and testing.

For example, Fan and Zhao (2022); Nguyen (2022); Qin and Liu (2022) used images from the

AC and LE subsets to train the proposed models and tested them on the RP subset (we refer to

this protocol as AOLP-B). Zhuang et al. (2018) evaluated their method under both the AOLP-A

and AOLP-B protocols. As commonly done in previous works, we consider that 20% of the

training images are allocated for validation in both protocols.
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Xu et al. (2018) claimed that the ALPR datasets available at the time (including AOLP)

either lacked quantity (i.e., they had less than 10k images) or diversity (i.e., they were collected

by static cameras or in overly controlled settings). Thus, to assist in better benchmarking ALPR

approaches, they presented the CCPD dataset.

CCPD comprises images taken with handheld cameras by workers of a roadside parking

management company on the streets of a capital city in mainland China. The dataset was

updated/expanded twice after being introduced in 201823. It originally consisted of 250k images,

divided into subsets (e.g., Blur, Challenge, Rotate, Weather, among others) according to their

characteristics (Xu et al., 2018). Then, in 2019, the authors released a new version – much more

challenging than the previous one – containing over 300k images, refined annotations, and a

standard split. In summary, in this protocol, the 200k images in the “Base” subset are split into

training and validation sets (50%/50%), while all images from the other subsets are employed

for testing. Finally, in 2020, the authors included a new subset (Green) with 11,776 images of

electric vehicles, which have green LPs with eight characters (all the other subsets have images

of vehicles with blue LPs containing seven characters). The Green subset has a standard split,

with 49% of the images allocated for training, 8.5% for validation, and 42.5% for testing. This

latest iteration of CCPD (2020) is the version explored in this chapter.

8.1.1 Duplicates

The problem with these split protocols is that they do not account for the same vehicle/LP

appearing in multiple images, including images from different subsets, as shown in Figure 8.2

and Figure 8.3. While one may claim that such images have enough variety to be used both for

training and testing LP detectors, as they are fed the entire images, not just the LP region, it

seems reasonable to consider that such images should not be employed in the same way (i.e.,

for both training and testing) in the recognition stage, as the LPs look very similar after being

cropped and rectified. In fact, they can look very similar even without rectification (e.g., see (d)

and (e) in Figure 8.2).

In the AOLP dataset, considering the AOLP-A split protocol24, there are 320 duplicates

from the test set in the training one. As there are 683 test images in this protocol, 46.9% of them

have duplicates. Startlingly, the number of duplicates is even higher in the AOLP-B split protocol,

where 413 of the 611 test images (67.6%) have duplicates in the training set.

The situation is less severe – albeit still concerning – for the CCPD dataset, where we

found 29,943 duplicates from the test set in the training set. Despite the much higher number of

duplicates in absolute terms, CCPD’s current version has ≈157k images with labeled LPs in the

test set; that is, the duplicates amount to 19.1% of the test images.

8.2 Experiments

This section presents the experiments conducted for this study. First, we describe the duplicate-

free splits proposed for the AOLP and CCPD datasets. Then, we list the six OCR models explored

in this chapter’s assessments. Afterward, we show some examples of the synthetic images created

to avoid overfitting during model training. Finally, we report and analyze the results obtained.

23 CCPD’s latest version is available at https://github.com/detectRecog/CCPD/
24 We replicated the split made in (Laroca et al., 2021b) of AOLP’s images into training, validation and test sets.
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(a) Subset AC (b) Subset LE (c) Subset RP

(d) Subset AC (e) Subset AC (f) Subset RP

Figure 8.2: Examples of images from different subsets in the AOLP dataset that show the same vehicle/LP. In the

split protocols often adopted in the literature, some of these images are in the training set and others are in the test

set. We show a zoomed-in version of the rectified LP in the lower left region of each image for better viewing.

Subset Base Subset Base Subset Base Subset Base

(a) Training set

Subset Challenge Subset Challenge Subset Weather Subset Weather

(b) Test set

Figure 8.3: The same vehicle/LP may appear in both training and test images in the CCPD dataset (Xu et al., 2018).

We show a zoomed-in version of the rectified LP in the lower left region of each image for better viewing.
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8.2.1 Duplicate-Free Splits for the AOLP and CCPD Datasets

As the AOLP and CCPD datasets do not have data scraped from the internet (as CIFAR-10 and

CIFAR-100 do, for example), we cannot replace the duplicates with new images due to the risk of

selection bias or domain shift (Torralba and Efros, 2011; Tommasi et al., 2017; Barz and Denzler,

2020). Therefore, we present fair splits for each dataset where there are no duplicates of the test

images in the training set25. As detailed next, we attempted to preserve the key characteristics of

the original splits in the new ones as much as possible.

The AOLP-Fair-A split was created as follows. Following previous works (Xie et al.,

2018; Zhuang et al., 2018; Liang et al., 2022), we randomly divided each of the three subsets

of the AOLP dataset into training and test sets with a 2:1 ratio. Nevertheless, we ensured that

distinct images showing the same vehicle/LP (as those shown in Figure 8.2) were all in the same

set. Afterward, we allocated 20% of the training images for validation. In this way, the AOLP-A

(adopted in previous works) and AOLP-Fair-A protocols have the same number of images for

training, testing and validation.

The core idea of the AOLP-B protocol is to train the approaches on the AC and LE

subsets and test them on the RP subset (Fan and Zhao, 2022; Qin and Liu, 2022; Nguyen, 2022).

Thus, we created the AOLP-Fair-B protocol in the following way. We kept the original training

and validation sets and removed the duplicates from the test set; otherwise, one could ask whether

a potential drop in recognition rate is solely due to the reduction in the number of training

examples available. In other words, the test sets for the AOLP-B and AOLP-B-Fair splits are

different, with the AOLP-B-Fair’s test set being a duplicate-free subset of the AOLP-B’s test set.

However, the training and validation sets are exactly the same in both splits.

As mentioned in Section 8.1.1, CCPD’s standard split randomly divides the 200k images

of the Base subset into training (100k) and validation (100k) sets. All images from the other

subsets are used for testing (except Green, which was introduced later and has its own split).

In order to maintain such a distribution, we created the CCPD-Fair split as follows. The Base

subset was divided into training and validation sets with 100k images each, as in the original

split. Nevertheless, instead of making this division completely random, we made the training set

free of duplicates by allocating all duplicates to the validation set26. Similarly, we followed the

original split for the Green subset as closely as possible, just reallocating the duplicates from

the training set to the validation set. The test set has not changed. In essence, the original and

CCPD-Fair splits use the same ≈ 157k images for testing but have different images in the training

and validation sets (each with ≈ 103k images – about 100k from Base and 3k from Green).

8.2.2 OCR Models

This chapter focuses on six of the OCR models used in previous chapters: CNNG (Fan and Zhao,

2022), Holistic-CNN (Špaňhel et al., 2017), Multi-Task (Gonçalves et al., 2018), STAR-Net (Liu

et al., 2016), TRBA (Baek et al., 2019), and ViTSTR-Base (Atienza, 2021b). These models

were selected based on their performance in prior evaluations. Note that the CCPD dataset lacks

annotations for character positions, rendering CR-NET and Fast-OCR unusable for this analysis.

We trained the models using the same frameworks and hyperparameters as in previous

chapters (see Section 5.1 for details).

25 The list of near-duplicates we have found and proposals for fair splits are publicly available for further research

at https://raysonlaroca.github.io/supp/lpr-train-on-test/
26 We trained the OCR models with and without duplicates in CCPD-Fair’s validation set, which is used for early

stopping and choosing the best weights. As the results achieved in the test set were essentially the same, we kept the

same number of validation images (100k-103k) as in the original division.
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8.2.3 Synthetic Data

It is well-known that (i) LPR datasets usually have a significant imbalance in terms of character

classes as a result of LP assignment policies (Gonçalves et al., 2018; Fan and Zhao, 2022) and

(ii) OCR models are prone to memorize patterns seen in the training stage (Zeni and Jung, 2020;

Garcia-Bordils et al., 2022); this phenomenon was termed vocabulary reliance in (Wan et al.,

2020). To mitigate the risk of overfitting, we incorporated many synthetic LP images into the

training set. We opted to generate these images using templates, mirroring the methodology

outlined in the preceding chapter (Section 7.2.1), as this method does not rely on real images.

Examples of the LP images generated for this chapter’s experiments are shown in Figure 8.4.

Figure 8.4: Some of the many LP images we created to mitigate overfitting. The images in the top row simulate

LPs from vehicles registered in the Taiwan region (as in AOLP), while those in the bottom row simulate LPs from

vehicles registered in mainland China (as in CCPD).

8.2.4 Results and Discussion

Here, we report the recognition rates reached by the OCR models in each dataset under the

original and fair splits27. As usual, recognition rate refers to the number of correctly recognized

LPs divided by the number of LPs in the test set. Following (Barz and Denzler, 2020), in addition

to the recognition rates obtained in the original and fair protocols, we report their differences in

terms of absolute percentage points (“Gap”) and in relation to the original error (“Rel. Gap”):

Rel. Gap =
gap

100% − acc
(8.1)

The results reached by all OCR models on the AOLP dataset are shown in Tables 8.1

and 8.2. In both protocols (AOLP-A and AOLP-B), the recognition rates obtained in the fair split

were considerably lower than those achieved in the original one. Specifically, the error rates
were more than twice as high in the experiments conducted under the fair protocols.

Table 8.1: Recognition rates achieved by six OCR models under the AOLP-A (adopted in previous works) and

AOLP-Fair-A (ours) protocols. The best value in each column is shown in bold.

Model AOLP-A ↑ AOLP-A-Fair ↑ Gap ↓ Rel. Gap ↓

CNNG (Fan and Zhao, 2022) 98.88% 95.63% 3.25% 290.2%

Holistic-CNN (Špaňhel et al., 2017) 96.75% 93.11% 3.64% 112.0%
Multi-Task (Gonçalves et al., 2018) 97.33% 93.79% 3.54% 132.6%

STAR-Net (Liu et al., 2016) 98.69% 95.83% 2.86% 218.3%

TRBA (Baek et al., 2019) 99.18% 96.94% 2.24% 273.2%

ViTSTR-Base (Atienza, 2021b) 98.74% 96.94% 1.80% 142.9%

It is crucial to note that the ranking of the recognition models changed when they were

trained and tested under fair splits. For example, the CNNG model achieved the best result under

27 We reinforce that all results reported in this chapter are from our experiments (i.e., we trained all recognition

models following precisely the same protocol in each set of experiments) and not replicated from the cited papers.
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Table 8.2: Recognition rates achieved by six OCR models under the AOLP-B (adopted in previous works) and

AOLP-Fair-B (ours) protocols. The best value in each column is shown in bold.

Model AOLP-B ↑ AOLP-B-Fair ↑ Gap ↓ Rel. Gap ↓

CNNG (Fan and Zhao, 2022) 98.91% 96.80% 2.11% 193.6%

Holistic-CNN (Špaňhel et al., 2017) 98.42% 96.30% 2.12% 134.2%

Multi-Task (Gonçalves et al., 2018) 98.42% 95.29% 3.13% 198.1%

STAR-Net (Liu et al., 2016) 98.47% 96.46% 2.01% 131.4%

TRBA (Baek et al., 2019) 98.75% 97.47% 1.28% 102.4%
ViTSTR-Base (Atienza, 2021b) 98.75% 97.31% 1.44% 115.2%

the AOLP-B protocol (as in (Fan and Zhao, 2022), where it was proposed) but only reached the

third-best result under AOLP-Fair-B. Similarly, the ViTSTR-Base model ranked third under the

AOLP-A protocol but tied for first place with TRBA under AOLP-Fair-A.

These results strongly suggest that, in the past, the high fraction of near-duplicates in

the splits traditionally adopted in the literature for the AOLP dataset may have prevented the

publication and adoption of more efficient LPR models that can generalize as well as other models

but fail to memorize duplicates. A similar concern was raised by Barz and Denzler (2020) with

respect to the CIFAR-10 and CIFAR-100 datasets.

The results for the CCPD dataset are presented in Table 8.3, with a further breakdown

provided in Table 8.4 following established practices in the field (Xu et al., 2018; Chen et al.,

2023; Liu et al., 2024b). While the largest drop in recognition rate was 3.64% in the AOLP

dataset, the STAR-Net and TRBA models had drops of 5.20% and 4.35% in recognition rate

under the CCPD-Fair protocol, respectively. The average recognition rate decreased from 80.3%

to 77.6%, with the relative gaps being much smaller than those observed in the AOLP dataset

because the recognition rates reached in CCPD were not as high (we note that lower recognition

rates were expected for the CCPD dataset, as its creators modified it twice with the specific

purpose of making it much more challenging than it was initially).

Table 8.3: Recognition rates achieved by six well-known recognition models on the CCPD dataset under the standard

and CCPD-Fair protocols. The best value in each column is shown in bold.

Model CCPD ↑ CCPD-Fair ↑ Gap ↓ Rel. Gap ↓

CNNG (Fan and Zhao, 2022) 88.24% 86.93% 1.31% 11.1%

Holistic-CNN (Špaňhel et al., 2017) 77.01% 75.41% 1.60% 7.0%

Multi-Task (Gonçalves et al., 2018) 83.01% 81.84% 1.17% 6.9%
STAR-Net (Liu et al., 2016) 78.53% 73.33% 5.20% 24.2%

TRBA (Baek et al., 2019) 75.83% 71.48% 4.35% 18.0%

ViTSTR-Base (Atienza, 2021b) 79.06% 76.37% 2.69% 12.9%

Examining the absolute number of errors may give a clearer understanding of the impact

of duplicates on the evaluation of the recognition models. The lowest performance gap of 1.17%

translates to 1,800+ additional LPs being misrecognized under the fair split (vs. the standard

one), while the highest performance gap of 5.2% represents a staggering number of 8,000+ more

LPs being incorrectly recognized under the fair split.

In contrast to the observed in the AOLP dataset, the model rankings remained largely

consistent in CCPD, with only the fourth and fifth places switching positions. This is partially

due to the significant performance gap between the models and suggests that the community’s

research efforts have not yet overfitted to the presence of duplicates in the standard split of the

CCPD dataset. However, we fundamentally believe it is only a matter of time before this starts

to happen or be noticed (potentially with the use of deeper models, as the ability to memorize
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Table 8.4: Recognition rates (%) for each subset of the CCPD dataset under the standard and CCPD-Fair protocols.

Model

Subset Blur

21K

Chal.

50K

DB

10K

FN

21K

Green

5K

Rot.

10K

Tilt

30K

Weath.

10K

All

157K

CCPD
CNNG (Fan and Zhao, 2022) 77.3 84.1 80.8 91.0 94.2 97.4 95.5 99.3 88.2
Holistic-CNN (Špaňhel et al., 2017) 52.0 68.8 67.8 81.9 93.0 95.2 91.4 99.1 77.0
Multi-Task (Gonçalves et al., 2018) 68.4 77.1 73.2 86.1 93.8 96.0 92.6 98.8 83.0
STAR-Net (Liu et al., 2016) 58.7 71.2 64.9 83.3 91.7 94.9 91.2 98.4 78.5
TRBA (Baek et al., 2019) 50.2 67.9 59.6 81.9 92.7 94.7 91.1 98.4 75.8
ViTSTR-Base (Atienza, 2021b) 56.4 72.0 65.9 84.6 94.0 95.5 92.2 98.8 79.1

CCPD-Fair
CNNG (Fan and Zhao, 2022) 73.4 82.8 78.8 90.2 92.8 97.0 95.1 99.2 86.9
Holistic-CNN (Špaňhel et al., 2017) 47.9 66.8 65.6 81.2 91.2 95.1 90.9 98.2 75.4
Multi-Task (Gonçalves et al., 2018) 65.7 75.7 71.5 85.3 92.0 95.6 92.2 98.7 81.8
STAR-Net (Liu et al., 2016) 46.4 64.3 57.2 79.7 91.5 93.9 89.6 98.0 73.3
TRBA (Baek et al., 2019) 38.7 62.7 52.4 80.0 91.2 93.8 89.3 98.1 71.5
ViTSTR-Base (Atienza, 2021b) 50.2 68.4 63.5 82.5 93.5 95.1 91.1 98.7 76.4

training data increases with the model’s capacity (Barz and Denzler, 2020; Hooker et al., 2020)) in

case such near-duplicates in the training and test sets are not acknowledged and therefore avoided.

8.3 What About Other Datasets?

As mentioned earlier, we focused our analysis on the AOLP and CCPD datasets due to their

predominance in the ALPR literature (Xie et al., 2018; Qin and Liu, 2020; Zhang et al., 2020c;

Liang et al., 2022; Pham, 2023). Nevertheless, as this issue (i.e., LPR models being evaluated in

datasets containing near-duplicates in the training and test sets) has not yet received due attention

from the community, it has recurred in assessments carried out on several other public datasets.

Consider the EnglishLP (Srebrić, 2003), Medialab LPR (Anagnostopoulos et al., 2008)

and PKU (Yuan et al., 2017) datasets as examples (they are quite popular, albeit far less than

AOLP and CCPD). They all have near-duplicates, as shown in Figure 8.5. As these datasets

lack an official evaluation protocol, it is common for authors to divide their images into training,

validation and test sets randomly (Zhuang et al., 2018; Gao et al., 2020a; Khan et al., 2021;

Zhang et al., 2021d; Qin and Liu, 2022). As can be inferred, the presence of near-duplicates in

these datasets has also been overlooked in such setups.

The ReId dataset (Špaňhel et al., 2017) differs from the datasets mentioned above by

having a standard protocol. It has 182,335 images of cropped low-resolution LPs, of which

105,923 are in the training set and 76,412 are in the test set. We found that 52,394 (68.6%)

of the test images have near-duplicates in the training set (see some examples in Figure 8.6).

Although alarming, the high fraction of duplicates has gone unacknowledged in works using the

ReId dataset for experimentation (Špaňhel et al., 2018; Wu et al., 2019; Moussa et al., 2022).

We also want to draw attention to the fact that there are duplicates even across different

datasets. Recently, Zhang et al. (2021c) released the CLPD dataset, which comprises 1,200

images gathered from multiple sources such as the internet, mobile phones, and car driving

recorders. The authors employed all images for testing to verify the practicality of their LP

detection and recognition models, trained on other datasets. Subsequent studies have followed

this protocol (Zou et al., 2020, 2022; Liu et al., 2021; Zhang et al., 2021d; Chen et al., 2023; Ke

et al., 2023; Rao et al., 2024). The problem is that several vehicles/LPs shown in CLPD are also

shown in the ChineseLP dataset (Zhou et al., 2012) (see Figure 8.7). That is, if not yet, images

from the ChineseLP dataset will eventually be used to train ALPR systems that will then be tested
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(a) EnglishLP (b) Medialab LPR (c) PKU

Figure 8.5: ALPR datasets that do not have a well-defined evaluation protocol are customarily divided into training

and test sets randomly without the authors noticing that the same vehicle/LP may appear in multiple images. Above,

we show a pair of near-duplicates from each of the EnglishLP, Medialab LPR, and PKU datasets. Observe that it is

common for an LP to look very similar in different images even without rectification. We show a zoomed-in version

of the rectified LP in the lower left region of each image for better viewing.

(a) Training set

(b) Test set

Figure 8.6: Examples of near-duplicates in the ReId dataset (Špaňhel et al., 2017). It is clear that such duplicates

may also considerably bias the evaluation of ALPR systems that do not perform rectification before the LPR stage.

on the CLPD dataset. These experiments will likely be regarded as “cross-dataset,” although

perhaps they should not. In our experiments, presented in previous chapters, we addressed this

concern by excluding from the training set any images from the ChineseLP dataset that are also

present in the CLPD dataset (see footnote 18 on page 93).

One last example that highlights the overlooked nature of this issue can be found in the

work of Gong et al. (2022). They presented a detailed comparison between multiple datasets

gathered in mainland China, including ChineseLP and CLPD, without noticing the existence of

duplicates across them.

It is noteworthy that we incorporated measures while defining the standard split for the

RodoSol-ALPR dataset to ensure the absence of duplicates within the training and test sets.

8.4 Final Remarks

We drew attention to the large fraction of near-duplicates within the training and test sets of datasets

widely adopted in ALPR research. Both the existence of such duplicates and their influence on

the performance evaluation of LPR models have largely gone unnoticed in the literature.

Our experiments on the AOLP and CCPD datasets, the most commonly used in the field,

showed that the presence of near-duplicates significantly impacts the performance evaluation
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(a) Images from ChineseLP (Zhou et al., 2012)

(b) Images from CLPD (Zhang et al., 2021c)

Figure 8.7: There are duplicates even across different datasets. The above images were taken from the ChineseLP

and CLPD datasets, both of which contain images scraped from the internet. The presence of near-duplicates across

datasets can significantly bias the results of cross-dataset experiments.

of OCR models applied to LPR. In the AOLP dataset, the error rates reported by the models

were more than twice as high in the experiments conducted under the fair splits. The ranking

of the models also changed when they were trained and tested under duplicate-free splits. In

the more challenging CCPD dataset, the models showed recognition rate drops of up to 5.2%.

Specifically, the average recognition rate decreased from 80.3% to 77.6% when the experiments

were conducted under the fair split compared to the standard one. These results indicate that

duplicates have biased the evaluation and development of deep learning-based models for LPR.

We created the fair splits for the abovementioned datasets by dividing their images

into new training, validation and test sets while ensuring that no duplicates from the test set

are present in the training set and preserving the original splits’ key characteristics as much as

possible. These new splits and the list of duplicates found are publicly available.

We hope the work conducted in this chapter will encourage LPR researchers to train and

evaluate their models using the fair splits we created for the AOLP and CCPD datasets and to

beware of duplicates when performing experiments on other datasets. This chapter also provides

researchers with a clearer understanding of the true capabilities of LPR models that have only

been evaluated on test sets that include duplicates from the training set.
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9. A FIRST LOOK AT DATASET BIAS IN LICENSE PLATE RECOGNITION

Is it possible to accurately determine the dataset from which an LP image originates? Initially,

one may think that this task is fairly trivial since – in principle – images from distinct datasets are

collected in different regions, with different hardware, for different purposes, etc. On second

thought, one may realize that it depends on the datasets we are comparing.

Suppose there are two datasets, one composed exclusively of images of American LPs

and the other of images of European LPs. In that case, it should indeed be relatively straightforward

to distinguish which dataset each LP image belongs to due to the many characteristics LPs from

the same region share in common, e.g., the aspect ratio, colors, symbols, the position of the

characters, the number of characters, among others. Nevertheless, beyond the LP layout, are there

unique signatures (bias) in each dataset that would enable identifying the source of an LP image?

The presence of unique signatures in public datasets was first revealed by Torralba

and Efros (2011). They investigated the then-popular object recognition datasets (PASCAL’07,

ImageNet, among others) using the Name That Dataset! experiment in which a Support Vector

Machine (SVM) classifier was trained to distinguish images from 12 datasets. If dataset bias
did not exist, no classifier would be able to perform this task at levels considerably different

from chance. However, their classifier reached an accuracy of 39%, which is significantly better

than chance (1/12 = 8%). This result becomes even more surprising when taking into account

that those datasets were created with the expressed goal of being as varied and rich as possible,

aiming to sample the visual world “in the wild” (Torralba and Efros, 2011).

Dataset bias has been consistently recognized as a severe problem in the computer

vision community (Tommasi et al., 2017; Ashraf et al., 2018; Wachinger et al., 2021; Jaipuria

et al., 2022; Hort et al., 2023), given that models are inadvertently learning idiosyncrasies of

each dataset along with knowledge fundamental to the task under study. Nevertheless, to the best

of our knowledge, this bias has remained largely unnoticed in the LPR literature.

Considering the above discussion, in this chapter we revisit the experiments conducted

by Torralba and Efros (2011), adapting them to the LPR context28 (see Figure 9.1, where we

recreate the Name That Dataset! game with Brazilian LPs). Our experiments, performed on

public datasets acquired in Brazil and mainland China, demonstrate that a lightweight CNN

can identify the source dataset of an LP image with more than 95% accuracy, which is much

higher than expected from chance or human perceptual similarity judgments. Intriguingly, our

experiments also show no signs of saturation as more training data is added, i.e., the classification

accuracy could be even higher if there were more training data.

The severity of the dataset bias problem in LPR boils down to the following. LPR

datasets are usually very unbalanced in terms of character classes due to LP assignment policies,

as previously discussed. In a dataset collected in Brazil, for instance, one letter may appear much

more frequently than others according to the state in which most vehicles were registered; for

example, the SSIG-SegPlate dataset (Gonçalves et al., 2016a) has 746 instances of the letter ‘O’

but only 135 instances of the letter ‘Q’. The same is true for vehicles registered in different cities

within a province in mainland China (Zhang et al., 2021c; Wang et al., 2022c). Taking into

account that LPR models are generally trained and evaluated on images from the same dataset (as

detailed in Chapter 5), such bias can skew the predictions toward the prominent character classes

28 This chapter – in article form – was accepted for presentation at the 2022 Conference on Graphics, Patterns
and Images (SIBGRAPI) (Laroca et al., 2022b).
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(a)(a)(a)(a)(a)(a)))) (b)) (c)(c)c

(d(d)d)d)(d (e)((e) (f)f)

(g) (h) (i)i)(i)

(j)(j) (k)(k)(k)(k (l)(l)l))(l)(l)l)

(m)(m) (n)(n (o)

RodoSol-ALPR (ES): ___ , ___ , ___ , ___ SSIG-SegPlate (MG): ___ , ___ , ___ , ___

UFOP (MG): ___ , ___ , ___ , ___ UFPR-ALPR (PR): ___ , ___ , ___

Figure 9.1: Can you name the dataset to which each of the above images belongs? (you can try grouping the

images into four distinct groups if you are unfamiliar with the corresponding datasets). See footnote29 for the

answer key. This task is somewhat challenging for humans, as LP images from distinct datasets have similar

characteristics. However, a shallow CNN (3 conv. layers) predicts the correct dataset in more than 95% of cases

(chance is 1/4 = 25%). All images above were classified correctly, with a mean confidence value of 95.9%.

within that particular dataset, resulting in poor performance on other datasets and, naturally, in

real-world scenarios (Yang et al., 2018; Zhang et al., 2020c).

The aim of this chapter is two-fold. First, to situate the dataset bias problem in the LPR

context and thus raise awareness in the community regarding the possible impacts of such bias as

this issue is not getting the attention it deserves. Second, to discuss some subtle ways bias may

have crept into the chosen datasets to outline directions for future research.

The subsequent sections of this chapter are structured as follows. Section 9.1 provides a

concise overview of the motivation behind this chapter. Section 9.2 outlines the experiments

carried out and presents the corresponding results. In Section 9.3, we shed light on the impacts

of dataset bias on the cross-dataset generalization of LPR models, offering insights into potential

causes. Lastly, Section 9.4 summarizes the key findings of the chapter.

9.1 Motivation

The standard method of evaluating an LPR method’s performance is to use multiple publicly

available datasets, such as SSIG-SegPlate (Gonçalves et al., 2016a) and CCPD (Xu et al.,

2018), which are split into disjoint training and test sets. Such an assessment is typically done

independently for each dataset (Zhuang et al., 2018; Weihong and Jiaoyang, 2020; Zhang et al.,

2021d; Ke et al., 2023). As models based on deep learning can take significant time to be trained,

some authors have adopted a slightly different protocol where the proposed networks are trained

once on the union of the training images from the chosen datasets and evaluated individually

on the respective test sets (Selmi et al., 2020; Laroca et al., 2021b; Qin and Liu, 2022; Silva

and Jung, 2022). Although the images for training and testing belong to disjoint subsets, these

protocols do not make it clear whether the evaluated models have good generalization ability,

i.e., whether they perform well on images from other scenarios/datasets, mainly due to domain

divergence and data selection bias (Torralba and Efros, 2011; Tommasi et al., 2017).

In Chapter 5, we showed that there are significant drops in LPR performance across

various datasets when employing well-known OCR models such as Facebook’s Rosetta (Borisyuk

29Answer key: RodoSol-ALPR → (a),(d),(h),(l); SSIG-SegPlate → (e),(i),(j),(o); UFOP → (b),(f),(m),(n); and

UFPR-ALPR → (c),(g),(k).
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et al., 2018) and TRBA (Baek et al., 2019) in a leave-one-dataset-out experimental setup. Initially,

we attributed such underwhelming results to the heavy bias toward specific regional identifiers

within existing datasets for LPR. Nevertheless, we employed a large volume of synthetic data

(generated through character permutation) to mitigate such bias during those experiments. This

led us to hypothesize that there are other strong biases crept into LPR datasets. This realization

serves as the primary motivation for the research presented in this chapter.

9.2 Experiments

This section describes the experiments performed in this work. We first list the datasets explored

in our assessments, explaining why they were chosen and not others. We also detail how the LP

images from each dataset were selected and divided into training, validation and test subsets.

Then, we describe the CNN model employed for the dataset classification task (Name That
Dataset! game) and provide implementation details. Finally, we report the results achieved.

9.2.1 Datasets

Our experiments were carried out on images from eight public datasets introduced over the

last decade: RodoSol-ALPR, SSIG-SegPlate (Gonçalves et al., 2016a), UFOP (Mendes Júnior

et al., 2011), UFPR-ALPR (Laroca et al., 2018), a reduced version of CCPD (Xu et al., 2018),

ChineseLP (Zhou et al., 2012), PKU (Yuan et al., 2017), and PlatesMania-CN (Laroca et al.,

2021b). The images of the first four datasets were acquired in three states of Brazil, while the

images of the last four datasets were collected in various provinces of mainland China. We cropped

the LP regions from the original images (taken in urban environments) for our experiments.

In this chapter, we chose to experiment with LPs from Brazil and mainland China

because there are many ALPR systems designed primarily for LPs from one of those regions (Silva

and Jung, 2017; Silvano et al., 2021; Gong et al., 2022; Jiang et al., 2023b). Considering the

objectives of our study, we also filter which LP images from each dataset to use in our experiments:

(i) regarding the datasets collected in Brazil, we explore only LPs that have a single row of

characters and gray as the background color (LPs for private vehicles before the implementation

of the Mercosur standard); and (ii) for the datasets acquired in mainland China, we explore only

LPs that have a single row of characters and blue as the background color. This protocol was

adopted because the four datasets collected in each region have LPs with these characteristics. In

contrast, only some datasets have LPs with other characteristics (e.g., UFOP and SSIG-SegPlate

do not have any two-row LPs, and the ChineseLP and PlatesMania-CN datasets do not include

LPs with yellow background). An overview of the datasets used in our experiments, after the

aforementioned selection process, is presented in Table 9.1. We labeled the color of each LP in

every dataset to make this selection, and these annotations are publicly available30.

For reproducibility, it is essential to make clear how we divided the selected images from

each of the datasets to train, validate and test the classification model (detailed in Section 9.2.2).

The CCPD, RodoSol-ALPR, SSIG-SegPlate and UFPR-ALPR datasets were split according to

the protocols defined by the respective authors (i.e., the authors specified which images belong to

which subsets), while the other datasets, which do not have well-defined evaluation protocols,

were randomly split into 40% images for training; 20% images for validation; and 40% images for

testing, following the split protocol adopted in the SSIG-SegPlate and UFPR-ALPR datasets31.

30https://raysonlaroca.github.io/supp/sibgrapi2022/annotations.zip
31 The training, validation, and test splits are available at https://raysonlaroca.github.io/supp/

sibgrapi2022/splits.zip
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Table 9.1: Datasets used for the experiments conducted in this chapter.

Dataset Year LP Images State / Province-City
UFOP 2011 244 Minas Gerais (BR)

ChineseLP 2012 400 Various (CN)

SSIG-SegPlate 2016 1,832 Minas Gerais (BR)

PKU 2017 2,024 Anhui-Tongling (CN)

UFPR-ALPR 2018 2,700 Paraná (BR)

CCPD 2020∗ 25,000† Anhui-Hefei (CN)

PlatesMania-CN 2021 347 Various (CN)

RodoSol-ALPR 2022 4,765 Espírito Santo (BR)

∗ The CCPD dataset was introduced in 2018 and last updated in 2020.
† Following (Liu et al., 2021), we used a reduced version of CCPD in our experiments.

As the CCPD dataset has many more images than the others (more than 350k), we followed (Liu

et al., 2021) and performed our experiments using a reduced version with 25k images.

Three points should be noted. First, for all datasets, we were careful not to have images

of the same LP in different subsets (otherwise, different images of an LP could appear in both the

training and test sets, for example). Second, as the chosen datasets have different numbers of test

images, we randomly sample a set of 𝑁 test set images from different datasets to predict which

dataset each image belongs to (for each region, 𝑁 is constrained by the smallest number of images

in the test sets). This experiment is repeated 100 times with different splits and we report the

average results. Similar protocols were adopted in (Torralba and Efros, 2011; Khosla et al., 2012;

Tommasi et al., 2017). Third, as in other chapters of this thesis, we used Albumentations (Buslaev

et al., 2020) to balance the number of training images from different datasets, thus mitigating

overfitting. Transformations applied to generate new images include random noise, random JPEG

compression, random shadows, and random perturbations of hue, saturation and brightness.

For clarity, throughout the remainder of this chapter, “Brazilian LPs” refer to gray

single-row LPs from vehicles registered in Brazil (prior to the adoption of the Mercosur layout),

and “Chinese LPs” refer to blue single-row LPs from vehicles registered in mainland China.

While some examples of Brazilian LPs can be seen in Figure 9.1 (the teaser image of this chapter),

some Chinese LPs from the chosen datasets are shown in Figure 9.2.

Figure 9.2: Some Chinese LPs from the datasets used in this chapter. From top to bottom: CCPD (Xu et al., 2018),

ChineseLP (Zhou et al., 2012), PKU (Yuan et al., 2017) and PlatesMania-CN (Laroca et al., 2021b).

One may have noticed that all LP images we showed (both in Figure 9.1 and Figure 9.2)

are quite horizontal, tightly bounded, and “easy” to read. This is because we rectified all LPs to

eliminate biases such as repetitive tilt angles caused by specific camera positions in images from

distinct datasets. To perform the rectification, we labeled the position (𝑥, 𝑦) of the four corners of

each LP in the eight datasets that do not contain such labels (only the CCPD and RodoSol-ALPR

datasets have corner annotations for all LPs). These newly created annotations are also accessible

at the URL referenced in footnote 30 on the previous page.
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9.2.2 Classification Model

For the dataset classification task (Name That Dataset!), we designed a lightweight CNN

architecture called DC-NET. It is inspired by the CDCC-NET model (Laroca et al., 2021a) and is

relatively similar to the model used for this same task in (McLaughlin et al., 2015).

DC-NET’s architecture is shown in Table 9.2. As can be seen, the model is relatively

shallow, with three convolutional layers containing 16/32/64 filters, each followed by a max-

pooling layer with a 2 × 2 kernel and stride = 2. Batch normalization, followed by a Rectified

Linear Unit (ReLU), is added after each convolutional layer. We evaluated several changes to this

architecture, such as using depthwise separable convolutional layers, convolutional layers with

stride = 2 (removing the max-pooling layers), and different input sizes and numbers of filters.

However, better results were not obtained (we conducted these experiments in the validation set).

Table 9.2: DC-NET’s layers and hyperparameters.

# Layer Filters Size / Stride Input Output
0 conv 16 3 × 3/1 192 × 64 × 3 192 × 64 × 16

1 max 2 × 2/2 192 × 64 × 16 96 × 32 × 16

2 conv 32 3 × 3/1 96 × 32 × 16 96 × 32 × 32

3 max 2 × 2/2 96 × 32 × 32 48 × 16 × 32

4 conv 64 3 × 3/1 48 × 16 × 32 48 × 16 × 64

5 max 2 × 2/2 48 × 16 × 64 24 × 8 × 64

6 flatten 24 × 8 × 64 12288

# Layer Units Input Output
7 dense 128 12288 128

8 dense 4 128 4

The DC-NET model was implemented using Keras. We used the Adam optimizer, initial

learning rate = 10-3 (with ReduceLROnPlateau’s patience = 3 and factor = 10-1), batch size = 64,

max epochs = 50, and patience = 7. In our test environment, equipped with an NVIDIA Quadro

RTX 8000 GPU as described in preceding chapters, DC-NET runs at approximately 720 FPS.

9.2.3 Results

In this subsection, we report the results obtained by DC-NET in the dataset classification

task (Name That Dataset!). Figure 9.3 shows the confusion matrices for Brazilian (left) and

Chinese (right) LPs. There is a clearly pronounced diagonal in both matrices, indicating that

each dataset does have a unique, identifiable “signature”; it is worth noting that only about 25%

accuracy would be expected if the classifier was operating at chance levels, as would happen if

the LP images from each dataset were fully unbiased samples. The overall accuracy was 95.2%

for Brazilian LPs and 95.9% for Chinese LPs.

The results show that the DC-NET model is more successful in classifying LP images

from the datasets acquired with static cameras (RodoSol-ALPR, SSIG-SegPlate, UFOP, and PKU)

than LP images from the datasets captured by handheld (CCPD, ChineseLP, and PlatesMania-CN)

or moving cameras (UFPR-ALPR). We believe this is because images collected by static cameras

have many characteristics in common, not just the background. These similarities likely extend

to the LP regions, explaining the model’s greater accuracy with such images. To illustrate,

in Figure 9.4, we show two pairs of the most similar images – in terms of Mean Squared

Error (MSE) – from distinct subsets from each of the RodoSol-ALPR and UFPR-ALPR datasets

(the datasets where the highest and worst accuracy were achieved, respectively). Observe that

factors common in images taken by static cameras, such as similar vehicle positioning and
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Figure 9.3: Confusion matrices for a classifier (DC-NET) trained to predict the source dataset of a given LP image.

Left: Brazilian LPs; right: Chinese LPs.

distance from the camera, may cause the LPs from different images to be quite resembling (note

that this is not always the case; it may seem so because we focused on the most similar pairs of

images from these datasets for this analysis).

(a) MSE = 174 (b) MSE = 407

(c) MSE = 1,686 (d) MSE = 1,700

Figure 9.4: Two pairs of the most similar images (in terms of MSE) from distinct subsets from each of the

RodoSol-ALPR (a, b) and UFPR-ALPR (c, d) datasets. In each pair, the left image belongs to the training set, while

the right one belongs to the test set. Observe that LPs from different images captured by static cameras may be quite

resembling. We show a zoomed-in version of the LP in the lower left region of each image for better viewing.

One might initially suspect the model simply memorized the most frequent regional

characters in each dataset (e.g., most LPs in the CCPD dataset have ‘皖’ as the first character).

However, this does not hold since DC-NET correctly classified more than 97% of the LP images

from both datasets collected in the Brazilian state of Minas Gerais (SSIG-SegPlate and UFOP)

and from both datasets acquired in the Anhui province in mainland China (CCPD and PKU).

By carefully analyzing the confusion matrices in Figure 9.3, we noticed that almost all

incorrect predictions on Chinese LPs were between the ChineseLP and PlatesMania-CN datasets.

We consider this occurred because both datasets have images collected from the internet (the

other six datasets do not contain any images from the internet). Specifically, all images from

the PlatesMania-CN datasets were downloaded from the internet (Laroca et al., 2021b), while

around 39% of the ChineseLP’s images were taken from the internet (Zhou et al., 2012). It makes

perfect sense that the bias is less pronounced when the images come from multiple sources.

The classifier still managing to achieve high accuracy rates in both datasets is due to selection
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bias (Torralba and Efros, 2011; McLaughlin et al., 2015; Wachinger et al., 2021), which arises

because authors building a dataset select images with specific purposes in mind, thus reducing

the variability of the data (in many cases without even realizing it). Furthermore, these datasets

have images with different quality levels, as they were introduced years apart and the capture

devices evolved considerably in the time between them being collected.

Torralba and Efros (2011) observed that using more training data led to higher accuracy,

without any immediate signs of saturation. Intrigued by these findings, we trained the DC-NET

model three more times for each LP layout: using 50%, 25% and 12.5% of the training data

(randomly selected). As depicted in Figure 9.5, our experiments corroborate this trend: the

accuracy improves as the size of the training set increases, with no signs of saturation yet observed.

Figure 9.5: Classification performance as a function of training data size. The performance does not seem to be

saturated for either Brazilian (left) or Chinese (right) LPs.

Another noteworthy finding is that the classifier predicts the source dataset correctly with

a significantly higher confidence value than when it predicts incorrectly. The mean confidence

values for correctly classified Brazilian and Chinese LPs were 98.5% and 98.1%, respectively,

while the mean confidence values for incorrectly classified Brazilian and Chinese LPs were

79.7% and 74.3%, respectively. Figure 9.6 shows the Receiver Operating Characteristic (ROC)

curves for Brazilian (left) and Chinese (right) LPs. Since ROC curves are typically used in binary

classification, we binarized the classifier’s output (per class) to draw one ROC curve per dataset.

Figure 9.6: ROC curves for Brazilian and Chinese LPs. Note the high Area Under the Curve (AUC) values, which

indicate that DC-NET performs considerably well at distinguishing between LP images from different datasets.

9.3 Discussion

Considering that the DC-NET model – which is relatively shallow – can predict the source dataset

of an LP image with accuracy above 95%, we conjecture that most LPR models – which are

considerably deeper – are actually learning and exploiting such signatures to improve the results
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achieved in seen datasets at the cost of losing generalization capability. The intuition behind

this conjecture is as follows: consider the SSIG-SegPlate dataset (Gonçalves et al., 2016a) as an

example, it has many LPs with the letter ‘O’ as the first character but no LP with the letter ‘Q’ in

that position. Hence, an LPR model capable of identifying that a given LP image belongs to this

dataset may predict the letter ‘O’ as the first character even if the character looks more like ‘Q’

than ‘O’ due to noise or other factors. However, the relatively high recognition rates achieved in

the SSIG-SegPlate dataset would likely not be reached in unseen datasets.

This chapter’s findings echo the concerns raised in Chapter 5, where we observed

significant drops in recognition performance across several datasets when training and testing the

models in a leave-one-dataset-out (LODO) fashion. It is important to recall our earlier observation

in that chapter (more specifically, in Figure 5.5), where we emphasized that errors under the

LODO protocol were not not primarily associated with challenging scenarios, suggesting that

they likely stemmed from differences between the training and testing data distributions.
We believe that the main cause of dataset bias is related to the cameras used to collect

the images in each dataset. Taking the results achieved in Brazilian LPs as an example, the

lowest accuracy (i.e., less pronounced bias) was reported for the UFPR-ALPR dataset, which

was captured by three non-static cameras of different price ranges. In contrast, the other datasets

have images acquired by a single static camera (SSIG-SegPlate and UFOP) or by multiple static

cameras of the same model (RodoSol-ALPR). In the same direction, another probable cause

of bias relates to how the images were stored in different datasets. For example, the CCPD

dataset contains highly compressed images while most other datasets do not. DC-NET probably

exploited the detection of artifacts in the highly compressed LP images for better classification.

Some works have linked dataset bias to image backgrounds (McLaughlin et al., 2015;

Tian et al., 2018). For example, a classifier may accurately classify images labeled as “boat”

without actually focusing on the boat itself, but rather on the water below or the shore in the

distance (Torralba and Efros, 2011). Although we are convinced that we have eliminated such

bias by performing our experiments on rectified LP images, it is worth noting that the corner

annotations in the CCPD dataset are not as accurate as those we made or those found in other

datasets. The DC-NET model may have exploited these subtle distinctions as well.

While these conclusions have been reached for the particular classifier used in our

experiments, similar trends are expected to hold for similar models (McLaughlin et al., 2015).

We consider two initial ways to mitigate the dataset bias problem in LPR. The first

is leveraging deep learning-based methods’ high capability to visualize and understand how

bias has crept into the chosen datasets. One technique that immediately comes to mind is

Grad-CAM (Selvaraju et al., 2017), which uses the gradients of any target class flowing into the

final convolutional layer to produce a coarse localization map highlighting the important regions

in the image for predicting the class.

The other way is to embrace the “wildness” of the internet to collect a large-scale dataset

for LPR. However, as shown in Section 9.2 and in (Torralba and Efros, 2011), downloading images

from the internet alone does not guarantee a bias-free sampling, as keyword-based searches

return only particular types of images; users of a specific website prefer images with certain

characteristics, among other factors. Thus, such a dataset should be obtained from multiple

sources on the internet (e.g., multiple search engines and websites from various countries).

9.4 Final Remarks

In this chapter, we situated the dataset bias problem (Torralba and Efros, 2011; Tommasi et al.,

2017) in the LPR context. We performed experiments on LP images from eight publicly available
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datasets; four were collected in Brazil and four in mainland China. The results showed that each

dataset does have a unique, identifiable signature.

Specifically, our Name That Dataset! experiments showed that the source dataset of an

LP image could be predicted with more than 95% accuracy (chance is 1/4 = 25%). Intriguingly,

we observed no evidence of saturation as more training data was added. We believe there is no

theoretical reason for such results other than the strong biases in the actual datasets.

We hope these findings will further encourage the evaluation of LPR models in cross-

dataset setups, as they provide a better indication of generalization (hence real-world performance)

than intra-dataset ones.
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10. CONCLUSIONS AND FUTURE DIRECTIONS

This thesis contributes significantly to the advancement of Automatic License Plate Recogni-

tion (ALPR) by identifying and addressing key limitations in the existing literature.

We tackled the lack of attention given to images featuring Mercosur LPs, motorcycles,

and two-row LPs by creating a dedicated dataset (Chapter 4) and conducting many experiments

on it (Chapters 5 to 7 and 9). In Chapter 5 specifically, we showed the importance of the RodoSol-

ALPR dataset for robust recognition of Mercosur and two-row LPs, as none of the OCR models we

trained surpassed a 70% recognition rate on its test set under the leave-one-dataset-out protocol.

In Chapters 6 and 7, we demonstrated that significant improvements in ALPR results

could indeed be attained without relying on additional real training data, groundbreaking

descriptor designs, or extensive searches for better model architectures. Chapter 6 examined

the potential enhancements in LPR results by fusing the outputs from multiple OCR models

using straightforward approaches such as selecting the most confident prediction or through

majority voting. Chapter 7 explored the synergistic benefits of combining various synthetic data

generation methodologies not only to improve LPR performance but also to overcome challenges

posed by limited training data availability. Notably, both chapters detailed the enhancements

achieved in scenarios observed during training (intra-dataset) as well as on entirely new, unseen

data (cross-dataset). Moreover, they compared the balance between speed and accuracy across

different approaches, recognizing the importance of efficient systems in real-world applications.

By utilizing a traditional-split vs. leave-one-dataset-out experimental setup, we identified

a critical issue in the way ALPR systems have been evaluated. Specifically, the established

protocols for assessing these systems have historically failed to accurately indicate their out-of-

domain robustness. Our investigation in Chapter 8 revealed that these protocols were formulated

without accounting for instances where the same vehicle or LP appears in multiple images. This

resulted in many near-duplicates within the training and test sets of the two most referenced

datasets in the field, potentially hindering the development and acceptance of more efficient

LPR models that have strong generalization abilities but do not memorize duplicates as well as

other models. Furthermore, Chapter 9 contextualized the dataset bias problem within the LPR

domain. We discovered that OCR models are inadvertently learning idiosyncrasies of each dataset

alongside fundamental LPR-related knowledge. All these findings underscore the importance of

conducting cross-dataset experiments, as they provide a better indication of generalization (hence

real-world performance) than intra-dataset ones. In other words, the outcomes from cross-dataset

experiments are more likely to reflect what would be observed in real-world deployments.

Future Directions
Regarding improving the out-of-domain robustness of OCR models applied to LPR,

a promising avenue for future research lies in leveraging adversarial training. This approach

entails incorporating carefully crafted adversarial examples – inputs specifically designed to

mislead the models – into the training data. Several studies have shown that adversarial training

not only enhances the performance of deep learning models against unforeseen attacks but also

boosts their accuracy on both clean images and out-of-domain samples (Zhao et al., 2020a;

Poursaeed et al., 2021; Lehner et al., 2024). Despite these potential benefits, the exploration of

adversarial training within the ALPR domain remains largely unexplored.

Beyond exploring adversarial training, we firmly believe that significantly improved

results can be attained with minimal manual effort by utilizing coarse annotations. These

annotations can be automatically generated for unlabeled images from the internet or public
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datasets that either lack annotations entirely or only have labels for specific parts of the ALPR

pipeline. While research across various domains demonstrates the effectiveness of coarse

annotations in boosting deep learning model performance (Lucio et al., 2019; Liu et al., 2020;

Das et al., 2023), there is still a gap in understanding how to best couple coarse-annotated data

with fine-annotated data in the ALPR context. Such exploration should focus on mitigating

annotation errors and their adverse effects on network learning.

After successfully applying synthetic data to accurately recognize LPs on high-quality

images captured across various scenarios and regions (Chapter 7), we suggest a progressive

shift in focus for ALPR researchers toward tackling the challenges associated with detecting

and recognizing low-quality and low-resolution LPs. These challenges are often encountered

in criminal investigations, where video evidence typically comes from security cameras not

optimized for ALPR. The LPs in these videos are commonly illegible throughout the entire

recording. Possible solutions to this problem include exploring image enhancement techniques,

such as super-resolution, and leveraging temporal information by analyzing multiple frames.
Current research on LP image enhancement has predominantly focused on unrealistic scenarios,

such as synthetic low-resolution images created by artificially downsampling high-resolution

ones (Schirrmacher et al., 2023; Kim et al., 2024). Similarly, studies using multiple frames have

often relied on basic majority voting from individual frames (Al-batat et al., 2022; Silva and

Jung, 2022), failing to utilize the full potential of feeding sequential frames into the models.

Last but not least, exploring how to effectively utilize the high capabilities of deep

learning methods to address the dataset bias issue in LPR (Chapter 9) remains an open area for

future research. As an initial step toward this goal, we advocate exploring visualization techniques

such as Grad-CAM (Selvaraju et al., 2017) and Iterated Integrated Attributions (IIA) (Barkan

et al., 2023). These techniques can generate visually interpretable heatmaps, offering insights into

how a lightweight classifier can excel at distinguishing between LP images from different datasets.
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